WorldWideScience

Sample records for twin-wire arc thermal

  1. Twin-wire Submerged Arc Welding Process of a High-strength Low-alloy Steel

    Institute of Scientific and Technical Information of China (English)

    YANG Xiuzhi; XU Qinghua; YIN Niandong; XIAO Xinhua

    2011-01-01

    The measurement of thermal cycle curves of a high-strength low-alloy steel (HSLA)subjected twin-wire submerged arc welding (SAW) was introduced. The thermal simulation test was performed by using the obtained curves. The impact toughness at -50 ℃ temperature of the simulated samples was also tested. OM, SEM and TEM of the heat-affected zone (HAZ) of some simulation specimens were investigated. The results showed that the HSLA endured the twin-wire welding thermal cycle, generally, the low-temperature toughness values of each part of HAZ was lower than that of the parent materials, and the microstructure of coarse-grained zone(CGHAZ) mainly made up of granular bainite is the reason of the toughness serious deterioration. Coarse grain, grain boundary carbide extract and M-A island with large size and irregular polygon, along the grain boundary distribution, are the reasons for the toughness deterioration of CGHAZ. The research also showed that selected parameters of twin-wire SAW can meet the requirements to weld the test steel.

  2. Electromagnetic Characteristic of Twin-wire Indirect Arc Welding

    Institute of Scientific and Technical Information of China (English)

    SHI Chuanwei; ZOU Yong; ZOU Zengda; WU Dongting

    2015-01-01

    Traditional welding methods are limited in low heat input to workpiece and high welding wire melting rate. Twin-wire indirect arc(TWIA) welding is a new welding method characterized by high melting rate and low heat input. This method uses two wires:one connected to the negative electrode and another to the positive electrode of a direct-current(DC) power source. The workpiece is an independent, non-connected unit. A three dimensional finite element model of TWIA is devised. Electric and magnetic fields are calculated and their influence upon TWIA behavior and the welding process is discussed. The results show that with a 100 A welding current, the maximum temperature reached is 17 758 K, arc voltage is 14.646 V while maximum current density was 61 A/mm2 with a maximum Lorene force of 84.5mN. The above mentioned arc parameters near the cathode and anode regions are far higher than those in the arc column region. The Lorene force is the key reason for plasma velocity direction deviated and charged particles flowed in the channel formed by the cathode, anode and upper part of arc column regions. This led to most of the energy being supplied to the polar and upper part of arc column regions. The interaction between electric and magnetic fields is a major determinant in shaping TWIA as well as heat input on the workpiece. This is a first study of electromagnetic characteristics and their influences in the TWIA welding process, and it is significant in both a theoretical and practical sense.

  3. Quality Designed Twin Wire Arc Spraying of Aluminum Bores

    Science.gov (United States)

    König, Johannes; Lahres, Michael; Methner, Oliver

    2015-01-01

    After 125 years of development in combustion engines, the attractiveness of these powerplants still gains a great deal of attention. The efficiency of engines has been increased continuously through numerous innovations during the last years. Especially in the field of motor engineering, consequent friction optimization leads to cost-effective fuel consumption advantages and a CO2 reduction. This is the motivation and adjusting lever of NANOSLIDE® from Mercedes-Benz. The twin wire arc-spraying process of the aluminum bore creates a thin, iron-carbon-alloyed coating which is surface-finished through honing. Due to the continuous development in engines, the coating strategies must be adapted in parallel to achieve a quality-conformed coating result. The most important factors to this end are the controlled indemnification of a minimal coating thickness and a homogeneous coating deposition of the complete bore. A specific system enables the measuring and adjusting of the part and the central plunging of the coating torch into the bore to achieve a homogeneous coating thickness. Before and after measurement of the bore diameter enables conclusions about the coating thickness. A software tool specifically developed for coating deposition can transfer this information to a model that predicts the coating deposition as a function of the coating strategy.

  4. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye

    2013-01-01

    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  5. Effects of process parameters on arc shape and penetration in twin-wire indirect arc welding

    Institute of Scientific and Technical Information of China (English)

    Shun-shan ZHANG; Mei-qing CAO; Dong-ting WU; Zeng-da ZOU

    2009-01-01

    In this study, the effects of variable parameters on arc shape and depth of penetration in twin-wire indirect arc gas shielded welding were investigated. The variation of arc shape caused by changes of the parameters was recorded by a high-speed camera,and the depths of penetration of specimen were measured after bead welding by an optical microscope. Experiments indicated that proper parameters give birth to a concentrated and compressed welcimg arc, which Would increase the depth of penetration as the incensement of the arc foice Several pnncipal parameters including toe distance ot twin wires intersecting point to base metal,the included angle,and the content of shielding gas were determined. The arc turned more concentrated and the depth of penetration increased obviously as the welding current increased,the arc turned brighter while unobvlous change of penetration occurred as the arc voltage increased,and the deepest penetration was obtained when the welding speed was 10.5 mm/s..

  6. Microstructural Characterization and Wear Properties of Fe-Based Amorphous-Crystalline Coating Deposited by Twin Wire Arc Spraying

    Directory of Open Access Journals (Sweden)

    Ana Arizmendi-Morquecho

    2014-01-01

    Full Text Available Twin wire arc spraying (TWAS was used to produce an amorphous crystalline Fe-based coating on AISI 1018 steel substrate using a commercial powder (140MXC in order to improve microhardness and wear properties. The microstructures of coating were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM as well as the powder precursor. Analysis in the coating showed the formation of an amorphous matrix with boron and tungsten carbides randomly dispersed. At high amplifications were identified boron carbides at interface boron carbide/amorphous matrix by TEM. This kind of carbides growth can be attributed to partial crystallization by heterogeneous nucleation. These interfaces have not been reported in the literature by thermal spraying process. The measurements of average microhardness on amorphous matrix and boron carbides were 9.1 and 23.85 GPa, respectively. By contrast, the microhardness values of unmelted boron carbide in the amorphous phase were higher than in the substrate, approaching 2.14 GPa. The relative wear resistance of coating was 5.6 times that of substrate. These results indicate that the twin wire arc spraying is a promising technique to prepare amorphous crystalline coatings.

  7. The Effect of Process Parameters on Twin Wire Arc Spray Pattern Shape

    Directory of Open Access Journals (Sweden)

    Allison Lynne Horner

    2015-04-01

    Full Text Available A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was most affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Coating deposition rate was most affected by arc current.

  8. Established and Adapted Diagnostic Tools for Investigation of a Special Twin-Wire Arc Spraying Process

    Science.gov (United States)

    König, Johannes; Lahres, Michael; Zimmermann, Stephan; Schein, Jochen

    2016-10-01

    In the LDS® ( Lichtbogendrahtspritzen) process, a twin-wire arc spraying (TWAS) process developed by Daimler AG, the gas injection and feed to the arc play a crucial role in separating the molten particles from the wire ends. This paper describes an investigation of the gas and particle behavior according to individual LDS® process parameters. Coating problems are not considered. The measurements are separated into two different parts: "cold" (without arc and particles) and "hot" (with arc and particles). The results provide the first detailed understanding of the effect of different LDS® process parameters. A correlation between the gas parameter settings and the particle beam properties was found. Using established and adapted diagnostic tools, as also applied for conventional TWAS processes, this special LDS® process was investigated and the results (gas and particle behavior) validated, thereby allowing explanation and comparison of the diagnostic methods, which is the main focus of this paper. Based on error analysis, individual instabilities, limits, and deviations during the gas determinations and particle measurements are explained in more detail. The paper concludes with presentation of the first particle-shadow diagnostic results and main statements regarding these investigations.

  9. Microstructure of Ni-Al powder and Ni-Al composite coatings prepared by twin-wire arc spraying

    Institute of Scientific and Technical Information of China (English)

    Ji-xiao Wang; Gui-xian Wang; Jing-shun Liu; Lun-yong Zhang; Wei Wang; Ze Li; Qi-xiang Wang; Jian-fei Sun

    2016-01-01

    Ni–Al powder and Ni–Al composite coatings were fabricated by twin-wire arc spraying (TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy (SEM) and energy dispersive spec-troscopy (EDS). The results showed that the obtained particle size ranged from 5 to 50μm. The morphology of the Ni–Al powder showed that molten particles were composed of Ni solid solution, NiAl, Ni3Al, Al2O3, and NiO. The Ni–Al phase and a small amount of Al2O3 parti-cles changed the composition of the coating. The microstructures of the twin-wire-arc-sprayed Ni–Al composite coatings were characterized by SEM, EDS, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results showed that the main phase of the Ni-5wt%Al coating consisted of Ni solid solution and NiAl in addition to a small amount of Al2O3. The main phase of the Ni-20wt%Al coating mainly consisted of Ni solid solution, NiAl, and Ni3Al in addition to a small amount of Al and Al2O3, and NiAl and Ni3Al intermet-allic compounds effectively further improved the final wear property of the coatings. TEM analysis indicated that fine spherical NiAl3 pre-cipitates and a Ni–Al–O amorphous phase formed in the matrix of the Ni solid solution in the original state.

  10. The Characterization of Twin-Wire Arc-Sprayed FeCrBSi Coating and the Application in Sewage Sludge Boilers

    Science.gov (United States)

    Qin, Enwei; Huang, Qian; Shao, Yumin; Chen, Guoxing; Ye, Lin; Gu, Qin; Wu, Shuhui

    2014-12-01

    Incineration in boilers is an environment-friendly treatment for industrial and civil sewage sludge. However, due to the aggressive nature of the sludge, the boiler fireside-surface is subjected to severe wear, erosive, and high temperature corrosion problems during incineration. In this study, we developed an economical FeCrBSi wire material with iron weight content as high as 80%. The coating was prepared by twin-wire arc spraying processing. The chemical compositions of the coating, as well as phase components were analyzed by energy-dispersive spectroscopy and x-ray diffraction method. The surface roughness, porosity, and cross-sectional morphology were further characterized. The coating hardness is close to that of the commercial Armacor M and Armacor C materials. In-boiler test was also carried out. The low thickness loss of the tube indicates a promising application future in sludge boilers.

  11. High Power Diode Laser-Treated HP-HVOF and Twin Wire Arc-Sprayed Coatings for Fossil Fuel Power Plants

    Science.gov (United States)

    Mann, B. S.

    2013-08-01

    This article deals with high power diode laser (HPDL) surface modification of twin wire arc-sprayed (TWAS) and high pressure high velocity oxy-fuel (HP-HVOF) coatings to combat solid particle erosion occurring in fossil fuel power plants. To overcome solid particle impact wear above 673 K, Cr3C2-NiCr-, Cr3C2-CoNiCrAlY-, and WC-CrC-Ni-based HVOF coatings are used. WC-CoCr-based HVOF coatings are generally used below 673 K. Twin wire arc (TWA) spraying of Tafa 140 MXC and SHS 7170 cored wires is used for a wide range of applications for a temperature up to 1073 K. Laser surface modification of high chromium stainless steels for steam valve components and LPST blades is carried out regularly. TWA spraying using SHS 7170 cored wire, HP-HVOF coating using WC-CoCr powder, Ti6Al4V alloy, and high chromium stainless steels (X20Cr13, AISI 410, X10CrNiMoV1222, 13Cr4Ni, 17Cr4Ni) were selected in the present study. Using robotically controlled parameters, HPDL surface treatments of TWAS-coated high strength X10CrNiMoV1222 stainless steel and HP-HVOF-coated AISI 410 stainless steel samples were carried out and these were compared with HPDL-treated high chromium stainless steels and titanium alloy for high energy particle impact wear (HEPIW) resistance. The HPDL surface treatment of the coatings has improved the HEPIW resistance manifold. The improvement in HPDL-treated stainless steels and titanium alloys is marginal and it is not comparable with that of HPDL-treated coatings. These coatings were also compared with "as-sprayed" coatings for fracture toughness, microhardness, microstructure, and phase analyses. The HEPIW resistance has a strong relationship with the product of fracture toughness and microhardness of the HPDL-treated HP-HVOF and TWAS SHS 7170 coatings. This development opens up a possibility of using HPDL surface treatments in specialized areas where the problem of HEPIW is very severe. The HEPIW resistance of HPDL-treated high chromium stainless steels and

  12. Microstructure and mechanical properties of twin-wire arc sprayed Ni-Al composite coatings on 6061-T6 aluminum alloy sheet

    Institute of Scientific and Technical Information of China (English)

    Ji-xiao Wang; Jing-shun Liu; Lun-yong Zhang; Jian-fei Sun; Zhi-ping Wang

    2014-01-01

    We have systematically studied the microstructure and mechanical properties of Ni-5wt%Al and Ni-20wt%Al composite coat-ings fabricated on 6061-T6 aluminum alloy sheet by twin-wire arc spraying under different experimental conditions. The abrasive wear be-havior and interface diffusion behavior of the composite coatings were evaluated by dry/wet rubber wheel abrasive wear tests and heat treat-ment, respectively. Experimental results indicate that the composite coatings exhibit features of adhesive wear. Besides, the Vickers micro-hardness of NiAl and Ni3Al intermetallic compounds is relatively larger than that of the substrate, which is beneficial for enhancing the wear resistance. With the increase of annealing temperature and time, the interface diffusion area between the Ni-Al coating and the substrate gradually expands with the formation of NiAl3 and Ni2Al3 phases, and is controlled by diffusion of aluminum atoms. The grain growth ex-ponent n of diffusion kinetics of the Ni-Al coating, calculated via a high-temperature diffusion model at 400, 480, and 550°C, is between 0.28 and 0.38. This satisfies the cubic law, which is consistent with the general theoretical relationship of high-temperature diffusion.

  13. 双丝间接电弧氩弧焊的熔滴过渡形式%Mode of Metal Transfer on Twin-wire Indirect Arc Argon Welding

    Institute of Scientific and Technical Information of China (English)

    曹梅青; 邹增大; 张顺善; 曲仕尧

    2011-01-01

    采用氙灯背光高速摄像系统及示波器对双丝间接电弧氩气保护焊的熔滴过渡进行了研究。结果表明:双丝间接电弧氩弧焊正、负极的熔滴过渡形式并不完全相同,根据正、负极熔滴过渡形式的不同组合将熔滴过渡分为大滴—大滴过渡,射滴—大滴过渡,短路过渡,射滴—射滴过渡,射流—大滴过渡,射流—射滴过渡及射流过渡7种类型。在焊接过程中以射流过渡及射流—射滴过渡为主。双丝间接电弧氩弧焊主要靠电弧热量及熔滴携带热量熔化母材,熔滴过渡方向与电流流动方向不同,正、负两极熔滴同时过渡,两极的过渡频率、尺寸有所不同。%The metal transfer of twin-wire indirect arc argon welding was investigated with high-speed camcorder system based on a xenon lamp source and digital oscillogragh.Results show that the metal transfer mode of anodal and cathodal does not mean completely th

  14. 双丝间接电弧氩气保护焊的熔滴过渡与电弧形态%Relationship between metal transfer and arc shape in twin-wire indirect arc welding

    Institute of Scientific and Technical Information of China (English)

    曹梅青; 邹增大; 曲仕尧

    2012-01-01

    用高速摄像系统及示波器对双丝间接电弧氩弧焊的熔滴过渡及电弧形态和电弧电压之间的关系进行了深入分析.结果表明,熔滴过渡和电弧电压、电弧形态的规律性变化存在密切的对应关系.熔滴形成、长大、脱离焊丝端部的规律性变化使极性斑点间距及弧柱电阻发生变化导致了电弧电压的波动,从而使电弧形态发生由暗到明、由小到大的规律性变化.随着焊接电流的增大熔滴的过渡形式发生变化,熔滴尺寸减小.不同的熔滴过渡形式其电弧电压的波动也有所不同,射流过渡电压波动较小,而短路过渡电弧电压的波动最大.%Relationship between metal transfer,arc shape and arc voltage was investigated with high speed camcorder system and digital oscillograph.Results show that metal transfer has a close relationship with arc voltage and the regular variation of arc shape.It shows that the regular changes of metal transfer make polarity spots spacing and arc beam resistance change and cause the arc voltage fluctuations,so that the arc shape changes regularly.Droplet transfer pattern changes and droplet size dereases with the increasing of welding current,different metal transfer mode has different arc voltage fluctuation,spraying transfer has lower variation of voltage but short transfer's arc voltage variation is bigger.

  15. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  16. Microstructures of 2219 twin wire welded joints

    Institute of Scientific and Technical Information of China (English)

    Xu Wenli; Li Qingfen; Meng Qingguo; Gao Na; Fang Hongyuan

    2005-01-01

    With thick plates of 2219 high-strength alloy, the microstructures of welded joints with twin wire MIG welding were analyzed. Experimental results show that no hot crack was found in the weld due to discontinuous distribution of cocrystallization with low melting temperature, but porosity is serious in the first weld seam that is mainly composed of equiaxial grains with uneven sizes. As the poor position of the whole welded joint, fusion zone has big and coarse grains,uneven microstructures ; In quenching zone, there exist a lot of soaked microstructures that cocrystallization with low melting temperature solute into matrix, thus strengthening the metal in this zone; In excessive aging zone, much more phases that distribute evenly will be separated from the matrix; Outside this zone, properties and microstructures of the metal are basically similar to matrix due to the relatively low temperature or unaffected heat in the zone during welding.

  17. Micro-mechanical properties of 2219 welded joints with twin wire welding

    Institute of Scientific and Technical Information of China (English)

    Xu Wenli; Li Qingfen; Meng Qingguo; Fang Hongyuan; Gao Na

    2006-01-01

    Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint strengthening and improvement of welding procedure.Experimental results show that in weld zone, micro-mechanical properties are seriously uneven.Both hardness and elastic modulus distribute as uneven sandwich layers, while micro-mechanical properties in bond area are much more uniform than weld zone;In heat-affected zone of 2219 twin wire welded joint, distribution regularity of hardness is similar to elastic modulus.The average hardness in quenching zone is higher than softening zone, and the average elastic modulus in solid solution zone is slightly higher than softening zone.As far as the whole welded joint is concerned,metal in weld possesses the lowest hardness.For welded specimens without reinforcement, fracture position is the weld when tensioning.While for welded specimens with reinforcement, bond area is the poorest position with joint strength coefficient of 61%.So, it is necessary to strengthen the poor positions-weld and bond area of 2219 twin wire welded joint in order to solve joint weakening of welding this kind of alloy.

  18. Supersonic Vortex Gerdien Arc with Magnetic Thermal Insulation

    Science.gov (United States)

    Winterberg, F.

    1988-02-01

    Temperatures up to ~ 5 x 104 oK have been obtained with water vortex Gerdien arcs, and temperatures of ~ 105oK have been reached in hydrogen plasma arcs with magnetic thermal insulation through an externally applied strong magnetic field. It is suggested that a further increase in arc temperatures up to 106oK can conceivably be attained by a combination of both techniques, using a Gerdien arc with a supersonic hydrogen gas vortex.

  19. Arc Jet Testing of Thermal Protection Materials: 3 Case Studies

    Science.gov (United States)

    Johnson, Sylvia; Conley, Joe

    2015-01-01

    Arc jet testing is used to simulate entry to test thermal protection materials. This paper discusses the usefulness of arc jet testing for 3 cases. Case 1 is MSL and PICA, Case 2 is Advanced TUFROC, and Case 3 is conformable ablators.

  20. Rocket nozzle thermal shock tests in an arc heater facility

    Science.gov (United States)

    Painter, James H.; Williamson, Ronald A.

    1986-01-01

    A rocket motor nozzle thermal structural test technique that utilizes arc heated nitrogen to simulate a motor burn was developed. The technique was used to test four heavily instrumented full-scale Star 48 rocket motor 2D carbon/carbon segments at conditions simulating the predicted thermal-structural environment. All four nozzles survived the tests without catastrophic or other structural failures. The test technique demonstrated promise as a low cost, controllable alternative to rocket motor firing. The technique includes the capability of rapid termination in the event of failure, allowing post-test analysis.

  1. Thermal analysis of an arc heater electrode with a rotating arc foot

    Science.gov (United States)

    Milos, Frank S.; Shepard, Charles E.

    1993-01-01

    A smoothly rotating arc foot and an arc foot that jumps between multiple sticking points were analyzed using analytic formulations and numerical solution procedures. For each case the temperature distribution for a copper electrode was obtained for the plausible range of operating conditions. It is shown that the smoothly rotating arc foot is an extremely safe mode of operation, whereas the jumping arc foot produces excessively high electrode surface temperatures which are not greatly alleviated by increasing the average rotational frequency of the arc foot. It is suggested to eliminate arc-foot rotation and rely on the distribution of fixed electrodes with stationary arc attachment to avoid electrode failure at high current.

  2. Thermal insulation of wet shielded metal arc welds

    Science.gov (United States)

    Keenan, Patrick J.

    1993-06-01

    Computational and experimental studies were performed to determine the effect of static thermal insulation on the quality of wet shielded metal arc welds (SMAW). A commercially available heat flow and fluid dynamics spectral-element computer program was used to model a wet SMAW and to determine the potential effect on the weld cooling rate of placing thermal insulation adjacent to the weld line. Experimental manual welds were made on a low carbon equivalent (0.285) mild steel and on a higher carbon equivalent (0.410) high tensile strength steel, using woven fabrics of alumina-boria-silica fibers to insulate the surface of the plate being welded. The effect of the insulation on weld quality was evaluated through the use of post-weld Rockwell Scale hardness measurements on the surface of the weld heat affected zones (HAZ's) and by visual inspection of sectioned welds at 10 X magnification. The computational simulation demonstrated a 150% increase in surface HAZ peak temperature and a significant decrease in weld cooling rate with respect to uninsulated welds, for welds in which ideal insulation had been placed on the base plate surface adjacent to the weld line. Experimental mild steel welds showed a reduction in surface HAZ hardness attributable to insulation at a 77% significance level. A visual comparison of the cross-sections of two welds made in 0.410 carbon equivalent steel-with approximately equivalent heat input-revealed underbead cracking in the uninsulated weld but not in the insulated weld.

  3. Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure

    Science.gov (United States)

    Turner, Stephen J.; Langmuir, Charles H.; Katz, Richard F.; Dungan, Michael A.; Escrig, Stéphane

    2016-10-01

    The processes that lead to the fourfold variation in arc-averaged compositions of mafic arc lavas remain controversial. Control by the mantle-wedge thermal structure is supported by chemical correlations with the thickness of the underlying arc crust, which affects the thermal state of the wedge. Control by down-going slab temperature is supported by correlations with the slab thermal parameter. The Chilean Southern Volcanic Zone provides a test of these hypotheses. Here we use chemical data to demonstrate that the Southern Volcanic Zone and global arc averages define the same chemical trends, both among elements and between elements and crustal thickness. But in contrast to the global arc system, the Southern Volcanic Zone is built on crust of variable thickness with a constant slab thermal parameter. This natural experiment, along with a set of numerical simulations, shows that global arc compositional variability is dominated by different extents of melting that are controlled by the thermal structure of the mantle wedge. Slab temperatures play a subordinate role. Variations in the subducting slab's fluid flux and sediment compositions, as well as mantle-wedge heterogeneities, produce second-order effects that are manifested as distinctive trace element and isotopic signatures; these can be more clearly elucidated once the importance of wedge thermal structure is recognized.

  4. Thermal radiation effect on the extinction properties of electric arcs in HV circuit breakers

    Directory of Open Access Journals (Sweden)

    Ziani Abderrahmane

    2009-01-01

    Full Text Available During the formation of the electric arc at the opening of a high voltage circuit breaker, the generated plasma will be the seat of a very important thermal exchange. Models founded only on conduction and convection thermal transfers don't reproduce the whole thermal exchanges that are governing the extinction process. This paper is devoted to the development of a model of the electric arc extinction in a high voltage circuit breaker taking in account the thermal radiation of the plasma, in addition to the conduction and convection phenomena. The Stefan-Boltzman equation is coupled with the heat equation, and both equations are solved simultaneously in order to follow the evolution of the arc voltage and the conductance of the thermal plasma. The obtained results are found in good agreement with experimental recordings.

  5. A Study on the Tribological Behavior of Vanadium-Doped Arc Sprayed Coatings

    Science.gov (United States)

    Tillmann, Wolfgang; Hagen, Leif; Kokalj, David; Paulus, Michael; Tolan, Metin

    2017-02-01

    The formation of thin reactive films in sliding contacts under elevated temperature provides enhanced tribological properties since the formation of Magnéli phases leads to the ability of self-lubricating behavior. This phenomenon was studied for vanadium-doped coating systems which were produced using CVD and PVD technology. Vanadium-containing arc sprayed coatings were not widely examined so far. The aim of this study was to characterize Fe-V coatings deposited by the Twin Wire Arc Spraying process with respect to their oxidation behavior at elevated temperatures and to correlate the formation of oxides to the tribological properties. Dry sliding experiments were performed in the temperature range between 25 and 750 °C. The Fe-V coating possesses a reduced coefficient of friction and wear coefficient ( k) at 650 and 750 °C, which were significant lower when compared to conventional Fe-based coatings. The evolution of oxide phases was identified in situ by x-ray diffraction for the investigated temperature range. Further oxidation of (pre-oxidized) arc sprayed Fe-V coatings, as verified by differential thermal analysis and thermo-gravimetric analysis, starts at about 500 °C.

  6. A Study on the Tribological Behavior of Vanadium-Doped Arc Sprayed Coatings

    Science.gov (United States)

    Tillmann, Wolfgang; Hagen, Leif; Kokalj, David; Paulus, Michael; Tolan, Metin

    2017-01-01

    The formation of thin reactive films in sliding contacts under elevated temperature provides enhanced tribological properties since the formation of Magnéli phases leads to the ability of self-lubricating behavior. This phenomenon was studied for vanadium-doped coating systems which were produced using CVD and PVD technology. Vanadium-containing arc sprayed coatings were not widely examined so far. The aim of this study was to characterize Fe-V coatings deposited by the Twin Wire Arc Spraying process with respect to their oxidation behavior at elevated temperatures and to correlate the formation of oxides to the tribological properties. Dry sliding experiments were performed in the temperature range between 25 and 750 °C. The Fe-V coating possesses a reduced coefficient of friction and wear coefficient (k) at 650 and 750 °C, which were significant lower when compared to conventional Fe-based coatings. The evolution of oxide phases was identified in situ by x-ray diffraction for the investigated temperature range. Further oxidation of (pre-oxidized) arc sprayed Fe-V coatings, as verified by differential thermal analysis and thermo-gravimetric analysis, starts at about 500 °C.

  7. Fabrication of graphene from graphite by a thermal assisted vacuum arc discharge system

    Science.gov (United States)

    Cheng, Guo-Wei; Chu, Kevin; Chen, Jeng Shiung; Tsai, Jeff T. H.

    2017-04-01

    In this study, graphene was fabricated on copper foils using a high temperature furnace embedded in a vacuum arc discharge method. Combining the advantages of chemical vapor deposition and vacuum arc discharge, single-layer graphene can be fabricated at 600 °C base temperature from the mini furnace embedded with a fast heating via the photon radiation from the vacuum arc to 1100 °C on the substrates' surface. The optimal fabrication condition was determined through a series of experiments on ambient pressure, processing time, arc currents, and the cooling process. Observations by scanning electron microscopy, Raman spectroscopy, and optical microscopy showed that the main products were single-layer graphene, which has a uniform thickness across the entire substrate. The results demonstrated that the combination of a vacuum arc with a thermal method that uses graphite as a carbon source provides a low-cost and straight forward method to synthesize graphene films for graphene-based applications.

  8. Methodology for Flight Relevant Arc-Jet Testing of Flexible Thermal Protection Systems

    Science.gov (United States)

    Mazaheri, Alireza; Bruce, Walter E., III; Mesick, Nathaniel J.; Sutton, Kenneth

    2013-01-01

    A methodology to correlate flight aeroheating environments to the arc-jet environment is presented. For a desired hot-wall flight heating rate, the methodology provides the arcjet bulk enthalpy for the corresponding cold-wall heating rate. A series of analyses were conducted to examine the effects of the test sample model holder geometry to the overall performance of the test sample. The analyses were compared with arc-jet test samples and challenges and issues are presented. The transient flight environment was calculated for the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Earth Atmospheric Reentry Test (HEART) vehicle, which is a planned demonstration vehicle using a large inflatable, flexible thermal protection system to reenter the Earth's atmosphere from the International Space Station. A series of correlations were developed to define the relevant arc-jet test environment to properly approximate the HEART flight environment. The computed arcjet environments were compared with the measured arc-jet values to define the uncertainty of the correlated environment. The results show that for a given flight surface heat flux and a fully-catalytic TPS, the flight relevant arc-jet heat flux increases with the arc-jet bulk enthalpy while for a non-catalytic TPS the arc-jet heat flux decreases with the bulk enthalpy.

  9. Prediction of the cathodic arc root behaviour in a hollow cathode thermal plasma torch

    Energy Technology Data Exchange (ETDEWEB)

    Freton, Pierre; Gonzalez, Jean-Jacques; Escalier, Gaelle, E-mail: pierre.freton@laplace.univ-tlse.f [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France)

    2009-10-07

    The upper part of a well type cathode (WTC) plasma torch is modelled for several conditions in an air medium in the presence of an electric arc. The plasma flow created by the electric arc is described and the results compared with the data from the literature. Special attention is paid to the description of arc root attachment and to its movement due to the balance of forces. A fine description of the magnetic field produced by the external solenoid is reported. The model is based on the Fluent software implemented with specific developments to be adapted to the thermal plasma domain. The paper shows the necessity to provide an accurate description of the external magnetic field due to the strong influence of the radial magnetic field component. Overall, we propose an original approach for arc root movement description which contributes to the understanding of the flow behaviour in the WTC torch.

  10. INFLUENCE OF LINING THERMAL PERFORMANCE IN ELECTRIC-ARC FURNACES ON POWER CONSUMPTION

    Directory of Open Access Journals (Sweden)

    S.. V. Korneev

    2014-01-01

    Full Text Available The paper presents an analysis of specific features of lining thermal performance in electric-arc furnaces at various technological periods. It has been  shown that on the basis of mathematical modeling methods for thermal processes it is possible to predict power consumption of furnaces at the operational split schedule with due account of such furnace characteristics as capacity, lining materials, furnace idle times under closed and open conditions etc. The paper shows distinctions in thermal performance of acid and the basic linings in the electric-arc furnaces. The proposed approach allows to analyze thermal losses by heat conductivity and on accumulation by a refractory lining and rather accurately to determine the required balance sheet items while calculating power consumption during various periods of scrap melting for furnaces of various capacity.

  11. Electrical and thermal finite element modeling of arc faults in photovoltaic bypass diodes.

    Energy Technology Data Exchange (ETDEWEB)

    Bower, Ward Isaac; Quintana, Michael A.; Johnson, Jay

    2012-01-01

    Arc faults in photovoltaic (PV) modules have caused multiple rooftop fires. The arc generates a high-temperature plasma that ignites surrounding materials and subsequently spreads the fire to the building structure. While there are many possible locations in PV systems and PV modules where arcs could initiate, bypass diodes have been suspected of triggering arc faults in some modules. In order to understand the electrical and thermal phenomena associated with these events, a finite element model of a busbar and diode was created. Thermoelectrical simulations found Joule and internal diode heating from normal operation would not normally cause bypass diode or solder failures. However, if corrosion increased the contact resistance in the solder connection between the busbar and the diode leads, enough voltage potentially would be established to arc across micron-scale electrode gaps. Lastly, an analytical arc radiation model based on observed data was employed to predicted polymer ignition times. The model predicted polymer materials in the adjacent area of the diode and junction box ignite in less than 0.1 seconds.

  12. Arc-Heater Facility for Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    Science.gov (United States)

    Litchford, Ron J.; Foote, John P.; Wang,Ten-See; Hickman, Robert; Panda, Binayak; Dobson, Chris; Osborne, Robin; Clifton, Scooter

    2006-01-01

    A hyper-thermal environment simulator is described for hot hydrogen exposure of nuclear thermal rocket material specimens and component development. This newly established testing capability uses a high-power, multi-gas, segmented arc-heater to produce high-temperature pressurized hydrogen flows representative of practical reactor core environments and is intended to serve. as a low cost test facility for the purpose of investigating and characterizing candidate fueUstructura1 materials and improving associated processing/fabrication techniques. Design and development efforts are thoroughly summarized, including thermal hydraulics analysis and simulation results, and facility operating characteristics are reported, as determined from a series of baseline performance mapping tests.

  13. 脉冲电流差值对双丝CO2焊影响%Research on the effect of pulse current difference on the twin - wire CO2 welding

    Institute of Scientific and Technical Information of China (English)

    李钰桢; 彭灿灿; 朱晓军; 岳海瑞; 杨锦辉; 薛家祥

    2014-01-01

    搭建由双丝数字化焊接电源系统组成的焊接工艺平台,通过大量工艺试验,全面测试所设计的双丝电源工艺性能。通过对比分析采集的电压、电流波形和焊缝,进一步确定双丝电流差值对双丝焊接效果的影响规律。实验结果得到最优电流差值范围,使双丝数字化焊接电源能有效实现双丝 CO2焊接,且焊接质量优异。%By utilizing the developed twin - wire digital welding power system,this paper established the welding technological plat-form. Then a large number of technological experiments have been carried out to fully test the designed twin - wire poer process perform-ance. through the contrast analysis the aacquisition of current,voltage waveforms and welding bram,to further determine the tein - wire current difference influence law of twin - wire weding effect. The experiment to get the best range of pulse current difference that the digital twin - wrie welding power system could achieve twin - wire CO2 welding effectively,and the welding quality is excellent.

  14. Dimensionless factors for an alternating-current non-thermal arc plasma

    Science.gov (United States)

    Zhang, Si-Yuan; Li, Xiao-Song; Liu, Jin-Bao; Liu, Jing-Lin; Li, He-Ping; Zhu, Ai-Min

    2016-12-01

    A gliding arc discharge, as a source of warm plasma combining advantages of both thermal and cold plasmas, would have promising application prospects in the fields of fuel conversion, combustion enhancement, material synthesis, surface modifications, pollution control, etc. In order to gain insight into the features of an alternating-current gliding arc discharge plasma, three dimensionless factors, i.e., the extinction span (ψ), current lag (δ), and heating lag (χ) factors are proposed in this letter based on the measured waveforms of the discharge voltage and current in an AC gliding arc discharge plasma. The influences of the driving frequency of the power supply (f) on these three dimensionless parameters are investigated experimentally with the explanations on the physical meanings of these factors. The experimental results show that a higher value of f would lead to the lower values of ψ and δ, as well as a higher value of χ. These experimental phenomena indicate a lower threshold ignition voltage of the discharges, a lower current-growth inertia of the gliding arcs and a larger relative thermal inertia of the plasmas with increase the driving frequency of the power supply in the operating parameter range studied in this letter.

  15. Ultrafine particles emitted by flame and electric arc guns for thermal spraying of metals.

    Science.gov (United States)

    Bémer, Denis; Régnier, Roland; Subra, Isabelle; Sutter, Benjamin; Lecler, Marie T; Morele, Yves

    2010-08-01

    The ultrafine aerosol emitted by thermal spraying of metals using flame and electric arc processes has been characterized in terms of particle size distribution and emission rates based on both particle number and mass. Thermal spraying of Zn, Zn/Al, and Al was studied. Measurements taken using an electrical low pressure impactor and a condensation nucleus counter reveal an aerosol made up of very fine particles (80-95% of number distribution electric arc process are very high, the largest values being recorded during spraying of pure aluminium. This process generates high particle emissions and therefore requires careful consideration and possible rethinking of currently implemented protection measures: ventilated cabins, dust collectors, and personal protective equipment.

  16. Preparation of micro-arc oxidation coatings on magnesium alloy and its thermal shock resistance property

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhaohua; ZENG Xiaobin; YAO Zhongping

    2006-01-01

    In the NaAlO2-Na2SiO3 compound system, the ceramic coatings were prepared on magnesium alloy by micro-arc oxidation. The morphology, phase composition, and thermal shock resistance of the ceramic coatings were studied by scanning electron microscope, X-ray diffraction and thermal shock tests, respectively. The results showed that the ceramic coating contains MgO, MgAl2O4, as well as a little amount of Mg2SiO4. The thickness of the ceramic coatings induced ceramic coating is the best. The hardness of the ceramic coating is up to 10 GPa or so.

  17. Fabrication of Wire Mesh Heat Exchangers for Waste Heat Recovery Using Wire-Arc Spraying

    Science.gov (United States)

    Rezaey, R.; Salavati, S.; Pershin, L.; Coyle, T.; Chandra, S.; Mostaghimi, J.

    2014-04-01

    Waste heat can be recovered from hot combustion gases using water-cooled heat exchangers. Adding fins to the external surfaces of the water pipes inserted into the hot gases increases their surface area and enhances heat transfer, increasing the efficiency of heat recovery. A method of increasing the heat transfer surface area has been developed using a twin wire-arc thermal spray system to generate a dense, high-strength coating that bonds wire mesh to the outside surfaces of stainless steel pipes through which water passes. At the optimum spray distance of 150 mm, the oxide content, coating porosity, and the adhesion strength of the coating were measured to be 7%, 2%, and 24 MPa, respectively. Experiments were done in which heat exchangers were placed inside a high-temperature oven with temperature varying from 300 to 900 °C. Several different heat exchanger designs were tested to estimate the total heat transfer in each case. The efficiency of heat transfer was found to depend strongly on the quality of the bond between the wire meshes and pipes and the size of openings in the wire mesh.

  18. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    Science.gov (United States)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-03-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  19. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    Science.gov (United States)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-02-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  20. Chlorine isotopes of thermal springs in arc volcanoes for tracing shallow magmatic activity

    Science.gov (United States)

    Li, Long; Bonifacie, Magali; Aubaud, Cyril; Crispi, Olivier; Dessert, Céline; Agrinier, Pierre

    2015-03-01

    The evaluation of the status of shallow magma body (i.e., from the final intrusion stage, to quiescence, and back to activity), one of the key parameters that trigger and sustain volcanic eruptions, has been challenging in modern volcanology. Among volatile tracers, chlorine (Cl) uniquely exsolves at shallow depths and is highly hydrophilic. Consequently, Cl enrichment in volcanic gases and thermal springs has been proposed as a sign for shallow magmatic activities. However, such enrichment could also result from numerous other processes (e.g., water evaporation, dissolution of old chloride mineral deposits, seawater contamination) that are unrelated to magmatic activity. Here, based on stable isotope compositions of chloride and dissolved inorganic carbon, as well as previous published 3He/4He data obtained in thermal springs from two recently erupted volcanoes (La Soufrière in Guadeloupe and Montagne Pelée in Martinique) in the Lesser Antilles Arc, we show that the magmatic Cl efficiently trapped in thermal springs displays negative δ37Cl values (≤ - 0.65 ‰), consistent with a slab-derived origin but distinct from the isotope compositions of chloride in surface reservoirs (e.g. seawater, local meteoric waters, rivers and cold springs) displaying common δ37Cl values of around 0‰. Using this δ37Cl difference as an index of magmatic Cl, we further examined thermal spring samples including a 30-year archive from two thermal springs in Guadeloupe covering samples from its last eruption in 1976-1977 to 2008 and an island-wide sampling event in Martinique in 2008 to trace the evolution of magmatic Cl in the volcanic hydrothermal systems over time. The results show that magmatic Cl can be rapidly flushed out of the hydrothermal systems within <30 to 80 years after the eruption, much quicker than other volatile tracers such as CO2 and noble gases, which can exsolve at greater depths and constantly migrate to the surface. Because arc volcanoes often have well

  1. Modification of a metallic surface in a vacuum arc discharge plasma using thermally stimulated ion diffusion

    Science.gov (United States)

    Muboyadzhyan, S. A.

    2008-12-01

    A new process for modifying a metallic surface in a vacuum arc discharge plasma using thermally stimulated ion diffusion is considered. The effect of the bias voltage (negative substrate potential) on the processes that occur on the surface of a treated part is studied when the substrate material interacts with an accelerated metallic-ion flow. The phase and elemental compositions of the modified layer are studied for substrates made of nickel-based superalloys, austenitic and martensitic steels, and titanium-based alloys. The heat resistance, the salt corrosion resistance, and the corrosion cracking resistance of steels and titanium-based alloys are investigated after their modification in vacuum arc plasmas of pure metals (Ti, Zr, Al, Cr, Y) and related alloys. The surface modification caused by the thermally stimulated ion saturation of the surfaces of parts made from structural materials is shown to change the structural-phase states of their surfaces and, correspondingly, the properties of these materials in relation to the state of the surface.

  2. Software design of integrative twin-wire pulsed MIG welding based on DSP%基于DSP的一体化双丝脉冲MIG焊机软件设计

    Institute of Scientific and Technical Information of China (English)

    陈晓东; 马前进; 姚屏; 陈辉; 薛家祥

    2012-01-01

    双丝焊具有单丝焊无法比拟的优势,焊接效率高,热输入小,能够满足大电流焊接的需要,但其技术复杂,在国内的研究才刚起步.基于DSP芯片TMS320F2808设计了双丝脉冲MIG焊接核心控制系统,实现了双丝的协同工作,采用增量式数字PI算法实现对焊接电流的控制.对双丝电源进行了硬件调试、软件调试和整机联调,调试结果表明电源的静态特性和动态特性良好,满足双丝系统要求.针对8mm厚的45号钢进行了双丝脉冲MIG焊的双丝脉冲不同相位对比实验.在两路脉冲试验参数匹配合适的情况下,进行了若干组试验,焊接效果良好.%Twin-wire welding has much more advantages than single wire welding.Twin-wire is very efficient in welding and has a small heat input which can suit the big current circumstance.But because of its technical complexity,the research is only just beginning in China.the control system of integrative twin-wire plused power supply based on DSP chip TMS320F2808 was established in this article.Using an incremental digital PI algorithm welding current control.The overall power source testing was done on that platform,including the hardware testing and the software debugging.Then the static characteristics and the instant motive characteristics were both tested,which turned out to be a satisfaction of the Tandem system designed.With twin-wire pulsed MIG welding process for 8mm thick 45 steel, a series of comparative experiments is done, Including twin-wire pulse different phase. Finally good performances and beautiful Tandem welding seams came out,at the premise of the right parameters-matching of the two output pulses.

  3. Thermal and exhumation history of the Coastal Cordillera arc of northern Chile revealed by thermochronological dating

    Science.gov (United States)

    Juez-Larré, Joaquim; Kukowski, Nina; Dunai, Tibor J.; Hartley, Adrian J.; Andriessen, Paul A. M.

    2010-11-01

    The thermal and erosional history of convergent plate boundaries is important for understanding the links between subduction, arc magmatism, genesis of ore deposits, topography and climate of orogenic belts. Unlike the continent-continent collision that formed many of the largest orogenic belts known today, the Central Andes of South America is a unique case where an oceanic-continent collision has given rise to the Earth's longest and second tallest orogenic belt. Over the last thirty years a plethora of models have been suggested in an attempt to explain how a plateau-type orogen formed at the leading edge of western South America. In the Central Andes most research have focussed attention on the study of the evolution of the arc and backarc, since continuous subduction erosion of the forearc has left little trace of the interplate dynamics that initiated the orogenic belt. In this article, we present a new insight into the thermal and exhumation history of the forearc along the Coastal Cordillera of northern Chile based on biotite K-Ar, apatite fission-track, and apatite/zircon (U-Th)/He dating. We collected diorite samples in a 2 km thick crustal section at the coastal cliff (~ 22°S), and a sea level isoelevation profile between 21 and 27°S. Results from all three dating methods show that the cooling of Coastal Cordillera took place shortly after emplacement during a period of rifting in Jurassic times. Cooling took place in two episodes, mainly in Late Jurassic-Early Cretaceous (~ 118-152 Ma) but also during Late Cretaceous (60-80 Ma) due to the resumption of compression, rift closure, arc uplift, exhumation, eastward migration of magmatic arc activity, and thermal relaxation. The youngest apatite (U-Th)/He ages reveal a cooling event, never reported previously, between 40 and 50 Ma (Eocene). This thermal event affected a > 500 km long and > 1 km thick section of the Coastal Cordillera in northern Chile. Rock cooling recorded in the Eocene cannot be

  4. Thermal conductivity of titanium aluminum silicon nitride coatings deposited by lateral rotating cathode arc

    Energy Technology Data Exchange (ETDEWEB)

    Samani, M.K., E-mail: majid1@e.ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); CINTRA-CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553 (Singapore); Ding, X.Z. [Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Amini, S. [School of Materials Science and Engineering. Nanyang Technological University, 50 Nanyang Avenue, Singapore (Singapore); Khosravian, N.; Cheong, J.Y. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Chen, G. [BC Photonics Technological Company, 5255 Woodwards Rd., Richmond, BC V7E 1G9 (Canada); Tay, B.K. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); CINTRA-CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553 (Singapore)

    2013-06-30

    A series of physical vapour deposition titanium aluminum silicon nitride nanocomposite coating with a different (Al + Si)/Ti atomic ratio, with a thickness of around 2.5 μm were deposited on stainless steel substrate by a lateral rotating cathode arc process in a flowing nitrogen atmosphere. The composition and microstructure of the as-deposited coatings were analyzed by energy dispersive X-ray spectroscopy, and X-ray diffraction, and cross-sectional scanning electron microscopy observation. The titanium nitride (TiN) coating shows a clear columnar structure with a predominant (111) preferential orientation. With the incorporation of Al and Si, the crystallite size in the coatings decreased gradually, and the columnar structure and (111) preferred orientation disappeared. Thermal conductivity of the as-deposited coating samples at room temperature was measured by using pulsed photothermal reflectance technique. Thermal conductivity of the pure TiN coating is about 11.9 W/mK. With increasing the (Al + Si)/Ti atomic ratio, the coatings' thermal conductivity decreased monotonously. This reduction of thermal conductivity could be ascribed to the variation of coatings' microstructure, including the decrease of grain size and the resultant increase of grain boundaries, the disruption of columnar structure, and the reduced preferential orientation. - Highlights: • A series of titanium aluminum silicon nitride with different (Al + Si)/Ti atomic ratio were deposited on Fe304. • The composition and microstructure of the as-deposited coatings were analyzed. • Thermal conductivity of the samples was measured by pulsed photothermal reflectance. • With increasing the (Al + Si)/Ti atomic ratio, thermal conductivity decreased. • Reduction of thermal conductivity is ascribed to the variation of its microstructure.

  5. The thermal treatment of electric arc furnace dust under low gas phase pressure

    Directory of Open Access Journals (Sweden)

    W. Derda

    2009-04-01

    Full Text Available The paper presents the results of laboratory tests on the process of thermal reduction of electric arc furnace dust (EAFD in the temperature range from 1273 to 1473 K. Before proceeding to the experimental tests, a thermodynamic analysis was made using the computer program FactSage® with the aim of determining the optimal conditions for the dust components reduction reaction to proceed. The results of tests carried out, respectively, under atmospheric pressure conditions and under reduced pressure conditions are presented, where carbon in the form of graphite and blast-furnace dust (containing approx. 40 % of carbon was used as the reducer. The test results represent the effect of reduced pressure on the potential for intensifying the process of zinc removal from the dust. The degree of zinc extraction was considerably higher compared to the results of tests carried out under atmospheric pressure conditions.

  6. Transient thermal regimes in the Sierra Nevada and Baja California extinct outer arcs following the cessation of Farallon subduction

    Science.gov (United States)

    Erkan, Kamil; Blackwell, David

    2009-02-01

    We examine the thermal relaxation of the Sierra Nevada and Baja California extinct outer arc blocks following the progressive cessation of Farallon subduction under western North America beginning at ˜30 Ma. Being parts of the same outer arc until the inland jump of the San Andreas transform fault at ˜5 Ma, these two regions show many similarities in their geology, geomorphology, rigid body behavior, and their relatively low seismicity. In the thermal model, we combine results of different geophysical and geophysical studies to constrain the thermal state and geometry of the outer arcs before the cessation of subduction and then model the postsubduction temperature responses in these regions using the results of the tectonic reconstructions. A well-constrained regional thermal model of these blocks using the results of many earlier studies in these regions confirms that the present low heat flow values in these regions are the remnants of the very cold outer arc thermal regime of the subduction zone even as long as 30 Ma after cessation of subduction. Thus the entire Pacific boundary of the North American plate is still in a transient thermal state. The calculated low lithospheric temperatures in the Sierra Nevada and Peninsular blocks correlate very well with their rigid body behavior obtained from geodetic studies, and seismogenic layer thicknesses obtained from seismological studies. This is in contrast with the fact that both regions are surrounded by intense deformation associated with the western North America intraplate and extraplate motions. These low-temperature islands play important roles in the present interaction of the North American and Pacific plates and contribute to the broad deformation of the transform boundary. The thermal relaxation of the extinct outer arcs includes both vertical heating from the underlying asthenosphere and the lateral heating from the extinct back arc (Basin and Range), which has remained as a high heat flow region after

  7. Radioactive waste combustion / vitrification under arc plasma: thermal and dynamic modelling; Combustion - vitrification de dechets radioactifs par plasma d'arc: modelisation de la thermique et de la dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, B

    2003-07-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and volume power... (author)

  8. Radioactive waste combustion-vitrification under arc plasma: thermal and dynamic modelling; Combustion - vitrification de dechets radioactifs par plasma d'arc: modelisation de la thermique et de la dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, B

    2003-06-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and voluminal power... (author)

  9. PREFACE: 1st International Symposium on Electrical Arc and Thermal Plasmas in Africa (ISAPA)

    Science.gov (United States)

    Andre, Pascal; Koalaga, Zacharie

    2012-02-01

    Logos of the University of Ouagadougou, ISAPA and Universite Blaise Pascal Africa (especially Sub-Saharan Africa) is a continent where electrification is at a low level. However, the development of the electrical power sector is a prerequisite for the growth of other industrial activities, that is to say for the social and economic development of African countries. Consequently, a large number of electrification projects (rural electrification, interconnection of different country's grids) takes place in many countries. These projects need expertise and make Africa a continent of opportunity for companies in different domains for business and research: energy; energetic production, transmission, distribution and protection of electricity; the supply of cable; the construction, engineering and expertise in the field of solar and wind power. The first International Symposium on electrical Arc and thermal Plasma in Africa (ISAPA) was held for the first time in Ouagadougou, Burkina Faso to progress and develop the research of new physical developments, technical breakthroughs, and ideas in the fields of electrical production and electrical applications. The ISAPA aims to encourage the advancement of the science and applications of electrical power transformation in Africa by bringing together specialists from many areas in Africa and the rest of the world. Such considerations have led us to define a Scientific Committee including representatives from many countries. This first meeting was an innovative opportunity for researchers and engineers from academic and industrial sectors to exchange views and knowledge. Both fundamental aspects such as thermal plasma, electrical arc, diagnostics and applied aspects as circuit breakers, ICP analyses, photovoltaic energy conversion and alternative energies, as well as space applications were covered. The Laboratory of Material and Environment (LAME) from Ouagadougou University and the Laboratory of Electric Arc and Thermal

  10. An effect of heat insulation parameters on thermal losses of water-cooled roofs for secondary steelmaking electric arc furnaces

    Directory of Open Access Journals (Sweden)

    E. Mihailov

    2016-07-01

    Full Text Available The aim of this work is research in the insulation parameters effect on the thermal losses of watercooled roofs for secondary steelmaking electric arc furnaces. An analytical method has been used for the investigation in heat transfer conditions in the working area. The results of the research can be used to choose optimal cooling parameters and select a suitable kind of insulation for water-cooled surfaces.

  11. Submerged arc furnace process superior to the Waelz process in reducing PCDD/F emission during thermal treatment of electric arc furnace dust.

    Science.gov (United States)

    Xu, Fu-Qian; Huang, Shao-Bin; Liao, Wei-Tung; Wang, Lin-Chi; Chang, Yu-Cheng; Chang-Chien, Guo-Ping

    2014-01-01

    Besides the Waelz process, the submerged arc furnace (SAF) process has also been extensively used to retain metals from ashes and scraps in the metallurgical industry. However, very little is known about the formation and depletion of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from this thermal process. In this study, an electric arc furnace (EAF) dust treatment plant adopting the SAF process was investigated and compared to the plant adopting the Waelz process. The predominant contributor of PCDD/F I-TEQ input was the EAF dusts, accounting for 98.4% of the total. The PCDD/F contents in the generated fly ashes of the SAF were extremely low, as almost all the organic compounds for PCDD/F formation were decomposed by the high operating temperatures (1500-1700 °C) of the SAF. Therefore, the PCDD/F emission factor of the SAF process (46.9 μg I-TEQ/tonne-EAF dust) was significantly lower than that of the Waelz process (840-1120 μg I-TEQ/tonne-EAF dust). Its PCDD/F output/input ratios (0.23 and 0.50 based on mass and toxicity) were also lower than those of the Waelz process plant (0.62 and 1.19). Therefore, the SAF process is superior to the Waelz process in reducing the potential of PCDD/F formation.

  12. Thermal action of an electric arc on the wall of a planar gap

    Energy Technology Data Exchange (ETDEWEB)

    Gubkevich, V.A.; Demidovich, A.B.; Zolotovskii, A.I.; Kabashnikov, V.P.; Shimanovich, V.D.

    1986-10-01

    For purposes of optimizing the energy efficiency of the plasma arc spraying of metal coatings the authors investigate the distribution of heat flux from a dc arc located between two dielectric electrode walls and study the thermodynamics of ablation and evaporation of the silicate material used for the electrodes. The intensity of ablation and evaporation was controlled by changing the rate of electrode displacement relative to the arc generated by the plasmatron. Nitrogen was used as the plasmatron working gas. Results are presented for the ultimate porosity and microstructure of the deposited material as a consequence of various efficiency parameters. A computer simulation is constructed from the experimental data.

  13. Surface Pre-treatment for Thermally Sprayed ZnAl15 Coatings

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Knoch, M. A.

    2017-02-01

    Pre-treatment of substrates is an important step in thermal spraying. It is widely accepted that mechanical interlocking is the dominant adhesion mechanism for most substrate-coating combinations. To prevent premature failure, minimum coating adhesion strength, surface preparation grades, and roughness parameters are often specified. For corrosion-protection coatings for offshore wind turbines, an adhesion strength ≥ 5 MPa is commonly assumed to ensure adhesion over service lifetime. In order to fulfill this requirement, Rz > 80 µm and a preparation grade of Sa3 are common specifications. In this study, the necessity of these requirements is investigated using the widely used combination of twin-wire arc-sprayed ZnAl15 on S355J2 + N as a test case. By using different blasting media and parameters, the correlation between coating adhesion and roughness parameters is analyzed. The adhesion strength of these systems is measured using a test method allowing measurements on real parts. The results are compared to DIN EN 582:1993, the European equivalent of ASTM-C633. In another series of experiments, the influence of surface pre-treatment grades Sa2.5 and Sa3 is considered. By combining the results of these three sets of experiments, a guideline for surface pre-treatment and adhesion testing on real parts is proposed for the considered system.

  14. Characterization of Thermal Sprayed Aluminum and Stainless Steel Coatings for Clean Laser Enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Chow, R; Decker, T A; Gansert, R V; Gansert, D

    2000-04-06

    Surfaces of steel structures that enclose high-fluence, large-beam lasers have conventional and unconventional requirements. Aside from rust prevention, the surfaces must resist laser-induced degradation and the contamination of the optical components. The latter requires a surface that can be precision cleaned to low levels of particulate and organic residue. In addition, the surface treatment for the walls should be economical to apply because of the large surface areas involved, and accommodating with intricate joint geometries. Thermal sprayed coatings of aluminum (Al) and stainless steel are candidate surface materials. Coatings are produced and characterized for porosity, smoothness, and hardness. These properties have a bearing on the cleanliness of the coating. The laser resistance of Al and 3 16L coatings are given. The paper summarizes the characterization of twin-wire-arc deposited Al, high-velocity-oxygen-fueled (HVOF) deposited Al, flame-sprayed 316L, and HVOF deposited316L. The most promising candidate coating is that of HVOF Al. This Al coating has the lowest porosity (8%) compared the other three coatings and relatively low hardness (100 VHN). The as-deposited roughness (Ra) is 433 pinches, but after a quick sanding by hand, the roughness decreased to 166 pinches. Other post-coat treatments are discussed. HVOF aluminum coatings are demonstrated. Al coatings are corrosion barriers for steel, and this work shows promising resistance to laser damage and low particulation rates.

  15. Magnetization strucrure of thermal vent on island arc from vector magnetic anomlies using AUV

    Science.gov (United States)

    Isezaki, N.; Matsuo, J.; Sayanagi, K.

    2012-04-01

    The geomagnetic anomaly measured by a scalar magnetometer,such as a proton precession magnetometer cannot be defined its direction, then it does not satisfy the Laplace's equation. Therefore physical formula describing the relation between magnetic field and magnetization cannot be established.Because the difference between results obtained from scalar data and from vector data is very significant, we must use vector magnetic field data for magnetization analyses to get the more reliable and exact solutions. The development program of fundamental tools for exploration of deep seabed resources started with the financial support of the Ministry of Education, Culture, Sports, Science & Technology (MEXT) in 2008 and will end in 2012. In this project, we are developing magnetic exploration tools for seabed resources using AUV (Autonomous Underwater Vehicle) and other deep-towed vehicles to measure not the scalar magnetic field but the vector magnetic field in order to estimate magnetization structure below the sea-floor exactly and precisely. We conducted AUV magnetic survey in 2010 at the thermal area called Hakurei deposit in the Bayonnaise submarine caldera at the southern end of Izu island arc, about 400km south of Tokyo. We analyzed the observed vector magnetic fields to get the vector magnetic anomaly Fields using the method of Isezaki(1984). We inverted these vector magnetic anomaly fields to magnetization structure. CONCLUSIONS 1.The scalar magnetic field TIA (Total Intensity Anomaly) has no physical formula describing the relation between M (Magnetization) and TIA because TIA does not satisfy the Laplace's equation. Then it is impossible to estimate M from TIA. 2.Anlyses of M using TIA have been done so far under assumption TIA=PTA (Projected Total Anomay on MF (Main Geomagnetic Field)), however, which caused the analysis error due to ɛT= TIA - PTA . 3.We succeeded to measure the vector magnetic anomaly fields using AUV despite the severe magnetic noises

  16. Spatial distribution of helium isotopes in volcanic gases and thermal waters along the Vanuatu (New Hebrides) volcanic arc

    Science.gov (United States)

    Jean-Baptiste, P.; Allard, P.; Fourré, E.; Bani, P.; Calabrese, S.; Aiuppa, A.; Gauthier, P. J.; Parello, F.; Pelletier, B.; Garaebiti, E.

