WorldWideScience

Sample records for twin-arginine signal peptides

  1. Prediction of twin-arginine signal peptides

    Directory of Open Access Journals (Sweden)

    Widdick David

    2005-07-01

    Full Text Available Abstract Background Proteins carrying twin-arginine (Tat signal peptides are exported into the periplasmic compartment or extracellular environment independently of the classical Sec-dependent translocation pathway. To complement other methods for classical signal peptide prediction we here present a publicly available method, TatP, for prediction of bacterial Tat signal peptides. Results We have retrieved sequence data for Tat substrates in order to train a computational method for discrimination of Sec and Tat signal peptides. The TatP method is able to positively classify 91% of 35 known Tat signal peptides and 84% of the annotated cleavage sites of these Tat signal peptides were correctly predicted. This method generates far less false positive predictions on various datasets than using simple pattern matching. Moreover, on the same datasets TatP generates less false positive predictions than a complementary rule based prediction method. Conclusion The method developed here is able to discriminate Tat signal peptides from cytoplasmic proteins carrying a similar motif, as well as from Sec signal peptides, with high accuracy. The method allows filtering of input sequences based on Perl syntax regular expressions, whereas hydrophobicity discrimination of Tat- and Sec-signal peptides is carried out by an artificial neural network. A potential cleavage site of the predicted Tat signal peptide is also reported. The TatP prediction server is available as a public web server at http://www.cbs.dtu.dk/services/TatP/.

  2. Prediction of twin-arginine signal peptides

    DEFF Research Database (Denmark)

    Bendtsen, Jannick Dyrløv; Nielsen, Henrik; Widdick, D.

    2005-01-01

    a publicly available method, TatP, for prediction of bacterial Tat signal peptides. Results: We have retrieved sequence data for Tat substrates in order to train a computational method for discrimination of Sec and Tat signal peptides. The TatP method is able to positively classify 91% of 35 known Tat signal...... peptides and 84% of the annotated cleavage sites of these Tat signal peptides were correctly predicted. This method generates far less false positive predictions on various datasets than using simple pattern matching. Moreover, on the same datasets TatP generates less false positive predictions than...... expressions, whereas hydrophobicity discrimination of Tat- and Sec- signal peptides is carried out by an artificial neural network. A potential cleavage site of the predicted Tat signal peptide is also reported. The TatP prediction server is available as a public web server at http://www.cbs.dtu.dk/services/TatP/....

  3. A facile reporter system for the experimental identification of twin-arginine translocation (Tat) signal peptides from all kingdoms of life

    NARCIS (Netherlands)

    Widdick, David A.; Eijlander, Robyn T.; van Dijl, Jan Maarten; Kuipers, Oscar P.; Palmer, Tracy

    2008-01-01

    We have developed a reporter protein system for the experimental verification of twin-arginine signal peptides. This reporter system is based on the Streptomyces coelicolor agarase protein, which is secreted into the growth medium by the twin-arginine translocation (Tat) pathway and whose

  4. Mapping the signal peptide binding and oligomer contact sites of the core subunit of the pea twin arginine protein translocase.

    Science.gov (United States)

    Ma, Xianyue; Cline, Kenneth

    2013-03-01

    Twin arginine translocation (Tat) systems of thylakoid and bacterial membranes transport folded proteins using the proton gradient as the sole energy source. Tat substrates have hydrophobic signal peptides with an essential twin arginine (RR) recognition motif. The multispanning cpTatC plays a central role in Tat operation: It binds the signal peptide, directs translocase assembly, and may facilitate translocation. An in vitro assay with pea (Pisum sativum) chloroplasts was developed to conduct mutagenesis and analysis of cpTatC functions. Ala scanning mutagenesis identified mutants defective in substrate binding and receptor complex assembly. Mutations in the N terminus (S1) and first stromal loop (S2) caused specific defects in signal peptide recognition. Cys matching between substrate and imported cpTatC confirmed that S1 and S2 directly and specifically bind the RR proximal region of the signal peptide. Mutations in four lumen-proximal regions of cpTatC were defective in receptor complex assembly. Copurification and Cys matching analyses suggest that several of the lumen proximal regions may be important for cpTatC-cpTatC interactions. Surprisingly, RR binding domains of adjacent cpTatCs directed strong cpTatC-cpTatC cross-linking. This suggests clustering of binding sites on the multivalent receptor complex and explains the ability of Tat to transport cross-linked multimers. Transport of substrate proteins cross-linked to the signal peptide binding site tentatively identified mutants impaired in the translocation step.

  5. The Hydrophobic Region of the DmsA Twin-Arginine Leader Peptide Determines Specificity with Chaperone DmsD

    OpenAIRE

    Winstone, Tara M. L.; Tran, Vy A.; Turner, Raymond J.

    2013-01-01

    The system specific chaperone DmsD plays a role in the maturation of the catalytic subunit of dimethyl sulfoxide (DMSO) reductase, DmsA. Pre-DmsA contains a 45-amino acid twin-arginine leader peptide that is important for targeting and translocation of folded and cofactor-loaded DmsA by the twin-arginine translocase. DmsD has previously been shown to interact with the complete twin-arginine leader peptide of DmsA. In this study, isothermal titration calorimetry was used to investigate the the...

  6. Twin-arginine-dependent translocation of folded proteins

    Science.gov (United States)

    Fröbel, Julia; Rose, Patrick; Müller, Matthias

    2012-01-01

    Twin-arginine translocation (Tat) denotes a protein transport pathway in bacteria, archaea and plant chloroplasts, which is specific for precursor proteins harbouring a characteristic twin-arginine pair in their signal sequences. Many Tat substrates receive cofactors and fold prior to translocation. For a subset of them, proofreading chaperones coordinate maturation and membrane-targeting. Tat translocases comprise two kinds of membrane proteins, a hexahelical TatC-type protein and one or two members of the single-spanning TatA protein family, called TatA and TatB. TatC- and TatA-type proteins form homo- and hetero-oligomeric complexes. The subunits of TatABC translocases are predominantly recovered from two separate complexes, a TatBC complex that might contain some TatA, and a homomeric TatA complex. TatB and TatC coordinately recognize twin-arginine signal peptides and accommodate them in membrane-embedded binding pockets. Advanced binding of the signal sequence to the Tat translocase requires the proton-motive force (PMF) across the membranes and might involve a first recruitment of TatA. When targeted in this manner, folded twin-arginine precursors induce homo-oligomerization of TatB and TatA. Ultimately, this leads to the formation of a transmembrane protein conduit that possibly consists of a pore-like TatA structure. The translocation step again is dependent on the PMF. PMID:22411976

  7. The canonical twin-arginine translocase components are not required for secretion of folded green fluorescent protein from the ancestral strain of Bacillus subtilis.

    Science.gov (United States)

    Snyder, Anthony J; Mukherjee, Sampriti; Glass, J Kyle; Kearns, Daniel B; Mukhopadhyay, Suchetana

    2014-05-01

    Cellular processes, such as the digestion of macromolecules, phosphate acquisition, and cell motility, require bacterial secretion systems. In Bacillus subtilis, the predominant protein export pathways are Sec (generalized secretory pathway) and Tat (twin-arginine translocase). Unlike Sec, which secretes unfolded proteins, the Tat machinery secretes fully folded proteins across the plasma membrane and into the medium. Proteins are directed for Tat-dependent export by N-terminal signal peptides that contain a conserved twin-arginine motif. Thus, utilizing the Tat secretion system by fusing a Tat signal peptide is an attractive strategy for the production and export of heterologous proteins. As a proof of concept, we expressed green fluorescent protein (GFP) fused to the PhoD Tat signal peptide in the laboratory and ancestral strains of B. subtilis. Secretion of the Tat-GFP construct, as well as secretion of proteins in general, was substantially increased in the ancestral strain. Furthermore, our results show that secreted, fluorescent GFP could be purified directly from the extracellular medium. Nonetheless, export was not dependent on the known Tat secretion components or the signal peptide twin-arginine motif. We propose that the ancestral strain contains additional Tat components and/or secretion regulators that were abrogated following domestication.

  8. A putative twin-arginine translocation system in the phytopathogenic bacterium Xylella fastidiosa.

    Science.gov (United States)

    Ciapina, Luciane Prioli; Picchi, Simone Cristina; Lacroix, Jean-Marie; Lemos, Eliana Gertrudes de Macedo; Ödberg-Ferragut, Carmen

    2011-02-01

    The twin-arginine translocation (Tat) pathway of the xylem-limited phytopathogenic bacterium Xylella fastidiosa strain 9a5c, responsible for citrus variegated chlorosis, was explored. The presence of tatA, tatB, and tatC in the X. fastidiosa genome together with a list of proteins harboring 2 consecutive arginines in their signal peptides suggested the presence of a Tat pathway. The functional Tat dependence of X. fastidiosa OpgD was examined. Native or mutated signal peptides were fused to the β-lactamase. Expression of fusion with intact signal peptides mediated high resistance to ampicillin in Escherichia coli tat+ but not in the E. coli tat null mutant. The replacement of the 2 arginines by 2 lysines prevented the export of β-lactamase in E. coli tat+, demonstrating that X. fastidiosa OpgD carries a signal peptide capable of engaging the E. coli Tat machinery. RT-PCR analysis revealed that the tat genes are transcribed as a single operon. tatA, tatB, and tatC genes were cloned. Complementation assays in E. coli devoid of all Tat or TatC components were unsuccessful, whereas X. fastidiosa Tat components led to a functional Tat translocase in E. coli TatB-deficient strain. Additional experiments implicated that X. fastidiosa TatB component could form a functional heterologous complex with the E. coli TatC component.

  9. Early Contacts between Substrate Proteins and TatA Translocase Component in Twin-arginine Translocation*

    Science.gov (United States)

    Fröbel, Julia; Rose, Patrick; Müller, Matthias

    2011-01-01

    Twin-arginine translocation (Tat) is a unique protein transport pathway in bacteria, archaea, and plastids. It mediates the transmembrane transport of fully folded proteins, which harbor a consensus twin-arginine motif in their signal sequences. In Gram-negative bacteria and plant chloroplasts, three membrane proteins, named TatA, TatB, and TatC, are required to enable Tat translocation. Available data suggest that TatA assembles into oligomeric pore-like structures that might function as the protein conduit across the lipid bilayer. Using site-specific photo-cross-linking, we have investigated the molecular environment of TatA under resting and translocating conditions. We find that monomeric TatA is an early interacting partner of functionally targeted Tat substrates. This interaction with TatA likely precedes translocation of Tat substrates and is influenced by the proton-motive force. It strictly depends on the presence of TatB and TatC, the latter of which is shown to make contacts with the transmembrane helix of TatA. PMID:22041896

  10. Early contacts between substrate proteins and TatA translocase component in twin-arginine translocation.

    Science.gov (United States)

    Fröbel, Julia; Rose, Patrick; Müller, Matthias

    2011-12-23

    Twin-arginine translocation (Tat) is a unique protein transport pathway in bacteria, archaea, and plastids. It mediates the transmembrane transport of fully folded proteins, which harbor a consensus twin-arginine motif in their signal sequences. In Gram-negative bacteria and plant chloroplasts, three membrane proteins, named TatA, TatB, and TatC, are required to enable Tat translocation. Available data suggest that TatA assembles into oligomeric pore-like structures that might function as the protein conduit across the lipid bilayer. Using site-specific photo-cross-linking, we have investigated the molecular environment of TatA under resting and translocating conditions. We find that monomeric TatA is an early interacting partner of functionally targeted Tat substrates. This interaction with TatA likely precedes translocation of Tat substrates and is influenced by the proton-motive force. It strictly depends on the presence of TatB and TatC, the latter of which is shown to make contacts with the transmembrane helix of TatA.

  11. Yersinia enterocolitica and Photorhabdus asymbiotica β-lactamases BlaA are exported by the twin-arginine translocation pathway.

    Science.gov (United States)

    Schriefer, Eva-Maria; Hoffmann-Thoms, Stephanie; Schmid, Franz X; Schmid, Annika; Heesemann, Jürgen

    2013-01-01

    In general, β-lactamases of medically important Gram-negative bacteria are Sec-dependently translocated into the periplasm. In contrast, β-lactamases of Mycobacteria spp. (BlaC, BlaS) and the Gram-negative environmental bacteria Stenotrophomonas maltophilia (L2) and Xanthomonas campestris (Bla(XCC-1)) have been reported to be secreted by the twin-arginine translocation (Tat) system. Yersinia enterocolitica carries 2 distinct β-lactamase genes (blaA and blaB) encoding BlaA(Ye) and the AmpC-like β-lactamase BlaB, respectively. By using the software PRED-TAT for prediction and discrimination of Sec from Tat signal peptides, we identified a functional Tat signal sequence for Yersinia BlaA(Ye). The Tat-dependent translocation of BlaA(Ye) could be clearly demonstrated by using a Y. enterocolitica tatC-mutant and cell fractionation. Moreover, we could demonstrate a unique unusual temperature-dependent activity profile of BlaA(Ye) ranging from 15 to 60 °C and a high 'melting temperature' (T(M)=44.3°) in comparison to the related Sec-dependent β-lactamase TEM-1 (20-50°C, T(M)=34.9 °C). Strikingly, the blaA gene of Y. enterocolitica is present in diverse environmental Yersinia spp. and a blaA homolog gene could be identified in the closely related Photorhabdus asymbiotica (BlaA(Pa); 69% identity to BlaA(Ye)). For BlaA(Pa) of P. asymbiotica, we could also demonstrate Tat-dependent secretion. These results suggest that Yersinia BlaA-related β-lactamases may be the prototype of a large Tat-dependent β-lactamase family, which originated from environmental bacteria. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Haloarchaeal Protein Translocation via the Twin Arginine Translocation Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Pohlschroder Mechthild

    2009-02-03

    Protein transport across hydrophobic membranes that partition cellular compartments is essential in all cells. The twin arginine translocation (Tat) pathway transports proteins across the prokaryotic cytoplasmic membranes. Distinct from the universally conserved Sec pathway, which secretes unfolded proteins, the Tat machinery is unique in that it secretes proteins in a folded conformation, making it an attractive pathway for the transport and secretion of heterologously expressed proteins that are Sec-incompatible. During the past 7 years, the DOE-supported project has focused on the characterization of the diversity of bacterial and archaeal Tat substrates as well as on the characterization of the Tat pathway of a model archaeon, Haloferax volcanii, a member of the haloarchaea. We have demonstrated that H. volcanii uses this pathway to transport most of its secretome.

  13. Twin arginine translocation system in secretory expression of recombinant human growth hormone.

    Science.gov (United States)

    Bagherinejad, Mohammad Reza; Sadeghi, Hamid Mir-Mohammad; Abedi, Daryoush; Chou, C Perry; Moazen, Fatemeh; Rabbani, Mohammad

    2016-12-01

    Recombinant protein production in E. coli has several advantages over other expression systems. Misfolding, inclusion body formation, and lack of eukaryotic post translational modification are the most disadvantages of this system. Exporting of correctly folded proteins to the outside of reductive cytoplasmic environment through twin-arginine system could help to pass these limiting steps. Two signal sequences, TorA and SufI are used at N-terminal of human growth hormone (hGH) bearing DsbA gene sequence at C-terminal to enhance folding. The synthetic cassettes including the signal sequence, hGH and DsbA were transformed into E. coli BL21 (DE3) to study the effect of signal sequence and DsbA chaperone on translocation and folding of the protein. The results confirmed using signal sequence at N-terminal of targeted protein and coexpression with DsbA could transport proteins to the periplasmic space and culture media compared to control groups. Although there is no protein band of somatropin in SDS-Page of culture media samples when using SufI as signaling sequence, the study demonstrated TorA signal sequence could transport the target protein to the culture media. However, there was a considerable amount of hGH in periplasmic space when using SufI compared to control.

  14. Plant peptide hormone signalling.

    Science.gov (United States)

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions. © 2015 Authors; published by Portland Press Limited.

  15. High-level secretion of a recombinant protein to the culture medium with a Bacillus subtilis twin-arginine translocation system in Escherichia coli.

    Science.gov (United States)

    Albiniak, Anna M; Matos, Cristina F R O; Branston, Steven D; Freedman, Robert B; Keshavarz-Moore, Eli; Robinson, Colin

    2013-08-01

    The twin-arginine translocation (Tat) system transports folded proteins across the plasma membrane in bacteria, and heterologous proteins can be exported by this pathway if a Tat-type signal peptide is present at the N-terminus. The system thus has potential for biopharmaceutical production in Escherichia coli, where export to the periplasm is often a favoured approach. Previous studies have shown that E. coli cells can export high levels of protein by the Tat pathway, and the protein product accummulates almost exclusively in the periplasm. In this study, we analysed E. coli cells that express the Bacillus subtilis TatAdCd system in place of the native TatABC system. We show that a heterologous model protein, comprising the TorA signal peptide linked to green fluorescent protein (TorA-GFP), is efficiently exported by the TatAdCd system. However, whereas the GFP is exported initially to the periplasm during batch fermentation, the mature protein is increasingly found in the extracellular culture medium. By the end of a 16-h fermentation, ~ 90% of exported GFP is present in the medium as active mature protein. The total protein profiles of the medium and periplasm are essentially identical, confirming that the outer membrane becomes leaky during the fermentation process. The cells are otherwise intact, and there is no large-scale release of cytoplasmic contents. Export levels are relatively high, with ~ 0.35 g GFP·L⁻¹ culture present in the medium. This system thus offers a means of producing recombinant protein in E. coli and harvesting directly from the medium, with potential advantages in terms of ease of purification and downstream processing. © 2013 FEBS.

  16. In silico analysis and experimental validation of lipoprotein and novel Tat signal peptides processing in Anabaena sp. PCC7120.

    Science.gov (United States)

    Kumari, Sonika; Chaurasia, Akhilesh Kumar

    2015-12-01

    Signal peptide (SP) plays a pivotal role in protein translocation. Lipoprotein- and twin arginine translocase (Tat) dependent signal peptides were studied in All3087, a homolog of competence protein of Synechocystis PCC6803 and in two putative alkaline phosphatases (ALPs, Alr2234 and Alr4976), respectively. In silico analysis of All3087 is shown to possess the characteristics feature of competence proteins such as helix-hairpin-helix, N and C-terminal HKD endonuclease domain, calcium binding domain and N-terminal lipoprotein signal peptide. The SP recognition-cleavage site in All3087 was predicted (AIA-AC) using SignalP while further in-depth analysis using Pred-Lipo and WebLogo analysis for consensus sequence showed it as IAA-C. Activities of putative ALPs were confirmed by heterologous overexpression, activity assessment and zymogram analysis. ALP activity in Anabaena remains cell bound in log-phase, but during late log/stationary phase, an enhanced ALP activity was detected in extracellular milieu. The enhancement of ALP activity during stationary phase was not only due to inorganic phosphate limitation but also contributed by the presence of novel bipartite Tat-SP. The Tat signal transported the folded active ALPs to the membrane, followed by anchoring into the membrane and successive cleavage enabling transportation of the ALPs to the extracellular milieu, because of bipartite architecture and processing of transit Tat-SP.

  17. Specific Targeting of the Metallophosphoesterase YkuE to the Bacillus Cell Wall Requires the Twin-arginine Translocation System

    NARCIS (Netherlands)

    Monteferrante, Carmine G.; Miethke, Marcus; van der Ploeg, Rene; Glasner, Corinna; van Dijl, Jan Maarten

    2012-01-01

    The twin-arginine translocation (Tat) pathway is dedicated to the transport of fully folded proteins across the cytoplasmic membranes of many bacteria and the chloroplast thylakoidal membrane. Accordingly, Tat-dependently translocated proteins are known to be delivered to the periplasm of

  18. A Tat menage a trois - The role of Bacillus subtilis TatAc in twin-arginine protein translocation

    NARCIS (Netherlands)

    Goosens, Vivianne J.; De-San-Eustaquio-Campillo, Alba; Carballido-Lopez, Rut; van Dijl, Jan Maarten

    2015-01-01

    The twin-arginine translocation system (Tat) is a protein transport system that moves fully folded and cofactor-containing proteins across membranes of bacteria, archaea and thylakoids. The minimal Tat pathway is composed of two subunits, TatA and TatC. In some organisms TatA has been duplicated and

  19. The twin arginine protein transport pathway exports multiple virulence proteins in the plant pathogen Streptomyces scabies.

    Science.gov (United States)

    Joshi, Madhumita V; Mann, Stefan G; Antelmann, Haike; Widdick, David A; Fyans, Joanna K; Chandra, Govind; Hutchings, Matthew I; Toth, Ian; Hecker, Michael; Loria, Rosemary; Palmer, Tracy

    2010-07-01

    Summary Streptomyces scabies is one of a group of organisms that causes the economically important disease potato scab. Analysis of the S. scabies genome sequence indicates that it is likely to secrete many proteins via the twin arginine protein transport (Tat) pathway, including several proteins whose coding sequences may have been acquired through horizontal gene transfer and share a common ancestor with proteins in other plant pathogens. Inactivation of the S. scabies Tat pathway resulted in pleiotropic phenotypes including slower growth rate and increased permeability of the cell envelope. Comparison of the extracellular proteome of the wild type and DeltatatC strains identified 73 predicted secretory proteins that were present in reduced amounts in the tatC mutant strain, and 47 Tat substrates were verified using a Tat reporter assay. The DeltatatC strain was almost completely avirulent on Arabidopsis seedlings and was delayed in attaching to the root tip relative to the wild-type strain. Genes encoding 14 candidate Tat substrates were individually inactivated, and seven of these mutants were reduced in virulence compared with the wild-type strain. We conclude that the Tat pathway secretes multiple proteins that are required for full virulence.

  20. Peptide Signals Encode Protein Localization▿

    OpenAIRE

    Russell, Jay H.; Keiler, Kenneth C.

    2007-01-01

    Many bacterial proteins are localized to precise intracellular locations, but in most cases the mechanism for encoding localization information is not known. Screening libraries of peptides fused to green fluorescent protein identified sequences that directed the protein to helical structures or to midcell. These peptides indicate that protein localization can be encoded in 20-amino-acid peptides instead of complex protein-protein interactions and raise the possibility that the location of a ...

  1. SPdb – a signal peptide database

    Directory of Open Access Journals (Sweden)

    Tan Tin

    2005-10-01

    Full Text Available Abstract Background The signal peptide plays an important role in protein targeting and protein translocation in both prokaryotic and eukaryotic cells. This transient, short peptide sequence functions like a postal address on an envelope by targeting proteins for secretion or for transfer to specific organelles for further processing. Understanding how signal peptides function is crucial in predicting where proteins are translocated. To support this understanding, we present SPdb signal peptide database http://proline.bic.nus.edu.sg/spdb, a repository of experimentally determined and computationally predicted signal peptides. Results SPdb integrates information from two sources (a Swiss-Prot protein sequence database which is now part of UniProt and (b EMBL nucleotide sequence database. The database update is semi-automated with human checking and verification of the data to ensure the correctness of the data stored. The latest release SPdb release 3.2 contains 18,146 entries of which 2,584 entries are experimentally verified signal sequences; the remaining 15,562 entries are either signal sequences that fail to meet our filtering criteria or entries that contain unverified signal sequences. Conclusion SPdb is a manually curated database constructed to support the understanding and analysis of signal peptides. SPdb tracks the major updates of the two underlying primary databases thereby ensuring that its information remains up-to-date.

  2. Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria

    NARCIS (Netherlands)

    Meissner, Daniel; Vollstedt, Angela; van Dijl, Jan Maarten; Freudl, Roland

    In contrast to the general protein secretion (Sec) system, the twin-arginine translocation (Tat) export pathway allows the translocation of proteins across the bacterial plasma membrane in a fully folded conformation. Due to this feature, the Tat pathway provides an attractive alternative to the

  3. Intracellular Signalling by C-Peptide

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2008-01-01

    Full Text Available C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na+/K+ ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes.