    2016-08-01

    We report the first helium isotope survey of volcanic gases, hot springs and some olivine phenocrysts along the Vanuatu island arc, from Tanna in the south to Vanua Lava in the north. Low CO2 content and low 3He/4He ratios in thermal fluids of Epi (4.0 ± 0.1 Ra), Efate (4.5 ± 0.1 Ra) and Pentecost (5.3 ± 0.5 Ra) islands coherently indicate reduced mantle gas leakage and crustal contamination by radiogenic helium on these extinct volcanic systems of the former (Pliocene) arc. Instead, presently active Vanuatu volcanoes display 3He/4He and C/3He ratios typical of subduction-related volcanic arcs: 3He/4He ratios range from 6.4 ± 0.5 Ra in southernmost Tanna and 7.23 ± 0.09 Ra in northernmost Vanua Lava to typical MORB values in the central islands of Gaua (7.68 ± 0.06 Ra), Ambrym (7.6 ± 0.8 Ra) and Ambae (7 ± 2 Ra in groundwaters, 7.9 ± 1.4 Ra in olivine phenocrysts, and 8.0 ± 0.1 Ra in summit fumaroles of Aoba volcano). On Ambrym, however, we discover that hydrothermal manifestations separated by only 10-15 km on both sides of a major E-W transverse fault zone crossing the island are fed by two distinct helium sources, with different 3He/4He signatures: while fluids in southwest Ambrym (Baiap and Sesivi areas) have typical arc ratios (7.6 ± 0.8 Ra), fluids on the northwest coast (Buama Bay area) display both higher 3He/4He ratios (9.8 ± 0.2 Ra in waters to 10.21 ± 0.08 Ra in bubbling gases) and lower C/3He ratios that evidence a hotspot influence. We thus infer that the influx of Indian MORB mantle beneath the central Vanuatu arc, from which Ambrym magmas originate, also involves a 3He-rich hotspot component, possibly linked to a westward influx of Samoan hotspot material or another yet unknown local source. This duality in magmatic He source at Ambrym fits with the bimodal composition and geochemistry of the erupted basalts, implying two distinct magma sources and feeding systems. More broadly, the wide He isotopic variations detected along the Vanuatu

  17. Thermal decomposition routes of CrN hard coatings synthesized by reactive arc evaporation and magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, W.; Neidhardt, J. [Christian Doppler Laboratory for Advanced Hard Coatings, Department of Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, University of Leoben, 8700 Leoben (Austria); Willmann, H. [Materials Center Leoben, Franz-Josef Strasse 13, 8700 Leoben (Austria); Sartory, B. [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck (Austria); Mayrhofer, P.H. [Department of Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, University of Leoben, 8700 Leoben (Austria)], E-mail: paul.mayrhofer@unileoben.ac.at; Mitterer, C. [Christian Doppler Laboratory for Advanced Hard Coatings, Department of Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, University of Leoben, 8700 Leoben (Austria); Department of Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, University of Leoben, 8700 Leoben (Austria)

    2008-11-28

    This study presents a comparison of the thermal decomposition of CrN hard coatings synthesized by reactive arc evaporation and magnetron sputtering. Structural changes in the coating material were determined by in-situ high-temperature X-ray diffraction and correlated to the results of simultaneous thermal analysis. Annealing temperatures up to 1440 deg. C in Ar and a variation in heating rates gave insights to the different decomposition kinetics for the material deposited by reactive arc evaporation and magnetron sputtering. Both single-phase CrN coatings start to decompose above 925 deg. C under release of nitrogen in two major reaction steps to pure Cr via the intermediate step of Cr{sub 2}N. While the kinetics for the first decomposition reaction from CrN to Cr{sub 2}N is different for both samples, the second step from Cr{sub 2}N into Cr is similar. This behavior can be understood considering the differences in structure, composition, and morphology of both as-deposited coatings and their evolution during thermal analysis.

  18. Experimental investigations on active cooling thermal protection structure of hydrocarbon-fueled scramjet combustor in arc heated facility

    Science.gov (United States)

    Jianqiang, Tu; Jinlong, Peng; Xianning, Yang; Lianzhong, Chen

    2016-10-01

    The active cooling thermal protection technology is the efficient method to resolve the long-duration work and reusable problems of hydrocarbon-fueled scramjet combustor, where worst thermo-mechanical loads occur. The fuel is passed through coolant channels adjacent to the heated surfaces to absorb heat from the heating exchanger panels, prior to injection into the combustor. The heating exchanger both cooled down the wall temperature of the combustor wall and heats and cracks the hydrocarbon fuel inside the panel to permit an easier combustion and satisfying combustion efficiency. The subscale active cooling metallic panels, with dimensions of 100×100 mm and different coolant channel sizes, have been tested under typical combustion thermal environment produced by arc heated Turbulent Flow Duct (TFD). The heat exchange ability of different coolant channel sizes has been obtained. The big-scale active cooling metallic panel, with dimensions of 100 × 750 mm and the coolant channel sizes of better heating exchange performance, has been made and tested in the big-scale arc heated TFD facility. The test results show that the local superheated ablation is easy to happen for the cooling fuel assigned asymmetrically in the bigscale active cooling metallic panel, and the cooling fuel rate can reduce 8%˜10% after spraying the Thermal Barrier Coating (TBC) in the heating surface.

  19. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kameda, J. [National Institute for Materials Science, Sengen, Tsukuba 305-0047 (Japan); Nagai, Y.; Toyama, T.; Matsukawa, Y. [Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Onizawa, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2012-06-15

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the {delta}-ferrite phase but not in the austenitic phase. Thermal aging at 400 Degree-Sign C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the {delta}-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the {gamma}-austenite and {delta}-ferrite interface. There were no Cr depleted zones around the carbide.

  20. Bench-scale arc melter for R&D in thermal treatment of mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800{degrees}C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter`s ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions.

  1. An Arc-Heated High Enthalpy Test Facility for Thermal Protection Studies

    OpenAIRE

    1996-01-01

    A high enthalpy flow facility primarily for the high-temperature-resistant material research and for experimental studies on high temperature gas dynamics is built in ISAS, taking into account the demand for the application to the reentry vahicles. The facility is composed of Huels-type arc heater and necessary subsystems for power supply, water cooling, evacuation and operation/control. After briefly describing the facility, characterized facility performance and flow conditions for the heat...

  2. Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc

    Energy Technology Data Exchange (ETDEWEB)

    Samani, M.K., E-mail: majid1@e.ntu.edu.sg [Novitas, Nanoelectronics Centre of Excellence, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Ding, X.Z. [Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Khosravian, N. [Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Amin-Ahmadi, B. [Electron Microscopy for materials Science (EMAT), Department of Physics, University of Antwerpen, Groenenborgerlan 171, B-2020 Antwerpen (Belgium); Yi, Yang [Data Storage Institute, A*STAR (Agency for Science, Technology and Research), 117608 (Singapore); Chen, G. [BC Photonics Technological Company, 5255 Woodwards Rd., Richmond, BC V7E 1G9 (Canada); Neyts, E.C.; Bogaerts, A. [Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Tay, B.K. [Novitas, Nanoelectronics Centre of Excellence, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-03-02

    A series of [TiN/TiAlN]{sub n} multilayer coatings with different bilayer numbers n = 5, 10, 25, 50, and 100 were deposited on stainless steel substrate AISI 304 by a lateral rotating cathode arc technique in a flowing nitrogen atmosphere. The composition and microstructure of the coatings have been analyzed by using energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and conventional and high-resolution transmission electron microscopy (HRTEM). XRD analysis shows that the preferential orientation growth along the (111) direction is reduced in the multilayer coatings. TEM analysis reveals that the grain size of the coatings decreases with increasing bilayer number. HRTEM imaging of the multilayer coatings shows a high density misfit dislocation between the TiN and TiAlN layers. The cross-plane thermal conductivity of the coatings was measured by a pulsed photothermal reflectance technique. With increasing bilayer number, the multilayer coatings' thermal conductivity decreases gradually. This reduction of thermal conductivity can be ascribed to increased phonon scattering due to the disruption of columnar structure, reduced preferential orientation, decreased grain size of the coatings and present misfit dislocations at the interfaces. - Highlights: • TiN/TiAlN multilayer coatings with different bilayer number were deposited on SS. • The composition and microstructure of the as-deposited coatings were analyzed. • Thermal conductivity of the coatings was measured by pulsed photothermal reflectance. • Thermal conductivity depends on the coatings' microstructure and number of layers. • With increasing the bilayer number, thermal conductivity decreased.

  3. Experimentally Studied Thermal Piston-head State of the Internal-Combustion Engine with a Thermal Layer Formed by Micro-Arc Oxidation Method

    Directory of Open Access Journals (Sweden)

    N. Yu. Dudareva

    2015-01-01

    Full Text Available The paper presents results of experimental study to show the efficiency of reducing thermal tension of internal combustion engine (ICE pistons through forming a thermal barrier coating on the piston-head. During the engine operation the piston is under the most thermal stress. High temperatures in the combustion chamber may lead to the piston-head burnout and destruction and engine failure.Micro-arc oxidation (MAO method was selected as the technology to create a thermal barrier coating. MAO technology allows us to form the ceramic coating with a thickness of 400μm on the surface of aluminum alloy, which have high heat resistance, and have good adhesion to the substrate even under thermal cycling stresses.Deliverables of MAO method used to protect pistons described in the scientific literature are insufficient, as they are either calculated or experimentally obtained at the special plants (units, which do not reproduce piston operation in a real engine. This work aims to fill this gap. The aim of the work is an experimental study of the thermal protective ability of MAO-layer formed on the piston-head with simulation of thermal processes of the real engine.The tests were performed on a specially designed and manufactured stand free of motor, which reproduces operation conditions maximum close to those of the real engine. The piston is heated by a fire source - gas burner with isobutene balloon, cooling is carried out by the water circulation system through the water-cooling jacket.Tests have been conducted to compare the thermal state of the regular engine piston without thermal protection and the piston with a heat layer formed on the piston-head by MAO method. The study findings show that the thermal protective MAO-layer with thickness of 100μm allows us to reduce thermal tension of piston on average by 8,5 %. Thus at high temperatures there is the most pronounced effect that is important for the uprated engines.The obtained findings can

  4. Comparisons of particles thermal behavior between Fe-base alloy and boron carbide during plasma transferred-arc powder surfacing

    Institute of Scientific and Technical Information of China (English)

    王惜宝

    2003-01-01

    Comparisons of particle's thermal behavior between Fe-base alloy and boron carbide in plasma transferred-arc (PTA) space was made based on theoretical evaluation results in this article. It was found that most of the Fe base particles would be fully melted while they transporting through the central plasma field with 200 A surfacing currents. And the particles with a diameter less than 0.5×10-4 m might be fully evaporated. However, for the boron carbide (B4C) particles, only the one with a diameter less than 0.5×10-4 m could be melted in the same PTA space. Most of B4C particles are only preheated at its solid state when they were fed through the central field of PTA plasma when the surfacing current is equal to or less than 200 A. When the arc current was smaller than100 A, only the particles smaller than 0.5×10-4 m could be melted in the PTA space for the Fe-base alloy. Almost none of the discussed B4C particles could be melted in the 100 A PTA space.

  5. The Electrodynamic, Thermal, and Energetic Character of Intense Sun- Aligned Arcs in the Polar Cap

    Science.gov (United States)

    1991-02-01

    Vici’jewski et 0/.. 19891. with " detailed analysis of its optical. ion production-loss rates, and u 200 ionizing flux properties. Observed in the UV by...kIEMNr INsmrumE 1IICAi 0 MIlL N ORCANIZATION I (if aipplicable) r~ lk. AD01MV; (Cafy, 5ldtV.,J#dli /If’COUdt) 10 Stu JICI. U FUNUING NUNiIRS ’l-IJiAM...sented by R’ifl and Run h 119851. Their analysis implies a 1380 VALLADARES AND CARLSON: POLAR ARC ELECTRODYNAMICS/ENERGETICS four-cell convection

  6. Experimental Study on the Electrochemical Anti-Corrosion Properties of Steel Structures Applying the Arc Thermal Metal Spraying Method

    Directory of Open Access Journals (Sweden)

    Hong-Bok Choe

    2014-12-01

    Full Text Available The arc thermal metal spraying method (ATMSM provides proven long-term protective coating systems using zinc, aluminum and their alloys for steel work in a marine environment. This paper focuses on studying experimentally the anti-corrosion criteria of ATMSM on steel specimens. The effects of the types of spraying metal and the presence or absence of sealing treatment from the thermal spraying of film on the anti-corrosion performance of TMSM were quantitatively evaluated by electrochemical techniques. The results showed that ATMSM represented a sufficient corrosion resistance with the driving force based on the potential difference of more than approximately 0.60 V between the thermal spraying layer and the base substrate steel. Furthermore, it was found that the sealing treatment of specimens had suppressed the dissolution of metals, increased the corrosion potential, decreased the corrosion current density and increased the polarization resistance. Metal alloy Al–Mg (95%:5% by mass with epoxy sealing coating led to the most successful anti-corrosion performance in these electrochemical experiments.

  7. Influence of thermal heating on diamond-like carbon film properties prepared by filtered cathodic arc

    Energy Technology Data Exchange (ETDEWEB)

    Khamnualthong, N., E-mail: nattapornkh@gmail.com [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok, 10140 (Thailand); Western Digital Thailand Co. Ltd, Ayutthaya, 13160 (Thailand); Siangchaew, K. [Western Digital Thailand Co. Ltd, Ayutthaya, 13160 (Thailand); Limsuwan, P. [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok, 10140 (Thailand); Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand)

    2013-10-01

    Tetrahedral amorphous diamond-like carbon (ta-DLC) films were deposited on magnetic recording heads using the filtered cathodic arc method. The deposited film thickness was on the order of several nanometers. The DLC films were then annealed to 100 °C–300 °C for 30 and 60 min, and the structure of the ta-DLC films was investigated using Raman spectroscopy, where the gross changes were observed in the Raman D and G peaks. Detailed interpretation concluded that there was sp{sup 2} clustering as a function of temperature, and there was no sp{sup 3}-to-sp{sup 2} conversion after heating up to 300 °C. Furthermore, X-ray photoelectron spectroscopy suggested that oxidation of both the ta-DLC film and the adhesion layer occurs at 300 °C. Additionally, more film wear was observed with heating as measured by a nanoindenter. - Highlights: • Tetrahedral-amorphous diamond-like carbon (ta-DLC) by filtered cathodic arc • ta-DLC used in magnetic recording head as head overcoat • ta-DLC thickness range of less than 2 nm • ta-DLC property dependence on heating • Temperature effect range of up to 300 °C.

  8. Annealing effect of thermal spike in MgO thin film prepared by cathodic vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Daoyun, E-mail: zhudy@gdut.edu.cn [Experiment Teaching Department, Guangdong University of Technology, Guangzhou 510006 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Zhao, Shoubai [School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510400 (China); Zheng, Changxi; Chen, Dihu [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); He, Zhenhui, E-mail: stshzh@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2013-12-16

    MgO films were prepared by using pulsed cathodic vacuum arc deposition technique. The substrate bias voltage was in the range of −150 to −750 V. Film structure was investigated by X-ray diffraction (XRD). The annealing effect of thermal spike produced by the impacting of energetic ions was analyzed. The calculated results showed that the lifetime of a thermal spike generated by an energetic ion with the energy of 150 eV was less than one picosecond and it was sufficient to allow Mg{sup 2+} or O{sup 2-} to move one bond length to satisfy the intrinsic stress relief in the affected volume. The MgO(200) lattice spacings of the films deposited at different bias voltages were all larger than the ideal value of 2.1056 Å. As the bias amplitude increased the lattice spacing decreased, which indicated that the compressive stress in the film was partially relieved with increasing impacting ion energy. The stress relief also could be reflected from the film orientation with bias voltage. The biaxial elastic modulus for MgO(100), MgO(110) and MgO(111) planes were calculated and they were M{sub (100)} = 199 GPa, M{sub (110)} = 335 GPa and M{sub (111)} = 340 GPa, respectively. The M values indicated that the preferred orientation will be MgO(200) due to the minimum energy configuration when the lattice strain was large. It was confirmed by the XRD results in our experiments. - Highlights: • MgO thin films with preferred orientation were obtained by CVAD technique. • Annealing effect of a thermal spike in MgO film was discussed. • Lattice spacing of MgO film decreased with the increase of bias voltage. • Film preferred orientation changed from (200) to (220) as the bias voltage increased.

  9. Analysis of thermal stresses induced in silicon during xenon arc lamp flash annealing

    Science.gov (United States)

    Bentini, G. G.; Correra, L.

    1983-04-01

    Evaluation of thermal stresses induced on silicon wafers during flash annealing with incoherent light from a xenon lamp has been performed. The thermally induced stresses have been computed taking into account that the slip planes, in silicon crystal, are {111} and the slip directions in the plane are . The computed stresses have been compared with the yield stress of the material, to determine the threshold of damage introduction by the annealing process. For the light flash durations shorter than 500 μsec, a preheating of the sample is necessary to obtain a good annealing of a 1000 Å implanted layer without defects introduction. A relationship among flash duration, preheating temperature and flash energy density has been established allowing the identification of the best annealing conditions. The computed results have been compared with experimental annealing data obtained on silicon, phosphorus implanted at 10 keV, 1.5×1015 at/cm2 and irradiated with an original flash annealing system set up in our laboratory.

  10. STRUCTURE, MECHANICAL PROPERTIES AND THERMAL STABILITY OF DIAMOND-LIKE CARBON FILMS PREPARED BY ARC ION PLATING

    Institute of Scientific and Technical Information of China (English)

    Y.S. Zou; J.D. Zheng; J. Gong; C. Sun; R.F. Huang; L.S. Wen

    2005-01-01

    Diamond-like Carbon (DLC) films have been prepared on Si(100) substrates by arc ion plating in conjunction with pulse bias voltage under H2 atmosphere. The deposited films have been characterized by scanning electron microscopy and atomic force microscopy. The results show that the surface of the film is smooth and dense without any cracks, and the surface roughness is low. The bonding characteristic of the films has been studied by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It shows the sp3 bond content of the film deposited at -200V is 26.7%. The hardness and elastic modulus of the film determined by nanoindentation technique are 30.8 and 250.1GPa, respectively. The tribological characteristic of the films reveals that they have low friction coefficient and good wear-resistance. After deposition, the films have been annealed in the range of 350-700℃ for 1h in vacuum to investigate the thermal stability. Raman spectra indicate that the ID/IG ratio and G peak position have few detectable changes below 500℃. Further increasing the annealing temperature, the hydrogen can be released, the structure rearranges, and the phase transition of sp3 configured carbon to sp2 configured carbon appears.

  11. Thermal Behavior of an HSLA Steel and the Impact in Phase Transformation: Submerged Arc Welding (SAW) Process Approach to Pipelines

    Science.gov (United States)

    Costa, P. S.; Reyes-Valdés, F. A.; Saldaña-Garcés, R.; Delgado, E. R.; Salinas-Rodríguez, A.

    Heat input during welding metal fusion generates different transformations, such as grain growth, hydrogen cracking, and the formation of brittle structures, generally associated with the heat-affected zone (HAZ). For this reason, it is very important to know the behavior of this area before welding. This paper presents a study of the thermal behavior and its effect on phase transformations in the HAZ, depending on cooling rates (0.1-200 °C/s) to obtain continuous cooling transformation (CCT) curves for an high-strength low-alloy (HSLA) steel. In order to determine the formed phases, optical microscopy and Vickers microhardness measurement were used. The experimental CCT curve was obtained from an HSLA steel, and the results showed that, with the used cooling conditions, the steel did not provide formation of brittle structures. Therefore, it is unlikely that welds made by submerged arc welding (SAW) may lead to hydrogen embrittlement in the HAZ, which is one of the biggest problems of cracking in gas conduction pipelines. In addition, with these results, it will be possible to control the microstructure to optimize the pipe fabrication with SAW process in industrial plants.

  12. Corrosion Resistance Properties of Aluminum Coating Applied by Arc Thermal Metal Spray in SAE J2334 Solution with Exposure Periods

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-03-01

    Full Text Available Arc thermal metal spray coating provides excellent corrosion, erosion and wear resistance to steel substrates. This paper incorporates some results of aluminum coating applied by this method on plain carbon steel. Thereafter, coated panels were exposed to an environment known to form stable corrosion products with aluminum. The coated panels were immersed in Society of Automotive Engineers (SAE J2334 for different periods of time. This solution consists of an aqueous solution of NaCl, CaCl2 and NaHCO3. Various electrochemical techniques, i.e., corrosion potential-time, electrochemical impedance spectroscopy (EIS and the potentiodynamic were used to determine the performance of stimulants in improving the properties of the coating. EIS studies revealed the kinetics and mechanism of corrosion and potentiodynamic attributed the formation of a passive film, which stifles the penetration of aggressive ions towards the substrate. The corrosion products that formed on the coating surface, identified using Raman spectroscopy, were Dawsonite (NaAlCO3(OH2 and Al(OH3. These compounds of aluminum are very sparingly soluble in aqueous solution and protect the substrate from pitting and uniform corrosion. The morphology and composition of corrosion products determined by scanning electron microscopy and energy dispersive X-ray analyses indicated that the environment plays a decisive role in improving the corrosion resistance of aluminum coating.

  13. Effects of deposition parameters on microstructure and thermal conductivity of diamond films deposited by DC arc plasma jet chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    QU Quan-yan; QIU Wan-qi; ZENG De-chang; LIU Zhong-wu; DAI Ming-jiang; ZHOU Ke-song

    2009-01-01

    The uniform diamond films with 60 mm in diameter were deposited by improved DC arc plasma jet chemical vapor deposition technique. The structure of the film was characterized by scanning electronic microcopy(SEM) and laser Raman spectrometry. The thermal conductivity was measured by a photo thermal deflection technique. The effects of main deposition parameters on microstructure and thermal conductivity of the films were investigated. The results show that high thermal conductivity, 10.0 W/(K-cm), can be obtained at a CH4 concentration of 1.5% (volume fraction) and the substrate temperatures of 880-920 ℃ due to the high density and high purity of the film. A low pressure difference between nozzle and vacuum chamber is also beneficial to the high thermal conductivity.

  14. 双丝脉冲熔化极气体保护焊的数字化协同控制%Digitalized Synchronized Control of Twin-Wire Pulsed Gas Metal Arc Welding

    Institute of Scientific and Technical Information of China (English)

    李阳; 黄石生; 陆沛涛; 李远波

    2006-01-01

    为解决双丝熔化极气体保护焊(GMAW)中焊接过程不稳定、焊接效率易波动的问题,采用高速单片机80C320与80C552构成双微机协同控制器,分别控制主、从软开关逆变式脉冲焊接电源,借助现场总线通信协议,通过软件的方式协调主、从电源的工作;同时,采用模糊控制方法对双丝弧长进行闭环控制.从而使主、从电弧分别获得频率一致、峰值相差180°的脉冲电流,有效减少了电弧之间的干扰,使焊接过程稳定,焊缝成型良好.实验结果表明,数字化协同控制灵活性大,可使双丝脉冲GMAW过程稳定.

  15. Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Sørensen, Bent F.; Løgstrup Andersen, Tom;

    2013-01-01

    -fibre-reinforced polyester plates were treated using an atmospheric pressure gliding-arc discharge with air flow to improve adhesion with a vinylester adhesive. The electrodes were water-cooled so as to operate the gliding arc continually. The treatment improved wettability and increased the density of oxygen...

  16. Laser Surface Treatment of Hydro and Thermal Power Plant Components and Their Coatings: A Review and Recent Findings

    Science.gov (United States)

    Mann, B. S.

    2015-11-01

    High-power diode laser (HPDL) surface modification of hydro and thermal power plant components is of the utmost importance to minimize their damages occurring due to cavitation erosion, water droplet erosion, and particle erosion (CE, WDE, and PE). Special emphasis is given on the HPDL surface treatment of martensitic and precipitate-hardened stainless steels, Ti6Al4V alloy, plasma ion nitro-carburized layers, high pressure high velocity oxy-fuel and twin-wire arc sprayed coatings. WDE test results of all these materials and coatings in `untreated' and `HPDL- treated at 1550 °C' conditions, up to 8.55 million cycles, are already available. Their WDE testing was further continued up to 10.43 million cycles. The X20Cr13 and X10CrNiMoV1222, the most common martensitic stainless steels used in hydro and thermal power plants, were HPDL surface treated at higher temperature (1650 °C) and their WDE test results were also obtained up to 10.43 million cycles. It is observed that the increased HPDL surface temperature from 1550 to 1650 °C has resulted in significant improvement in their WDE resistances because of increased martensitic (ά) phase at higher temperature. After conducting long-range WDE tests, the correlation of CE, WDE, and PE resistances of these materials and protective coatings with their mechanical properties such as fracture toughness and microhardness product, ultimate resilience, modified resilience, and ultimate modified resilience has been reviewed and discussed. One of the edges of a 500 MW low pressure steam turbine moving blade (X10CrNiMoV1222 stainless steel) was HPDL surface treated at 1550 °C and its radii of curvatures and deflections were measured. These were compared with the data available earlier from a flat rectangular sample of similar composition and identical HPDL surface temperature.

  17. Alaska Open-file Report 144 Assessment of Thermal Springs Sites Aleutian Arc, Atka Island to Becherof Lake -- Preliminary Results and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, R.J.; Moorman, M.A.; Liss, S.A.

    1981-12-01

    Twenty of more than 30 thermal spring areas reported to exist in the Aleutian arc extending from Atka Island to Becherof Lake were investigated during July and August, 1980. Thermal activity of three of these sites had diminished substantially or no longer existed. At least seven more sites where thermal-spring activity is probable or certain were not visited because of their remoteness or because of time constraints. The existence of several other reported thermal spring sites could not be verified; these sites are considered questionable. On the basis of geothermometry, subsurface reservoir temperatures in excess of 150 C are estimated for 10 of the thermal spring sites investigated. These sites all occur in or near regions of Recent volcanism. Five of the sites are characterized by fumaroles and steaming ground, indicating the presence of at least a shallow vapor-dominated zone. Two, the Makushin Valley and Glacier Valley thermal areas, occur on the flanks of active Mukushin Volcano located on Unalaska Island, and may be connected to a common source of heat. Gas geothermometry suggests that the reservoir feeding the Kliuchef thermal field, located on the flanks of Kliuchef volcano of northeast Atka Island, may be as high as 239 C.

  18. Hot Corrosion Behavior of Arc-Sprayed Highly Dense NiCr-Based Coatings in Chloride Salt Deposit

    Science.gov (United States)

    Qin, Enwei; Yin, Song; Ji, Hua; Huang, Qian; Liu, Zekun; Wu, Shuhui

    2017-03-01

    To make cities more environmentally friendly, combustible wastes tend to be incinerated in waste-to-energy power plant boilers. However, release of chlorine gas (Cl2) during incineration causes serious problems related to hot corrosion of boiler tubes and poses a safety threat for such plants. In this study, a pseudo-de Laval nozzle was employed in a twin-wire arc spray system to enhance the velocity of in-flight particles. Highly dense NiCr-based coatings were obtained using the modified nozzle gun. The coating morphology was characterized by optical microscopy and scanning electron microscopy, and hot corrosion testing was carried out in a synthetic molten chloride salt environment. Results showed that the dense NiCr-based coatings exhibited high resistance against corrosion by chlorine, which can be related to the typical splat lamellar microstructure and chemical composition as well as minor alloying elements such as Ti and Mo.

  19. Hot Corrosion Behavior of Arc-Sprayed Highly Dense NiCr-Based Coatings in Chloride Salt Deposit

    Science.gov (United States)

    Qin, Enwei; Yin, Song; Ji, Hua; Huang, Qian; Liu, Zekun; Wu, Shuhui

    2017-04-01

    To make cities more environmentally friendly, combustible wastes tend to be incinerated in waste-to-energy power plant boilers. However, release of chlorine gas (Cl2) during incineration causes serious problems related to hot corrosion of boiler tubes and poses a safety threat for such plants. In this study, a pseudo-de Laval nozzle was employed in a twin-wire arc spray system to enhance the velocity of in-flight particles. Highly dense NiCr-based coatings were obtained using the modified nozzle gun. The coating morphology was characterized by optical microscopy and scanning electron microscopy, and hot corrosion testing was carried out in a synthetic molten chloride salt environment. Results showed that the dense NiCr-based coatings exhibited high resistance against corrosion by chlorine, which can be related to the typical splat lamellar microstructure and chemical composition as well as minor alloying elements such as Ti and Mo.

  20. Calorimeter probes for measuring high thermal flux. [in electric-arc jet facilities for planetary entry heating simulation

    Science.gov (United States)

    Russell, L. D.

    1979-01-01

    The paper describes expendable, slug-type calorimeter probes developed for measuring high heat-flux levels of 10-30 kW/sq cm in electric-arc jet facilities. The probes are constructed with thin tungsten caps mounted on Teflon bodies; the temperature of the back surface of the tungsten cap is measured, and its rate of change gives the steady-state, absorbed heat flux as the calorimeter probe heats to destruction when inserted into the arc jet. It is concluded that the simple construction of these probes allows them to be expendable and heated to destruction to obtain a measurable temperature slope at high heating rates.

  1. Arc Plasma Torch Modeling

    CERN Document Server

    Trelles, J P; Vardelle, A; Heberlein, J V R

    2013-01-01

    Arc plasma torches are the primary components of various industrial thermal plasma processes involving plasma spraying, metal cutting and welding, thermal plasma CVD, metal melting and remelting, waste treatment and gas production. They are relatively simple devices whose operation implies intricate thermal, chemical, electrical, and fluid dynamics phenomena. Modeling may be used as a means to better understand the physical processes involved in their operation. This paper presents an overview of the main aspects involved in the modeling of DC arc plasma torches: the mathematical models including thermodynamic and chemical non-equilibrium models, turbulent and radiative transport, thermodynamic and transport property calculation, boundary conditions and arc reattachment models. It focuses on the conventional plasma torches used for plasma spraying that include a hot-cathode and a nozzle anode.

  2. Protection of Reinforced Concrete Structures of Waste Water Treatment Reservoirs with Stainless Steel Coating Using Arc Thermal Spraying Technique in Acidified Water

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-09-01

    Full Text Available Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements. The most widely used techniques are stainless steel plating and polymeric coating. In this study, a technique known as arc thermal spraying was used. It is a more convenient and economical method for protecting both concrete and reinforcement steel bar from deterioration in waste water treatment reservoirs. In this study, 316L stainless steel coating was applied to a concrete surface, and different electrochemical experiments were performed to evaluate the performance of coatings in different acidic pH solutions. The coating generated from the arc thermal spraying process significantly protected the concrete surface from corrosion in acidic pH solutions, owing to the formation of a double layer capacitance—a mixture of Cr3+ enriched with Cr2O3 and Cr-hydroxide in inner and Fe3+ oxide on the outer layer of the coating. The formation of this passive film is defective owing to the non-homogeneous 316L stainless steel coating surface. In the pH 5 solution, the growth of a passive film is adequate due to the presence of un-dissociated water molecules in the aqueous sulfuric acid solution. The coated surface is sealed with alkyl epoxide, which acts as a barrier against the penetration of acidic solutions. This coating exhibits higher impedance values among the three studied acidic pH solutions.

  3. Protection of Reinforced Concrete Structures of Waste Water Treatment Reservoirs with Stainless Steel Coating Using Arc Thermal Spraying Technique in Acidified Water

    Science.gov (United States)

    Lee, Han-Seung; Park, Jin-Ho; Singh, Jitendra Kumar; Ismail, Mohamed A.

    2016-01-01

    Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements. The most widely used techniques are stainless steel plating and polymeric coating. In this study, a technique known as arc thermal spraying was used. It is a more convenient and economical method for protecting both concrete and reinforcement steel bar from deterioration in waste water treatment reservoirs. In this study, 316L stainless steel coating was applied to a concrete surface, and different electrochemical experiments were performed to evaluate the performance of coatings in different acidic pH solutions. The coating generated from the arc thermal spraying process significantly protected the concrete surface from corrosion in acidic pH solutions, owing to the formation of a double layer capacitance—a mixture of Cr3+ enriched with Cr2O3 and Cr-hydroxide in inner and Fe3+ oxide on the outer layer of the coating. The formation of this passive film is defective owing to the non-homogeneous 316L stainless steel coating surface. In the pH 5 solution, the growth of a passive film is adequate due to the presence of un-dissociated water molecules in the aqueous sulfuric acid solution. The coated surface is sealed with alkyl epoxide, which acts as a barrier against the penetration of acidic solutions. This coating exhibits higher impedance values among the three studied acidic pH solutions. PMID:28773875

  4. Cathodic arcs

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  5. Cathodic arcs

    OpenAIRE

    Anders, Andre

    2003-01-01

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas stand out due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bia...

  6. Experimental Study of the Micro-Arc Oxide Coating Effect on Thermal Properties of an Aluminium Alloy Piston Head

    Directory of Open Access Journals (Sweden)

    N.Yu. Dudareva

    2015-09-01

    Full Text Available The purpose of the present study is to investigate the influence of differently sized microarc oxidation coatings, applied to the bottom of pistons made with an Al-12Si-Mg-Cu-Ni alloy, on its thermal properties by simulating the operation of a real engine. This study is based on the premise that the alumina coating thickness affects the heat transfer and temperature distribution in the piston. The analysis of thermal properties of pistons and suggestions for the optimal thermal barrier coating thickness are presented.

  7. Investigation of the thermal regime and geologic history of the Cascade volcanic arc: First phase of a program for scientific drilling in the Cascade Range

    Energy Technology Data Exchange (ETDEWEB)

    Priest, G.R.

    1987-01-01

    A phased, multihole drilling program with associated science is proposed as a means of furthering our understanding of the thermal regime and geologic history of the Cascade Range of Washington, Oregon, and northern California. The information obtained from drilling and ancillary geological and geophysical investigations will contribute to our knowledge in the following general areas: (1) the magnitude of the regional background heat flow of parts of the Quaternary volcanic belt dominated by the most abundant volcanic rock types, basalt and basaltic andesite; (2) the nature of the heat source responsible for the regional heat-flow anomaly; (3) the characteristics of the regional hydrothermal and cold-water circulation; the rates of volcanism for comparison with models for the rate and direction of plate convergence of the Cascades; (5) the history of deformation and volcanism in the volcanic arc that can be related to subduction; (6) the present-day stress regime of the volcanic arc and the relation of these stresses to plate interactions and possible large earthquakes; and the current geometry of the subducted oceanic plate below the Cascade Range and the relationship of the plate to the distribution of heat flow, Quaternary volcanism, and Quaternary deformation. Phase I research will be directed toward a detailed investigation of the Santiam Pass segment. In concert with the Santiam Pass research, a detailed study of the nearby Breitenbush Hot Springs area is also recommended as a component of Phase I. The object of the Breitenbush research is to study one of the hottest known Cascade hydrothermal systems, which coincidentally also has a good geological and geophysical data base. A coordinated program of drilling, sampling, subsurface measurements, and surface surveys will be associated with the drilling of several holes.

  8. The ARCS radial collimator

    OpenAIRE

    Stone M.B.; Niedziela J.L.; Overbay M.A.; Abernathy D.L.

    2015-01-01

    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. W...

  9. Arc Statistics

    CERN Document Server

    Meneghetti, M; Dahle, H; Limousin, M

    2013-01-01

    The existence of an arc statistics problem was at the center of a strong debate in the last fifteen years. With the aim to clarify if the optical depth for giant gravitational arcs by galaxy clusters in the so called concordance model is compatible with observations, several studies were carried out which helped to significantly improve our knowledge of strong lensing clusters, unveiling their extremely complex internal structure. In particular, the abundance and the frequency of strong lensing events like gravitational arcs turned out to be a potentially very powerful tool to trace the structure formation. However, given the limited size of observational and theoretical data-sets, the power of arc statistics as a cosmological tool has been only minimally exploited so far. On the other hand, the last years were characterized by significant advancements in the field, and several cluster surveys that are ongoing or planned for the near future seem to have the potential to make arc statistics a competitive cosmo...

  10. Modeling Arcs

    CERN Document Server

    Insepov, Zeke; Veitzer, Seth; Mahalingam, Sudhakar

    2011-01-01

    Although vacuum arcs were first identified over 110 years ago, they are not yet well understood. We have since developed a model of breakdown and gradient limits that tries to explain, in a self-consistent way: arc triggering, plasma initiation, plasma evolution, surface damage and gra- dient limits. We use simple PIC codes for modeling plasmas, molecular dynamics for modeling surface breakdown, and surface damage, and mesoscale surface thermodynamics and finite element electrostatic codes for to evaluate surface properties. Since any given experiment seems to have more variables than data points, we have tried to consider a wide variety of arcing (rf structures, e beam welding, laser ablation, etc.) to help constrain the problem, and concentrate on common mechanisms. While the mechanisms can be comparatively simple, modeling can be challenging.

  11. A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones

    Science.gov (United States)

    Fullea, J.; Fernàndez, M.; Zeyen, H.; Vergés, J.

    2007-02-01

    We present a method based on the combination of elevation and geoid anomaly data together with thermal field to map crustal and lithospheric thickness. The main assumptions are local isostasy and a four-layered model composed of crust, lithospheric mantle, sea water and the asthenosphere. We consider a linear density gradient for the crust and a temperature dependent density for the lithospheric mantle. We perform sensitivity tests to evaluate the effect of the variation of the model parameters and the influence of RMS error of elevation and geoid anomaly databases. The application of this method to the Gibraltar Arc System, Atlas Mountains and adjacent zones reveals the presence of a lithospheric thinning zone, SW-NE oriented. This zone affects the High and Middle Atlas and extends from the Canary Islands to the eastern Alboran Basin and is probably linked with a similarly trending zone of thick lithosphere constituting the western Betics, eastern Rif, Rharb Basin, and Gulf of Cadiz. A number of different, even mutually opposite, geodynamic models have been proposed to explain the origin and evolution of the study area. Our results suggest that a plausible slab-retreating model should incorporate tear and asymmetric roll-back of the subducting slab to fit the present-day observed lithosphere geometry. In this context, the lithospheric thinning would be caused by lateral asthenospheric flow. An alternative mechanism responsible for lithospheric thinning is the presence of a hot magmatic reservoir derived from a deep ancient plume centred in the Canary Island, and extending as far as Central Europe.

  12. 绝热加速量热仪表征含能材料热感度的探讨%Thermal Sensitivity of Energetic Materials Characterized by Accelerating Rate Calorimeter(ARC)

    Institute of Scientific and Technical Information of China (English)

    刘颖; 杨茜; 陈利平; 何中其; 陆燕; 陈网桦

    2011-01-01

    对现有的固体含能材料热感度表征方法进行了简述,并针对现有表征方法无法适用于液态含能材料热感度测试的局限性,提出了采用绝热加速量热仪( ARC)表征含能材料热感度的方法.用ARC测试了4种固体含能材料太安(PETN)、黑索今(RDX)、奥克托今(HMX)、梯恩梯(TNT)以及2种液态含能材料硝基乙烷(NE)、硝酸异辛酯(EHN)的绝热分解过程,根据所得热动力学数据计算得出了这些被测试样不同爆炸延滞期对应的爆发点.就4种固体含能材料而言,ARC测试得到的热感度排序为PETN >RDX >HMX >TNT,此结果与传统的伍德合金浴法的测试结论一致,认为ARC可以应用于固体及液态含能材料的热感度测试.6种被测试样的热感度排序为EHN>PETN >RDX>HMX>TNT>NE.%Traditional test methods for thermal sensitivity of solid energetic materials were summarized. Aiming at the limitation of the fact that these methods cannot be applied to liquid energetic materials, a method using Accelerating Rate Calorimeter (ARC) to test thermal sensitivity of energetic materials was put forward. The decompositions of four solid explosives Pentaerythritol tetranitrate ( PETN ), Hexogen (RDX), Octogen (HMX), 2,4,6-Trinitrotoluene (TNT) and two liquid energetic materials Nitroethane (NE), 2-Ethylhexyl nitrate (EHN) were studied by ARC. Kinetic and thermodynamics parameters were calculated and analyzed. Temperature corresponding different time to maximum rate under adiabatic condition (0) was calculated. Thermal sensitivity of four solid energetic materials is PETN > RDX >HMX >TNT, which is consistent with the conclusion obtained by the traditional Wood's alloy bath method, therefore ARC can be employed to the test of the thermal sensitivity of both solid and liquid energetic material. The thermal sensitivity order of six energetic materials from high to low is EHN >PETN >RDX >HMX >TNT>NE.

  13. The ARCS radial collimator

    Directory of Open Access Journals (Sweden)

    Stone M.B.

    2015-01-01

    Full Text Available We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. We present here characterization of the collimator's performance and methodologies for its effective use.

  14. The ARCS radial collimator

    Science.gov (United States)

    Stone, M. B.; Niedziela, J. L.; Overbay, M. A.; Abernathy, D. L.

    2015-01-01

    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. We present here characterization of the collimator's performance and methodologies for its effective use.

  15. Effect of Sintering on the Properties of γ-Brass (Cu5Zn8) Nanoparticles Produced by the Electric Arc Discharge Method and the Thermal Conductivity of γ-Brass Oil-Based Nanofluid

    Science.gov (United States)

    Farbod, Mansoor; Mohammadian, Alireza; Ranjbar, Khalil; Kouhpeymani Asl, Razieh

    2016-03-01

    Cu5Zn8 nanoparticles with a mean particle size of 21 nm were produced using the electric arc discharge method at 1 atm pressure Ar and 300 A arc current. The effect of sintering on the properties of Cu5Zn8 nanoparticle pellets prepared by pressing nanopowders under 750 MPa pressure was studied. Particles grew uniformly when sintered at 1013 K (740 °C), as opposed to those samples that were unsintered, resulting in a reduction of pores and an increase in density of about 21 pct. The electrical resistivity and hardness of the samples were also highly reduced. The results showed that the cooling rate can affect the properties of the sintered samples. The oil-based nanofluids with 0.2 to 3 wt pct of Cu5Zn8 nanoparticles were prepared, and it was found that the thermal conductivity of nanofluids increased with an increase in the weight percent of nanoparticles up to 1 pct and decreased afterward. The highest increase in thermal conductivity of 6 pct was measured compared to the base fluid.

  16. Influence of process parameters on the cavitation resistance of arc thermally sprayed cobalt stainless steel; Influencia dos parametros de processo na resistencia a cavitacao de uma liga inoxidavel com cobalto aspergido a arco

    Energy Technology Data Exchange (ETDEWEB)

    Pukasiewicz, A. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Capra, A.R.; Chandelier, J. da L. [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)], e-mail: anderson.geraldo@lactec.org.br; Paredes, R.S.C. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    In this work the influence of the arc thermal spraying process on the microstructure, oxide volumetric fraction, porosity and cavitation resistance was studied. The characterization was performed by optical and electrical microscopy, microhardness and ultrasonic cavitation test, ASTM G32-96 in AS895HY cobalt stainless steel. The increase in air pressure, 280 to 410 kPa, modified the oxide fraction from 17,2 +- 3,6% to 10,9 +-1,8%, in the samples without pre-heating treatment. With 120 deg C pre-heating treatment the oxide fraction increase from 24,1 +- 2,8% to 12,8 +- 1,9% when the air pressure was modified from 280 to 550 kPa. The mass loss in vibration-induced cavitation were 1,55 and 1,42 mg/h for 410 kPa AS895HY samples, with and without pre heating treatment, and 2,12 mg/h for 280 kPa samples without pre heating treatment. The results showed that the process parameters modified the microstructure and the cavitation resistance of the arc thermal spraying coatings. (author)

  17. Gliding arc triggered microwave plasma arc at atmospheric pressure for coal gasification application

    Science.gov (United States)

    Jain, Vishal; Visani, A.; Patil, C.; Patel, B. K.; Sharma, P. K.; John, P. I.; Nema, S. K.

    2014-08-01

    Plasma torch is device that efficiently converts electrical energy in to thermal energy for various high temperature applications. The conventional plasma torch comprises of consumable electrodes namely anode and cathode electrodes. The replacement of these electrodes is a complex process owing to its cooling and process shut down requirements. However, microwave plasma arc is electrode-less plasma arc system that is an alternative method to conventional arc technology for generating plasma arc. In this technique, microwave power is efficiently coupled to generate plasma arc by using the property of polar molecule to absorb microwave power. The absorption of microwave power is in form of losses due to intermolecular friction and high collisions between the molecules. This is an efficient method because all microwave power can be absorbed by plasma arc. The main feature of microwave plasma arc is its large uniform high temperature column which is not possible with conventional arc discharge methods. Such type of plasma discharge is very useful in applications where sufficient residence time for treat materials is required. Microwave arc does not require any consumable electrodes and hence, it can be operated continuously that makes it very useful for hazardous effluent treatment applications. Further, microwave cannot ionize neutral particles at atmospheric pressure and hence, a gliding arc is initiated between two thin electrodes in the cavity by applying very low power high voltage (3kV) AC source. In this report, the method for generating microwave arc of 1kW power using commercial microwave oven is elaborated.

  18. Arc Conductance and Flow Velocity Affected by Transient Recovery Voltage

    Science.gov (United States)

    Fukuoka, Reo; Ishikawa, Yuya; Ono, Seisui; Sato, Ken; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    Recently, the stable supply of electric power is indispensable. The GCB (Gas Circuit Breaker) can prevent the spread of the fault current. However, it should have the reliability more. Therefore the GCB has been researched for performance improvement of the arc interruption of abnormal fault current without the fail. Therefore, it is important to prevent the breakdown such as the re-ignition and thermal re-ignition of arc after the arc interruption. It is necessary to reduce the arc conductance in order to prevent the re-ignition of arc. The arc conductance is derived from the temperature distribution and the volume of the arc. The temperature distribution of the arc is formed by convection. In this research, the arc conductance and flow velocity affected by transient recovery voltage are elucidated. The flow rate and temperature distribution of the arc is calculated with changing transient recovery voltage. In addition, the arc conductance is calculated in order to know the extinguish arc ability. As a result, when the transient recovery voltage increases, the probability of re-ignition increases. Therefore, the arc temperature and the arc conductance were increased.

  19. Thermal efficiency on welding of AA6061-T6 alloy by modified indirect electric arc and current signals digitalisation; Eficiencia termica en soldadura de la aleacion AA6061-T6 por arco electrico indirecto modificado y digitalizacion de senales de intensidad de corriente

    Energy Technology Data Exchange (ETDEWEB)

    Ambriz, R. R.; Barrera, G.; Garcia, R.; Lopez, V. H.

    2009-07-01

    The results of the thermal efficiency on welding by modified indirect electric arc technique (MIEA) [1] of the 6061- T6 aluminum alloy are presented. These values are in a range of 90 to 94 %, which depend of the preheating employed. Thermal efficiency was obtained by means of a balance energy which considers the heat input, the amount of melted mass of the welding profiles, and welding parameters during the joining, especially of the arc current data acquisition. Also, some dimensionless parameters were employed in order to determine the approximation grade of the melted pool, the heat affected zone (HAZ), and their corresponding values with the experimental results. (Author) 13 refs.

  20. Unstable Behavior of Anodic Arc Discharge for Synthesis of Nanomaterials

    Science.gov (United States)

    Gershman, Sophia; Raitses, Yevgeny

    2016-09-01

    Fast imaging and electrical current measurements reveal unstable behavior of the carbon arc discharge for synthesis of nanomaterials. The arc column and the arc attachment region to the anode move in a somewhat sporadic way with a characteristic time in a 10-3 sec range. The arc exhibits a negative differential resistance before the arc motion occurs. A physical mechanism is proposed based on the thermal processes in the arc plasma region interacting with the ablating anode which leads to the shift of the arc to a new anode region. According to the transient heat transfer analysis, the time needed to heat a new anode region is also in a 10-3 sec range. For a 0.6 cm diameter anode used in our experiments, this time yields a frequency of about 200-300 Hz, comparable to the measured frequency of the arc motion. The voltage and current measurements show oscillations with a similar characteristic frequency. The thermal model is indirectly supported by the measured negative differential resistance of the arc discharge during arc oscillations. The observed unstable behavior of the arc may be responsible for the mixing of the flow of nanoparticles during the synthesis of nanoparticles leading to poor selectivity typical for the arc synthesis. The work was supported by US DOE under Contract No. DE-AC02-09CH11466.

  1. Study on Ceramic Cutting by Plasma Arc

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Engineering ceramics are typical difficult-to-machine materials because of high hardness and brittleness. PAC (Plasma Arc Cutting) is a very important thermal cutting process and has been successfully used in cutting stainless steel and other difficult-to-machine alloys. PAC's application in cutting ceramics, however, is still limited because the most ceramics are not good electronic conducts, and transferred plasma arc cannot be produced between cathode and work-piece. So we presented a method of plasma ...

  2. Gas arc constriction for plasma arc welding

    Science.gov (United States)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  3. Incineration/vitrification of radioactive wastes and combustion of pyrolysis gases in thermal plasmas; Incineration/vitrification de dechets radioactifs et combustion de gaz de pyrolyse en plasma d`arc

    Energy Technology Data Exchange (ETDEWEB)

    Girold, Ch. [CEA de la Vallee du Rhone, Departement de Retraitement des Dechets et du Demantelemnet, 30 - Marcoule (France)]|[Limoges Univ., 87 (France)

    1997-03-01

    Two thermal plasma processes used for incineration of radioactive technological wastes (cellulose, plastics, rubber...) have been investigated. First, the different types of radioactive wastes are presented, with a special attention to those which may benefit from a high temperature thermal treatment. The most significant thermal plasma processes, suitable for this goal, are described. Then, the author deals with the post-combustion, in an oxygen plasma jet reactor, of gases from burnable radioactive waste pyrolysis. An experimental planning method as been used to evaluate the combustion performances in the reactor, with a wide range of gas composition and running parameters such as oxygen excess and electrical power. The results of a modeling of kinetics, based on 116 chemicals reactions between 25 species, are compared with experimental values. Finally, an oxygen plasma reactor where the arc is transferred on a basalt melt is experimented. The efficiency of the combustion and the homogeneity of the glass are discussed. The volatility of some glass elements and tracers added to the wastes is also approached in two different ways: by post-trial material balance and by an optical emission spectroscopic method. The author built a diagnostic method that allows the following versus time of the metallic vapours above the melt. (author) 51 refs.

  4. Warm storage for arc magmas.

    Science.gov (United States)

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K; Harrison, T Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-06

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  5. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    Science.gov (United States)

    Reynolds, Quinn G.

    2016-11-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  6. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    Science.gov (United States)

    Reynolds, Quinn G.

    2017-02-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  7. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

    Institute of Scientific and Technical Information of China (English)

    LI Tianming; Sooseok CHOI; Takayuki WATANABE

    2012-01-01

    A water plasma was generated by DC arc discharge with a hafnium embedded rodtype cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process.

  8. Application of Steenbeck's minimum principle for three-dimensional modelling of DC arc plasma torches

    CERN Document Server

    Li He Ping; Chen, X

    2003-01-01

    In this paper, physical/mathematical models for the three-dimensional, quasi-steady modelling of the plasma flow and heat transfer inside a non-transferred DC arc plasma torch are described in detail. The Steenbeck's minimum principle (Finkelnburg W and Maecker H 1956 Electric arcs and thermal plasmas Encyclopedia of Physics vol XXII (Berlin: Springer)) is employed to determine the axial position of the anode arc-root at the anode surface. This principle postulates a minimum arc voltage for a given arc current, working gas flow rate, and torch configuration. The modelling results show that the temperature and flow fields inside the DC non-transferred arc plasma torch show significant three-dimensional features. The predicted anode arc-root attachment position and the arc shape by employing Steenbeck's minimum principle are reasonably consistent with experimental observations. The thermal efficiency and the torch power distribution are also calculated in this paper. The results show that the thermal efficiency...

  9. Arc tracks on nanostructured surfaces after microbreakdowns

    Science.gov (United States)

    Sinelnikov, D.; Bulgadaryan, D.; Hwangbo, D.; Kajita, S.; Kolodko, D.; Kurnaev, V.; Ohno, N.

    2016-09-01

    Studying of initial steps of unipolar arc ignition process is important for reduction of probability of arcing between the plasma and the wall in thermonuclear devices. Tungsten nano-fuzz surface formed by helium plasma irradiation at high fluences and temperatures is a perfect material for arc ignition. Snowflake-like craters were detected on the fuzzy surfaces after short micro-breakdowns. Such sort of craters have not been observed before on any other metallic surfaces. These specific traces are formed due to unique properties of the fuzz structure. The nano-fuzz could be easily melted and vaporized by micro-breakdown current, due to its porosity and bad thermal conductivity, and formation of low conducting metallic vapour under the cathode spot causes discharge movement to the nearest place. Thus, even low current arc can easily move and leave traces, which could be easily observed by a secondary electron microscope.

  10. Instability of a Short Anodic Arc Used for Synthesis of Nanomaterials

    Science.gov (United States)

    Gershman, Sophia; Raitses, Yevgeny

    2016-10-01

    The short anodic arc discharge is used for the synthesis of nanomaterials and had been presumed stable. We report the results of electrical and fast imaging measurements that reveal a combined motion of the arc column and the arc attachment region to the anode when the arc is operated with a high ablation rate. The arc exhibits a negative differential resistance before the arc motion occurs. The observed arc motion correlates with the arc voltage and current oscillations. The characteristic time of these instabilities is in a 10-3 sec range. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. The measured negative differential resistance of the arc during the oscillations indirectly supports the thermal model. Our model suggests that the injection of the ablating material into the plasma locally reduces the energy flux to the surface and leads to the arc shifting to the adjacent position. The observed arc motion can potentially cause the mixing of the various nanoparticles synthesized in the arc in the high ablation regime leading to the poor selectivity characteristic of the arc synthesis of nanomaterials. US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  11. The effect of steam-heating processes on the chemical and isotopic composition of the shallow thermal aquifer in Vulcano Island (Aeolian Arc, Sicily).

    Science.gov (United States)

    Capasso, G.; Federico, C.; Madonia, P.; Paonita, A.

    2012-04-01

    We report on a comprehensive study of major-ion chemistry, dissolved gases, and stable isotopes measured in water wells at Vulcano Island since 1988. Particularly, we focus on chemical and hydrological modifications of groundwaters observed in the last two decades, interpreted according to a quantitative model describing steam condensation and boiling phenomena in shallow water bodies (Federico et al., 2010). According to this model, we infer that (i) strong isotope enrichment observed in some shallow thermal waters can result from an increasing mass rate of condensing deep vapor, even in water being meteoric in origin; (ii) the high pCO2 measured in the coldest and peripheral waters are explained by the progressive CO2 enrichment in the vapor phase during multistep boiling; and (iii) the high Cl- and SO4-- contents in the hottest waters can be attributed to the direct condensation (single-step) of volcanic vapor. The model also takes into account both the mass fluxes and the compositions of the involved endmembers (steam and shallow groundwater), which provides important inferences on the modifications observed during the periods of increasing mass and heat input from depth occurred at Vulcano Island. The volcanic crisis that occurred in 1988-1993 profoundly affected the composition of some thermal wells that were more-directly affected by ascending vapour. In particular, higher Cl-, SO4--, and HCO3- contents, temperature, and pCO2 values were measured. These variations are all explained by a different composition of the vapor entering the aquifer paralleled by a higher mass rate relative to the shallow meteoric endmember. Minor effects on the shallow thermal aquifer are observed during the following periods of increasing heat and mass flux from depth, mostly recorded in the crater area. This implies that the shallow thermal aquifer is affected by magmatic fluids ascending along central conduits only when there is a significant increase in the heat and mass fluxes

  12. NTWV-based sensing keyhole dimension in plasma arc welding

    Institute of Scientific and Technical Information of China (English)

    Jia Chuanbao; Wu Chuansong; Zhang Yuming

    2008-01-01

    During stable keyhole plasma arc welding, the pilot arc and the transferred arc exist at the meantime, and the arcs can be considered as a composition of two parts inside and outside the nozzle, respectively. Under the mechanical constriction and thermal contraction effects, the inside arc has certain arc length, electron density and arc profile etc. Inducing constant tungsten-to-nozzle voltage. However, the arc outside the nozzle diverges at about 5 degrees and has certain characteristics similar to the free arcs. The nozzle-to-workpiece voltage (NTWV) depends mainly on the length of the arc, which gets bigger as increasing of the weld penetration and keyhole size. The NTWV sensor is developed for monitoring NTWV in real time. The welding experiments are designed to get different penetrations and keyhole sizes. It is found that as the weld penetration and the keyhole size increase, NTWV also increases linearly. The NTWV signals can be used as the feedback variable in automatic control of keyhole plasma arc welding.

  13. Wire + Arc Additive Manufacturing

    OpenAIRE

    Williams, Stewart W.; Martina, Filomeno; Addison, Adrian C.; Ding, Jialuo; Pardal, Goncalo; Colegrove, Paul A.

    2016-01-01

    Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to ...

  14. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  15. Arc-heated Direct-connected Testing Technology Investigation on Scramjet Combustor Thermal Protection System%发动机燃烧室热防护系统电弧加热直连式试验技术

    Institute of Scientific and Technical Information of China (English)

    涂建强; 陈连忠; 马雪松; 陈海群; 王琴

    2013-01-01

    基于原有的电弧加热直连式试验燃烧室性能测试平台,阐述了结合燃油燃烧试验方法,发展了对主动和被动热防护冲压发动机燃烧室热防护性能进行长时间考核的新方法。根据主动冷却燃烧室的试验要求,改进燃油供给控制系统,使其在出口管路压力升高时能长时间稳定供给燃油;采用B型热电偶、隔热毡和高温合金钢卡环安装方法对燃烧室外壁面温度进行接触式测量,获取燃烧室的温度分布;采用轴向不限位的支撑和位移传感器测量燃烧室的轴向变形情况。通过以上3方面的测量技术创新,燃烧室热防护性能考核的电弧加热直连式试验技术能够对发动机燃烧室热防护性能进行千秒量级的考核,并且能够长时间获取燃烧室的燃油供给量、壁面温度分布和轴向变形等数据。%Based on the original arc-heater direct-connected scramjet combustor working performance test facility, a new method, which is used to test the long-time thermal protection performance of the active and passive scramjet combustor thermal protection system (TPS), has been developed. According to the active scramjet combustor test demand, the fuel supply and control system has been improved, which can steadily supply fuel when the exit pressure is increasing. The temperature distributing of the scramjet exterior wall has been measured by the B-type thermocouples, heat-insulation felt and high-temperature alloy steel ring. The axial deformation of the scramjet has been gained by the axial-free supports and displacement sensors. With the three parts improvement, the arc-heater direct-connected testing technology of the scramjet combustor TPS thermal protection performance can last for thousand seconds. And a mass of the scramjet combustor thermal protection performance data in the normal work situation, such as the fuel flux, the exterior wall temperature distributing and the axial

  16. Estimation of dynamic properties of attractors observed in hollow copper electrode atmospheric pressure arc plasma system

    Indian Academy of Sciences (India)

    S Ghorul; S N Sahasrabudhe; P S S Murthy; A K Das; N Venkatramani

    2002-07-01

    Understanding of the basic nature of arc root fluctuation is still one of the unsolved problems in thermal arc plasma physics. It has direct impact on myriads of thermal plasma applications being implemented at present. Recently, chaotic nature of arc root behavior has been reported through the analysis of voltages, acoustic and optical signals which are generated from a hollow copper electrode arc plasma torch. In this paper we present details of computations involved in the estimation process of various dynamic properties and show how they reflect chaotic behavior of arc root in the system.

  17. WSTF electrical arc projects

    Science.gov (United States)

    Linley, Larry

    1994-09-01

    The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.

  18. Circular-Arc Cartograms

    CERN Document Server

    Kämper, Jan-Hinrich; Nöllenburg, Martin

    2011-01-01

    We present a new circular-arc cartogram model in which countries are drawn with circular arcs instead of straight-line segments. Given a geographic map and values associated with each country in the map, the cartogram is a new map in which the areas of the countries represent the corresponding values. In the circular-arc cartogram model straight-line segments can be replaced with circular arcs in order to achieve the desired areas, while the corners of the polygons defining each country remain fixed. The countries in circular-arc cartograms have the aesthetically pleasing appearance of clouds or snowflakes, depending on whether their edges are bent outwards or inwards. This makes is easy to determine whether a country has grown or shrunk, just by its overall shape. We show that determining whether a given map and area-values can be realized with a circular-arc cartogram is an NP-hard problem. Next we describe a heuristic method for constructing circular-arc cartograms, which uses a max-flow computation on the...

  19. Structural, optical and electrical properties of N-doped ZnO thin films prepared by thermal oxidation of pulsed filtered cathodic vacuum arc deposited Zn{sub x}N{sub y} films

    Energy Technology Data Exchange (ETDEWEB)

    Erdogan, N.H.; Kara, K.; Ozdamar, H. [Physics Department, Cukurova University, 01330 Adana (Turkey); Kavak, H., E-mail: hkavak@cu.edu.tr [Physics Department, Cukurova University, 01330 Adana (Turkey); Esen, R. [Physics Department, Cukurova University, 01330 Adana (Turkey); Karaagac, H. [Physics Department, Middle East Technical University, 06531 Ankara (Turkey)

    2011-09-08

    Graphical abstract: Highlights: > Thermal oxidation of Zn{sub x}N{sub y} method is used to obtain N doped ZnO. > N acceptors in ZnO is not sufficiently activated at oxidation temperature below 350 deg. C. > Oxidation treatment at 450 deg. C activates more N acceptors in ZnO. > Oxidation treatment at high temperatures above 550 deg. C reduces the N concentration in the ZnO thin film. - Abstract: In this study, N-doped ZnO thin films were fabricated by oxidation of Zn{sub x}N{sub y} films. The Zn{sub x}N{sub y} thin films were deposited on glass substrates by pulsed filtered cathodic vacuum arc deposition (PFCVAD) using metallic zinc wire (99.999%) as a cathode target in pure nitrogen plasma. The influence of oxidation temperature, on the electrical, structural and optical properties of N-doped ZnO films was investigated. P-type conduction was achieved for the N-doped ZnO obtained at 450 deg. C by oxidation of Zn{sub x}N{sub y}, with a resistivity of 16.1 {Omega} cm, hole concentration of 2.03 x 10{sup 16} cm{sup -3} and Hall mobility of 19 cm{sup 2}/V s. X-ray photoelectron spectroscopy (XPS) analysis confirmed the incorporation of N into the ZnO films. X-ray diffraction (XRD) pattern showed that the films as-deposited and oxidized at 350 deg. C were amorphous. However, the oxidized films in air atmosphere at 450-550 deg. C were polycrystalline without preferential orientation. In room temperature photoluminescence (PL) spectra, an ultraviolet (UV) peak was seen for all the samples. In addition, a broad deep level emission was observed.

  20. Pulsed plasma arc cladding

    Institute of Scientific and Technical Information of China (English)

    龙; 白钢; 李振民; 张赋升; 杨思乾

    2004-01-01

    A prototype of Pulsed Plasma Arc Cladding system was developed, in which single power source supplies both transferred plasma arc (TPA) and non-transferred plasma arc (N-TPA). Both plasmas work in turn in a high frequency controlled by an IGBT connecting nozzle and workpiece. The working frequency of IGBT ranges from 50 ~ 7000Hz, in which the plasmas can work in turn smoothly. Higher than 500 Hz of working frequency is suggested for promotion of cladding quality and protection of IGBT. Drag phenomenon of TPA intensifies as the frequency goes up, which tends to increase the current proportion of TPA and suppress N-TPA. The occupation ratio of IGBT can be regulated from 5% ~ 95%, which balances the power supplies of both plasmas. An occupation ratio higher than 50% gives adequate proportion of arc current for N-TPA to preheat powder.

  1. Filtered cathodic arc source

    Science.gov (United States)

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  2. Mathematical Modeling of Metal Active Gas (MAG) Arc Welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the present paper, a numerical model for MAG (metal active gas) arc welding of thin plate has been developed. In MAG arc welding, the electrode wire is melted and supplied into the molten pool intermittently. Accordingly, it is assumed on the modeling that the thermal energy enters the base-plates through two following mechanisms, i.e., direct heating from arc plasma and “indirect” heating from the deposited metal. In the second part of the paper, MAG arc welding process is numerically analyzed by using the model, and the calculated weld bead dimension and surface profile have been compared with the experimental MAG welds on steel plate. As the result, it is made clear that the model is capable of predicting the bead profile of thin-plate MAG arc welding , including weld bead with undercutting.

  3. Nonequilibrium flow calculations for the hydrogen constricted arc

    Science.gov (United States)

    Scott, R. K.; Incropera, F. P.

    1973-01-01

    A nonequilibrium flow model has been formulated and solved numerically for conditions in an atomic hydrogen cascade arc. Solutions show that although thermal nonequilibrium effects are minor, the departure from chemical equilibrium is significant. Comparisons with results obtained from an equilibrium flow model reveal the deficiencies associated with such a model and parametric calculations reveal the effect of current, pressure, and radius on arc behavior.

  4. Computer simulation to arc spraying

    Institute of Scientific and Technical Information of China (English)

    梁志芳; 李午申; 王迎娜

    2004-01-01

    The arc spraying process is divided into two stages: the first stage is atomization-spraying stream (ASS) and the second one is spraying deposition (SD). Then study status is described of both stages' physical model and corresponding controlling-equation. Based on the analysis of study status, the conclusion as follows is got. The heat and mass transfer models with two or three dimensions in ASS stage should be established to far deeply analyses the dynamical and thermal behavior of the overheat droplet. The statistics law of overheated droplets should be further studied by connecting simulation with experiments. More proper validation experiments should be designed for flattening simulation to modify the models in SD stage.

  5. Phenomenology of surface arcs on spacecraft dielectric materials

    Science.gov (United States)

    Balmain, K. G.; Gossland, M.; Reeves, R. D.; Kuller, W. G.

    1982-01-01

    For electron beam incidence on large specimens of Kapton thermal blanket material, surface arc discharges are shown to cause damage consisting of punchthrough holes which act as focal points for other types of damage, including subsurface tunnels, blowout holes and surface breakup. Under electron bombardment, dielectric sheet specimens separated by a gap are shown to discharge simultaneously. Teflon specimens which have been brushed or rubbed are shown to exhibit directional guidance of discharge arcs, and this phenomenon has been used to generate straight arcs whose velocities have been measured optically.

  6. Modeling of Arc Force in Plasma Arc Welding

    Institute of Scientific and Technical Information of China (English)

    GAO Zhonglin; HU Shengsun; YIN Fengliang; WANG Rui

    2008-01-01

    A three. dimensional mathematical model for the transferred-type argon arc was developed to describe arc force on the anode surface. The software ANSYS was employed to solve the model. The model includes a part of torch and tungsten electrode to achieve m ore reasonable results. The arc temperature and flow fields were derived. And the influences of welding parameters on arc force were also studied. The simulated results show that arc pressure at the anode are dependent on the welding current, plasma gas flow rate and electrode neck-in, while not sensitive to arc length.

  7. MODELING PARAMETERS OF ARC OF ELECTRIC ARC FURNACE

    Directory of Open Access Journals (Sweden)

    R.N. Khrestin

    2015-08-01

    Full Text Available Purpose. The aim is to build a mathematical model of the electric arc of arc furnace (EAF. The model should clearly show the relationship between the main parameters of the arc. These parameters determine the properties of the arc and the possibility of optimization of melting mode. Methodology. We have built a fairly simple model of the arc, which satisfies the above requirements. The model is designed for the analysis of electromagnetic processes arc of varying length. We have compared the results obtained when testing the model with the results obtained on actual furnaces. Results. During melting in real chipboard under the influence of changes in temperature changes its properties arc plasma. The proposed model takes into account these changes. Adjusting the length of the arc is the main way to regulate the mode of smelting chipboard. The arc length is controlled by the movement of the drive electrode. The model reflects the dynamic changes in the parameters of the arc when changing her length. We got the dynamic current-voltage characteristics (CVC of the arc for the different stages of melting. We got the arc voltage waveform and identified criteria by which possible identified stage of smelting. Originality. In contrast to the previously known models, this model clearly shows the relationship between the main parameters of the arc EAF: arc voltage Ud, amperage arc id and length arc d. Comparison of the simulation results and experimental data obtained from real particleboard showed the adequacy of the constructed model. It was found that character of change of magnitude Md, helps determine the stage of melting. Practical value. It turned out that the model can be used to simulate smelting in EAF any capacity. Thus, when designing the system of control mechanism for moving the electrode, the model takes into account changes in the parameters of the arc and it can significantly reduce electrode material consumption and energy consumption

  8. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  9. ARc Welding (Industrial Processing Series).

    Science.gov (United States)

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  10. Variable polarity arc welding

    Science.gov (United States)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  11. ALICE: ARC integration

    CERN Document Server

    Anderlik, C; Kleist, J; Peters, A; Saiz, P

    2008-01-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a modu...

  12. ALICE-ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    2008-01-01

    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...

  13. Gas tungsten arc welder

    Science.gov (United States)

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  14. Control of arc plasma torches: compensation of operational enthalpy drifts

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, D H; Alexieva, J; Djakov, B E; Enikov, R [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Dimitrov, D [Centre of Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia (Bulgaria)], E-mail: dick.oliver@gmail.com

    2008-05-01

    In arc plasma torches electrode wear is the main reason for slow changes in the electrical and thermal torch characteristics. Such effects hinder technological applications of this type of plasma torches whenever the enthalpy must be maintained at a fixed level, or varied as needed. To solve this problem, a new method and algorithm for torch control are proposed. The time evolution of the arc current, voltage and thermal power loss of the torch are recorded. The values measured are used to find the required value of the enthalpy.

  15. Motion of polar cap arcs

    Science.gov (United States)

    Hosokawa, K.; Moen, J. I.; Shiokawa, K.; Otsuka, Y.

    2011-01-01

    A statistics of motion of polar cap arcs is conducted by using 5 years of optical data from an all-sky imager at Resolute Bay, Canada (74.73°N, 265.07°E). We identified 743 arcs by using an automated arc detection algorithm and statistically examined their moving velocities as estimated by the method of Hosokawa et al. (2006). The number of the arcs studied is about 5 times larger than that in the previous statistics of polar cap arcs by Valladares et al. (1994); thus, we could expect to obtain more statistically significant results. Polar cap arcs are found to fall into two distinct categories: the By-dependent and By-independent arcs. The motion of the former arcs follows the rule reported by Valladares et al. (1994), who showed that stable polar cap arcs move in the direction of the interplanetary magnetic field (IMF) By. About two thirds of the arcs during northward IMF conditions belong to this category. The latter arcs always move poleward irrespective of the sign of the IMF By, which possibly correspond to the poleward moving arcs in the morning side reported by Shiokawa et al. (1997). At least one third of the arcs belong to this category. The By-dependent arcs tend to move faster when the magnitude of the IMF By is larger, suggesting that the transport of open flux by lobe reconnection from one polar cap compartment to the other controls their motion. In contrast, the speed of the By-independent arcs does not correlate with the magnitude of the By. The motions of both the By-dependent and By-independent arcs are most probably caused by the magnetospheric convection. Convection in the region of By-dependent arcs is affected by the IMF By, which indicates that their sources may be on open field lines or in the closed magnetosphere adjacent to the open-closed boundary, whereas By-independent arcs seem to be well on closed field lines. Hence, the magnetospheric source of the two types of arc may be different. This implies that the mechanisms causing the

  16. STUDY ON MECHANISM OF ARC-EXCITED ULTRASONIC

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A mechanism of excited arc to be an controlled "ultrasonic emission source" is described. An developed electrical source with an certain frequency bandwidth for the purpose of the arc-excited is connected with an conventional welding power supply through coupling the cables for the experiment. Some resonant frequency bands for the arc-excited ultrasonic are discovered in the welding process, and its frequency, amplitude and phase'shift are recorded. This principle demonstrates that arc can be used not only for a thermal source, but also for an ultrasonic emission source, which may be extent to the industrial application in some new ways, such as for automatic welding process control and quality inspection.

  17. Three-dimensional modelling of electric-arc development in a low-voltage circuit-breaker

    Energy Technology Data Exchange (ETDEWEB)

    Piqueras, L.; Henry, D.; Jeandel, D.; Scott, J. [Laboratoire de Mecanique des Fluides et d' Acoustique, CNRS/Universite de Lyon, Ecole Centrale de Lyon/Universite Lyon 1/INSA de Lyon, ECL, 36 avenue Guy de Collongue, 69134 Ecully Cedex (France); Wild, J. [Schneider Electric, 37 quai Merlin, 38050 Grenoble Cedex 9 (France)

    2008-09-15

    This article describes direct numerical simulation of the first three milliseconds following ignition of the arc in a low-voltage circuit-breaker using a computational-fluid-dynamics code adapted for electric-arc modelling. The mobile electrode is allowed for by a moving mesh. The results describe the evolution of the arc with time in terms of its detailed electrical, thermal and fluid dynamic properties. They allow the identification of several phases during the overall arc development process studied here: arc initialisation in the widening electrode gap, arc-thermal expansion, displacement of the arc towards the tip of the mobile electrode, and the beginning of commutation to the fixed electrode. (author)

  18. Modeling rf breakdown arcs

    CERN Document Server

    Insepov, Zeke; Huang, Dazhang; Mahalingam, Sudhakar; Veitzer, Seth

    2010-01-01

    We describe breakdown in 805 MHz rf accelerator cavities in terms of a number of mechanisms. We devide the breakdown process into three stages: (1) we model surface failure using molecular dynamics of fracture caused by electrostatic tensile stress, (2) we model the ionization of neutrals responsible for plasma initiation and plasma growth using a particle in cell code, and (3) we model surface damage by assuming a process similar to unipolar arcing. Although unipolar arcs are strictly defined with equipotential boundaries, we find that the cold, dense plasma in contact with the surface produces very small Debye lengths and very high electric fields over a large area. These high fields produce strong erosion mechanisms, primarily self sputtering, compatible with the crater formation that we see. Results from the plasma simulation are included as a guide to experimental verification of this model.

  19. ALICE - ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    AliEn or Alice Environment is the Gridware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic...... Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...... management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. dCache provides support for several data management tools (among them for xrootd the tools used by AliEn) using the so called "doors". Therefore, we will concentrate on the second...

  20. Circular arc structures

    KAUST Repository

    Bo, Pengbo

    2011-07-01

    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  1. Arc-preserving subsequences of arc-annotated sequences

    CERN Document Server

    Popov, Vladimir Yu

    2011-01-01

    Arc-annotated sequences are useful in representing the structural information of RNA and protein sequences. The longest arc-preserving common subsequence problem has been introduced as a framework for studying the similarity of arc-annotated sequences. In this paper, we consider arc-annotated sequences with various arc structures. We consider the longest arc preserving common subsequence problem. In particular, we show that the decision version of the 1-{\\sc fragment LAPCS(crossing,chain)} and the decision version of the 0-{\\sc diagonal LAPCS(crossing,chain)} are {\\bf NP}-complete for some fixed alphabet $\\Sigma$ such that $|\\Sigma| = 2$. Also we show that if $|\\Sigma| = 1$, then the decision version of the 1-{\\sc fragment LAPCS(unlimited, plain)} and the decision version of the 0-{\\sc diagonal LAPCS(unlimited, plain)} are {\\bf NP}-complete.

  2. Transient Response of Arc Temperature and Iron Vapor Concentration Affected by Current Frequency with Iron Vapor in Pulsed Arc

    Science.gov (United States)

    Tanaka, Tatsuro; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    TIG arc welding is chemically a joining technology with melting the metallic material and it can be high quality. However, this welding should not be used in high current to prevent cathode melting. Thus, the heat transfer is poor. Therefore, the deep penetration cannot be obtained and the weld defect sometimes occurs. The pulsed arc welding has been used for the improvement of this defect. The pulsed arc welding can control the heat flux to anode. The convention and driving force in the weld pool are caused by the arc. Therefore, it is important to grasp the distribution of arc temperature. The metal vapor generate from the anode in welding. In addition, the pulsed current increased or decreased periodically. Therefore, the arc is affected by such as a current value and current frequency, the current rate of increment and the metal vapor. In this paper, the transient response of arc temperature and the iron vapor concentration affected by the current frequency with iron vapor in pulsed arc was elucidated by the EMTF (ElectroMagnetic Thermal Fluid) simulation. As a result, the arc temperature and the iron vapor were transient response as the current frequency increase. Thus, the temperature and the electrical conductivity decreased. Therefore, the electrical field increased in order to maintain the current continuity. The current density and electromagnetic force increased at the axial center. In addition, the electronic flow component of the heat flux increased at the axial center because the current density increased. However, the heat conduction component of the heat flux decreased.

  3. Generation of intense plasma jets and microparticle beams by an arc in a supersonic vortex

    Science.gov (United States)

    Winterberg, F.

    1990-04-01

    Temperatures up to 50000 have been reached in water vortex stabilized Gerdien arcs. In arcs confined within the cores of supersonic hydrogen vortices much higher temperatures should be possible. Furthermore if these arcs are thermally insulated by a strong magnetic field temperatures up to a 106 K may be attainable. At these temperatures and in passing through a Laval nozzle the arc plasma can reach jet velocities of 100km/sec. If small quantities of heavy elements are entrained by this high velocity plasma jet these heavy elements are carried along reaching the same speed and upon condensation can form beams of clusters and microparticles.

  4. A New Waste Disposal Technology-plasma arc Pyrolysis System

    Institute of Scientific and Technical Information of China (English)

    黄建军; 施嘉标; 梁荣庆; 刘正之

    2003-01-01

    This paper introduces a new waste disposal technology with plasma arc. Being different from conventional combustion or burning such as incineration, it is based on a process called controlled pyrolysis-thermal destruction and recovery process. It has four advantages, they are completely safe, clean, high-energy synthesis gas, non-toxic vitrified slag and metal.

  5. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  6. Correlation methods in cutting arcs

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L; Kelly, H, E-mail: prevosto@waycom.com.ar [Grupo de Descargas Electricas, Departamento Ing. Electromecanica, Universidad Tecnologica Nacional, Regional Venado Tuerto, Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina)

    2011-05-01

    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  7. Joan of Arc.

    Science.gov (United States)

    Foote-Smith, E; Bayne, L

    1991-01-01

    For centuries, romantics have praised and historians and scientists debated the mystery of Joan of Arc's exceptional achievements. How could an uneducated farmer's daughter, raised in harsh isolation in a remote village in medieval France, have found the strength and resolution to alter the course of history? Hypotheses have ranged from miraculous intervention to creative psychopathy. We suggest, based on her own words and the contemporary descriptions of observers, that the source of her visions and convictions was in part ecstatic epileptic auras and that she joins the host of creative religious thinkers suspected or known to have epilepsy, from St. Paul and Mohammed to Dostoevsky, who have changed western civilization.

  8. Simulation of the Influences of the Pressure Ratio and Cu Vapour on SF6 Arc Characteristics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian; JIA Shenli; LI Xingwen; SHI Zongqian; WANG Lijun

    2009-01-01

    The inlet and outlet pressure of the SF6 high voltage circuit-breaker nozzle are of importance in determining the thermal interruption capability of a breaker.Besides,electrode evaporation is inevitable during the arcing process,which may affect the SF6 arc behaviour significantly.In this study a numerical investigation on the arc characteristics of a supersonic nozzle is carried out,by considering the influence of the pressure ratio between the inlet and outlet,and the Cu vapour.It is demonstrated that a lower inlet pressure may result in a higher arc temperature,a lower arc voltage and a smaller mach number,and Cu vapour from electrode evaporation may cool the arc significantly.

  9. Water-vortex stabilized electric arc: I. Numerical model

    Science.gov (United States)

    Jenista, Jirí

    1999-11-01

    A numerical model for an electric arc stabilized by a water vortex has been proposed. The two-dimensional axisymmetric model includes the discharge area between the cathode and the orifice of the arc chamber. The production of water plasma, i.e. the rate of evaporation of a water wall, is taken either from experiments or is determined numerically by fitting of the outlet plasma parameters to the experimental ones. The computer results concern thermal, fluid dynamic and electrical characteristics of such arcs for the currents 300, 400, 500 and 600 A. It is found, for example, that the role of thermal diffusion within the discharge increases with current. The power losses from the arc due to radial conduction and radiation represent around 50% of the input power. Rotation of the plasma column due to the induced tangential velocity component has negligible effect on the overall arc performance. The calculated velocities, pressure drops and electrical potentials are in good agreement with experiments carried out on the water plasma torch PAL-160 operating at our Institute.

  10. Effects of electrode properties on transition limit to big-arcs in combustion gas plasma boundary layer. Nensho gas plasma kyokaisonai deno daidenryu kyodai arc hassei genkai ni oyobosu denkyoku bussei no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, K.; Okumura, Y. (Tokyo Institute of Technology, Tokyo (Japan)); Kokumai, M.; Yoshikawa, N. (Toyohashi University of Technology, Aichi (Japan))

    1994-05-25

    The effect of physical properties of electrode on the transition from micro-arc to big-arc in the boundary layer of combustion gas plasma such as MHD power generation, the method for preventing the occurrence of big-arc at the electrode surface side, and the possibility of small dispersion of micro-arc are experimentally investigated. The critical current for transition from micro-arc to big-arc is mainly determined by the main part temperature. It is also affected by the electrode properties. This is due to the change in arc shape caused by the heat transfer to the electrode surface and the melting and evaporation of the electrode. In the case of electrode which is likely to give rise to the abrupt gushing of metal vapor, the transition from micro-arc to big-arc is likely to occur because the boundary layer is easily broken as the momentum of the gushing vapor directed rectangularly to the electrode surface which is generating the micro-arc is large. For the prevention of transition from micro-arc to big-arc even at a large current density, it is important to select the electrode material which is characterized by high thermal conductivity, high boiling point, and high latent heat of evaporation. 17 refs., 15 figs., 1 tab.

  11. Alternating-Polarity Arc Welding

    Science.gov (United States)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  12. Characteristics of Arcs Between Porous Carbon Electrodes

    OpenAIRE

    Carvou, Erwann; Le Garrec, Jean-Luc; Mitchell, Brian

    2013-01-01

    International audience; Arcs between carbon electrodes present some specific differences compared with metallic arcs. The arc voltage is higher, but does not attain a stable value displaying large fluctuations. Indeed, the arcs are produced by the direct sublimation of the electrodes, without passing through a molten phase. The arc production is also facilitated by both circuit breaking and electric field breakdown. In this paper, arcing has been examined under various conditions (voltage, cu...

  13. Controlling synthesis of carbon nanostructures by plasma means in arc discharge

    Science.gov (United States)

    Volotskova, Olga; Shashurin, Alexey; Torrey, Jon; Raitses, Yevgeny; Keidar, Michael

    2009-11-01

    Thermal stability of SWNTs at conditions of atmospheric arc is crucial for determination of region of their synthesis in arc and in general for clarification of the thermal regime of SWNT in arc plasmas. We investigated electrical resistance dependence on temperature of mats of SWNTs under variable pressures in helium atmosphere, in the air and in vacuum in high temperature ranges (300-1200K) which closely mimic conditions during the synthesis in arc discharge. Dependence of SWNT resistance on temperature exhibits similar ``V-shape'' behavior for all applied conditions which characterized by two temperatures: Tmin (temperature of the minimum of resistance) and Tcr (temperature of destruction of SWNT bundles). It is found that Tmin and Tcr increased with helium pressure, so that at 500 Torr Tcr was 1100K, while Tmin -900K. This is the temperature that corresponds to buffer region between the arc plasma and helium background in arc discharge. Based on that it can be suggested that region of formation of SWNTs in arc should be close to arc periphery. Our study also demonstrates a strong effect of electric and magnetic fields on properties and growth conditions of SWNTs and other carbon nanostructures such as graphene. These effects are quantified by variety of diagnostics tools: SEM, TEM, AFM - microcopies, TGA, RAMAN and UV-vis-NIR.

  14. GTA arc characteristics in different atmospheres; Caracteristicas del arco de soldadura TIG en diferentes atmosferas

    Energy Technology Data Exchange (ETDEWEB)

    Marques, P. V.; Modenesi, P. J.

    1999-07-01

    Physical properties of gases as density, thermal and electric conductivity and ionization potential determine, to a great extent, the operational characteristics of welding arcs. These properties can very strongly for different gases. As a result, arc voltage, heat output, mean radius, thermal profile, efficiency and other arc characteristics that influence bead geometry (shape, depth, etc) depend on chemical composition of the shielding gas. Complex physical models have being proposed to explain and to quantify the effects of shielding gas chemical composition on the welding arc performance. The influence of arc atmosphere can also be readily observed empirically. However, only changes arc operational parameters and weld bead geometry due to variations in gas composition are well registered in the literature. In this work, an optical study of the gas tungsten arc is presented, based on a digital system for image capture and weeding parameters register, during arc operation. The results were related to physical properties of gases and mixtures used and models in literature. (Author) 11 refs.

  15. Controllability of arc jet from arc horns with slits. Slit tsuki arc horn no arc jet seigyo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sunabe, K.; Inaba, T.; Fukagawa, H. (Central Research Institute of Electric Power Industry, Tokyo (Japan)); Kito, Y. (Nagoya University, Nagoya (Japan))

    1993-09-20

    To improve the corona discharge characteristics, test preparation was made of hollow rod form horns with slits for the overhead power transmission line use. Two types of horn electrode were prepared. The first horn electrode is of a hollow hemisphere fitted with and divided by slits on its tip. The second horn electrode is the first one which is further fitted with rod form electrode at the center of its tip. In experiment, relation was obtained between the deflection angle of arc jet and arc current, electrode diameter, etc., through an observation of arc jet by high speed camera. Melting loss of electrode was also made clear. The following knowledge was obtained: For the first horn electrode, the deflection angle can be limited to a narrow range by a division with slits, e.g., within 30 degrees under the condition of 5kA in arc current, 4 in number of sectors and 200mm in diameter. For the second horn electrode, the deflection angle can be limited to within 20 degrees under the condition of 5kA in arc current and 4 in number of sectors. The arc current is also limited to below 5kA by an addition of 50mm diameter central electrode. As a conclusion for the first electrode, the arc jet control characteristics excels in the stronger arc current range than 5kA, while for the second electrode, they are effective in the weaker arc current range than 5kA. 6 refs., 19 figs., 1 tab.

  16. Convergent evolution of the arginine deiminase pathway: the ArcD and ArcE arginine/ornithine exchangers.

    Science.gov (United States)

    Noens, Elke E E; Lolkema, Juke S

    2017-02-01

    The arginine deiminase (ADI) pathway converts L-arginine into L-ornithine and yields 1 mol of ATP per mol of L-arginine consumed. The L-arginine/L-ornithine exchanger in the pathway takes up L-arginine and excretes L-ornithine from the cytoplasm. Analysis of the genomes of 1281 bacterial species revealed the presence of 124 arc gene clusters encoding the pathway. About half of the clusters contained the gene encoding the well-studied L-arginine/L-ornithine exchanger ArcD, while the other half contained a gene, termed here arcE, encoding a membrane protein that is not a homolog of ArcD. The arcE gene product of Streptococcus pneumoniae was shown to take up L-arginine and L-ornithine with affinities of 0.6 and 1 μmol/L, respectively, and to catalyze metabolic energy-independent, electroneutral exchange. ArcE of S. pneumoniae could replace ArcD in the ADI pathway of Lactococcus lactis and provided the cells with a growth advantage. In contrast to ArcD, ArcE catalyzed translocation of the pathway intermediate L-citrulline with high efficiency. A short version of the ADI pathway is proposed for L-citrulline catabolism and the presence of the evolutionary unrelated arcD and arcE genes in different organisms is discussed in the context of the evolution of the ADI pathway.

  17. Arc spot grouping: An entanglement of arc spot cells

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Shin, E-mail: kajita.shin@nagoya-u.jp [EcoTopia Science Institute, Nagoya University, Nagoya 464-8603 (Japan); Hwangbo, Dogyun; Ohno, Noriyasu [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Tsventoukh, Mikhail M. [Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Barengolts, Sergey A. [Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow 119991 (Russian Federation)

    2014-12-21

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  18. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  19. Heat Transfer Affected by Transverse Magnetic Field using 3D Modeling of Arc Plasma

    Science.gov (United States)

    Maeda, Yoshifumi; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Gas shielded metal arc welding is used to join the various metal because this is the high quality joining technology. Thus, this welding is used for a welding of large buildings such as bridges and LNG tanks. However, the welding defect caused by the heat transfer decrement may occur with increasing the wind velocity. This is because that the convection loss increases because the arc deflects to leeward side with increasing the wind velocity. In order to prevent from the arc deflection, it is used that the transverse magnetic field is applied to the arc. However, the arc deflection occurs with increasing the transverse magnetic field excessively. The energy balance of the arc is changed with increasing the convection loss caused by the arc deflection, and the heat transfer to the anode decreases. Therefore, the analysis including the arc and anode is necessary to elucidate the heat transfer to the anode. In this paper, the heat transfer affected by the transverse magnetic field using 3D modeling of the arc plasma is elucidated. The heat transfer to the anode is calculated by using the EMTF(electromagnetic thermal fluid) simulation with increasing the transverse magnetic field. As a result, the heat transfer decreased with increasing the transverse magnetic field.

  20. Modelling and simulation of unsteady dc electric arcs and their interactions with electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chemartin, L; Lalande, P [ONERA, 29, Avenue de la division Leclerc, 92322 Chatillon (France); Delalondre, C [EDF R and D, 6 quai Watier 78400 Chatou (France); Cheron, B [CORIA, UMR 6614, 76801 Saint Etienne du Rouvray (France); Lago, F, E-mail: laurent.chemartin@onera.fr [DGA, Aeronautical Systems, 47 route de St Jean, 31130 Balma (France)

    2011-05-18

    This paper is devoted to the study of unsteady electric arcs and the effects of electrodes on their dynamics. One of the objectives is to simulate and understand the three-dimensional behaviour of arcs in complex geometries, which create important fluctuations of the column and reattachments on the electrodes. The usual methods to solve the problem of arc-electrodes coupling are not suitable to simulate three-dimensional unsteady arcs. We propose a numerical development to simulate both steady-state and unsteady arcs without additional assumptions. The method is based on the incorporation of electrodes into the computational domain. It is validated with measurements from the literature, in the case of a point-plane steady-state argon arc. The model is used to study the lightning certification test device, which simulates in laboratory the effects of lightning arcs on fuselage panels. The results bring to light, in agreement with the observations in laboratory, the fundamental role of the electrodes on the three-dimensional behaviour of the arc column. The model is also used to simulate the development of the free jet of a plasma on an aluminium planar anode. The objective is to characterize the interaction region and the thermal constraint of the arc.

  1. On arc efficiency in gas tungsten arc welding

    Directory of Open Access Journals (Sweden)

    Nils Stenbacka

    2013-12-01

    Full Text Available The aim of this study was to review the literature on published arc efficiency values for GTAW and, if possible, propose a narrower band. Articles between the years 1955 - 2011 have been found. Published arc efficiency values for GTAW DCEN show to lie on a wide range, between 0.36 to 0.90. Only a few studies covered DCEP - direct current electrode positive and AC current. Specific information about the reproducibility in calorimetric studies as well as in modeling and simulation studies (considering that both random and systematic errors are small was scarce. An estimate of the average arc efficiency value for GTAW DCEN indicates that it should be about 0.77. It indicates anyway that the GTAW process with DCEN is an efficient welding method. The arc efficiency is reduced when the arc length is increased. On the other hand, there are conflicting results in the literature as to the influence of arc current and travel speed.

  2. Non-Equilibrium Modeling of Arc Plasma Torches

    CERN Document Server

    Trelles, J P; Heberlein, J V R

    2013-01-01

    A two-temperature thermal non-equilibrium model is developed and applied to the three-dimensional and time-dependent simulation of the flow inside a DC arc plasma torch. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The fluid and electromagnetic equations in both models are approximated numerically in a fully-coupled approach by a variational multi-scale finite element method. In contrast to the equilibrium model, the non-equilibrium model did not need a separate reattachment model to produce an arc reattachment process and to limit the magnitude of the total voltage drop and arc length. The non-equilibrium results show large non-equilibrium regions in the plasma - cold-flow interaction region and close to the anode surface. Marked differences in the arc dynamics, especially in the arc reattachment process, and in the magnitudes of the total voltage drop and outlet temperatures and velocities between the models are observed. The non-equilibr...

  3. Non-equilibrium modelling of arc plasma torches

    Energy Technology Data Exchange (ETDEWEB)

    Trelles, J P; Heberlein, J V R; Pfender, E [Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 (United States)

    2007-10-07

    A two-temperature thermal non-equilibrium model is developed and applied to the three-dimensional and time-dependent simulation of the flow inside a dc arc plasma torch. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The fluid and electromagnetic equations in both models are approximated numerically in a fully-coupled approach by a variational multi-scale finite element method. In contrast to the equilibrium model, the non-equilibrium model did not need a separate reattachment model to produce an arc reattachment process and to limit the magnitude of the total voltage drop and arc length. The non-equilibrium results show large non-equilibrium regions in the plasma-cold-flow interaction region and close to the anode surface. Marked differences in the arc dynamics, especially in the arc reattachment process, and in the magnitudes of the total voltage drop and outlet temperatures and velocities between the models are observed. The non-equilibrium results show improved agreement with experimental observations.

  4. STUDY ON THE PRESSURE IN PLASMA ARC

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The axial pressure in plasma arc is measured under different conditions. The effects of the parameters, such as welding current, plasma gas flow rate, electrode setback and arc length, on the pressure in plasma arc are investigated and quantitative analyzed to explain the relationship between the quality of weld and the matching of parameters in plasma arc welding process.

  5. Calculation of the Arc Velocity Along the Polluted Surface of Short Glass Plates Considering the Air Effect

    Directory of Open Access Journals (Sweden)

    Tao Yuan

    2012-03-01

    Full Text Available To investigate the microphysics mechanism and the factors that influence arc development along a polluted surface, the arc was considered as a plasma fluid. Based on the image method and the collision ionization theory, the electric field of the arc needed to maintain movement with different degrees of pollution was calculated. According to the force of the charged particle in an arc plasma stressed under an electric field, a calculation model of arc velocity, which is dependent on the electric field of the arc head that incorporated the effects of airflow around the electrode and air resistance is presented. An experiment was carried out to measure the arc velocity, which was then compared with the calculated value. The results of the experiment indicated that the lighter the pollution is, the larger the electric field of the arc head and arc velocity is; when the pollution is heavy, the effect of thermal buoyancy that hinders arc movement increases, which greatly reduces the arc velocity.

  6. Arc of opportunity.

    Science.gov (United States)

    Delaney, Adam Vai

    2011-07-01

    Born in Port Moresby, Papua New Guinea, the author had a 20 year career in diplomacy, political affairs, and development policy analysis at the Pacific Islands Forum, the United Nations in New York; the Prime Minister's Department in Papua New Guinea (PNG) and in the Foreign Ministry of PNG. He has also been involved in theatre for over a decade in PNG, and participated in a three-month program at the Eugene O'Neill Theatre Center in Connecticut, USA. He is currently the Business Development Manager at the Torres Strait Regional Authority (Commonwealth) on Thursday Island. Since 1975 the Australian government's overseas development policy has supported various sectoral programs in its neighbouring countries, in particular Papua New Guinea and the Solomon Islands. The "creative" field has not been prominent in this strategy. While natural resources and the sports sectors have gained much greater attention, in terms of being viable international commercial enterprises, the arts, have remained stagnant. In this paper the need for joint programs genuinely supporting "wellbeing" and promoting social enterprise throughout the "arc of opportunity" is described to harness Melanesian creativity to compete successfully in world-markets, starting with penetration of the largest economy at its door-step: Australia.

  7. Numerical modeling of volcanic arc development

    Science.gov (United States)

    Gerya, T.; Gorczyk, W.; Nikolaeva, K.

    2007-05-01

    We have created a new coupled geochemical-petrological-thermomechanical numerical model of subduction associated with volcanic arc development. The model includes spontaneous slab bending, subducted crust dehydration, aqueous fluid transport, mantle wedge melting and melt extraction resulting in crustal growth. Two major volcanic arc settings are modeled so far: active continental margins, and intraoceanic subduction. In case of Pacific-type continental margin two fundamentally different regimes of melt productivity are observed in numerical experiments which are in line with natural observations: (1) During continuous convergence with coupled plates highest amounts of melts are formed immediately after the initiation of subduction and then decrease rapidly with time due to the steepening of the slab inclination angle precluding formation of partially molten mantle wedge plumes; (2) During subduction associated with slab delamination and trench retreat resulting in the formation of a pronounced back arc basin with a spreading center in the middle melt production increases with time due to shallowing/stabilization of slab inclination associated with upward asthenospheric mantle flow toward the extension region facilitating propagation of hydrous partially molten plumes from the slab. In case of spontaneous nucleation of retreating oceanic subduction two scenarios of tecono-magmatic evolution are distinguished: (1) decay and, ultimately, the cessation of subduction and related magmatic activity, (2) increase in subduction rate (to up to ~12 cm/yr) and stabilization of subduction and magmatic arc growth. In the first case the duration of subduction correlates positively with the intensity of melt extraction: the period of continued subduction increases from 15,4 Myrs to 47,6 Myrs with the increase of melt extraction threshold from 1% to 9%. In scenario (1) the magmatic arc crust includes large amounts of rocks formed by melting of subducted crust atop the thermally

  8. Exposure assessment of aluminum arc welding radiation.

    Science.gov (United States)

    Peng, Chiung-yu; Lan, Cheng-hang; Juang, Yow-jer; Tsao, Ta-ho; Dai, Yu-tung; Liu, Hung-hsin; Chen, Chiou-jong

    2007-10-01

    The purpose of this study is to evaluate the non-ionizing radiation (NIR) exposure, especially optical radiation levels, and potential health hazard from aluminum arc welding processes based on the American Conference of Governmental Industrial Hygienists (ACGIH) method. The irradiance from the optical radiation emissions can be calculated with various biological effective parameters [i.e., S(lambda), B(lambda), R(lambda)] for NIR hazard assessments. The aluminum arc welding processing scatters bright light with NIR emission including ultraviolet radiation (UVR), visible, and infrared spectra. The UVR effective irradiance (Eeff) has a mean value of 1,100 microW cm at 100 cm distance from the arc spot. The maximum allowance time (tmax) is 2.79 s according to the ACGIH guideline. Blue-light hazard effective irradiance (EBlue) has a mean value of 1840 microW cm (300-700 nm) at 100 cm with a tmax of 5.45 s exposure allowance. Retinal thermal hazard effective calculation shows mean values of 320 mW cm(-2) sr(-1) and 25.4 mW (cm-2) (380-875 nm) for LRetina (spectral radiance) and ERetina (spectral irradiance), respectively. From this study, the NIR measurement from welding optical radiation emissions has been established to evaluate separate types of hazards to the eye and skin simultaneously. The NIR exposure assessment can be applied to other optical emissions from industrial sources. The data from welding assessment strongly suggest employees involved in aluminum welding processing must be fitted with appropriate personal protection devices such as masks and gloves to prevent serious injuries of the skin and eyes upon intense optical exposure.

  9. The Effect of Flow Distribution on the Concentration of NO Produced by Pulsed Arc Discharge

    Institute of Scientific and Technical Information of China (English)

    HU Hui; BAO Bin; WANG He-li; LIANG Hai-yan; HE Jun-jia; HE Zheng-hao; LI Jin

    2007-01-01

    As a new method to cure acute respiratory distress syndrome (ARDS),high blood pressure and some illnesses related to the lung,NO has recently received more attention.Thermal plasmas produced by arc discharge can create medical NO,but the concentration of NO2 produced by arc discharge must be controlled simultaneously.This paper investigates the characteristics and regulations of NO production at different flow distribution by pulsed arc discharge in dry air with a special pulsed power.The experimental results show that the flow distribution has a considerable effect on the NO concentration,the stabilization of NO.The production of NO2 could be controlled and the ratio of NO2/NO was decreased to about 10% in the arc discharge.Therefore,the arc discharge could produce stable inhaled NO for medical treatment by changing the flow distribution.

  10. Arc Heating Facility and Test Technique for Planetary Entry Missions

    OpenAIRE

    2003-01-01

    A 1-MW segmented-type arc heater has been designed and installed in the ISAS high enthalpy flow facility for the purpose of basic study of aerothermophysics and the development of thermal protection materials for the atmospheric hypersonic vehicles. The aerothermophysical flight environment for the vehicles, generally speaking, can not be duplicated in the ground facility. In most cases of vehicles reentering with super-orbital velocity, the flow enthalpy of the ground facility submits to be ...

  11. DC Arc Plasma Disposal of Printed Circuit Board

    Institute of Scientific and Technical Information of China (English)

    黄建军; 施嘉标; 孟月东; 刘正之

    2004-01-01

    A new solid waste disposal technology setup with DC arc plasma is presented. Being different from conventional combustion or burning such as incineration, it is based on a process called controlled high-temperature pyrolysis, the thermal destruction and recovery process. The results of vitrification of the circuit board is presented. The properties of vitrified product including hardness and leaching test results are presented. The final product (vitrified material) and air emission from the plasma treatment is environmentally acceptable.

  12. Surface Characterization of LMMS Molybdenum Disilicide Coated HTP-8 Using Arc- Jet Hypersonic Flow

    Science.gov (United States)

    Stewart, David A.

    2000-01-01

    Surface properties for an advanced Lockheed Martin Missile and Space (LMMS) molybdenum disilicide coated insulation (HTP-8) were determined using arc-jet flow to simulate Earth entry at hypersonic speeds. The catalytic efficiency (atom recombination coefficients) for this advanced thermal protection system was determined from arc-jet data taken in both oxygen and nitrogen streams at temperatures ranging from 1255 K to roughly 1600 K. In addition, optical and chemical stability data were obtained from these test samples.

  13. Numerical simulation and experimental validation of arc welding of DMR-249A steel

    OpenAIRE

    2016-01-01

    The thermo-mechanical attributes of DMR-249A steel weld joints manufactured by shielded metal arc welding (SMAW) and activated gas tungsten arc welding (A-GTAW) processes were studied using Finite Element Model (FEM) simulation. The thermal gradients and residual stresses were analyzed with SYSWELD software using double ellipsoidal heat source distribution model. The numerically estimated temperature distribution was validated with online temperature measurements using thermocouples. The pred...

  14. Plasma Arc Cutting Dimensional Accuracy Optimization employing the Parameter Design approach

    Directory of Open Access Journals (Sweden)

    Kechagias John

    2017-01-01

    Full Text Available Plasma Arc Cutting (PAC is a thermal manufacturing process used for metal plates cutting. This work experimentally investigates the influence of process parameters onto the dimensional accuracy performance of the plasma arc cutting process. The cutting parameters studied were cutting speed (mm/min, torch standoff distance (mm, and arc voltage (volts. Linear dimensions of a rectangular workpiece were measured after PAC cutting following the full factorial design experimental approach. For each one of the three process parameters, three parameter levels were used. Analysis of means (ANOM and analysis of variances (ANOVA were performed in order for the effect of each parameter on the leaner dimensional accuracy to be assessed.

  15. Behaviour of the iron vapour core in the arc of a controlled short-arc GMAW process with different shielding gases

    Science.gov (United States)

    Wilhelm, G.; Kozakov, R.; Gött, G.; Schöpp, H.; Uhrlandt, D.

    2012-02-01

    The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel workpiece, iron vapour is produced in the arc, its maximum concentration lying centrally. The interaction of metal vapour and welding gas considerably impacts the arc profile and, consequently, the heat transfer to the weldpool. Optical emission spectroscopy has been applied to determine the radial profiles of the plasma temperature and iron vapour concentration, as well as their temporal behaviour in the arc period for different mixtures of Ar, O2 and CO2 as shielding gases. Both the absolute iron vapour density and the temporal expansion of the iron core differ considerably for the gases Ar + 8%O2, Ar + 18% CO2 and 100% CO2 respectively. Pronounced minimum in the radial temperature profile is found in the arc centre in gas mixtures with high Ar content under the presence of metal vapour. This minimum disappears in pure CO2 gas. Consequently, the temperature and electrical and thermal conductivity in the arc when CO2 is used as a shielding gas are considerably lower.

  16. High pressure neon arc lamp

    Science.gov (United States)

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  17. Arcing phenomena in fusion devices workshop

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E.

    1979-01-01

    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included.

  18. Amanteigamento por aspersão térmica na soldagem em operação de dutos de pequena espessura: estabilidade e penetração do arco voltaico Buttering by thermal spraying in welding in-service repair of pipes with small thickness: arc stability and penetration

    Directory of Open Access Journals (Sweden)

    Nilceu Novicki

    2011-09-01

    thermal spraying. The characteristics of buttering layers deposited by two thermal spraying processes (arc and conventional flame were compared, in special the influence of their degree of oxidation in dependence of the carrying gas (pressurized air or argonium on the arc stability and penetration of weld beads SMAW over plain carbon steels previously buttered with similar composition layers. The results allowed to correlate the stability of the arc to the level of oxidation of the sprayed layers. (Temperature measurements on the surface of the sprayed layers showed that, since the process of thermal spray occur in an non-stopped way until the final thickness of the coating, the superficial temperature is increased with the thickness of the deposit, what results in a higher content of oxides, which is associated to an arc instability and a greater penetration of the molten pool. X-ray diffractrogams and oxygen analysis proved the influence of this element in the changing profile of the fusion zone. As an alternative to the use of compressed air, its substitution by the inert gas argon as carrying gas was evaluated, verifying very benefic effects - significant reduction of penetration e good arc stability - believed coming from the reduction of oxidation in the sprayed layer by the protective effect of the inert gas. The evaluation of the results permitted to establish criteria of welding with lower risks of burn-through compared to a condition without buttering layers.

  19. Analysis of the characteristics of DC nozzle arcs in air and guidance for the search of SF6 replacement gas

    Science.gov (United States)

    Liu, J.; Zhang, Q.; Yan, J. D.; Zhong, J.; Fang, M. T. C.

    2016-11-01

    It is shown that the arc model based on laminar flow cannot predict satisfactorily the voltage of an air arc burning in a supersonic nozzle. The Prandtl mixing length model (PML) and a modified k-epsilon turbulence model (MKE) are used to introduce turbulence enhanced momentum and energy transport. Arc voltages predicted by these two turbulence models are in good agreement with experiments at the stagnation pressure (P 0) of 10 bar. The predicted arc voltages by MKE for P 0  =  13 bar and 7 bar are in better agreement with experiments than those predicted by PML. MKE is therefore a preferred turbulence model for an air nozzle arc. There are two peaks in ρC P of air at 4000 K and 7000 K due, respectively, to the dissociation of oxygen and that of nitrogen. These peaks produce corresponding peaks in turbulent thermal conductivity, which results in very broad radial temperature profile and a large arc radius. Thus, turbulence indirectly enhances axial enthalpy transport, which becomes the dominant energy transport process for the overall energy balance of the arc column at high currents. When the current reduces, turbulent thermal conduction gradually becomes dominant. The temperature dependence of ρC P has a decisive influence on the radial temperature profile of a turbulent arc, thus the thermal interruption capability of a gas. Comparison between ρC P for air and SF6 shows that ρC P for SF6 has peaks below 4000 K. This renders a distinctive arc core and a small arc radius for turbulent SF6, thus superior arc quenching capability. It is suggested, for the first time, that ρC P provides guidance for the search of a replacement switching gas for SF6.

  20. Another Explanation for Neptune's Ring Arcs

    Science.gov (United States)

    Namouni, F.; Porco, C.

    2001-11-01

    Recent HST and Earth-based observations (Dumas et al 1999, Nature 400, 733; Sicardy et al 1999, Nature 400, 731) indicate that Neptune's ring arcs are not located at the corotation resonance with Galatea thought to be responsible for the azimuthal confinement of the arc system (Porco, 1991 Science 253, 995). Although small (5x 10-3od-1), the new observed mean motion offset puts the arcs near the resonance separatrix where the particles' semimajor axes would experience chaotic motion leading to the azimuthal spreading of the arcs within months, thereby calling into question their very existence. We have found a new resonant structure, dependent on the arcs having a small fraction of the mass of Galatea, in which Galatea's 43:42 eccentric corotation resonance, located (in the massless case) ~ 3 km inside the arcs' orbit, is made coincident with the arcs' semimajor axis. The arcs are primarily confined by this resonance, which is stronger ( e Galatea) than the inclined corotation resonance ( I2 Galatea) invoked in the Porco model. Moreover, the coupling of all the resonances in the arcs' neighborhood (eccentric corotation, inclined corotation and Lindblad resonances) modifies the interaction potential, creating smaller structures at the arcs' location. Consequently, this new confinement mechanism can simultaneously explain the arcs' confinement, the general spacing of the arcs, the Fraternité arc length of ~ 10o, and smaller-scale features seen in the arc system. Finally, the possibility of non-massless arcs supports an earlier suggestion by Porco et al (1991, in Neptune and Triton, the University of Arizona Series) that the rapid expected radial migration of the arc system, due to Galatea's secular torques, can be slowed down if the arcs have substantial mass.

  1. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    Science.gov (United States)

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  2. Computational Model Of Fiber Optic, Arc Fusion Splicing; Experimental Comparison

    Science.gov (United States)

    Ruffin, Paul; Frost, Walter; Long, Wayne

    1989-02-01

    Acknowledgement: The assistance and support of the MICOM Army Missile Command is gratefully appreciated. An analytical tool to investigate the arc fusion splicing of optical fibers is developed. The physical model incorporates heat transfer and thermal, visco elastic strain. The heat transfer equations governing radiation, conduction and convection during arc heating are formulated. The radiation heat flux impinging on the fiber optics is modeled based on reported experimental analysis of a generic type arc discharge. The fusion process considers deformation of the fiber due to thermal, viscous and elastic strain. A Maxwell stress-strain relationship is assumed. The model assumes an initial gap at the beginning of the arc which is closed by a press-stroke during the heating cycle. All physical properties of the fused silica glass fibers are considered as functions of temperature based on available experimental data. A computer algorithm has been developed to solve the system of governing equations and parametric studies carried out. An experiment using a FSM-20 arc fusion splicer manufactured by Fujikura Ltd. was carried out to provide experimental verification of the analytical model. In the experiment a continuous fiber was positioned in the arc and cyclic heating and cooling was carried out. One end of the fiber was clamped and the other was free to move. The fiber was heated for 6 seconds and cooled for 3 minutes for several cycles. At the end of each cooling process, photographs of the deformation of the fiber were taken. The results showed that the fiber necked down on the free end and buldged up on the fixed end. With repeated heating and cooling cycles, the optical fiber eventually necked down to the point that it melted in two. The analytical model was run for the conditions of the experiment. Comparisons of the predicted deformation of the optical fiber with those measured is given. The analytical model displays all of the physical phenomenon of fiber

  3. Wear resistance of Fe-Nb-Cr-W, Nb, AISI 1020 and AISI 420 coatings produced by thermal spray wire arc; Resistencia al desgaste de recubrimientos Fe-Nb-Cr-W, Nb, AISI 1020 y AISI 420 producidos por proyeccion termica por arco electrico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Covaleda, E. A.; Mercado-Veladia, J. L.; Olaya-Florez, J. J.

    2013-07-01

    The commercial materials 140MXC (with iron, tungsten, chrome, niobium), 530AS (AISI 1015 steel) and 560AS (AISI 420 steel) on AISI 4340 steel were deposited using thermal spray with arc. The aim of work was to evaluate the best strategy abrasive wear resistance of the system coating-substrate using the following combinations: (1) homogeneous coatings and (2) coatings depositing simultaneously 140MXC + 530AS and 140MXC + 560AS. The coatings microstructure was characterized using Optical microscopy, Scanning electron microscopy and Laser con focal microscopy. The wear resistance was evaluated through dry sand rubber wheel test (DSRW). We found that the wear resistance depends on the quantity of defects and the mechanical properties like hardness. For example, the softer coatings have the biggest wear rates and the failure mode was characterized by plastic deformation caused by particles indentation, and the other hand the failure mode at the harder materials was grooving. The details and wear mechanism of the coatings produced are described in this investigation. (Author)

  4. Performance Testing of Thermal Cutting Systems for Sweet Pepper Harvesting Robot in Greenhouse Horticulture

    Science.gov (United States)

    Bachche, Shivaji; Oka, Koichi

    2013-03-01

    This paper proposes design of end-effector and prototype of thermal cutting system for harvesting sweet peppers. The design consists of two parallel gripper bars mounted on a frame connected by specially designed notch plate and operated by servo motor. Based on voltage and current, two different types of thermal cutting system prototypes; electric arc and temperature arc respectively were developed and tested for performance. In electric arc, a special electric device was developed to obtain high voltage to perform cutting operation. At higher voltage, electrodes generate thermal arc which helps to cut stem of sweet pepper. In temperature arc, nichrome wire was mounted between two electrodes and current was provided directly to electrodes which results in generation of high temperature arc between two electrodes that help to perform cutting operation. In both prototypes, diameters of basic elements were varied and the effect of this variation on cutting operation was investigated. The temperature arc thermal system was found significantly suitable for cutting operation than electric arc thermal system. In temperature arc thermal cutting system, 0.5 mm nichrome wire shows significant results by accomplishing harvesting operation in 1.5 seconds. Also, thermal cutting system found suitable to increase shelf life of fruits by avoiding virus and fungal transformation during cutting process and sealing the fruit stem. The harvested sweet peppers by thermal cutting system can be preserved at normal room temperature for more than 15 days without any contamination.

  5. Microstructure and thermal stability of corundum-type (Al{sub 0.5}Cr{sub 0.5}){sub 2}O{sub 3} solid solution coatings grown by cathodic arc evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Edlmayr, V.; Pohler, M. [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben (Austria); Letofsky-Papst, I. [Institute for Electron Microscopy, University of Technology Graz, Steyrergasse 17, A-8010 Graz (Austria); Mitterer, C., E-mail: christian.mitterer@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben (Austria)

    2013-05-01

    Corundum-type (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} coatings were grown by reactive cathodic arc evaporation in an oxygen atmosphere using AlCr targets with an Al/Cr atomic ratio of 1. Since the (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} solid solution shows a miscibility gap below 1300 °C, where spinodal decomposition is predicted, the microstructural changes upon annealing were investigated by a combination of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and differential scanning calorimetry. The as-deposited coating consists primarily of the corundum-type (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} solid solution, with smaller fractions of cubic (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3}. An additional Al-rich amorphous phase and a Cr-rich crystalline phase stem from the droplets incorporated. The corundum-type (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} solid solution is still present after vacuum annealing at 1050 °C for 2 h, whereas the cubic (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} phase has transformed to corundum-type (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3}. Cr and Cr{sub 2}O{sub 3} have been detected in the annealed coating, the latter most probably originating from the partial oxidation of Cr-rich droplets. Upon crystallization of the amorphous phase fractions present, γ-Al{sub 2}O{sub 3} is formed, which then transforms into α-Al{sub 2}O{sub 3}. No evidence for decomposition of the corundum-type (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} solid solution could be found within the temperature range up to 1400 °C. - Highlights: ► (Al{sub 0.5}Cr{sub 0.5}){sub 2}O{sub 3} hard coatings grown by reactive cathodic evaporation ► Corundum and minor fraction of cubic (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} in the as-deposited state ► No evidence for spinodal decomposition of corundum-type (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} up to 1400 °C ► Cubic (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} transforms into corundum-type (Al{sub x}Cr{sub 1

  6. Rotating Drive for Electrical-Arc Machining

    Science.gov (United States)

    Fransen, C. D.

    1986-01-01

    Rotating drive improves quality of holes made by electrical-arc machining. Mechanism (Uni-tek, rotary head, or equivalent) attached to electrical-arc system. Drive rotates electrode as though it were mechanical drill, while an arc disintegrates metal in workpiece, thereby creating hole. Rotating electrode method often used in electric-discharge machining. NASA innovation is application of technique to electrical-arc machining.

  7. Vacuum Gas Tungsten Arc Welding

    Science.gov (United States)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  8. Hooded arc ion-source

    CERN Multimedia

    1972-01-01

    The positioning system for the hooded arc ion-source, shown prior to mounting, consists of four excentric shafts to locate the ion-source and central electrodes. It will be placed on the axis of the SC and introduced into the vacuum tank via the air locks visible in the foreground.