  4. Abrogation of the Twin Arginine Transport System in Salmonella enterica Serovar Typhimurium Leads to Colonization Defects during Infection

    Science.gov (United States)

    Reynolds, M. Megan; Bogomolnaya, Lydia; Guo, Jinbai; Aldrich, Lindsay; Bokhari, Danial; Santiviago, Carlos A.; McClelland, Michael; Andrews-Polymenis, Helene

    2011-01-01

    TatC (STM3975) is a highly conserved component of the Twin Arginine Transport (Tat) systems that is required for transport of folded proteins across the inner membrane in gram-negative bacteria. We previously identified a ΔtatC mutant as defective in competitive infections with wild type ATCC14028 during systemic infection of Salmonella-susceptible BALB/c mice. Here we confirm these results and show that the ΔtatC mutant is internalized poorly by cultured J774-A.1 mouse macrophages a phenotype that may be related to the systemic infection defect. This mutant is also defective for short-term intestinal and systemic colonization after oral infection of BALB/c mice and is shed in reduced numbers in feces from orally infected Salmonella-resistant (CBA/J) mice. We show that the ΔtatC mutant is highly sensitive to bile acids perhaps resulting in the defect in intestinal infection that we observe. Finally, the ΔtatC mutant has an unusual combination of motility phenotypes in Salmonella; it is severely defective for swimming motility but is able to swarm well. The ΔtatC mutant has a lower amount of flagellin on the bacterial surface during swimming motility but normal levels under swarming conditions. PMID:21298091

  5. Live cell imaging shows reversible assembly of the TatA component of the twin-arginine protein transport system.

    Science.gov (United States)

    Alcock, Felicity; Baker, Matthew A B; Greene, Nicholas P; Palmer, Tracy; Wallace, Mark I; Berks, Ben C

    2013-09-17

    The twin-arginine translocation (Tat) machinery transports folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. It has been inferred that the Tat translocation site is assembled on demand by substrate-induced association of the protein TatA. We tested this model by imaging YFP-tagged TatA expressed at native levels in living Escherichia coli cells in the presence of low levels of the TatA paralogue TatE. Under these conditions the TatA-YFP fusion supports full physiological Tat transport activity. In agreement with the TatA association model, raising the number of transport-competent substrate proteins within the cell leads to an increase in the number of large TatA complexes present. Formation of these complexes requires both a functional TatBC substrate receptor and the transmembrane proton motive force (PMF). Removing the PMF causes TatA complexes to dissociate, except in strains with impaired Tat transport activity. Based on these observations we propose that TatA assembly reaches a critical point at which oligomerization can be reversed only by substrate transport. In contrast to TatA-YFP, the oligomeric states of TatB-YFP and TatC-YFP fusions are not affected by substrate or the PMF, although TatB-YFP oligomerization does require TatC.

  6. Guanylin peptides: cyclic GMP signaling mechanisms

    Directory of Open Access Journals (Sweden)

    Forte L.R.

    1999-01-01

    Full Text Available Guanylate cyclases (GC serve in two different signaling pathways involving cytosolic and membrane enzymes. Membrane GCs are receptors for guanylin and atriopeptin peptides, two families of cGMP-regulating peptides. Three subclasses of guanylin peptides contain one intramolecular disulfide (lymphoguanylin, two disulfides (guanylin and uroguanylin and three disulfides (E. coli stable toxin, ST. The peptides activate membrane receptor-GCs and regulate intestinal Cl- and HCO3- secretion via cGMP in target enterocytes. Uroguanylin and ST also elicit diuretic and natriuretic responses in the kidney. GC-C is an intestinal receptor-GC for guanylin and uroguanylin, but GC-C may not be involved in renal cGMP pathways. A novel receptor-GC expressed in the opossum kidney (OK-GC has been identified by molecular cloning. OK-GC cDNAs encode receptor-GCs in renal tubules that are activated by guanylins. Lymphoguanylin is highly expressed in the kidney and heart where it may influence cGMP pathways. Guanylin and uroguanylin are highly expressed in intestinal mucosa to regulate intestinal salt and water transport via paracrine actions on GC-C. Uroguanylin and guanylin are also secreted from intestinal mucosa into plasma where uroguanylin serves as an intestinal natriuretic hormone to influence body Na+ homeostasis by endocrine mechanisms. Thus, guanylin peptides control salt and water transport in the kidney and intestine mediated by cGMP via membrane receptors with intrinsic guanylate cyclase activity.

  7. Versatile synthesis of the signaling peptide glorin

    Directory of Open Access Journals (Sweden)

    Robert Barnett

    2017-02-01

    Full Text Available We present a versatile synthesis of the eukaryotic signaling peptide glorin as well as glorinamide, a synthetic analog. The ability of these compounds to activate glorin-induced genes in the social amoeba Polysphondylium pallidum was evaluated by quantitative reverse transcription PCR, whereby both compounds showed bioactivity comparable to a glorin standard. This synthetic route will be useful in conducting detailed structure–activity relationship studies as well as in the design of chemical probes to dissect glorin-mediated signaling pathways.

  8. Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging

    OpenAIRE

    Leake, Mark C.; Greene, Nicholas P.; Godun, Rachel M.; Granjon, Thierry; Buchanan, Grant; Chen, Shuyun; Berry, Richard M.; Palmer, Tracy; Berks, Ben C.

    2008-01-01

    The twin-arginine translocation (Tat) system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. The essential components of the Tat pathway are the membrane proteins TatA, TatB, and TatC. TatA is thought to form the protein translocating element of the Tat system. Current models for Tat transport make predictions about the oligomeric state of TatA and whether, and how, this state changes during the transport cycle. We determi...

  9. TatAc, the Third TatA Subunit of Bacillus subtilis, Can Form Active Twin-Arginine Translocases with the TatCd and TatCy Subunits

    NARCIS (Netherlands)

    Monteferrante, Carmine G.; Baglieri, Jacopo; Robinson, Colin; van Dijl, Jan Maarten

    Two independent twin-arginine translocases (Tat) for protein secretion were previously identified in the Gram-positive bacterium Bacillus subtilis. These consist of the TatAd-TatCd and TatAy-TatCy subunits. The function of a third TatA subunit named TatAc was unknown. Here, we show that TatAc can

  10. Signal peptide of eosinophil cationic protein is toxic to cells lacking signal peptide peptidase

    International Nuclear Information System (INIS)

    Wu, C.-M.; Chang, Margaret Dah-Tsyr

    2004-01-01

    Eosinophil cationic protein (ECP) is a toxin secreted by activated human eosinophils. The properties of mature ECP have been well studied but those of the signal peptide of ECP (ECPsp) are not clear. In this study, several chimeric proteins containing N-terminal fusion of ECPsp were generated, and introduced into Escherichia coli, Pichia pastoris, and human epidermoid carcinoma cell line A431 to study the function of ECPsp. We found that expression of ECPsp chimeric proteins inhibited the growth of E. coli and P. pastoris but not A431 cells. Primary sequence analysis and in vitro transcription/translation of ECPsp have revealed that it is a potential substrate for human signal peptide peptidase (hSPP), an intramembrane protease located in endoplasmic reticulum. In addition, knockdown of the hSPP mRNA expression in ECPsp-eGFP/A431 cells caused the growth inhibitory effect, whereas complementally expression of hSPP in P. pastoris system rescued the cell growth. Taken together, we have demonstrated that ECPsp is a toxic signal peptide, and expression of hSPP protects the cells from growth inhibition

  11. Primary structure of the signal peptide of tropoelastin b.

    Science.gov (United States)

    Karr, S R; Foster, J A

    1981-06-25

    Elastin is a major protein of compliant connective tissue and is characterized by an amino acid composition abundant in nonpolar residues. The soluble precursor to elastin tropoelastin, is extractable in organic solvents and possesses an extensive clustering of nonpolar amino acid residues in the immediate NH2-terminal region (Foster, J. A., Shapiro, R., Voynow, P., Crombie, G., Faris, B., and Franzblau, C. (1975) Biochemistry 14, 857-864). It was, therefore, of special interest to determine whether tropoelastin requires a hydrophobic signal peptide for vectorial transport of the nascent polypeptide. The possibility that the initial tropoelastin translation product possesses a short signal peptide was examined in a cell-free translation system. Total RNA, isolated from aortae of 1-day-old chicks, was translated in an mRNA-dependent reticulocyte lysate translation assay. The translation products were then immunoprecipitated and subjected to automated radiosequencing. Comparison of the NH2-terminal sequence of tropoelastin b synthesized in the cell-free system versus that synthesized in organ culture demonstrated the presence of a signal peptide 24 amino acid residues in length. The signal peptide sequence is as follows: Met-Arg-Gln-Ala-Ala-Ala-Pro-Leu-Leu-Pro-Gly-Val-Leu-Leu-Leu-Phe-Ser-Ile-Leu-Pro -Ala-Ser-Gln-Gln. The preponderance of hydrophobic amino acid residues as well as the polar residues adjacent to the initiator methionine and the carboxyl termini found in the signal peptide is similar to that reported for other secreted proteins.

  12. Differential age-dependent import regulation by signal peptides.

    Directory of Open Access Journals (Sweden)

    Yi-Shan Teng

    Full Text Available Gene-specific, age-dependent regulations are common at the transcriptional and translational levels, while protein transport into organelles is generally thought to be constitutive. Here we report a new level of differential age-dependent regulation and show that chloroplast proteins are divided into three age-selective groups: group I proteins have a higher import efficiency into younger chloroplasts, import of group II proteins is nearly independent of chloroplast age, and group III proteins are preferentially imported into older chloroplasts. The age-selective signal is located within the transit peptide of each protein. A group III protein with its transit peptide replaced by a group I transit peptide failed to complement its own mutation. Two consecutive positive charges define the necessary motif in group III signals for older chloroplast preference. We further show that different members of a gene family often belong to different age-selective groups because of sequence differences in their transit peptides. These results indicate that organelle-targeting signal peptides are part of cells' differential age-dependent regulation networks. The sequence diversity of some organelle-targeting peptides is not a result of the lack of selection pressure but has evolved to mediate regulation.

  13. SignalP 4.0 Server - prediction results The deduced signal peptide ...

    Indian Academy of Sciences (India)

    15136770661wry

    SignalP 4.0 Server - prediction results. The deduced signal peptide data of MaSox4. Measure Position Value. Cutoff signal peptide? max. C. 40. 0.125 max. Y. 40. 0.111 max. S. 39. 0.117 mean S. 1-39. 0.097. D. 1-39. 0.103 0.450 NO. Name=Sequence SP='NO' D=0.103 D-cutoff=0.450 Networks=SignalP-noTM. Name= ...

  14. The TatA component of the twin-arginine translocation system locally weakens the cytoplasmic membrane ofEscherichia coliupon protein substrate binding.

    Science.gov (United States)

    Hou, Bo; Heidrich, Eyleen S; Mehner-Breitfeld, Denise; Brüser, Thomas

    2018-03-13

    The twin-arginine translocation (Tat) system that comprises the TatA, TatB, and TatC components transports folded proteins across energized membranes of prokaryotes and plant plastids. It is not known, however, how the transport of this protein cargo is achieved. Favored models suggest that the TatA component supports transport by weakening the membrane upon full translocon assembly. Using Escherichia coli as model organism, we now demonstrate in vivo that the N-terminus of TatA can indeed destabilize the membrane, resulting in a lowered membrane energization in growing cells. We found that in full-length TatA, this effect is counterbalanced by its amphipathic helix. Consistent with these observations, the TatA N-terminus induced proton leakage in vitro , indicating membrane destabilization. Fluorescence quenching data revealed that substrate binding causes the TatA hinge region and the N-terminal part of the TatA amphipathic helix to move toward the membrane surface. In the presence of TatBC, substrate binding also reduced the exposure of a specific region in the amphipathic helix, indicating a participation of TatBC. Of note, the substrate-induced reorientation of the TatA amphipathic helix correlated with detectable membrane weakening. We therefore propose a two-state model in which membrane-destabilizing effects of the short TatA membrane anchor are compensated by the membrane-immersed N-terminal part of the amphipathic helix in a resting state. We conclude that substrate binding to TatABC complexes switches the position of the amphipathic helix, which locally weakens the membrane on demand to allow substrate translocation across the membrane. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Silaffin peptides as a novel signal enhancer for gravimetric biosensors.

    Science.gov (United States)

    Nam, Dong Hyun; Lee, Jeong-O; Sang, Byoung-In; Won, Keehoon; Kim, Yong Hwan

    2013-05-01

    Application of biomimetic silica formation to gravimetric biosensors has been conducted for the first time. As a model system, silaffin peptides fused with green fluorescent protein (GFP) were immobilized on a gold quartz crystal resonator for quartz crystal microbalances using a self-assembled monolayer. When a solution of silicic acid was supplied, silica particles were successfully deposited on the Au surface, resulting in a significant change in resonance frequency (i.e., signal enhancement) with the silaffin-GFP. However, frequency was not altered when bare GFP was used as a control. The novel peptide enhancer is advantageous because it can be readily and quantitatively conjugated with sensing proteins using recombinant DNA technology. As a proof of concept, this study shows that the silaffin domains can be employed as a novel and efficient biomolecular signal enhancer for gravimetric biosensors.

  16. Prediction of lipoprotein signal peptides in Gram-negative bacteria

    DEFF Research Database (Denmark)

    Juncker, Agnieszka; Willenbrock, Hanni; Von Heijne, G.

    2003-01-01

    A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor...... was able to predict 96.8% of the lipoproteins correctly with only 0.3% false positives in a set of SPaseI-cleaved, cytoplasmic, and transmembrane proteins. The results obtained were significantly better than those of previously developed methods. Even though Gram-positive lipoprotein signal peptides differ...... from Gram-negatives, the HMM was able to identify 92.9% of the lipoproteins included in a Gram-positive test set. A genome search was carried out for 12 Gram-negative genomes and one Gram-positive genome. The results for Escherichia coli K12 were compared with new experimental data, and the predictions...

  17. High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase.

    Science.gov (United States)

    Cai, D; Wei, X; Qiu, Y; Chen, Y; Chen, J; Wen, Z; Chen, S

    2016-09-01

    Nattokinase is an enzyme produced by Bacillus licheniformis and has potential to be used as a drug for treating cardiovascular disease due to its beneficial effects of preventing fibrin clots etc. However, the low activity and titre of this protein produced by B. licheniformis often hinders its application of commercial production. The aim of this work is to improve the nattokinase production by manipulating signal peptides and signal peptidases in B. licheniformis. The P43 promoter, amyL terminator and AprN target gene were used to form the nattokinase expression vector, pHY-SP-NK, which was transformed into B. licheniformis and nattokinase was expressed successfully. A library containing 81 predicted signal peptides was constructed for nattokinase expression in B. licheniformis, with the maximum activity being obtained under the signal peptide of AprE. Among four type I signal peptidases genes (sipS, sipT, sipV, sipW) in B. licheniformis, the deletion of sipV resulted in a highest decrease in nattokinase activity. Overexpression of sipV in B. licheniformis led to a nattokinase activity of 35·60 FU ml(-1) , a 4·68-fold improvement over activity produced by the initial strain. This work demonstrates the potential of B. licheniformis for industrial production of nattokinase through manipulation of signal peptides and signal peptidases expression. This study has screened the signal peptides of extracellular proteins of B. licheniformis for nattokinase production. Four kinds of Type I signal peptidases genes have been detected respectively in B. licheniformis to identify which one played the vital role for nattokinase production. This study provided a promising strain for industry production of nattokinase. © 2016 The Society for Applied Microbiology.

  18. Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server

    DEFF Research Database (Denmark)

    Käll, Lukas; Krogh, Anders; Sonnhammer, Erik L L

    2007-01-01

    When using conventional transmembrane topology and signal peptide predictors, such as TMHMM and SignalP, there is a substantial overlap between these two types of predictions. Applying these methods to five complete proteomes, we found that 30-65% of all predicted signal peptides and 25-35% of al...

  19. Peptide signalling during the pollen tube journey and double fertilization.

    Science.gov (United States)

    Qu, Li-Jia; Li, Ling; Lan, Zijun; Dresselhaus, Thomas

    2015-08-01

    Flowering seed plants (angiosperms) have evolved unique ways to protect their gametes from pathogen attack and from drying out. The female gametes (egg and central cell) are deeply embedded in the maternal tissues of the ovule inside the ovary, while the male gametes (sperm cells) are enclosed in the vegetative pollen tube cell. After germination of the pollen tube at the surface of papilla cells of the stigma the two immobile sperm cells are transported deep inside the sporophytic maternal tissues to be released inside the ovule for double fertilization. Angiosperms have evolved a number of hurdles along the pollen tube journey to prevent inbreeding and fertilization by alien sperm cells, and to maximize reproductive success. These pre-zygotic hybridization barriers require intensive communication between the male and female reproductive cells and the necessity to distinguish self from non-self interaction partners. General molecules such as nitric oxide (NO) or gamma-aminobutyric acid (GABA) therefore appear to play only a minor role in these species-specific communication events. The past 20 years have shown that highly polymorphic peptides play a leading role in all communication steps along the pollen tube pathway and fertilization. Here we review our current understanding of the role of peptides during reproduction with a focus on peptide signalling during self-incompatibility, pollen tube growth and guidance as well as sperm reception and gamete activation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Message in a bottle: small signalling peptide outputs during growth and development.

    Science.gov (United States)

    Czyzewicz, Nathan; Yue, Kun; Beeckman, Tom; De Smet, Ive

    2013-12-01

    Classical and recently found phytohormones play an important role in plant growth and development, but plants additionally control these processes through small signalling peptides. Over 1000 potential small signalling peptide sequences are present in the Arabidopsis genome. However, to date, a mere handful of small signalling peptides have been functionally characterized and few have been linked to a receptor. Here, we assess the potential small signalling peptide outputs, namely the molecular, biochemical, and morphological changes they trigger in Arabidopsis. However, we also include some notable studies in other plant species, in order to illustrate the varied effects that can be induced by small signalling peptides. In addition, we touch on some evolutionary aspects of small signalling peptides, as studying their signalling outputs in single-cell green algae and early land plants will assist in our understanding of more complex land plants. Our overview illustrates the growing interest in the small signalling peptide research area and its importance in deepening our understanding of plant growth and development.

  1. Optimized signal peptides for the development of high expressing CHO cell lines.

    Science.gov (United States)

    Kober, Lars; Zehe, Christoph; Bode, Juergen

    2013-04-01

    Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large-scale production processes. A major aim of our study was therefore to improve the secretion efficiency of a recombinant biotherapeutic antibody by optimizing signal peptides. Reporter molecules such as gaussia and vargula luciferase or secreted alkaline phosphatase are frequently used to this end. In striking contrast, we used a biotherapeutic antibody that was fused to 16 different signal peptides during our study. In this way, the secretion efficiency of the recombinant antibody has been analyzed by transient expression experiments in CHO cell lines. Compared to the control signal peptide, it was not possible to achieve higher efficiencies with signal peptides derived from a variety of species or even natural immunoglobulin G signal peptides. The best results were obtained with natural signal peptides derived from human albumin and human azurocidin. These results were confirmed by fed-batch experiments with stably transfected cell pools, in which cell-specific productivities up to 90 pg cell(-1) day(-1) and product concentrations up to 4 g L(-1) could be determined using the albumin signal peptide. Finally, the applicability of the identified signal peptides for both different antibodies and non-antibody products was demonstrated by transient expression experiments. In conclusion, it was found that signal peptides derived from human albumin and human azurocidin are most appropriate to generate cell lines with clearly improved production rates suitable for commercial purposes in a product-independent manner. Copyright © 2012 Wiley Periodicals, Inc.

  2. Differences in signal peptide processing between GP3 glycoproteins of Arteriviridae.

    Science.gov (United States)

    Zhang, Minze; Veit, Michael

    2017-12-08

    We reported previously that carbohydrate attachment to an overlapping glycosylation site adjacent to the signal peptide of GP3 from equine arteritis virus (EAV) prevents cleavage. Here we investigated whether this unusual processing scheme is a feature of GP3s of other Arteriviridae, which all contain a glycosylation site at a similar position. Expression of GP3 from type-1 and type-2 porcine reproductive and respiratory syndrome virus (PRRSV) and from lactate dehydrogenase-elevating virus (LDV) revealed that the first glycosylation site is used, but has no effect on signal peptide cleavage. Comparison of the SDS-PAGE mobility of deglycosylated GP3 from PRRSV and LDV with mutants having or not having a signal peptide showed that GP3´s signal peptide is cleaved. Swapping the signal peptides between GP3 of EAV and PRRSV revealed that the information for co-translational processing is not encoded in the signal peptide, but in the remaining part of GP3. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Secondary ions mass spectrometric signal enhancement of peptides on enlarged-gold nanoparticle surfaces.

    Science.gov (United States)

    Kim, Young-Pil; Lee, Tae Geol

    2012-06-05

    A high surface coverage of gold nanoparticles (AuNPs) is a prerequisite for enhancing the peptide signal intensity in time-of-flight secondary ion mass spectrometry (TOF-SIMS). Here, we demonstrate the TOF-SIMS signal amplification of peptides on a surface by enlarging surface-confined AuNPs using the NH(2)OH/Au(3+) seeding method. Because of the increased surface area and spherical structure of the Au, the SIMS intensity of the peptides became significantly enhanced on the enlarged-AuNPs surface, especially at high concentrations of peptide solution (>10 μM), compared to that of the bare gold surface or submonolyer of AuNPs. We are confident that this will be a useful method for diagnosis and bioassay with high sensitivity in a label-free manner.

  4. An evolutionary perspective on signaling peptides: toxic peptides are selected to provide information regarding the processing of the propeptide, which represents the phenotypic state of the signaling cell [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Keith Daniel Harris

    2015-08-01

    Full Text Available Structurally similar short peptides often serve as signals in diverse signaling systems. Similar peptides affect diverse physiological pathways in different species or even within the same organism. Assuming that signals provide information, and that this information is tested by the structure of the signal, it is curious that highly similar signaling peptides appear to provide information relevant to very different metabolic processes. Here we suggest a solution to this problem: the synthesis of the propeptide, and its post-translational modifications that are required for its cleavage and the production of the mature peptide, provide information on the phenotypic state of the signaling cell. The mature peptide, due to its chemical properties which render it harmful, serves as a stimulant that forces cells to respond to this information. To support this suggestion, we present cases of signaling peptides in which the sequence and structure of the mature peptide is similar yet provides diverse information. The sequence of the propeptide and its post-translational modifications, which represent the phenotypic state of the signaling cell, determine the quantity and specificity of the information. We also speculate on the evolution of signaling peptides. We hope that this perspective will encourage researchers to reevaluate pathological conditions in which the synthesis of the mature peptide is abnormal.

  5. Expression of TLP-3 gene without signal peptide in tobacco plants ...

    African Journals Online (AJOL)

    Agrobacterium-mediated transformation is routinely used for the transformation of many plants. In the present study, thaumatin-like TLP-3 gene without signal peptide was transferred into tobacco plants through Agrobacterium-mediated technology. The PCR and RT-PCR assays confirmed the presence of TLP-3 gene and ...

  6. The Pseudo signal peptide of the corticotropin-releasing factor receptor type 2A prevents receptor oligomerization.

    Science.gov (United States)

    Teichmann, Anke; Rutz, Claudia; Kreuchwig, Annika; Krause, Gerd; Wiesner, Burkhard; Schülein, Ralf

    2012-08-03

    N-terminal signal peptides mediate the interaction of native proteins with the translocon complex of the endoplasmic reticulum membrane and are cleaved off during early protein biogenesis. The corticotropin-releasing factor receptor type 2a (CRF(2(a))R) possesses an N-terminal pseudo signal peptide, which represents a so far unique domain within the large protein family of G protein-coupled receptors (GPCRs). In contrast to a conventional signal peptide, the pseudo signal peptide remains uncleaved and consequently forms a hydrophobic extension at the N terminus of the receptor. The functional consequence of the presence of the pseudo signal peptide is not understood. Here, we have analyzed the significance of this domain for receptor dimerization/oligomerization in detail. To this end, we took the CRF(2(a))R and the homologous corticotropin-releasing factor receptor type 1 (CRF(1)R) possessing a conventional cleaved signal peptide and conducted signal peptide exchange experiments. Using single cell and single molecule imaging methods (fluorescence resonance energy transfer and fluorescence cross-correlation spectroscopy, respectively) as well as biochemical experiments, we obtained two novel findings; we could show that (i) the CRF(2(a))R is expressed exclusively as a monomer, and (ii) the presence of the pseudo signal peptide prevents its oligomerization. Thus, we have identified a novel functional domain within the GPCR protein family, which plays a role in receptor oligomerization and which may be useful to study the functional significance of this process in general.

  7. Efficient secretory expression of recombinant proteins in Escherichia coli with a novel actinomycete signal peptide.

    Science.gov (United States)

    Cui, Yanbing; Meng, Yiwei; Zhang, Juan; Cheng, Bin; Yin, Huijia; Gao, Chao; Xu, Ping; Yang, Chunyu

    2017-01-01

    In well-established heterologous hosts, such as Escherichia coli, recombinant proteins are usually intracellular and frequently found as inclusion bodies-especially proteins possessing high rare codon content. In this study, successful secretory expression of three hydrolases, in a constructed inducible or constitutive system, was achieved by fusion with a novel signal peptide (Kp-SP) from an actinomycete. The signal peptide efficiently enabled extracellular protein secretion and also contributed to the active expression of the intracellular recombinant proteins. The thermophilic α-amylase gene of Bacillus licheniformis was fused with Kp-SP. Both recombinants, carrying inducible and constitutive plasmids, showed remarkable increases in extracellular and intracellular amylolytic activity. Amylase activity was observed to be > 10-fold in recombinant cultures with the constitutive plasmid, pBSPPc, compared to that in recombinants lacking Kp-SP. Further, the signal peptide enabled efficient secretion of a thermophilic cellulase into the culture medium, as demonstrated by larger halo zones and increased enzymatic activities detected in both constructs from different plasmids. For heterologous proteins with a high proportion of rare codons, it is difficult to obtain high expression in E. coli owing to the codon bias. Here, the fusion of an archaeal homologue of the amylase encoding gene, FSA, with Kp-SP resulted in > 5-fold higher extracellular activity. The successful extracellular expression of the amylase indicated that the signal peptide also contributed significantly to its active expression and signified the potential value of this novel and versatile signal peptide in recombinant protein production. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Integration of danger peptide signals with herbivore-associated molecular pattern signaling amplifies anti-herbivore defense responses in rice.

    Science.gov (United States)

    Shinya, Tomonori; Yasuda, Shigetaka; Hyodo, Kiwamu; Tani, Rena; Hojo, Yuko; Fujiwara, Yuka; Hiruma, Kei; Ishizaki, Takuma; Fujita, Yasunari; Saijo, Yusuke; Galis, Ivan

    2018-03-07

    Plant defense against herbivores is modulated by herbivore-associated molecular patterns (HAMPs) from oral secretions (OS) and/or saliva of insects. Furthermore, feeding wounds initiate plant self-damage responses modulated by danger-associated molecular patterns (DAMPs) such as immune defense-promoting plant elicitor peptides (Peps). While temporal and spatial co-existence of both patterns during herbivory implies a possibility of their close interaction, the molecular mechanisms remain undetermined. Here we report that exogenous application of rice (Oryza sativa) peptides (OsPeps) can elicit multiple defense responses in rice cell cultures. Specific activation of OsPROPEP3 gene transcripts in rice leaves by wounding and OS treatments further suggests a possible involvement of the OsPep3 peptide in rice-herbivore interactions. Correspondingly, we found that simultaneous application of OsPep3 and Mythimna loreyi OS significantly amplifies an array of defense responses in rice cells, including mitogen-activated protein kinase activation, and generation of defense-related hormones and metabolites. The induction of OsPROPEP3/4 by OsPep3 points to a positive auto-feedback loop in OsPep signaling which may contribute to additional enhancement of defense signal(s). Finally, the overexpression of the OsPep receptor OsPEPR1 increases the sensitivity of rice plants not only to the cognate OsPeps but also to OS signals. Our findings collectively suggest that HAMP-DAMP signal integration provides a critical step in the amplification of defense signaling in plants. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  9. Distinct Signaling Cascades Elicited by Different Formyl Peptide Receptor 2 (FPR2 Agonists

    Directory of Open Access Journals (Sweden)

    Fabio Cattaneo

    2013-04-01

    Full Text Available The formyl peptide receptor 2 (FPR2 is a remarkably versatile transmembrane protein belonging to the G-protein coupled receptor (GPCR family. FPR2 is activated by an array of ligands, which include structurally unrelated lipids and peptide/proteins agonists, resulting in different intracellular responses in a ligand-specific fashion. In addition to the anti-inflammatory lipid, lipoxin A4, several other endogenous agonists also bind FPR2, including serum amyloid A, glucocorticoid-induced annexin 1, urokinase and its receptor, suggesting that the activation of FPR2 may result in potent pro- or anti-inflammatory responses. Other endogenous ligands, also present in biological samples, include resolvins, amyloidogenic proteins, such as beta amyloid (Aβ-42 and prion protein (Prp106–126, the neuroprotective peptide, humanin, antibacterial peptides, annexin 1-derived peptides, chemokine variants, the neuropeptides, vasoactive intestinal peptide (VIP and pituitary adenylate cyclase activating polypeptide (PACAP-27, and mitochondrial peptides. Upon activation, intracellular domains of FPR2 mediate signaling to G-proteins, which trigger several agonist-dependent signal transduction pathways, including activation of phospholipase C (PLC, protein kinase C (PKC isoforms, the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt pathway, the mitogen-activated protein kinase (MAPK pathway, p38MAPK, as well as the phosphorylation of cytosolic tyrosine kinases, tyrosine kinase receptor transactivation, phosphorylation and nuclear translocation of regulatory transcriptional factors, release of calcium and production of oxidants. FPR2 is an attractive therapeutic target, because of its involvement in a range of normal physiological processes and pathological diseases. Here, we review and discuss the most significant findings on the intracellular pathways and on the cross-communication between FPR2 and tyrosine kinase receptors triggered by different FPR2

  10. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility.

    Science.gov (United States)

    Price, Paul A; Tanner, Houston R; Dillon, Brett A; Shabab, Mohammed; Walker, Graham C; Griffitts, Joel S

    2015-12-08

    Legume-rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties. hrrP encodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability of hrrP to suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and the hrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded by M. truncatula. NCR peptides are crucial signals used by M. truncatula for inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1500777112]. The expression pattern of hrrP and its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes.

  11. High-resolution mass spectrometry driven discovery of peptidic danger signals in insect immunity.

    Directory of Open Access Journals (Sweden)

    Arton Berisha

    Full Text Available The 'danger model' is an alternative concept for immune response postulating that the immune system reacts to entities that do damage (danger associated molecular patterns, DAMP and not only to entities that are foreign (pathogen-associated molecular patterns, PAMP as proposed by classical immunology concepts. In this study we used Galleria mellonella to validate the danger model in insects. Hemolymph of G. mellonella was digested with thermolysin (as a representative for virulence-associated metalloproteinases produced by humanpathogens followed by chromatographic fractionation. Immune-stimulatory activity was tested by measuring lysozyme activity with the lytic zone assays against Micrococcus luteus cell wall components. Peptides were analyzed by nano-scale liquid chromatography coupled to high-resolution Fourier transform mass spectrometers. Addressing the lack of a genome sequence we complemented the rudimentary NCBI protein database with a recently established transcriptome and de novo sequencing methods for peptide identification. This approach led to identification of 127 peptides, 9 of which were identified in bioactive fractions. Detailed MS/MS experiments in comparison with synthetic analogues confirmed the amino acid sequence of all 9 peptides. To test the potential of these putative danger signals to induce immune responses we injected the synthetic analogues into G. mellonella and monitored the anti-bacterial activity against living Micrococcus luteus. Six out of 9 peptides identified in the bioactive fractions exhibited immune-stimulatory activity when injected. Hence, we provide evidence that small peptides resulting from thermolysin-mediated digestion of hemolymph proteins function as endogenous danger signals which can set the immune system into alarm. Consequently, our study indicates that the danger model also plays a role in insect immunity.

  12. A role of TDIF peptide signaling in vascular cell differentiation is conserved among euphyllophytes

    Directory of Open Access Journals (Sweden)

    Yuki eHirakawa

    2015-11-01

    Full Text Available Peptide signals mediate a variety of cell-to-cell communication crucial for plant growth and development. During Arabidopsis thaliana vascular development, a CLE (CLAVATA3/EMBRYO SURROUNDING REGION-related family peptide hormone, TDIF (tracheary element differentiation inhibitory factor, regulates procambial cell fate by its inhibitory activity on xylem differentiation. To address if this activity is conserved among vascular plants, we performed comparative analyses of TDIF signaling in non-flowering vascular plants (gymnosperms, monilophytes and lycophytes. We identified orthologs of TDIF/CLE as well as its receptor TDR/PXY (TDIF RECEPTOR/PHLOEM INTERCALATED WITH XYLEM in Ginkgo biloba, Adiantum aethiopicum and Selaginella kraussiana by RACE-PCR. The predicted TDIF peptide sequences in seed plants and monilophytes were identical to that of A. thaliana TDIF. We examined the effects of exogenous CLE peptide-motif sequences of TDIF in these species. We found that liquid culturing of dissected leaves or shoots was useful for examining TDIF activity during vascular development. TDIF treatment suppressed xylem/tracheary element differentiation of procambial cells in G. bioloba and A. aethiopicum leaves. In contrast, neither TDIF nor putative endogenous TDIF inhibited xylem differentiation in developing shoots and rhizophores of S. kraussiana. These data suggest that activity of TDIF in vascular development is conserved among extant euphyllophytes. In addition to the conserved function, via liquid culturing of its bulbils, we found a novel inhibitory activity on root growth in the monilophyte Asplenium x lucrosum suggesting lineage-specific co-option of peptide signaling occurred during the evolution of vascular plant organs.

  13. Alterations of HIV-1 envelope phenotype and antibody-mediated neutralization by signal peptide mutations

    OpenAIRE

    Upadhyay, Chitra; Feyznezhad, Roya; Yang, Weiming; Zhang, Hui; Zolla-Pazner, Susan; Hioe, Catarina E.

    2018-01-01

    HIV-1 envelope glycoprotein (Env) mediates virus attachment and entry into the host cells. Like other membrane-bound and secreted proteins, HIV-1 Env contains at its N terminus a signal peptide (SP) that directs the nascent Env to the endoplasmic reticulum (ER) where Env synthesis and post-translational modifications take place. SP is cleaved during Env biosynthesis but potentially influences the phenotypic traits of the Env protein. The Env SP sequences of HIV-1 isolates display high sequenc...

  14. Corticotropin-releasing factor family peptide signaling in feline bladder urothelial cells

    OpenAIRE

    Hanna-Mitchell, Ann T.; Wolf-Johnston, Amanda; Roppolo, James R.; Tony Buffington, C. A.; Birder, Lori A.

    2014-01-01

    Corticotropin-releasing (CRF) factor plays a central role in the orchestration of behavioral and neuroendocrine responses to stress. The family of CRF-related peptides (CRF and paralogs: Urocortin (Ucn) -I,-II and -III) and associated receptors (CRF-R1 and CRF-R2) are also expressed in peripheral tissues such as the skin and gastrointestinal tract (GIT). Local signaling may exert multiple effects of stress-induced exacerbation of many complex syndromes including psoriasis and visceral hyperse...

  15. Distinct requirements for signal peptidase processing and function in the stable signal peptide subunit of the Junin virus envelope glycoprotein

    International Nuclear Information System (INIS)

    York, Joanne; Nunberg, Jack H.

    2007-01-01

    The arenavirus envelope glycoprotein (GP-C) retains a cleaved and stable signal peptide (SSP) as an essential subunit of the mature complex. This 58-amino-acid residue peptide serves as a signal sequence and is additionally required to enable transit of the assembled GP-C complex to the Golgi, and for pH-dependent membrane fusion activity. We have investigated the C-terminal region of the Junin virus SSP to study the role of the cellular signal peptidase (SPase) in generating SSP. Site-directed mutagenesis at the cleavage site (positions - 1 and - 3) reveals a pattern of side-chain preferences consistent with those of SPase. Although position - 2 is degenerate for SPase cleavage, this residue in the arenavirus SSP is invariably a cysteine. In the Junin virus, this cysteine is not involved in disulfide bonding. We show that replacement with alanine or serine is tolerated for SPase cleavage but prevents the mutant SSP from associating with GP-C and enabling transport to the cell surface. Conversely, an arginine mutation at position - 1 that prevents SPase cleavage is fully compatible with GP-C-mediated membrane fusion activity when the mutant SSP is provided in trans. These results point to distinct roles of SSP sequences in SPase cleavage and GP-C biogenesis. Further studies of the unique structural organization of the GP-C complex will be important in identifying novel opportunities for antiviral intervention against arenaviral hemorrhagic disease

  16. Secretion of Acid Sphingomyelinase is Affected by its Polymorphic Signal Peptide

    Directory of Open Access Journals (Sweden)

    Cosima Rhein

    2014-10-01

    Full Text Available Background: Acid sphingomyelinase (ASM catalyses the hydrolysis of sphingomyelin into ceramide, which acts as a lipid messenger that regulates important cellular functions. Deregulated ASM activity has been reported for different common diseases, but the mechanisms regulating ASM activity are still debated. ASM contains an exceptional signal peptide which is polymorphic due to a variable number of a hexanucleotide sequence that determines the length of the hydrophobic core. We investigated the impact of the signal peptide polymorphism on the regulation of ASM activity and secretion in vivo and in vitro. Methods and Results: Subjects homozygous for the rare 4-repeat allele displayed significantly lower secreted ASM activity than subjects homozygous for the common 6-repeat allele. In vitro, overexpression of ASM variants encoded by 2, 8 or 9 repeats resulted in a significantly lowered ASM secretion rate. Treatment of ASM-overexpressing cells with tumour necrosis factor α induced secretion of ASM, and the secretion rate was highest for the most common ASM variant encoding 6 repeats compared to other naturally occurring variants. Conclusion: We provide evidence that the polymorphic ASM signal peptide regulates ASM secretion. It might be an evolutionary mechanism to increase ASM secretion potential, whereas an increase in lysosomal ASM activity is limited due to deleterious cellular effects.

  17. Death and Survival in Streptococcus mutans: Differing Outcomes of a Quorum-Sensing Signalling Peptide

    Directory of Open Access Journals (Sweden)

    Vincent eLeung

    2015-10-01

    Full Text Available Bacteria are considered ‘social’ organisms able to communicate with one another using small hormone-like molecules (pheromones in a process called quorum-sensing. These signalling molecules increase in concentration as a function of bacterial cell density. For most human pathogens, quorum-sensing is critical for virulence and biofilm formation, and the opportunity to interfere with bacterial quorum-sensing could provide a sophisticated means for manipulating the composition of pathogenic biofilms, and possibly eradicating the infection. Streptococcus mutans is a well-characterized resident of the dental plaque biofilm, and is the major pathogen of dental caries (tooth decay. In S. mutans, its CSP quorum-sensing signalling peptide does not act as a classical quorum-sensing signal by accumulating passively in proportion to cell density. In fact, particular stresses such as those encountered in the oral cavity, induces the production of the CSP pheromone, suggesting that the pheromone most probably functions as a stress-inducible alarmone by triggering the signalling to the bacterial population to initiate an adaptive response that results in different phenotypic outcomes. This mini-review discusses two different CSP-induced phenotypes, bacterial ‘suicide’ and dormancy, and the underlying mechanisms by which S. mutans utilizes the same quorum-sensing signalling peptide to regulate two opposite phenotypes.

  18. Identification of the amino acid residues essential for proteolytic activity in an archaeal signal peptide peptidase.

    Science.gov (United States)

    Matsumi, Rie; Atomi, Haruyuki; Imanaka, Tadayuki

    2006-04-14

    Signal peptide peptidases (SPPs) are enzymes involved in the initial degradation of signal peptides after they are released from the precursor proteins by signal peptidases. In contrast to the eukaryotic enzymes that are aspartate peptidases, the catalytic mechanisms of prokaryotic SPPs had not been known. In this study on the SPP from the hyperthermophilic archaeon Thermococcus kodakaraensis (SppA(Tk)), we have identified amino acid residues that are essential for the peptidase activity of the enzyme. DeltaN54SppA(Tk), a truncated protein without the N-terminal 54 residues and putative transmembrane domain, exhibits high peptidase activity, and was used as the wild-type protein. Sixteen residues, highly conserved among archaeal SPP homologue sequences, were selected and replaced by alanine residues. The mutations S162A and K214A were found to abolish peptidase activity of the protein, whereas all other mutant proteins displayed activity to various extents. The results indicated the function of Ser(162) as the nucleophilic serine and that of Lys(214) as the general base, comprising a Ser/Lys catalytic dyad in SppA(Tk). Kinetic analyses indicated that Ser(184), His(191) Lys(209), Asp(215), and Arg(221) supported peptidase activity. Intriguingly, a large number of mutations led to an increase in activity levels of the enzyme. In particular, mutations in Ser(128) and Tyr(165) not only increased activity levels but also broadened the substrate specificity of SppA(Tk), suggesting that these residues may be present to prevent the enzyme from cleaving unintended peptide/protein substrates in the cell. A detailed alignment of prokaryotic SPP sequences strongly suggested that the majority of archaeal enzymes, along with the bacterial enzyme from Bacillus subtilis, adopt the same catalytic mechanism for peptide hydrolysis.

  19. Gene delivery: A single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus

    OpenAIRE

    Zanta, Maria Antonietta; Belguise-Valladier, Pascale; Behr, Jean-Paul

    1999-01-01

    Translocation of exogenous DNA through the nuclear membrane is a major concern of gene delivery technologies. To take advantage of the cellular import machinery, we have synthesized a capped 3.3-kbp CMVLuciferase-NLS gene containing a single nuclear localization signal peptide (PKKKRKVEDPYC). Transfection of cells with the tagged gene remained effective down to nanogram amounts of DNA. Transfection enhancement (10- to 1,000-fold) as a result of the signal peptide was observed irrespective of ...

  20. Plasmodium falciparum signal peptide peptidase cleaves malaria heat shock protein 101 (HSP101). Implications for gametocytogenesis

    International Nuclear Information System (INIS)

    Baldwin, Michael; Russo, Crystal; Li, Xuerong; Chishti, Athar H.

    2014-01-01

    Highlights: • PfSPP is an ER resident protease. • PfSPP is expressed both as a monomer and dimer. • The signal peptide of HSP101 is the first known substrate of PfSPP. • Reduced PfSPP activity may significantly affect ER homeostasis. - Abstract: Previously we described the identification of a Plasmodium falciparum signal peptide peptidase (PfSPP) functioning at the blood stage of malaria infection. Our studies also demonstrated that mammalian SPP inhibitors prevent malaria parasite growth at the late-ring/early trophozoite stage of intra-erythrocytic development. Consistent with its role in development, we tested the hypothesis that PfSPP functions at the endoplasmic reticulum of P.falciparum where it cleaves membrane-bound signal peptides generated following the enzyme activity of signal peptidase. The localization of PfSPP to the endoplasmic reticulum was confirmed by immunofluorescence microscopy and immunogold electron microscopy. Biochemical analysis indicated the existence of monomer and dimer forms of PfSPP in the parasite lysate. A comprehensive bioinformatics screen identified several candidate PfSPP substrates in the parasite genome. Using an established transfection based in vivo luminescence assay, malaria heat shock protein 101 (HSP101) was identified as a substrate of PfSPP, and partial inhibition of PfSPP correlated with the emergence of gametocytes. This finding unveils the first known substrate of PfSPP, and provides new perspectives for the function of intra-membrane proteolysis at the erythrocyte stage of malaria parasite life cycle

  1. Plasmodium falciparum signal peptide peptidase cleaves malaria heat shock protein 101 (HSP101). Implications for gametocytogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Michael; Russo, Crystal; Li, Xuerong [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Chishti, Athar H., E-mail: athar.chishti@tufts.edu [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Sackler School of Graduate Biomedical Sciences, Programs in Physiology, Pharmacology, and Microbiology, Tufts University School of Medicine, Boston, MA 02111 (United States)

    2014-08-08

    Highlights: • PfSPP is an ER resident protease. • PfSPP is expressed both as a monomer and dimer. • The signal peptide of HSP101 is the first known substrate of PfSPP. • Reduced PfSPP activity may significantly affect ER homeostasis. - Abstract: Previously we described the identification of a Plasmodium falciparum signal peptide peptidase (PfSPP) functioning at the blood stage of malaria infection. Our studies also demonstrated that mammalian SPP inhibitors prevent malaria parasite growth at the late-ring/early trophozoite stage of intra-erythrocytic development. Consistent with its role in development, we tested the hypothesis that PfSPP functions at the endoplasmic reticulum of P.falciparum where it cleaves membrane-bound signal peptides generated following the enzyme activity of signal peptidase. The localization of PfSPP to the endoplasmic reticulum was confirmed by immunofluorescence microscopy and immunogold electron microscopy. Biochemical analysis indicated the existence of monomer and dimer forms of PfSPP in the parasite lysate. A comprehensive bioinformatics screen identified several candidate PfSPP substrates in the parasite genome. Using an established transfection based in vivo luminescence assay, malaria heat shock protein 101 (HSP101) was identified as a substrate of PfSPP, and partial inhibition of PfSPP correlated with the emergence of gametocytes. This finding unveils the first known substrate of PfSPP, and provides new perspectives for the function of intra-membrane proteolysis at the erythrocyte stage of malaria parasite life cycle.

  2. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase.

    Energy Technology Data Exchange (ETDEWEB)

    Misono, K. S.; Philo, J. S.; Arakawa, T.; Ogata, C. M.; Qiu, Y.; Ogawa, H.; Young, H. S. (Biosciences Division); (Univ. of Nevada); (Alliance Protein Labs.)

    2011-06-01

    Atrial natriuretic peptide (ANP) and the homologous B-type natriuretic peptide are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and B-type natriuretic peptide counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by natriuretic peptide receptor-A (NPRA), a single transmembrane segment, guanylyl cyclase (GC)-linked receptor that occurs as a homodimer. Here, we present an overview of the structure, possible chloride-mediated regulation and signaling mechanism of NPRA and other receptor GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacterium GC Cya2 have been reported. These structures closely resemble that of the adenylyl cyclase catalytic domain, consisting of a C1 and C2 subdomain heterodimer. Adenylyl cyclase is activated by binding of G{sub s}{alpha} to C2 and the ensuing 7{sup o} rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer to adopt a catalytically active conformation. We speculate that, in NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity.

  3. Machine learning approaches for the prediction of signal peptides and otherprotein sorting signals

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Brunak, Søren; von Heijne, Gunnar

    1999-01-01

    Prediction of protein sorting signals from the sequence of amino acids has great importance in the field of proteomics today. Recently,the growth of protein databases, combined with machine learning approaches, such as neural networks and hidden Markov models, havemade it possible to achieve...

  4. The plant natriuretic peptide receptor is a guanylyl cyclase and enables cGMP-dependent signaling

    KAUST Repository

    Turek, Ilona

    2016-03-05

    The functional homologues of vertebrate natriuretic peptides (NPs), the plant natriuretic peptides (PNPs), are a novel class of peptidic hormones that signal via guanosine 3′,5′-cyclic monophosphate (cGMP) and systemically affect plant salt and water balance and responses to biotrophic plant pathogens. Although there is increasing understanding of the complex roles of PNPs in plant responses at the systems level, little is known about the underlying signaling mechanisms. Here we report isolation and identification of a novel Leucine-Rich Repeat (LRR) protein that directly interacts with A. thaliana PNP, AtPNP-A. In vitro binding studies revealed that the Arabidopsis AtPNP-A binds specifically to the LRR protein, termed AtPNP-R1, and the active region of AtPNP-A is sufficient for the interaction to occur. Importantly, the cytosolic part of the AtPNP-R1, much like in some vertebrate NP receptors, harbors a catalytic center diagnostic for guanylyl cyclases and the recombinant AtPNP-R1 is capable of catalyzing the conversion of guanosine triphosphate to cGMP. In addition, we show that AtPNP-A causes rapid increases of cGMP levels in wild type (WT) leaf tissue while this response is significantly reduced in the atpnp-r1 mutants. AtPNP-A also causes cGMP-dependent net water uptake into WT protoplasts, and hence volume increases, whereas responses of the protoplasts from the receptor mutant are impaired. Taken together, our results suggest that the identified LRR protein is an AtPNP-A receptor essential for the PNP-dependent regulation of ion and water homeostasis in plants and that PNP- and vertebrate NP-receptors and their signaling mechanisms share surprising similarities. © 2016 Springer Science+Business Media Dordrecht

  5. Effect of signal peptide on stability and folding of Escherichia coli thioredoxin.

    Directory of Open Access Journals (Sweden)

    Pranveer Singh

    Full Text Available The signal peptide plays a key role in targeting and membrane insertion of secretory and membrane proteins in both prokaryotes and eukaryotes. In E. coli, recombinant proteins can be targeted to the periplasmic space by fusing naturally occurring signal sequences to their N-terminus. The model protein thioredoxin was fused at its N-terminus with malE and pelB signal sequences. While WT and the pelB fusion are soluble when expressed, the malE fusion was targeted to inclusion bodies and was refolded in vitro to yield a monomeric product with identical secondary structure to WT thioredoxin. The purified recombinant proteins were studied with respect to their thermodynamic stability, aggregation propensity and activity, and compared with wild type thioredoxin, without a signal sequence. The presence of signal sequences leads to thermodynamic destabilization, reduces the activity and increases the aggregation propensity, with malE having much larger effects than pelB. These studies show that besides acting as address labels, signal sequences can modulate protein stability and aggregation in a sequence dependent manner.