  9. STRUVE arc and EUPOS® stations

    Science.gov (United States)

    Lasmane, Ieva; Kaminskis, Janis; Balodis, Janis; Haritonova, Diana

    2013-04-01

    The Struve Geodetic Arc was developed in Years 1816 to 1855, 200 years ago. Historic information on the points of the Struve Geodetic Arc are included in the UNESCO World Heritage list in 2005. Nevertheless, the sites of many points are still not identified nor included in the data bases nowadays. Originally STRUVE arc consisted of 258 main triangles with 265 triangulation points. Currently 34 of the original station points are identified and included in the in the UNESCO World Heritage list. identified original measurement points of the Meridian Arc are located in Sweden (7 points), Norway (15), Finland (83), Russia (1), Estonia (22), Latvia (16), Lithuania (18), Belorussia (28), Ukraine (59) and Moldova (27). In Year 2002 was initiated another large coverage project - European Position Determination System "EUPOS®". Currently there are about 400 continuously operating GNSS (Global Navigation Satellite Systems) stations covering EU countries Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Hungary, Bulgaria, Romania and East European countries Ukraine and Moldavia. EUPOS® network is a ground based GNSS augmentation system widely used for geodesy, land surveying, geophysics and navigation. It gives the opportunity for fast and accurate position determination never available before. It is an honorable task to use the EUPOS® system for research of the Struve triangulation former sites. Projects with Struve arc can popularize geodesy, geo-information and its meaning in nowadays GIS and GNSS systems. Struve Arc and its points is unique cooperation cross-border object which deserve special attention because of their natural beauty and historical value for mankind. GNSS in geodesy discovers a powerful tool for the verification and validation of the height values of geodetic leveling benchmarks established historically almost 200 years ago. The differential GNSS and RTK methods appear very useful to identify vertical displacement of landscape by means of

  10. The structure and singularities of arc complexes

    DEFF Research Database (Denmark)

    Penner, Robert

    boundary components. The main result of this paper is the determination of those arc complexes Arc(F) that are also spherical. This classification has consequences for Riemann's moduli space via its known identification with an analogous arc complex in the punctured case with no boundary. Namely...

  11. Laboratory experiments on arc deflection and instability

    Energy Technology Data Exchange (ETDEWEB)

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  12. Making Conductive Polymers By Arc Tracking

    Science.gov (United States)

    Daech, Alfred F.

    1992-01-01

    Experimental technique for fabrication of electrically conductive polymeric filaments based on arc tracking, in which electrical arc creates conductive carbon track in material that initially was insulator. Electrically conductive polymeric structures made by arc tracking aligned along wire on which formed. Alignment particularly suited to high conductivity and desirable in materials intended for testing as candidate superconductors.

  13. Magnification Bias in Gravitational Arc Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Caminha, G. B. [Rio de Janeiro, CBPF; Estrada, J. [Fermilab; Makler, M. [Rio de Janeiro, CBPF

    2013-08-29

    The statistics of gravitational arcs in galaxy clusters is a powerful probe of cluster structure and may provide complementary cosmological constraints. Despite recent progresses, discrepancies still remain among modelling and observations of arc abundance, specially regarding the redshift distribution of strong lensing clusters. Besides, fast "semi-analytic" methods still have to incorporate the success obtained with simulations. In this paper we discuss the contribution of the magnification in gravitational arc statistics. Although lensing conserves surface brightness, the magnification increases the signal-to-noise ratio of the arcs, enhancing their detectability. We present an approach to include this and other observational effects in semi-analytic calculations for arc statistics. The cross section for arc formation ({\\sigma}) is computed through a semi-analytic method based on the ratio of the eigenvalues of the magnification tensor. Using this approach we obtained the scaling of {\\sigma} with respect to the magnification, and other parameters, allowing for a fast computation of the cross section. We apply this method to evaluate the expected number of arcs per cluster using an elliptical Navarro--Frenk--White matter distribution. Our results show that the magnification has a strong effect on the arc abundance, enhancing the fraction of arcs, moving the peak of the arc fraction to higher redshifts, and softening its decrease at high redshifts. We argue that the effect of magnification should be included in arc statistics modelling and that it could help to reconcile arcs statistics predictions with the observational data.

  14. Along-arc geochemical and isotopic variations in Javanese volcanic rocks: 'crustal' versus 'source' contamination at the Sunda arc, Indonesia

    Science.gov (United States)

    Handley, H.; Blichert-Toft, J.; Turner, S.; Macpherson, C. G.

    2012-12-01

    Understanding the genesis of volcanic rocks in subduction zone settings is complicated by the multitude of differentiation processes and source components that exert control on lava geochemistry. Magma genesis and evolution at the Sunda arc is controlled and influenced by 1) along arc changes in the composition and thickness of the overriding Eurasian plate, 2) the variable age of the subducting oceanic crust and, 3) changes in the type and amount of sediment deposited on the subducting plate. Along-arc changes in geochemistry have long been recognised in the Sunda arc (Whitford, 1975), but debate still prevails over the cause of such variations and the relative importance of shallow (crustal) versus deep (subduction) contamination at the Sunda arc, Indonesia. Detailed study of individual Sunda arc volcanic centres is, therefore, a prerequisite in order to establish the relative importance and contributions of various potential source components and composition modifying differentiation processes at individual volcanoes, prior to an along arc comparative petrogenetic investigation. We present new radiogenic isotope data for Javanese volcanoes, which is combined with our recently published (Handley et al., 2007; Handley et al., 2008, Handley et al., 2010; Handley et al., 2011) geochemical and isotopic data of Javanese volcanic rocks along with data from other detailed geochemical studies to establish whether variable contributions from the subducting slab, or a change in crustal architecture of the overriding plate, best explain along-arc variations in isotope ratios and trace element characteristics. In West and Central Java Sr isotope ratios of the volcanic rocks broadly correlate with inferred lithospheric thickness implicating a shallow level control on isotopic composition. However, key trace element ratios combined with Hf isotope data indicate that the subducted slab and slab thermal regime also exert major control on the composition of the erupted Javanese

  15. Water-vortex stabilized electric arc: II. Effect of non-uniform evaporation of water

    Science.gov (United States)

    Jenista, Jirí

    1999-11-01

    The paper deals with a numerical model of an electric arc stabilized by a water vortex. The axisymmetric model involves the area between the cathode and the output nozzle of the arc. The rate of evaporation of water (production of water plasma) is determined from radial conduction and radiation heat fluxes near the water-water-vapour phase transition. The influence of non-uniform evaporation rate along the discharge coordinate on the outlet arc parameters is studied for the currents 300 and 600 A. It is found from calculations that part of the power spent on evaporation is in the range 1.4-3.1% of the total input power. The dominant source of power losses from the arc is plasma radiation, which exceeds conduction losses by a factor of two to four. Since the majority of the arc discharge is nearly thermally fully-developed, the effect of non-uniformity of evaporation on the overall arc performance is minor. The calculated arc outlet characteristics are in good agreement with our data published previously, as well as with experiments carried out on the water plasma torch operating at our Institute.

  16. Influence of DC arc current on the formation of cobalt-based nanostructures

    Indian Academy of Sciences (India)

    P B ORPE; C BALASUBRAMANIAN; S MUKHERJEE

    2017-08-01

    The synthesis of cobalt-based magnetic nanostructures using DC arc discharge technique with varying arc current is reported here. The structural, morphological, compositional and magnetic properties of thesenanostructures were studied as a function of applied arc current. Various techniques like X-ray diffraction, transmission electron microscopy, EDAX and vibrating sample magnetometry were used to carry out this studyand the results are reported here. The results clearly indicate that for a given oxygen partial pressure, an arc current of 100A favours the formation of unreacted cobalt atomic species. Also change in arc current leads to variationin phase, diversity in morphology etc. Other property changes such as thermal changes, mechanical changes etc. are not addressed here. The magnetic characterization further indicates that the anisotropy in shape plays a crucial role in deciding the magnetic properties of the nanostructured materials.We have quantified an interesting result in our experiment, that is, for a given partial pressure, 100A arc current results in unique variation in structural and magnetic properties as compared to other arc currents.

  17. Hydrogen permeation in stationary arc-melted nickel 200

    Science.gov (United States)

    Li, H.; North, T. H.; Sommerville, I. D.; McLean, A.

    1990-06-01

    A combination of hydrogen permeation experiments and computer simulation was used to evaluate the distributions of temperature and of the hydrogen transfer flux in a stationary arcmelted Nickel 200 disc over the entire hydrogen permeation zone. The results indicate that the markedly nonuniform temperature distribution in the hydrogen permeation zone involves widely varying hydrogen fluxes and even transfer of hydrogen in different directions. At steady state, the hydrogen distribution is determined by a thermally produced dynamic equilibrium. Hydrogen supersaturation occurs in solid nickel at the solid/liquid interface in the arc-melted pool. An increase in hydrogen partial pressure in the shielding gas increases the heat input to the melt and decreases the stability of the arc melting process.

  18. Tectonomagmatism in continental arcs: evidence from the Sark arc complex

    Science.gov (United States)

    Gibbons, Wes; Moreno, Teresa

    2002-07-01

    The island of Sark (Channel Islands, UK) exposes syntectonic plutons and country rock gneisses within a Precambrian (Cadomian) continental arc. This Sark arc complex records sequential pulses of magmatism over a period of 7 Ma (ca. 616-609 Ma). The earliest intrusion (ca. 616 Ma) was a composite sill that shows an ultramafic base overlain by a magma-mingled net vein complex subsequently deformed at near-solidus temperatures into the amphibolitic and tonalitic Tintageu banded gneisses. The deformation was synchronous with D 2 deformation of the paragneissic envelope, with both intrusion and country rock showing flat, top-to-the-south LS fabrics. Later plutonism injected three homogeneous quartz diorite-granodiorite sheets: the Creux-Moulin pluton (150-250 m; ca. 614 Ma), the Little Sark pluton (>700 m; 611 Ma), and the Northern pluton (>500 m; 609 Ma). Similar but thinner sheets in the south (Derrible-Hogsback-Dixcart) and west (Port es Saies-Brecqhou) are interpreted as offshoots from the Creux-Moulin pluton and Little Sark pluton, respectively. All these plutons show the same LS fabric seen in the older gneisses, with rare magmatic fabrics and common solid state fabrics recording syntectonic crystallisation and cooling. The cooling rate increased rapidly with decreasing crystallisation age: >9 Ma for the oldest intrusion to cool to lower amphibolite conditions, 7-8 Ma for the Creux Moulin pluton, 5-6 Ma for the Little Sark pluton, and 10 -14 s -1) that focussed extensional deformation into the Sark area. The increased rates of extension allowed ingress of the subsequent quartz diorite-granodiorite sheets, although strain rate slowly declined as the whole complex cooled during exhumation. The regional architecture of syntectonic Cadomian arc complexes includes flat-lying "Sark-type" and steep "Guernsey-type" domains produced synchronously in shear zone networks induced by oblique subduction: a pattern seen in other continental arcs such as that running from Alaska

  19. Computational study of flow dynamics from a dc arc plasma jet

    CERN Document Server

    Trelles, Juan Pablo

    2013-01-01

    Plasma jets produced by direct-current (DC) non-transferred arc plasma torches, at the core of technologies ranging from spray coating to pyrolysis, present intricate dynamics due to the coupled interaction of fluid flow, thermal, and electromagnetic phenomena. The flow dynamics from an arc discharge plasma jet are investigated using time-dependent three-dimensional simulations encompassing the dynamics of the arc inside the torch, the evolution of the jet through the discharge environment, and the subsequent impingement of the jet over a flat substrate. The plasma is described by a chemical equilibrium and thermodynamic nonequilibrium (two-temperature) model. The numerical formulation of the physical model is based on a monolithic and fully-coupled treatment of the fluid and electromagnetic equations using a Variational Multiscale Finite Element Method. Simulation results uncover distinct aspects of the flow dynamics, including the jet forcing due to the movement of the electric arc, the prevalence of deviat...

  20. Time-varying Entry Heating Profile Replication with a Rotating Arc Jet Test Article

    Science.gov (United States)

    Grinstead, Jay Henderson; Venkatapathy, Ethiraj; Noyes, Eric A.; Mach, Jeffrey J.; Empey, Daniel M.; White, Todd R.

    2014-01-01

    A new approach for arc jet testing of thermal protection materials at conditions approximating the time-varying conditions of atmospheric entry was developed and demonstrated. The approach relies upon the spatial variation of heat flux and pressure over a cylindrical test model. By slowly rotating a cylindrical arc jet test model during exposure to an arc jet stream, each point on the test model will experience constantly changing applied heat flux. The predicted temporal profile of heat flux at a point on a vehicle can be replicated by rotating the cylinder at a prescribed speed and direction. An electromechanical test model mechanism was designed, built, and operated during an arc jet test to demonstrate the technique.

  1. A THERMAL PULSE SHAPER MECHANISM.

    Science.gov (United States)

    A shaped pulse of intense thermal radiation, corresponding to the pulses from nuclear weapons, is obtained by the output of a QM carbon arc. A flywheel driven by a DC motor actuated a venetian blind shutter placed between a mirror and the target to control the flux. The combination produced reasonably good simulation and reproduction of the generalized field pulse.

  2. A Contribution to Arc Length Discussion

    Directory of Open Access Journals (Sweden)

    Stephan Egerland

    2015-09-01

    Full Text Available Abstract An investigation was raising the question: "What does 'arc length' mean?" Actually, it is considered expressing a kind of natural relationship between arc voltage and arc column shape. Statements such as "The higher the voltage the longer the arc" or "The arc voltage proves approximately proportional to the arc length", are frequently noticed in this conjunction. However, the author suggests that there is no general possibility of describing 'arc length' over the whole welding process range. Instances are represented in this paper, showing both theoretical attempts of definition and practical observations. This paper intends to contribute to a serious discussion of something trivial, indeed very well-known or used among welding experts, but actually yet hardly understood, at least as when it comes to closer examination

  3. Slab melting and magma generation beneath the southern Cascade Arc

    Science.gov (United States)

    Walowski, K. J.; Wallace, P. J.; Clynne, M. A.

    2014-12-01

    Magma formation in subduction zones is interpreted to be caused by flux melting of the mantle wedge by fluids derived from dehydration of the downgoing oceanic lithosphere. In the Cascade Arc and other hot-slab subduction zones, however, most dehydration reactions occur beneath the forearc, necessitating a closer investigation of magma generation processes in this setting. Recent work combining 2-D steady state thermal models and the hydrogen isotope composition of olivine-hosted melt inclusions from the Lassen segment of the Cascades (Walowski et al., 2014; in review) has shown that partial melting of the subducted basaltic crust may be a key part of the subduction component in hot arcs. In this model, fluids from the slab interior (hydrated upper mantle) rise through the slab and cause flux-melting of the already dehydrated MORB volcanics in the upper oceanic crust. In the Shasta and Lassen segments of the southern Cascades, support for this interpretation comes from primitive magmas that have MORB-like Sr isotope compositions that correlate with subduction component tracers (H2O/Ce, Sr/P) (Grove et al. 2002, Borg et al. 2002). In addition, mass balance calculations of the composition of subduction components show ratios of trace elements to H2O that are at the high end of the global arc array (Ruscitto et al. 2012), consistent with the role of a slab-derived melt. Melting of the subducted basaltic crust should contribute a hydrous dacitic or rhyolitic melt (e.g. Jego and Dasgupta, 2013) to the mantle wedge rather than an H2O-rich aqueous fluid. We are using pHMELTS and pMELTS to model the reaction of hydrous slab melts with mantle peridotite as the melts rise through the inverted thermal gradient in the mantle wedge. The results of the modeling will be useful for understanding magma generation processes in arcs that are associated with subduction of relatively young oceanic lithosphere.

  4. Zircon Recycling in Arc Intrusions

    Science.gov (United States)

    Miller, J.; Barth, A.; Matzel, J.; Wooden, J.; Burgess, S.

    2008-12-01

    Recycling of zircon has been well established in arc intrusions and arc volcanoes, but a better understanding of where and how zircons are recycled can help illuminate how arc magma systems are constructed. To that end, we are conducting age, trace element (including Ti-in-zircon temperatures; TzrnTi) and isotopic studies of zircons from the Late Cretaceous (95-85 Ma) Tuolumne Intrusive Suite (TIS) in the Sierra Nevada Batholith (CA). Within the TIS zircons inherited from ancient basement sources and/or distinctly older host rocks are uncommon, but recycled zircon antecrysts from earlier periods of TIS-related magmatism are common and conspicuous in the inner and two most voluminous units of the TIS, the Half Dome and Cathedral Peak Granodiorites. All TIS units have low bulk Zr ([Zr]825°C), [Zr] in the TIS is a factor of 2 to 3 lower than saturation values. Low [Zr] in TIS rocks might be attributed to a very limited supply of zircon in the source, by disequilibrium melting and rapid melt extraction [1], by melting reactions involving formation of other phases that can incorporate appreciable Zr [2], or by removal of zircon at an earlier stage of magma evolution. Based on a preliminary compilation of literature data, low [Zr] is common to Late Cretaceous N.A. Cordilleran granodioritic/tonalitic intrusions (typically Tzrnsat [3]. A corollary is that slightly older zircon antecrysts that are common in the inner units of the TIS could be considered inherited if they are derived from remelting of slightly older intrusions. Remelting at such low temperatures in the arc would require a source of external water. Refs: [1] Sawyer, J.Pet 32:701-738; [2] Fraser et al, Geology 25:607-610; [3] Harrison et al, Geology 35:635- 638

  5. History of Neptune's Ring Arcs

    Science.gov (United States)

    Esposito, L. W.; Colwell, J. E.; Canup, R. M.

    1997-07-01

    The recent dynamical calculations for Neptune's Adams ring arcs by Foryta and Sicardy (1996) and Hanninen and Porco (1997) determine the basic evolutionary parameters for this system. The ring evolution is dominated by stochastic events, particularly chaotic motion that causes a migration between the corotation sites (FS96) and collisions near quadrature (HP97). A basic problem is that the high velocity collisions that produce the dusty arcs at the Galatea corotation resonances rapidly depopulate these sites (Colwell and Esposito 1990). With the new results in hand for the evolution of the ring particles over periods of less than a century, we can now calculate the long-term stochastic evolution of the Adams ring. Using a finite Markov chain as a model for this stochastic process, we follow the suggestion by FS96 that corotation sites provide preferential locations for accretion. A more general conclusion is that the longitudinal concentration of material in a few nearby sites (and that the majority of the Adams ring material is residing there) requires either an exceedingly recent event (EC92) or that the corotation sites be absorbing states of the Markov chain.In the latter case, the competing processes of chaotic diffusion and frustrated accretion can provide the arc and clump features as recurrent transient events near the Roche limit. Similar phenomena would be expected for Saturn's F and G rings.

  6. On the electrical arc interruption by using PMMA/iron oxide nanocomposites

    Science.gov (United States)

    Doddapaneni, Venkatesh; Saleemi, Mohsin; Ye, Fei; Gati, Rudolf; Toprak, Muhammet S.

    2016-10-01

    An experimental study is undertaken on the fabrication of poly (methyl methacrylate) (PMMA)/iron oxide nanocomposites to determine their potential use for electrical arc interruption in the electrical switching applications such as circuit breakers. Monodisperse iron oxide nanoparticles of average size ∼11 nm are synthesized via thermal decomposition method and then homogeneously dispersed in the PMMA matrix by in situ polymerization. PMMA/iron oxide nanocomposites with different nanoparticle loading have been fabricated to study the effect of loading content on the thermal energy absorption. Detailed physicochemical characterizations on synthesized material are performed using x-ray powder diffraction, scanning electron microscopy, TEM, thermogravimetric analysis and differential scanning calorimetry at different processing stages. A test-setup was designed to evaluate the quality of the nanocomposites for electric arc interruption capability. The results showed that PMMA/iron oxide nanocomposites have a clear impact on the electric arc interruption and therefore should be considered as promising candidates for electrical switching applications.

  7. H_2O and CO_2 in magmas from the Mariana arc and back arc systems

    OpenAIRE

    Newman, Sally; Stolper, Edward; STERN, Robert

    2000-01-01

    We examined the H2O and CO2 contents of glasses from lavas and xenoliths from the Mariana arc system, an intraoceanic convergent margin in the western Pacific, which contains an active volcanic arc, an actively spreading back arc basin, and active behind-the-arc cross-chain volcanoes. Samples include (1) glass rims from Mariana arc, Mariana trough, and cross-chain submarine lavas; (2) glass inclusions in arc and trough phenocrysts; and (3) glass inclusions from a gabbro + anorthosite xenolith...

  8. Arc Root Attachment on the Anode Surface of Arc Plasma Torch Observed with a Novel Method

    Institute of Scientific and Technical Information of China (English)

    PAN Wen-Xia; LI Teng; MENG Xian; CHEN Xi; WU Cheng-Kang

    2005-01-01

    @@ The arc-root attachment on the anode surface of a dc non-transferred arc plasma torch has been successfullyobserved using a novel approach. A specially designed copper mirror with a boron nitride film coated on itssurface central-region is employed to avoid the effect of intensive light emitted from the arc column upon theobservation of weakly luminous arc root. It is found that the arc-root attachment is diffusive on the anode surfaceof the argon plasma torch, while constricted arc roots often occur when hydrogen or nitrogen is added into argonas the plasma-forming gas.

  9. Arc plasma devices: Evolving mechanical design from numerical simulation

    Indian Academy of Sciences (India)

    S Ghorui; A K Das

    2013-04-01

    Wide ranges of technological applications involve arc plasma devices as the primary plasma source for processing work. Recent findings exhibit the existence of appreciable thermal non-equilibrium in these so-called thermal plasma devices. Commercially available magnetohydrodynamic codes are not capable of handling such systems due to unavailability of non-equilibrium thermodynamic and transport property data and self-consistent models. A recipe for obtaining mechanical design of arc plasma devices from numerical simulation incorporating two-temperature thermal non-equilibrium model is presented in this article with reference to the plasma of the mixture of molecular gases like nitrogen and oxygen. Such systems are technologically important as they correspond to the plasma devices operating with air, oxygen plasma torches in cutting industries and plasma devices using nitrogen as shielding gas. Temperature field, associated fluid dynamics and electrical characteristics of a plasma torch are computed in a systematic manner to evaluate the performance of a conceived design using a two-fluid CFD model coupled with a two-temperature thermodynamic and transport property code. Important effects of different nozzle designs and plasma gases obtained from the formalism are discussed. Non-equilibrium thermo-dynamic properties are computed using modified two-temperature Saha equations and transport properties are computed using standard Chapman–Enskog approach.

  10. Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge

    NARCIS (Netherlands)

    Zhu, J.; Gao, J.; Ehn, A.; Alden, M.; Li, Z.; Moseev, D.; Kusano, Y.; Salewski, M.; Alpers, A.; Gritzmann, P.; Schwenk, M.

    2015-01-01

    A non-thermal gliding arc discharge was generated at atmospheric pressure in an air flow. The dynamics of the plasma column and tracer particles were recorded using two synchronized highspeed cameras. Whereas the data analysis for such systems has previously been performed in 2D (analyzing the singl

  11. Effects of Current on Arc Fabrication of Cu Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Z. Kassaee

    2010-01-01

    Full Text Available Arc-fabricated copper nanoparticles (Cu Nps size, morphology and the crystalline structure, as well as the yields of Nps appear sensitive to the applied currents (50–160 A in distilled water. The results indicate that the sizes of Cu Nps are directly proportional to the currents employed. At 50 A, TEM, XRD, and SEM analyses show fabrication of relatively purest, the most dispersed, face-centered cubic (fcc brown Cu Nps with rather smallest average size of 20 nm. At the same current, the TGA-DTA analysis reveals neither weight loss nor gain, indicating thermal stability of the fabricated Cu Nps.

  12. Stability of Neptune's ring arcs in question

    Science.gov (United States)

    Dumas, Christophe; Terrile, Richard J.; Smith, Bradford A.; Schneider, Glenn; Becklin, E. E.

    1999-08-01

    Although all four of the gas-giant planets in the Solar System have ring systems, only Neptune exhibits `ring arcs'-stable clumps of dust that are discontinuous from each other. Two basic mechanisms for confining the dust to these arcs have been proposed. The firstrelies on orbital resonances with two shepherding satellites, while the second invokes a single satellite (later suggested to be Galatea) to produce the observed ring arc structures. Here we report observations of the ring arcs and Galatea, which show that there isa mismatch between the locations of the arcs and the site of Galatea's co-rotation inclined resonance. This result calls into question Galatea's sole role in confining the arcs.

  13. Programming ArcGIS with Python cookbook

    CERN Document Server

    Pimpler, Eric

    2015-01-01

    Programming ArcGIS with Python Cookbook, Second Edition, is written for GIS professionals who wish to revolutionize their ArcGIS workflow with Python. Whether you are new to ArcGIS or a seasoned professional, you almost certainly spend time each day performing various geoprocessing tasks. This book will teach you how to use the Python programming language to automate these geoprocessing tasks and make you a more efficient and effective GIS professional.

  14. Statistical analysis of geographic information with ArcView GIS and ArcGIS

    National Research Council Canada - National Science Library

    Wong, David W. S; Lee, Jay

    2005-01-01

    ... of its capabilities for spatial-quantitative synthesis. Now, David Wong and Jay Lee update their comprehensive handbook with Statistical Analysis of Geographic Information with ArcView GIS and ArcGIS...

  15. The Confinement of Neptune's Ring Arcs

    Science.gov (United States)

    Porco, C.; Namouni, F.

    2002-09-01

    The stability of the narrow ring arcs of Neptune has been a puzzle since their discovery. First detected in 1984 from the Earth in stellar occultations and imaged by the Voyager spacecraft in 1989, the 5 arcs spanning approximately 40 deg in longitude are apparently confined against the rapid azimuthal and radial spreading that results from energy dissipation in inter-particle collisions. Voyager data were used to argue in favor of an arc confinement model (Goldreich et al. AJ 1986; Porco, Science 1991) that relies on both the vertical and mean angular motions of the nearby Neptunian moon, Galatea, to produce a pair of Lindblad (LR) and corotation inclination (CIR) resonances capable of trapping ring particles into a sequence of arcs. However, HST and Earth-based observations taken in 1998 (Dumas et al. Nature 1999; Sicardy et al. Nature 1999) indicate a revised arc mean angular motion which displaces the arcs away from the CIR, leaving their stability once again unexplained. In this presentation, we will discuss the workings of a hitherto neglected resonance which relies on Galatea's orbital eccentricity and which, together with the LR, is likely responsible for the angular confinement of the arcs. The action of this resonance, which operates through the precession of Galatea's eccentric orbit forced by the arcs' inertia, will allow a determination of the arcs' mass from future measurements of Galatea's eccentricity. We acknowledge the financial support of NASA's Planetary Geology and Geophysics Program and the Southwest Research Institute's Internal Research Grant program.

  16. The Team Orienteering Arc Routing Problem

    OpenAIRE

    Archetti, Claudia; Speranza, M. Grazia; Corberan, Angel; Sanchís Llopis, José María; Plana, Isaac

    2014-01-01

    The team orienteering arc routing problem (TOARP) is the extension to the arc routing setting of the team orienteering problem. In the TOARP, in addition to a possible set of regular customers that have to be serviced, another set of potential customers is available. Each customer is associated with an arc of a directed graph. Each potential customer has a profit that is collected when it is serviced, that is, when the associated arc is traversed. A fleet of vehicles with a given maximum trav...

  17. Electrode Evaporation Effects on Air Arc Behavior

    Institute of Scientific and Technical Information of China (English)

    LI Xingwen; CHEN Degui; LI Rui; WU Yi; NIU Chunping

    2008-01-01

    A numerical study of the effects of copper and silver vapours on the air arc behavior is performed. The commercial software FLUENT is adapted and modified to develop a two-dimensional magneto-hydrodynamic (MHD) models of arc with the thermodynamic properties and transport coefficients, net emission coefficient for the radiation model of 99% ai-1% Cu, 99% air-1% Ag, and pure air, respectively. The simulation result demonstrates that vaporization of the electrode material may cool the arc center region and reduce the arc velocity. The effects of Ag vapour are stronger compared to those of Cu vapour.

  18. Metals purification by improved vacuum arc remelting

    Science.gov (United States)

    Zanner, Frank J.; Williamson, Rodney L.; Smith, Mark F.

    1994-12-13

    The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.

  19. Class `E` protective headwear: electric arc exposure

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E.

    1997-04-01

    A series of tests were conducted using electric arcs under laboratory conditions to determine what, if any, damages can be inflicted upon class `E` hard hats. Ten hard hats were subjected to different levels of arc exposure to see if the hat would ignite, melt, drip, stick to the head, etc. It was noted that there is no standard on hard hat exposure to an electric arc. It was recommended that the CSA committee revise the protective headwear standard to include a requirement for flame/arc resistance, including specification of pass/fail criteria. 1 tab., 3 figs.

  20. Miniaturized cathodic arc plasma source

    Science.gov (United States)

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  1. Cracking generated by arc welding; La fissuration consecutive a l'operation de soudage a l'arc

    Energy Technology Data Exchange (ETDEWEB)

    Carpreau, J.M. [LaMSID UMR EDF-CNRS-CEA 2832, 78 - Chatou (France)

    2010-07-01

    During welding, rapid localized heat transients lead to thermal cycles, resulting in changes in the local metallurgy and mechanical loading of the components to be joined. Depending on the materials, these changes may generate cracks, making the weld structure unable to resist in-service loading. Analysis of various cracking mechanisms showed the role of the thermomechanical loading of the weld or HAZ during cooling after arc welding. Hence, prediction of cracking is based on the calculation of the thermomechanical stress, which often gives an estimated range, or from a mechanistically-based phenomenological approach. (author)

  2. Boxicity of Circular Arc Graphs

    OpenAIRE

    Bhowmick, Diptendu; Chandran, L. Sunil

    2008-01-01

    A $k$-dimensional box is the cartesian product $R_1 \\times R_2 \\times ... \\times R_k$ where each $R_i$ is a closed interval on the real line. The {\\it boxicity} of a graph $G$, denoted as $box(G)$, is the minimum integer $k$ such that $G$ can be represented as the intersection graph of a collection of $k$-dimensional boxes: that is two vertices are adjacent if and only if their corresponding boxes intersect. A circular arc graph is a graph that can be represented as the intersection graph of ...

  3. Prediction of SFL Interruption Performance from the Results of Arc Simulation during High-Current Phase

    Science.gov (United States)

    Lee, Jong-Chul; Lee, Won-Ho; Kim, Woun-Jea

    2015-09-01

    The design and development procedures of SF6 gas circuit breakers are still largely based on trial and error through testing although the development costs go higher every year. The computation cannot cover the testing satisfactorily because all the real processes arc not taken into account. But the knowledge of the arc behavior and the prediction of the thermal-flow inside the interrupters by numerical simulations are more useful than those by experiments due to the difficulties to obtain physical quantities experimentally and the reduction of computational costs in recent years. In this paper, in order to get further information into the interruption process of a SF6 self-blast interrupter, which is based on a combination of thermal expansion and the arc rotation principle, gas flow simulations with a CFD-arc modeling are performed during the whole switching process such as high-current period, pre-current zero period, and current-zero period. Through the complete work, the pressure-rise and the ramp of the pressure inside the chamber before current zero as well as the post-arc current after current zero should be a good criterion to predict the short-line fault interruption performance of interrupters.

  4. Gravitational removal of volcanic arc roots in Cordilleran orogens

    Science.gov (United States)

    Currie, C. A.; Ducea, M. N.; DeCelles, P. G.; Beaumont, C.

    2013-12-01

    Cordilleran orogens, such as the central Andes, form above subduction zones and their evolution depends on processes associated with oceanic plate subduction and continental plate shortening. Such orogens are characterized by abundant arc volcanism and the formation of thick (>30 km) granitoid batholiths. The magma composition is consistent with a multi-stage model, in which parental mantle-derived basaltic magmas stagnate within the continental lithosphere and then undergo differentiation. Felsic partial melts rise through the crust, leaving a high-density garnet pyroxenite root in the deep lithosphere. Here, we study the dynamics of gravitational removal of this root using regional two-dimensional thermal-mechanical models of subduction below a continent. In the models, the volcanic arc location is determined dynamically based on subduction zone thermal structure, and formation of the batholith-root complex is simulated by changing the density of the volcanic arc lithosphere over time. For the lithosphere structure used in our models, arc roots that undergo even a small density increase are readily removed through gravitational foundering for a wide range of root strengths and subduction rates. The dynamics of removal depend on the relative rates of downward gravitational growth and horizontal shearing by subduction-induced mantle flow. Gravitational growth dominates for high root densification rates, high root viscosities and low subduction rates, leading to drip-like removal of the root as a single downwelling over 1-3 Myr. At lower growth rates, the root is removed over ~6 Myr through shear entrainment, as it is carried sideways by mantle flow and then subducted on top of the oceanic plate. In all models, >80% of the root is removed, making this an effective way to thin mantle lithosphere in the volcanic arc region. This can help resolve the mass problem in the central Andes, where observations indicate a thin mantle lithosphere, despite significant crustal

  5. Feedback Linearization Based Arc Length Control for Gas Metal Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2005-01-01

    In this paper a feedback linearization based arc length controller for gas metal arc welding (GMAW) is described. A nonlinear model describing the dynamic arc length is transformed into a system where nonlinearities can be cancelled by a nonlinear state feedback control part, and thus, leaving only...

  6. Iron based coatings deposited by arc thermal spray

    Directory of Open Access Journals (Sweden)

    Maritza Patiño-Infante

    2017-01-01

    Full Text Available En este trabajo se estudió la resistencia al desgaste y la dureza de recubrimientos a base de hierro, aplicados mediante el método de proyección térmica por arco sobre sustratos en acero AISI-SAE 4340 a temperatura ambiente. Los recubrimientos se realizan con tres tipos diferentes de alambres Castolin Eutectic: 530AS, 560AS y 140MXC; depositados en forma de capas de un solo elemento y bicapas de tipo 530AS/140MXC y 560AS/140MXC, las cuales fueron depositadas con diferentes espesores. Los recubrimientos se caracterizaron mediante difracción de rayos X (DRX, espectroscopia de rayos X de energía dispersiva (EDS, se determinó su nano dureza y se determinó su resistencia al desgaste mediante la técnica de Pin on Disk. Los recubrimientos obtenidos son altamente inhomogéneos, el mejor comportamiento frente al desgaste se encontró en las capas de material 140 MXC y en las bicapas 530AS/140MXC y 560AS/140MXC y fue independiente en general del número de capas aplicadas.

  7. ATLAS DDM integration in ARC

    DEFF Research Database (Denmark)

    Behrmann, Gerd; Cameron, David; Ellert, Mattias;

    2008-01-01

    The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Denmark, Finland, Norway and Sweden. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed and mana......The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Denmark, Finland, Norway and Sweden. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed...... and managed by the DQ2 software. Managing ATLAS data within NDGF and between NDGF and other Grids used by ATLAS (the Enabling Grids for E-sciencE Grid and the Open Science Grid) presents a unique challenge for several reasons. Firstly, the entry point for data, the Tier 1 centre, is physically distributed...... outside the worker node environment. Also, the service used for cataloging the location of data files is different from otherGrids but must still be useable by DQ2 and ATLAS users to locate data within NDGF. This paper presents in detail how we solve these issues to allow seamless access worldwide to data...

  8. Analysis of Pressure Rise in a Closed Container Due to Internal Arcing

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-03-01

    Full Text Available When an arc fault occurs in a medium-voltage (MV metal enclosed switchgear, the arc heats the filling gas, resulting in a pressure rise, which may seriously damage the switchgear, the building it is contained in, or even endanger maintenance personnel. A pressure rise calculation method based on computational fluid dynamics (CFD has been put forward in this paper. The pressure rise was calculated and the arc tests between the copper electrodes were performed in the container under different gap lengths by the current source. The results show that the calculated pressure rise agrees well with the measurement, and the relative error of the average pressure rise is about 2%. Arc volume has less effect on the pressure distribution in the container. Arc voltage Root-Mean-Square (RMS has significant randomness with the change of arc current, and increases with the increase of gap length. The average arc voltage gradients measure at about 26, 20 and 16 V/cm when the gap lengths are 5, 10 and 15 cm, respectively. The proportion (thermal transfer coefficient kp of the arc energy leading to the pressure rise in the container is about 44.9%. The pressure is symmetrically distributed in the container before the pressure wave reaches the walls and the process of the energy release is similar to an explosion. The maximum overpressure in the corner is increased under the reflection and superimposition effects of the pressure wave, but the pressure waves will be of no importance any longer than a few milliseconds in the closed container.

  9. Rates, Mechanisms, and Implications of Crustal Assimilation in Continental Arcs

    Science.gov (United States)

    Dungan, M.; Davidson, J.

    2002-12-01

    Contrary to the limiting constraints postulated by Bowen for the coupled thermal and mass balance implicated in assimilation, many studies [1-6] suggest that multi-stage and multi-component assimilation, abetted by magma mixing, may be volumetrically important and have profound consequences for the chemistry of basaltic and evolved magmas in long-lived continental magmatic systems. The probability of a primitive or evolved basalt arriving at the Earth's surface having undergone perfectly closed-system evolution during passage through 25-60 km of continental crust is vanishingly low. A case-by-case demonstration that the intra-crustal chemical overprint is trivial, or that it can be quantified and subtracted, is an essential step in any evaluation of mantle source-region chemistry and processes based on inversion of continental basalt compositions. In magmatic systems characterized by mafic magma recharge the thermal energy and physical dynamism needed for assimilation are not constrained to come uniquely from one magma batch [7, 8]. Equally important is that assimilation is rarely equivalent to bulk melting of ingested blocks followed by reservoir-wide homogenization. The mechanics of crustal assimilation are governed by grain boundary melting, disaggregation, and dispersal of refractory solids (including xenocryst settling) wherein liberated low-density, incompatible element-enriched partial melts have the capacity to render primitive arc magma batches variably modified, as well as heterogeneous on short length-scales. Evidence that basalts thermally erode surface channels and conduit walls, and new observations constraining the maximum time that some extensively melted xenoliths have resided in their host magmas, indicate that the time required to impose an open-system overprint on a hot basaltic magma (days to yrs) is far shorter than typical repose periods at most arc volcanoes (50-500 yrs). Assimilative recycling of broadly gabbroic arc cumulates has had large

  10. Temperature rise induced in Si by continuous xenon arc lamp radiation

    Science.gov (United States)

    Lietoila, A.; Gold, R. B.; Gibbons, J. F.

    1982-02-01

    It is shown that practical beam annealing of silicon can be accomplished with a high intensity arc lamp. The use of a one-dimensional, steady-state solution for temperature is justified. The Kirchhoff transform is utilized to include the temperature dependence of the thermal conductivity. Surface temperatures produced by a xenon arc lamp are calculated for 300- and 375-μm thick silicon samples, using substrate temperatures of 350 and 500 °C. It is shown that substantial reduction of the radiation intensity required for a given surface temperature can be obtained by placing a quartz wafer between the silicon sample and the heat sink.

  11. Optical diagnostics of a gliding arc

    DEFF Research Database (Denmark)

    Sun, Z.W.; Zhu, J.J.; Li, Z.S.;

    2013-01-01

    Dynamic processes in a gliding arc plasma generated between two diverging electrodes in ambient air driven by 31.25 kHz AC voltage were investigated using spatially and temporally resolved optical techniques. The life cycles of the gliding arc were tracked in fast movies using a high-speed camera...

  12. Characterization of Micro-arc Oxidized Titanium

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The observation of the sparkling discharges during the micro-arc oxidation process in KOH aqueous electrolyte was achieved. The change of surface morphology was progressively observed and a plausible pore formation mechanism is proposed. Cell proliferation and ALP activity of micro-arc oxidized titanium was evaluated by human body derived osteoblasts and slightly better than those of blasted surface.

  13. Measurement of an Electric Arc Spectra

    OpenAIRE

    Šimek, D.

    2015-01-01

    Article is focused on electric arc spectroscopy diagnostics related to electric low voltage apparatuses. The first attempts of spectroscopy measurements are dealt with. An example of radiation spectra of the electric arc burning between copper electrodes is presented. The problems connected with the measurements are discussed.

  14. Modeling and Simulation of Low Voltage Arcs

    NARCIS (Netherlands)

    Ghezzi, L.; Balestrero, A.

    2010-01-01

    Modeling and Simulation of Low Voltage Arcs is an attempt to improve the physical understanding, mathematical modeling and numerical simulation of the electric arcs that are found during current interruptions in low voltage circuit breakers. An empirical description is gained by refined electrical

  15. Implementing RapidArc into clinical routine

    DEFF Research Database (Denmark)

    Van Esch, Ann; Huyskens, Dominique P; Behrens, Claus F;

    2011-01-01

    With the increased commercial availability of intensity modulated arc therapy (IMAT) comes the need for comprehensive QA programs, covering the different aspects of this newly available technology. This manuscript proposes such a program for the RapidArc (RA) (Varian Medical Systems, Palo Alto...

  16. Are the Arcs of Neptune Really Stable?

    Science.gov (United States)

    Hanninen, J.; Porco, C.

    1994-12-01

    The Voyager mission discovered a system of rings and ring arcs around Neptune. It was later found that the arcs appear to be azimuthally and radially confined by resonant interactions with the nearby satellite, Galatea, yielding a maximum spread in ring particle semimajor axes of 0.6 km and a spread in forced eccentricities large enough to explain the arc's 15 km radial widths (Porco, 1991, Science 253, 995). We have modified an N-body simulation method (e.g. Hanninen and Salo, 1992, Icarus 97, 228) to include Neptune's second and fourth gravitational harmonics in order to be able to study the effects of collisions and self-gravity on the stability of the ring arcs. We have tested the simulation method and verified the shepherding mechanism in the collisionless and non-self-gravitational case. Preliminary simulation results with collisions over (1)/(2) a libration period indicate that collisions among putative 10-m sized source bodies within the arcs are indeed capable of arc disruption. However, whether or not collisions occur over this time scale depends, among other factors, on the number density of such bodies. We will explore the effects on arc stability of varying simulation parameters, such as the sizes and number density of the source bodies and the coefficient of restitution. Also, we will examine the effect of Galatea's previously neglected nearby vertical resonance on arc particle orbits.

  17. The structure and singularities of arc complexes

    DEFF Research Database (Denmark)

    Penner, Robert

    A classical combinatorial fact is that the simplicial complex consisting of disjointly embedded chords in a convex planar polygon is a sphere. For any surface F with non-empty boundary, there is an analogous complex Arc(F) consisting of suitable equivalence classes of arcs in F connecting its bou...

  18. Modeling and Simulation of Low Voltage Arcs

    NARCIS (Netherlands)

    Ghezzi, L.; Balestrero, A.

    2010-01-01

    Modeling and Simulation of Low Voltage Arcs is an attempt to improve the physical understanding, mathematical modeling and numerical simulation of the electric arcs that are found during current interruptions in low voltage circuit breakers. An empirical description is gained by refined electrical m

  19. The next-generation ARC middleware

    DEFF Research Database (Denmark)

    Appleton, O.; Cameron, D.; Cernak, J.

    2010-01-01

    The Advanced Resource Connector (ARC) is a light-weight, non-intrusive, simple yet powerful Grid middleware capable of connecting highly heterogeneous computing and storage resources. ARC aims at providing general purpose, flexible, collaborative computing environments suitable for a range of use...

  20. Copper coating specification for the RHIC arcs

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2010-12-01

    Copper coating specifications for the RHIC arcs are given. Various upgrade scenarios are considered and calculations of resistive wall losses in the arcs are used to constrain the necessary quality and surface thickness of a copper coating. We find that 10 {mu}m of high purity copper will suffice.

  1. Numerical Study on Arc Plasma Behavior During Arc Commutation Process in Direct Current Circuit Breaker

    Institute of Scientific and Technical Information of China (English)

    杨飞; 马瑞光; 吴翊; 孙昊; 纽春萍; 荣命哲

    2012-01-01

    This paper focuses on the numerical investigation of arc plasma behavior during arc commutation process in a medium-voltage direct current circuit breaker (DCCB) contact system. A three-dimensional magneto-hydrodynamic (MHD) model of air arc plasma in the contact system of a DCCB is developed, based on commercial software FLUENT. Coupled electromagnetic and gas dynamic interactions are considered as usual, and a thin layer of nonlinear electrical resistance elements is used to represent the voltage drop of plasma sheath and the formation of new arc root. The distributions of pressure, temperature, gas flow and current density of arc plasma in arc region are calculated. The simulation results indicate that the pressure distribution related to the contact system has a strong effect on the arc commutation process, arising from the change of electrical conductivity in the arc root region. In DCCB contact system, the pressure of arc root region will be concentrated and higher if the space above the moving contact is enclosed, which is not good for arc root commutation. However, when the region is opened, the pressure distribution would be lower and more evenly, which is favorable for the arc root commutation.

  2. Modeling cast IN-738 superalloy gas tungsten arc welds

    Energy Technology Data Exchange (ETDEWEB)

    Bonifaz, E.A. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, E2-327F EITC, Winnipeg, Man., R3T 5V6 (Canada); Universidad San Francisco de Quito, Casilla Postal: 17-12-841 Circulo de Cumbaya, Quito (Ecuador)], E-mail: bonifaz@cc.umanitoba.ca; Richards, N.L. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, E2-327F EITC, Winnipeg, Man., R3T 5V6 (Canada)], E-mail: nrichar@cc.umanitoba.ca

    2009-04-15

    A three-dimensional finite-element thermal model has been developed to generate weld profiles, and to analyze transient heat flow, thermal gradients and thermal cycles in cast IN-738 superalloy gas tungsten arc welds. Outputs of the model (cooling rates, the thermal gradient G and the growth rate R) were used to describe solidification structures found around the weld pool for three different welding speeds at constant heat input. Calculations around the weld pool indicate that the cooling rate increases from the fusion line to the centerline at all welding speeds. It was also observed that the cooling rate (G x R) and the ratio G/R fall with welding speed. For instance, as the welding speed is increased, the cooling rates at the centerline, fusion line and penetration depth decrease. Moreover, it was observed that as the power and welding speed both increase (but keeping the heat input constant), the weld pool becomes wider and more elongated, shifting from circular to elliptical shaped. The calculations were performed using ABAQUS FE code on the basis of a time-increment Lagrangian formulation. The heat source represented by a moving Gaussian power density distribution is applied over the top surface of the specimen during a period of time that depends on the welding speed. Temperature-dependent material properties and the effect of forced convection due to the flow of the shielding gas are included in the model. Numerically predicted sizes of the melt-pool zone and dendrite secondary arm spacing induced by the gas tungsten arc welding process are also given.

  3. Arc burst pattern analysis fault detection system

    Science.gov (United States)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  4. Low voltage arc formation in railguns

    Science.gov (United States)

    Hawke, Ronald S.

    1987-01-01

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  5. Collisional Simulations of Neptune's Ring Arcs

    Science.gov (United States)

    Hänninen, J.; Porco, C.

    1997-03-01

    The currently accepted model for Neptune arc confinement relies on the radial and azimuthal confining perturbations due to the nearby satellite, Galatea. This model calls for arc particle orbits exhibiting a negative eccentricity gradient and crossing at quadrature, a configuration that paradoxically leads to collisions energetic enough to disrupt arc confinement. We confirm with numerical collisional N-body simulations that the confinement mechanism relying on a 42:43 corotation-inclination resonance and a 42:43 outer Lindblad resonance with Galatea is indeed capable of confining a large population of 10-m-size and bigger particles over short time scales. Moreover, we find that an 84:86 outer vertical resonance, also due to Galatea, falling within 20 m of the arcs' radial position, effectively reduces the collision frequency and relative collisional velocities and consequently stabilizes the arcs over long time scales against the disruptive effects of collisions.

  6. An explanation for Neptune's ring arcs

    Science.gov (United States)

    Porco, Carolyn C.

    1991-08-01

    The Voyager mission revealed a complex system of rings and ring arcs around Neptune and uncovered six new satellites, four of which occupy orbits well inside the ring region. Analysis of Voyager data shows that a radial distortion with an amplitude of approximately 30 kilometers is traveling through the ring arcs, a perturbation attributable to the nearby satellite Galatea. Moreover, the arcs appear to be azimuthally confined by a resonant interaction with the same satellite, yielding a maximum spread in ring particle semimajor axes of 0.6 kilometer and a spread in forced eccentricities large enough to explain the arc's 15-kilometer radial widths. Additional ring arcs discovered in the course of this study give further support to this model.

  7. Metrology in arc plasmas - A new cathode

    Science.gov (United States)

    Croche, R.

    1980-02-01

    A new radiating source consisting of an electric arc under argon pressure is described, with power varying between about 0.2 and 1.5 kW, and with the plasma furnishing a continuous spectrum between 115 and 350 nm. The arc functions from 5 to 50 A, with a voltage varying between 30 and 35 V. The cathode of the transfer arc is described in detail, including such advantages as easy igniting of the arc and the possibility of re-sharpening the tip of the cathode. Most important, the new 'knife-shaped' form of the tungsten cathode has improved the stability and reproducibility of the ultraviolet continuum emitted by the plasma of the arc, which is used at the French National Institute of Metrology as a transfer standard of spectral radiance in the vacuum ultraviolet.

  8. An Arc in Saturn's G Ring

    Science.gov (United States)

    Burns, Joseph A.; Hedman, M.; Tiscareno, M.; Porco, C.; Jones, G.; Roussos, E.; Krupp, N.

    2006-09-01

    The G ring is a narrow, faint ring located between the orbits of Janus and Mimas. Approximately 4000 km wide, it has a strongly asymmetric brightness profile with a sharp inner edge between 167,000 km and 168,000 km from Saturn's center and a more diffuse outer part. In Cassini images, a portion of the ring contains a bright arc that abuts the G-ring's inner edge and extends over 30 degrees in longitude. By tracking this arc over the first two years of the Cassini Mission, we find its orbital period is 0.80813 day, corresponding to a semi-major axis of 167,496 km. Since this location places the arc within 6 km of the Mimas 7:6 Co-rotation Eccentricity Resonance and within 12 km of the Mimas 7:6 Inner Lindblad Resonance, the arc is likely confined in longitude by Mimas just as Neptune's ring arcs are held in place by Galatea. The arc's longitude relative to Mimas is consistent with this model. Cassini now has the opportunity to study the dynamics of this sort of system in detail over a period of years. The arc, which may be the debris of a fragmented moon, may also supply the particles found in the rest of the G ring; micron-sized grains drift outwards by non-gravitational processes in this region. The G-ring is responsible for a broad, relatively modest decrease in the fluxes of magnetospheric charged particles. When Cassini passed over the G ring in the vicinity of the arc, on September 5, 2005, the MIMI instrument detected a particularly sharp and deep charged particle absorption signature. Such a pronounced charged particle absorption was not seen in the other G-ring passages that occurred longitudinally far from the arc. The nature of this absorption provides constraints on the population of large particles in this arc.

  9. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage.

    Science.gov (United States)

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo

    2014-01-01

    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful.

  10. ATLAS DDM integration in ARC

    DEFF Research Database (Denmark)

    Behrmann, Gerd; Cameron, David; Ellert, Mattias;

    The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Scandinavia and other countries. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed and managed...... by the DQ2 software. Managing ATLAS data within NDGF and between NDGF and other Grids used by ATLAS (the LHC Computing Grid and the Open Science Grid) presents a unique challenge for several reasons. Firstly, the entry point for data, the Tier 1 centre, is physically distributed among heterogeneous...... environment. Also, the service used for cataloging the location of data files is different from other Grids but must still be useable by DQ2 and ATLAS users to locate data within NDGF. This paper presents in detail how we solve these issues to allow seamless access worldwide to data within NDGF....

  11. INTERPOLATION WITH RESTRICTED ARC LENGTH

    Institute of Scientific and Technical Information of China (English)

    Petar Petrov

    2003-01-01

    For given data (ti,yi), I= 0,1,…,n,0 = t0 <t1 <…<tn = 1we study constrained interpolation problem of Favard type inf{‖f"‖∞|f∈W2∞[0,1],f(ti)=yi,i=0,…,n,l(f;[0,1])≤l0}, wherel(f";[0,1])=∫1 0 / 1+f'2(x)dx is the arc length off in [0,1]. We prove the existence of a solution f* of the above problem, that is a quadratic spline with a second derivative f"* , which coincides with one of the constants - ‖f"*‖∞,0,‖f"*‖∞ between every two consecutive knots. Thus, we extend a result ofKarlin concerning Favard problem, to the case of restricted length interpolation.

  12. Test plan for BWID Phase 2 electric arc melter vitrification tests

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.R.; Turner, P.C.; Oden, L.L.; Anderson, G.L.

    1994-10-01

    This test plan describes the Buried Waste Integrated Demonstration (BWID), Phase 2, electric arc melter, waste treatment evaluation tests to be performed at the US Bureau of Mines (USBM) Albany Research Center. The BWID Arc Melter Vitrification Project is being conducted to evaluate and demonstrate existing industrial arc melter technology for thermally treating mixed transuranic-contaminated wastes and soils. Phase 1 baseline tests, performed during fiscal year 1993 at the USBM, were conducted on waste feeds representing incinerated buried mixed wastes and soils. In Phase 2, surrogate feeds will be processed that represent actual as-retrieved buried wastes from the Idaho National Engineering Laboratory`s Subsurface Disposal Area at the Radioactive Waste Management Complex.

  13. Formation of Self-Organized Anode Patterns in Arc Discharge Simulations

    CERN Document Server

    Trelles, Juan Pablo

    2013-01-01

    Pattern formation and self-organization are phenomena commonly observed experimentally in diverse types of plasma systems, including atmospheric-pressure electric arc discharges. However, numerical simulations reproducing anode pattern formation in arc discharges have proven exceedingly elusive. Time-dependent three-dimensional thermodynamic nonequilibrium simulations reveal the spontaneous formation of self-organized patterns of anode attachment spots in the free-burning arc, a canonical thermal plasma flow established by a constant DC current between an axi-symmetric electrodes configuration in the absence of external forcing. The number of spots, their size, and distribution within the pattern depend on the applied total current and on the resolution of the spatial discretization, whereas the main properties of the plasma flow, such as maximum temperatures, velocity, and voltage drop, depend only on the former. The sensibility of the solution to the spatial discretization stresses the computational require...

  14. Contribution For Arc Temperature Affected By Current Increment Ratio At Peak Current In Pulsed Arc

    Science.gov (United States)

    Kano, Ryota; Mitubori, Hironori; Iwao, Toru

    2015-11-01

    Tungsten Inert Gas (TIG) Welding is one of the high quality welding. However, parameters of the pulsed arc welding are many and complicated. if the welding parameters are not appropriate, the welding pool shape becomes wide and shallow.the convection of driving force contributes to the welding pool shape. However, in the case of changing current waveform as the pulse high frequency TIG welding, the arc temperature does not follow the change of the current. Other result of the calculation, in particular, the arc temperature at the reaching time of peak current is based on these considerations. Thus, the accurate measurement of the temperature at the time is required. Therefore, the objective of this research is the elucidation of contribution for arc temperature affected by current increment ratio at peak current in pulsed arc. It should obtain a detail knowledge of the welding model in pulsed arc. The temperature in the case of increment of the peak current from the base current is measured by using spectroscopy. As a result, when the arc current increases from 100 A to 150 A at 120 ms, the transient response of the temperature didn't occur during increasing current. Thus, during the current rise, it has been verified by measuring. Therefore, the contribution for arc temperature affected by current increment ratio at peak current in pulsed arc was elucidated in order to obtain more knowledge of welding model of pulsed arc.

  15. Electric Arc Furnace Modeling with Artificial Neural Networks and Arc Length with Variable Voltage Gradient

    Directory of Open Access Journals (Sweden)

    Raul Garcia-Segura

    2017-09-01

    Full Text Available Electric arc furnaces (EAFs contribute to almost one third of the global steel production. Arc furnaces use a large amount of electrical energy to process scrap or reduced iron and are relevant to study because small improvements in their efficiency account for significant energy savings. Optimal controllers need to be designed and proposed to enhance both process performance and energy consumption. Due to the random and chaotic nature of the electric arcs, neural networks and other soft computing techniques have been used for modeling EAFs. This study proposes a methodology for modeling EAFs that considers the time varying arc length as a relevant input parameter to the arc furnace model. Based on actual voltages and current measurements taken from an arc furnace, it was possible to estimate an arc length suitable for modeling the arc furnace using neural networks. The obtained results show that the model reproduces not only the stable arc conditions but also the unstable arc conditions, which are difficult to identify in a real heat process. The presented model can be applied for the development and testing of control systems to improve furnace energy efficiency and productivity.

  16. Characteristics of acoustic-controlled arc in ultrasonic wave-assisted arc%超声复合电弧声调控特性研究

    Institute of Scientific and Technical Information of China (English)

    谢伟峰; 范成磊; 杨春利; 林三宝; 张玉岐

    2015-01-01

    As a new welding method, ultrasound has been successfully introduced into the pool during ultrasonic wave-assisted arc welding process. However, the interaction mechanism between the ultrasound and the arc plasma is not clear, thus preventing the new technique from engineering applications. In this paper, the characteristic of arc regulation by external ultrasonic field is investigated based on the experimental data and the corresponding theory. In order to figure out the characteristics of arc, the arc images obtained by high-speed camera are processed. Compared with the conventional welding arc, ultrasonic wave-assisted arc is more contracted and becomes brighter, the high-temperature region in an arc column greatly expands, and there are internal particle agglomerations shaking up and down at a constant frequency. The arc shape varies with ultrasound excitation current and the height of ultrasonic radiator. In the vicinity of the resonance point, the straight-degree of the arc is the strongest and the ripple frequency is also the largest. Results show that the purpose of using external ultrasound field to regulate the thermal plasma has basically achieved. Analyzing the acoustic pressure wave equation for the neutral component shows that the spatial distribution of acoustic wave can be generated in the arc and its intensity is proportional to the local amplitude of acoustic waves. Acoustic pressure field can be calculated based on the dependence of the electron temperature and density on time and space. In addition to the action of acoustic field within the arc, the arc plasma is also controlled by the acoustic field structure. A two-cylinder model incorporating boundary element method is developed, establishing a relationship between the binding capability and the geometric parameters of an ultrasonic radiator with reference to wavelength. This model is successful in predicting resonant modes of the acoustic field and explaining the influences of the ultrasonic

  17. Reconstruction of Late Cretaceous Magmatic Arcs in the Northern Andes: Single Versus Multiple Arc Systems

    Science.gov (United States)

    Cardona, A.; Jaramillo, J. S.; Leon, S.; Hincapie, S.; Mejia, D.; Patino, A. M.; Vanegas, J.; Zapata, S.; Valencia, V.; Jimenez, G.; Monsalve, G.