  6. Effect of signal peptide on stability and folding of Escherichia coli thioredoxin.

    Science.gov (United States)

    Singh, Pranveer; Sharma, Likhesh; Kulothungan, S Rajendra; Adkar, Bharat V; Prajapati, Ravindra Singh; Ali, P Shaik Syed; Krishnan, Beena; Varadarajan, Raghavan

    2013-01-01

    The signal peptide plays a key role in targeting and membrane insertion of secretory and membrane proteins in both prokaryotes and eukaryotes. In E. coli, recombinant proteins can be targeted to the periplasmic space by fusing naturally occurring signal sequences to their N-terminus. The model protein thioredoxin was fused at its N-terminus with malE and pelB signal sequences. While WT and the pelB fusion are soluble when expressed, the malE fusion was targeted to inclusion bodies and was refolded in vitro to yield a monomeric product with identical secondary structure to WT thioredoxin. The purified recombinant proteins were studied with respect to their thermodynamic stability, aggregation propensity and activity, and compared with wild type thioredoxin, without a signal sequence. The presence of signal sequences leads to thermodynamic destabilization, reduces the activity and increases the aggregation propensity, with malE having much larger effects than pelB. These studies show that besides acting as address labels, signal sequences can modulate protein stability and aggregation in a sequence dependent manner.

  7. Oxidative Stressors Modify the Response of Streptococcus mutans to Its Competence Signal Peptides.

    Science.gov (United States)

    De Furio, Matthew; Ahn, Sang Joon; Burne, Robert A; Hagen, Stephen J

    2017-11-15

    The dental caries pathogen Streptococcus mutans is continually exposed to several types of stress in the oral biofilm environment. Oxidative stress generated by reactive oxygen species has a major impact on the establishment, persistence, and virulence of S. mutans Here, we combined fluorescent reporter-promoter fusions with single-cell imaging to study the effects of reactive oxygen species on activation of genetic competence in S. mutans Exposure to paraquat, which generates superoxide anion, produced a qualitatively different effect on activation of expression of the gene for the master competence regulator, ComX, than did treatment with hydrogen peroxide (H 2 O 2 ), which can yield hydroxyl radical. Paraquat suppressed peptide-mediated induction of comX in a progressive and cumulative fashion, whereas the response to H 2 O 2 displayed a strong threshold behavior. Low concentrations of H 2 O 2 had little effect on induction of comX or the bacteriocin gene cipB , but expression of these genes declined sharply if extracellular H 2 O 2 exceeded a threshold concentration. These effects were not due to decreased reporter gene fluorescence. Two different threshold concentrations were observed in the response to H 2 O 2 , depending on the gene promoter that was analyzed and the pathway by which the competence regulon was stimulated. The results show that paraquat and H 2 O 2 affect the S. mutans competence signaling pathway differently, and that some portions of the competence signaling pathway are more sensitive to oxidative stress than others. IMPORTANCE Streptococcus mutans inhabits the oral biofilm, where it plays an important role in the development of dental caries. Environmental stresses such as oxidative stress influence the growth of S. mutans and its important virulence-associated behaviors, such as genetic competence. S. mutans competence development is a complex behavior that involves two different signaling peptides and can exhibit cell

  8. Getting something for nothing: Regeneration of peptide signals from apparently exhausted MALDI samples by “waterboarding"

    Science.gov (United States)

    An often cited advantage of MALDI-MS is the ability to archive and reuse sample plates after the initial analysis is complete. However, experience demonstrates that the peptide ion signals decay rapidly as the number of laser shots becomes large. Thus, the signal level obtainable from an archived sa...

  9. Corticotropin-releasing factor family peptide signaling in feline bladder urothelial cells.

    Science.gov (United States)

    Hanna-Mitchell, Ann T; Wolf-Johnston, Amanda; Roppolo, James R; Buffington, Tony C A; Birder, Lori A

    2014-07-01

    Corticotropin-releasing factor (CRF) plays a central role in the orchestration of behavioral and neuroendocrine responses to stress. The family of CRF-related peptides (CRF and paralogs: urocortin (Ucn)-I, -II, and -III) and associated receptors (CRFR1 and CRFR2) are also expressed in peripheral tissues such as the skin and gastrointestinal tract. Local signaling may exert multiple effects of stress-induced exacerbation of many complex syndromes, including psoriasis and visceral hypersensitivity. Interstitial cystitis/painful bladder syndrome (IC/PBS), a chronic visceral pain syndrome characterized by urinary frequency, urgency, and pelvic pain, is reported to be exacerbated by stress. Functional changes in the epithelial lining of the bladder, a vital blood-urine barrier called the urothelium, may play a role in IC/PBS. This study investigated the expression and functional activity of CRF-related peptides in the urothelium of normal cats and cats with feline interstitial cystitis (FIC), a chronic idiopathic cystitis exhibiting similarities to humans diagnosed with IC/PBS. Western blots analysis showed urothelial (UT) expression of CRFR1 and CRFR2. Enzyme immunoassay revealed release of endogenous ligands (CRF and Ucn) by UT cells in culture. Evidence of functional activation of CRFR1 and CRFR2 by receptor-selective agonists (CRF and UCN3 respectively) was shown by i) the measurement of ATP release using the luciferin-luciferase assay and ii) the use of membrane-impermeant fluorescent dyes (FM dyes) for fluorescence microscopy to assess membrane exocytotic responses in real time. Our findings show evidence of CRF-related peptide signaling in the urothelium. Differences in functional responses between FIC and normal UT indicate that this system is altered in IC/PBS. © 2014 Society for Endocrinology.

  10. Secretion of a recombinant protein without a signal peptide by the exocrine glands of transgenic rabbits.

    Directory of Open Access Journals (Sweden)

    Andrea Kerekes

    Full Text Available Transgenic rabbits carrying mammary gland specific gene constructs are extensively used for excreting recombinant proteins into the milk. Here, we report refined phenotyping of previously generated Venus transposon-carrying transgenic rabbits with particular emphasis on the secretion of the reporter protein by exocrine glands, such as mammary, salivary, tear and seminal glands. The Sleeping Beauty (SB transposon transgenic construct contains the Venus fluorophore cDNA, but without a signal peptide for the secretory pathway, driven by the ubiquitous CAGGS (CAG promoter. Despite the absence of a signal peptide, the fluorophore protein was readily detected in milk, tear, saliva and seminal fluids. The expression pattern was verified by Western blot analysis. Mammary gland epithelial cells of SB-CAG-Venus transgenic lactating does also showed Venus-specific expression by tissue histology and fluorescence microscopy. In summary, the SB-CAG-Venus transgenic rabbits secrete the recombinant protein by different glands. This finding has relevance not only for the understanding of the biological function of exocrine glands, but also for the design of constructs for expression of recombinant proteins in dairy animals.

  11. Neuropeptide delivery to the brain: a von Willebrand factor signal peptide to direct neuropeptide secretion

    Directory of Open Access Journals (Sweden)

    de Backer Marijke WA

    2010-08-01

    Full Text Available Abstract Background Multiple neuropeptides, sometimes with opposing functions, can be produced from one precursor gene. To study the roles of the different neuropeptides encoded by one large precursor we developed a method to overexpress minigenes and establish local secretion. Results We fused the signal peptide from the Von Willebrand Factor (VWF to a furin site followed by a processed form of the Agouti related protein (AgRP, AgRP83-132 or α-melanocyte stimulating hormone. In vitro, these minigenes were secreted and biologically active. Additionally, the proteins of the minigenes were not transported into projections of primary neurons, thereby ensuring local release. In vivo administration of VWF-AgRP83-132 , using an adeno-associated viral vector as a delivery vehicle, into the paraventricular hypothalamus increased body weight and food intake of these rats compared to rats which received a control vector. Conclusions This study demonstrated that removal of the N-terminal part of full length AgRP and addition of a VWF signal peptide is a successful strategy to deliver neuropeptide minigenes to the brain and establish local neuropeptide secretion.

  12. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides.

    Science.gov (United States)

    Tsirigos, Konstantinos D; Peters, Christoph; Shu, Nanjiang; Käll, Lukas; Elofsson, Arne

    2015-07-01

    TOPCONS (http://topcons.net/) is a widely used web server for consensus prediction of membrane protein topology. We hereby present a major update to the server, with some substantial improvements, including the following: (i) TOPCONS can now efficiently separate signal peptides from transmembrane regions. (ii) The server can now differentiate more successfully between globular and membrane proteins. (iii) The server now is even slightly faster, although a much larger database is used to generate the multiple sequence alignments. For most proteins, the final prediction is produced in a matter of seconds. (iv) The user-friendly interface is retained, with the additional feature of submitting batch files and accessing the server programmatically using standard interfaces, making it thus ideal for proteome-wide analyses. Indicatively, the user can now scan the entire human proteome in a few days. (v) For proteins with homology to a known 3D structure, the homology-inferred topology is also displayed. (vi) Finally, the combination of methods currently implemented achieves an overall increase in performance by 4% as compared to the currently available best-scoring methods and TOPCONS is the only method that can identify signal peptides and still maintain a state-of-the-art performance in topology predictions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Secretion of a recombinant protein without a signal peptide by the exocrine glands of transgenic rabbits.

    Science.gov (United States)

    Kerekes, Andrea; Hoffmann, Orsolya Ivett; Iski, Gergely; Lipták, Nándor; Gócza, Elen; Kues, Wilfried A; Bősze, Zsuzsanna; Hiripi, László

    2017-01-01

    Transgenic rabbits carrying mammary gland specific gene constructs are extensively used for excreting recombinant proteins into the milk. Here, we report refined phenotyping of previously generated Venus transposon-carrying transgenic rabbits with particular emphasis on the secretion of the reporter protein by exocrine glands, such as mammary, salivary, tear and seminal glands. The Sleeping Beauty (SB) transposon transgenic construct contains the Venus fluorophore cDNA, but without a signal peptide for the secretory pathway, driven by the ubiquitous CAGGS (CAG) promoter. Despite the absence of a signal peptide, the fluorophore protein was readily detected in milk, tear, saliva and seminal fluids. The expression pattern was verified by Western blot analysis. Mammary gland epithelial cells of SB-CAG-Venus transgenic lactating does also showed Venus-specific expression by tissue histology and fluorescence microscopy. In summary, the SB-CAG-Venus transgenic rabbits secrete the recombinant protein by different glands. This finding has relevance not only for the understanding of the biological function of exocrine glands, but also for the design of constructs for expression of recombinant proteins in dairy animals.

  14. Signal peptide-dependent inhibition of MHC class I heavy chain translation by rhesus cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Colin J Powers

    2008-10-01

    Full Text Available The US2-11 region of human and rhesus cytomegalovirus encodes a conserved family of glycoproteins that inhibit MHC-I assembly with viral peptides, thus preventing cytotoxic T cell recognition. Since HCMV lacking US2-11 is no longer able to block assembly and transport of MHC-I, we examined whether this is also observed for RhCMV lacking the corresponding region. Unexpectedly, recombinant RhCMV lacking US2-11 was still able to inhibit MHC-I expression in infected fibroblasts, suggesting the presence of an additional MHC-I evasion mechanism. Progressive deletion analysis of RhCMV-specific genomic regions revealed that MHC-I expression is fully restored upon additional deletion of rh178. The protein encoded by this RhCMV-specific open reading frame is anchored in the endoplasmic reticulum membrane. In the presence of rh178, RhCMV prevented MHC-I heavy chain (HC expression, but did not inhibit mRNA transcription or association of HC mRNA with translating ribosomes. Proteasome inhibitors stabilized a HC degradation intermediate in the absence of rh178, but not in its presence, suggesting that rh178 prevents completion of HC translation. This interference was signal sequence-dependent since replacing the signal peptide with that of CD4 or murine HC rendered human HCs resistant to rh178. We have identified an inhibitor of antigen presentation encoded by rhesus cytomegalovirus unique in both its lack of homology to any other known protein and in its mechanism of action. By preventing signal sequence-dependent HC translocation, rh178 acts prior to US2, US3 and US11 which attack MHC-I proteins after protein synthesis is completed. Rh178 is the first viral protein known to interfere at this step of the MHC-I pathway, thus taking advantage of the conserved nature of HC leader peptides, and represents a new mechanism of translational interference.

  15. IGF-I regulates the age-dependent signaling peptide humanin.

    Science.gov (United States)

    Lee, Changhan; Wan, Junxiang; Miyazaki, Brian; Fang, Yimin; Guevara-Aguirre, Jaime; Yen, Kelvin; Longo, Valter; Bartke, Andrzej; Cohen, Pinchas

    2014-10-01

    Aging is influenced by endocrine pathways including the growth hormone/insulin-like growth factor-1 (GH/IGF) axis. Mitochondrial function has also been linked to the aging process, but the relevant mitochondrial signals mediating the effects of mitochondria are poorly understood. Humanin is a novel signaling peptide that acts as a potent regulator of cellular stress responses and protects from a variety of in vitro and in vivo toxic and metabolic insults. The circulating levels of humanin decline with age in mice and humans. Here, we demonstrate a negative correlation between the activity of the GH-IGF axis and the levels of humanin, as well as a positive correlation between humanin and lifespan in mouse models with altered GH/IGF-I axis. Long-lived, GH-deficient Ames mice displayed elevated humanin levels, while short-lived GH-transgenic mice have reduced humanin levels. Furthermore, treatment with GH or IGF-I reduced circulating humanin levels in both mice and human subjects. Our results indicate that GH and IGF are potent regulators of humanin levels and that humanin levels correlate with lifespan in mice. This suggests that humanin represents a circulating mitochondrial signal that participates in modulating the aging process, adding a coordinated mitochondrial element to the endocrine regulation of aging. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Monodisperse magnetite nanoparticles coupled with nuclear localization signal peptide for cell-nucleus targeting.

    Science.gov (United States)

    Xu, Chenjie; Xie, Jin; Kohler, Nathan; Walsh, Edward G; Chin, Y Eugene; Sun, Shouheng

    2008-03-07

    Functionalization of monodisperse superparamagnetic magnetite (Fe(3)O(4)) nanoparticles for cell specific targeting is crucial for cancer diagnostics and therapeutics. Targeted magnetic nanoparticles can be used to enhance the tissue contrast in magnetic resonance imaging (MRI), to improve the efficiency in anticancer drug delivery, and to eliminate tumor cells by magnetic fluid hyperthermia. Herein we report the nucleus-targeting Fe(3)O(4) nanoparticles functionalized with protein and nuclear localization signal (NLS) peptide. These NLS-coated nanoparticles were introduced into the HeLa cell cytoplasm and nucleus, where the particles were monodispersed and non-aggregated. The success of labeling was examined and identified by fluorescence microscopy and MRI. The work demonstrates that monodisperse magnetic nanoparticles can be readily functionalized and stabilized for potential diagnostic and therapeutic applications.

  17. Elucidation of the Signal Transduction Pathways Activated by the Plant Natriuretic Peptide AtPNP-A

    KAUST Repository

    Turek, Ilona

    2014-11-01

    Plant natriuretic peptides (PNPs) comprise a novel class of hormones that share some sequence similarity in the active site with their animal analogues that function as regulators of salt and water balance. A PNP present in Arabidopsis thaliana (AtPNP-A) has been assigned a role in abiotic and biotic stress responses, and the recombinant protein has been demonstrated to elicit cyclic guanosine monophosphate (cGMP)-dependent stomatal guard cell opening, regulate ion movements, and induce osmoticum-dependent water uptake. Although the importance of the hormone in maintaining ion and fluid homeostasis has been established, key components of the AtPNP-A-dependent signal transduction pathway remain unknown. Since identification of the binding partners of AtPNP-A, including its receptor(s), is fundamental to understanding the mode of its action at the molecular level, comprehensive protein-protein interaction studies, involving yeast two-hybrid screening, affinity-based assays, protein cross-linking and co-immunoprecipitation followed by mass spectrometric (MS) analyses have been performed. Several candidate binding partners of AtPNP-A identified with at least two independent methods were subsequently expressed as recombinant proteins, purified, and the specificity of their interactions with the recombinant AtPNP-A was verified using surface plasmon resonance. Several specific binary interactants of AtPNP-A were subjected to functional assays aimed at unraveling the consequences of the interactions in planta. These experiments have revealed that reactive oxygen species (ROS) are novel secondary messengers involved in the transduction of AtPNP-A signal in suspension-cultured cells of A. thaliana (Col-0). Further insight into the AtPNP-A dependent signalling events occurring in suspension-cultured cells in ROS-dependent or ROS-independent manner have been obtained from the large-scale proteomics study employing tandem mass tag (TMT) labelling followed by MS analysis to

  18. Secretory signal peptide modification for optimized antibody-fragment expression-secretion in Leishmania tarentolae

    Directory of Open Access Journals (Sweden)

    Klatt Stephan

    2012-07-01

    Full Text Available Abstract Background Secretory signal peptides (SPs are well-known sequence motifs targeting proteins for translocation across the endoplasmic reticulum membrane. After passing through the secretory pathway, most proteins are secreted to the environment. Here, we describe the modification of an expression vector containing the SP from secreted acid phosphatase 1 (SAP1 of Leishmania mexicana for optimized protein expression-secretion in the eukaryotic parasite Leishmania tarentolae with regard to recombinant antibody fragments. For experimental design the online tool SignalP was used, which predicts the presence and location of SPs and their cleavage sites in polypeptides. To evaluate the signal peptide cleavage site as well as changes of expression, SPs were N-terminally linked to single-chain Fragment variables (scFv’s. The ability of L. tarentolae to express complex eukaryotic proteins with highly diverse post-translational modifications and its easy bacteria-like handling, makes the parasite a promising expression system for secretory proteins. Results We generated four vectors with different SP-sequence modifications based on in-silico analyses with SignalP in respect to cleavage probability and location, named pLTEX-2 to pLTEX-5. To evaluate their functionality, we cloned four individual scFv-fragments into the vectors and transfected all 16 constructs into L. tarentolae. Independently from the expressed scFv, pLTEX-5 derived constructs showed the highest expression rate, followed by pLTEX-4 and pLTEX-2, whereas only low amounts of protein could be obtained from pLTEX-3 clones, indicating dysfunction of the SP. Next, we analysed the SP cleavage sites by Edman degradation. For pLTEX-2, -4, and -5 derived scFv’s, the results corresponded to in-silico predictions, whereas pLTEX-3 derived scFv’s contained one additional amino-acid (AA. Conclusions The obtained results demonstrate the importance of SP-sequence optimization for efficient

  19. Regulation of N-Formyl Peptide Receptor Signaling and Trafficking by Arrestin-Src Kinase Interaction.

    Directory of Open Access Journals (Sweden)

    Brant M Wagener

    Full Text Available Arrestins were originally described as proteins recruited to ligand-activated, phosphorylated G protein-coupled receptors (GPCRs to attenuate G protein-mediated signaling. It was later revealed that arrestins also mediate GPCR internalization and recruit a number of signaling proteins including, but not limited to, Src family kinases, ERK1/2, and JNK3. GPCR-arrestin binding and trafficking control the spatial and temporal activity of these multi-protein complexes. In previous reports, we concluded that N-formyl peptide receptor (FPR-mediated apoptosis, which occurs upon receptor stimulation in the absence of arrestins, is associated with FPR accumulation in perinuclear recycling endosomes. Under these conditions, inhibition of Src kinase and ERK1/2 prevented FPR-mediated apoptosis. To better understand the role of Src kinase in this process, in the current study we employed a previously described arrestin-2 (arr2 mutant deficient in Src kinase binding (arr2-P91G/P121E. Unlike wild type arrestin, arr2-P91G/P121E did not inhibit FPR-mediated apoptosis, suggesting that Src binding to arrestin-2 prevents apoptotic signaling. However, in cells expressing this mutant, FPR-mediated apoptosis was still blocked by inhibition of Src kinase activity, suggesting that activation of Src independent of arrestin-2 binding is involved in FPR-mediated apoptosis. Finally, while Src kinase inhibition prevented FPR-mediated-apoptosis in the presence of arr2-P91G/P121E, it did not prevent FPR-arr2-P91G/P121E accumulation in the perinuclear recycling endosome. On the contrary, inhibition of Src kinase activity mediated the accumulation of activated FPR-wild type arrestin-2 in recycling endosomes without initiating FPR-mediated apoptosis. Based on these observations, we conclude that Src kinase has two independent roles following FPR activation that regulate both FPR-arrestin-2 signaling and trafficking.

  20. A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis.

    Science.gov (United States)

    Cai, Dongbo; Wang, Hao; He, Penghui; Zhu, Chengjun; Wang, Qin; Wei, Xuetuan; Nomura, Christopher T; Chen, Shouwen

    2017-04-24

    Signal peptide peptidases play an important role in the removal of remnant signal peptides in the cell membrane, a critical step for extracellular protein production. Although these proteins are likely a central component for extracellular protein production, there has been a lack of research on whether protein secretion could be enhanced via overexpression of signal peptide peptidases. In this study, both nattokinase and α-amylase were employed as prototypical secreted target proteins to evaluate the function of putative signal peptide peptidases (SppA and TepA) in Bacillus licheniformis. We observed dramatic decreases in the concentrations of both target proteins (45 and 49%, respectively) in a sppA deficient strain, while the extracellular protein yields of nattokinase and α-amylase were increased by 30 and 67% respectively in a strain overexpressing SppA. In addition, biomass, specific enzyme activities and the relative gene transcriptional levels were also enhanced due to the overexpression of sppA, while altering the expression levels of tepA had no effect on the concentrations of the secreted target proteins. Our results confirm that SppA, but not TepA, plays an important functional role for protein secretion in B. licheniformis. Our results indicate that the sppA overexpression strain, B. licheniformis BL10GS, could be used as a promising host strain for the industrial production of heterologous secreted proteins.

  1. A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Engelbrecht, Jacob; Brunak, Søren

    1997-01-01

    We have developed a new method for the identication of signal peptides and their cleavage sites based on neural networks trained on separate sets of prokaryotic and eukaryotic sequences. The method performs signicantly better than previous prediction schemes, and can easily be applied to genome...

  2. The GlaA signal peptide substantially increases the expression and secretion of α-galactosidase in Aspergillus niger.

    Science.gov (United States)

    Xu, Yue; Wang, Yan-Hui; Liu, Tian-Qi; Zhang, Hui; Zhang, He; Li, Jie

    2018-03-31

    α-Galactosidases are widely used in many fields. It is necessary to improve the production of enzymes through microbiological processes. The aim of this study was to construct recombinant Aspergillus niger strains with high α-galactosidase production. Two recombinant A. niger strains were constructed: AB and AGB. The recombinant AB strain contained the α-galactosidase aglB gene from A. niger with its native AglB signal peptide regulated by the glucoamylase promoter. In the AGB recombinant strain, the AglB signal peptide was replaced with the glucoamylase (GlaA) signal peptide. The extracellular maximum α-galactosidase activity of the AGB strain was 215.7 U/ml and that of the AB strain was 9.8 U/mL. The optimal conditions for α-galactosidase were pH 3.5 and 35 °C. The GlaA signal peptide substantially increased the yield of secreted α-galactosidase in A. niger. This recombinant strain holds great potential for industrial applications.

  3. Effects of Glucagon-Like Peptide-1 on Oxidative Stress and Nrf2 Signaling

    Directory of Open Access Journals (Sweden)

    Yoon Sin Oh

    2017-12-01

    Full Text Available Oxidative cellular damage caused by free radicals is known to contribute to the pathogenesis of various diseases such as cancer, diabetes, and neurodegenerative diseases, as well as to aging. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2 and Kelch-like ECH-associated protein1 (Keap1 signaling pathways play an important role in preventing stresses including oxidative and inflammatory stresses. Nrf2 is a master regulator of cellular stress responses, induces the expression of antioxidant and detoxification enzymes, and protects against oxidative stress-induced cell damage. Glucagon-like peptide-1 (GLP-1 is an incretin hormone, which was originally found to increase insulin synthesis and secretion. It is now widely accepted that GLP-1 has multiple functions beyond glucose control in various tissues and organs including brain, kidney, and heart. GLP-1 and GLP-1 receptor agonists are known to be effective in many chronic diseases, including diabetes, via antioxidative mechanisms. In this review, we summarize the current knowledge regarding the role of GLP-1 in the protection against oxidative damage and the activation of the Nrf2 signaling pathway.

  4. Extracellular expression of alkaline phytase in Pichia pastoris: Influence of signal peptides, promoters and growth medium

    Directory of Open Access Journals (Sweden)

    Mimi Yang

    2015-06-01

    Full Text Available Alkaline phytase isolated from pollen grains of Lilium longiflorum (LlALP possesses unique catalytic and thermal stability properties that suggest it has the potential to be used as a feed supplement. However, substantial amounts of active enzymes are needed for animal feed studies and endogenous levels of LlALP in lily pollen are too low to provide the required amounts. Active rLlALP2 (coded by LlAlp2, one of two isoforms of alkaline phytase cDNA identified in lily pollen has been successfully expressed in intracellular compartments of Pichia pastoris, however enzyme yields have been modest (25–30 mg/L and purification of the enzyme has been challenging. Expression of foreign proteins to the extracellular medium of P. pastoris greatly simplifies protein purification because low levels of endogenous proteins are secreted by the yeast. In this paper, we first describe the generation of P. pastoris strains that will secrete rLlALP2 to the extracellular medium. Data presented here indicates that deletion of native signal peptides at the N- and C-termini of rLlALP2 enhanced α-mating factor (α-MF-driven secretion by four-fold; chicken egg white lysozyme signal peptide was ineffective in the extracellular secretion of rLlALP2. Second, we describe our efforts to increase expression levels by employing a constitutive promoter from the glyceraldehyde-3-phosphate dehydrogenase gene (PGAP in place of the strong, tightly controlled promoter of alcohol oxidase 1 gene (PAOX1. PGAP enhanced the extracellular expression levels of rLlALP2 compared to PAOX1. Finally, we report on the optimization of the culture medium to enhance yields of rLlALP2. The strength of PGAP varies depending on the carbon source available for cell growth; secreted expression of rLlALP2 was highest when glycerol was the carbon source. The addition of histidine and Triton X-100 also enhanced extracellular expression. Taken together, the employment of PGAP under optimized culture

  5. Impact of signal peptide and transmembrane segments on expression and biochemical properties of a lipase from Bacillus sphaericus 205y.

    Science.gov (United States)

    Masomian, Malihe; Jasni, Azmiza Syawani; Rahman, Raja Noor Zaliha Raja Abd; Salleh, Abu Bakar; Basri, Mahiran

    2017-12-20

    A total of 97 amino acids, considered as the signal peptide and transmembrane segments were removed from 205y lipase gene using polymerase chain reaction technique that abolished the low activity of this enzyme. The mature enzyme was expressed in Escherichia coli using pBAD expression vector, which gave up to a 13-fold increase in lipase activity. The mature 205y lipase (without signal peptide and transmembrane; -SP/TM) was purified to homogeneity using the isoelectric focusing technique with 53% recovery. Removing of the signal peptide and transmembrane segments had resulted in the shift of optimal pH, an increase in optimal temperature and tolerance towards more water-miscible organic solvents as compared to the characteristics of open reading frame (ORF) of 205y lipase. Also, in the presence of 1mM inhibitors, less decrease in the activity of mature 205y lipase was observed compared to the ORF of the enzyme. Protein structure modeling showed that 205y lipase consisted of an α/β hydrolase fold without lid domain. However, the transmembrane segment could effect on the enzyme activity by covering the active site or aggregation the protein. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Alterations of HIV-1 envelope phenotype and antibody-mediated neutralization by signal peptide mutations.

    Directory of Open Access Journals (Sweden)

    Chitra Upadhyay

    2018-01-01

    Full Text Available HIV-1 envelope glycoprotein (Env mediates virus attachment and entry into the host cells. Like other membrane-bound and secreted proteins, HIV-1 Env contains at its N terminus a signal peptide (SP that directs the nascent Env to the endoplasmic reticulum (ER where Env synthesis and post-translational modifications take place. SP is cleaved during Env biosynthesis but potentially influences the phenotypic traits of the Env protein. The Env SP sequences of HIV-1 isolates display high sequence variability, and the significance of such variability is unclear. We postulate that changes in the Env SP influence Env transport through the ER-Golgi secretory pathway and Env folding and/or glycosylation that impact on Env incorporation into virions, receptor binding and antibody recognition. We first evaluated the consequences of mutating the charged residues in the Env SP in the context of infectious molecular clone HIV-1 REJO.c/2864. Results show that three different mutations affecting histidine at position 12 affected Env incorporation into virions that correlated with reduction of virus infectivity and DC-SIGN-mediated virus capture and transmission. Mutations at positions 8, 12, and 15 also rendered the virus more resistant to neutralization by monoclonal antibodies against the Env V1V2 region. These mutations affected the oligosaccharide composition of N-glycans as shown by changes in Env reactivity with specific lectins and by mass spectrometry. Increased neutralization resistance and N-glycan composition changes were also observed when analogous mutations were introduced to another HIV-1 strain, JRFL. To the best of our knowledge, this is the first study showing that certain residues in the HIV-1 Env SP can affect virus neutralization sensitivity by modulating oligosaccharide moieties on the Env N-glycans. The HIV-1 Env SP sequences thus may be under selective pressure to balance virus infectiousness with virus resistance to the host antibody

  7. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids.

    Science.gov (United States)

    Güler-Gane, Gülin; Kidd, Sara; Sridharan, Sudharsan; Vaughan, Tristan J; Wilkinson, Trevor C I; Tigue, Natalie J

    2016-01-01

    The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these "undesirable" residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far

  8. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids.

    Directory of Open Access Journals (Sweden)

    Gülin Güler-Gane

    Full Text Available The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine, and a detrimental effect of others (cysteine, proline, tyrosine and glutamine. When proteins that naturally contain these "undesirable" residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that

  9. Interfering with DNA Damage Signals: Radiosensitizing Prostate Cancer Using Small Peptides

    Science.gov (United States)

    2009-05-01

    Higuera, B. Xu, P. R. Andreassen, R. C. Gregory, S. T. Kim, W. S. Lane, M. B. Kastan, and A. D. D’Andrea. 2002. Convergence of the fanconi anemia and... de - fects, chromosomal instability, and hypersensitivity in re- sponse to IR. ATM is remarkable for its large size and the existence of a sequence in...of transporting small peptides and proteins across the plasma membrane (Fuchs and Raines, 2004; De - shayes et al., 2005) Three peptides were generated

  10. Co-translational processing of glycoprotein 3 from equine arteritis virus: N-glycosylation adjacent to the signal peptide prevents cleavage.

    Science.gov (United States)

    Matczuk, Anna Karolina; Kunec, Dusan; Veit, Michael

    2013-12-06

    Signal peptide cleavage and N-glycosylation of proteins are co-translational processes, but little is known about their interplay if they compete for adjacent sites. Here we report two unique findings for processing of glycoprotein 3 of equine arteritis virus. Glycoprotein 3 (Gp3) contains an N-terminal signal peptide, which is not removed, although bioinformatics predicts cleavage with high probability. There is an overlapping sequon, NNTT, adjacent to the signal peptide that we show to be glycosylated at both asparagines. Exchanging the overlapping sequon and blocking glycosylation allows signal peptide cleavage, indicating that carbohydrate attachment inhibits processing of a potentially cleavable signal peptide. Bioinformatics analyses suggest that a similar processing scheme may exist for some cellular proteins. Membrane fractionation and secretion experiments revealed that the signal peptide of Gp3 does not act as a membrane anchor, indicating that it is completely translocated into the lumen of the endoplasmic reticulum. Membrane attachment is caused by the hydrophobic C terminus of Gp3, which, however, does not span the membrane but rather attaches the protein peripherally to endoplasmic reticulum membranes.

  11. Truncated Glucagon-like Peptide-1 and Exendin-4 α-Conotoxin pl14a Peptide Chimeras Maintain Potency and α-Helicity and Reveal Interactions Vital for cAMP Signaling in Vitro*

    Science.gov (United States)

    Swedberg, Joakim E.; Schroeder, Christina I.; Mitchell, Justin M.; Fairlie, David P.; Edmonds, David J.; Griffith, David A.; Ruggeri, Roger B.; Derksen, David R.; Loria, Paula M.; Price, David A.; Liras, Spiros; Craik, David J.

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) signaling through the glucagon-like peptide 1 receptor (GLP-1R) is a key regulator of normal glucose metabolism, and exogenous GLP-1R agonist therapy is a promising avenue for the treatment of type 2 diabetes mellitus. To date, the development of therapeutic GLP-1R agonists has focused on producing drugs with an extended serum half-life. This has been achieved by engineering synthetic analogs of GLP-1 or the more stable exogenous GLP-1R agonist exendin-4 (Ex-4). These synthetic peptide hormones share the overall structure of GLP-1 and Ex-4, with a C-terminal helical segment and a flexible N-terminal tail. Although numerous studies have investigated the molecular determinants underpinning GLP-1 and Ex-4 binding and signaling through the GLP-1R, these have primarily focused on the length and composition of the N-terminal tail or on how to modulate the helicity of the full-length peptides. Here, we investigate the effect of C-terminal truncation in GLP-1 and Ex-4 on the cAMP pathway. To ensure helical C-terminal regions in the truncated peptides, we produced a series of chimeric peptides combining the N-terminal portion of GLP-1 or Ex-4 and the C-terminal segment of the helix-promoting peptide α-conotoxin pl14a. The helicity and structures of the chimeric peptides were confirmed using circular dichroism and NMR, respectively. We found no direct correlation between the fractional helicity and potency in signaling via the cAMP pathway. Rather, the most important feature for efficient receptor binding and signaling was the C-terminal helical segment (residues 22–27) directing the binding of Phe22 into a hydrophobic pocket on the GLP-1R. PMID:27226591

  12. REVIEW: Role of cyclic AMP signaling in the production and function of the incretin hormone glucagon-like peptide-1

    Science.gov (United States)

    Yu, Zhiwen; Jin, Tianru

    2008-01-01

    Pancreatic cells express the proglucagon gene (gcg) and thereby produce the peptide hormone glucagon, which stimulates hepatic glucose production and thereby increases blood glucose levels. The same gcg gene is also expressed in the intestinal endocrine L cells and certain neural cells in the brain. In the gut, gcg expression leads to the production of glucagon-like peptide-1 (GLP-1). This incretin hormone stimulates insulin secretion when blood glucose level is high. In addition, GLP-1 stimulates pancreatic cell proliferation, inhibits cell apoptosis, and has been utilized in the trans-differentiation of insulin producing cells. Today, a long-term effective GLP-1 receptor agonist has been developed as a drug in treating diabetes and potentially other metabolic disorders. Extensive investigations have shown that the expression of gcg and the production of GLP-1 can be activated by the elevation of the second messenger cyclic AMP (cAMP). Recent studies suggest that in addition to protein kinase A (PKA), exchange protein activated by cAMP (Epac), another effector of cAMP signaling, and the crosstalk between PKA and Wnt signaling pathway, are also involved in cAMP-stimulated gcg expression and GLP-1 production. Furthermore, functions of GLP-1 in pancreatic cells are mainly mediated by cAMP-PKA, cAMP-Epac and Wnt signaling pathways as well.

  13. In vivo analysis of fibroin heavy chain signal peptide of silkworm Bombyx mori using recombinant baculovirus as vector

    International Nuclear Information System (INIS)

    Wang Shengpeng; Guo Tingqing; Guo Xiuyang; Huang Junting; Lu Changde

    2006-01-01

    In order to investigate the functional signal peptide of silkworm fibroin heavy chain (FibH) and the effect of N- and C-terminal parts of FibH on the secretion of FibH in vivo, N- and C-terminal segments of fibh gene were fused with enhanced green fluorescent protein (EGFP) gene. The fused gene was then introduced into silkworm larvae and expressed in silk gland using recombinant AcMNPV (Autographa californica multiple nuclear polyhedrosis virus) as vector. The fluorescence of EGFP was observed with fluorescence microscope. FibH-EGFP fusion proteins extracted from silk gland were analyzed by Western blot. Results showed that the two alpha helices within N-terminal 163 amino acid residues and the C-terminal 61 amino acid residues were not necessary for cleavage of signal peptide and secretion of the fusion protein into silk gland. Then the C-terminal 61 amino acid residues were substituted with a His-tag in the fusion protein to facilitate the purification. N-terminal sequencing of the purified protein showed that the signal cleavage site is between position 21 and 22 amino acid residues

  14. Electrochemical reduction and oxidation signals of angiotensin peptides. Role of individual amino acid residues

    Czech Academy of Sciences Publication Activity Database

    Dorčák, Vlastimil; Ostatná, Veronika; Paleček, Emil

    2013-01-01

    Roč. 31, JUN 2013 (2013), s. 80-83 ISSN 1388-2481 R&D Projects: GA ČR GAP301/11/2055 Institutional support: RVO:68081707 Keywords : CARBON ELECTRODES * HYDROGEN EVOLUTION * BIOACTIVE PEPTIDES Subject RIV: BO - Biophysics Impact factor: 4.287, year: 2013

  15. Cell-penetrating TIR BB loop decoy peptides a novel class of TLR signaling inhibitors and a tool to study topology of TIR-TIR interactions.

    Science.gov (United States)

    Toshchakov, Vladimir Y; Vogel, Stefanie N

    2007-07-01

    Toll-like receptors (TLR), a family of closely related type I, transmembrane, signal transducing proteins, sense invading pathogens early in the immune response to infection and deliver intracellular signals to the cell. Both TLRs and their adapter proteins possess a conserved region, the Toll/IL-1 resistance (TIR) domain. A subregion of approximately 14 amino acids within the TIR domain, the BB loop, enables interactions between certain TLRs or between certain TLRs and their adapter molecules. Use of cell-penetrating decoy peptides composed of the sequence of the Drosophila antennapedia peptide (16 amino acids) juxtaposed to a specific TIR BB loop 14 amino acid sequences enables an evaluation of the relative efficacy of such BB loop peptides to inhibit TIR-TIR interactions and signaling. Moreover, failure of specific BB loop peptides to inhibit signaling suggests that this region of a particular TIR domain is likely to not be involved in signaling. This review discusses cell-penetrating decoy peptides as a new tool to further understanding of the molecular interactions required for TLR signaling and evaluates the potential of this approach for the creation of therapeutic agents.

  16. Hypoxia inducible factor-1 improves the negative functional effects of natriuretic peptide and nitric oxide signaling in hypertrophic cardiac myocytes.

    Science.gov (United States)

    Tan, Tao; Scholz, Peter M; Weiss, Harvey R

    2010-07-03

    Both natriuretic peptides and nitric oxide may be protective in cardiac hypertrophy, although their functional effects are diminished in hypertrophy. Hypoxia inducible factor-1 (HIF-1) may also protect in cardiac hypertrophy. We hypothesized that upregulation of HIF-1 would protect the functional effects of cyclic GMP (cGMP) signaling in hypertrophied ventricular myocytes. A cardiac hypertrophy model was created in mice by transverse aorta constriction. HIF-1 was increased by deferoxamine (150 mg/kg for 2 days). HIF-1alpha protein levels were examined. Functional parameters were measured (edge detector) on freshly isolated myocytes at baseline and after BNP (brain natriuretic peptide, 10(-8)-10(-7)M) or CNP (C-type natriuretic peptide, 10(-8)-10(-7)M) or SNAP (S-nitroso-N-acetyl-penicillamine, a nitric oxide donor, 10(-6)-10(-5)M) followed by KT5823 (a cyclic GMP-dependent protein kinase (PKG) inhibitor, 10(-6)M). We also determined PKG expression levels and kinase activity. We found that under control conditions, BNP (-24%), CNP (-22%) and SNAP (-23%) reduced myocyte shortening, while KT5823 partially restored function. Deferoxamine treated control myocytes responded similarly. Baseline function was reduced in the myocytes from hypertrophied heart. BNP, CNP, SNAP and KT5823 also had no significant effects on function in these myocytes. Deferoxamine restored the negative functional effects of BNP (-22%), CNP (-18%) and SNAP (-19%) in hypertrophic cardiac myocytes and KT5823 partially reversed this effect. Additionally, deferoxamine maintained PKG expression levels and activity in hypertrophied heart. Our results indicated that the HIF-1 protected the functional effects of cGMP signaling in cardiac hypertrophy through preservation of PKG. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Somatostatin signaling system as an ancestral mechanism: Myoregulatory activity of an Allatostatin-C peptide in Hydra.

    Science.gov (United States)

    Alzugaray, María Eugenia; Hernández-Martínez, Salvador; Ronderos, Jorge Rafael

    2016-08-01

    The coordination of physiological processes requires precise communication between cells. Cellular interactions allow cells to be functionally related, facilitating the maintaining of homeostasis. Neuropeptides functioning as intercellular signals are widely distributed in Metazoa. It is assumed that neuropeptides were the first intercellular transmitters, appearing early during the evolution. In Cnidarians, neuropeptides are mainly involved in neurotransmission, acting directly or indirectly on epithelial muscle cells, and thereby controlling coordinated movements. Allatostatins are a group of chemically unrelated neuropeptides that were originally characterized based on their ability to inhibit juvenil hormone synthesis in insects. Allatostatin-C has pleiotropic functions, acting as myoregulator in several insects. In these studies, we analyzed the myoregulatory effect of Aedes aegypti Allatostatin-C in Hydra sp., a member of the phylum Cnidaria. Allatostatin-C peptide conjugated with Qdots revealed specifically distributed cell populations that respond to the peptide in different regions of hydroids. In vivo physiological assays using Allatostatin-C showed that the peptide induced changes in shape and length in tentacles, peduncle and gastrovascular cavity. The observed changes were dose and time dependent suggesting the physiological nature of the response. Furthermore, at highest doses, Allatostatin-C induced peristaltic movements of the gastrovascular cavity resembling those that occur during feeding. In silico search of putative Allatostatin-C receptors in Cnidaria showed that genomes predict the existence of proteins of the somatostatin/Allatostatin-C receptors family. Altogether, these results suggest that Allatostatin-C has myoregulatory activity in Hydra sp, playing a role in the control of coordinated movements during feeding, indicating that Allatostatin-C/Somatostatin based signaling might be an ancestral mechanism. Copyright © 2016 Elsevier Inc. All

  18. Clathrin-dependent internalization, signaling, and metabolic processing of guanylyl cyclase/natriuretic peptide receptor-A.

    Science.gov (United States)

    Somanna, Naveen K; Mani, Indra; Tripathi, Satyabha; Pandey, Kailash N

    2018-04-01

    Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP), have pivotal roles in renal hemodynamics, neuroendocrine signaling, blood pressure regulation, and cardiovascular homeostasis. Binding of ANP and BNP to the guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) induces rapid internalization and trafficking of the receptor via endolysosomal compartments, with concurrent generation of cGMP. However, the mechanisms of the endocytotic processes of NPRA are not well understood. The present study, using 125 I-ANP binding assay and confocal microscopy, examined the function of dynamin in the internalization of NPRA in stably transfected human embryonic kidney-293 (HEK-293) cells. Treatment of recombinant HEK-293 cells with ANP time-dependently accelerated the internalization of receptor from the cell surface to the cell interior. However, the internalization of ligand-receptor complexes of NPRA was drastically decreased by the specific inhibitors of clathrin- and dynamin-dependent receptor internalization, almost 85% by monodansylcadaverine, 80% by chlorpromazine, and 90% by mutant dynamin, which are specific blockers of endocytic vesicle formation. Visualizing the internalization of NPRA and enhanced GFP-tagged NPRA in HEK-293 cells by confocal microscopy demonstrated the formation of endocytic vesicles after 5 min of ANP treatment; this effect was blocked by the inhibitors of clathrin and by mutant dynamin construct. Our results suggest that NPRA undergoes internalization via clathrin-mediated endocytosis as part of its normal itinerary, including trafficking, signaling, and metabolic degradation.

  19. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide

    Science.gov (United States)

    Huang, Li-Fen; Tan, Chia-Chun; Yeh, Ju-Fang; Liu, Hsin-Yi; Liu, Yu-Kuo; Ho, Shin-Lon; Lu, Chung-An

    2015-01-01

    Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%–92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp. PMID:26473722

  20. Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling

    KAUST Repository

    Lori, M.

    2015-05-22

    Plant elicitor peptides (Peps) are potent inducers of pattern-triggered immunity and amplify the immune response against diverse pathogens. Peps have been discovered and studied extensively in Arabidopsis and only recently orthologs in maize were also identified and characterized in more detail. Here, the presence of PROPEPs, the Pep precursors, and PEPRs, the Pep receptors, was investigated within the plant kingdom. PROPEPs and PEPRs were identified in most sequenced species of the angiosperms. The conservation and compatibility of the Pep-PEPR-system was analysed by using plants of two distantly related dicot families, Brassicaceae and Solanaceae, and a representative family of monocot plants, the Poaceae. All three plant families contain important crop plants, including maize, rice, tomato, potato, and canola. Peps were not recognized by species outside of their plant family of origin, apparently because of a divergence of the Pep sequences. Three family-specific Pep motifs were defined and the integration of such a motif into the Pep sequence of an unrelated Pep enabled its perception. Transient transformation of Nicotiana benthamiana with the coding sequences of the AtPEPR1 and ZmPEPR1a led to the recognition of Pep peptides of Brassicaceae or Poaceae origin, respectively, and to the proper activation of downstream signalling. It was concluded that signalling machinery downstream of the PEPRs is highly conserved whereas the leucine-rich repeat domains of the PEPRs co-evolved with the Peps, leading to distinct motifs and, with it, interfamily incompatibility.

  1. The mitochondrial-derived peptide humanin activates the ERK1/2, AKT, and STAT3 signaling pathways and has age-dependent signaling differences in the hippocampus.

    Science.gov (United States)

    Kim, Su-Jeong; Guerrero, Noel; Wassef, Gabriella; Xiao, Jialin; Mehta, Hemal H; Cohen, Pinchas; Yen, Kelvin

    2016-07-26

    Humanin is a small secreted peptide that is encoded in the mitochondrial genome. Humanin and its analogues have a protective role in multiple age-related diseases including type 2 diabetes and Alzheimer's disease, through cytoprotective and neuroprotective effects both in vitro and in vivo. However, the humanin-mediated signaling pathways are not well understood. In this paper, we demonstrate that humanin acts through the GP130/IL6ST receptor complex to activate AKT, ERK1/2, and STAT3 signaling pathways. Humanin treatment increases phosphorylation in AKT, ERK 1/2, and STAT3 where PI3K, MEK, and JAK are involved in the activation of those three signaling pathways, respectively. Furthermore, old mice, but not young mice, injected with humanin showed an increase in phosphorylation in AKT and ERK1/2 in the hippocampus. These findings uncover a key signaling pathway of humanin that is important for humanin's function and also demonstrates an age-specific in vivo effect in a region of the brain that is critical for memory formation in an age-dependent manner.

  2. Characterization of prolactin-releasing peptide binding, signaling and hormone secretion in rodent pituitary cell lines

    Czech Academy of Sciences Publication Activity Database

    Maletínská, Lenka; Maixnerová, Jana; Špolcová, Andrea; Pýchová, Miroslava; Blechová, Miroslava; Železná, Blanka

    2010-01-01

    Roč. 16, S1 (2010), s. 153-153 ISSN 1075-2617. [European Peptide Symposium /31./. 05.09.2010-09.09.2010, Copenhagen] R&D Projects: GA ČR GAP303/10/1368 Institutional research plan: CEZ:AV0Z40550506 Keywords : PrRP * GPR10 * pituitary cell lines * RC-4B/C cells Subject RIV: CC - Organic Chemistry

  3. Antibody constant region peptides can display immunomodulatory activity through activation of the Dectin-1 signalling pathway.