    2014-12-01

    Although magmatic rocks are major tracers of the geological evolution of convergent margins, pre-collisional events such as subduction erosion, collisional thrusting or late collisional strike slip segmentation may difficult the recognizing of multiple arc systems and therefore the existence of paleogeographic scenarios with multiple subduction systems. New field, U-Pb geochronology and whole rock geochemistry constraints from the northwestern segment of the Central Cordillera in the states of Antioquia and Caldas (Colombia) are used to understand the nature of the Late Cretaceous arc magmatism and evaluate the existence of single or multiple Pacific and Caribbean arc systems in the growth of the Northwestern Andes. The new results integrated with additional field and published information is used to suggest the existence of at least three different magmatic arcs. (1) An Eastern Continental arc built within a well defined Permian to Triassic continental crust that record a protracted 90-70 Ma magmatic evolution, (2) a 90-80 arc formed within attenuated continental crust and associated oceanic crust, (3) 90-88 Ma arc formed over a Late Cretaceous plateau crust. The eastern arcs were formed as part of double eastern vergent subduction system, where the most outboard arc represent a fringing arc formed over detached fragments of continental crust, whereas the easternmost continental arc growth by the closure an subduction of and older and broad Triassic to Early Jurassic back-arc ocean. Its closure also end up in ophiolite emplacement. The third allochtonous oceanic arc was formed over the Caribbean plateau crust and was accreted to the continental margin in the Late Cretaceous. Ongoing paleomagnetic, deformational, gravimetric and basin analysis will be integrate to test this model and understand the complex Late Cretaceous tectonic evolution of the Northern Andes.

  18. Acoustic characteristics of electric arc furnaces

    Science.gov (United States)

    Cherednichenko, V. S.; Bikeev, R. A.; Cherednichenko, A. V.; Ognev, A. M.

    2016-06-01

    A mathematical model is constructed to describe the appearance and development of the noise characteristics of superpower electric arc furnaces. The noise formation is shown to be related to the pulsation of the axial plasma flows in arc discharges because of the electrodynamic pressure oscillations caused by the interaction of the self-magnetic field with the current passing in an arc. The pressure in the arc axis changes at a frequency of 100 Hz at the maximum operating pressure of 66 kPa for an arc current of 80 kA. The main ac arc sound frequencies are multiples of 100 Hz, which is supported in the practice of operation of electric arc furnaces. The sound intensity in the furnace laboratory reaches 160 dB and is decreased to 115-120 dB in the working furnace area due to shielding by the furnace jacket, the molten metal, and the molten slag. The appropriateness of increasing the hermetic sealing of electric furnaces and creating furnaces operating at low currents and high transformer voltages is corroborated.

  19. Towards a theory for Neptune's arc rings

    Science.gov (United States)

    Goldreich, P.; Tremaine, S.; Borderies, N.

    1986-01-01

    It is proposed that the incomplete rings of Neptune consist of a number of short arcs centered on the corotation resonances of a single satellite. The satellite must have a radius of the order of 100 km or more and move on an inclined orbit. Corotation resonances are located at potential maxima. Thus, mechanical energy dissipated by interparticle collisions must be continually replenished to prevent the arcs from spreading. It is shown that each corotation resonance is associated with a nearby Lindblad resonance, which excites the ring particles' orbital eccentricity, thus supplying the energy required to maintain the arc. The ultimate energy reservoir is the satellite's orbital energy. Therefore, interaction with the arcs damps the satellite's orbital inclination. The self-gravity of the arcs limits their contraction and enforces a relation between arc length and mass. The estimated arc masses are so small, of the order of 10 to the 16th g, that the satellite's orbital inclination suffers negligible decay over the age of the solar system. The inferred surface mass densities are comparable to those found in the major rings of Saturn and Uranus.

  20. METHOD OF CONJUGATED CIRCULAR ARCS TRACING

    Directory of Open Access Journals (Sweden)

    N. Ageyev Vladimir

    2017-01-01

    Full Text Available The geometric properties of conjugated circular arcs connecting two points on the plane with set directions of tan- gent vectors are studied in the work. It is shown that pairs of conjugated circular arcs with the same conditions in frontier points create one-parameter set of smooth curves tightly filling all the plane. One of the basic properties of this set is the fact that all coupling points of circular arcs are on the circular curve going through the initially given points. The circle radius depends on the direction of tangent vectors. Any point of the circle curve, named auxiliary in this work, determines a pair of conjugated arcs with given boundary conditions. One more condition of the auxiliary circle curve is that it divides the plane into two parts. The arcs going from the initial point are out of the circle limited by this circle curve and the arcs coming to the final point are inside it. These properties are the basis for the method of conjugated circular arcs tracing pro- posed in this article. The algorithm is rather simple and allows to fulfill all the needed plottings using only the divider and ruler. Two concrete examples are considered. The first one is related to the problem of tracing of a pair of conjugated arcs with the minimal curve jump when going through the coupling point. The second one demonstrates the possibility of trac- ing of the smooth curve going through any three points on the plane under condition that in the initial and final points the directions of tangent vectors are given. The proposed methods of conjugated circular arcs tracing can be applied in solving of a wide variety of problems connected with the tracing of cam contours, for example pattern curves in textile industry or in computer-aided-design systems when programming of looms with numeric control.

  1. The Central Iberian arc, an orocline centered in the Iberian Massif and some implications for the Variscan belt

    Science.gov (United States)

    Martínez Catalán, José R.

    2012-07-01

    An arcuate structure, comparable in size with the Ibero-Armorican arc, is delineated by Variscan folds and magnetic anomalies in the Central Iberian Zone of the Iberian Massif. Called the Central Iberian arc, its sense of curvature is opposite to that of the Ibero-Armorican arc, and its core is occupied by the Galicia-Trás-os-Montes Zone of NW Iberia, which includes the Rheic suture. Other zones of the Iberian Massif are bent by the arc, but the Ossa-Morena and South Portuguese zones are not involved. The arc formed during the Late Carboniferous, at final stages of thermal relaxation and collapse, and an origin related with right-lateral ductile transpression at the scale of the Variscan belt is proposed. The Central Iberian arc explains the width of the Central Iberian Zone, clarifies the position of the allochthonous terranes of NW Iberia, and opens new perspectives for correlations with the rest of the Variscan belt, in particular, with the Armorican Massif, whose central zone represents the continuation of the southwest branch of the arc detached by strike-slip tectonics.

  2. Formation of the G-ring arc

    Science.gov (United States)

    Araujo, N. C. S.; Vieira Neto, E.; Foryta, D. W.

    2016-09-01

    Since 2004, the images obtained by the Cassini spacecraft's on-board cameras have revealed the existence of several small satellites in the Saturn system. Some of these small satellites are embedded in arcs of particles. While these satellites and their arcs are known to be in corotation resonances with Mimas, their origin remains unknown. This work investigates one possible process for capturing bodies into a corotation resonance, which involves increasing the eccentricity of a perturbing body. Therefore, through numerical simulations and analytical studies, we show a scenario in which the excitation of Mimas's eccentricity could capture particles in a corotation resonance. This is a possible explanation for the origin of the arcs.

  3. Formation of the G-ring arc

    CERN Document Server

    Araujo, N C S; Foryta, D W

    2016-01-01

    Since 2004, the images obtained by Cassini spacecraft's on-board cameras have revealed the existence of several small satellites in the Saturn system. Some of these small satellites are embedded in arcs of particles. While these satellites and their arcs are known to be in corotation resonances with Mimas, their origin remains unknown. This work investigates one possible process for capturing bodies into a corotation resonance, which involves raising the eccentricity of a perturbing body. Therefore, through numerical simulations and analytical studies, we show a scenario that the excitation of Mimas' eccentricity could capture particles in a corotation resonance and given a possible explanation for the origin for the arcs.

  4. The Global Array of Primitve Arc Melts

    Science.gov (United States)

    Schmidt, M. W.; Jagoutz, O. E.

    2015-12-01

    A longstanding question concerns the nature of the melts forming in the subarc mantle and giving rise to arc magmatism. The global array of primitive arc melts (1180 volcanic rocks in 25 arcs extracted from the georoc database, calculated to be in equilibrium with mantle olivine) yields five principal melt types: calc-alkaline basalts and high-Mg andesites, tholeiitic basalts and high-Mg andesites, and shoshonitic or alkaline arc melts; many arcs have more than one type. Primitive calc-alkaline basalts occur in 11 arcs but most strikingly, 8 continental arcs (incl. Aleutians, Cascades, Japan, Mexico, Kamtschatka) have a continuous range of calc-alkaline basalts to high-Mg andesites with mostly 48-58 wt% SiO2. In each arc, these are spatially congruent, trace element patterns overlap, and major elements form a continuum. Their Ca-Mg-Si systematics suggests saturation in olivine+opx+cpx. We hence interpret the large majority of high-Mg andesites as derived from primitive calc-alkaline basalts through fractionation and reaction in the shallower mantle. Removal of anhydrous mantle phases at lower pressures increases SiO2 and H2O-contents while Mg# and Ni remain buffered to mantle values. Primitive tholeiitic basalts (Cascades, Kermadec, Marianas, Izu-Bonin, Japan, Palau, Sunda) have a much lesser subduction signal (e.g. in LILE) than the calc-alkaline suite. These tholeiites have been interpreted to form through decompression melting, but also characterize young intraoceanic arcs. In the two continental arcs with both tholeiitic and calc-alkaline primitive basalts (clearly distinct in trace patterns), there is no clear spatial segregation (Casacades, Japan). Three intraoceanic arcs (Marianas, Izu-Bonin, Tonga) have primitive tholeiitic, highly depleted high-Mg andesites (boninites) with HFSE and HREE slightly above primitive mantle values. These deviate in majors from the array formed by the basalts and calc-alkaline andesites suggesting that only these formed from a

  5. Cathodic Vacuum Arc Plasma of Thallium

    OpenAIRE

    Yushkov, Georgy Yu.; Anders, Andre

    2006-01-01

    Thallium arc plasma was investigated in a vacuum arc ion source. As expected from previous consideration of cathode materials in the Periodic Table of the Elements, thallium plasma shows lead-like behavior. Its mean ion charge state exceeds 2.0 immediately after arc triggering, reaches the predicted 1.60 and 1.45 after about 100 microsec and 150 microsec, respectively. The most likely ion velocity is initially 8000 m/s and decays to 6500 m/s and 6200 m/s after 100 microsec and 150 micros...

  6. Linear volcanic segments in the Sunda Arc, Indonesia: Implications for arc lithosphere control upon volcano distribution

    Science.gov (United States)

    Macpherson, C. G.; Pacey, A.; McCaffrey, K. J.

    2012-12-01

    The overall curvature of many subduction zones is immediately apparent and the term island arc betrays the common assumption that subduction zone magmatism occurs in curved zones. This assumption can be expressed by approximating island arcs as segments of small circles on the surface of a sphere. Such treatments predict that the location of arc volcanoes is related to their vertical separation from the slab (in fact, the depth to seismicity in the slab) and require that the primary control on the locus of magmatism lies either within the subducted slab or the mantle wedge that separates the subducted and overriding lithospheric plates. The concept of curved arcs ignores longstanding observations that magmatism in many subduction systems occurs as segments of linearly arranged volcanic centres. Further evidence for this distribution comes from the close relationship between magmatism and large scale, arc-parallel fabrics in some arcs. Similarly, exposures of deep arc crust or mantle often reveal elongation of magmatic intrusions sub-parallel to the inferred trend of the arc. The Sunda Arc forms the Indonesian islands from Sumatra to Alor and provides an important test for models of volcano distribution for several reasons. First, Sunda has hosted abundant historic volcanic activity. Second, with the notable exception of Krakatau, every volcano in the arc is subaerial from base to cone and, therefore, can be readily identified where there is a suitable extent of local mapping that can be used to ground-truth satellite imagery. Third, there are significant changes in the stress regime along the length of the arc, allowing the influence of the upper plate to be evaluated by comparison of different arc segments. Finally, much of the Sunda Arc has proved difficult to accommodate in models that try to relate volcano distribution to the depth to the subducted slab. We apply an objective line-fitting protocol; the Hough Transform, to explore the distribution of volcanoes

  7. Kinematic variables and water transport control the formation and location of arc volcanoes.

    Science.gov (United States)

    Grove, T L; Till, C B; Lev, E; Chatterjee, N; Médard, E

    2009-06-01

    The processes that give rise to arc magmas at convergent plate margins have long been a subject of scientific research and debate. A consensus has developed that the mantle wedge overlying the subducting slab and fluids and/or melts from the subducting slab itself are involved in the melting process. However, the role of kinematic variables such as slab dip and convergence rate in the formation of arc magmas is still unclear. The depth to the top of the subducting slab beneath volcanic arcs, usually approximately 110 +/- 20 km, was previously thought to be constant among arcs. Recent studies revealed that the depth of intermediate-depth earthquakes underneath volcanic arcs, presumably marking the slab-wedge interface, varies systematically between approximately 60 and 173 km and correlates with slab dip and convergence rate. Water-rich magmas (over 4-6 wt% H(2)O) are found in subduction zones with very different subduction parameters, including those with a shallow-dipping slab (north Japan), or steeply dipping slab (Marianas). Here we propose a simple model to address how kinematic parameters of plate subduction relate to the location of mantle melting at subduction zones. We demonstrate that the location of arc volcanoes is controlled by a combination of conditions: melting in the wedge is induced at the overlap of regions in the wedge that are hotter than the melting curve (solidus) of vapour-saturated peridotite and regions where hydrous minerals both in the wedge and in the subducting slab break down. These two limits for melt generation, when combined with the kinematic parameters of slab dip and convergence rate, provide independent constraints on the thermal structure of the wedge and accurately predict the location of mantle wedge melting and the position of arc volcanoes.

  8. Detecting stellar-wind bubbles through infrared arcs in H ii regions

    Science.gov (United States)

    Mackey, Jonathan; Haworth, Thomas J.; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert; Harries, Tim J.

    2016-02-01

    Mid-infrared arcs of dust emission are often seen near ionizing stars within H ii regions. A possible explanations for these arcs is that they could show the outer edges of asymmetric stellar wind bubbles. We use two-dimensional, radiation-hydrodynamics simulations of wind bubbles within H ii regions around individual stars to predict the infrared emission properties of the dust within the H ii region. We assume that dust and gas are dynamically well-coupled and that dust properties (composition, size distribution) are the same in the H ii region as outside it, and that the wind bubble contains no dust. We post-process the simulations to make synthetic intensity maps at infrared wavebands using the torus code. We find that the outer edge of a wind bubble emits brightly at 24 μm through starlight absorbed by dust grains and re-radiated thermally in the infrared. This produces a bright arc of emission for slowly moving stars that have asymmetric wind bubbles, even for cases where there is no bow shock or any corresponding feature in tracers of gas emission. The 24 μm intensity decreases exponentially from the arc with increasing distance from the star because the dust temperature decreases with distance. The size distribution and composition of the dust grains has quantitative but not qualitative effects on our results. Despite the simplifications of our model, we find good qualitative agreement with observations of the H ii region RCW 120, and can provide physical explanations for any quantitative differences. Our model produces an infrared arc with the same shape and size as the arc around CD -38°11636 in RCW 120, and with comparable brightness. This suggests that infrared arcs around O stars in H ii regions may be revealing the extent of stellar wind bubbles, although we have not excluded other explanations.

  9. CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife

    Science.gov (United States)

    Kearney, Vasant; Cheung, Joey P.; McGuinness, Christopher; Solberg, Timothy D.

    2017-07-01

    The goal of this study is to demonstrate the feasibility of a novel non-coplanar-arc optimization algorithm (CyberArc). This method aims to reduce the delivery time of conventional CyberKnife treatments by allowing for continuous beam delivery. CyberArc uses a 4 step optimization strategy, in which nodes, beams, and collimator sizes are determined, source trajectories are calculated, intermediate radiation models are generated, and final monitor units are calculated, for the continuous radiation source model. The dosimetric results as well as the time reduction factors for CyberArc are presented for 7 prostate and 2 brain cases. The dosimetric quality of the CyberArc plans are evaluated using conformity index, heterogeneity index, local confined normalized-mutual-information, and various clinically relevant dosimetric parameters. The results indicate that the CyberArc algorithm dramatically reduces the treatment time of CyberKnife plans while simultaneously preserving the dosimetric quality of the original plans.

  10. Plasma Processes : Arc root dynamics in high power plasma torches – Evidence of chaotic behavior

    Indian Academy of Sciences (India)

    A K Das

    2000-11-01

    Although plasma torches have been commercially available for about 50 years, areas such as plasma gun design, process efficiency, reproducibility, plasma stability, torch lives etc. have remained mostly unattended. Recent torch developments have been focusing on the basic understanding of the plasma column and its dynamics inside the plasma torch, the interaction of plasma jet and the powders, the interaction of the plasma jet with surroundings and the impingement of the jet on the substrate. Two of the major causes of erratic and poor performance of a variety of thermal plasma processes are currently identified as the fluctuations arising out of the arc root movement on the electrodes inside the plasma torch and the fluid dynamic instabilities arising out of entrainment of the air into the plasma jet. This paper reviews the current state of understanding of these fluctuations as well as the dynamics of arc root movement in plasma torches. The work done at the author’s laboratory on studying the fluctuations in arc voltage, arc current, acoustic emissions and optical emissions are also presented. These fluctuations are observed to be chaotic and interrelated. Real time monitoring and controlling the arc instabilities through chaos characterization parameters can greatly contribute to the understanding of electrode erosion as well as improvement of plasma torch lifetime.

  11. Optical emission from a small scale model electric arc furnace in 250-600 nm region.

    Science.gov (United States)

    Mäkinen, A; Niskanen, J; Tikkala, H; Aksela, H

    2013-04-01

    Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr2O3, Ni, SiO2, Al2O3, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.

  12. Characterization of Mullite-Zirconia Composite Processed by Non-Transferred and Transferred Arc Plasma

    Institute of Scientific and Technical Information of China (English)

    S. YUGESWARAN; V. SELVARAJAN; L. LUSVARGHI; A. I. Y. TOK; D. SIVA RAMA KRISHNA

    2009-01-01

    The arc plasma melting technique is a simple method to synthesize high temperature reaction composites. In this study, mullite-zirconia composite was synthesized by transferred and non-transferred arc plasma melting, and the results were compared. A mixture of alumina and zircon powders with a mole ratio of 3 : 2 were ball milled for four hours and melted for two minutes in the transferred and non-transferred mode of plasma arcs. Argon and air were used as plasma forming gases. The phase and microstructural formation of melted samples were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The microstructure of the com-posites was found to be affected by the mode of melting. In transferred arc melting, zirconia flowers with uniform lines along with mullite whiskers were obtained. In the case of non-transferred arc plasma melting, mullite whiskers along with star shape zirconia were formed. Differential thermal analysis (DTA) of the synthesized mullite-zirconia composites provided a deeper understanding of the mechanisms of mullite formation during the two different processes.

  13. Prostate treatments, 1MRT o RapidArc; Tratamiento de prostata, IMART o RapidArc?

    Energy Technology Data Exchange (ETDEWEB)

    Castro novais, J.; Ruiz Maqueda, S.; Pardo Perez, E.; Molina Lopez, M. Y.; Cerro Penalver, E.

    2015-07-01

    Techniques that modulate the dose (as IMRT or RapidArcTM) improve dose homogeneity within the target volume decreasing the dose in healthy organs. The aim of this work is to study the dosimetric differences in prostate radiotherapy treatments with IMRT and RapidArcTM. The results of the 109 patients studied show that plans to RapidArcTM have better coverage, compliance and dose gradient outside the target volume. (Author)

  14. 49 CFR 195.226 - Welding: Arc burns.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  15. Palaeomagnetic constraints on the geodynamic evolution of the Gibraltar Arc

    NARCIS (Netherlands)

    Krijgsman, W.; Garces, M.

    2004-01-01

    Subduction zone roll-back was recently put forward as a convincing model to explain the geometry and evolution of the Gibraltar Arc. For other subduction-related arc systems of the Mediterranean, such as the Calabrian Arc and the Hellenic Arc, palaeomagnetic rotation data from Neogene extensional ba

  16. Effect of arc on radiation thermometry in welding process

    Institute of Scientific and Technical Information of China (English)

    李亮玉; 王燕; 武宝林

    2002-01-01

    The effect of arc on radiation thermometry is analyzed in a field close to the arc during the welding process, and the ratio of signal to noise and other factors are obtained for a small current arc .The method of the temperature measurement is feasible when the arc current is decreased to a smaller value in the welding process.

  17. Resistance Characteristics of Arc in Long Air Gap

    Institute of Scientific and Technical Information of China (English)

    YU Zhanqing; YU Junjie; ZENG Rong; CHEN He; PENG Xiang

    2013-01-01

    Arc resistance is an important parameter for characterizing long arcs in air,and its laboratory testing is of importance for accurate arc modeling of electromagnetic transient caused by short circuit fault.Therefore,we constructed an experimental system to study the characteristics of long AC arc in air.Driven by currents of 10 kA or 40 kA (root mean square value),the system produces arcs with different initial lengths of 1 m,2 m and 4 m,and the movement of the arcs are captured by a high-speed camera.After performing experiments using the system,we carried out analysis and comparisons of the arc resistance of arcs with different lengths and different currents,as well as a study of the relationship between the macro-morphology and the resistance of the arcs.Conclusions were drawn from the experimental results:the arc voltage had obvious saturation characteristics; the arc resistance increased with the increase of arc length and the decrease of current; the arcs bended or extended significantly in time and the peak arc voltage within a single cycle increased correspondingly; the arcs had voltage and current in the same phase.In the end,a formula of arc resistance based on the experiment results is derived.

  18. Seldovia, Alaska 1 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seldovia, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 1 arc-second resolution in geographic coordinates. This grid is strictly for...

  19. Seward, Alaska 1 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1 arc-second Seward Alaska Elevation Grid provides bathymetric data in ASCII raster format of .89-second resolution in geographic coordinates. This grid is...

  20. Asymptotic Markov inequality on Jordan arcs

    Science.gov (United States)

    Totik, V.

    2017-03-01

    Markov's inequality for the derivative of algebraic polynomials is considered on C^2-smooth Jordan arcs. The asymptotically best estimate is given for the kth derivative for all k=1,2,\\dots . The best constant is related to the behaviour around the endpoints of the arc of the normal derivative of the Green's function of the complementary domain. The result is deduced from the asymptotically sharp Bernstein inequality for the kth derivative at inner points of a Jordan arc, which is derived from a recent result of Kalmykov and Nagy on the Bernstein inequality on analytic arcs. In the course of the proof we shall also need to reduce the analyticity condition in this last result to C^2-smoothness. Bibliography: 21 titles.

  1. Seward, Alaska 3 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3 arc-second Seward Alaska Elevation Grid provides bathymetric data in ASCII raster format of 2.67-second resolution in geographic coordinates. This grid is...

  2. Laboratory arc furnace features interchangeable hearths

    Science.gov (United States)

    Armstrong, J. L.; Kruger, O. L.

    1967-01-01

    Laboratory arc furnace using rapidly interchangeable hearths gains considerable versatility in casting so that buttons or special shaped castings can be produced. It features a sight glass for observation.

  3. Arc -furnace Flicker Compensation in Ethiopia.

    African Journals Online (AJOL)

    supply system of the Ethiopian Electric Light and ... independent of the magnitude of the arc furnace load. They were intolerable ..... Weather sealing (Important in Ethi- opia). 3. .... nace currents during the worst periods of initial melt- ing down.

  4. Sensitivity of collapsed arc QA method for delivery errors in Volumetric Modulated Arc Therapy (VMAT)

    Science.gov (United States)

    Young, Tony; Xing, Aitang; Vial, Philp; Thwaites, David; Holloway, Lois; Arumugam, Sankar

    2015-01-01

    In this paper the sensitivity of an Electronic Portal Imaging Device (EPID) to detecting introduced Volumetric Arc Therapy (VMAT) treatment errors was studied using the Collapsed Arc method. Two clinical Head and Neck (H&N) and Prostate treatment plans had gantry dependent dose and MLC errors introduced to the plans. These plans were then delivered to an Elekta Synergy Linear Accelerator EPID and compared to the original treatment planning system Collapsed Arc dose matrix. With the Collapsed Arc technique the EPID was able to detect MLC errors down to 2mm and dose errors of down to 3% depending on the treatment plan complexity and gamma tolerance used.

  5. Rapid magmatic processes accompany arc-continent collision: the Western Bismarck arc, Papua New Guinea

    Science.gov (United States)

    Cunningham, Heather; Gill, Jim; Turner, Simon; Caulfield, John; Edwards, Louise; Day, Simon

    2012-11-01

    New U-Th-Ra, major and trace element, and Sr-Nd-Pb isotope data are presented for young lavas from the New Britain and Western Bismarck arcs in Papua New Guinea. New Britain is an oceanic arc, whereas the latter is the site of an arc-continent collision. Building on a recent study of the Manus Basin, contrasts between the two arcs are used to evaluate the processes and timescales of magma generation accompanying arc-continent collision and possible slab detachment. All three suites share many attributes characteristic of arc lavas that can be ascribed to the addition of a regionally uniform subduction component derived from the subducting altered oceanic crust and sediment followed by dynamic melting of the modified mantle. However, the Western Bismarck arc lavas diverge from the Pb isotope mixing array formed by the New Britain and the Manus Basin lavas toward elevated 208Pb/204Pb. We interpret this to reflect a second and subsequent addition of sediment melt at crustal depth during collision. 238U and 226Ra excesses are preserved in all of the lavas and are greatest in the Western Bismarck arc. High-Mg andesites with high Sr/Y ratios in the westernmost arc are attributed to recent shallow mantle flux melting at the slab edge. Data for two historical rhyolites are also presented. Although these rhyolites formed in quite different tectonic settings and display different geochemical and isotopic compositions, both formed from mafic parents within millennia.

  6. Arcing flow phenomena; Visualisation des ecoulements en presence d'un arc de coupure

    Energy Technology Data Exchange (ETDEWEB)

    Rachard, H.; Mottet, C. [Schneider Electric, Centre de Recherches A2, 75 - Paris (France)

    2002-06-01

    Optical diagnostic techniques have been used for studying electric arcing phenomena at Schneider Electric for many years now, and are integrated in new-product development practice. Studies have so far focused on electric arc behaviour, but today we are especially interested in studying the interaction of an electric arc with its immediate environment, i.e. gaseous medium and neighbouring materials. This article starts by discussing the specificities of electric arcs in low-voltage circuit-breakers, then goes on to examine diagnostic methods for viewing the physical phenomena of interest. After setting out and analysing the results obtained, we conclude with details on planned upgrades targeting enhanced diagnostic performance. (author)

  7. Influence of metal vapour on arc temperatures in gas-metal arc welding: convection versus radiation

    Science.gov (United States)

    Murphy, Anthony B.

    2013-06-01

    The presence of metal vapour in gas-metal arc welding has been shown to have two strong effects on the arc plasma: a decrease in temperature throughout the arc, and the formation of a local temperature minimum near the arc axis. These effects have been attributed, on the basis of different computational models, to either the increased radiative emission associated with the presence of metal vapour in the arc plasma, or the influence of the metal vapour influx on convective flow in the arc. This question is investigated using a three-dimensional computational model in which the production and the transport of metal vapour are taken into account self-consistently. Parameters relevant to welding of thin sheets of aluminum are examined. For these conditions, it is found that the first effect (the decrease in temperature throughout the arc) is due to both the increased radiative emission and the influence of the metal vapour influx on flow. The second effect (the local temperature minimum, which in this case occurs just below the wire electrode) is a consequence of the influence of aluminum vapour produced from the wire electrode on flow in the arc. By examining published results and the energy balance in the plasma, it is shown that for welding of steel with higher arc currents, the increased radiative emission can lead to a local temperature minimum at a greater distance from the wire electrode.

  8. Basins in ARC-continental collisions

    Science.gov (United States)

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  9. Where exactly are the arcs of Neptune?

    Science.gov (United States)

    Horanyi, Mihaly; Porco, Carolyn C.

    1993-12-01

    A largely neglected secular perturbation that changes the effective mean motion is noted to occur on the osculating longitude at epoch, due to periodic close encounters between arc particles of Neptune and Galatea. This perturbation is here examined both analytically and numerically. It is shown that the confinement mechanism, based on single-satellite shepherding by Galatea, remains in force at the new position of the arc-confining resonances.

  10. New method for capturing arc of moving on switching apparatus

    Institute of Scientific and Technical Information of China (English)

    LIU Jiao-min; WANG Jing-hong

    2007-01-01

    The switching arc that occurs in contact gap when contact of low voltage apparatus closes or breaks in electric circuit is harmful to the contacts, insulation, and reliability of electrical gear because of its very high temperature. As arcing time is very short in switching gear, it is very difficult to observe arc phenomena directly for researchers. Therefore, visualization of switching arc is important for understanding arc phenomena, to analyze the arc features, and to improve the design and reliability of switching gear. Based on analyzing the visualization methods proposed by researchers, a new switching arc capturing approach is introduced in this paper. Arc image acquisition, and image processing techniques were studied. A switching arc image acquisition and visual simulation software based on high speed CCD camera hard ware system was designed and implemented to yield enhanced arc image with good visual effect.

  11. Influence of the gas flow rate on the nonchemical equilibrium N2 arc behavior in a model nozzle circuit breaker

    Science.gov (United States)

    Wu, Yi; Sun, Hao; Tanaka, Yasunori; Tomita, Kentaro; Rong, Mingzhe; Yang, Fei; Uesugi, Yoshihiko; Ishijima, Tatsuo; Wang, Xiaohua; Feng, Ying

    2016-10-01

    The influence of the gas flow rate on the N2 arc behavior was investigated based on a previously established nonchemical equilibrium (non-CE) model. This numerical non-CE model was adopted in the N2 nozzle arc in a model circuit breaker. The arc behaviors of both the arc burning and arc decay phases were obtained at different gas flow rates in both the non-CE and local thermal equilibrium (LTE) model. To better understand the influence of the gas flow rate, in this work we devised the concept of the nonequilibrium parameter. Additionally, the influences of convection, diffusion, and chemical reactions were examined separately to determine which one contributed most to the non-CE behavior. Finally, laser Thomson scattering (LTS) measurements at different gas flow rates were adopted to further demonstrate the validity of the non-CE model. The results of the macroscopic behaviors indicate that the deviations between the non-CE and LTE models during the arc burning phase are much fewer than those during the arc decay phase. By the nonequilibrium parameters, it clearly indicates that with an increase in the gas flow rate, the non-CE effect will be greatly enhanced. During the arc burning phase, this non-CE effect is mainly caused by radial diffusion of the particles. During the arc decay phase, for the charged particles, the chemical reactions had the greatest effect on the time variations of the particle number densities; however, for the neutral particles the time variations of the number densities were mutually influenced by convections, diffusions, and chemical reactions. Finally, the LTS results further demonstrate the validity of the non-CE model at different gas flow rates.

  12. Magnesium isotope geochemistry in arc volcanism

    Science.gov (United States)

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.

  13. Magnesium isotope geochemistry in arc volcanism.

    Science.gov (United States)

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-28

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ(26)Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ(26)Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.

  14. Electric arc furnace models for flicker study

    Directory of Open Access Journals (Sweden)

    Catalina González Castaño

    2016-06-01

    Full Text Available Objective: The aim of this paper is to evaluate voltage fluctuations or flicker of two electric arc furnace models through comparison with real data.Method: The first proposed model is founded on the energy conservation principle, which generates a non-linear differential equation modelling the electric arc voltage – current characteristics. Voltage fluctuations are generated using a chaotic circuit that modulates the amplitude of arc voltage. The second model is based on the empirical relationship between the arc diameter or length as well as voltage and electrical current on the arc. Voltage fluctuations are considered adding a random signal in the arc length. Both models are implemented in PSCADTM.Results: The results of both models are compared with real data taken at the most critical stage of the operation of the furnace, and they show that the model based on energy conservation has a lower average mean square error in the voltages and currents 5.6 V and 1.7 kA against 27,2 V y 3.38 kA obtained with the second model.Conclusions: Both models consider the nonlinearity and random behavior present in this type of load, validating their inclusion in computer models of electric power systems.

  15. Recent ARC developments: Through modularity to interoperability

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, O; Cameron, D; Ellert, M; Groenager, M; Johansson, D; Kleist, J [NDGF, Kastruplundsgade 22, DK-2770 Kastrup (Denmark); Dobe, P; Joenemo, J; Konya, B [Lund University, Experimental High Energy Physics, Institute of Physics, Box 118, SE-22100 Lund (Sweden); Fraagaat, T; Konstantinov, A; Nilsen, J K; Saada, F Ould; Qiang, W; Read, A [University of Oslo, Department of Physics, P. O. Box 1048, Blindern, N-0316 Oslo (Norway); Kocan, M [Pavol Jozef Safarik University, Faculty of Science, Jesenna 5, SK-04000 Kosice (Slovakia); Marton, I; Nagy, Zs [NIIF/HUNGARNET, Victor Hugo 18-22, H-1132 Budapest (Hungary); Moeller, S [University of Luebeck, Inst. Of Neuro- and Bioinformatics, Ratzeburger Allee 160, D-23538 Luebeck (Germany); Mohn, B, E-mail: oxana.smirnova@hep.lu.s [Uppsala University, Department of Physics and Astronomy, Div. of Nuclear and Particle Physics, Box 535, SE-75121 Uppsala (Sweden)

    2010-04-01

    The Advanced Resource Connector (ARC) middleware introduced by NorduGrid is one of the basic Grid solutions used by scientists worldwide. While being well-proven in daily use by a wide variety of scientific applications at large-scale infrastructures like the Nordic DataGrid Facility (NDGF) and smaller scale projects, production ARC of today is still largely based on conventional Grid technologies and custom interfaces introduced a decade ago. In order to guarantee sustainability, true cross-system portability and standards-compliance based interoperability, the ARC community undertakes a massive effort of implementing modular Web Service (WS) approach into the middleware. With support from the EU KnowARC project, new components were introduced and the existing key ARC services got extended with WS technology based standard-compliant interfaces following a service-oriented architecture. Such components include the hosting environment framework, the resource-coupled execution service, the re-engineered client library, the self-healing storage solution and the peer-to-peer information system, to name a few. Gradual introduction of these new services and client tools into the production middleware releases is carried out together with NDGF and thus ensures a smooth transition to the next generation Grid middleware. Standard interfaces and modularity of the new component design are essential for ARC contributions to the planned Universal Middleware Distribution of the European Grid Initiative.

  16. Making and breaking an Island arc: a new perspective from the Oligocene Kyushu-Palau arc

    Science.gov (United States)

    Ishizuka, O.; Taylor, R. N.; Yuasa, M.; Ohara, Y.

    2010-12-01

    The Kyushu-Palau Ridge (KPR) is a 2000km long remnant island arc that is separated from the active Izu-Bonin-Mariana (IBM) arc system by a series of spreading and rift basins. In this study we present 40Ar/39Ar ages and geochemical data for new samples taken from the entire length of the Kyushu-Palau arc. As such, this data provides the first comprehensive evaluation of temporal and spatial changes that are present in an Eocene-Oligocene island arc. Kyushu-Palau arc geochemistry is evaluated alongside new data from the conjugate arc which is stranded within the IBM fore-arc. Boninitic magmatism gave way to transitional arc suites including high-Mg andesites at c. 45 Ma (Ishizuka et al., 2006). After the transitional 45-41 Ma period, a mature arc system developed through the Eocene-Oligocene time: This volcanism is now preserved as the KPR. Dating results from 33 sites indicate that the KPR was active between 25 and 43 Ma, but the majority of the exposed volcanism occurred in the final phase of this arc, between 25 and 27 Ma. Unlike the IBM, the KPR has only limited systematic along-arc trends and does not include any of the strongly HIMU lavas found to the south of Izu-Bonin. Two components found along the KPR are found to have geochemistry that suggests an origin in the supra-subduction mantle rather than from the descending ocean crust. Firstly, in the south of the arc, EM-2-like lavas are present where the West Philippine Basin was in the final stages of spreading. Secondly, EM-1-like lavas are present in a restricted section of the arc, suggesting a localised heterogeneity. Subduction flux beneath the KPR generally imparted a Pb isotope vector towards low Δ8/4 (19). This is a similar trend to the Eocene/Oligocene lavas found on the eastern side of the basins which split the arc at 25Ma. Another geochemical heterogeneity is found at the KPR-Daito Ridge intersection where arc magmatism occurred on pre-existing Daito Ridge crust: a Cretaceous remnant arc

  17. Metamorphic and tectonic evolution of Ceuta peninsula (Internal Rif): new interpretation in the framework of arc and back arc evolution

    Science.gov (United States)

    Homonnay, Emmanuelle; Lardeaux, Jean-Marc; Corsini, Michel; Cenki-Tok, Bénédicte; Bosch, Delphine; Munch, Philippe; Romagny, Adrien; Ouazzani-Touhami, Mohamed

    2016-04-01

    thrusting toward the NE. Furthermore, biotite-sillimanite bearing S2 foliation affecting the whole of crustal rocks is contemporaneous with the movement on this main ductile thrusting. We combined garnet-biotite and GASP thermo-barometers with thermodynamic modelling (Theriak-Domino) in order to constrain pressure and temperature conditions of D2 and D3 tectono-metamorphic events. P-T conditions of D2 deformation are in the range 7-10kbar and 770-820°C and are compatible with syn-tectonic partial melting. D3 deformation event occurred at 1-7kbar and 400-550°C. These metamorphic conditions reflect abnormally high geothermal gradients during both shortening and thinning and are clearly compatible with the thermal evolution recognized in continental arcs. Preliminary U-Th-Pb (monazite, zircon and xenotime) and previous Ar39/Ar40 (micas) analyses, furnished similar ages around 21 Ma for D2 and D3 events, suggesting a very fast transition from arc to back-arc dynamics.

  18. The heat budgets of magmatic arcs: Discrepancies between heat flow measurements, volatile fluxes, and interpretations of the geologic record

    Science.gov (United States)

    Van Buer, N. J.

    2015-12-01

    Arc magmatic processes, from differentiation to emplacement, depend crucially on the rate at which heat and magma are supplied to the arc crust. In active arcs, the total heat flow can be estimated relatively directly by measuring and quantifying the amounts of heat lost via conduction, hydrothermal circulation, and eruption. This total heat flow can be used to calculate the implied magmatic flux at depth. Alternatively, magmatic flux in active arcs can be estimated from measured rates of volatile emissions, usually SO2. Unfortunately, heat flow and volatile flux data sufficiently detailed to make these calculations exist for only a handful of active arcs. In the geologic record, rates of arc magmatic flux have most frequently been estimated by measuring the preserved volumes of intrusive and extrusive products and dividing by the geochronologically determined duration of arc activity. This can be converted to heat flow by assuming a certain amount of heat carried per volume of magma. The ranges of magmatic flux estimated via either heat flow or SO2 are similar for modern arcs, but, on average, estimates from the geologic record are lower by about a factor of three (Fig. 1). This discrepancy may indicate that the assumption that preserved igneous rock volumes represent the total advective flux is a poor choice when interpreting the geologic record. Recycling of early solidified magma and loss of cumulates to the mantle may be important, i.e., the time-integrated advective flux might significantly exceed the net preserved intrusive volume. This is also supported by other lines of evidence, including geochemical mass-balance arguments, thermal models of basalt flux needed to allow substantial assimilation and/or crystal fractionation in the lower crust, high-temperature thermochronology in arcs, and thermal models of the conditions necessary to cause large, explosive eruptions from upper crustal magma chambers. Substantial recycling or convection within the arc crust

  19. Late Cretaceous Arc Initiation on the Edge of an Oceanic Plateau (Southern Central America)

    Science.gov (United States)

    Buchs, D. M.; Baumgartner, P. O.; Arculus, R.

    2007-12-01

    lavas, massive lava flows and intrusives. These rocks have incompatible element patterns similar to plateau basalts. However, whole rock and unaltered clinopyroxene compositions indicate variable Pb enrichments and Nb-Ti depletions that are due to slab-derived fluids in the source. Differentiation trends of the primitive island arc differ compared with the plateau in terms of Si, Al, Fe, Mg, Ca and alkalis. The source of the primitive arc magmas corresponds to the lithospheric mantle initially associated with the plateau. Beginning of melting is linked to slab-derived fluids and was likely facilitated by high thermal gradients under the plateau. As a consequence, incompatible elements of the primitive arc lavas mimic plateau affinities and show variable arc signature overprints. In some cases, the resemblance between the early arc and plateau rocks is very high, making a distinction between the two types of rocks almost impossible.

  20. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    Science.gov (United States)

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius.

  1. GUI for studying the parameters influence of the electric arc model for a three-phase electric arc furnace

    Science.gov (United States)

    Ghiormez, L.; Prostean, O.; Panoiu, M.; Panoiu, C.

    2017-01-01

    This paper presents an analysis regarding the modeling of the behavior for a three-phase electric arc furnace installation. Therefore, a block diagram is implemented in Simulink that represents the modeling of the entire electric arc furnace installation. This block diagram contains also the modeling of the electric arc which is the element that makes the electric arc furnace behaving as a nonlinear load. The values for the model parameters of the electric arc furnace installation are like the ones from the real installation taken into consideration. Other model parameters are the electric arc model ones. In order to study the influence of the parameters of the electric arc models, it is developed a Matlab program that contains the graphical user interfaces. These interfaces make connection with the models of the electric arc implemented in Simulink. The interfaces allow the user to modify parameters for each of the electric arc model. Current and voltage of the electric arc are the variables taken into account to study the influence of the parameters on the electric arc models. Waveforms for voltage and current of the electric arc are illustrated when a parameter of the model is modified in order to analyze the importance of this parameter on the electric arc model. Also, for each of the models is presented the voltage-current characteristic of the electric arc because this characteristic gives information about the behavior of the electric arc furnace installation.

  2. Static Heat Loads in the LHC Arc Cryostats: Final Assessment

    CERN Document Server

    Parma, V

    2010-01-01

    This note presents the final assessment of the static heat loads in the LHC arc cryostats, using different experimental methods during the first commissioning period in 2007. This assessment further develops and completes previous estimates made during the commissioning of sector 7_8 [1]. The estimate of the helium inventory, a prerequisite for the heat load calculation, is also presented. Heat loads to the cold mass are evaluated from the internal energy balance during natural as well as powered warm-ups of the helium baths in different subsector. The helium inventory is calculated from the internal energy balance during powered warm-ups and matched with previous assessments. Furthermore, heat loads to the thermal shield are estimated from the non-isothermal cooling of the supercritical helium in line E. The comparison of measured heat loads with previous estimates and with budgeted values is then presented, while their correlation with some important parameters like insulation vacuum pressure and some heat ...

  3. Glass-ceramic materials from electric arc furnace dust.

    Science.gov (United States)

    Kavouras, P; Kehagias, T; Tsilika, I; Kaimakamis, G; Chrissafis, K; Kokkou, S; Papadopoulos, D; Karakostas, Th

    2007-01-31

    Electric arc furnace dust (EAFD) was vitrified with SiO2, Na2CO3 and CaCO3 powders in an electric furnace at ambient atmosphere. Vitreous products were transformed into glass-ceramic materials by two-stage heat treatment, at temperatures determined by differential thermal analysis. Both vitreous and glass-ceramic materials were chemically stable. Wollastonite (CaSiO3) was separated from the parent matrix as the dominant crystalline phase, verified by X-ray diffraction analysis and energy dispersive spectrometry. Transmission electron microscopy revealed that wollastonite crystallizes mainly in its monoclinic form. Knoop microhardness was measured with the static indentation test method in all initial vitreous products and the microhardness values were in the region of 5.0-5.5 GPa. Devitrification resulted in glass-ceramic materials with microhardness values strongly dependent on the morphology and orientation of the separated crystal phase.

  4. Compacting of fly dusts from cupola and electric arc furnace

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-01-01

    Full Text Available Recycling and utilization of dust waste is important not only from the point of view of its usage as an alternative source of raw materials, but regarding the environmental problems also. Dust emissions arise from thermal and chemical or physical processes and mechanical actions. Two kinds of fl y dusts from cupola furnaces (hot and cold blast cupola furnace and fl y dust from electric arc furnace were used by experiments. They were pelletized only with addition of water and briquetted with diff erent addition of water glass, bentonite and cement. Quality of briquettes was tested by compression – strength test and by break down test in green state, after drying and afterstoring (1 month.

  5. Beam Vacuum Interconnects for the LHC Cold Arcs

    CERN Document Server

    Veness, R J M; Gröbner, Oswald; Lepeule, P; Reymermier, C; Schneider, G; Skoczen, Blazej; Kleimenok, V; Nikitin, I N

    1999-01-01

    The design of the beam vacuum interconnect is described in this paper. Features include a novel RF bridge design to maximise lateral flexibility during cryostat Cold arcs of the LHC will consist of twin aperture dipole, quadrupole and corrector magnets in cryostats, operating at 1.9 K. Beam vacuum chambers, along with all connecting elements require flexible 'interconnects' between adjacent cryostats to allow for thermal and mechanical offsets foreseen during machine operation and alignment. In addition, the beam vacuum chambers contain perforated beam screens to intercept beam induced heat loads at an intermediate temperature. These must also be connected with low impedance RF bridges in the interconnect zones.alignment and so-called 'nested' bellows to minimise the required length of the assembly.

  6. On Possible Arc Inception on Low Voltage Solar Array

    Science.gov (United States)

    Vayner, Boris

    2015-01-01

    Recent analysis of spacecraft failures during the period of 1990-2013 demonstrated clearly that electrostatic discharges caused more than 8 percent of all registered failures and anomalies, and comprised the most costly losses (25 percent) for operating companies and agencies. The electrostatic discharges on spacecraft surfaces are the results of differential charging above some critical (threshold) voltages. The mechanisms of differential charging are well known, and various methods have been developed to prevent a generation of significant electric fields in areas of triple junctions. For example, low bus voltages in Low Earth Orbit plasma environment and slightly conducting layer over cover-glass (ITO) in Geosynchronous Orbit surroundings are believed to be quite reliable measures to prevent discharges on respective surfaces. In most cases, the vulnerable elements of spacecraft (solar arrays, diode boards, etc.) go through comprehensive ground tests in vacuum chambers. However, tests articles contain the miniscule fragments of spacecraft components such as 10-30 solar cells of many thousands deployed on spacecraft in orbit. This is one reason why manufacturing defects may not be revealed in ground tests but expose themselves in arcing on array surface in space. The other reason for ineffectiveness of discharge preventive measures is aging of all materials in harsh orbital environments. The expected life time of modern spacecraft varies within the range of five-fifteen years, and thermal cycling, radiation damages, and mechanical stresses can result in surface erosion on conductive layers and microscopic cracks in cover-glass sheets and adhesive films. These possible damages may cause significant increases in local electric field strengths and subsequent discharges. The primary discharges may or may not be detrimental to spacecraft operation, but they can produce the necessary conditions for sustained arcs initiation. Multiple measures were developed to prevent

  7. Influence of Catalysis and Oxidation on Slug Calorimeter Measurements in Arc Jets

    Science.gov (United States)

    Nawaz, Anuscheh; Driver, Dave; TerrazasSalinas, Imelda

    2012-01-01

    Arc jet tests play a critical role in the characterization and certification of thermal protection materials and systems (TPS). The results from these arc jet tests feed directly into computational models of material response and aerothermodynamics to predict the performance of the TPS in flight. Thus the precise knowledge of the plasma environment to which the test material is subjected, is invaluable. As one of the environmental parameters, the heat flux is commonly measured. The measured heat flux is used to determine the plasma enthalpy through analytical or computational models. At NASA Ames Research Center (ARC), slug calorimeters of a geometrically similar body to the test article are routinely used to determine the heat flux. A slug calorimeter is a thermal capacitance-type calorimeter that uses the temperature rise in a thermally insulated slug to determine the heat transfer rate, see Figure 1(left). Current best practices for measuring the heat flux with a slug calorimeter are described in ASTM E457 - 96. Both the calorimeter body and slug are made of Oxygen Free High Conductivity Copper, and are cleaned before each run.

  8. Method to reduce arc blow during DC arc welding of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J. H.; Rueda-Morales, G.L.; Caleyo, F.; Hallen, J. M. [Instituto Politecnico Nacional, Mexico, (Mexico); Lopez-Montenegro, A.; Perz-Baruch, E. [Pemex Exploracion y Produccion, Tabasco, (Mexico)

    2010-07-01

    Steel pipelines are huge ferromagnetic structures and can be easily subjected to arc blow during the DC arc welding process. The development of methods to avoid arc blow during pipeline DC arc welding is a major objective in the pipeline industry. This study developed a simple procedure to compensate the residual magnetic field in the groove during DC arc welding. A Gaussmeter was used to perform magnetic flux density measurements in pipelines in southern Mexico. These data were used to perform magnetic finite element simulations using FEMM. Different variables were studied such as the residual magnetic field in the groove or the position of the coil with respect to the groove. An empirical predictive equation was developed from these trials to compensate for the residual magnetic field. A new method of compensating for the residual magnetic field in the groove by selecting the number of coil turns and the position of the coil with respect to the groove was established.

  9. Research of Arc Chamber Optimization Techniques Based on Flow Field and Arc Joint Simulation

    Science.gov (United States)

    Zhong, Jianying; Guo, Yujing; Zhang, Hao

    2016-03-01

    The preliminary design of an arc chamber in the 550 kV SF6 circuit breaker was proposed in accordance with the technical requirements and design experience. The structural optimization was carried out according to the no-load flow field simulation results and verified by no-load pressure measurement. Based on load simulation results such as temperature field variation at the arc area and the tendency of post arc current under different recovery voltage, the second optimal design was completed and its correctness was certificated by a breaking test. Results demonstrate that the interrupting capacity of an arc chamber can be evaluated by the comparison of the gas medium recovery speed and post arc current growth rate.

  10. Overview of ArcGIS Engine Controls%ArcGIS Engine控件综述

    Institute of Scientific and Technical Information of China (English)

    刘磊

    2010-01-01

    ArcGIS Engine是ESRI公司发布的嵌入式地理信息系统软件开发包.基于ArcGIS Engine开发的应用程序一般有3类:独立非可视化应用程序、独立可视化应用程序和嵌入式应用程序,由于ArcGIS Engine提供了一套可复用、跨平台、设计良好的ArcGIS控件,因此利用控件开发可视化的GIS应用程序是一种常用的开发方式.重点探讨了ArcGIS Engine自带控件的功能、使用方法以及与伙伴控件之间的联系机制.

  11. Critical Length Criterion and the Arc Chain Model for Calculating the Arcing Time of the Secondary Arc Related to AC Transmission Lines

    Science.gov (United States)

    Cong, Haoxi; Li, Qingmin; Xing, Jinyuan; Li, Jinsong; Chen, Qiang

    2015-06-01

    The prompt extinction of the secondary arc is critical to the single-phase reclosing of AC transmission lines, including half-wavelength power transmission lines. In this paper, a low-voltage physical experimental platform was established and the motion process of the secondary arc was recorded by a high-speed camera. It was found that the arcing time of the secondary arc rendered a close relationship with its arc length. Through the input and output power energy analysis of the secondary arc, a new critical length criterion for the arcing time was proposed. The arc chain model was then adopted to calculate the arcing time with both the traditional and the proposed critical length criteria, and the simulation results were compared with the experimental data. The study showed that the arcing time calculated from the new critical length criterion gave more accurate results, which can provide a reliable criterion in term of arcing time for modeling and simulation of the secondary arc related with power transmission lines. supported by National Natural Science Foundation of China (Nos. 51277061 and 51420105011)

  12. BASIC THEORY AND METHOD OF WELDING ARC SPECTRAL INFORMATION

    Institute of Scientific and Technical Information of China (English)

    Li Junyue; Li Zhiyong; Li Huan; Xue Haitao

    2004-01-01

    Arc spectral information is a rising information source which can solve many problems that can not be done with arc electric information and other arc information.It is of important significance to develop automatic control technique of welding process.The basic theory and methods on it play an important role in expounding and applying arc spectral information.Using concerned equation in plasma physics and spectrum theory,a system of equations including 12 equations which serve as basic theory of arc spectral information is set up.Through analyzing of the 12 equations,a basic view that arc spectral information is the reflection of arc state and state variation,and is the most abundant information resource reflecting welding arc process is drawn.Furthermore,based on the basic theory,the basic methods of test and control of arc spectral information and points out some applications of it are discussesed.

  13. HybridArc: A novel radiation therapy technique combining optimized dynamic arcs and intensity modulation

    Energy Technology Data Exchange (ETDEWEB)

    Robar, James L., E-mail: james.robar@cdha.nshealth.ca [Department of Radiation Oncology, Dalhousie University, Halifax (Canada); Department of Physics and Atmospheric Science, Dalhousie University, Halifax (Canada); Thomas, Christopher [Department of Radiation Oncology, Dalhousie University, Halifax (Canada)

    2012-01-01

    This investigation focuses on possible dosimetric and efficiency advantages of HybridArc-a novel treatment planning approach combining optimized dynamic arcs with intensity-modulated radiation therapy (IMRT) beams. Application of this technique to two disparate sites, complex cranial tumors, and prostate was examined. HybridArc plans were compared with either dynamic conformal arc (DCA) or IMRT plans to determine whether HybridArc offers a synergy through combination of these 2 techniques. Plans were compared with regard to target volume dose conformity, target volume dose homogeneity, sparing of proximal organs at risk, normal tissue sparing, and monitor unit (MU) efficiency. For cranial cases, HybridArc produced significantly improved dose conformity compared with both DCA and IMRT but did not improve sparing of the brainstem or optic chiasm. For prostate cases, conformity was improved compared with DCA but not IMRT. Compared with IMRT, the dose homogeneity in the planning target volume was improved, and the maximum doses received by the bladder and rectum were reduced. Both arc-based techniques distribute peripheral dose over larger volumes of normal tissue compared with IMRT, whereas HybridArc involved slightly greater volumes of normal tissues compared with DCA. Compared with IMRT, cranial cases required 38% more MUs, whereas for prostate cases, MUs were reduced by 7%. For cranial cases, HybridArc improves dose conformity to the target. For prostate cases, dose conformity and homogeneity are improved compared with DCA and IMRT, respectively. Compared with IMRT, whether required MUs increase or decrease with HybridArc was site-dependent.

  14. The geochemistry and petrogenesis of the Paleoproterozoic Green Mountain arc: A composite(?), bimodal, oceanic, fringing arc

    Science.gov (United States)

    Jones, D.S.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.

    2011-01-01

    The inferred subduction affinity of the ~1780-Ma Green Mountain arc, a dominantly bimodal igneous terrane (together with immature marine and volcaniclastic sedimentary rocks) accreted to the southern margin of the Wyoming province, is integral to arc-accretion models of the Paleoproterozoic growth of southern Laurentia. Conversely, the dominantly bimodal nature of many putative arc-related igneous suites throughout southern Laurentia, including the Green Mountain arc, has also been used to support models of growth by extension of pre-existing crust. We report new geochemical and isotopic data from ~1780-Ma gabbroic and granodioritic to tonalitic rocks of the Big Creek Gneiss, interpreted as consanguineous with previously studied metavolcanic rocks of the Green Mountain Formation.The ~1780-Ma Big Creek Gneiss mafic rocks show clear geochemical signatures of a subduction origin and provide no supporting evidence for extensional tectonism. The ~1780-Ma Big Creek Gneiss felsic rocks are attributed to partial melting of mafic and/or mixed lower-crustal material. The bimodal nature of the suite results from the combination of arc basalts and felsic crustal melts. The lack of andesite is consistent with the observed tholeiitic differentiation trend of the mafic magmas. The lower e{open}Nd(1780Ma) values for the felsic rocks vs. the mafic rocks suggest that the unexposed lower crust of the arc may be older than the arc and that Trans-Hudson- or Penokean-aged rocks possibly form the substratum of the arc. Our results reinforce previous interpretations that arc-related magmatism played a key role in the Paleoproterozoic crustal growth of southern Laurentia, but also support the possibility of unexposed older crust as basement to the arcs. ?? 2011 Elsevier B.V.

  15. Gas Arcs in Comet Hyakutake: Revisited

    Science.gov (United States)

    Combi, M. R.; Harris, W. M.; Kabin, K.

    2000-10-01

    The recent break-up of the nucleus of Comet LINEAR S4 demonstrates that fragmentation is an important cometary process and that it is not a rare phenomenon. Comet Hyakutake (1996 B2) underwent an outburst of gas production on March 21, 1996. Subsequent to the outburst, fragments, or condensations as they have been called, were observed moving tailward from the position of the nucleus. Arc-shaped structures were seen in images of gas species (OH, CN and C2) providing clear evidence of production of gas from cometary nucleus debris also tailward of the nucleus. We have already (Harris et al. 1997, Science 277, 676) described observations taken with the WIYN telescope consisting of a 6-hour time sequence of images on March 26, 1996 of CN and dust continuum and a single OH image showing that the arc, and by inference it's source, was generally moving tailward with the visible condensations. The entire OH arc was reproduced using a kinetic Direct Simulation Monte Carlo (DSMC) calculation for water and all its photodissociation products. DSMC is suited to this physical environment that is in transition from fluid conditions in the inner coma to free-expansion in the outer coma. Our model asuming a string of fragments within the apex of the arc (i.e., the intersection of the arc and the tailward sun-comet line) reproduced the arc. Here we present a more extensive parameter study of the arc using DSMC and a solution of the standard perfect-fluid Euler equations. We find that a secondary source just behind the apex of the arc can reproduce the OH arc, but the location of the source must be much closer to the apex than indicated by solutions of the Navier-Stokes equations (NSE) (Rodionov et al. 1998, Icarus 136, 232). We find that we must use unrealistically large collision cross sections to reproduce the NSE results, and that the NSE results are not substantially different from a simpler Euler equation approach. This work has been supported by NASA Planetary Atmospheres

  16. Plasma arc cutting technology: simulation and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cantoro, G; Colombo, V; Concetti, A; Ghedini, E; Sanibondi, P; Zinzani, F; Rotundo, F [Department of Mechanical Engineering (D.I.E.M.) and Research Center for Applied Mathematics (C.I.R.A.M.), Alma Mater Studiorum-Universita di Bologna, Via Saragozza 8, 40123 Bologna (Italy); Dallavalle, S; Vancini, M, E-mail: emanuele.ghedini@unibo.it [Cebora S.p.A., Via Andrea Costa 24, 40057 Cadriano di Granarolo (Italy)

    2011-01-01

    Transferred arc plasma torches are widely used in industrial processes for cutting of metallic materials because of their ability to cut a wide range of metals with very high productivity. The process is characterized by a transferred electric arc established between an electrode inside the torch (the cathode) and another electrode, the metallic workpiece to be cut (the anode). In order to obtain a high quality cut and a high productivity, the plasma jet must be as collimated as possible and must have the higher achievable power density. Plasma modelling and numerical simulation can be very useful tools for the designing and optimizing these devices, but research is still in the making for finding a link between simulation of the plasma arc and a consistent prevision of cut quality. Numerical modelling of the behaviour of different types of transferred arc dual gas plasma torches can give an insight on the physical reasons for the industrial success of various design and process solutions that have appeared over the last years. Diagnostics based on high speed imaging and Schlieren photography can play an important role for investigating piercing, dross generation, pilot arcing and anode attachment location. Also, the behaviour of hafnium cathodes at high current levels at the beginning of their service life can been experimentally investigated, with the final aim of understanding the phenomena that take place during those initial piercing and cutting phases and optimizing the initial shape of the surface of the emissive insert exposed to plasma atmosphere.

  17. Performance of water and hybrid stabilized electric arcs: the impact of dependence of radiation losses and plasma density on pressure

    Science.gov (United States)

    Jeništa, J.; Bartlová, M.; Aubrecht, V.

    2006-10-01

    Processes in the worldwide unique type of thermal plasma generator with water vortex stabilization and combined stabilization of arc by argon flow and water vortex have been numerically studied. Two-dimensional axisymmetric numerical model assumes laminar and compressible plasma flow in the state of local thermodynamic equilibrium. The calculation domain includes the arc discharge area between the near-cathode region and the outlet nozzle of the plasma torch. Radiation losses from the arc are calculated by the partial characteristics method for atmospheric pressure water and argon-water discharges. Thermal, electrical and fluid-dynamic characteristics of such arcs have been studied for the range of currents 150÷600 A under the assumption that radiation losses and plasma density depend linearly on pressure. It was proved that, taking this dependence into account, plasma velocity decrease while power losses from the arc by radiation and radial conduction increase with current. Outlet plasma temperature as well as electric potential drop remain practically unchanged.

  18. Characterization of Material Response During Arc-Jet Testing with Optical Methods Status and Perspectives

    Science.gov (United States)

    Winter, Michael

    2012-01-01

    The characterization of ablation and recession of heat shield materials during arc jet testing is an important step towards understanding the governing processes during these tests and therefore for a successful extrapolation of ground test data to flight. The behavior of ablative heat shield materials in a ground-based arc jet facility is usually monitored through measurement of temperature distributions (across the surface and in-depth), and through measurement of the final surface recession. These measurements are then used to calibrate/validate materials thermal response codes, which have mathematical models with reasonably good fidelity to the physics and chemistry of ablation, and codes thus calibrated are used for predicting material behavior in flight environments. However, these thermal measurements only indirectly characterize the pyrolysis processes within an ablative material pyrolysis is the main effect during ablation. Quantification of pyrolysis chemistry would therefore provide more definitive and useful data for validation of the material response codes. Information of the chemical products of ablation, to various levels of detail, can be obtained using optical methods. Suitable optical methods to measure the shape and composition of these layers (with emphasis on the blowing layer) during arc jet testing are: 1) optical emission spectroscopy (OES) 2) filtered imaging 3) laser induced fluorescence (LIF) and 4) absorption spectroscopy. Several attempts have been made to optically measure the material response of ablative materials during arc-jet testing. Most recently, NH and OH have been identified in the boundary layer of a PICA ablator. These species are suitable candidates for a detection through PLIF which would enable a spatially-resolved characterization of the blowing layer in terms of both its shape and composition. The recent emission spectroscopy data will be presented and future experiments for a qualitative and quantitative

  19. Evaluation of volumetric modulated arc therapy for cranial radiosurgery using multiple noncoplanar arcs

    Energy Technology Data Exchange (ETDEWEB)

    Audet, Chantal; Poffenbarger, Brett A.; Chang, Pauling; Jackson, Paul S.; Lundahl, Robert E.; Ryu, Stephen I.; Ray, Gordon R. [Radiation Oncology Department, Palo Alto Medical Foundation, Palo Alto, California 94301 (United States); Neurosurgery Department, Palo Alto Medical Foundation, Palo Alto, California 94301 (United States); Radiation Oncology Department, Palo Alto Medical Foundation, Palo Alto, California 94301 (United States); Neurosurgery Department, Palo Alto Medical Foundation, Palo Alto, California 94301 (United States); Radiation Oncology Department, Palo Alto Medical Foundation, Palo Alto, California 94301 (United States)

    2011-11-15

    Purpose: To evaluate a commercial volumetric modulated arc therapy (VMAT), using multiple noncoplanar arcs, for linac-based cranial radiosurgery, as well as evaluate the combined accuracy of the VMAT dose calculations and delivery. Methods: Twelve patients with cranial lesions of variable size (0.1-29 cc) and two multiple metastases patients were planned (Eclipse RapidArc AAA algorithm, v8.6.15) using VMAT (1-6 noncoplanar arcs), dynamic conformal arc (DCA, {approx}4 arcs), and IMRT (nine static fields). All plans were evaluated according to a conformity index (CI), healthy brain tissue doses and volumes, and the dose to organs at risk. A 2D dose distribution was measured (Varian Novalis Tx, HD120 MLC, 1000 MU/min, 6 MV beam) for the {approx}4 arc VMAT treatment plans using calibrated film dosimetry. Results: The CI (0-1 best) average for all plans was best for {approx}4 noncoplanar arc VMAT at 0.86 compared with {approx}0.78 for IMRT and a single arc VMAT and 0.68 for DCA. The volumes of healthy brain receiving 50% of the prescribed target coverage dose or more (V{sub 50%}) were lowest for the four arc VMAT [RA(4)] and DCA plans. The average ratio of the V{sub 50%} for the other plans to the RA(4) V{sub 50%} were 1.9 for a single noncoplanar arc VMAT [RA(1nc)], 1.4 for single full coplanar arc VMAT [RA(1f)] and 1.3 for IMRT. The V{sub 50%} improved significantly for single isocenter multiple metastases plan when two noncoplanar VMAT arcs were added to a full single coplanar one. The maximum dose to 5 cc of the outer 1 cm rim of healthy brain which one may want to keep below nonconsequential doses of 300-400 cGy, was 2-3 times greater for IMRT, RA(1nc) and RA(1f) plans compared with the multiple noncoplanar arc DCA and RA(4) techniques. Organs at risk near (0-4 mm) to targets were best spared by (i) single noncoplanar arcs when the targets are lateral to the organ at risk and (ii) by skewed nonvertical planes of IMRT fields when the targets are not lateral to the

  20. Circular arc snakes and kinematic surface generation

    KAUST Repository

    Barton, Michael

    2013-05-01

    We discuss the theory, discretization, and numerics of curves which are evolving such that part of their shape, or at least their curvature as a function of arc length, remains unchanged. The discretization of a curve as a smooth sequence of circular arcs is well suited for such purposes, and allows us to reduce evolution of curves to the evolution of a control point collection in a certain finite-dimensional shape space. We approach this evolution by a 2-step process: linearized evolution via optimized velocity fields, followed by optimization in order to exactly fulfill all geometric side conditions. We give applications to freeform architecture, including "rationalization" of a surface by congruent arcs, form finding and, most interestingly, non-static architecture. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  1. On the proper motion of auroral arcs

    Energy Technology Data Exchange (ETDEWEB)

    Haerendel, G.; Raaf, B.; Rieger, E. (Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany)); Buchert, S. (EISCAT Scientific Association, Kiruna (Sweden)); Hoz, C. la (Univ. of Tromso (Norway))

    1993-04-01

    The authors report on a series of measurements of the proper motion of auroral arcs, made using the EISCAT incoherent scatter radar. Radar measurements are correlated with auroral imaging from the ground to observe the arcs and sense their motion. The authors look at one to two broad classes of auroral arcs, namely the slow (approximately 100 m/s) class which are observed to move either poleward or equatorward. The other class is typically much faster, and observed to move poleward, and represents the class of events most studied in the past. They fit their observations to a previous model which provides a potential energy source for these events. The observations are consistent with the model, though no clear explanation for the actual cause of the motion can be reached from these limited measurements.

  2. Arc-welding robot. 2; Yosetsu robot

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, S. [Yaskawa Electric Corp., Kitakyushu (Japan)

    1995-02-01

    This is an introductory lecture on the selection and handling of arc-welding robot and was explained easily in Q and A style. This is the second of its series and extraction examples of Q and A are Q: type of stations for setting works, A: fixed, slide, inversion, rotary types and their combination, Q: station type for constructing a highly universal system for a wide variety of works, A: a highly universal robot was realized owing to external shaft control function. Recently, one robot can control a maximum of 21 shafts to cope with a variety of works, Q: off-line teaching for arc-welding robot, A: yes. It is available but does not spread as much as for spot since arc welding requires a high tracing accuracy. 12 figs.

  3. ArcForm - A multimodal notation

    DEFF Research Database (Denmark)

    Allsopp, Benjamin Brink

    ArcForm (AF) is a visual notation based on a new graph-like network structure. It supports a unique approach to labeling arcs and nodes to allow diverse and grammatically normal English (or other natural language) sentences to be embedded in the network (Allsopp, 2013). In doing this AF combines ...... as a notational foundation for e-learning platforms (Allsopp 2015). We will explore a prototype supporting basic interaction with the landscape and consider how it can benefit from virtual reality, online social curating and the block chain....... of individual nodes and arcs will allow us to create new perspectives on the underlying information. This presentation will use multiple visual examples to show how AF achieves its many affordances. We will discuss how it has been used in education research (Misfeldt 2016) and how it could be used...

  4. Magnesium isotope geochemistry in arc volcanism

    Science.gov (United States)

    Teng, Fang-Zhen; Hu, Yan

    2016-01-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from −0.25 to −0.10, in contrast to the narrow range that characterizes the mantle (−0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid−mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration. PMID:27303032

  5. On the Trail of Joan of Arc

    Directory of Open Access Journals (Sweden)

    Linda Joyce Forristal

    2013-12-01

    Full Text Available The year 2012 marked the 600th anniversary of the birthday of Joan of Arc (Fr., Jeanne d’Arc (1412–1431. Tributes to this national heroine can be found all over France. There are literally countless statues, streets and restaurants named after her and many sites dedicated to her life. However, despite widespread social and mechanical reproduction and cultural naming in relation to the Maid of Orléans, there is no official network or integrated signage in France to promote cultural heritage tourism to the numerous Joan of Arc sites and festivals, even though her life and death, by any measure, were seminal events in the country’s history. Unfortunately, the pilgrim who wants to follow or intersect with Joan of Arc’s trail through France, for cultural, historical or religious reasons, must do so without much help. Using Actor Network Theory and Site Sacralization Theory as framing devices, this paper explores human actors and tangible and intangible non-human factors that may have contributed to the lack of a unified tourism product despite the existence of an adequate Joan of Arc tourismscape. Insights gleaned from this research include Joan’s conflicted status as both/either saint and/or patriot, the existence of no cooperation or linkage between Joan of Arc sites, and cautious French tourism development policies. Several possible scenarios are suggested as suitable means to help implement or foster the creation of an on-the-ground or virtual Joan of Arc trail or tour.

  6. The thermal decomposition of nitrocellulose

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. E. G.; Turcotte, R.; Acheson, B.; Kwok, Q. S. M.; Vachon, M. [Natural Resources Canada, CANMET Canadian Explosives Research Laboratory, Ottawa, ON (Canada)

    2003-03-01

    In the past, the thermal decomposition of nitrocellulose, the main high-energy component of explosives and solid rocket propellant compositions, was studied using DSC, thermogravimetry and accelerating rate calorimetry. This paper discusses new results obtained by accelerating rate calorimetry (ARC), heat flux calorimetry (HFC), simultaneous thermogravimetry (TG) and differential thermal analysis (DTA) coupled to FTIR and mass spectrometry (MS). Experiments with ARC showed that both the onset temperature and the activation energy for the thermal decomposition depend on sample mass. Evaluating the thermal decomposition of nitrocellulose using HFC at various pressures of argon between ambient and 27 MPa showed that the true onset temperature and the width of the corresponding exotherms are a strong function of the initial pressure. Also presented are the results of investigations conducted using TG-DTA-FTIR-MS in air and in helium. Corresponding to the sharp exotherm observed in helium, many gaseous product species were detected in a narrow band in FTIR and MS spectra. The main species observed by FTIR were carbon dioxide, formic acid, carbon monoxide and trace amounts of formaldehyde, nitrous oxide and water. In comparison, the products detected in air were found to occur in a much wider temperature range. Absorbances of carbon dioxide, nitrogen dioxide and water were observed to have been strongly enhanced in air, while organic species such as formic acid and formaldehyde were significantly depressed. 13 refs., 1 tab., 8 figs.

  7. Arcing Model of a Disconnector and its Effect on VFTO

    Science.gov (United States)

    Lin, Xin; Wang, Na; Xu, Jianyuan

    2013-07-01

    In the computational process of very fast transient over-voltage (VFTO), it is essential to find an accurate model for a gas insulated substation. The arcing model of the disconnector is particularly important. The general arcing model is not able to give a good description of the arc development process. In this paper, based on the physical process of arcing and existing arc models (the exponential time-varying resistance model and the segmental arcing models), a dynamic arcing model is proposed, which is divided into two stages before and after the zero crossing. The dynamic arcing model combines hyperbola time-varying resistance and the Mayr model to describe the dynamic process of arcing. The present paper creates an arc model blockset upon the Matlab/Simulink software platform. Moreover for a specific 1100 kV station, VFTO is simulated in detail based on different arcing models. It is demonstrated that the dynamic arcing model can describe the physical arc process precisely and is useful for improving the accuracy of VFTO simulations.

  8. Ion source based on the cathodic arc

    Science.gov (United States)

    Sanders, David M.; Falabella, Steven

    1994-01-01

    A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles.

  9. Plasma distribution of cathodic ARC deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Raoux, S.; Krishnan, K.; MacGill, R.A.; Brown, I.G. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    The plasma distribution using a cathodic arc plasma source with and without magnetic macroparticle filter has been determined by depositing on a transparent plastic substrate and measuring the film absorption. It was found that the width of the distribution depends on the arc current, and it also depends on the cathode material which leads to a spatial separation of the elements when an alloy cathode is used. By applying a magnetic multicusp field near the exit of the magnetic filter, it was possible to modify the plasma distribution and obtain a flat plasma profile with a constant and homogeneous elemental distribution.

  10. Observation of gliding arc surface treatment

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Zhu, Jiajian; Ehn, A.

    2015-01-01

    surfaces. A gap was observed between the polymer surface and the luminous region of the plasma column, indicating the existence of a gas boundary layer. The thickness of the gas boundary layer is smaller at higher gas flow-rates or with ultrasonic irradiation to the AC gliding arc and the polymer surface....... Water contact angle measurements indicate that the treatment uniformity improves significantly when the AC gliding arc is tilted to the polymer surface. Thickness reduction of the gas boundary layer, explaining the improvement of surface treatment, by the ultrasonic irradiation was directly observed...

  11. Architectural Surfaces and Structures from Circular Arcs

    KAUST Repository

    Shi, Ling

    2013-12-01

    In recent decades, the popularity of freeform shapes in contemporary architecture poses new challenges to digital design. One of them is the process of rationalization, i.e. to make freeform skins or structures affordable to manufacture, which draws the most attention from geometry researchers. In this thesis, we aim to realize this process with simple geometric primitives, circular arcs. We investigate architectural surfaces and structures consisting of circular arcs. Our focus is lying on how to employ them nicely and repetitively in architectural design, in order to decrease the cost in manufacturing. Firstly, we study Darboux cyclides, which are algebraic surfaces of order ≤ 4. We provide a computational tool to identify all families of circles on a given cyclide based on the spherical model of M ̈obius geometry. Practical ways to design cyclide patches that pass through certain inputs are presented. In particular, certain triples of circle families on Darboux cyclides may be suitably arranged as 3-webs. We provide a complete classification of all possible 3-webs of circles on Darboux cyclides. We then investigate the circular arc snakes, which are smooth sequences of circu- lar arcs. We evolve the snakes such that their curvature, as a function of arc length, remains unchanged. The evolution of snakes is utilized to approximate given surfaces by circular arcs or to generated freeform shapes, and it is realized by a 2-step pro- cess. More interestingly, certain 6-arc snake with boundary constraints can produce a smooth self motion, which can be employed to build flexible structures. Another challenging topic is approximating smooth freeform skins with simple panels. We contribute to this problem area by approximating a negatively-curved 5 surface with a smooth union of rational bilinear patches. We provide a proof for vertex consistency of hyperbolic nets using the CAGD approach of the rational B ́ezier form. Moreover, we use Darboux transformations for the

  12. Using arc voltage to locate the anode attachment in plasma arc cutting

    Science.gov (United States)

    Osterhouse, D. J.; Lindsay, J. W.; Heberlein, J. V. R.

    2013-06-01

    Plasma arc cutting is a widely used industrial process in which an electric arc in the form of a high velocity plasma jet is used to melt and blow away metal. The arc attaches inside the resulting cut slot, or kerf, where it both provides a large heat flux and determines the flow dynamics of the plasma. Knowledge of the position of the arc attachment is essential for understanding the phenomena present at the work piece. This work presents a new method of measuring the location of the arc attachment in which the arc voltage is measured during the cutting of a range of work piece thicknesses. The attachment location is then interpreted from the voltages. To support the validity of this method, the kerf shape, dross particle size and dross adhesion to the work piece are also observed. While these do not conclusively give an attachment location, they show patterns which are consistent with the attachment location found from the voltage measurements. The method is demonstrated on the cutting of mild steel, where the arc attachment is found to be stationary in the upper portion of the cut slot and in reasonable agreement with existing published findings. For a process optimized for the cutting of 12.7 mm mild steel, the attachment is found at a depth of 1.5-3.4 mm. For a slower process optimized for the cutting of 25.4 mm mild steel, the attachment is found at a depth of 3.4-4.8 mm, which enhances heat transfer further down in the kerf, allowing cutting of the thicker work piece. The use of arc voltage to locate the position of the arc attachment is unique when compared with existing methods because it is entirely independent of the heat distribution and visualization techniques.

  13. ESD and secondary arcing powered by the solar array -Toward full arc-free power lines

    OpenAIRE

    Payan, D.; Inguimbert, V; Siguier, J.M.

    2016-01-01

    International audience; We crossed all the experiments made over 15 years at ONERA during CNES R&D activities; we made hundreds of secondary arcing on Solar Panels or coupons, connectors, SADM1 or simple aged cracked wires. Thanks to the knowledge we have, from ESD2 or secondary arc triggering, to the analysis of in-flight anomalies; we deduct very simple design rules reducing drastically the probability of secondary arcing.Let’s follow the trail of the power line to find where there would be...

  14. Simulation of the Process of Arc Energy-Effect in High Voltage Auto-Expansion SF6 Circuit Breaker

    Institute of Scientific and Technical Information of China (English)

    Rong Mingzhe; Yang Qian; Fan Chunduo

    2005-01-01

    A new magnetic hydro-dynamics (MHD) model of arc in H.V. auto-expansion SF6circuit breaker that takes into consideration nozzle ablation due to both radiation and thermal conduction is presented in this paper. The effect of PTFE (polytetrafluorethylene) vapor is considered in the mass, momentum and energy conservation equations of the constructed model. Then,the gas flow fields with and without conduction considered are simulated. By comparing the aforementioned two results, it is indicated that the arc's maximal temperature with conduction considered is 90 percent of that without considering conduction.

  15. Preparation of carbon nanoparticles by plasma arc discharge under fluidized dynamic equilibrium

    Science.gov (United States)

    Wang, F.; Sun, D. L.; Hong, R. Y.; Kumar, M. R.

    2016-06-01

    Continuous preparation of carbon nanoparticles by dielectric barrier discharge (DBD)-induced non-thermal plasma arc discharge with large spacing in a modified fluidized bed is presented. Discharge arc is generated via the inducement of DBD which provides conductive media in order to realize a large spacing arc discharge. Three kinds of flow conditions defined as full circulation, fluidized dynamic equilibrium, and full collection are determined by the relationship of critical fluidized velocity and the real gas velocity after some modification of the fluidized bed. Movement model of carbon nanoparticles has been proposed to illustrate the flow conditions. A visualized and comprehensive refinement of aggregating processes has been exhibited and proved by high-resolution transmission electron microscopy. Simplified equivalent electrical conductive model of the arc discharge system is successful to generally and perspicuously figure out the discharge process which is impeded by the generated carbon nanoparticles. Effects of flow conditions and flow ratio of carrier gas/carbon source on morphology and yield of nanoparticles have been analyzed by morphology observation and yield calculation along with modeling the process.

  16. Cross-arc Variations in Lava Chemistry in the Tonga Arc-Lau Back Arc System, 19- 23°S

    Science.gov (United States)

    Michael, P. J.; Bezos, A.; Langmuir, C. H.; Escrig, S.; Matzen, A. K.; Asimow, P.; Arculus, R.

    2007-12-01

    The Tonga arc system from 19°-23°S consists of the active Tofua arc, the Eastern Lau Spreading Center (ELSC; a back arc spreading center), and numerous seamounts between them. We use the excellent sampling of ELSC and 34 nearby seamounts, along with sparser published analyses of Tofua arc, to examine the spatial relations of chemistry and melting in this subduction system. The spatial constraints can be used to better understand the nature and mechanism of enrichment that is caused by subduction. Geochemistry along the axis of ELSC is related to its distance to the Tofua arc, which decreases continuously from 100 km in the north to 40 km in the south. The subduction influence (e.g., fluid mobile elements) along ELSC increases in several sharp gradients towards the south as ELSC gets closer to the arc. The six different tectonic segments of ELSC display mixing relationships in trace element ratio-ratio diagrams (e.g., Ba/La vs Th/La) in which one end member is a subduction component that is distinctive for each segment (Escrig et al., this meeting). We explore whether the distinctive subduction components of each ELSC segment are reflected by the Tofua arc that is adjacent to that segment, and by the intervening seamounts. Relationships between the arc, back arc and seamounts are different in the north and the south. In the south where the arc-back arc distance is smaller, the Tofua arc volcanic rocks share the distinctive trace element characteristics of their corresponding ELSC segment, and extend the mixing trajectories to higher, more arc-like values. Seamounts that are located between Tofua arc and ELSC also share the distinctive trace element characteristics of the local arc + back-arc, and are intermediate in their trace element ratios. These observations are consistent with the model of Langmuir et al., (2006) in which magmas of back arc spreading centers form from two components: a dry side similar to mid-ocean ridges and a wet (trenchward) side that

  17. Modeling Vacuum Arcs On Spacecraft Solar Panel Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft charging and subsequent vacuum arcing poses a significant threat to satellites in LEO and GEO plasma conditions. Localized arc discharges can cause a...

  18. PNW River Reach Files -- 1:100k Watercourses (arcs)

    Data.gov (United States)

    Pacific States Marine Fisheries Commission — This feature class includes the ARC features from the 2001 version of the PNW River Reach files Arc/INFO coverage. Separate, companion feature classes are also...

  19. First NIF ARC target shot results

    Science.gov (United States)

    Chen, Hui; di Nicola, P.; Hermann, M.; Kalantar, D.; Martinez, D.; Tommasini, R.; NIF ARC Team

    2015-11-01

    The commissioning of the Advanced Radiographic Capability (ARC) laser system in the National Ignition Facility (NIF) is currently in progress. ARC laser is designed to ultimately provide eight beamlets with pulse duration adjustable from 1 to 50 ps, and energies up to 1.7 kJ per beamlet. ARC will add critical capability for the NIF facility for creating precision x-ray backlighters needed for many current NIF ICF and HED experiments. ARC can also produce MeV electrons and protons for new science experiment on NIF. In the initial set of experiments, 4 of the 8 beamlets are being commissioned up to 1 kJ per beam at 30 ps pulse length using foil and wire targets. X-ray energy distribution, spot size and pulse duration are measured using various diagnostics. This talk will describe the shot setup and results. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Remote electrical arc suppression by laser filamentation

    CERN Document Server

    Schubert, Elise; Kasparian, Jérôme; Wolf, Jean-Pierre

    2015-01-01

    We investigate the interaction of narrow plasma channels formed in the filamentation of ultrashort laser pulses, with a DC high voltage. The laser filaments prevent electrical arcs by triggering corona that neutralize the high-voltage electrodes. This phenomenon, due to the electric field modulation and free electron release around the filament, opens new prospects to lightning and over-voltage mitigation.

  1. Hypergravity effects on glide arc plasma

    NARCIS (Netherlands)

    Šperka, J.; Souček, P.; van Loon, J.J.W.A.; Dowson, A.; Schwarz, C.; Krause, J.; Kroesen, G.; Kudrle, V.

    2013-01-01

    The behaviour of a special type of electric discharge - the gliding arc plasma - has been investigated in hypergravity (1g-18g) using the Large Diameter Centrifuge (LDC) at ESA/ESTEC. The discharge voltage and current together with the videosignal from a fast camera have been recorded during the exp

  2. Arc discharge sliding over a conducting surface

    NARCIS (Netherlands)

    Goor, van F.A.; Mitko, S.V.; Ochkin, V.N.; Paramonov, A.P.; Witteman, W.J.

    1997-01-01

    Results of experimental and theoretical studies of the arc discharge which slides over the surface of a conductor are reported. Experiments were performed in air and argon ambients at various pressures. It is found that the velocity of the discharge plasma front depends linearly on the strength of t

  3. Stability of alternating current gliding arcs

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Salewski, Mirko; Leipold, Frank;

    2014-01-01

    that the critical length can be increased by increasing the AC frequency, decreasing the serial resistance and lowering the gas flow rate. The predicted dependence of gas flow rate on the arc length is experimentally demonstrated. The gap width is varied to study an optimal electrode design, since the extended non...

  4. Roadmap for the ARC Grid Middleware

    DEFF Research Database (Denmark)

    Kleist, Josva; Eerola, Paula; Ekelöf, Tord

    2006-01-01

    The Advanced Resource Connector (ARC) or the NorduGrid middleware is an open source software solution enabling production quality computational and data Grids, with special emphasis on scalability, stability, reliability and performance. Since its first release in May 2002, the middleware is depl...

  5. ArcAid Interactive Archery Assistant

    Directory of Open Access Journals (Sweden)

    Jeroen Vervaeke

    2015-12-01

    Full Text Available This paper describes the design process of a bow aiming system, called ArcAid, which is an interactive archery assistant. The main goal of ArcAid is to introduce a way for beginner Robin Hoods to learn the art of archery to its fullest. In order to achieve this goal, our smartphone-based design focuses on a fun and interactive learning process that gives constant feedback to the user on how to hit a certain goal. A SPIKE high- end laser sensor is used for the distance measurement and the smartphone’s accelerometer is used to define the angle of inclination. To measure the force on the arrow and the displacement of the string, a flex sensor is attached upon one of the arcs of the bow. All sensor data is processed in an Arduino Nano microprocessor and feedback to the user is given by a dedicated smartphone app. In this paper, we mainly focus on the construction, mechanics and electronics of the ArcAid bow and on the design of the mobile app, which is the game controller. Furthermore, we briefly discuss some future development ideas.

  6. Nonlinear Study of Industrial Arc Spring Dampers

    DEFF Research Database (Denmark)

    Lahriri, Said; Santos, Ilmar; Hartmann, Henning

    2011-01-01

    The objective of this paper is to present a numerical approach for analyzing parameter excited vibrations on a gas compressor, induced by the nonlinear characteristic of the arc spring feature of certain designs of squeeze film dampers, SFDs. The behavior of the journal is studied in preparation ...

  7. Gas tungsten arc welder with electrode grinder

    Science.gov (United States)

    Christiansen, David W.; Brown, William F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  8. H2O and CO2 in magmas from the Mariana arc and back arc systems

    Science.gov (United States)

    Newman, Sally; Stolper, Edward; Stern, Robert

    2000-05-01

    We examined the H2O and CO2 contents of glasses from lavas and xenoliths from the Mariana arc system, an intraoceanic convergent margin in the western Pacific, which contains an active volcanic arc, an actively spreading back arc basin, and active behind-the-arc cross-chain volcanoes. Samples include (1) glass rims from Mariana arc, Mariana trough, and cross-chain submarine lavas; (2) glass inclusions in arc and trough phenocrysts; and (3) glass inclusions from a gabbro + anorthosite xenolith from Agrigan (Mariana arc). Glass rims of submarine arc lavas contain 0.3-1.9 wt % H2O, and CO2 is below detection limits. Where they could be compared, glass inclusions in arc phenocrysts contain more H2O than their host glasses; most arc glasses and phenocryst inclusions contain no detectable CO2, with the exception of those from a North Hiyoshi shoshonite, which contains 400-600 ppm. The glass inclusions from the Agrigan xenolith contain 4-6% H2O, and CO2 is below the detection limit. Glasses from the cross-chain lavas are similar to those from the arc: H2O contents are 1.4-1.7 wt %, and CO2 is below detection limits. Volatile contents in Mariana trough lava glass rims are variable: 0.2-2.8 wt % H2O and 0-300 ppm CO2. Glass inclusions from trough phenocrysts have water contents similar to the host glass, but they can contain up to 875 ppm CO2. Volatile contents of melt inclusions from trough and arc lavas and from the xenolith imply minimum depths of crystallization of ~1-8 km. H2O and CO2 contents of Mariana trough glasses are negatively correlated, indicating saturation of the erupting magma with a CO2-H2O vapor at the pressure of eruption (~400 bars for these samples), with the vapor ranging from nearly pure CO2 at the CO2-rich end of the glass array to nearly pure H2O at the H2O-rich end. Degassing of these magmas on ascent and eruption leads to significant loss of CO2 (thereby masking preeruptive CO2 contents) but minimal disturbance of preeruptive H2O contents. For

  9. 29 CFR 1910.254 - Arc welding and cutting.

    Science.gov (United States)

    2010-07-01

    ..., hoists, and elevators shall not be used to carry welding current. (iv) Where a structure, conveyor, or... following limits shall not be exceeded: (i) Alternating-current machines (A) Manual arc welding and cutting...-current machines (A) Manual arc welding and cutting—100 volts. (B) Automatic (machine or mechanized) arc...

  10. Evaluation of the clinical usefulness of modulated Arc treatment

    CERN Document Server

    Lee, Young Kyu; Kim, Yeon Sil; Choi, Byung Ock; Nam, Sang Hee; Park, Hyeong Wook; Kim, Shin Wook; Shin, Hun Joo; Lee, Jae Choon; Kim, Ji Na; Park, Sung Kwang; Kim, Jin Young; Kang, Young-Nam

    2015-01-01

    The purpose of this study is to evaluate the clinical usefulness of modulated arc (mARC) treatment techniques. The mARC treatment plans of the non-small cell lung cancer (NSCLC) patients were performed in order to verify the clinical usefulness of mARC. A pre study was conducted to find the most competent plan condition of mARC treatment and the usefulness of mARC treatment plan was evaluated by comparing it with the other Arc treatment plans such as Tomotherapy and RapidArc. In the case of mARC, the optimal condition for the mARC plan was determined by comparing the dosimetric performance of the mARC plans with the use of various parameters. The various parameters includes the photon energies (6 MV, 10 MV), optimization point angle (6{\\deg}-10{\\deg} intervals), and total segment number (36-59 segment). The best dosimetric performance of mARC was observed at 10 MV photon energy and the point angle 6 degree, and 59 segments. The each treatment plans of three different techniques were compared with the followin...

  11. Process characteristics of fibre-laser-assisted plasma arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Mahrle, A; Schnick, M; Rose, S; Demuth, C; Beyer, E; Fuessel, U, E-mail: achim.mahrle@iws.fraunhofer.de [Dresden University of Technology, Institute of Surface and Manufacturing Technology, PO Box, D-01062 Dresden (Germany)

    2011-08-31

    Experimental and theoretical investigations on fibre-laser-assisted plasma arc welding (LAPW) were performed. Welding experiments were carried out on aluminium and steel sheets. In the case of a highly focused laser beam and a separate arrangement of plasma torch and laser beam, high-speed video recordings of the plasma arc and corresponding measurements of the time-dependent arc voltage revealed differences in the process behaviour for both materials. In the case of aluminium welding, a sharp decline in arc voltage and stabilization and guiding of the anodic arc root was observed whereas in steel welding the arc voltage was slightly increased after the laser beam was switched on. However, significant improvement of the melting efficiency with the combined action of plasma arc and laser beam was achieved for both types of material. Theoretical results of additional numerical simulations of the arc behaviour suggest that the properties of the arc plasma are mainly influenced not by a direct interaction with the laser radiation but by the laser-induced evaporation of metal. Arc stabilization with increased current densities is predicted for moderate rates of evaporated metal only whereas metal vapour rates above a certain threshold causes a destabilization of the arc and reduced current densities along the arc axis.

  12. Optimal planning strategy among various arc arrangements for prostate stereotactic body radiotherapy with volumetric modulated arc therapy technique

    Directory of Open Access Journals (Sweden)

    Kang Sang Won

    2017-03-01

    Full Text Available The aim of this study was to determine the optimal strategy among various arc arrangements in prostate plans of stereotactic body radiotherapy with volumetric modulated arc therapy (SBRT-VMAT.

  13. Life cycle cost analysis for the Plasma Arc Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Barnes-Smith, P.

    1994-03-01

    This document is a draft version. The Mixed Waste Integrated Program requested that the Systems Analysis Group investigate the cost effectiveness of using the Plasma Arc Furnace (PAF) module in place of specified thermal and final forms treatment equipment in the baseline Mixed Waste Treatment Project (MWTP) study as performed by Bechtel Corporation, September 1992. The attached estimates are based on the process equipment and facilities cost data contained in the Bechtel study. The PAF process equipment and facilities cost data were developed using independent cost estimates for the equipment list provided by SAIC, Waste Management and Technology Division, in cooperation with the Pollution Prevention and Systems Analysis Group of the Oak Ridge National Laboratory, Chemical Technology Division. In order to develop the total life cycle cost estimate comparison for this study, it was necessary to use a common base for comparison. Although it was felt that the Bechtel MWTP study did not fully reflect the optimum size for the thermal and final forms treatment equipment, it was the best available data at the time.

  14. Anatomy of Intra-Oceanic Arc Systems

    Science.gov (United States)

    Stern, R. J.

    2007-12-01

    Intra-oceanic arc systems (IOAS) are ultimately embedded in orogenic belts and added to the continental crust. Reconstructing fossil IOASs in collision zones requires understanding the salient features of a typical IOAS. IOASs have the relative dimensions of tagliatelle (flat) pasta: much wider (~250 km) than thick (10-30 km), much longer (1000's of km) than wide. IOASs begin to form when subduction begins, either spontaneously (SNSZ) or by forced convergence (INSZ). For SNSZ, IOASs start as broad zones of seafloor spreading associated with subsidence of the adjacent lithosphere, whereas INSZ IOASs are built on trapped crust. IOAS magmatism manifests the evolution of its subduction zone and indirectly the breadth of the subducted ocean. Two stages in SNSZ IOAS magmato-tectonic evolution exist: infancy and maturity. Infancy lasts 5-10 Ma and results in broad zones of seafloor spreading of tholeiite/boninite; this becomes forearc for the mature IOAS and is emplaced as ophiolite during collision (subduction zone failure). Arc maturity begins with true subduction, as the subducted slab reaches depths ~130 km, focusing magmatism to begin building the magmatic arc ~200km away from the trench and allowing the forearc to cool and hydrate. Mature magmatic arcs mostly yield low-K tholeiitic and medium-K calc-alkaline magmas. Magmatic focusing begins crustal thickening beneath the magmatic arc, at ~500m/Ma for the Izu-Bonin-Mariana IOAS. No systematic compositional evolution to more LIL-enriched primitive magmas occurs once IOAS maturity is reached, except when upper plate stress regime (BAB formation, strike- slip faulting) or the nature of subducted material (more/different sediments, young oceanic crust) changes. Thickening is accompanied by processing of crust beneath the magmatic arc, with progressive differentiation into upper volcanic, middle tonalitic, and lower mafic layers, producing an increasingly effective density filter for magma ascent. Crustal layer formation

  15. Bulk arc strain, crustal thickening, magma emplacement, and mass balances in the Mesozoic Sierra Nevada arc

    Science.gov (United States)

    Cao, Wenrong; Paterson, Scott; Saleeby, Jason; Zalunardo, Sean

    2016-03-01

    Quantifying crustal deformation is important for evaluating mass balance, material transfer, and the interplay between tectonism and magmatism in continental arcs. We present a dataset of >650 finite strain analyses compiled from published works and our own studies with associated structural, geochronologic, and geobarometric information in central and southern Sierra Nevada, California, to quantify the arc crust deformation. Our results show that Mesozoic tectonism results in 65% arc-perpendicular bulk crust shortening under a more or less plane strain condition. Mesozoic arc magmatism replaced ∼80% of this actively deforming arc crust with plutons requiring significantly greater crustal thickening. We suggest that by ∼85 Ma, the arc crust thickness was ∼80 km with a 30-km-thick arc root, resulting in a ∼5 km elevation. Most tectonic shortening and magma emplacement must be accommodated by downward displacements of crustal materials into growing crustal roots at the estimated downward transfer rate of 2-13 km/Myr. The downward transfer of crustal materials must occur in active magma channels, or in "escape channels" in between solidified plutons that decrease in size with time and depth resulting in an increase in the intensity of constrictional strain with depth. We argue that both tectonism and magmatism control the thickness of the crust and surface elevation with slight modification by surface erosion. The downward transported crustal materials initially fertilize the MASH zone thus enhancing to the generation of additional magmas. As the crustal root grows it may potentially pinch out and cool the mantle wedge and thus cause reduction of arc magmatism.

  16. Electric-arc synthesis of soot with high content of higher fullerenes in parallel arc

    Science.gov (United States)

    Dutlov, A. E.; Nekrasov, V. M.; Sergeev, A. G.; Bubnov, V. P.; Kareev, I. E.

    2016-12-01

    Soot with a relatively high content of higher fullerenes (C76, C78, C80, C82, C84, C86, etc.) is synthesized in a parallel arc upon evaporation of pure carbon electrodes. The content of higher fullerenes in soot extract amounts to 13.8 wt % when two electrodes are simultaneously burnt in electric-arc reactor. Such a content is comparable with the content obtained upon evaporation of composite graphite electrodes with potassium carbonate impurity.

  17. The arc arises: The links between volcanic output, arc evolution and melt composition

    Science.gov (United States)

    Brandl, Philipp A.; Hamada, Morihisa; Arculus, Richard J.; Johnson, Kyle; Marsaglia, Kathleen M.; Savov, Ivan P.; Ishizuka, Osamu; Li, He

    2017-03-01

    Subduction initiation is a key process for global plate tectonics. Individual lithologies developed during subduction initiation and arc inception have been identified in the trench wall of the Izu-Bonin-Mariana (IBM) island arc but a continuous record of this process has not previously been described. Here, we present results from International Ocean Discovery Program Expedition 351 that drilled a single site west of the Kyushu-Palau Ridge (KPR), a chain of extinct stratovolcanoes that represents the proto-IBM island arc, active for ∼25 Ma following subduction initiation. Site U1438 recovered 150 m of oceanic igneous basement and ∼1450 m of overlying sediments. The lower 1300 m of these sediments comprise volcaniclastic gravity-flow deposits shed from the evolving KPR arc front. We separated fresh magmatic minerals from Site U1438 sediments, and analyzed 304 glass (formerly melt) inclusions, hosted by clinopyroxene and plagioclase. Compositions of glass inclusions preserve a temporal magmatic record of the juvenile island arc, complementary to the predominant mid-Miocene to recent activity determined from tephra layers recovered by drilling in the IBM forearc. The glass inclusions record the progressive transition of melt compositions dominated by an early 'calc-alkalic', high-Mg andesitic stage to a younger tholeiitic stage over a time period of 11 Ma. High-precision trace element analytical data record a simultaneously increasing influence of a deep subduction component (e.g., increase in Th vs. Nb, light rare earth element enrichment) and a more fertile mantle source (reflected in increased high field strength element abundances). This compositional change is accompanied by increased deposition rates of volcaniclastic sediments reflecting magmatic output and maturity of the arc. We conclude the 'calc-alkalic' stage of arc evolution may endure as long as mantle wedge sources are not mostly advected away from the zones of arc magma generation, or the rate of

  18. Oceanic, island arc, and back-arc remnants into eastern Kamchatka accretionary complexes

    Energy Technology Data Exchange (ETDEWEB)

    Fedorchuk, A.V.; Vishnevskaya, V.S.; Izvekov, I.N. (Institute of the Lithosphere, Moscow (USSR))

    1990-06-01

    The Kamchatsky Mts. accretionary complex in the Eastern Kamchatka orogenic belt was studied for identification of the oceanic and suprasubduction components into accretionary wedges. That complex is divided into two tectonic units. The Lower unit is formed sedimentary and tectonic melanges containing arc-related components (Late Senonian volcaniclastics and boninitic gabbro) and oceanic fragments (Fe-Ti-tholeiites, ocean island basalts, and pelagic sediments of Valanginian to Turonian age). The Upper unit consists of ductile deformed oceanic cumulates from troctolites to Fe-Ti-gabbro, 151 to 172 Ma, which are intruded MORB-like diabases with suprasubduction characteristics, 122 to 141 Ma, and are overlain by basalts similar to latter. The Lower and Upper units are separated by a SW-dipping thrust, which is related by an ophiolitoclastic olistostrome of Late Campanian to Early Maestrichtian age. Both units are covered by Paleocene authoclastic deposits. They are all thrusted over the early Neogene island arc complex, 16 to 20 Ma. The Lower unit of the Kamchatsky Mys accretionary complex was originated in a shear zone between a Late Cretaceous island arc and an Early Cretaceous oceanic plate. The Upper unit represents a Jurassic oceanic remnant that formed a basement of Early Cretaceous back-arc or fore-arc basin. Both units were superposed in the latest Cretaceous. The Kamchatsky Mys accretionary complex was emplaced into the Eastern Kamchatka orogenic belt during late Neogene by collision of the early Neogene island arc.

  19. Driven Motion and Instability of an Atmospheric Pressure Arc

    Energy Technology Data Exchange (ETDEWEB)

    Max Karasik

    1999-12-01

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes.

  20. VLT/NACO observations of Neptune's ring arcs

    Science.gov (United States)

    Renner, S.; Sicardy, B.; Souami, D.; Dumas, C.

    2011-10-01

    We present NACO adaptative optics observations of Neptune's ring arcs at 2.2 μm (K band), taken with the VLT-Yepun telescope in August 2007. We give improved mean motion values for the arcs and Galatea, thus confirming the mismatch between the arcs' position and the location of the 42:43 corotation inclination resonance. We compare the photometry of the arcs with previous observations. We finally use the data to constrain the masses and positions of the coorbital satellites which could confine the arcs, while allowing a slow evolution of the system.

  1. Plasma Spraying of Copper by Hybrid Water-Gas DC Arc Plasma Torch

    Science.gov (United States)

    Kavka, T.; Matějíček, J.; Ctibor, P.; Mašláni, A.; Hrabovský, M.

    2011-06-01

    Water-stabilized DC arc plasma torches offer a good alternative to common plasma sources used for plasma spraying applications. Unique properties of the generated plasma are determined by a specific plasma torch construction. This article is focused on a study of the plasma spraying process performed by a hybrid torch WSP500®-H, which combines two principles of arc stabilization—water vortex and gas flow. Spraying tests with copper powder have been carried out in a wide range of plasma torch parameters. First, analyses of particle in-flight behavior for various spraying conditions were done. After, particles were collected in liquid nitrogen, which enabled analyses of the particle in-flight oxidation. A series of spraying tests were carried out and coatings were analyzed for their microstructure, porosity, oxide content, mechanical, and thermal properties.

  2. Treatment by gliding arc of epoxy resin: preliminary analysis of surface modifications

    Science.gov (United States)

    Faubert, F.; Wartel, M.; Pellerin, N.; Pellerin, S.; Cochet, V.; Regnier, E.; Hnatiuc, B.

    2016-12-01

    Treatments with atmospheric pressure non-thermal plasma are easy to implement and inexpensive. Among them gliding arc (GlidArc) remains rarely used in surface treatment of polymers. However, it offers economic and flexible way to treat quickly large areas. In addition the choice of carrier gas makes it possible to bring the active species and other radicals allowing different types of grafting and functionalization of the treated surfaces, for example in order to apply for anti-biofouling prevention. This preliminary work includes analysis of the surface of epoxy resins by infrared spectroscopy: the different affected chemical bonds were studied depending on the duration of treatment. The degree of oxidation (the C/O ratio) is obtained by X-ray microanalysis and contact angle analysis have been performed to determinate the wettability properties of the treated surface. A spectroscopic study of the plasma allows to determine the possible active species in the different zones of the discharge.

  3. XRD and DTA Analysis of Developed Agglomerated Fluxes for Submerged Arc Welding

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2013-01-01

    Full Text Available A unique study of structural and chemical analysis of crystalline phases in developed agglomerated fluxes was carried out. Thirty-two fluxes were developed by using a mixture of oxides, halides, carbonates, silicates, and ferroalloys for submerged arc welding. The present paper focuses on only ten (out of thirty-two fluxes which were analyzed by X-ray diffraction (XRD to know the different types of oxides formed and changed in oxidation number of metallic centers after sintering process at around 850∘C. To know the effect of temperature over phase transformation and melting of different compounds, differential thermal analysis (DTA was carried out from 1000 to 1400∘C. This study aims to know the quantity of ions present (percentage and melting behavior of developed agglomerated fluxes for submerged arc welding process.

  4. Order Reduction of the Radiative Heat Transfer Model for the Simulation of Plasma Arcs

    CERN Document Server

    Fagiano, Lorenzo

    2015-01-01

    An approach to derive low-complexity models describing thermal radiation for the sake of simulating the behavior of electric arcs in switchgear systems is presented. The idea is to approximate the (high dimensional) full-order equations, modeling the propagation of the radiated intensity in space, with a model of much lower dimension, whose parameters are identified by means of nonlinear system identification techniques. The low-order model preserves the main structural aspects of the full-order one, and its parameters can be straightforwardly used in arc simulation tools based on computational fluid dynamics. In particular, the model parameters can be used together with the common approaches to resolve radiation in magnetohydrodynamic simulations, including the discrete-ordinate method, the P-N methods and photohydrodynamics. The proposed order reduction approach is able to systematically compute the partitioning of the electromagnetic spectrum in frequency bands, and the related absorption coefficients, tha...

  5. The mechanisms of cracks formation of silver-based contact materials under arc and making pressure

    Institute of Scientific and Technical Information of China (English)

    GUO Feng-yi(郭凤仪); CHEN Zhong-hua(陈忠华); ZHANG Ling-ling(张玲玲); ZHANG Ji-hua(张继华); FW Leuschner

    2004-01-01

    The arc erosion experiments on five kinds of silver-based contact materials, AgZnO (10), AgSnO2 (8.5) In2O3 (4), AgCdO (12), AgNi(10), AgWC(12)C(3) were carried out according to different breaking times, breaking currents, and making pressures. Then based on the theoretical analysis and the photographs taken by scanning electronic microscope with EDAX analyzer, the crack morphology was studied scientifically. Three types of cracks, which are cavity cracks, grain boundaries (or phase boundaries) slipping cracks, and thermal stress cracks, were put forward under arc and making pressure through establishing their physical models and discussing their formation mechanisms.

  6. Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling.

    Science.gov (United States)

    Wang, Weizong; Patil, Bhaskar; Heijkers, Stjin; Hessel, Volker; Bogaerts, Annemie

    2017-05-22

    The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO2 yields and the corresponding energy efficiency for NOx formation for different N2 /O2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NOx . The results indicate that vibrational excitation of N2 in the gliding arc contributes significantly to activating the N2 molecules, and leads to an energy efficient way of NOx production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NOx formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale Haber-Bosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which low-temperature plasma technology might play an important role. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Thermal Cycling Assessment of Steel-Based Thermal Barrier Coatings for Al Protection

    Science.gov (United States)

    Poirier, Dominique; Lamarre, Jean-Michel; Legoux, Jean-Gabriel

    2015-01-01

    There is a strong interest from the transportation industry to achieve vehicle weight reduction through the replacement of steel components by aluminum parts. For some applications, aluminum requires protective coatings due to its limited wear and lower temperature resistance compared to steel. The objective of this study was to assess the potential of amorphous-type plasma-sprayed steel coatings and conventional arc-sprayed steel coatings as thermal barrier coatings, mainly through the evaluation of their spalling resistance under thermal cycling. The microstructures of the different coatings were first compared via SEM. The amorphicity of the coatings produced via plasma spraying of specialized alloyed steel and the crystalline phases of the conventional arc-sprayed steel coatings were confirmed through x-ray diffraction. The thermal diffusivity of all coatings produced was measured to be about a third of that of bulk stainless steel. Conventional arc-sprayed steel coatings typically offered better spalling resistance under thermal cycling than steel-based amorphous coatings due probably to their higher initial bond strength. However, the presence of vertical cracks in the steel-based amorphous coatings was found to have a beneficial effect on their thermal cycling resistance. The amorphous plasma-sprayed steel coatings presented indications of recrystallization after their exposure to high temperature.

  8. BASIC THEORY AND APPLICATIONS OF WELDING ARC SPECTRAL INFORMATION

    Institute of Scientific and Technical Information of China (English)

    LI Junyue; XUE Haitao; LI Huan; SONG Yonglun

    2007-01-01

    Welding arc spectral information is a rising welding Information source. In some occasion, it can reflect many physical phenomena of welding process and solve many problems that cannot be done with arc electric information, acoustic information and other arc information. It is of important significance in developing automatic control technique of welding process and other similar process. Many years study work on welding arc spectral information of the anthor are discussed from three aspects of theory, method and application. Basic theory, view and testing methods of welding arc spectral information has been put forward. In application aspects, many applied examples, for example, monitoring of harmful gases in arc (such as hydrogen and nitrogen) with the method of welding arc spectral information; welding arc spectral imaging of thc welding pool which is used in automatic seam tracking; controlling of welding droplet transfer with welding arc spectral information and so on, are introduced. Especially, the successful application in real time controlling of welding droplet transfer in pulsed GMAW is introduced too. These application examples show that the welding arc spectral information has great applied significance and development potentialities. These content will play an important role in applying and spreading welding arc spectral information technology.

  9. On the arc structures of the Saturnian kilometric radiation

    Science.gov (United States)

    Boudjada, M. Y.; Galopeau, P. H. M.; Rucker, H. O.; Voller, W.

    2012-09-01

    We report on the analysis of the dynamic spectra of the Saturnian kilometric radiation (SKR) recorded by the Cassini Radio and Plasma Wave Science Experiment (RPWS) in the frequency range from 100 kHz to about 1 MHz. We investigate the Saturnian kilometric spectra recorded by RPWS experiment from 01st Jan. 2004 to 31st Dec. 2007. Different Saturnian 'sources' can be defined by spectral characteristics. We show that the SKR presents different kinds of arc structures. Those arcs may be classified in two sets: the 'vertex early arcs' (VEA) and the 'vertex late arcs' (VLA). The arcs of the first group set open toward increasing time, while the arcs of the other one open towards decreasing time. A total of 556 arcs have been observed during the four investigated years, where 310 and 246 correspond, respectively, to the vertex early and late arcs. The arc occurrences are mainly observed when the spacecraft was close to the apoapses, and also when the Cassini latitude was in the range -20° and +20°. Similar VEA and VLA arc structures have been reported in the case of the Jovian hectometric (HOM) and decametric (DAM) radio emissions. In this contribution we put emphasis on the common and unusual arc features by comparing the auroral emissions related to Jupiter and Saturn.

  10. Series and parallel arc-fault circuit interrupter tests.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay Dean; Fresquez, Armando J.; Gudgel, Bob; Meares, Andrew

    2013-07-01

    While the 2011 National Electrical Codeª (NEC) only requires series arc-fault protection, some arc-fault circuit interrupter (AFCI) manufacturers are designing products to detect and mitigate both series and parallel arc-faults. Sandia National Laboratories (SNL) has extensively investigated the electrical differences of series and parallel arc-faults and has offered possible classification and mitigation solutions. As part of this effort, Sandia National Laboratories has collaborated with MidNite Solar to create and test a 24-string combiner box with an AFCI which detects, differentiates, and de-energizes series and parallel arc-faults. In the case of the MidNite AFCI prototype, series arc-faults are mitigated by opening the PV strings, whereas parallel arc-faults are mitigated by shorting the array. A range of different experimental series and parallel arc-fault tests with the MidNite combiner box were performed at the Distributed Energy Technologies Laboratory (DETL) at SNL in Albuquerque, NM. In all the tests, the prototype de-energized the arc-faults in the time period required by the arc-fault circuit interrupt testing standard, UL 1699B. The experimental tests confirm series and parallel arc-faults can be successfully mitigated with a combiner box-integrated solution.

  11. Minimum-fuel rocket trajectories involving intermediate-thrust arcs

    Science.gov (United States)

    Breakwell, J. V.; Dixon, J. F.

    1975-01-01

    The optimal trajectories in the neighborhood of an optimal intermediate-thrust arc are investigated for the minimum-fuel orbit rendezvous problem with fixed specific impulse. Since such an arc is singular, the thrust acceleration magnitude being the singular control component, a second-variation analysis leads to the identification of a field of neighboring, singular arcs in a state space of dimension four rather than six, provided that a suitable Jacobi condition is met. A given neighboring initial six-dimensional state vector does not generally lie on a neighboring singular arc, and junction onto the appropriate singular arc must be accomplished by a short period of strong variations in the acceleration. The neighboring singular arc meets the final condition in 4 dimensions, rather than 6 dimensions, and rendezvous must be completed by another, terminal short period of strong variations in the acceleration. Implications for midcourse guidance near a singular arc are discussed.

  12. Thermo Physics Facilities Branch Brochure ARC Jet Complex Fact Sheets, Hypervelocity Free-Flight Aerodynamic Facility Fact Sheets, Ames Vertical Gun Range Fact Sheets

    Science.gov (United States)

    Fretter, E. F. (Editor); Kuhns, Jay (Editor); Nuez, Jay (Editor)

    2003-01-01

    The Ames Arc Jet Complex has a rich heritage of over 40 years in Thermal Protection System (TPS) development for every NASA Space Transportation and Planetary program, including Apollo, Space Shuttle, Viking, Pioneer-Venus, Galileo, Mars Pathfinder,Stardust, NASP,X-33,X-34,SHARP-B1 and B2,X-37 and Mars Exploration Rovers. With this early TPS history came a long heritage in the development of the arc jet facilities. These are used to simulate the aerodynamic heating that occurs on the nose cap, wing leading edges and on other areas of the spacecraft requiring thermal protection. TPS samples have been run in the arc jets from a few minutes to over an hour,from one exposure to multiple exposures of the same sample, in order t o understand the TPS materials response to a hot gas flow environment (representative of real hyperthermal environments experienced in flight). The Ames Arc l e t Complex is a key enabler for customers involved in the three major areas of TPS development: selection, validation, and qualification. The arc jet data are critical for validating TPS thermal models, heat shield designs and repairs, and ultimately for flight qualification.

  13. Late Jurassic Crustal Thickening in the Mesozoic Arc of Ecuador and Colombia: Implications on the Evolution of Continental Arcs.

    Science.gov (United States)

    Vanegas, J.; Cardona, A.; Blanco-Quintero, I.; Valencia, V.

    2014-12-01

    The tectonic evolution of South America during the Jurassic is related to the subduction of the Farallon plate and the formation of a series of continental arcs. In the northern Andes such arcs have been considered as controlled by extensional dominated tectonics. Paleomagnetic constraints have also suggested that between the Early and Late Jurassic several crustal domains were translate along the continental margin in association with strain partitioning in the convergent margin. A review of the character of the Salado terrane in the Cordillera Real of Ecuador indicates that it includes extensively deformed and metamorphosed volcano-sedimentary rocks that have achieved a greenschist to amphibolite facies event with chloritoid and garnet. This rocks are tightly associated with a ca. 143 Ma syn-tectonic granodiorite to monzogranite batholith that is also extensively milonitized.A similar Late Jurassic crustal thickening event that apparently affected volcano-sedimentary rocks have been also recently suspected in the Central Cordillera of the Colombian Andes in association with Jurassic plutonic rocks (Blanco-Quintero et al., 2013) It is therefore suggested that during the Late Jurassic the Northern Andes experienced significant contractional tectonics. Such crustal thickening may be related to either the active subduction setting were the crustal slivers formed in relation to oblique convergence are transfered and re-accreted to the margin and triggered the deformational event or to a collisional event associated to the arrival of an allocthonous terrane. New geochronological constraints on the metamorphic evolution and precise understanding on the relations between magmatism and deformation are going to be obtain in the Salado Terrane to appropriately test this hypothesis and contribute to the understanding of the extensional to compressional tectonic switching in continental arcs. Blanco-Quintero, I. F., García-Casco, A., Ruíz, E. C., Toro, L. M., Moreno, M

  14. Modeling the role of back-arc spreading in controlling 3-D circulation and temperature patterns in subduction zones

    Science.gov (United States)

    Kincaid, C.

    2005-12-01

    Subduction of oceanic lithosphere provides a dominant driving force for mantle dynamics and plate tectonics, and strongly modulates the thermal evolution of the mantle. Magma generation in arc environments is related to slab temperatures, slab dehydration/wedge hydration processes and circulation patterns in the mantle wedge. A series of laboratory experiments is used to model three-dimensional aspects of flow in subduction zones, and the consequent temperature variations in the slab and overlying mantle wedge. The experiments utilize a tank of glucose syrup to simulate the mantle and a Phenolic plate to represent subducting oceanic lithosphere. Different modes of plate sinking are produced using hydraulic pistons. The effects of longitudinal, rollback and slab-steepening components of slab motions are considered, along with different thicknesses of the over-riding lithosphere. Models look specifically at how distinct modes of back-arc spreading alter subduction zone temperatures and flow in the mantle wedge. Results show remarkably different temperature and circulation patterns when spreading is produced by rollback of the trench-slab-arc relative to a stationary overriding back-arc plate versus spreading due to motion of the overriding plate away from a fixed trench location. For rollback-induced spreading, flow trajectories in the wedge are shallow (e.g., limited upwelling), both the sub-arc and back-arc regions are supplied by material flowing around the receding slab. Flow lines in the sub-arc wedge are strongly trench-parallel. In these cases, strong lateral variations in slab surface temperature (SST) are recorded (hot at plate center, cool at plate edge). When the trench is fixed in space and spreading is produced by motion of the overriding plate, strong vertical flow velocities are recorded in the wedge, both the shallow sub-arc and back-arc regions are supplied by flow from under the overriding plate producing strong vertical shear. In these cases SSTs

  15. Numerical modeling of transferred arc melting bath heating; Modelisation numerique du chauffage de bains par arc transfere

    Energy Technology Data Exchange (ETDEWEB)

    Bouvier, A. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Trenty, L.; Guillot, J.B. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France); Delalondre, C. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches

    1997-12-31

    This paper presents the modeling of a transferred electric arc inside a bath of melted metal. After a recall of the context of the study, the problem of the modeling, which involves magnetohydrodynamic coupling inside the arc and the bath, is described. The equations that govern the phenomena inside the arc and the bath are recalled and the approach used for the modeling of the anode region of the arc is explained using a 1-D sub-model. The conditions of connection between arc and bath calculations are explained and calculation results obtained with a 200 kW laboratory furnace geometry are presented. (J.S.) 8 refs.