    Directory of Open Access Journals (Sweden)

    Elena Gabrielli

    Full Text Available We previously reported that a synthetic peptide with sequence identical to a CDR of a mouse monoclonal antibody specific for difucosyl human blood group A exerted an immunomodulatory activity on murine macrophages. It was therapeutic against systemic candidiasis without possessing direct candidacidal properties. Here we demonstrate that a selected peptide, N10K, putatively deriving from the enzymatic cleavage of the constant region (Fc of human IgG(1, is able to induce IL-6 secretion and pIkB-α activation. More importantly, it causes an up-regulation of Dectin-1 expression. This leads to an increased activation of β-glucan-induced pSyk, CARD9 and pIkB-α, and an increase in the production of pro-inflammatory cytokines such as IL-6, IL-12, IL-1β and TNF-α. The increased activation of this pathway coincides with an augmented phagocytosis of non opsonized Candida albicans cells by monocytes. The findings suggest that some Fc-peptides, potentially deriving from the proteolysis of immunoglobulins, may cause an unexpected immunoregulation in a way reminiscent of innate immunity molecules.

  4. Drosophila neprilysins control insulin signaling and food intake via cleavage of regulatory peptides

    DEFF Research Database (Denmark)

    Hallier, Benjamin; Schiemann, Ronja; Cordes, Eva

    2016-01-01

    Insulin and IGF signaling are critical to numerous developmental and physiological processes, with perturbations being pathognomonic of various diseases, including diabetes. Although the functional roles of the respective signaling pathways have been extensively studied, the control of insulin pr...... expression, feeding behavior, or both. The high functional conservation of neprilysins and their substrates renders the characterized principles applicable to numerous species, including higher eukaryotes and humans.......Insulin and IGF signaling are critical to numerous developmental and physiological processes, with perturbations being pathognomonic of various diseases, including diabetes. Although the functional roles of the respective signaling pathways have been extensively studied, the control of insulin...

  5. Real-time trafficking and signaling of the glucagon-like peptide-1 receptor

    DEFF Research Database (Denmark)

    Roed, Sarah Noerklit; Wismann, Pernille; Underwood, Christina Rye

    2014-01-01

    . A fundamental mechanism controlling the signaling capacity of GPCRs is the post-endocytic trafficking of receptors between recycling and degradative fates. Here, we combined microscopy with novel real-time assays to monitor both receptor trafficking and signaling in living cells. We find that the human GLP-1R...

  6. Six Peptide Wound Signals Derived from a Single Precursor Protein in Ipomoea batatas Leaves Activate the Expression of the Defense Gene Sporamin*

    Science.gov (United States)

    Chen, Yu-Chi; Siems, William F.; Pearce, Gregory; Ryan, Clarence A.

    2008-01-01

    A mixture of three homologous bioactive hydroxyproline-rich glycopeptides (HypSys peptides) of 18 amino acids in length, differing only at two residues, was isolated from leaves of Ipomoea batatas, the common sweet potato. One of the peptides represented over 95% of the isolated isopeptides, which, at 2.5 nm concentration, induced the expression of sporamin, a major defense protein of I. batatas. The sequence of the major isoform was used to synthesize a primer that identified a cDNA encoding a precursor protein. The protein contained six proline-rich regions whose sequences suggested that they might be HypSys defense signals. One of the encoded peptides, called IbHypSys IV, was identical to one of two minor components of the isolated isopeptides, but neither the major isopeptide nor the other minor isoform was found within the precursor. The six peptides encoded by the precursor gene were synthesized but with hydroxyproline residues at positions found in the native isoforms and lacking carbohydrate moieties. All of the peptides were biologically active when supplied to leaves of sweet potato plants. The gene is the first ortholog of the preproHypSys gene family to be found outside of the Solanaceae family, and its encoded peptide precursor is the first example in plants of a precursor protein with six potential peptide defense signals, a scenario only found previously in animals. The data indicate that multiple copies of the HypSys peptides in a single precursor may have an important role in amplifying wound signaling in leaves in response to herbivore attacks. PMID:18299332

  7. Rational design of DKK3 structure-based small peptides as antagonists of Wnt signaling pathway and in silico evaluation of their efficiency.

    Directory of Open Access Journals (Sweden)

    Mansour Poorebrahim

    Full Text Available Dysregulated Wnt signaling pathway is highly associated with the pathogenesis of several human cancers. Dickkopf proteins (DKKs are thought to inhibit Wnt signaling pathway through binding to lipoprotein receptor-related protein (LRP 5/6. In this study, based on the 3-dimensional (3D structure of DKK3 Cys-rich domain 2 (CRD2, we have designed and developed several peptide inhibitors of Wnt signaling pathway. Modeller 9.15 package was used to predict 3D structure of CRD2 based on the Homology modeling (HM protocol. After refinement and minimization with GalaxyRefine and NOMAD-REF servers, the quality of selected models was evaluated utilizing VADAR, SAVES and ProSA servers. Molecular docking studies as well as literature-based information revealed two distinct boxes located at CRD2 which are actively involved in the DKK3-LRP5/6 interaction. A peptide library was constructed conducting the backrub sequence tolerance scanning protocol in Rosetta3.5 according to the DKK3-LRP5/6 binding sites. Seven tolerated peptides were chosen and their binding affinity and stability were improved by some logical amino acid substitutions. Molecular dynamics (MD simulations of peptide-LRP5/6 complexes were carried out using GROMACS package. After evaluation of binding free energies, stability, electrostatic potential and some physicochemical properties utilizing computational approaches, three peptides (PEP-I1, PEP-I3 and PEP-II2 demonstrated desirable features. However, all seven improved peptides could sufficiently block the Wnt-binding site of LRP6 in silico. In conclusion, we have designed and improved several small peptides based on the LRP6-binding site of CRD2 of DKK3. These peptides are highly capable of binding to LRP6 in silico, and may prevent the formation of active Wnt-LRP6-Fz complex.

  8. Effects of Conformational Peptide Probe DP4 on Bidirectional Signaling between DHPR and RyR1 Calcium Channels in Voltage-Clamped Skeletal Muscle Fibers

    OpenAIRE

    Olojo, Rotimi O.; Hernández-Ochoa, Erick O.; Ikemoto, Noriaki; Schneider, Martin F.

    2011-01-01

    In skeletal muscle, excitation-contraction coupling involves the activation of dihydropyridine receptors (DHPR) and type-1 ryanodine receptors (RyR1) to produce depolarization-dependent sarcoplasmic reticulum Ca2+ release via orthograde signaling. Another form of DHPR-RyR1 communication is retrograde signaling, in which RyRs modulate the gating of DHPR. DP4 (domain peptide 4), is a peptide corresponding to residues Leu2442-Pro2477 of the central domain of the RyR1 that produces RyR1 channel d...

  9. Arabidopsis thaliana resistance to fusarium oxysporum 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection.

    Directory of Open Access Journals (Sweden)

    Yunping Shen

    2013-05-01

    Full Text Available In the plant Arabidopsis thaliana, multiple quantitative trait loci (QTLs, including RFO2, account for the strong resistance of accession Columbia-0 (Col-0 and relative susceptibility of Taynuilt-0 (Ty-0 to the vascular wilt fungus Fusarium oxysporum forma specialis matthioli. We find that RFO2 corresponds to diversity in receptor-like protein (RLP genes. In Col-0, there is a tandem pair of RLP genes: RFO2/At1g17250 confers resistance while RLP2 does not. In Ty-0, the highly diverged RFO2 locus has one RLP gene conferring weaker resistance. While the endogenous RFO2 makes a modest contribution to resistance, transgenic RFO2 provides strong pathogen-specific resistance. The extracellular leucine-rich repeats (eLRRs in RFO2 and RLP2 are interchangeable for resistance and remarkably similar to eLRRs in the receptor-like kinase PSY1R, which perceives tyrosine-sulfated peptide PSY1. Reduced infection in psy1r and mutants of related phytosulfokine (PSK receptor genes PSKR1 and PSKR2 shows that tyrosine-sulfated peptide signaling promotes susceptibility. The related eLRRs in RFO2 and PSY1R are not interchangeable; and expression of the RLP nPcR, in which eLRRs in RFO2 are replaced with eLRRs in PSY1R, results in constitutive resistance. Counterintuitively, PSY1 signaling suppresses nPcR because psy1r nPcR is lethal. The fact that PSK signaling does not similarly affect nPcR argues that PSY1 signaling directly downregulates the expression of nPcR. Our results support a speculative but intriguing model to explain RFO2's role in resistance. We propose that F. oxysporum produces an effector that inhibits the normal negative feedback regulation of PSY1R, which stabilizes PSY1 signaling and induces susceptibility. However, RFO2, acting as a decoy receptor for PSY1R, is also stabilized by the effector and instead induces host immunity. Overall, the quantitative resistance of RFO2 is reminiscent of the better-studied monogenic resistance traits.

  10. Exocrine Gland-Secreting Peptide 1 Is a Key Chemosensory Signal Responsible for the Bruce Effect in Mice.

    Science.gov (United States)

    Hattori, Tatsuya; Osakada, Takuya; Masaoka, Takuto; Ooyama, Rumi; Horio, Nao; Mogi, Kazutaka; Nagasawa, Miho; Haga-Yamanaka, Sachiko; Touhara, Kazushige; Kikusui, Takefumi

    2017-10-23

    The Bruce effect refers to pregnancy termination in recently pregnant female rodents upon exposure to unfamiliar males [1]. This event occurs in specific combinations of laboratory mouse strains via the vomeronasal system [2, 3]; however, the responsible chemosensory signals have not been fully identified. Here we demonstrate that the male pheromone exocrine gland-secreting peptide 1 (ESP1) is one of the key factors that causes pregnancy block. Female mice exhibited high pregnancy failure rates upon encountering males that secreted different levels of ESP1 compared to the mated male. The effect was not observed in mice that lacked the ESP1 receptor, V2Rp5, which is expressed in vomeronasal sensory neurons. Prolactin surges in the blood after mating, which are essential for maintaining luteal function, were suppressed by ESP1 exposure, suggesting that a neuroendocrine mechanism underlies ESP1-mediated pregnancy failure. The single peptide pheromone ESP1 conveys not only maleness to promote female receptivity but also the males' characteristics to facilitate memorization of the mating partner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Endogenous Glucagon-like Peptide-1 Receptor Signaling in the Nucleus Tractus Solitarius is Required for Food Intake Control.

    Science.gov (United States)

    Alhadeff, Amber L; Mergler, Blake D; Zimmer, Derek J; Turner, Christopher A; Reiner, David J; Schmidt, Heath D; Grill, Harvey J; Hayes, Matthew R

    2017-06-01

    Alhough the glucagon-like peptide-1 (GLP-1) system is critical to energy balance control and is a target for obesity pharmacotherapies, the receptor-population-mediating effects of endogenous GLP-1 signaling are not fully understood. To address this, we developed a novel adeno-associated virus (AAV-GLP-1R) that utilizes short hairpin RNA to chronically knock down GLP-1 receptors (GLP-1R) in rats. As pharmacological studies highlight the hindbrain nucleus tractus solitarius (NTS) as a brain region important for GLP-1R-mediated effects on energy balance, AAV-GLP-1R was injected into the NTS to examine the role of endogenous NTS GLP-1R signaling in energy balance control. Chow intake and meal size were significantly increased following chronic NTS GLP-1R knockdown. In addition, NTS GLP-1R knockdown significantly increased self-administration of palatable food under both fixed and progressive ratio schedules of reinforcement. Collectively, these data demonstrate that endogenous NTS GLP-1R signaling is required for the control of food intake and motivation to feed, and provide a new strategy to investigate the importance of distinct GLP-1R populations in the control of a variety of functions.

  12. Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction.

    Science.gov (United States)

    Ogawa, Haruo; Qiu, Yue; Ogata, Craig M; Misono, Kunio S

    2004-07-02

    A cardiac hormone, atrial natriuretic peptide (ANP), plays a major role in blood pressure and volume regulation. ANP activities are mediated by a single span transmembrane receptor carrying intrinsic guanylate cyclase activity. ANP binding to its extracellular domain stimulates guanylate cyclase activity by an as yet unknown mechanism. Here we report the crystal structure of dimerized extracellular hormone-binding domain in complex with ANP. The structural comparison with the unliganded receptor reveals that hormone binding causes the two receptor monomers to undergo an intermolecular twist with little intramolecular conformational change. This motion produces a Ferris wheel-like translocation of two juxtamembrane domains in the dimer with essentially no change in the interdomain distance. This movement alters the relative orientation of the two domains by a shift equivalent to counterclockwise rotation of each by 24 degrees. These results suggest that transmembrane signaling by the ANP receptor is initiated via a hormone-induced rotation mechanism.

  13. Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation.

    Science.gov (United States)

    Voss, Matthias; Künzel, Ulrike; Higel, Fabian; Kuhn, Peer-Hendrik; Colombo, Alessio; Fukumori, Akio; Haug-Kröper, Martina; Klier, Bärbel; Grammer, Gudula; Seidl, Andreas; Schröder, Bernd; Obst, Reinhard; Steiner, Harald; Lichtenthaler, Stefan F; Haass, Christian; Fluhrer, Regina

    2014-12-17

    Protein N-glycosylation is involved in a variety of physiological and pathophysiological processes such as autoimmunity, tumour progression and metastasis. Signal peptide peptidase-like 3 (SPPL3) is an intramembrane-cleaving aspartyl protease of the GxGD type. Its physiological function, however, has remained enigmatic, since presently no physiological substrates have been identified. We demonstrate that SPPL3 alters the pattern of cellular N-glycosylation by triggering the proteolytic release of active site-containing ectodomains of glycosidases and glycosyltransferases such as N-acetylglucosaminyltransferase V, β-1,3 N-acetylglucosaminyltransferase 1 and β-1,4 galactosyltransferase 1. Cleavage of these enzymes leads to a reduction in their cellular activity. In line with that, reduced expression of SPPL3 results in a hyperglycosylation phenotype, whereas elevated SPPL3 expression causes hypoglycosylation. Thus, SPPL3 plays a central role in an evolutionary highly conserved post-translational process in eukaryotes. © 2014 The Authors.

  14. Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation

    Science.gov (United States)

    Voss, Matthias; Künzel, Ulrike; Higel, Fabian; Kuhn, Peer-Hendrik; Colombo, Alessio; Fukumori, Akio; Haug-Kröper, Martina; Klier, Bärbel; Grammer, Gudula; Seidl, Andreas; Schröder, Bernd; Obst, Reinhard; Steiner, Harald; Lichtenthaler, Stefan F; Haass, Christian; Fluhrer, Regina

    2014-01-01

    Protein N-glycosylation is involved in a variety of physiological and pathophysiological processes such as autoimmunity, tumour progression and metastasis. Signal peptide peptidase-like 3 (SPPL3) is an intramembrane-cleaving aspartyl protease of the GxGD type. Its physiological function, however, has remained enigmatic, since presently no physiological substrates have been identified. We demonstrate that SPPL3 alters the pattern of cellular N-glycosylation by triggering the proteolytic release of active site-containing ectodomains of glycosidases and glycosyltransferases such as N-acetylglucosaminyltransferase V, β-1,3 N-acetylglucosaminyltransferase 1 and β-1,4 galactosyltransferase 1. Cleavage of these enzymes leads to a reduction in their cellular activity. In line with that, reduced expression of SPPL3 results in a hyperglycosylation phenotype, whereas elevated SPPL3 expression causes hypoglycosylation. Thus, SPPL3 plays a central role in an evolutionary highly conserved post-translational process in eukaryotes. PMID:25354954

  15. Porcine glucagon-like peptide-2: structure, signaling, metabolism and effects

    DEFF Research Database (Denmark)

    Pedersen, Nis Borbye; Hjøllund, Karina Rahr; Johnsen, Anders H

    2007-01-01

    Mass spectrometry of HPLC-purified porcine glucagon-like peptide-2 (pGLP-2)(1) revealed a 35 amino acid sequence with C-terminal Ser and Leu, in contrast to the 33 amino acids of human, cow, rat and mouse GLP-2. Synthetic pGLP-2 stimulated cAMP-production in COS-7 cells expressing human GLP-2 (h...... (DPP-4) cleavage. Adding the DPP-4 inhibitor valine-pyrrolidide prolonged t1/2 of intact pGLP-2 (pmetabolic clearance rate (MCR) of intact pGLP-2 (23.9+/-3.82 mL/(kg x min)) was greater (p... MCR of hGLP-2 in pig. The MCR of intact pGLP-2 was reduced by valine-pyrrolidide (pporcine pancreas, pGLP-2 stimulated glucagon release (p

  16. Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling.

    Science.gov (United States)

    Lori, Martina; van Verk, Marcel C; Hander, Tim; Schatowitz, Hendrik; Klauser, Dominik; Flury, Pascale; Gehring, Christoph A; Boller, Thomas; Bartels, Sebastian

    2015-08-01

    Plant elicitor peptides (Peps) are potent inducers of pattern-triggered immunity and amplify the immune response against diverse pathogens. Peps have been discovered and studied extensively in Arabidopsis and only recently orthologues in maize were also identified and characterized in more detail.Here, the presence of PROPEPs, the Pep precursors, and PEPRs, the Pep receptors, was investigated within the plant kingdom. PROPEPs and PEPRs were identified in most sequenced species of the angiosperms. The conservation and compatibility of the Pep-PEPR-system was analysed by using plants of two distantly related dicot families, Brassicaceae and Solanaceae, and a representative family of monocot plants, the Poaceae. All three plant families contain important crop plants, including maize, rice, tomato, potato, and canola. Peps were not recognized by species outside of their plant family of origin, apparently because of a divergence of the Pep sequences. Three family-specific Pep motifs were defined and the integration of such a motif into the Pep sequence of an unrelated Pep enabled its perception. Transient transformation of Nicotiana benthamiana with the coding sequences of the AtPEPR1 and ZmPEPR1a led to the recognition of Pep peptides of Brassicaceae or Poaceae origin, respectively, and to the proper activation of downstream signalling. It was concluded that signalling machinery downstream of the PEPRs is highly conserved whereas the leucine-rich repeat domains of the PEPRs co-evolved with the Peps, leading to distinct motifs and, with it, interfamily incompatibility. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Peptide-based communication system enables Escherichia coli to Bacillus megaterium interspecies signaling.

    Science.gov (United States)

    Marchand, Nicholas; Collins, Cynthia H

    2013-11-01

    The use of mixtures of microorganisms, or microbial consortia, has the potential to improve the productivity and efficiency of increasingly complex bioprocesses. However, the use of microbial consortia has been limited by our ability to control and coordinate the behaviors of microorganisms in synthetic communities. Synthetic biologists have previously engineered cell-cell communication systems that employ machinery from bacterial quorum-sensing (QS) networks to enable population-level control of gene expression. However, additional communication systems, such as those that enable communication between different species of bacteria, are needed to enable the use of diverse species in microbial consortia for bioprocessing. Here, we use the agr QS system from Staphylococcus aureus to generate an orthogonal synthetic communication system between Gram-negative Escherichia coli and Gram-positive Bacillus megaterium that is based on the production and recognition of autoinducing peptides (AIPs). We describe the construction and characterization of two types of B. megaterium "receiver" cells, capable of AIP-dependent gene expression in response to AIPs that differ by a single amino acid. Further, we observed interspecies communication when these receiver cells were co-cultured with AIP-producing E. coli. We show that the two AIP-based systems exhibit differences in sensitivity and specificity that may be advantageous in tuning communication-dependent networks in synthetic consortia. These peptide-based communication systems will enable the coordination of gene expression, metabolic pathways and growth between diverse microbial species, and represent a key step towards the use of microbial consortia in bioprocessing and biomanufacturing. © 2013 Wiley Periodicals, Inc.

  18. Nonpeptide and peptide growth hormone secretagogues act both as ghrelin receptor agonist and as positive or negative allosteric modulators of ghrelin signaling

    DEFF Research Database (Denmark)

    Holst, Birgitte; Brandt, Erik; Bach, Anders

    2005-01-01

    Two nonpeptide (L692,429 and MK-677) and two peptide [GH-releasing peptide (GHRP)-6 and ghrelin] agonists were compared in binding and in signal transduction assays: calcium mobilization, inositol phosphate turnover, cAMP-responsive element (CRE), and serum-responsive element (SRE) controlled...... transcription, as well as arrestin mobilization. MK-677 acted as a simple agonist having an affinity of 6.5 nm and activated all signal transduction systems with similar high potency (0.2-1.4 nm). L-692,429 also displayed a very similar potency in all signaling assays (25-60 nm) but competed with a 1000-fold...... agonist properties and in their ability to modulate ghrelin signaling. A receptor model is presented wherein ghrelin normally only activates one receptor subunit in a dimer and where the smaller nonendogenous agonists bind in the other subunit to act both as coagonists and as either neutral (MK-677...

  19. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors.

    Science.gov (United States)

    Culhane, Kelly J; Liu, Yuting; Cai, Yingying; Yan, Elsa C Y

    2015-01-01

    Although family B G protein-coupled receptors (GPCRs) contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs.

  20. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors

    Directory of Open Access Journals (Sweden)

    Kelly J Culhane

    2015-11-01

    Full Text Available Although family B G protein-coupled receptors (GPCRs contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs.

  1. Conventional Matrices Loaded Onto a Graphene Layer Enhances MALDI-TOF/TOF Signal: Its Application to Improve Detection of Phosphorylated Peptides.

    Science.gov (United States)

    Rodríguez, Carlos E; Palacios, Javier; Fajardo, Ignacio; Urdiales, José Luis; Le Guével, Xavier; Lozano, José; Sánchez-Jiménez, Francisca

    2016-02-01

    This is the first study where graphene is used as a MALDI adjuvant in combination with the traditional matrix α-cyano-4-hydroxycinnamic acid (CHCA) to improve the signal intensity of peptide samples. Use of this amended matrix not only leads to increased signals but also to a higher number of peaks detected in complex samples. Additionally, the use of graphene has a stabilizing effect that can also be exploited to improve the detection of easily cleavable molecules. Graphical Abstract ᅟ.

  2. Bioinformatic and phylogenetic analysis of the CLAVATA3/EMBRYO-SURROUNDING REGION (CLE) and the CLE-LIKE signal peptide genes in the Pinophyta.

    Science.gov (United States)

    Strabala, Timothy J; Phillips, Lorelle; West, Mark; Stanbra, Lisa

    2014-02-14

    There is a rapidly growing awareness that plant peptide signalling molecules are numerous and varied and they are known to play fundamental roles in angiosperm plant growth and development. Two closely related peptide signalling molecule families are the CLAVATA3-EMBRYO-SURROUNDING REGION (CLE) and CLE-LIKE (CLEL) genes, which encode precursors of secreted peptide ligands that have roles in meristem maintenance and root gravitropism. Progress in peptide signalling molecule research in gymnosperms has lagged behind that of angiosperms. We therefore sought to identify CLE and CLEL genes in gymnosperms and conduct a comparative analysis of these gene families with angiosperms. We undertook a meta-analysis of the GenBank/EMBL/DDBJ gymnosperm EST database and the Picea abies and P. glauca genomes and identified 93 putative CLE genes and 11 CLEL genes among eight Pinophyta species, in the genera Cryptomeria, Pinus and Picea. The predicted conifer CLE and CLEL protein sequences had close phylogenetic relationships with their homologues in Arabidopsis. Notably, perfect conservation of the active CLE dodecapeptide in presumed orthologues of the Arabidopsis CLE41/44-TRACHEARY ELEMENT DIFFERENTIATION (TDIF) protein, an inhibitor of tracheary element (xylem) differentiation, was seen in all eight conifer species. We cloned the Pinus radiata CLE41/44-TDIF orthologues. These genes were preferentially expressed in phloem in planta as expected, but unexpectedly, also in differentiating tracheary element (TE) cultures. Surprisingly, transcript abundances of these TE differentiation-inhibitors sharply increased during early TE differentiation, suggesting that some cells differentiate into phloem cells in addition to TEs in these cultures. Applied CLE13 and CLE41/44 peptides inhibited root elongation in Pinus radiata seedlings. We show evidence that two CLEL genes are alternatively spliced via 3'-terminal acceptor exons encoding separate CLEL peptides. The CLE and CLEL genes are

  3. Egg cell signaling by the secreted peptide ZmEAL1 controls antipodal cell fate.

    Science.gov (United States)

    Krohn, Nadia Graciele; Lausser, Andreas; Juranić, Martina; Dresselhaus, Thomas

    2012-07-17

    Unlike in animals, female gametes of flowering plants are not the direct products of meiosis but develop from a functional megaspore after three rounds of free mitotic divisions. After nuclei migration and positioning, the eight-nucleate syncytium differentiates into the embryo sac, which contains two female gametes as well as accessory cells at the micropylar and chalazal pole, respectively. We report that an egg-cell-specific gene, ZmEAL1, is activated at the micropylar pole of the eight-nucleate syncytium. ZmEAL1 translation is restricted to the egg cell, resulting in the generation of peptide-containing vesicles directed toward its chalazal pole. RNAi knockdown studies show that ZmEAL1 is required for robust expression of the proliferation-regulatory gene IG1 at the chalazal pole of the embryo sac in antipodal cells. We further show that ZmEAL1 is required to prevent antipodal cells from adopting central cell fate. These findings show how egg cells orchestrate differentiation of the embryo sac. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Expression Pattern of the Alpha-Kafirin Promoter Coupled with a Signal Peptide from Sorghum bicolor L. Moench

    Directory of Open Access Journals (Sweden)

    Norazlina Ahmad

    2012-01-01

    Full Text Available Regulatory sequences with endosperm specificity are essential for foreign gene expression in the desired tissue for both grain quality improvement and molecular pharming. In this study, promoters of seed storage α-kafirin genes coupled with signal sequence (ss were isolated from Sorghum bicolor L. Moench genomic DNA by PCR. The α-kafirin promoter (α-kaf contains endosperm specificity-determining motifs, prolamin-box, the O2-box 1, CATC, and TATA boxes required for α-kafirin gene expression in sorghum seeds. The constructs pMB-Ubi-gfp and pMB-kaf-gfp were microprojectile bombarded into various sorghum and sweet corn explants. GFP expression was detected on all explants using the Ubi promoter but only in seeds for the α-kaf promoter. This shows that the α-kaf promoter isolated was functional and demonstrated seed-specific GFP expression. The constructs pMB-Ubi-ss-gfp and pMB-kaf-ss-gfp were also bombarded into the same explants. Detection of GFP expression showed that the signal peptide (SP::GFP fusion can assemble and fold properly, preserving the fluorescent properties of GFP.