  16. Plasma Arc Augmented CO2 laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Andersen, Mikkel; Frederiksen, Niels

    2001-01-01

    In order to reduce the hardness of laser beam welded 2.13 mm medium strength steel CMn 250, a plasma arc has been used simultaneously with a 2.6 kW CO2 laser source. In a number of systematic laboratory tests, the plasma arc current, plasma gas flow and distance to the laser source were varied...... with all laser parameters fixed. The welds were quality assessed and hardness measured transversely to the welding direction in the top, middle and root of the seam. In the seams welded by laser alone, hardness values between 275 and 304 HV1 were measured, about the double of the base material, 150 HV1...

  17. Hybrid Arc Cell Studies: Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Berg J. S.

    2012-09-28

    I report on the status, at the end of FY12, of the studies of an arc cell for a hybrid synchrotron accelerating from 375 GeV/c to 750 GeV/c in momentum. Garren produced a complete lattice that gives a good outline of the structure of a hybrid synchrotron lattice. It is, however, lacking in some details: it does not maintain a constant time of flight, it lacks chromaticity correction, its cell structure is not ideal for removing aberrations from chromaticity correction, and it probably needs more space between magnets. I have begun studying cell structures for the arc cells to optimize the lattice performance and cost. I present some preliminary results for two magnets per half cell. I then discuss difficulties encountered, some preliminary attempts at resolving them, and the future plans for this work.

  18. Examining properties of arc sprayed nanostructured coatings

    Directory of Open Access Journals (Sweden)

    A. Czupryński

    2016-04-01

    Full Text Available The article presents the results of examining properties of arc sprayed coating obtained with nano-alloy on the iron matrix with a high amount of fine carbide precipitates sprayed on non-alloyed steel plates intended for high temperature operation. Powder metal cored wire EnDOtec DO*390N 1,6 mm diameter, was used to produce, dense, very high abrasion and erosion resistant coatings approx. 1,0 mm thick. Nano-material coatings characterization was done to determine abrasion resistance, erosion resistance, adhesion strength, hardness as well as metallographic examinations. Results have proved high properties of arc sprayed nano-material coatings and have shown promising industrial applications.

  19. A pulsed cathodic arc spacecraft propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, P R C; Bilek, M M M; Tarrant, R N; McKenzie, D R [School of Physics, University of Sydney, NSW 2006 Australia (Australia)

    2009-11-15

    We investigate the use of a centre-triggered cathodic arc as a spacecraft propulsion system that uses an inert solid as a source of plasma. The cathodic vacuum arc produces almost fully ionized plasma with a high exhaust velocity (>10{sup 4} m s{sup -1}), giving a specific impulse competitive with other plasma or ion thrusters. A centre trigger design is employed that enables efficient use of cathode material and a high pulse-to-pulse repeatability. We compare three anode geometries, two pulse current profiles and two pulse durations for their effects on impulse generation, energy and cathode material usage efficiency. Impulse measurement is achieved through the use of a free-swinging pendulum target constructed from a polymer material. Measurements show that impulse is accurately controlled by varying cathode current. The cylindrical anode gave the highest energy efficiency. Cathode usage is optimized by choosing a sawtooth current profile. There is no requirement for an exhaust charge neutralization system.

  20. Filtered cathodic arc deposition apparatus and method

    Science.gov (United States)

    Krauss, Alan R.

    1999-01-01

    A filtered cathodic arc deposition method and apparatus for the production of highly dense, wear resistant coatings which are free from macro particles. The filtered cathodic arc deposition apparatus includes a cross shaped vacuum chamber which houses a cathode target having an evaporable surface comprised of the coating material, means for generating a stream of plasma, means for generating a transverse magnetic field, and a macro particle deflector. The transverse magnetic field bends the generated stream of plasma in the direction of a substrate. Macro particles are effectively filtered from the stream of plasma by traveling, unaffected by the transverse magnetic field, along the initial path of the plasma stream to a macro particle deflector. The macro particle deflector has a preformed surface which deflects macro particles away from the substrate.

  1. Electrical Safety and Arc Flash Protections

    Energy Technology Data Exchange (ETDEWEB)

    R. Camp

    2008-03-04

    Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we will review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.

  2. The singing arc: the oldest memristor?

    CERN Document Server

    Ginoux, Jean-Marc

    2014-01-01

    On April 30th 2008, the journal Nature announced that the missing circuit element, postulated thirty-seven years before by Professor Leon O. Chua has been found. Thus, after the capacitor, the resistor and the inductor, the existence of a fourth fundamental element of electronic circuits called "memristor" was established. In order to point out the importance of such a discovery, the aim of this article is first to propose an overview of the manner with which the three others have been invented during the past centuries. Then, a comparison between the main properties of the singing arc, i.e. a forerunner device of the triode used in Wireless Telegraphy, and that of the memristor will enable to state that the singing arc could be considered as the oldest memristor.

  3. Effect of cathode model on arc attachment for short high-intensity arc on a refractory cathode

    Science.gov (United States)

    Javidi Shirvan, Alireza; Choquet, Isabelle; Nilsson, Håkan

    2016-12-01

    Various models coupling the refractory cathode, the cathode sheath and the arc at atmospheric pressure exist. They assume a homogeneous cathode with a uniform physical state, and differ by the cathode layer and the plasma arc model. However even the most advanced of these models still fail in predicting the extent of the arc attachment when applied to short high-intensity arcs such as gas tungsten arcs. Cathodes operating in these conditions present a non-uniform physical state. A model taking into account the first level of this non-homogeneity is proposed based on physical criteria. Calculations are done for 5 mm argon arcs with a thoriated tungsten cathode. The results obtained show that radiative heating and cooling of the cathode surface are of the same order. They also show that cathode inhomogeneity has a significant effect on the arc attachment, the arc temperature and pressure. When changing the arc current (100 A, 200 A) the proposed model allows predicting trends observed experimentally that cannot be captured by the homogeneous cathode model unless restricting a priori the size of the arc attachment. The cathode physics is thus an important element to include to obtain a comprehensive and predictive arc model.

  4. Water-vortex-stabilized electric arc: III. Radial energy transport, determination of water-vapour-boundary and arc performance

    Science.gov (United States)

    Jenista, Jirí

    2003-12-01

    This paper is concerned with numerical modelling of an electric arc stabilized by a water vortex. The two-dimensional axisymmetric model presented includes the arc discharge area between the cathode and the outlet nozzle of the water plasma torch. The aims of the numerical simulations are: (1) to assess the influence of radial position of the water-vapour-boundary in the discharge chamber on arc performance and overall radial energy transport within the arc; (2) to determine the most probable mass flow rates and radii of the water-vapour-boundary in the discharge chamber for a prescribed current; (3) to demonstrate arc performance for two radiation models involved; and (4) to estimate validity of local thermodynamic equilibrium (LTE) conditions within the arc column. The rate of evaporation of water is calculated from the conduction and radiation heat fluxes at the water vapour surface for the specified mass flow rate. The behaviour of such an arc has been studied for a range of current 300-600 A. It is shown that changes of bulk magnitudes of different terms in the momentum and energy equations within the arc column as a function of arc radius enable us to reveal transitions of temperature and velocity fields from one steady state to a qualitatively different one. The best fit between experiment and numerical simulation for all currents exists for the mean arc radius ~3.3 mm. Deviations from LTE within the arc column are estimated with the criteria for kinetic equilibrium and spatial temperature gradients.

  5. PSYCHOSOMATIC "ARC" IN THE PSYCHOTHERAPEUTIC PRACTICE

    OpenAIRE

    Ivanka Boncheva

    2012-01-01

    The psychoneuroimmunology, the new brain science and the endocrinology today show a lot of results, with which symptoms are better to understand. The psychotherapeutic practice shows the ways to influence them by encoding the levels of bounding between the physical symptom and the psychological condition. The aim of the study was to show the encoding of the psychosomatic arc within a real psychotherapeutic contact. 59 psychotherapeutic cases are followed. 33 of them were with somatoform disor...

  6. Vacuum arc on the polycrystalline silica cathode

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2014-01-01

    Full Text Available Thin films of silica and its compounds are used in modern technology to produce Li-ion batteries, wear-resistant and protective coatings, thin-films insulators, etc. This coating is produced with CVD methods, with magnetron sputtering systems or with electron-beam evaporation. The vacuum arc evaporation method, presently, is not used.The paper demonstrates a possibility for a long-term operation of vacuum arc evaporator with polycrystalline silica-aluminum alloy (90% of silica cathode and with magnetic system to create a variable form of arch-like magnetic field on the cathode surface. It was shown that archlike configuration of magnetic field provides a stable discharge and uniform cathode spots moving with the velocities up to 5 m/s with magnetic fields induction about 10 mT. Thus, there is no local melting of the cathode, and this provides its long-term work without chips, cracks and destruction. Cathodes spots move over the cathode surface leaving t big craters with melted edges on its surface. The craters size was 150-450μm. The cathode spot movement character and the craters on the cathode surface were like the spots movement, when working on the copper or aluminum cathodes. With the magnetic field induction less than 1 mT, the cathode spots movement was the same as that of on the silica mono-crystal without magnetic field. Thus, the discharge volt-ampere characteristics for different values of magnetic fields were obtained. Voltampere characteristics were increasing and were shifted to the higher voltage with increasing magnetic field. The voltage was 18.7-26.5 V for the arc current 30-140 A.So, it was confirmed that vacuum arc evaporation method could be used for effective evaporation of silica and silica-based alloys and for thin films deposition of this materials.

  7. Submarine volcanoes along the Aegean volcanic arc

    Science.gov (United States)

    Nomikou, Paraskevi; Papanikolaou, Dimitrios; Alexandri, Matina; Sakellariou, Dimitris; Rousakis, Grigoris

    2013-06-01

    The Aegean volcanic arc has been investigated along its offshore areas and several submarine volcanic outcrops have been discovered in the last 25 years of research. The basic data including swath bathymetric maps, air-gun profiles, underwater photos and samples analysis have been presented along the four main volcanic groups of the arc. The description concerns: (i) Paphsanias submarine volcano in the Methana group, (ii) three volcanic domes to the east of Antimilos Volcano and hydrothermal activity in southeast Milos in the Milos group, (iii) three volcanic domes east of Christiana and a chain of about twenty volcanic domes and craters in the Kolumbo zone northeast of Santorini in the Santorini group and (iv) several volcanic domes and a volcanic caldera together with very deep slopes of several volcanic islands in the Nisyros group. The tectonic structure of the volcanic centers is described and related to the geometry of the arc and the neotectonic graben structures that usually host them. The NE-SW direction is dominant in the Santorini and Nisyros volcanic groups, located at the eastern part of the arc, where strike-slip is also present, whereas NW-SE direction dominates in Milos and Methana at the western part, where co-existence of E-W disrupting normal faults is observed. The volcanic relief reaches 1100-1200 m in most cases. This is produced from the outcrops of the volcanic centers emerging usually at 400-600 m depth and ending either below sea level or at high altitudes of 600-700 m on the islands. Hydrothermal activity at relatively high temperatures observed in Kolumbo is remarkable whereas low temperature phenomena have been detected in the Santorini caldera around Kameni islands and in the area southeast of Milos. In Methana and Nisyros, hydrothermal activity seems to be limited in the coastal areas without other offshore manifestations.

  8. Next generation high productivity submerged arc welding

    OpenAIRE

    LANGENOJA, MARKUS; Öhrvall Karlsson, Vincent

    2012-01-01

    The task of designing concepts for the next generation of submerged arc welding heads was given by ESAB. ESAB is a global company manufacturing welding equipment for a wide span of industries and uses. In October 2011, ESAB introduced a new technology called Integrated Cold Electrode™, abbreviated and trademarked as ICE™. ICE™ is a technique which utilizes three electrodes in a highly productive and stable process. The current state of the ICE™ technique focuses on welding thick plates with c...

  9. Multi-colour detection of gravitational arcs

    Science.gov (United States)

    Maturi, Matteo; Mizera, Sebastian; Seidel, Gregor

    2014-07-01

    Strong gravitational lensing provides fundamental insights into the understanding of the dark matter distribution in massive galaxies, galaxy clusters, and the background cosmology. Despite their importance, few gravitational arcs have been discovered so far. The urge for more complete, large samples and unbiased methods of selecting candidates increases. Several methods for the automatic detection of arcs have been proposed in the literature, but large amounts of spurious detections retrieved by these methods force observers to visually inspect thousands of candidates per square degree to clean the samples. This approach is largely subjective and requires a huge amount of checking by eye, especially considering the actual and upcoming wide-field surveys, which will cover thousands of square degrees. In this paper we study the statistical properties of the colours of gravitational arcs detected in the 37 deg2 of the CFHTLS-Archive-Research Survey (CARS). Most of them lie in a relatively small region of the (g' - r', r' - i') colour-colour diagram. To explain this property, we provide a model that includes the lensing optical depth expected in a ΛCDM cosmology that, in combination with the sources' redshift distribution of a given survey, in our case CARS, peaks for sources at redshift z ~ 1. By furthermore modelling the colours derived from the spectral energy distribution of the galaxies that dominate the population at that redshift, the model reproduces the observed colours well. By taking advantage of the colour selection suggested by both data and model, we automatically detected 24 objects out of 90 detected by eye checking. Compared with the single-band arcfinder, this multi-band filtering returns a sample complete to 83% and a contamination reduced by a factor of ~6.5. New gravitational arc candidates are also proposed.

  10. Plasma ARC keyhole welding of aluminum

    Science.gov (United States)

    Fostervoll, H.

    1993-02-01

    An increasing and more advanced use of aluminum as a construction material make higher demands to the effectiveness and quality in aluminum joining. Furthermore, if the advantages of aluminum shall be exploited in the best possible way, it is necessary to use the best processes available for the certain application. Today, the most widely used processes of aluminum welding are gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW). Plasma arc welding (PAW) is another interesting process, which is rather newly adopted for aluminum welding. However, up to now the use is limited and most of the users are within the space industry in USA (NASA); also the new space industry in Europe has adopted the process. The reason for the great interest for PAW in the space industry is, according to NASA, higher weld quality and less repair costs, less heat distortion, and less groove preparations costs. Of these reasons, PAW should also be of interest for the aluminum industry in Scandinavia. The aim of the project is to focus on the possibilities and to some extent testing the PAW process.

  11. Longitudinal development of a substorm brightening arc

    Directory of Open Access Journals (Sweden)

    K. Shiokawa

    2009-05-01

    Full Text Available We present simultaneous THEMIS-ground observations of longitudinal (eastward extension of a substorm initial-brightening arc at Gillam (magnetic latitude: 65.6° at 08:13 UT on 10 January 2008. The speed of the eastward arc extension was ~2.7 km/s. The extension took place very close to the footprints of the longitudinally separated THEMIS E and D satellites at ~12 RE. The THEMIS satellites observed field dipolarization, weak earthward flow, and pressure increase, which propagated eastward from E to D at a speed of ~50 km/s. The THEMIS A satellite, located at 1.6 RE earthward of THEMIS E, observed fluctuating magnetic field during and after the dipolarization. The THEMIS E/D observations suggest that the longitudinal extension of the brightening arc at substorm onset is caused by earthward flow braking processes which produce field dipolarization and pressure increase propagating in longitude in the near-earth plasma sheet.

  12. Arc melter demonstration baseline test results

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; Oden, L.L.; O`Connor, W.K.; Turner, P.C.

    1994-07-01

    This report describes the test results and evaluation for the Phase 1 (baseline) arc melter vitrification test series conducted for the Buried Waste Integrated Demonstration program (BWID). Phase 1 tests were conducted on surrogate mixtures of as-incinerated wastes and soil. Some buried wastes, soils, and stored wastes at the INEL and other DOE sites, are contaminated with transuranic (TRU) radionuclides and hazardous organics and metals. The high temperature environment in an electric arc furnace may be used to process these wastes to produce materials suitable for final disposal. An electric arc furnace system can treat heterogeneous wastes and contaminated soils by (a) dissolving and retaining TRU elements and selected toxic metals as oxides in the slag phase, (b) destroying organic materials by dissociation, pyrolyzation, and combustion, and (c) capturing separated volatilized metals in the offgas system for further treatment. Structural metals in the waste may be melted and tapped separately for recycle or disposal, or these metals may be oxidized and dissolved into the slag. The molten slag, after cooling, will provide a glass/ceramic final waste form that is homogeneous, highly nonleachable, and extremely durable. These features make this waste form suitable for immobilization of TRU radionuclides and toxic metals for geologic timeframes. Further, the volume of contaminated wastes and soils will be substantially reduced in the process.

  13. Spiraling Fermi arcs in Weyl materials

    Science.gov (United States)

    Li, Songci; Andreev, Anton

    In Weyl materials the valence and conduction electron bands touch at an even number of isolated points in the Brillouin zone. In the vicinity of these points the electron dispersion is linear and may be described by the massless Dirac equation. This results in nontrivial topology of Berry connection curvature. One of its consequences is the existence of peculiar surface electron states whose Fermi surfaces form arcs connecting projections of the Weyl points onto the surface plane. Band bending near the boundary of the crystal also produces surface states. We show that in Weyl materials band bending near the crystal surface gives rise to spiral structure of energy surfaces of arc states. The corresponding Fermi surface has the shape of a spiral that winds about the projection of the Weyl point onto the surface plane. The direction of the winding is determined by the helicity of the Weyl point and the sign of the band bending potential. For close valleys arc state morphology may be understood in terms of avoided crossing of oppositely winding spirals. This work is supported by the U.S. Department of Energy Office of Science, Basic Energy Sciences under Award Number DE-FG02-07ER46452.

  14. Optical diagnostics of a gliding arc.

    Science.gov (United States)

    Sun, Z W; Zhu, J J; Li, Z S; Aldén, M; Leipold, F; Salewski, M; Kusano, Y

    2013-03-11

    Dynamic processes in a gliding arc plasma generated between two diverging electrodes in ambient air driven by 31.25 kHz AC voltage were investigated using spatially and temporally resolved optical techniques. The life cycles of the gliding arc were tracked in fast movies using a high-speed camera with framing rates of tens to hundreds of kHz, showing details of ignition, motion, pulsation, short-cutting, and extinction of the plasma column. The ignition of a new discharge occurs before the extinction of the previous discharge. The developed, moving plasma column often short-cuts its current path triggered by Townsend breakdown between the two legs of the gliding arc. The emission from the plasma column is shown to pulsate at a frequency of 62.5 kHz, i.e., twice the frequency of the AC power supply. Optical emission spectra of the plasma radiation show the presence of excited N2, NO and OH radicals generated in the plasma and the dependence of their relative intensities on both the distance relative to the electrodes and the phase of the driving AC power. Planar laser-induced fluorescence of the ground-state OH radicals shows high intensity outside the plasma column rather than in the center suggesting that ground-state OH is not formed in the plasma column but in its vicinity.

  15. GlidArc-assisted processing of biogas

    Energy Technology Data Exchange (ETDEWEB)

    Czernichowski, A.; Wesolowska, K. (ECP, La Ferte St Aubin (France)), Email: echph@wanadoo.fr

    2009-07-01

    Power generation or chemical applications of biogas can be difficult when CH{sub 4} content is too low and / or in the presence of sulphur compounds. We therefore propose two reformers based on electric discharges (GlidArc) that strike directly either in a poor biogas or in waste CO{sub 2} + H{sub 2}S mixture generated during biogas cleaning. Direct application of GlidArc discharges to the poor biogas enhances its flammability through a partial conversion of CH{sub 4} + CO{sub 2} into hydrogen and carbon monoxide (synthesis gas). Any level of sulphur (and other impurities) is accepted. Roughly 40 % of injected electric power is transferred into upgraded biogas as its additional chemical enthalpy. A few percent of resultant H{sub 2} and CO inside the biogas makes it more flammable, and therefore better to fuel an engine or gas turbine. As a result of biogas purification via amines-washing technologies, one gets concentrated pollutants in CO{sub 2} matrix. Instead of classical neutralisation, we propose H{sub 2}Svalorisation through the SulfArc process converting all H{sub 2}S into additional amounts of synthesis gas, while neutral elemental sulphur is removed from the system. Generated syngas can be injected into the main biogas flow to enhance its flammability. (orig.)

  16. Arc-Induced Long Period Fiber Gratings

    Directory of Open Access Journals (Sweden)

    Gaspar Rego

    2016-01-01

    Full Text Available Long period fiber gratings produced by the electric arc technique have found an increasing interest by the scientific community due to their ease to fabricate, virtually enabling the inscription in any kind of fiber, low cost, and flexibility. In 2005 we have presented the first review on this subject. Since then, important achievements have been reached such as the identification of the mechanisms responsible for gratings formation, the type of symmetry, the conditions to increase fabrication reproducibility, and their inscription in the turning points with grating periods below 200 μm. Several interesting applications in the sensing area, including those sensors working in reflection, have been demonstrated and others are expected, namely, related to the monitoring of extreme temperatures, cryogenic and high temperatures, and high sensitivity refractometric sensors resulting from combining arc-induced gratings in the turning points and the deposition of thin films in the transition region. Therefore, due to its pertinence, in this paper we review the main achievements obtained concerning arc-induced long period fiber gratings, with special focus on the past ten years.

  17. A novel technique to monitor thermal discharges using thermal infrared imaging.

    Science.gov (United States)

    Muthulakshmi, A L; Natesan, Usha; Ferrer, Vincent A; Deepthi, K; Venugopalan, V P; Narasimhan, S V

    2013-09-01

    Coastal temperature is an important indicator of water quality, particularly in regions where delicate ecosystems sensitive to water temperature are present. Remote sensing methods are highly reliable for assessing the thermal dispersion. The plume dispersion from the thermal outfall of the nuclear power plant at Kalpakkam, on the southeast coast of India, was investigated from March to December 2011 using thermal infrared images along with field measurements. The absolute temperature as provided by the thermal infrared (TIR) images is used in the Arc GIS environment for generating a spatial pattern of the plume movement. Good correlation of the temperature measured by the TIR camera with the field data (r(2) = 0.89) make it a reliable method for the thermal monitoring of the power plant effluents. The study portrays that the remote sensing technique provides an effective means of monitoring the thermal distribution pattern in coastal waters.

  18. Stud arc welding in a magnetic field - Investigation of the influences on the arc motion

    Science.gov (United States)

    Hartz-Behrend, K.; Marqués, J. L.; Forster, G.; Jenicek, A.; Müller, M.; Cramer, H.; Jilg, A.; Soyer, H.; Schein, J.

    2014-11-01

    Stud arc welding is widely used in the construction industry. For welding of studs with a diameter larger than 14 mm a ceramic ferrule is usually necessary in order to protect the weld pool. Disadvantages of using such a ferrule are that more metal is molten than necessary for a high quality welded joint and that the ferrule is a consumable generally thrown away after the welding operation. Investigations show that the ferrule can be omitted when the welding is carried out in a radially symmetric magnetic field within a shielding gas atmosphere. Due to the Lorentz force the arc is laterally shifted so that a very uniform and controlled melting of the stud contact surface as well as of the work piece can be achieved. In this paper a simplified physical model is presented describing how the parameters welding current, flux density of the magnetic field, radius of the arc and mass density of the shielding gas influence the velocity of the arc motion. The resulting equation is subsequently verified by comparing it to optical measurements of the arc motion. The proposed model can be used to optimize the required field distribution for the magnetic field stud welding process.

  19. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available Thermal comfort is influenced by environmental parameters as well as other influences including asymmetric heating and cooling conditions. Additionally, some aspects of thermal comfort may be exploited so as to enable a building to operate within a...

  20. Arc Facilities Manager (ArcFM)-ARC/INFO的功能强大的公用事业应用程序%Arc Facilities Manager(ArcFM)-A Powerful ARC/INFO-Based Application for

    Institute of Scientific and Technical Information of China (English)

    陆朝晖; 赵小红; 朱晓岷

    2000-01-01

    市场经济条件下公用事业面临新的挑战,地理信息系统(GIS)有助于公用事业有效管理公用设施,从而在竞争中获得优势.围绕ESRI公司的ArcFM软件,从它的结构、性能和功能等几方面,阐述了公用事业管理系统的一种解决方案.

  1. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hao; ZHU Fengsen; TU Xin; BO Zheng; CEN Kefa; LI Xiaodong

    2016-01-01

    In this work,a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions.The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals,high speed photography,and optical emission spectroscopic diagnostics.Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g.,10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone,in this RGA system,a lower gas flow rate (e.g.,2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions.Two different motion patterns can be clearly observed in the N2 and air RGA plasmas.The time-resolved arc voltage signals show that three different arc dynamic modes,the arc restrike mode,takeover mode,and combined modes,can be clearly identified in the RGA plasmas.The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate.

  2. ArcB: El sensor del estado redox en bacterias

    Directory of Open Access Journals (Sweden)

    Luis Alberto Núñez-Oreza

    2014-01-01

    Full Text Available El sistema de dos componentes Arc está compuesto por la cinasa sensora ArcB y por el regulador de respuesta ArcA. En Escherichia coli, este sistema regula la red transcripcional implicada en el metabolismo energético, acorde a las condiciones de óxido-reducción del medio. En condiciones anóxicas de crecimiento, ArcB se autofosforila y transfosforila a ArcA, el cual reprime o activa la expresión de sus operones blanco. En condiciones aeróbicas, ArcB actúa como una fosfatasa, catalizando la defosforilación de ArcA-P e inactivándolo como regulador transcripcional. Esta revisión describe las principales propiedades estructurales de ArcB y los eventos trascendentales que ocurren en la señalización por Arc, incluyendo la percepción de la señal y la regulación de la actividad cinasa. Además, compara la secuencia de ArcB de E. coli con la de homólogos en otras bacterias, revelando similitudes y diferencias que pueden ser de gran importancia en la regulación de esta proteína sensora.

  3. Arc Jet Facility Test Condition Predictions Using the ADSI Code

    Science.gov (United States)

    Palmer, Grant; Prabhu, Dinesh; Terrazas-Salinas, Imelda

    2015-01-01

    The Aerothermal Design Space Interpolation (ADSI) tool is used to interpolate databases of previously computed computational fluid dynamic solutions for test articles in a NASA Ames arc jet facility. The arc jet databases are generated using an Navier-Stokes flow solver using previously determined best practices. The arc jet mass flow rates and arc currents used to discretize the database are chosen to span the operating conditions possible in the arc jet, and are based on previous arc jet experimental conditions where possible. The ADSI code is a database interpolation, manipulation, and examination tool that can be used to estimate the stagnation point pressure and heating rate for user-specified values of arc jet mass flow rate and arc current. The interpolation is performed in the other direction (predicting mass flow and current to achieve a desired stagnation point pressure and heating rate). ADSI is also used to generate 2-D response surfaces of stagnation point pressure and heating rate as a function of mass flow rate and arc current (or vice versa). Arc jet test data is used to assess the predictive capability of the ADSI code.

  4. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    Science.gov (United States)

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  5. Large seismic faults in the Hellenic arc

    Directory of Open Access Journals (Sweden)

    B. S. Papazachos

    1996-06-01

    Full Text Available Using information concerning reliable fault plane solutions, spatial distribution of strong earthquakes (Ms³ 6.0 as well as sea bottom and coastal topography, properties of the seismic faults (orientation, dimension, type of faulting were determined in seven shallow (h < 40 km seismogenic regions along the convex part of thc Hellenic arc (Hellenic trench and in four seismogenic regions of intermediate depth earthquakes (h = 40-100 km along the concave part of this arc. Except for the northwesternmost part of the Hellenic trench, where the strike-slip Cephalonia transform fault dominates, all other faults along this trench are low angle thrust faults. III thc western part of the trench (Zante-west Crete faults strike NW-SE and dip NE, while in its eastern part (east Crete-Rhodos faults strike WNW-ESE and dip NNE. Such system of faulting can be attributed to an overthrust of the Aegean lithosphere on the eastern Mediterranean lithosphere. The longest of these faults (L = 300 km is that which produced the largest known shallow earthquake in the Mediterranean area (21 July 365, Ms = 8.3 which is located near the southwestern coast of Crete. The second longest such fault (L = l 70 km is that which produced a large earthquake (December 1303, Ms = 8.0 in the easternmost part of the trench (east of Rhodos island. Both earthquakes were associated with gigantic tsunamis which caused extensive damage in the coast of many Eastern Mediterranean countries. Seismic faults of the intermediate depth earthquakes in the shallow part of the Benioff zone (h = 40- 100 km are of strike-slip type, with a thrust component. The orientations of these faults vary along the concave part of the arc in accordance with a subduction of remnants of all old lithospheric slab from the convex side (Mediterranean to the concave side (Aegean of thc Hellenic arc. The longest of these faults (L = 220 km is that which produced the largest known intermediate depth earthquake in the

  6. Voluminous arc dacites as amphibole reaction-boundary liquids

    Science.gov (United States)

    Blatter, Dawnika; Sisson, Thomas W.; Hankins, William B.

    2017-01-01

    (liquid + hbl + opx + cpx + plg + oxides) reduces the variance, so liquids are restricted to dacite–granodiorite–tonalite compositions. Higher-K dacites than the Yn would also saturate with biotite, further limiting their compositional diversity. Theoretical evaluation of the energetics of peritectic melting of pargasitic amphiboles indicates that melting and crystallization of amphibole occur abruptly, proximal to amphibole’s high-temperature stability limit, which causes the system to dwell thermally under the conditions that produce dacitic compositions. This process may account for the compositional homogeneity of dacites, granodiorites, and tonalites in arc settings, but their relative mobility compared to rhyolitic/granitic liquids likely accounts for their greater abundance.

  7. Contribution to the 3D time-dependent modeling of the arc dynamic behavior in a DC plasma spray torch; Contribution a la modelisation instationnaire et tridimensionnelle du comportement dynamique de l'arc dans une torche de projection plasma

    Energy Technology Data Exchange (ETDEWEB)

    Baudry, C

    2003-11-15

    This work is devoted to the tri-dimensional time-dependent modeling of the arc behavior in a plasma spray torch. It has been carried out in the fame of a collaboration with the Thermal Spray Laboratory of CEA-DAM, Le Ripault and the laboratory of Fluid Mechanics and Heat Transfers of EDF. After a summary of the operation modes of a DC plasma torch and the effect of anode erosion on the torch working, the structure of an electric arc is depicted as well as the main models of non-transferred electric arcs proposed in the literature. This review allows the determination of the main assumption and boundary conditions for a 'realistic' model of the electric arc. Then, the equations, assumptions and boundary conditions of the model we have developed are presented and, the CFD code ESTET 3.4 used to solve the model equations. The model is based on a specific value of the local electric field to predict the breakdown of the arc while its re-striking is favored by a hot gas column at the spot where the highest value of the electric field is calculated. This model gives a realistic prediction of the time-dependent arc behavior according to the plasma-forming gas nature and of the temperature and velocity of the gas flow at the nozzle exit. However, it overestimates the torch voltage and dimensions of the anode arc root attachment spot. (author)

  8. Application of Python in ArcGIS%Python在ArcGIS中的应用

    Institute of Scientific and Technical Information of China (English)

    朱道强; 关海涛

    2013-01-01

    通过简要介绍利用Python语言编写脚本在ArcGIS中进行数据批处理的基础方法,提出了一种减轻现今数据生产中作业人员进行数据处理强度的方法.%Through a brief introduction on the use of Python language data batch processing based method for script in ArcGIS,thus put forward the method to reduce the data in the production operation personnel data processing strength.

  9. Fluid Flow Modeling of Arc Plasma and Bath Circulation in DC Electric Arc Furnace

    Institute of Scientific and Technical Information of China (English)

    WANG Feng-hua; JIN Zhi-jian; ZHU Zi-shu

    2006-01-01

    A mathematical model describing the flow field, heat transfer and the electromagnetic phenomenon in a DC electric arc furnace has been developed. First the governing equations in the arc plasma region are solved and the calculated results of heat transfer, current density and shear stresses on the anode surface are used as boundary conditions in a model of molten bath. Then a two-dimensional time-dependent model is used to describe the flow field and electromagnetic phenomenon in the molten bath. Moreover, the effect of bottom electrode diameter on the circulation of molten bath is studied.

  10. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan

    2014-01-01

    current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column......, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light...

  11. Improving Processes of Mechanized Pulsed Arc Welding of Low-Frequency Range Variation of Mode Parameters

    Science.gov (United States)

    Saraev, Yu N.; Solodskiy, S. A.; Ulyanova, O. V.

    2016-04-01

    A new technology of low-frequency modulation of the arc current in MAG and MIG welding is presented. The technology provides control of thermal and crystallization processes, stabilizes the time of formation and crystallization of the weld pool. Conducting theoretical studies allowed formulating the basic criteria for obtaining strong permanent joints for high-duty structures, providing conditions for more equilibrium structure of the deposited metal and the smaller width of the HAZ. The stabilization of time of the formation and crystallization of the weld pool improves the formation of the weld and increases productivity in welding thin sheet metal.

  12. A Hemispherical-Involute Cavity Receiver for Stirling Engine Powered by a Xenon Arc Solar Simulator

    Science.gov (United States)

    Li, Zhi-Gang; Tang, Da-Wei; Li, Tie; Du, Jing-Long

    2011-05-01

    We develop a solar simulator composed of multiple xenon arc lamps combined with a faceted paraboloidal dish concentrator to drive a Stirling engine in our laboratory for all-weather indoor testing. Experiments and numerical analysis are performed to determine the radiation flux and temperature distributions on the solar receiver surface. Based on the theoretical results, we present a receiver design for a solar Stirling engine with involute tubes closely conforming to the imaginary hemisphere to obtain a substantially uniform temperature field and a high solar-thermal efficiency of 67.1%.

  13. Structure and properties of protective coatings produced by vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Leontiev, S.A. [Leningradsky Metallitchesky Zavod, St. Petersburg (Russian Federation); Kuznetsov, V.G. [Machine Research Problems Institute, Russian Academy of Sciences V.O., Bolshoy pr. 61, 199178 St. Petersburg (Russian Federation); Rybnikov, A.I. [Polzunov Central Boiler and Turbine Institute (NPO TsKTI), Polytechnicheskaya 24, 194021 St. Petersburg (Russian Federation); Burov, I.V. [Machine Research Problems Institute, Russian Academy of Sciences V.O., Bolshoy pr. 61, 199178 St. Petersburg (Russian Federation)

    1995-11-01

    CoCrAlY, NiCrWTi and CoCrAlY/ZrO{sub 2}+8wt.%Y{sub 2}O{sub 3} coatings were deposited by vacuum arc evaporation. Coatings were deposited onto specimens for metallographic analysis, corrosion resistance testing, thermal fatigue testing, high-frequency fatigue and onto gas turbine blades. It has been shown by testing that the developed procedures ensure gas turbine blade coatings of high quality comparable with those manufactured by electron beam procedures. (orig.)

  14. Optical arc sensor using energy harvesting power source

    Science.gov (United States)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  15. Improving Weld Quality by Arc-Excited Ultrasonic Treatment

    Institute of Scientific and Technical Information of China (English)

    张春雷; 吴敏生; 杜敬磊

    2001-01-01

    Ultrasonic treatment of the solidifying metal is a promising method for improving the quality of fusion welding. A method to combine the ultrasonic waves to the welding process using arc-excited ultrasonic emission, called arc-ultrasonic, was high frequency modulation of the arc-plasma. The effects of arc-ultrasonic on the weld including the fusion zone, the partially melted zone and the heat-affected zone are described. The arc-ultrasonic energy changes the weld microstructure. In the fusion zone, the primary dendrite arm spacing decreases significantly and more acicular ferrite appears. In the partially melted zone, a large amount of fine grains appear. In the heat-affected zone, the width of the tempered zone increases with increasing modulation frequency and the microstructure is refined. The results show that arc-ultrasonic is a new and effective way for improving weld quality.

  16. Optical arc sensor using energy harvesting power source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr [Dept. of Information and Telecommunication Engineering Incheon National University Incheon 22012 (Korea, Republic of)

    2016-06-03

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  17. Decomposition of toluene in a gliding arc discharge plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Du Changming [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Yan Jianhua [Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027 (China); Cheron, Bruno [UMR 6614 (CORIA), University of Rouen, 76821 Mont Saint Aignan (France)

    2007-11-15

    The decomposition of toluene in a gliding arc discharge (glidarc) was performed and studied. Experimental results indicate that the glidarc technology can effectively decompose toluene molecules and has bright prospects of being applied as an alternative tool to decompose volatile organic compounds. It is found that a change in the electrode material had an insignificant effect on the toluene removal efficiency. The toluene removal efficiency increases with increasing inlet gas temperature. The water vapor present in the gas mixture has a favorable effect on the toluene decomposition in the plasma. The energy efficiency is 29.46 g (kWh{sup -1}) at a relative humidity of 50% and a specific energy input of 0.26 kWh m{sup -3}, which is higher than other types of non-thermal plasmas. Too much or too little oxygen content does not favor toluene decomposition. The major gas phase products detected by FT-IR from the decomposition of toluene with air participation were CO, CO{sub 2}, H{sub 2}O and NO{sub 2}. Some brown depositions were found on the surface of the electrodes, which were polar oxygenous and nitrogenous compounds determined by the GC-MS analysis, such as benzaldehyde, benzoic acid, quinine and nitrophenol from the reaction of toluene with radicals. A possible mechanism for toluene destruction via glidarc technology is proposed and summarized.

  18. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  19. A rotary arc furnace for aluminum dross processing

    Energy Technology Data Exchange (ETDEWEB)

    Drouet, M.G.; Meunier, J.; Laflamme, C.B.; Handfield, M.D.; Biscaro, A.; Lemire, C. [Hydro-Quebec, Shawinigan, Quebec (Canada)

    1995-12-31

    Dross, a major by-product of all processes involving molten aluminum, forms at the surface of the molten metal as the latter reacts with the furnace atmosphere. It generally represents 1 to 5 wt% of the melt, depending on the process, and contains on average about 50% free aluminum dispersed in an oxide layer. Since aluminum production is highly energy-intensive, dross recycling is very attractive from both the energy and the economic standpoints. The conventional recycling process using salt rotary furnaces is thermally inefficient and environmentally non-acceptable because of the production of salt slags. Hydro-Quebec has developed and patented a new salt-free technology using a rotary furnace heated by an electric arc between two graphite electrodes, called DROSCAR{reg_sign}. A 600-kW pilot plant in operation at LTEE is in use to demonstrate the process. This process provides aluminum recovery rates over 90%, using a highly energy efficient, environmentally sound production method. In 1994, 400 tonnes of aluminum dross were treated in this facility and several tests on various types of dross have also been conducted in early 1995. A report on the results will be presented.

  20. A rotary arc furnace for aluminum dross processing

    Energy Technology Data Exchange (ETDEWEB)

    Drouet, M.G.; Meunier, J.; Laflamme, C.B.; Handfield, M.D.; Biscaro, A.; Lemire, C. [Hydro-Quebec, Shawinigan, Quebec (Canada)

    1995-12-31

    Dross, a major by-product of all processes involving molten aluminum, forms at the surface of the molten metal as the latter reacts with the furnace atmosphere. It generally represents 1 to 5 wt% of the melt, depending on the process, and contains on average about 50% free aluminum dispersed in an oxide layer. Since aluminum production is highly energy-intensive, dross recycling is very attractive from both the energy and the economic standpoints. The conventional recycling process using salt rotary furnaces is thermally inefficient and environmentally unacceptable because of the salt slags produced. Hydro-Quebec has developed and patented a new salt-free technology using a rotary furnace heated by an electric arc between two graphite electrodes, called DROSCAR{reg_sign}. A 600-kW pilot plant in operation at LTEE is in use to demonstrate the process. This process provides aluminum recovery rates for over 90%, using a highly energy efficient, environmentally sound production method. In 1994, 400 tons of aluminum dross were treated in this facility and several tests on various types of dross have also been conducted in early 1995. A report on the results will be presented.

  1. THE DETECTION AND STATISTICS OF GIANT ARCS BEHIND CLASH CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bingxiao; Zheng, Wei [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Postman, Marc; Bradley, Larry [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Meneghetti, Massimo; Koekemoer, Anton [INAF, Osservatorio Astronomico di Bologna, and INFN, Sezione di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Seitz, Stella [Universitaets-Sternwarte, Fakultaet fuer Physik, Ludwig-Maximilians Universitaet Muenchen, Scheinerstr. 1, D-81679 Muenchen (Germany); Zitrin, Adi [California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Merten, Julian [University of Oxford, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Maoz, Dani [School of Physics and Astronomy, Tel Aviv University, Tel-Aviv 69978 (Israel); Frye, Brenda [Steward Observatory/Department of Astronomy, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Umetsu, Keiichi [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Vega, Jesus, E-mail: bxu6@jhu.edu [Universidad Autonoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid (Spain)

    2016-02-01

    We developed an algorithm to find and characterize gravitationally lensed galaxies (arcs) to perform a comparison of the observed and simulated arc abundance. Observations are from the Cluster Lensing And Supernova survey with Hubble (CLASH). Simulated CLASH images are created using the MOKA package and also clusters selected from the high-resolution, hydrodynamical simulations, MUSIC, over the same mass and redshift range as the CLASH sample. The algorithm's arc elongation accuracy, completeness, and false positive rate are determined and used to compute an estimate of the true arc abundance. We derive a lensing efficiency of 4 ± 1 arcs (with length ≥6″ and length-to-width ratio ≥7) per cluster for the X-ray-selected CLASH sample, 4 ± 1 arcs per cluster for the MOKA-simulated sample, and 3 ± 1 arcs per cluster for the MUSIC-simulated sample. The observed and simulated arc statistics are in full agreement. We measure the photometric redshifts of all detected arcs and find a median redshift z{sub s} = 1.9 with 33% of the detected arcs having z{sub s} > 3. We find that the arc abundance does not depend strongly on the source redshift distribution but is sensitive to the mass distribution of the dark matter halos (e.g., the c–M relation). Our results show that consistency between the observed and simulated distributions of lensed arc sizes and axial ratios can be achieved by using cluster-lensing simulations that are carefully matched to the selection criteria used in the observations.

  2. Overview of arc design options: Deliverable D2.1

    CERN Document Server

    Chance, Antoine

    2016-01-01

    This document describes the collider layouts to be taken into account for further detailed studies. The optimization of the arc cell lattice and the choice made on the dispersion suppressor are explained. The arc lattice is detailed with the procedures to tune the collider ring and to correct the chromaticity. The correction schemes of the orbit, of the dynamic aperture and of the spurious dispersion are detailed. Finally, the properties of the arc design at the injection energy are shown.

  3. Fluctuation Phenomenon Analysis of an Arc Plasma Spraying Jet

    Institute of Scientific and Technical Information of China (English)

    赵文华; 田阔; 刘笛; 张冠忠

    2001-01-01

    The effects of three factors, including the power supply, the arc behaviour in the arc channel and the fluid dynamic process of the jet, on a plasma spraying jet have been experimentally detected by means of spectroscopic diagnostic techniques. The fast Fourier transform method has been applied to the analysis of the arc voltage and spectral line intensity of the jet. The three factors have been studied and distinguished from each other.

  4. Unusual Cathode Erosion Patterns Observed for Steered Arc Sources

    CERN Document Server

    Kolbeck, Jonathan

    2014-01-01

    A cathodic arc source with a magnetron-type magnetic field was investigated for stability, erosion, and compatibility with a linear macroparticle filter. Here we report about unusual arc spot erosion patterns, which were narrow (~ 2 mm) with periodic pits when operating in argon, and broad (~ 10 mm) with periodic groves and ridges when operating in an argon and oxygen mixtures. These observations can be correlated with the ignition probability for type 2 and type 1 arc spots, respectively.

  5. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    Science.gov (United States)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  6. Process characteristics of fibre-laser-assisted plasma arc welding

    OpenAIRE

    Mahrle, A; SCHNICK, M; Rose, S; Demuth, C; Beyer, E.; Füssel, U

    2011-01-01

    Abstract Experimental and theoretical investigations on fibre-laser assisted plasma arc welding (LAPW) have been performed. Welding experiments were carried out on aluminium and steel sheets. In case of a highly focused laser beam and a separate arrangement of plasma torch and laser beam, high-speed video recordings of the plasma arc and corresponding measurements of the time-dependent arc voltage revealed differences in the process behaviour for both materials. In case of aluminium weldin...

  7. Particle tracking velocimetry of a gliding arc discharge

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas;

    2014-01-01

    A 35 kHz AC gliding arc discharge at atmospheric pressure is generated between two diverging electrodes and extended by an air flow. The gas flow velocity is measured by particle tracking velocimetry (PTV) while the moving velocity of the plasma column of the gliding arc discharge is measured...... by analyzing the movie taken by a high-speed camera. The two-dimensional velocity vector of the gas flow and of the gliding arc in the imaging plane was determined....

  8. Programming ArcGIS 10.1 with Python cookbook

    CERN Document Server

    Pimpler, Eric

    2013-01-01

    This book is written in a helpful, practical style with numerous hands-on recipes and chapters to help you save time and effort by using Python to power ArcGIS to create shortcuts, scripts, tools, and customizations.""Programming ArcGIS 10.1 with Python Cookbook"" is written for GIS professionals who wish to revolutionize their ArcGIS workflow with Python. Basic Python or programming knowledge is essential(?).

  9. A note on the arc elacticity of demand

    OpenAIRE

    Andrés Vázquez

    1995-01-01

    This note presents a simple alternative measure for the arc elasticity of demand which comes naturally and does retain the salient characteristics of the point demand elasticity. A remarkable feature is that it equals the point demand elasticity at some point inside the interval, thus leading to the exact estimation of the point demand elasticity when this is constant. It also ensures that the relationships between the arc demand elasticity and the arc revenue elasticities keep exact formal a...

  10. Curie isotherm map of Scotia Arc from near surface magnetic anomaly data

    Science.gov (United States)

    Catalán, Manuel

    2016-04-01

    The opening of the Drake Passage, situated between South America and Antarctica, represents the final stage of the fragmentation of Gondwana supercontinent. It led to the Scotia Arc formation, bordering the Scotia Sea, which is surrounded by fragments of the former continental connection. It is currently composed of Scotia and Sandwich Plates. Shackleton Fracture Zone constitutes its sinistral transpressive western boundary and it is a key structure that accommodates former Phoenix and Scotia Plates' differential movement. The formation of the Drake Passage and the Scotia Sea is considered of great importance to ocean circulation, as it allows the establishment of the Antarctic Circumpolar Current that isolated the Antarctic continent, with strong implications for climate and global changes. Thermal structure of the Earth's crust is one of the main parameters controlling geodynamic processes. There is few information regarding heat flow values on Scotia arc. These values are mainly located in its westernmost, southern and easternmost part, which are not enough to extract conclusions regarding lithospheric thickness variations and asthenospheric flow. Taking advantage of the World Digital Magnetic Anomaly Map Project's compilation we have extracted magnetic anomaly data which fall inside the Scotia Arc and surrounding areas. This magnetic anomaly picture provides the best representation of magnetic properties to date. We propose to use spectral methods on this regional magnetic compilation to obtain depth to the bottom of magnetic sources as a proxy to infer Curie depth and heat flow distribution in the Scotia Sea.

  11. Numerical and Experimental Studies of an Arc-heated Nonequilibrium Nozzle Flow

    Institute of Scientific and Technical Information of China (English)

    Michio Nishida; Ken-ichi Abe; Hisashi Kihara

    2003-01-01

    The arc-heated high-temperature gas is rotationally and vibrationally excited, and partially dissociated and ionized. When such gas flows inside a nozzle, energy transfers from rotational and vibrational energy modes to translational energy mode, and, in addition, recombination reactions occur. These processes are in thermal and chemical nonequilibrium. The present computations treat arc-heated nonequilibrium nozzle flows using a six temperature model (translational, rotational, N2 vibrational, O2 vibrational, NO vibrational and electron temperatures), and nonequilibrium chemical reactions of air. From the calculated flow properties, emission spectra at the nozzle exit were re-constructed by using the code for computing spectra of high temperature air. On the other hand, measurements of N+2 (1-) emission spectra were conducted at the nozzle exit in the 20 kW arc-heated wind tunnel. Vibrational and rotational temperatures of N2 were determined using a curve fitting method on N+2 (1-) emission spectra, with the vibrational and rotational temperatures for N2 and N+2 being assumed equal. Comparison of the measured and computed results elucidated that the experimental temperatures were larger than the computed ones. At present, we are trying to reveal the main reason for the discrepancy between the computed and measured N2 vibrational and rotational temperatures.

  12. In-situ observation of electron kappa distributions associated with discrete auroral arcs

    Science.gov (United States)

    Ogasawara, Keiichi; Livadiotis, George; Samara, Marilia; Michell, Robert; Grubbs, Guy

    2016-04-01

    The Medium-energy Electron SPectrometer (MESP) sensor aboard a NASA sounding rocket was launched from Poker Flat Research Range on 3 March 2014 as a part of Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission. GREECE targeted to discover convergent E-field structures at low altitude ionosphere to find their contribution to the rapid fluid-like structures of aurora, and MESP successfully measured the precipitating electrons from 2 to 200 keV within multiple discrete auroral arcs with the apogee of 350 km. MESP's unprecedented electron energy acceptance and high geometric factor made it possible to investigate precise populations of the suprathermal components measured in the inverted-V type electron energy distributions. The feature of these suprathermal electrons are explained by the kappa distribution functions with the parameters (densty, temperature, and kappa) consistent with the near-Earth tail plasma sheet, suggesting the source population of the auroral electrons. The kappa-values are different between each arc observed as a function of latitude, but are almost stable within one discrete arc. We suggest that this transition of kappa reflects the probagation history of source electrons through the plasma sheet by changing its state from non-equilibrium electron distributions to thermal ones.

  13. Heterogeneous stress state of island arc crust in northeastern Japan affected by hot mantle fingers

    Science.gov (United States)

    Shibazaki, Bunichiro; Okada, Tomomi; Muto, Jun; Matsumoto, Takumi; Yoshida, Takeyoshi; Yoshida, Keisuke

    2016-04-01

    By considering a thermal structure based on dense geothermal observations, we model the stress state of the crust beneath the northeastern Japan island arc under a compressional tectonic regime using a finite element method with viscoelasticity and elastoplasticity. We consider a three-layer structure (upper crust, lower crust, and uppermost mantle) to define flow properties. Numerical results show that the brittle-viscous transition becomes shallower beneath the Ou Backbone Range compared with areas near the margins of the Pacific Ocean and the Japan Sea. Moreover, several elongate regions with a shallow brittle-viscous transition are oriented transverse to the arc, and these regions correspond to hot fingers (i.e., high-temperature regions in the mantle wedge). The stress level is low in these regions due to viscous deformation. Areas of seismicity roughly correspond to zones of stress accumulation where many intraplate earthquakes occur. Our model produces regions with high uplift rates that largely coincide with regions of high elevation (e.g., the Ou Backbone Range). The stress state, fault development, and uplift around the Ou Backbone Range can all be explained by our model. The results also suggest the existence of low-viscosity regions corresponding to hot fingers in the island arc crust. These low-viscosity regions have possibly affected viscous relaxation processes following the 2011 Tohoku-oki earthquake.

  14. Plasma arc cutting optimization parameters for aluminum alloy with two thickness by using Taguchi method

    Science.gov (United States)

    Abdulnasser, B.; Bhuvenesh, R.

    2016-07-01

    Manufacturing companies define the qualities of thermal removing process based on the dimension and physical appearance of the cutting material surface. The surface roughness of the cutting area for the material and the material removal rate being removed during the manual plasma arc cutting process were importantly considered. Plasma arc cutter machine model PS-100 was used to cut the specimens made from aluminium alloy 1100 manually based on the selected parameters setting. Two different thicknesses of specimens, 3mm and 6mm were used. The material removal rate (MRR) was measured by determining the difference between the weight of specimens before and after the cutting process. The surface roughness (Ra) was measured by using MITUTOYO CS-3100 machine and analysis was conducted to determine the average roughness (Ra) value, Taguchi method was utilized as an experimental layout to obtain MRR and Ra values. The results indicate that the current and cutting speed is the most significant parameters, followed by the arc gap for both rate of material removal and surface roughness.

  15. Fatigue cracking of hybrid plasma gas metal arc welded 2205 duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Yurtisik, Koray; Tirkes, Suha [Middle East Technical Univ., Ankara (Turkey). Welding Technology and Nondestructive Testing Research/Application Center

    2014-10-01

    Contrary to other keyhole welding applications on duplex stainless steels, a proper cooling time and a dilution were achieved during hybrid plasma gas metal arc welding that provided sufficient reconstructive transformation of austenite without sacrificing its high efficiency and productivity. Simultaneous utilization of keyhole and metal deposition in the hybrid welding procedure enabled us to get an as-welded 11 mm-thick standard duplex stainless steel plate in a single pass. Metallographic examination on hybrid plasma-gas metal arc weldments revealed only primary austenite in ferrite matrix, whereas in addition to reconstructive transformation of primary austenite during solidification, secondary austenite was also transformed in a displacive manner due to successive thermal cycles during multi-pass gas metal arc welding. On the one hand, secondary austenite provided barriers and retarded the crack propagation during the tests in laboratory air. On the other hand, chromium and molybdenum depletion in the neighborhood of secondary austenite precipitates yielded relatively high crack propagation rates in multi-pass weldments under chloride attack.

  16. Computational Analysis of Arc-Jet Wedge Tests Including Ablation and Shape Change

    Science.gov (United States)

    Goekcen, Tahir; Chen, Yih-Kanq; Skokova, Kristina A.; Milos, Frank S.

    2010-01-01

    Coupled fluid-material response analyses of arc-jet wedge ablation tests conducted in a NASA Ames arc-jet facility are considered. These tests were conducted using blunt wedge models placed in a free jet downstream of the 6-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. The fluid analysis includes computational Navier-Stokes simulations of the nonequilibrium flowfield in the facility nozzle and test box as well as the flowfield over the models. The material response analysis includes simulation of two-dimensional surface ablation and internal heat conduction, thermal decomposition, and pyrolysis gas flow. For ablating test articles undergoing shape change, the material response and fluid analyses are coupled in order to calculate the time dependent surface heating and pressure distributions that result from shape change. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator. Effects of the test article shape change on fluid and material response simulations are demonstrated, and computational predictions of surface recession, shape change, and in-depth temperatures are compared with the experimental measurements.

  17. Detecting stellar-wind bubbles through infrared arcs in HII regions

    CERN Document Server

    Mackey, Jonathan; Gvaramadze, Vasilii V; Mohamed, Shazrene; Langer, Norbert; Harries, Tim J

    2015-01-01

    Mid-infrared arcs of dust emission are often seen near ionizing stars within HII regions. A possible explanations for these arcs is that they could show the outer edges of asymmetric stellar wind bubbles. We use two-dimensional, radiation-hydrodynamics simulations of wind bubbles within HII regions around individual stars to predict the infrared emission properties of the dust within the HII region. We assume that dust and gas are dynamically well-coupled and that dust properties (composition, size distribution) are the same in the HII region as outside it, and that the wind bubble contains no dust. We post-process the simulations to make synthetic intensity maps at infrared wavebands using the TORUS code. We find that the outer edge of a wind bubble emits brightly at 24um through starlight absorbed by dust grains and re-radiated thermally in the infrared. This produces a bright arc of emission for slowly moving stars that have asymmetric wind bubbles, even for cases where there is no bow shock or any corresp...

  18. Developmental DSP4 effects on cortical Arc expression.

    Science.gov (United States)

    Sanders, Jeff

    2016-04-08

    Activity Regulated Cytoskeleton Associated Protein (Arc) is an immediate early gene that is critical to brain plasticity. In this study, norepinephrine's regulation of Arc expression was examined during different stages of postnatal development. Rats were injected with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), a selective noradrenergic neurotoxin, during preadolescence (PND 0 or 13), adolescence (PND 23 or 48) or adulthood (PND 60). After each DSP4 treatment, brains were harvested later in development and Arc mRNA levels analyzed with in situ hybridization. Rats lesioned with DSP4 during preadolescence showed no differences in Arc level compared to saline treated controls. In contrast, adolescence was a time of changing Arc mRNA response to DSP4. Rats lesioned during early adolescence showed Arc expression increases, while rats lesioned during late adolescence showed dramatic Arc expression decreases. Decreases in Arc level caused by late adolescent DSP4 were similar to those found in lesioned adults. These findings highlight a qualitatively different regulation of Arc expression by norepinephrine according to developmental stage, and indicate that mature regulation is not intact until late adolescence. These data point to important developmental differences in norepinephrine's regulation of brain plasticity. These differences may underlie contrasting psychotropic responses in children and adolescents compared to adults.

  19. The arc characteristic of ultrasonic assisted TIG welding

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Many applications of ultrasonic-assisted methods were used during metal solidification, but they could not be introduced into weld pool. In this paper, a way of ultrasonic assisted TIG welding is introduced. By directly imposed ultrasonic vibration on welding arc, the vibration interacts with arc plasma and passes to the weld pool. Measurement results show that arc pressure is significantly increased with the ultrasonic vibration and the arc pressure distribution models are changed. Bead-on-plate welding tests on SUS304 confirm that this technology can influence the style of metal melting and increase weld penetration depth.

  20. The Detection and Statistics of Giant Arcs Behind CLASH Clusters

    CERN Document Server

    Xu, Bingxiao; Meneghetti, Massimo; Seitz, Stella; Zitrin, Adi; Merten, Julian; Maoz, Dani; Frye, Brenda; Umetsu, Keiichi; Zheng, Wei; Bradley, Larry; Vega, Jesus; Koekemoer, Anton

    2015-01-01

    We developed an algorithm to find and characterize gravitationally lensed galaxies (arcs) to perform a comparison of the observed and simulated arc abundance. Observations are from the Cluster Lensing And Supernova survey with Hubble (CLASH). Simulated CLASH images are created using the MOKA package and also clusters selected from the high resolution, hydrodynamical simulations, MUSIC, over the same mass and redshift range as the CLASH sample. The algorithm' s arc elongation accuracy, completeness and false positive rate are determined and used to compute an estimate of the true arc abundance. We derive a lensing efficiency of $4 \\pm 1$ arcs (with length $\\ge 6"$ and length-to-width ratio $\\ge 7$) per cluster for the X-ray selected CLASH sample, $4 \\pm 1$ arcs per cluster for the MOKA simulated sample and $3 \\pm 1$ arcs per cluster for the MUSIC simulated sample. The observed and simulated arc statistics are in full agreement. We measure the photometric redshifts of all detected arcs and find a median redshif...

  1. RESEARCH ON ELECTRIC ARC REDUCTION OF CARBON DIOXIDE,

    Science.gov (United States)

    CARBON DIOXIDE , REDUCTION(CHEMISTRY), ELECTRIC ARCS, CHEMICAL REACTIONS, HEAT OF REACTION, GAS FLOW, OXYGEN, CARBON COMPOUNDS, MONOXIDES, ELECTRODES, LABORATORY EQUIPMENT, HIGH TEMPERATURE, PLASMAS(PHYSICS), ENERGY.

  2. 基于ArcGIS的土方量计算

    Institute of Scientific and Technical Information of China (English)

    张金荣

    2016-01-01

    本文阐述了ArcGIS计算土方量的原理、方法及实现步骤,并以某工程为实例,对比了ArcGIS法和南方Cass栅格法的土方量计算结果,说明了ArcGIS在计算土方量方面的优越性,并对ArcGIS土方量计算法的实际应用提出独特的见解.

  3. ArcGIS的演进路径研究

    Institute of Scientific and Technical Information of China (English)

    朱紫焱; 伊雪琴

    2005-01-01

    ESRI公司的ArcGIS系列是一个全面、完善、可伸缩的GIS软件平台,无论是单用户还是多用户,无论是在桌面端、服务器端、互连网还是野外操作,都可以通过ArcGIS构建地理信息系统。分别介绍了ArcGIS 8与ArcGIS 9系列软件的演进路径,从中可以看出 ESRI对自我的不断超越。

  4. A New Survey for Giant Arcs

    Energy Technology Data Exchange (ETDEWEB)

    Hennawi, Joseph F.; Gladders, Michael D.; Oguri, Masamune; Dalal, Neal; Koester, Benjamin; Natarajan, Priyamvada; Strauss, Michael A.; Inada, Naohisa; Kayo, Issha; Lin,; Lampeitl, Hubert; Annis, James; Bahcall, Neta A.; Schneider, Donald P.

    2006-11-15

    We report on the first results of an imaging survey to detect strong gravitational lensing targeting the richest clusters selected from the photometric data of the Sloan Digital Sky Survey (SDSS) with follow-up deep imaging observations from the Wisconsin Indiana Yale NOAO (WIYN) 3.5m telescope and the University of Hawaii 88-inch telescope (UH88). The clusters are selected from an area of 8000 deg{sup 2} using the Red Cluster Sequence technique and span the redshift range 0.1 {approx}< z {approx}< 0.6, corresponding to a comoving cosmological volume of {approx} 2Gpc{sup 3}. Our imaging survey thus targets a volume more than an order of magnitude larger than any previous search. A total of 240 clusters were imaged of which 141 had sub-arcsecond image quality. Our survey has uncovered 16 new lensing clusters with definite giant arcs, an additional 12 systems for which the lensing interpretation is very likely, and 9 possible lenses which contain shorter arclets or candidate arcs which are less certain and will require further observations to confirm their lensing origin. The number of new cluster lenses detected in this survey is likely > 30. Among these new systems are several of the most dramatic examples of strong gravitational lensing ever discovered with multiple bright arcs at large angular separation. These will likely become 'poster-child' gravitational lenses similar to Abell 1689 and CL0024+1654. The new lenses discovered in this survey will enable future systematic studies of the statistics of strong lensing and its implications for cosmology and our structure formation paradigm.

  5. Treatment planning for volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bedford, James L. [Joint Department of Physics, Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2009-11-15

    Purpose: Volumetric modulated arc therapy (VMAT) is a specific type of intensity-modulated radiation therapy (IMRT) in which the gantry speed, multileaf collimator (MLC) leaf position, and dose rate vary continuously during delivery. A treatment planning system for VMAT is presented. Methods: Arc control points are created uniformly throughout one or more arcs. An iterative least-squares algorithm is used to generate a fluence profile at every control point. The control points are then grouped and all of the control points in a given group are used to approximate the fluence profiles. A direct-aperture optimization is then used to improve the solution, taking into account the allowed range of leaf motion of the MLC. Dose is calculated using a fast convolution algorithm and the motion between control points is approximated by 100 interpolated dose calculation points. The method has been applied to five cases, consisting of lung, rectum, prostate and seminal vesicles, prostate and pelvic lymph nodes, and head and neck. The resulting plans have been compared with segmental (step-and-shoot) IMRT and delivered and verified on an Elekta Synergy to ensure practicality. Results: For the lung, prostate and seminal vesicles, and rectum cases, VMAT provides a plan of similar quality to segmental IMRT but with faster delivery by up to a factor of 4. For the prostate and pelvic nodes and head-and-neck cases, the critical structure doses are reduced with VMAT, both of these cases having a longer delivery time than IMRT. The plans in general verify successfully, although the agreement between planned and measured doses is not very close for the more complex cases, particularly the head-and-neck case. Conclusions: Depending upon the emphasis in the treatment planning, VMAT provides treatment plans which are higher in quality and/or faster to deliver than IMRT. The scheme described has been successfully introduced into clinical use.

  6. The ATLAS ARC backend to HPC

    CERN Document Server

    Haug, Sigve; The ATLAS collaboration; Sciacca, Francesco Giovanni; Weber, Michele

    2015-01-01

    The current distributed computing resources used for simulating and processing collision data collected by the LHC experiments are largely based on dedicated x86 Linux clusters. Access to resources, job control and software provisioning mechanisms are quite different from the common concept of self-contained HPC applications run by particular users on specific HPC systems. We report on the development and the usage of a SSH back-end to the Advanced Resource Connector (ARC) middleware to enable HPC compliant access and on the corresponding software provisioning mechanisms.

  7. The ATLAS ARC backend to HPC

    CERN Document Server

    Haug, Sigve; The ATLAS collaboration; Sciacca, Francesco Giovanni; Weber, Michele

    2015-01-01

    The current distributed computing resources used for simulating and processing collision data collected by the LHC experiments are largely based on dedicated x86 Linux clusters. Access to resources, job control and software provisioning mechanisms are quite different from the common concept of self-contained HPC applications run by particular users on specific HPC systems. We report on the development and the usage of a ssh back-end to the Advanced Resource Connector (ARC) middleware to enable HPC compliant access and on the corresponding software provisioning mechanisms.

  8. A slab expression in the Gibraltar arc?

    Science.gov (United States)

    Nijholt, Nicolai; Govers, Rob; Wortel, Rinus

    2017-04-01

    The present-day geodynamic setting of the Gibraltar arc region results from several Myrs of subduction rollback in the overall (oblique) convergence of Africa and Iberia. As for most rollback settings in a convergence zone, the interaction of these two components is complex and distinctly non-stationary. Gibraltar slab rollback is considered to have stalled, or at least diminished largely in magnitude, since the late Miocene/early Pliocene, suggesting that the effect of the slab on present-day surface motions is negligible. However, GPS measurements indicate that the Gibraltar arc region has an anomalous motion with respect to both Iberia and Africa, i.e., the Gibraltar arc region does not move as part of the rigid Iberian, or the rigid African plate. A key question is whether this surface motion is an expression of the Gibraltar slab. Seismic activity in the Gibraltar region is diffuse and considerable in magnitude, making it a region of high seismic risk. Unlike the North African margin to the east, where thrust earthquakes dominate the focal mechanism tables, a complex pattern is observed with thrust, normal and strike-slip earthquakes in a region stretching between the northern Moroccan Atlas across the Gibraltar arc and Alboran Sea (with the Trans-Alboran Shear Zone) to the Betics of southern Spain. Even though no large mega-thrust earthquakes have been observed in recent history, slab rollback may not have completely ceased. However, since no activity has been observed in the accretionary wedge, probably since the Pliocene, it is likely that the subduction interface is locked. In this study, we perform a series of numerical models in which we combine the relative plate convergence, variable magnitude of friction on fault segments, regional variations in gravitational potential energy and slab pull of the Gibraltar slab. We seek to reproduce the GPS velocities and slip sense on regional faults and thereby determine whether the Gibraltar slab has an effect on

  9. The ATLAS ARC backend to HPC

    Science.gov (United States)

    Haug, S.; Hostettler, M.; Sciacca, F. G.; Weber, M.

    2015-12-01

    The current distributed computing resources used for simulating and processing collision data collected by ATLAS and the other LHC experiments are largely based on dedicated x86 Linux clusters. Access to resources, job control and software provisioning mechanisms are quite different from the common concept of self-contained HPC applications run by particular users on specific HPC systems. We report on the development and the usage in ATLAS of a SSH backend to the Advanced Resource Connector (ARC) middleware to enable HPC compliant access and on the corresponding software provisioning mechanisms.

  10. Pulmonary siderosis (pneumoconiosis) in an arc welder

    Energy Technology Data Exchange (ETDEWEB)

    Triebel, H.J.; Spielmann, R.P.; Jessel, A.

    1988-02-01

    An arc welder of 32 years of age is presented with a random finding of miliar reticulonodular shadows in the plain film of the thorax. Subjectively and objectively the patient appears healthy. The presence of a pneumoconiosis is confirmed by biopsy. Differential diagnosis had to consider sarcoidosis and pulmonary siderosis in view of the known professional anamnesis. This case report underlines the repeated demand to assess X-ray films of the thoracic organs only if the clinical findings and anamnesis are thoroughly known.

  11. Partial Arc Curvilinear Direct Drive Servomotor

    Science.gov (United States)

    Sun, Xiuhong (Inventor)

    2014-01-01

    A partial arc servomotor assembly having a curvilinear U-channel with two parallel rare earth permanent magnet plates facing each other and a pivoted ironless three phase coil armature winding moves between the plates. An encoder read head is fixed to a mounting plate above the coil armature winding and a curvilinear encoder scale is curved to be co-axis with the curvilinear U-channel permanent magnet track formed by the permanent magnet plates. Driven by a set of miniaturized power electronics devices closely looped with a positioning feedback encoder, the angular position and velocity of the pivoted payload is programmable and precisely controlled.

  12. Plasma transferred arc deposition of beryllium

    Science.gov (United States)

    Hollis, K.; Bartram, B.; Withers, J.; Storm, R.; Massarello, J.

    2006-12-01

    The exceptional properties of beryllium (Be), including low density and high elastic modulus, make it the material of choice in many defense and aerospace applications. However, health hazards associated with Be material handling limit the applications that are suited for its use. Innovative solutions that enable continued use of Be in critical applications while addressing worker health concerns are highly desirable. Plasma transferred arc solid free-form fabrication is being evaluated as a Be fabrication technique for civilian and military space-based components. Initial experiments producing Be deposits are reported here. Deposit shape, microstructure, and mechanical properties are reported.

  13. Uranium arc fission reactor for space propulsion

    Science.gov (United States)

    Watanabe, Yoichi; Maya, Isaac; Vitali, Juan; Appelbaum, Jacob; Schneider, Richard T.

    1991-01-01

    Combining the proven technology of solid core reactors with uranium arc confinement and non-equilibrium ionization by fission fragments can lead to an attractive propulsion system which has a higher specific impulse than a solid core propulsion system and higher thrust than an electric propulsion systems. A preliminary study indicates that a system with 300 MW of fission power can achieve a gas exhaust velocity of 18,000 m/sec and a thrust of 10,000 Newtons utilizing a magnetohydrodynamic generator and accelerator. An experimental program is underway to examine the major mass and energy transfer issues.

  14. Plasma Arc Surface Hardening Robot Technology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In national economy and national defense, a lot of ma chine components become worthless early because of wear and tear and corrode. It leads to huge loss of resource and material. Surface hardening of the steel cou ld form a hard, wearable, corrode-resisting layer on the surface to enhance the mechanical property of the machine component. From 1980s, there is a new method of surface hardening that is heating with plasma arc. It overcomes the shortage of old methods and is adopted in automotive product ...

  15. Community Structure Comparisons of Hydrothermal Vent Microbial Mats Along the Mariana Arc and Back-arc

    Science.gov (United States)

    Hager, K. W.; Fullerton, H.; Moyer, C. L.

    2015-12-01

    Hydrothermal vents along the Mariana Arc and back-arc represent a hotspot of microbial diversity that has not yet been fully recognized. The Mariana Arc and back-arc contain hydrothermal vents with varied vent effluent chemistry and temperature, which translates to diverse community composition. We have focused on iron-rich sites where the dominant primary producers are iron oxidizing bacteria. Because microbes from these environments have proven elusive in culturing efforts, we performed culture independent analysis among different microbial communities found at these hydrothermal vents. Terminal-restriction fragment length polymorphism (T-RFLP) and Illumina sequencing of small subunit ribosomal gene amplicons were used to characterize community members and identify samples for shotgun metagenomics. Used in combination, these methods will better elucidate the composition and characteristics of the bacterial communities at these hydrothermal vent systems. The overarching goal of this study is to evaluate and compare taxonomic and metabolic diversity among different communities of microbial mats. We compared communities collected on a fine scale to analyze the bacterial community based on gross mat morphology, geography, and nearby vent effluent chemistry. Taxa richness and evenness are compared with rarefaction curves to visualize diversity. As well as providing a survey of diversity this study also presents a juxtaposition of three methods in which ribosomal small subunit diversity is compared with T-RFLP, next generation amplicon sequencing, and metagenomic shotgun sequencing.

  16. Effect of arc current on droplet ejection from tungsten-based electrode in multiphase AC arc

    Science.gov (United States)

    Hashizume, Taro; Tanaka, Manabu; Watanabe, Takayuki

    2017-05-01

    The dynamic behavior of droplet ejection from a tungsten electrode was successfully visualized using a high-speed camera and an appropriate band-pass filter. The effect of arc current on droplet ejection was investigated to understand the electrode erosion mechanism in the multiphase AC arc. The rate of erosion by droplet ejection increased with increasing current. This result was examined on the basis of the time variation in forces on a pending droplet at the electrode tip during the AC cycle. The relationship among electromagnetic force, surface tension, and ion pressure on the molten tip during the cathodic period is crucial for controling droplet ejection. The molten tip becomes hemispherical forming the pending droplet with an increase in the instantaneous value of arc current during the AC cycle. The pending droplet detaches from the electrode surface when electromagnetic force becomes the dominant force. Consequently, a higher rate of erosion by droplet ejection with a higher arc current resulted from a stronger electromagnetic force.

  17. Gas tungsten arc welding of ZrB2–SiC based ultra high temperature ceramic composites

    OpenAIRE

    R.V. Krishnarao; G. Madhusudhan Reddy

    2015-01-01

    The difficulty in fabricating the large size or complex shape limits the application of ZrB2–SiC composites. Joining them by fusion welding without or with preheating, controlled cooling under protective gas shield leads to thermal shock failure or porosity at the weld interface. In the present work, a filler material of (ZrB2–SiC–B4C–YAG) composite with oxidation resistance and thermal shock resistance was produced in the form of welding wire. Using the filler, gas tungsten arc welding (GTAW...

  18. Trans-lithospheric scheme of arc magma transfer and evolution (Invited)

    Science.gov (United States)

    Bouilhol, P.; Schmidt, M. W.; Connolly, J. A.; Burg, J.

    2013-12-01

    Understanding the formation of magmatic arcs requires not only conceiving the formation of primitive arc melts, but also their evolution during migration from the mantle source to the arc. Indeed, the chemical characteristics of arc-melts are acquired during a complex process involving the slab input, the mantle wedge, and transfer of the melt at the base of and in the crust. Because the retrograde thermal regime in the upper portion of the mantle wedge is hostile to melt transport, the dominant mechanism by which melts ascend from their source through the mantle remains uncertain and mainly based on theoretical and exported models from MOR settings because of the scarcity of observations available. Within the lower crust, melts must be efficiently transferred toward higher structural levels to feed plutons and volcanoes but such melt highways are elusive and not always recognized as such. Petro-geochemical and structural analyses conducted on a mantle and lower crust section of the Kohistan Paleo-Island Arc (The Sapat Complex, Pakistan) unravel some aspects of the transfer and evolution of arc-magmas. The dominantly harzburgitic mantle shows a continuum of transport mechanisms ranging from pervasive to fully segregated melt flow, related to the formation of dunitic conduits associated with clinopyroxene-rich zones. Structural observations, linked to rock chemistry and numerical simulations show that primitive melts where transferred via porosity waves within the mantle. This efficient way of forming mantle conduit will drain the primitive mantle source region until melting cease. During this transfer, a competitive series of reaction-crystallization marks the staggering of melt evolution. The crustal section, fed with the same primitive melt, is predominantly composed of meta-plutonics that host kilometer-scale pyroxenite bodies. Within the bodies, sub-vertical magmatic and reactional structures indicate vertical magma percolation accompanied by massive cumulate

  19. Arc segmentation and seismicity in the Solomon Islands arc, SW Pacific

    Science.gov (United States)

    Chen, Ming-Chu; Frohlich, Cliff; Taylor, Frederick W.; Burr, George; van Ufford, Andrew Quarles

    2011-07-01

    This paper evaluates neotectonic segmentation in the Solomon Islands forearc, and considers how it relates to regional tectonic evolution and the extent of ruptures of large megathrust earthquakes. We first consider regional geomorphology and Quaternary vertical displacements, especially uplifted coral reef terraces. Then we consider geographic seismicity patterns, aftershock areas and vertical displacements for large earthquakes, focal mechanisms, and along-arc variations in seismic moment release to evaluate the relationship between neotectonically defined segments and seismicity. Notably, one major limitation of using seismicity to evaluate arc segmentation is the matter of accurately defining earthquake rupture zones. For example, shoreline uplifts associated with the 1 April 2007 M w 8.1 Western Solomons earthquake indicate that the along-arc extent of rupture was about 50 km smaller than the aftershock area. Thus if we had relied on aftershocks alone to identify the 2007 rupture zone, as we do for most historical earthquakes, we would have missed the rupture's relationship to a major morphologic feature. In many cases, the imprecision of defining rupture zones without surface deformation data may be largely responsible for the poor mismatches to neotectonic boundaries. However, when a precise paleoseismic vertical deformation history is absent, aftershocks are often the best available tool for inferring rupture geometries. Altogether we identify 16 segments in the Solomon Islands. These comprise three major tectonic regimes or supersegments that correspond respectively to the forearc areas of Guadalcanal-Makira, the New Georgia island group, and Bougainville Islands. Subduction of the young and relatively shallow and buoyant Woodlark Basin and spreading system distinguishes the central New Georgia supersegment from the two neighboring supersegments. The physiographic expression of the San Cristobal trench is largely absent, but bathymetric mapping of the

  20. Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels

    Science.gov (United States)

    Wang, L. L.; Lu, F. G.; Wang, H. P.; Murphy, A. B.; Tang, X. H.

    2014-11-01

    In gas metal arc welding, gases of different compositions are used to produce an arc plasma, which heats and melts the workpiece. They also protect the workpiece from the influence of the air during the welding process. This paper models gas metal arc welding (GMAW) processes using an in-house simulation code. It investigates the effects of the gas composition on the temperature distribution in the arc and on the molten pool dynamics in gas metal arc welding of steels. Pure argon, pure CO2 and different mixtures of argon and CO2 are considered in the study. The model is validated by comparing the calculated weld profiles with physical weld measurements. The numerical calculations reveal that gas composition greatly affects the arc temperature profile, heat transfer to the workpiece, and consequently the weld dimension. As the CO2 content in the shielding gas increases, a more constricted arc plasma with higher energy density is generated as a result of the increased current density in the arc centre and increased Lorentz force. The calculation also shows that the heat transferred from the arc to the workpiece increases with increasing CO2 content, resulting in a wider and deeper weld pool and decreased reinforcement height.

  1. Numerical modeling of high-voltage circuit breaker arcs and their interraction with the power system

    Science.gov (United States)

    Orama, Lionel R.

    In this work the interaction between series connected gas and vacuum circuit breaker arcs has been studied. The breakdown phenomena in vacuum interrupters during the post arc current period have been of special interest. Numerical models of gas and vacuum arcs were developed in the form of black box models. Especially, the vacuum post arc model was implemented by combining the existing transition model with an ion density function and expressions for the breakdown mechanisms. The test series studied reflect that for electric fields on the order of 10sp7V/m over the anode, the breakdown of the vacuum gap can result from a combination of both thermal and electrical stresses. For a particular vacuum device, the vacuum model helps to find the interruption limits of the electric field and power density over the anode. The series connection of gas and vacuum interrupters always performs better than the single gas device. Moreover, to take advantage of the good characteristics of both devices, the time between the current zero crossing in each interrupter can be changed. This current zero synchronization is controlled by changing the capacitance in parallel to the gas device. This gas/vacuum interrupter is suitable for interruption of very stressful short circuits in which the product of the dI/dt before current zero and the dV/dt after current zero is very high. Also, a single SF6 interrupter can be replaced by an air circuit breaker of the same voltage rating in series with a vacuum device without compromising the good performance of the SF6 device. Conceptually, a series connected vacuum device can be used for high voltage applications with equal distribution of electrical stresses between the individual interrupters. The equalization can be made by a sequential opening of the individual contact pairs, beginning with the interruptors that are closer to ground potential. This could eliminate the use of grading capacitors.

  2. Commissioning and first clinical application of mARC treatment

    Energy Technology Data Exchange (ETDEWEB)

    Dzierma, Yvonne; Nuesken, Frank G.; Kremp, Stephanie; Palm, Jan; Licht, Norbert P.; Ruebe, Christian [Universitaetsklinikum des Saarlandes, Klinik fuer Strahlentherapie und Radioonkologie, Homburg, Saarland (Germany)

    2014-11-15

    The modulated arc (mARC) technique has recently been introduced for Siemens ARTISTE linear accelerators. We present the first experiences with the commissioning of the system and first patient treatments. Treatment planning and delivery are presented for the Prowess Panther treatment planning system or, alternatively, an in-house code. Dosimetric verification is performed both by point dose measurements and in 3D dose distribution. Depending on the target volume, one or two arcs can be used to create highly conformal plans. Dosimetric verification of the converted mARC plans with step-and-shoot plans shows deviations below 1 % in absolute point dose; in the 3D dose distribution, over 95 % of the points pass the 3D gamma criteria (3 % deviation in local dose and 3 mm distance to agreement for doses > 20 % of the maximum). Patient specific verification of the mARC dose distribution with the calculations has a similar pass rate. Treatment times range between 2 and 5 min for a single arc. To our knowledge, this is the first report of clinical application of the mARC technique. The mARC offers the possibility to save significant amounts of time, with single-arc treatments of only a few minutes achieving comparable dose distribution to IMRT plans taking up to twice as long. (orig.) [German] Die mARC (modulated arc) Technik wurde vor kurzen fuer Siemens ARTISTE Linearbeschleuniger eingefuehrt. Wir zeigen die ersten Erfahrungen mit der Kommissionierung des Systems sowie die ersten Patientenbestrahlungen. Bestrahlungsplanung und Behandlung werden fuer das Prowess Panther Bestrahlungsplanungssystem oder alternativ in einer in-house-Loesung praesentiert. Die dosimetrische Verifikation wurde sowohl mit Punktmessungen als auch fuer die 3D-Dosisverteilung durchgefuehrt. Je nach Zielvolumen koennen mit einem oder zwei Boegen hochkonformale Plaene erzeugt werden. Die dosimetrische Verifikation konvertierter mARC-Plaene gegen step-and-shoot-Plaene weicht in absoluter Dosis um

  3. Development of circuit model for arcing on solar panels

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Bhoomi K; Deshpande, S P; Mukherjee, S; Gupta, S B; Ranjan, M; Rane, R; Vaghela, N; Acharya, V [FCIPT, Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Sudhakar, M; Sankaran, M; Suresh, E P, E-mail: bhoomi@ipr.res.i [ISRO Satellite Centre (ISAC), Bangalore 560017 (India)

    2010-02-01

    The increased requirements of payload capacity of the satellites have resulted in much higher power requirements of the satellites. In order to minimize the energy loss during power transmission due to cable loss, use of high voltage solar panels becomes necessary. When a satellite encounters space plasma it floats negatively with respect to the surrounding space plasma environment. At high voltage, charging and discharging on solar panels causes the power system breakdown. Once a solar panel surface is charged and potential difference between surface insulator and conductor exceeds certain value, electrostatic discharge (ESD) may occur. This ESD may trigger a secondary arc that can destroy the solar panel circuit. ESD is also called as primary or minor arc and secondary is called major arc. The energy of minor arc is supplied by the charge stored in the coverglass of solar array and is a pulse of typically several 100 ns to several 100 {mu}s duration. The damage caused by minor arc is less compared to major arcs, but it is observed that the minor arc is cause of major arc. Therefore it is important to develop an understanding of minor arc and mitigation techniques. In this paper we present a linear circuit analysis for minor arcs on solar panels. To study arcing event, a ground experimental facility to simulate space plasma environment has been developed at Facilitation Centre for Industrial Plasma Technologies (Institute for Plasma Research) in collaboration with Indian Space Research Organization's ISRO Satellite Technology Centre (ISAC). A linear circuit model has been developed to explain the experimental results by representing the coverglass, solar cell interconnect and wiring by an LCR circuit and the primary arc by an equivalent LR circuit. The aim of the circuit analysis is to predict the arc current which flows through the arc plasma. It is established from the model that the current depends on various parameters like potential difference between

  4. Cathodic ARC surface cleaning prior to brazing

    Energy Technology Data Exchange (ETDEWEB)

    Dave, V. R. (Vivek R.); Hollis, K. J. (Kendall J.); Castro, R. G. (Richard G.); Smith, F. M. (Frank M.); Javernick, D. A. (Daniel A.)

    2002-01-01

    Surface cleanliness is one the critical process variables in vacuum furnace brazing operations. For a large number of metallic components, cleaning is usually accomplished either by water-based alkali cleaning, but may also involve acid etching or solvent cleaning / rinsing. Nickel plating may also be necessary to ensure proper wetting. All of these cleaning or plating technologies have associated waste disposal issues, and this article explores an alternative cleaning process that generates minimal waste. Cathodic arc, or reserve polarity, is well known for welding of materials with tenacious oxide layers such as aluminum alloys. In this work the reverse polarity effect is used to clean austenitic stainless steel substrates prior to brazing with Ag-28%Cu. This cleaning process is compared to acid pickling and is shown to produce similar wetting behavior as measured by dynamic contact angle experiments. Additionally, dynamic contact angle measurements with water drops are conducted to show that cathodic arc cleaning can remove organic contaminants as well. The process does have its limitations however, and alloys with high titanium and aluminum content such as nickel-based superalloys may still require plating to ensure adequate wetting.

  5. Low arc drop hybrid mode thermionic converter

    Science.gov (United States)

    Shimada, K.

    1977-01-01

    The hybrid mode operation for the reduction of plasma drops is being investigated. This report discusses the results obtained from two molybdenum emitter converters. One converter had a molybdenum collector and the other a nickel collector. The molybdenum collector converter was operated in a hybrid mode (at an interelectrode distance of 1.7 mm) and produced a minimum barrier index of 1.96 eV at an emitter temperature of 1500 K. The arc drop was calculated to be 0.14 eV, using the published results for a molybdenum collector. On the other hand, the nickel collector converter was operated in a conventional ignited mode (at an interelectrode distance of 0.5 mm) and produced a minimum barrier index of 2.1 eV at an emitter temperature of 1700 K. It is tentatively concluded that a large-gap operation of the hybrid mode converter permits the diffusion of cesium ions to a distance in the order of one millimeter for an effective neutralization of electron space charge. By employing a low work function collector (1.55 eV) in a hybrid mode converter with an arc drop of 0.14 eV, it appears that a barrier index as low as 1.69 eV could be achieved.

  6. PSYCHOSOMATIC "ARC" IN THE PSYCHOTHERAPEUTIC PRACTICE

    Directory of Open Access Journals (Sweden)

    Ivanka Boncheva

    2012-11-01

    Full Text Available The psychoneuroimmunology, the new brain science and the endocrinology today show a lot of results, with which symptoms are better to understand. The psychotherapeutic practice shows the ways to influence them by encoding the levels of bounding between the physical symptom and the psychological condition. The aim of the study was to show the encoding of the psychosomatic arc within a real psychotherapeutic contact. 59 psychotherapeutic cases are followed. 33 of them were with somatoform disorders and 26 with chronic psychosomatic diseases. Every patient has minimum 12 psychotherapeutic sessions. The treatment is provided on the base of the 5 levels model of the positive psychotherapy.We ascertain the following:1. The most significant moment in the arise of such symptomatic is the gained past experience - "vital concepts"; "coping strategies";2. Unlocking moment for the arise of the affection is the fixed emotion - fear, aggression or depression, specific for the particular morbid pictures;3. Showing the connection between symptom and fixed emotion by the technique "positive interpretation", which unlocks the process of changingThis shows that the psychotherapeutic help is possible only if the patient rethink the psychosomatic arc. Showing the connections between the content of the unconscious, the fixed emotion in behavioral models and the symptom gives the impetus to change.

  7. Arc Deflection Length Affected by Transverse Rotating Magnetic Field with Lateral Gas

    Science.gov (United States)

    Shiino, Toru; Ishii, Yoko; Yamamoto, Shinji; Iwao, Toru; High Current Energy Laboratory (HiCEL) Team

    2016-10-01

    Gas metal arc welding using shielding gas is often used in the welding industry. However, the arc deflection affected by lateral gas is problem because of inappropriate heat transfer. Shielding gas is used in order to prevent the instability affected by the arc deflection. However, the shielding gas causes turbulence, then blowhole of weld defect occurs because the arc affected by the instability is contaminated by the air. Thus, the magnetic field is applied to the arc in order to stabilize the arc using low amount of shielding gas. The method of applying the transverse rotating magnetic field (RMF) to the arc is one of the methods to prevent the arc instability. The RMF drives the arc because of electromagnetic force. The driven arc is considered to be prevented to arc deflection of lateral gas because the arc is restrained by the magnetic field because of the driven arc. In addition, it is assume the RMF prevented to the arc deflection of lateral gas from the multiple directions. In this paper, the arc deflection length affected by the RMF with lateral gas was elucidated in order to know the effect of the RMF for arc stabilization. Specifically, the arc deflection length affected by the magnetic frequency and the magnetic flux density is measured by high speed video camera. As a result, the arc deflection length decreases with increasing magnetic frequency, and the arc deflection length increases with increasing the magnetic flux density.

  8. Evaluation of the graphite electrode arc melter for processing heterogeneous waste

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Turner, Paul C.; Soelberg, N.R. (Idaho National Engineering Laboratory); Anderson, G.L. (Idaho National Engineering Laboratory)

    1996-01-01

    The U.S. Bureau of Mines (USBM) conducted a series of 4 demonstration melting tests in a 3-phase AC graphite electrode arc furnace at its Albany Research Center (ALRC) thermal treatment facility in Albany, Oregon (now part of the U.S. Department of Energy, DOE). The scope of these tests provides a unique opportunity to evaluate a single melting technology regarding its applicability to the treatment of several different heterogeneous mixed wastes. The current system can continuously process combustible-bearing wastes at feedrates to 682 kg/h (1,500 lb/h), continuously tap slag or glass, and intermittently tap metal products, and includes a close-coupled thermal oxidizer and air pollution control system (APCS). The 4 demonstration melting tests were conducted in cooperation with the American Society of Mechanical Engineers (ASME), the Idaho National Engineering Laboratory (INEL), and the Westinghouse Hanford Company (WHC).

  9. The determination of micro-arc plasma composition and properties of nanoparticles formed during cathodic plasma electrolysis of 304 stainless steel

    Science.gov (United States)

    Jovović, Jovica; Stojadinović, Stevan; Vasilić, Rastko; Tadić, Nenad; Šišović, Nikola M.

    2017-05-01

    This paper presents the research focused on the determination of micro-arc plasma composition during cathodic plasma electrolysis of AISI304 stainless steel in water solution of sodium hydroxide. The complex line shape of several Fe I spectral lines was observed and, by means of a dedicated fitting procedure based on the spectral line broadening theory and H2O thermal decomposition data, the mole fraction of micro-arc plasma constituents (H2, Fe, O, H, H2O, and OH) was determined. Subsequent characterization of the cathodic plasma electrolysis product formed during the process revealed that it consists of Fe-nanoparticles with median diameter of approximately 60 nm.

  10. The occurrence and damage of unipolar arcing on fuzzy tungsten

    NARCIS (Netherlands)

    Aussems, D. U. B.; Nishijima, D.; Brandt, C.; van der Meiden, H. J.; M. Vilémová,; J. Matějíček,; De Temmerman, G.; Doerner, R. P.; N.J. Lopes Cardozo,

    2015-01-01

    Abstract This research investigated whether unipolar arcing in the divertor of fusion reactors is a potential cause for enhanced wear of the divertor. It was found that 1 μm of nano-fuzz growth is sufficient to initiate arcing, mainly depending on the sheath potential drop and electron dens

  11. Variable-Polarity Plasma Arc Welding Of Alloy 2219

    Science.gov (United States)

    Walsh, Daniel W.; Nunes, Arthur C., Jr.

    1989-01-01

    Report presents results of study of variable-polarity plasma arc (VPPA) welding of aluminum alloy 2219. Consists of two parts: Examination of effects of microsegregation and transient weld stress on macrosegregation in weld pool and, electrical characterization of straight- and reverse-polarity portions of arc cycle.

  12. What makes an electric welding arc perform its required function

    Energy Technology Data Exchange (ETDEWEB)

    Correy, T.B.

    1982-09-01

    The physics of direct current and alternating current welding arcs, the heat transfer of direct current welding arcs, the characteristics of dc welding and ac welding power supplies and recommendations for the procurement and maintenance of precision power supplies are discussed. (LCL)

  13. Using the ARCS Model To Design Multimedia College Engineering Courses.

    Science.gov (United States)

    Shellnut, Bonnie; Savage, Timothy; Knowlton, Allie

    This paper describes how a Wayne State University (Michigan) multimedia design team is applying Keller's ARCS (Attention, Relevance, Confidence, and Satisfaction) Model of Motivational Design to the entire process of design, development, and evaluation of multimedia courseware. The ARCS Model has been applied to the prototype module and is being…

  14. Anode heat transfer in a constricted tube arc.

    Science.gov (United States)

    Lukens, L. A.; Incropera, F. P.

    1971-01-01

    The complex energy exchange mechanisms occurring on the most severely heated component of an arc constrictor, the anode, have been investigated. Measurements performed to determine the anode heat flux for a cascade, atmospheric argon arc of the Maecker type are described. The results are used to check the validity of an existing anode heat transfer model.

  15. [Fatal electric arc accidents due to high voltage].

    Science.gov (United States)

    Strauch, Hansjürg; Wirth, Ingo

    2004-01-01

    The frequency of electric arc accidents has been successfully reduced owing to preventive measures taken by the professional association. However, the risk of accidents has continued to exist in private setting. Three fatal electric arc accidents caused by high voltage are reported with reference to the autopsy findings.

  16. Liquid Metal Oscillation and Arc Behaviour during Welding

    NARCIS (Netherlands)

    Yudodibroto, B.Y.B.

    2010-01-01

    The purpose of this research is to obtain insight into the oscillation behaviour of the liquid metal and the arc behaviour during GMA welding. Observations of the weld pool and the arc were undertaken by visual means using a high-speed video and by analysis of the voltage. To deal with the complex p

  17. Arc generation from sputtering plasma-dielectric inclusion interactions

    CERN Document Server

    Wickersham, C E J; Fan, J S

    2002-01-01

    Arcing during sputter deposition and etching is a significant cause of particle defect generation during device fabrication. In this article we report on the effect of aluminum oxide inclusion size, shape, and orientation on the propensity for arcing during sputtering of aluminum targets. The size, shape, and orientation of a dielectric inclusion plays a major role in determining the propensity for arcing and macroparticle emission. In previous studies we found that there is a critical inclusion size required for arcing to occur. In this article we used high-speed videos, electric arc detection, and measurements of particle defect density on wafers to study the effect of Al sub 2 O sub 3 inclusion size, shape, and orientation on arc rate, intensity, and silicon wafer particle defect density. We found that the cross-sectional area of the inclusion exposed to the sputtering plasma is the critical parameter that determines the arc rate and rate of macroparticle emission. Analysis of the arc rate, particle defect...

  18. Applying the ARCS Motivation Model in Technological and Vocational Education

    Science.gov (United States)

    Liao, Hung-Chang; Wang, Ya-huei

    2008-01-01

    This paper describes the incorporation of Keller's ARCS (Attention, Relevance, Confidence, and Satisfaction) motivation model into traditional classroom instruction-learning process. Viewing that technological and vocational students have low confidence and motivation in learning, the authors applied the ARCS motivation model not only in the…

  19. 29 CFR 1926.351 - Arc welding and cutting.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Arc welding and cutting. 1926.351 Section 1926.351 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Welding and Cutting § 1926.351 Arc welding and cutting. (a) Manual electrode holders. (1) Only manual electrode holders which are specifically...

  20. 29 CFR 1915.56 - Arc welding and cutting.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Arc welding and cutting. 1915.56 Section 1915.56 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.56 Arc welding and cutting. The provisions of this section shall apply to ship...

  1. The complexity of finding arc-disjoint branching flows

    DEFF Research Database (Denmark)

    Bang-Jensen, J.; Havet, Frédéric; Yeo, Anders

    2016-01-01

    fixed integer k≥2 it is •an NP-complete problem to decide whether a network N=(V,A,u) where uij=k for every arc ij has two arc-disjoint branching flows rooted at s.•a polynomial problem to decide whether a network N=(V,A,u) on n vertices and uij=n-k for every arc ij has two arc-disjoint branching flows...... and for every k(n) with (log(n))1+ε(lunate)≤k(n)≤n2 (and for every large i we have k(n)=i for some n) there is no polynomial algorithm for deciding whether a given digraph contains two arc-disjoint branching flows from the same root so that no arc carries flow larger than n-k(n).......The concept of arc-disjoint flows in networks was recently introduced in Bang-Jensen and Bessy (2014). This is a very general framework within which many well-known and important problems can be formulated. In particular, the existence of arc-disjoint branching flows, that is, flows which send one...

  2. Ultraviolet radiation emitted by CO(2) arc welding.

    Science.gov (United States)

    Okuno, T; Ojima, J; Saito, H

    2001-10-01

    The arcs associated with arc welding emit high levels of ultraviolet radiation (UVR), and this often causes acute injuries in the workplace, particularly photokeratoconjunctivitis. It is important to know the level of UVR emitted by arc welding under various conditions, as this information will help in evaluating potential UVR hazards in welding workplaces and taking protective measures against it. In this study, the ACGIH effective irradiance for UVR was measured experimentally for CO(2) arc welding in order to evaluate its UVR hazards. A welding robot was used in the experiment in order to realize reproducible and consistent welding operations. The effective irradiance at 1 m from the arc was in the range 0.28-7.85 W/m(2) (28-785 microW/cm(2)) under the study conditions. The corresponding permissible exposure time per day is only 4-100 s, suggesting that UVR from CO(2) arc welding is actually hazardous for the eye and skin. It was found that the effective irradiance is inversely proportional to the square of the distance from the arc, is strongly dependent on the direction of emission from the arc with a maximum at 50-60 degrees from the plate surface, and tends to increase with welding current.

  3. Gas Tungsten Arc Welding. Welding Module 6. Instructor's Guide.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching a three-unit module in gas tungsten arc welding. The module has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The basic principles involved in gas tungsten arc welding, supplies, and applications are covered. The materials included…

  4. Water-vortex-stabilized electric arc: III. Radial energy transport, determination of water-vapour-boundary and arc performance

    Energy Technology Data Exchange (ETDEWEB)

    Jenista, Jiri [Institute of Plasma Physics ASCR, Za Slovankou 3, PO Box 17, Prague 8, 182 21 (Czech Republic)

    2003-12-07

    This paper is concerned with numerical modelling of an electric arc stabilized by a water vortex. The two-dimensional axisymmetric model presented includes the arc discharge area between the cathode and the outlet nozzle of the water plasma torch. The aims of the numerical simulations are: (1) to assess the influence of radial position of the water-vapour-boundary in the discharge chamber on arc performance and overall radial energy transport within the arc; (2) to determine the most probable mass flow rates and radii of the water-vapour-boundary in the discharge chamber for a prescribed current; (3) to demonstrate arc performance for two radiation models involved; and (4) to estimate validity of local thermodynamic equilibrium (LTE) conditions within the arc column. The rate of evaporation of water is calculated from the conduction and radiation heat fluxes at the water vapour surface for the specified mass flow rate. The behaviour of such an arc has been studied for a range of current 300-600 A. It is shown that changes of bulk magnitudes of different terms in the momentum and energy equations within the arc column as a function of arc radius enable us to reveal transitions of temperature and velocity fields from one steady state to a qualitatively different one. The best fit between experiment and numerical simulation for all currents exists for the mean arc radius {approx} 3.3 mm. Deviations from LTE within the arc column are estimated with the criteria for kinetic equilibrium and spatial temperature gradients.

  5. Integrated parametric study of a hybrid-stabilized argon-water arc under subsonic, transonic and supersonic plasma flow regimes

    Science.gov (United States)

    Jeništa, J.; Takana, H.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Křenek, P.; Hrabovský, M.; Kavka, T.; Sember, V.; Mašláni, A.

    2011-11-01

    This paper presents a numerical investigation of characteristics and processes in the worldwide unique type of thermal plasma generator with combined stabilization of arc by argon flow and water vortex, the so-called hybrid-stabilized arc. The arc has been used for spraying of ceramic or metallic particles and for pyrolysis of biomass. The net emission coefficients as well as the partial characteristics methods for radiation losses from the argon-water arc are employed. Calculations for 300-600 A with 22.5-40 standard litres per minute (slm) of argon reveal transition from a transonic plasma flow for 400 A to a supersonic one for 600 A with a maximum Mach number of 1.6 near the exit nozzle of the plasma torch. A comparison with available experimental data near the exit nozzle shows very good agreement for the radial temperature profiles. Radial velocity profiles calculated 2 mm downstream of the nozzle exit show good agreement with the profiles determined from the combination of calculation and experiment (the so-called integrated approach). A recent evaluation of the Mach number from the experimental data for 500 and 600 A confirmed the existence of the supersonic flow regime.

  6. Microstructure and Properties of FeCrB Alloy Coatings Prepared by Wire-Arc Spraying

    Science.gov (United States)

    Yao, H. H.; Zhou, Z.; Wang, Y. M.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-02-01

    To improve the heat transfer ability and wear resistance of drying cylinders in paper production machines, a series of Fe87- x Cr13B x ( x = 1 wt.%, 1.5 wt.%, 2 wt.%, 2.5 wt.%, 3 wt.%, and 4 wt.%) cored wires have been produced and used to prepare coatings by wire-arc spraying, in comparison with conventional X30Cr13 solid wire. All coatings presented dense layered structure with porosity of around 4%. The boron content in the cored wires significantly affected the thermal conductivity of the coating, which is attributed to the combined effects of the crystal structure, grain size, and oxide content of the coating. In the investigated range, the coating with 2 wt.% boron content exhibited the highest thermal conductivity, reaching 8.83 W/m-K, greater than that of X30Cr13 coating (5.45 W/m-K). Furthermore, the microhardness and relative wear resistance of the FeCrB coatings obtained from cored wires with boron addition were greatly increased compared with commercial X30Cr13 coating. Therefore, wire-arc-sprayed FeCrB coating has promise as an effective and economic approach to improve the heat transfer behavior and wear resistance of drying cylinders in the paper industry.

  7. Microstructure and Properties of FeCrB Alloy Coatings Prepared by Wire-Arc Spraying

    Science.gov (United States)

    Yao, H. H.; Zhou, Z.; Wang, Y. M.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2016-12-01

    To improve the heat transfer ability and wear resistance of drying cylinders in paper production machines, a series of Fe87-x Cr13B x (x = 1 wt.%, 1.5 wt.%, 2 wt.%, 2.5 wt.%, 3 wt.%, and 4 wt.%) cored wires have been produced and used to prepare coatings by wire-arc spraying, in comparison with conventional X30Cr13 solid wire. All coatings presented dense layered structure with porosity of around 4%. The boron content in the cored wires significantly affected the thermal conductivity of the coating, which is attributed to the combined effects of the crystal structure, grain size, and oxide content of the coating. In the investigated range, the coating with 2 wt.% boron content exhibited the highest thermal conductivity, reaching 8.83 W/m-K, greater than that of X30Cr13 coating (5.45 W/m-K). Furthermore, the microhardness and relative wear resistance of the FeCrB coatings obtained from cored wires with boron addition were greatly increased compared with commercial X30Cr13 coating. Therefore, wire-arc-sprayed FeCrB coating has promise as an effective and economic approach to improve the heat transfer behavior and wear resistance of drying cylinders in the paper industry.

  8. Recombination Kinetics in the Afterglow of a High-Pressure Arc

    Science.gov (United States)

    Gleizes, Alain

    2000-10-01

    Modern high-voltage circuit-breakers are filled up with SF6 gas at a pressure of several atmospheres. AC current interruption occurs after current zero during a short phase of a few microseconds characterized by a fast cooling of the arc plasma due to convection and turbulence produced by overpressure effects. During this quenching phase the electrical conductance of the plasma and thus the electron number density must decrease rapidly in order to create a dielectric medium between the contacts capable to withstand the recovery voltage. We present first a kinetics study based on thermal equilibrium and on the previous knowledge of the temperature evolution, showing that the electrons disappear mainly by three mechanisms: three-body recombination at high temperature; dissociative recombination and dissociative attachment at intermediate and low temperature. A second study, coupling chemical kinetics and a two-dimension hydrodynamic modeling, has been performed in two conditions: thermal equilibrium and two-temperature plasma. The results show that departures from equilibrium remain weak, because in particular of the recombination of the electrons with S2+ ions. Finally, we will present the study of an SF6 and SF6-N2 arc plasma recombination in the presence of impurities. The theoretical prediction of the by-product formation has been compared with some experimental results obtained by gas chromatography, demonstrating the role of oxygen and carbon in the recombining plasma.

  9. Numerical simulation and experimental validation of arc welding of DMR-249A steel

    Directory of Open Access Journals (Sweden)

    Rishi Pamnani

    2016-08-01

    Full Text Available The thermo-mechanical attributes of DMR-249A steel weld joints manufactured by shielded metal arc welding (SMAW and activated gas tungsten arc welding (A-GTAW processes were studied using Finite Element Model (FEM simulation. The thermal gradients and residual stresses were analyzed with SYSWELD software using double ellipsoidal heat source distribution model. The numerically estimated temperature distribution was validated with online temperature measurements using thermocouples. The predicted residual stresses profile across the weld joints was compared with the values experimentally measured using non-destructive techniques. The measured and predicted thermal cycles and residual stress profile was observed to be comparable. The residual stress developed in double sided A-GTAW joint were marginally higher in comparison to five pass SMAW joint due to phase transformation associated with high heat input per weld pass for A-GTAW process. The present investigations suggest the applicability of numerical modeling as an effective approach for predicting the thermo-mechanical properties influenced by welding techniques for DMR-249A steel weld joints. The tensile, impact and micro-hardness tests were carried to compare the welds. Considering benefits of high productivity and savings of labor and cost associated with A-GTAW compared to SMAW process, the minor variation in residual stress build up of A-GTAW joint can be neglected to develop A-GTAW as qualified alternative welding technique for DMR-249A steel.

  10. A method to determine arc position in ICRF systems

    Energy Technology Data Exchange (ETDEWEB)

    D’Inca, R., E-mail: rodolphe.dinca@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Polozhiy, K.; Eckert, B.; Siegel, G. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Noterdaeme, J.-M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); EESA Department, Gent University (Belgium)

    2013-10-15

    Highlights: ► We show that the voltage noise characteristic of an arc in an ICRF system is due to the propagation and reflections of an electromagnetic pulse emitted by this arc. ► A simplified RF model of an arc in a testbed representative of an ICRF system is developed to see the effect of its location on the voltage noise it emits. ► The model is compared with the results on the testbed for arcs occurring at two locations: one can be determined precisely, the other with a decreased accuracy. -- Abstract: The study of arcs on ICRF systems has mainly focused on the development of fast detectors to detect a breakdown, independently from its position, before they can damage the components [1]. However, the ability to localize an arc is also an important factor: arcs can be the sign of a defect and if they occur at the same location, they give a good indication of the position of this defect without having to use intrusive diagnostics like optical fibers. We present here a method to find the position of arcs based on the analysis of their high-frequency noise. Arcs are indeed fast transient which excite frequencies in the MHz range. The SHAD system reacts on the integral value of this noise signal to detect the development of arcs. But a further investigation of this signal shows detailed features like splittings and chirpings of the frequency peaks which give more information on the source of the breakdown: at its birth, the arc emits a short electromagnetic pulse of several nanoseconds that propagates inside the ICRF system; this pulse is reflected by components like the antenna, the stub tuners or the generators back to the arc thereby changing its boundary conditions. This resonance between the arc and the ICRF system can be measured and the time of propagation of the pulse gives useful data on the position of the breakdown. We have carried out tests on the Manipulator eXPeriment (a testbed to artificially create arcs in a representative ICRF system) and

  11. Relationship between large horizontal electric fields and auroral arc elements

    Energy Technology Data Exchange (ETDEWEB)

    Lanchester, B.S. [Univ. of Southampton (United Kingdom); Kaila, K. [Univ. of Oulu (Finland); McCrea, I.W. [Rutherford Appleton Laboratory, Chilton, Didcot (United Kingdom)

    1996-03-01

    The authors report on data which correlates high time resolution optical measurements of auroral features with EISCAT radar measurements of electron density, with 0.2 sec time resolution and horizontal electric field, with time resolution near 9 sec. The associations between such electric fields and auroral arc features have been a subject of interest for years. They report on one event where following an auroral breakup, an arc moved southward. During 30 seconds of this event a section of the arc was close to the radar beam, and better resolution was available for the electric field measurements. The results indicate that the electric field pointed towards the point of brightest emission in the arc, indicating that the fields might be associated with the charged-particle precipitation causing the bright features in the arc.

  12. Investigation on the stepping arc stud welding process

    Institute of Scientific and Technical Information of China (English)

    Chi Qiang; Zhang Jianxun; Fu Jifei; Zhang Youquan

    2005-01-01

    Through the investigation on traditional arc stud welding process, a new welding gun and its control system were developed in this paper. The stepping arc stud welding gun was mainly made by a stepping motor as actuating unit and a screw-driven device as moving unit. A control system with a MCS-51 single-chip microcomputer as main control component was used to realize the new stud welding procedure. This new welding process with stepping stud welding gun is named as stepping arc stud welding. In the new welding process, the stud action can be looked as constituted by some micro steps. The setting and adjusting of the stepping arc welding gun behavior parameters are accomplished independently. It is indicated from the results of process tests and bending test that the stepping arc stud welding process is practicable.

  13. Investigation of optimal control system for arc spraying

    Institute of Scientific and Technical Information of China (English)

    Li Heqi; Li Chunxu

    2005-01-01

    Arc-voltage feedback PID ( Proportional plus Integral plus Differential) controller and arc-current feedback PID controller are designed with an algorithm of discrete PID. In order to realize parameters optimization and adaptation of the arc-spraying process and to reduce blindness in selecting process parameters, a serial communication interface between PC and MCU (Micro Control Unit) is designed so that on-line modification of the PID control parameters is implemented. A genetic algorithm is adopted to optimize PID control parameters. Meanwhile, the error between the actual value and the setting value of spraying current is selected as the judgment criterion to determine the adaptability for the algorithm. The best optimal population of PID control parameters can be obtained, so that the optimal controlling in arc-spraying process is realized and an excellent coating of arc-spraying is obtained.

  14. Theory of Parabolic Arcs in Interstellar Scintillation Spectra

    CERN Document Server

    Cordes, J M; Stinebring, D R; Coles, W A; Cordes, James M.; Rickett, Barney J.; Stinebring, Daniel R.; Coles, William A.

    2004-01-01

    Our theory relates the secondary spectrum, the 2D power spectrum of the radio dynamic spectrum, to the scattered pulsar image in a thin scattering screen geometry. Recently discovered parabolic arcs in secondary spectra are generic features for media that scatter radiation at angles much larger than the rms scattering angle. Each point in the secondary spectrum maps particular values of differential arrival-time delay and fringe rate (or differential Doppler frequency) between pairs of components in the scattered image. Arcs correspond to a parabolic relation between these quantities through their common dependence on the angle of arrival of scattered components. Arcs appear even without consideration of the dispersive nature of the plasma. Arcs are more prominent in media with negligible inner scale and with shallow wavenumber spectra, such as the Kolmogorov spectrum, and when the scattered image is elongated along the velocity direction. The arc phenomenon can be used, therefore, to constrain the inner scal...

  15. Single Arc VMAT of H&N patients

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Hansen, Christian Rønn; Johansen, Jørgen;

      Background: A few planning systems are currently able to plan volumetric modulated arc therapy (VMAT) which can be delivered on Elekta and Varian accelerators. Pinnacles version of a VMAT algorithm is called SmartArc. SmartArcs capability to modulate complicated treatment plans is to be tested...... recommendations. The patients were re-planned with VMAT by use of the SmartArc algorithm in Pinnacle (research version). The collapsed cone dose engine was used for final dose calculation. One constraint for the re-planning study was to use only one single arc to create deliverable plans. The objectives were...... to achieve similar or better target coverage and sparring of organs at risk (OAR) as achieved in the IMRT plan. The VMAT plans were compared to the original IMRT plans by evaluation of 1) treatment time, 2) monitor units (MU) 3) DVH for targets and OAR and 4) the dose measured with a Delta4 phantom from...

  16. Single Arc VMAT of H&N cancer

    DEFF Research Database (Denmark)

    Bertelsen, Anders

      Background: A few radiation treatment planning systems are currently able to plan volumetric modulated arc therapy (VMAT). The VMAT algorithm in Pinnacle3 TM is called SmartArc. The capability of SmartArc to generate complex treatment plans for the head and neck (H&N) region was tested...... Target Volumes (PTV). The patients were re-planned with VMAT using the SmartArc algorithm in Pinnacle3TM 8.9c (research version). A constraint for the re-planning was to use only one single arc to create deliverable plans. The objectives were to achieve identical or better target coverage and sparing...... of the organs at risk (OAR) using VMAT compared to IMRT. The comparison was made by evaluating of 1) dose-volume histograms (DVHs) of PTVs and OARs, 2) monitor units, 3) treatment time, and 4) treatment accuracy as delivered on Elekta Synergy accelerators   Results: Preliminary results based on 11 patients...

  17. Single Arc VMAT of H&N patients

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Hansen, Christian Rønn; Johansen, Jørgen;

    2009-01-01

      Background: A few planning systems are currently able to plan volumetric modulated arc therapy (VMAT) which can be delivered on Elekta and Varian accelerators. Pinnacles version of a VMAT algorithm is called SmartArc. SmartArcs capability to modulate complicated treatment plans is to be tested...... recommendations. The patients were re-planned with VMAT by use of the SmartArc algorithm in Pinnacle (research version). The collapsed cone dose engine was used for final dose calculation. One constraint for the re-planning study was to use only one single arc to create deliverable plans. The objectives were...... to achieve similar or better target coverage and sparring of organs at risk (OAR) as achieved in the IMRT plan. The VMAT plans were compared to the original IMRT plans by evaluation of 1) treatment time, 2) monitor units (MU) 3) DVH for targets and OAR and 4) the dose measured with a Delta4 phantom from...

  18. Effect of Energetic Electrons on Quiet Auroral Arc Formation

    Science.gov (United States)

    Hasegawa, Hiroki; Ohno, Nobuaki; Sato, Tetsuya

    2010-11-01

    The theory of feedback instability between the magnetosphere and ionosphere is believed as one of the candidate to explain the formation of quiet auroral arc. Then, some magneto-hydro- dynamics simulations showed the arc formation by this macroscopic instability, while the effect of auroral energetic electrons on the arc formation was neglected or given as a macroscopic parameter in these simulations. On the other hand, because of the recent development of particle simulations, auroral energetic electrons are thought to be produced by the super ion-acoustic double layer that should be created by microscopic instability. To make close investigation of auroral arc formation, it is necessary to consider the interaction with microscopic instability. In this paper, we numerically study the effect of energetic electrons on quiet auroral arc formation by means of the Macro-Micro Interlocked simulation.

  19. The confinement of Neptune's ring arcs by the moon Galatea

    Science.gov (United States)

    Namouni, Fathi; Porco, Carolyn

    2002-05-01

    Neptune has five narrow ring arcs, spanning about 40 degrees in longitude, which are apparently confined against the rapid azimuthal and radial spreading that normally results from inter-particle collisions. A gravitational resonance based on the vertical motion of the nearby neptunian moon Galatea was proposed to explain the trapping of the ring particles into a sequence of arcs. But recent observations have indicated that the arcs are away from the resonance, leaving their stability again unexplained. Here we report that a resonance based on Galatea's eccentricity is responsible for the angular confinement of the arcs. The mass of the arcs affects the precession of Galatea's eccentric orbit, which will enable a mass estimate from future observations of Galatea's eccentricity.

  20. Improvement on Diamond Nucleation Treated by Pulsed Arc Discharge Plasma

    Institute of Scientific and Technical Information of China (English)

    马志斌; 万军; 汪建华; 张文文

    2004-01-01

    A technique of improvement on diamond nucleation based on pulsed arc discharge plasma at atmospheric pressure was developed. The pulsed arc discharge was induced respectively by nitrogen, argon and methanol gas. After the arc plasma pretreatment, a nucleation density higher than 1010 cm-2 may be obtained subsequently in chemical vapor deposition (CVD) on a mirror-polished silicon substrate without any other mechanical treatment. The effects of the arc discharge plasma on the diamond nucleation were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR) and Raman spectroscopy. The enhancement of nucleation is postulated to be a result of the formation of carbonlike phase materials or nitrogenation on the substrate surface without surface defect produced by arc discharge.