  5. Structural studies of the natriuretic peptide receptor: a novel hormone-induced rotation mechanism for transmembrane signal transduction.

    Science.gov (United States)

    Misono, Kunio S; Ogawa, Haruo; Qiu, Yue; Ogata, Craig M

    2005-06-01

    The atrial natriuretic peptide (ANP) receptor is a single-span transmembrane receptor that is coupled to its intrinsic intracellular guanylate cyclase (GCase) catalytic activity. To investigate the mechanisms of hormone binding and signal transduction, we have expressed the extracellular hormone-binding domain of the ANP receptor (ANPR) and characterized its structure and function. The disulfide-bond structure, state of glycosylation, binding-site residues, chloride-dependence of ANP binding, dimerization, and binding stoichiometry have been determined. More recently, the crystal structures of both the apoANPR dimer and ANP-bound complex have been determined. The structural comparison between the two has shown that, upon ANP binding, two ANPR molecules in the dimer undergo an inter-molecular twist with little intra-molecular conformational change. This motion produces a Ferris wheel-like translocation of two juxtamembrane domains with essentially no change in the inter-domain distance. This movement alters the relative orientation of the two domains equivalent to counter-clockwise rotation of each by 24 degrees . These results suggest that transmembrane signaling by the ANP receptor is mediated by a novel hormone-induced rotation mechanism.

  6. The role of proteolytic processing and the stable signal peptide in expression of the Old World arenavirus envelope glycoprotein ectodomain

    Energy Technology Data Exchange (ETDEWEB)

    Burri, Dominique J.; Pasquato, Antonella; Ramos da Palma, Joel [Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne CH-1011 (Switzerland); Igonet, Sebastien; Oldstone, Michael B.A. [Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037 (United States); Kunz, Stefan, E-mail: Stefan.Kunz@chuv.ch [Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne CH-1011 (Switzerland)

    2013-02-05

    Maturation of the arenavirus GP precursor (GPC) involves proteolytic processing by cellular signal peptidase and the proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P), yielding a tripartite complex comprised of a stable signal peptide (SSP), the receptor-binding GP1, and the fusion-active transmembrane GP2. Here we investigated the roles of SKI-1/S1P processing and SSP in the biosynthesis of the recombinant GP ectodomains of lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV). When expressed in mammalian cells, the LCMV and LASV GP ectodomains underwent processing by SKI-1/S1P, followed by dissociation of GP1 from GP2. The GP2 ectodomain spontaneously formed trimers as revealed by chemical cross-linking. The endogenous SSP, known to be crucial for maturation and transport of full-length arenavirus GPC was dispensable for processing and secretion of the soluble GP ectodomain, suggesting a specific role of SSP in the stable prefusion conformation and transport of full-length GPC.

  7. Comparison of secretory signal peptides for heterologous protein expression in microalgae: Expanding the secretion portfolio for Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    João Vitor Dutra Molino

    Full Text Available Efficient protein secretion is a desirable trait for any recombinant protein expression system, together with simple, low-cost, and defined media, such as the typical media used for photosynthetic cultures of microalgae. However, low titers of secreted heterologous proteins are usually obtained, even with the most extensively studied microalga Chlamydomonas reinhardtii, preventing their industrial application. In this study, we aimed to expand and evaluate secretory signal peptides (SP for heterologous protein secretion in C. reinhardtii by comparing previously described SP with untested sequences. We compared the SPs from arylsulfatase 1 and carbonic anhydrase 1, with those of untried SPs from binding protein 1, an ice-binding protein, and six sequences identified in silico. We identified over 2000 unique SPs using the SignalP 4.0 software. mCherry fluorescence was used to compare the protein secretion of up to 96 colonies for each construct, non-secretion construct, and parental wild-type cc1690 cells. Supernatant fluorescence varied according to the SP used, with a 10-fold difference observed between the highest and lowest secretors. Moreover, two SPs identified in silico secreted the highest amount of mCherry. Our results demonstrate that the SP should be carefully selected and that efficient sequences can be coded in the C. reinhardtii genome. The SPs described here expand the portfolio available for research on heterologous protein secretion and for biomanufacturing applications.

  8. A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca2+ Signaling in Tomato.

    Science.gov (United States)

    Zhang, Huan; Hu, Zhangjian; Lei, Cui; Zheng, Chenfei; Wang, Jiao; Shao, Shujun; Li, Xin; Xia, Xiaojian; Cai, Xinzhong; Zhou, Jie; Zhou, Yanhong; Yu, Jingquan; Foyer, Christine H; Shi, Kai

    2018-03-01

    Phytosulfokine (PSK) is a disulfated pentapeptide that is an important signaling molecule. Although it has recently been implicated in plant defenses to pathogen infection, the mechanisms involved remain poorly understood. Using surface plasmon resonance and gene silencing approaches, we showed that the tomato ( Solanum lycopersicum ) PSK receptor PSKR1, rather than PSKR2, functioned as the major PSK receptor in immune responses. Silencing of PSK signaling genes rendered tomato more susceptible to infection by the economically important necrotrophic pathogen Botrytis cinerea Analysis of tomato mutants defective in either defense hormone biosynthesis or signaling demonstrated that PSK-induced immunity required auxin biosynthesis and associated defense pathways. Here, using aequorin-expressing tomato plants, we provide evidence that PSK perception by tomato PSKR1 elevated cytosolic [Ca 2+ ], leading to auxin-dependent immune responses via enhanced binding activity between calmodulins and the auxin biosynthetic YUCs. Thus, our data demonstrate that PSK acts as a damage-associated molecular pattern and is perceived mainly by PSKR1, which increases cytosolic [Ca 2+ ] and activates auxin-mediated pathways that enhance immunity of tomato plants to B. cinerea . © 2018 American Society of Plant Biologists. All rights reserved.

  9. Efficient Extracellular Expression of Phospholipase D in Escherichia Coli with an Optimized Signal Peptide

    Science.gov (United States)

    Yang, Leyun; Xu, Yu; Chen, Yong; Ying, Hanjie

    2018-01-01

    New secretion vectors containing the synthetic signal sequence (OmpA’) was constructed for the secretory production of recombinant proteins in Escherichia coli. The E. coli Phospholipase D structural gene (Accession number:NC_018658) fused to various signal sequence were expressed from the Lac promoter in E. coli Rosetta strains by induction with 0.4mM IPTG at 28°C for 48h. SDS-PaGe analysis of expression and subcellular fractions of recombinant constructs revealed the translocation of Phospholipase D (PLD) not only to the medium but also remained in periplasm of E. coli with OmpA’ signal sequence at the N-terminus of PLD. Thus the study on the effects of various surfactants on PLD extracellular production in Escherichia coli in shake flasks revealed that optimal PLD extracellular production could be achieved by adding 0.4% Triton X-100 into the medium. The maximal extracellular PLD production and extracellular enzyme activity were 0.23mg ml-1 and 16U ml-1, respectively. These results demonstrate the possibility of efficient secretory production of recombinant PLD in E. coli should be a potential industrial applications.

  10. Enhanced effect of nuclear localization signal peptide during ultrasound‑targeted microbubble destruction‑mediated gene transfection.

    Science.gov (United States)

    Cao, Sheng; Zhou, Qing; Chen, Jin-Ling; Jiang, Nan; Wang, Yi-Jia; Deng, Qing; Hu, Bo; Guo, Rui-Qiang

    2017-07-01

    Ultrasound‑targeted microbubble destruction (UTMD) can promote the entry of plasmid DNA (pDNA) into the cell cytoplasm, by increasing the permeability of the cell membrane. But the transfection efficiency remains low due to inability of the pDNA to enter the nucleus. Various methods have been explored to improve the UTMD transfection efficiency, but with little success. In cells, the classic nuclear localization signal (cNLS) peptide is an amino acid sequence that signals proteins that are due for nuclear transport. The present study aimed to investigate whether binding of a cNLS peptide to the pDNA may improve the transfection efficiency of UTMD. Four experimental groups were analyzed: Control group (UTMD + pDNA), group with cNLS (UTMD + pDNA + cNLS), group with mutated NLS (mNLS; UTMD + pDNA + mNLS), and group with cNLS and the nuclear import blocker, wheat germ agglutinin (WGA; UTMD + pDNA + cNLS + WGA). The NLS was labeled by fluorescein isothiocyanate, whereas pDNA was labeled with Cy3. Different molar ratios were tested for the NLS and pDNA combination in order to achieve optimal binding of the two molecules. Human umbilical vein endothelial cells were then transfected using the optimum ultrasonic irradiation parameters and NLS/pDNA molar ratio. At 6 h post‑transfection, the rates of Cy3‑labeled pDNA inside the cells and their nuclei were detected by flow cytometry and laser confocal microscopy, and the cellular vs. nuclear uptake of pDNA was calculated. In order to further evaluate the effect of NLS on UTMD‑mediated gene transfection, the transfection efficiency and relative expression levels of mRNA and protein were detected at 48 h post‑transfection. The results demonstrated that the optimal molar ratio of NLS with pDNA was 104:1. The rates of pDNA successful entry into the cell and nucleus were significantly higher in the cNLS group compared with the control group. The transfection efficiency, and relative expression levels of mRNA and protein

  11. Ghrelin is an orexigenic and metabolic signaling peptide in the arcuate and paraventricular nuclei.

    Science.gov (United States)

    Currie, Paul J; Mirza, Aaisha; Fuld, Rebecca; Park, Diana; Vasselli, Joseph R

    2005-08-01

    Ghrelin is a 28-amino acid acylated peptide and is the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). The GHS-R is expressed in hypothalamic nuclei, including the arcuate nucleus (Arc) where it is colocalized with neuropeptide Y (NPY) neurons. In the present study, we examined the effects of ghrelin on feeding and energy substrate utilization (respiratory quotient; RQ) following direct injections into either the arcuate or the paraventricular nucleus (PVN) of the hypothalamus. Ghrelin was administered at the beginning of the dark cycle at doses of 15-60 pmol to male and female rats. In feeding studies, food intake was measured 2 and 4 h postinjection. Separate groups of rats were injected with ghrelin, and the RQ (VCO(2)/VO(2)) was measured using an open circuit calorimeter over a 4-h period. Both Arc and PVN injections of ghrelin increased food intake in male and female rats. Ghrelin also increased RQ, reflecting a shift in energy substrate utilization in favor of carbohydrate oxidation. Because these effects are similar to those observed after PVN injection of NPY, we then assessed the impact of coinjecting ghrelin with NPY into the PVN. When rats were pretreated with very low doses of ghrelin (2.5-10 pmol), NPY's (50 pmol) effects on eating and RQ were potentiated. Overall, these data are in agreement with evidence suggesting that ghrelin functions as a gut-brain endocrine hormone implicated in the regulation of food intake and energy metabolism. Our findings are also consistent with a possible interactive role of hypothalamic ghrelin and NPY systems.

  12. The role of insulin C-peptide in the coevolution analyses of the insulin signaling pathway: a hint for its functions.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    Full Text Available As the linker between the A chain and B chain of proinsulin, C-peptide displays high variability in length and amino acid composition, and has been considered as an inert byproduct of insulin synthesis and processing for many years. Recent studies have suggested that C-peptide can act as a bioactive hormone, exerting various biological effects on the pathophysiology and treatment of diabetes. In this study, we analyzed the coevolution of insulin molecules among vertebrates, aiming at exploring the evolutionary characteristics of insulin molecule, especially the C-peptide. We also calculated the correlations of evolutionary rates between the insulin and the insulin receptor (IR sequences as well as the domain-domain pairs of the ligand and receptor by the mirrortree method. The results revealed distinctive features of C-peptide in insulin intramolecular coevolution and correlated residue substitutions, which partly supported the idea that C-peptide can act as a bioactive hormone, with significant sequence features, as well as a linker assisting the formation of mature insulin during synthesis. Interestingly, the evolution of C-peptide exerted the highest correlation with that of the insulin receptor and its ligand binding domain (LBD, implying a potential relationship with the insulin signaling pathway.

  13. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress.

    Science.gov (United States)

    Brandman, Onn; Stewart-Ornstein, Jacob; Wong, Daisy; Larson, Adam; Williams, Christopher C; Li, Gene-Wei; Zhou, Sharleen; King, David; Shen, Peter S; Weibezahn, Jimena; Dunn, Joshua G; Rouskin, Silvi; Inada, Toshifumi; Frost, Adam; Weissman, Jonathan S

    2012-11-21

    The conserved transcriptional regulator heat shock factor 1 (Hsf1) is a key sensor of proteotoxic and other stress in the eukaryotic cytosol. We surveyed Hsf1 activity in a genome-wide loss-of-function library in Saccaromyces cerevisiae as well as ~78,000 double mutants and found Hsf1 activity to be modulated by highly diverse stresses. These included disruption of a ribosome-bound complex we named the Ribosome Quality Control Complex (RQC) comprising the Ltn1 E3 ubiquitin ligase, two highly conserved but poorly characterized proteins (Tae2 and Rqc1), and Cdc48 and its cofactors. Electron microscopy and biochemical analyses revealed that the RQC forms a stable complex with 60S ribosomal subunits containing stalled polypeptides and triggers their degradation. A negative feedback loop regulates the RQC, and Hsf1 senses an RQC-mediated translation-stress signal distinctly from other stresses. Our work reveals the range of stresses Hsf1 monitors and elucidates a conserved cotranslational protein quality control mechanism. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Insights into the mechanism of isoenzyme-specific signal peptide peptidase-mediated translocation of heme oxygenase.

    Directory of Open Access Journals (Sweden)

    Bianca Schaefer

    Full Text Available It has recently been shown that signal peptide peptidase (SPP can catalyze the intramembrane cleavage of heme oxygenase-1 (HO-1 that leads to translocation of HO-1 into the cytosol and nucleus. While there is consensus that translocated HO-1 promotes tumor progression and drug resistance, the physiological signals leading to SPP-mediated intramembrane cleavage of HO-1 and the specificity of the process remain unclear. In this study, we used co-immunoprecipitation and confocal laser scanning microscopy to investigate the translocation mechanism of HO-1 and its regulation by SPP. We show that HO-1 and the closely related HO-2 isoenzyme bind to SPP under normoxic conditions. Under hypoxic conditions SPP mediates intramembrane cleavage of HO-1, but not HO-2. In experiments with an inactive HO-1 mutant (H25A we show that translocation is independent of the catalytic activity of HO-1. Studies with HO-1 / HO-2 chimeras indicate that the membrane anchor, the PEST-domain and the nuclear shuttle sequence of HO-1 are necessary for full cleavage and subsequent translocation under hypoxic conditions. In the presence of co-expressed exogenous SPP, the anchor and the PEST-domain are sufficient for translocation. Taken together, we identified the domains involved in HO-1 translocation and showed that SPP-mediated cleavage is isoform-specific and independent of HO-activity. A closer understanding of the translocation mechanism of HO-1 is of particular importance because nuclear HO-1 seems to lead to tumor progression and drug resistance.

  15. The Antidiabetic Mechanisms of Polyphenols Related to Increased Glucagon-Like Peptide-1 (GLP1) and Insulin Signaling.

    Science.gov (United States)

    Domínguez Avila, J Abraham; Rodrigo García, Joaquín; González Aguilar, Gustavo A; de la Rosa, Laura A

    2017-05-30

    Type-2 diabetes mellitus (T2DM) is an endocrine disease related to impaired/absent insulin signaling. Dietary habits can either promote or mitigate the onset and severity of T2DM. Diets rich in fruits and vegetables have been correlated with a decreased incidence of T2DM, apparently due to their high polyphenol content. Polyphenols are compounds of plant origin with several documented bioactivities related to health promotion. The present review describes the antidiabetic effects of polyphenols, specifically related to the secretion and effects of insulin and glucagon-like peptide 1 (GLP1), an enteric hormone that stimulates postprandial insulin secretion. The evidence suggests that polyphenols from various sources stimulate L-cells to secrete GLP1, increase its half-life by inhibiting dipeptidyl peptidase-4 (DPP4), stimulate β-cells to secrete insulin and stimulate the peripheral response to insulin, increasing the overall effects of the GLP1-insulin axis. The glucose-lowering potential of polyphenols has been evidenced in various acute and chronic models of healthy and diabetic organisms. Some polyphenols appear to exert their effects similarly to pharmaceutical antidiabetics; thus, rigorous clinical trials are needed to fully validate this claim. The broad diversity of polyphenols has not allowed for entirely describing their mechanisms of action, but the evidence advocates for their regular consumption.

  16. The Antidiabetic Mechanisms of Polyphenols Related to Increased Glucagon-Like Peptide-1 (GLP1 and Insulin Signaling

    Directory of Open Access Journals (Sweden)

    J. Abraham Domínguez Avila

    2017-05-01

    Full Text Available Type-2 diabetes mellitus (T2DM is an endocrine disease related to impaired/absent insulin signaling. Dietary habits can either promote or mitigate the onset and severity of T2DM. Diets rich in fruits and vegetables have been correlated with a decreased incidence of T2DM, apparently due to their high polyphenol content. Polyphenols are compounds of plant origin with several documented bioactivities related to health promotion. The present review describes the antidiabetic effects of polyphenols, specifically related to the secretion and effects of insulin and glucagon-like peptide 1 (GLP1, an enteric hormone that stimulates postprandial insulin secretion. The evidence suggests that polyphenols from various sources stimulate L-cells to secrete GLP1, increase its half-life by inhibiting dipeptidyl peptidase-4 (DPP4, stimulate β-cells to secrete insulin and stimulate the peripheral response to insulin, increasing the overall effects of the GLP1-insulin axis. The glucose-lowering potential of polyphenols has been evidenced in various acute and chronic models of healthy and diabetic organisms. Some polyphenols appear to exert their effects similarly to pharmaceutical antidiabetics; thus, rigorous clinical trials are needed to fully validate this claim. The broad diversity of polyphenols has not allowed for entirely describing their mechanisms of action, but the evidence advocates for their regular consumption.

  17. C3a-derived peptide binds to the type I FcepsilonR and inhibits proximal-coupling signal processes and cytokine secretion by mast cells.

    Science.gov (United States)

    Péterfy, Hajna; Tóth, Gábor; Pecht, Israel; Erdei, Anna

    2008-10-01

    A peptide with the natural sequence derived from the complement component C3a, designated C3a7, and C3a9, having a modified sequence of that, was previously shown to inhibit the high-affinity IgER (FcepsilonRI)-induced secretory response of both mucosal and serosal-type mast cells. In addition, several processes that couple the FcepsilonRI stimulus to the cellular response were all suppressed in the presence of these peptides. Here, we show that peptide C3a9 binds to the FcepsilonRI on the surface of unperturbed mast cells (rat mucosal-type RBL-2H3 cell line) and remains bound even after FcepsilonRI-IgE aggregation by antigen as assessed by confocal microscopy. Moreover, that peptide interferes the initial steps of FcepsilonRI-coupling network. Namely, peptide binding to the FcepsilonRI beta-chain interrupts this chain's association with both src family protein tyrosine kinases Lyn and Fyn and enhances the internalization of the receptor. C3a9 was further found to inhibit the phosphorylation of two members of the mitogen-activated protein kinase family, extracellular signal-regulated kinase (ERK) and p38. Although ERK is usually activated via the ras-raf-mitogen-activated protein kinase/ERK kinase (MEK) pathway, our results show that C3a9 has no effect on the c-raf phosphorylation, suggesting that this complement-derived peptide inhibits ERK activation via an alternative route. C3a9 also inhibits the late-phase response to FcepsilonRI stimulus of bone marrow-derived mast cells, reducing secretion of the inflammatory cytokines IL-6 and tumor necrosis factor-alpha. Taken together, the consequence of its interference with the earliest steps of FcepsilonRI stimulus-response coupling and the C3a-derived peptide inhibits both the immediate and the late-phase responses of mast cells.

  18. Gastro-Resistant Insulin Receptor-Binding Peptide from Momordica charantia Improved the Glucose Tolerance in Streptozotocin-Induced Diabetic Mice via Insulin Receptor Signaling Pathway.

    Science.gov (United States)

    Lo, Hsin-Yi; Li, Chia-Cheng; Chen, Feng-Yuan; Chen, Jaw-Chyun; Hsiang, Chien-Yun; Ho, Tin-Yun

    2017-10-25

    Momordica charantia is a commonly used food and has been used for the management of diabetes. Our previous study has identified an insulin receptor (IR)-binding protein (mcIRBP) from Momordica charantia. Here we identified the gastro-resistant hypoglycemic bioactive peptides from protease-digested mcIRBP. By in vitro digestion and IR kinase activity assay, we found that a 9-amino-acid-residue peptide, mcIRBP-9, was a gastro-resistant peptide that enhanced IR kinase activities. mcIRBP-9 activated IR signaling transduction pathway, which resulted in the phosphorylation of IR, the translocation of glucose transporter 4, and the uptake of glucose in cells. Intraperitoneal and oral administration of mcIRBP-9 stimulated the glucose clearance by 30.91 ± 0.39% and 32.09 ± 0.38%, respectively, in streptozotocin-induced diabetic mice. Moreover, a pilot study showed that daily ingestion of mcIRBP-9 for 30 days decreased the fasting blood glucose levels and glycated hemoglobin (HbA1c) levels by 23.62 ± 6.14% and 24.06 ± 1.53%, respectively. In conclusion, mcIRBP-9 is a unique gastro-resistant bioactive peptide generated after the digestion of mcIRBP. Furthermore, oral administration of mcIRBP-9 improves both the glucose tolerance and the HbA1c levels in diabetic mice via targeting IR signaling transduction pathway.

  19. The Asia 2 specific signal peptide region and other domains in fusion protein genes characterized Asia 1 and Asia 2 canine distemper viruses

    Science.gov (United States)

    Sultan, Serageldeen; Charoenvisal, Nataya; Lan, Nguyen Thi; Yamaguchi, Ryoji; Maeda, Ken; Kai, Kazushige

    2009-01-01

    Background Although the presence of Asia 2 group of canine distemper virus (CDV) was known by the sequencing and phylogenetic analysis of hemagglutinin (H) gene, the fusion (F) protein gene sequence of Asia 2 group had not been identified. So, the sequence analysis of F gene was carried out to elucidate the genotypic varaitons among Asian isolates. Results The phylogenetic analysis of F and H gene sequences from fourteen CDV isolates obtained from diseased dogs in Japan and Thailand indicated that the F genes had a new initiation codon and extra 27 nucleotides upstream of the usual open reading frame (ORF) and the F proteins had extra 9 amino acids at the N-terminal position only in Asia 2 isolates. On the contrary, the Asia 1 isolates had three extra putative N-glycosylation sites (two sites in the signal peptide region and one site in the F1 region) except for two strains of Th12 and Ac96I (two sites in signal peptide region) adding to four putative N-glycosylation sites that were conserved among all Asian isolates and Onderstepoort strain. In addition to this difference in N-glycosylation sites, the signal peptide region had a great diversity between Asia 1 and Asia 2 isolates. Also, characteristic amino acids were detected for some strains. Conclusion Asia 2 isolates were distinguished from other CDV lineages by the extra 27 nucleotide sequence. The signal peptide region of F gene gives a remarkable differentiation between Asia 1 and Asia 2 isolates. Strains Th12 and Ac96I were differentiated from other Asia 1 strains by the F protein glycosylation sites. PMID:19807927

  20. GUANYLYL CYCLASE/NATRIURETIC PEPTIDES RECEPTOR-A SIGNALING ANTAGONIZES PHOSPHOINOSITIDE HYDROLYSIS, Ca2+ RELEASE, AND ACTIVATION OF PROTEIN KINASE C

    Directory of Open Access Journals (Sweden)

    Kailash N Pandey

    2014-08-01

    Full Text Available Thus far, three related natriuretic peptides (NPs and three distinct sub-types of cognate NP receptors have been identified and characterized based on the specific ligand binding affinities, guanylyl cyclase activity, and generation of intracellular cGMP. Atrial and brain natriuretic peptides (ANP and BNP specifically bind and activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA, and C-type natriuretic peptide (CNP shows specificity to activate guanylyl cyclase/natriuretic peptide receptor-B (GC-B/NPRB. All three NPs bind to natriuretic peptide receptor-C (NPRC, which is also known as clearance or silent receptor. The NPRA is considered the principal biologically active receptor of NP family; however, the molecular signaling mechanisms of NP receptors are not well understood. The activation of NPRA and NPRB produces the intracellular second messenger cGMP, which serves as the major signaling molecule of all three NPs. The activation of NPRB in response to CNP also produces the intracellular cGMP; however, at lower magnitude than that of NPRA, which is activated by ANP and BNP. In addition to enhanced accumulation of intracellular cGMP in response to all three NPs, the levels of cAMP, Ca2+ and inositol triphosphate (IP3 have also been reported to be altered in different cells and tissue types. Interestingly, ANP has been found to lower the concentrations of cAMP, Ca2+, and IP3; however, NPRC has been proposed to increase the levels of these metabolic signaling molecules. The mechanistic studies of decreased and/or increased levels of cAMP, Ca2+, and IP3 in response to NPs and their receptors have not yet been clearly established. This review focuses on the signaling mechanisms of ANP/NPRA and their biological effects involving an increased level of intracellular accumulation of cGMP and a decreased level of cAMP, Ca2+, and IP3 in different cells and tissue systems.

  1. Induction of apoptosis by a peptide from Porphyra yezoensis: regulation of the insulin-like growth factor I receptor signaling pathway in MCF-7 cells.

    Science.gov (United States)

    Park, Su-Jin; Ryu, Jina; Kim, In-Hye; Choi, Youn-Hee; Nam, Taek-Jeong

    2014-09-01

    This study examined how PPY, a peptide from Porphyra yezoensis, regulates multiple cell growth-related signaling pathways in MCF-7 cells. This study determined that PPY induces cell cycle arrest and inhibits the IGF-IR signaling pathway. Cell proliferation studies revealed that PPY induced cell death in a dose-dependent manner. Expression levels of IGF-IR were decreased in MCF-7 cells by PPY in a dose‑dependent manner. These results indicate that inhibition of the IGF-IR pathway is also involved in PPY induced proliferation of MCF-7 cells. In addition, these data demonstrated that PPY induces cell cycle arrest and activates apoptosis.

  2. Penetration of the signal sequence of Escherichia coli PhoE protein into phospholipid model membranes leads to lipid-specific changes in signal peptide structure and alterations of lipid organization

    International Nuclear Information System (INIS)

    Batenburg, A.M.; Demel, R.A.; Verkleij, A.J.; de Kruijff, B.

    1988-01-01

    In order to obtain more insight in the initial steps of the process of protein translocation across membranes, biophysical investigations were undertaken on the lipid specificity and structural consequences of penetration of the PhoE signal peptide into lipid model membranes and on the conformation of the signal peptide adopted upon interaction with the lipids. When the monolayer technique and differential scanning calorimetry are used, a stronger penetration is observed for negatively charged lipids, significantly influenced by the physical state of the lipid but not by temperature or acyl chain unsaturation as such. Although the interaction is principally electrostatic, as indicated also by the strong penetration of N-terminal fragments into negatively charged lipid monolayers, the effect of ionic strength suggests an additional hydrophobic component. Most interestingly with regard to the mechanism of protein translocation, the molecular area of the peptide in the monolayer also shows lipid specificity: the area in the presence of PC is consistent with a looped helical orientation, whereas in the presence of cardiolipin a time-dependent conformational change is observed, most likely leading from a looped to a stretched orientation with the N-terminus directed toward the water. This is in line also with the determined peptide-lipid stoichiometry. Preliminary 31 P NMR and electron microscopy data on the interaction with lipid bilayer systems indicate loss of bilayer structure

  3. The application of Gaussian mixture models for signal quantification in MALDI-TOF mass spectrometry of peptides.

    Directory of Open Access Journals (Sweden)

    John Christian G Spainhour

    Full Text Available Matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF coupled with stable isotope standards (SIS has been used to quantify native peptides. This peptide quantification by MALDI-TOF approach has difficulties quantifying samples containing peptides with ion currents in overlapping spectra. In these overlapping spectra the currents sum together, which modify the peak heights and make normal SIS estimation problematic. An approach using Gaussian mixtures based on known physical constants to model the isotopic cluster of a known compound is proposed here. The characteristics of this approach are examined for single and overlapping compounds. The approach is compared to two commonly used SIS quantification methods for single compound, namely Peak Intensity method and Riemann sum area under the curve (AUC method. For studying the characteristics of the Gaussian mixture method, Angiotensin II, Angiotensin-2-10, and Angiotenisn-1-9 and their associated SIS peptides were used. The findings suggest, Gaussian mixture method has similar characteristics as the two methods compared for estimating the quantity of isolated isotopic clusters for single compounds. All three methods were tested using MALDI-TOF mass spectra collected for peptides of the renin-angiotensin system. The Gaussian mixture method accurately estimated the native to labeled ratio of several isolated angiotensin peptides (5.2% error in ratio estimation with similar estimation errors to those calculated using peak intensity and Riemann sum AUC methods (5.9% and 7.7%, respectively. For overlapping angiotensin peptides, (where the other two methods are not applicable the estimation error of the Gaussian mixture was 6.8%, which is within the acceptable range. In summary, for single compounds the Gaussian mixture method is equivalent or marginally superior compared to the existing methods of peptide quantification and is capable of quantifying overlapping (convolved peptides within

  4. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE - and amyloid beta 1-42-induced signal transduction in glial cells

    Directory of Open Access Journals (Sweden)

    Slowik Alexander

    2012-11-01

    Full Text Available Abstract Background Recent studies suggest that the chemotactic G-protein-coupled-receptor (GPCR formyl-peptide-receptor-like-1 (FPRL1 and the receptor-for-advanced-glycation-end-products (RAGE play an important role in the inflammatory response involved in neurodegenerative disorders such as Alzheimer’s disease (AD. Therefore, the expression and co-localisation of mouse formyl peptide receptor (mFPR 1 and 2 as well as RAGE in an APP/PS1 transgenic mouse model using immunofluorescence and real-time RT-PCR were analysed. The involvement of rat or human FPR1/FPRL1 (corresponds to mFPR1/2 and RAGE in amyloid-β 1–42 (Aβ1-42-induced signalling were investigated by extracellular signal regulated kinase 1/2 (ERK1/2 phosphorylation. Furthermore, the cAMP level in primary rat glial cells (microglia and astrocytes and transfected HEK 293 cells was measured. Formyl peptide receptors and RAGE were inhibited by a small synthetic antagonist WRW4 and an inactive receptor variant delta-RAGE, lacking the intracytoplasmatic domains. Results We demonstrated a strong increase of mFPR1/2 and RAGE expression in the cortex and hippocampus of APP/PS1 transgenic mice co-localised to the glial cells. In addition, the Aβ1-42-induced signal transduction is dependant on FPRL1, but also on FPR1. For the first time, we have shown a functional interaction between FPRL1/FPR1 and RAGE in RAGE ligands S100B- or AGE-mediated signalling by ERK1/2 phosphorylation and cAMP level measurement. In addition a possible physical interaction between FPRL1 as well as FPR1 and RAGE was shown with co-immunoprecipitation and fluorescence microscopy. Conclusions The results suggest that both formyl peptide receptors play an essential role in Aβ1-42-induced signal transduction in glial cells. The interaction with RAGE could explain the broad ligand spectrum of formyl peptide receptors and their important role for inflammation and the host defence against infections.

  5. Insulin production and signaling in renal tubules of Drosophila is under control of tachykinin-related peptide and regulates stress resistance.

    Science.gov (United States)

    Söderberg, Jeannette A E; Birse, Ryan T; Nässel, Dick R

    2011-05-10

    The insulin-signaling pathway is evolutionarily conserved in animals and regulates growth, reproduction, metabolic homeostasis, stress resistance and life span. In Drosophila seven insulin-like peptides (DILP1-7) are known, some of which are produced in the brain, others in fat body or intestine. Here we show that DILP5 is expressed in principal cells of the renal tubules of Drosophila and affects survival at stress. Renal (Malpighian) tubules regulate water and ion homeostasis, but also play roles in immune responses and oxidative stress. We investigated the control of DILP5 signaling in the renal tubules by Drosophila tachykinin peptide (DTK) and its receptor DTKR during desiccative, nutritional and oxidative stress. The DILP5 levels in principal cells of the tubules are affected by stress and manipulations of DTKR expression in the same cells. Targeted knockdown of DTKR, DILP5 and the insulin receptor dInR in principal cells or mutation of Dilp5 resulted in increased survival at either stress, whereas over-expression of these components produced the opposite phenotype. Thus, stress seems to induce hormonal release of DTK that acts on the renal tubules to regulate DILP5 signaling. Manipulations of S6 kinase and superoxide dismutase (SOD2) in principal cells also affect survival at stress, suggesting that DILP5 acts locally on tubules, possibly in oxidative stress regulation. Our findings are the first to demonstrate DILP signaling originating in the renal tubules and that this signaling is under control of stress-induced release of peptide hormone.

  6. Insulin Production and Signaling in Renal Tubules of Drosophila Is under Control of Tachykinin-Related Peptide and Regulates Stress Resistance

    Science.gov (United States)

    Söderberg, Jeannette A. E.; Birse, Ryan T.; Nässel, Dick R.

    2011-01-01

    The insulin-signaling pathway is evolutionarily conserved in animals and regulates growth, reproduction, metabolic homeostasis, stress resistance and life span. In Drosophila seven insulin-like peptides (DILP1-7) are known, some of which are produced in the brain, others in fat body or intestine. Here we show that DILP5 is expressed in principal cells of the renal tubules of Drosophila and affects survival at stress. Renal (Malpighian) tubules regulate water and ion homeostasis, but also play roles in immune responses and oxidative stress. We investigated the control of DILP5 signaling in the renal tubules by Drosophila tachykinin peptide (DTK) and its receptor DTKR during desiccative, nutritional and oxidative stress. The DILP5 levels in principal cells of the tubules are affected by stress and manipulations of DTKR expression in the same cells. Targeted knockdown of DTKR, DILP5 and the insulin receptor dInR in principal cells or mutation of Dilp5 resulted in increased survival at either stress, whereas over-expression of these components produced the opposite phenotype. Thus, stress seems to induce hormonal release of DTK that acts on the renal tubules to regulate DILP5 signaling. Manipulations of S6 kinase and superoxide dismutase (SOD2) in principal cells also affect survival at stress, suggesting that DILP5 acts locally on tubules, possibly in oxidative stress regulation. Our findings are the first to demonstrate DILP signaling originating in the renal tubules and that this signaling is under control of stress-induced release of peptide hormone. PMID:21572965

  7. Insulin production and signaling in renal tubules of Drosophila is under control of tachykinin-related peptide and regulates stress resistance.

    Directory of Open Access Journals (Sweden)

    Jeannette A E Söderberg

    Full Text Available The insulin-signaling pathway is evolutionarily conserved in animals and regulates growth, reproduction, metabolic homeostasis, stress resistance and life span. In Drosophila seven insulin-like peptides (DILP1-7 are known, some of which are produced in the brain, others in fat body or intestine. Here we show that DILP5 is expressed in principal cells of the renal tubules of Drosophila and affects survival at stress. Renal (Malpighian tubules regulate water and ion homeostasis, but also play roles in immune responses and oxidative stress. We investigated the control of DILP5 signaling in the renal tubules by Drosophila tachykinin peptide (DTK and its receptor DTKR during desiccative, nutritional and oxidative stress. The DILP5 levels in principal cells of the tubules are affected by stress and manipulations of DTKR expression in the same cells. Targeted knockdown of DTKR, DILP5 and the insulin receptor dInR in principal cells or mutation of Dilp5 resulted in increased survival at either stress, whereas over-expression of these components produced the opposite phenotype. Thus, stress seems to induce hormonal release of DTK that acts on the renal tubules to regulate DILP5 signaling. Manipulations of S6 kinase and superoxide dismutase (SOD2 in principal cells also affect survival at stress, suggesting that DILP5 acts locally on tubules, possibly in oxidative stress regulation. Our findings are the first to demonstrate DILP signaling originating in the renal tubules and that this signaling is under control of stress-induced release of peptide hormone.

  8. Oligo-peptide I-C-F-6 inhibits hepatic stellate cell activation and ameliorates CCl4-induced liver fibrosis by suppressing NF-κB signaling and Wnt/β-catenin signaling.

    Science.gov (United States)

    Sun, Haitao; Chen, Guanxin; Wen, Bin; Sun, Jialing; An, Haiyan; Pang, Jie; Xu, Wei; Yang, Xuemei; He, Songqi

    2018-02-02

    Oligo-peptide I-C-F-6 is a Carapax trionycis extract component that has an effect on hepatic fibrosis, however, its mechanism of action is still unclear. This study investigated whether oligo-peptide I-C-F-6 could inhibit liver fibrosis by suppressing NF-κB and Wnt/β-catenin signaling, which are important in liver fibrosis. HSC-T6 cells were treated with oligo-peptide I-C-F-6, and rats were divided randomly into five groups: control (saline), CCl 4 , CCl 4 plus oligo-peptide I-C-F-6 (0.12 and 0.24 mg/kg), and CCl 4 plus colchicine (0.11 mg/kg). Here, we demonstrated that oligo-peptide I-C-F-6 ameliorated liver injury, inflammation, and hepatic fibrogenesis induced by CCl 4 . Oligo-peptide I-C-F-6 also inhibited the activation of hepatic stellate cells (HSCs) in vivo and in vitro, as evaluated by the expression of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA), which is a specific marker of HSC activation. Moreover, oligo-peptide I-C-F-6 significantly reduced the expression and distribution of β-catenin, P-AKT, phospho (P)-GSK-3β, nuclear factor κB (NF-κB) P65, phospho-P65, and IκB kinase α/β (IKK-α/β) levels; additionally, IκB-α level was elevated both in vivo and in vitro. Together, these results indicate that oligo-peptide I-C-F-6 has hepatoprotective and anti-fibrotic effects in animal models of liver fibrosis, the mechanism of which may be related to modulating NF-κB and Wnt/β-catenin signaling. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  9. Arginine-rich cross-linking peptides with different SV40 nuclear localization signal content as vectors for intranuclear DNA delivery.

    Science.gov (United States)

    Bogacheva, Mariia; Egorova, Anna; Slita, Anna; Maretina, Marianna; Baranov, Vladislav; Kiselev, Anton

    2017-11-01

    The major barriers for intracellular DNA transportation by cationic polymers are their toxicity, poor endosomal escape and inefficient nuclear uptake. Therefore, we designed novel modular peptide-based carriers modified with SV40 nuclear localization signal (NLS). Core peptide consists of arginine, histidine and cysteine residues for DNA condensation, endosomal escape promotion and interpeptide cross-linking, respectively. We investigated three polyplexes with different NLS content (10 mol%, 50 mol% and 90 mol% of SV40 NLS) as vectors for intranuclear DNA delivery. All carriers tested were able to condense DNA, to protect it from DNAase I and were not toxic to the cells. We observed that cell cycle arrest by hydroxyurea did not affect transfection efficacy of NLS-modified carriers which we confirmed using quantitative confocal microscopy analysis. Overall, peptide carrier modified with 90 mol% of SV40 NLS provided efficient transfection and nuclear uptake in non-dividing cells. Thus, incorporation of NLS into arginine-rich cross-linking peptides is an adequate approach to the development of efficient intranuclear gene delivery vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: a peptide-based drug therapy

    Science.gov (United States)

    Deng, Yuanjun; Guo, Yanyan; Liu, Ping; Zeng, Rui; Ning, Yong; Pei, Guangchang; Li, Yueqiang; Chen, Meixue; Guo, Shuiming; Li, Xiaoqing; Han, Min; Xu, Gang

    2016-01-01

    Endothelial-to-mesenchymal transition (EndMT) contributes to the emergence of fibroblasts and plays a significant role in renal interstitial fibrosis. Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and regulates many signaling pathways. However, the significance of PP2A in EndMT is poorly understood. In present study, the role of PP2A in EndMT was evaluated. We demonstrated that PP2A activated in endothelial cells (EC) during their EndMT phenotype acquisition and in the mouse model of obstructive nephropathy (i.e., UUO). Inhibition of PP2A activity by its specific inhibitor prevented EC undergoing EndMT. Importantly, PP2A activation was dependent on tyrosine nitration at 127 in the catalytic subunit of PP2A (PP2Ac). Our renal-protective strategy was to block tyrosine127 nitration to inhibit PP2A activation by using a mimic peptide derived from PP2Ac conjugating a cell penetrating peptide (CPP: TAT), termed TAT-Y127WT. Pretreatment withTAT-Y127WT was able to prevent TGF-β1-induced EndMT. Administration of the peptide to UUO mice significantly ameliorated renal EndMT level, with preserved density of peritubular capillaries and reduction in extracellular matrix deposition. Taken together, these results suggest that inhibiting PP2Ac nitration using a mimic peptide is a potential preventive strategy for EndMT in renal fibrosis.

  11. Sustained Persistence of IL2 Signaling Enhances the Antitumor Effect of Peptide Vaccines through T-cell Expansion and Preventing PD-1 Inhibition.

    Science.gov (United States)

    Sultan, Hussein; Kumai, Takumi; Fesenkova, Valentyna I; Fan, Aaron E; Wu, Juan; Cho, Hyun-Il; Kobayashi, Hiroya; Harabuchi, Yasuaki; Celis, Esteban

    2018-02-26

    Peptide vaccines can be a successful and cost-effective way of generating T-cell responses against defined tumor antigens, especially when combined with immune adjuvants such as poly-IC. However, strong immune adjuvants can induce a collateral increase in numbers of irrelevant, nonspecific T cells, which limits the effectiveness of the peptide vaccines. Here, we report that providing prolonged IL2 signaling in the form of either IL2/anti-IL2 complexes or pegylated IL2 overcomes the competitive suppressive effect of irrelevant T cells, allowing the preferential expansion of antigen-specific T cells. In addition to increasing the number of tumor-reactive T cells, sustained IL2 enhanced the ability of T cells to resist PD-1-induced negative signals, increasing the therapeutic effectiveness of the vaccines against established tumors. This vaccination strategy using peptides and sustained IL2 could be taken into the clinic for the treatment of cancer. Cancer Immunol Res; 6(5); 1-11. ©2018 AACR. ©2018 American Association for Cancer Research.

  12. Effects of conformational peptide probe DP4 on bidirectional signaling between DHPR and RyR1 calcium channels in voltage-clamped skeletal muscle fibers.

    Science.gov (United States)

    Olojo, Rotimi O; Hernández-Ochoa, Erick O; Ikemoto, Noriaki; Schneider, Martin F

    2011-05-18

    In skeletal muscle, excitation-contraction coupling involves the activation of dihydropyridine receptors (DHPR) and type-1 ryanodine receptors (RyR1) to produce depolarization-dependent sarcoplasmic reticulum Ca²⁺ release via orthograde signaling. Another form of DHPR-RyR1 communication is retrograde signaling, in which RyRs modulate the gating of DHPR. DP4 (domain peptide 4), is a peptide corresponding to residues Leu²⁴⁴²-Pro²⁴⁷⁷ of the central domain of the RyR1 that produces RyR1 channel destabilization. Here we explore the effects of DP4 on orthograde excitation-contraction coupling and retrograde RyR1-DHPR signaling in isolated murine muscle fibers. Intracellular dialysis of DP4 increased the peak amplitude of Ca²⁺ release during step depolarizations by 64% without affecting its voltage-dependence or kinetics, and also caused a similar increase in Ca²⁺ release during an action potential waveform. DP4 did not modify either the amplitude or the voltage-dependence of the intramembrane charge movement. However, DP4 augmented DHPR Ca²⁺ current density without affecting its voltage-dependence. Our results demonstrate that the conformational changes induced by DP4 regulate both orthograde E-C coupling and retrograde RyR1-DHPR signaling. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. More than 1,001 problems with protein domain databases: transmembrane regions, signal peptides and the issue of sequence homology.

    Directory of Open Access Journals (Sweden)

    Wing-Cheong Wong

    Full Text Available Large-scale genome sequencing gained general importance for life science because functional annotation of otherwise experimentally uncharacterized sequences is made possible by the theory of biomolecular sequence homology. Historically, the paradigm of similarity of protein sequences implying common structure, function and ancestry was generalized based on studies of globular domains. Having the same fold imposes strict conditions over the packing in the hydrophobic core requiring similarity of hydrophobic patterns. The implications of sequence similarity among non-globular protein segments have not been studied to the same extent; nevertheless, homology considerations are silently extended for them. This appears especially detrimental in the case of transmembrane helices (TMs and signal peptides (SPs where sequence similarity is necessarily a consequence of physical requirements rather than common ancestry. Thus, matching of SPs/TMs creates the illusion of matching hydrophobic cores. Therefore, inclusion of SPs/TMs into domain models can give rise to wrong annotations. More than 1001 domains among the 10,340 models of Pfam release 23 and 18 domains of SMART version 6 (out of 809 contain SP/TM regions. As expected, fragment-mode HMM searches generate promiscuous hits limited to solely the SP/TM part among clearly unrelated proteins. More worryingly, we show explicit examples that the scores of clearly false-positive hits, even in global-mode searches, can be elevated into the significance range just by matching the hydrophobic runs. In the PIR iProClass database v3.74 using conservative criteria, we find that at least between 2.1% and 13.6% of its annotated Pfam hits appear unjustified for a set of validated domain models. Thus, false-positive domain hits enforced by SP/TM regions can lead to dramatic annotation errors where the hit has nothing in common with the problematic domain model except the SP/TM region itself. We suggest a workflow of

  14. Cell surface-associated anti-MUC1-derived signal peptide antibodies: implications for cancer diagnostics and therapy.

    Directory of Open Access Journals (Sweden)

    Riva Kovjazin

    Full Text Available The MUC1 tumor associated antigen is highly expressed on a range of tumors. Its broad distribution on primary tumors and metastases renders it an attractive target for immunotherapy. After synthesis MUC1 is cleaved, yielding a large soluble extracellular alpha subunit containing the tandem repeats array (TRA domain specifically bound, via non-covalent interaction, to a smaller beta subunit containing the transmembrane and cytoplasmic domains. Thus far, inconclusive efficacy has been reported for anti-MUC1 antibodies directed against the soluble alpha subunit. Targeting the cell bound beta subunit, may bypass limitations posed by circulating TRA domains. MUC1's signal peptide (SP domain promiscuously binds multiple MHC class II and Class I alleles, which upon vaccination, generated robust T-cell immunity against MUC1-positive tumors. This is a first demonstration of non-MHC associated, MUC1 specific, cell surfaces presence for MUC1 SP domain. Polyclonal and monoclonal antibodies generated against MUC1 SP domain specifically bind a large variety of MUC1-positive human solid and haematological tumor cell lines; MUC1-positive bone marrow derived plasma cells obtained from multiple myeloma (MM-patients, but not MUC1 negative tumors cells, and normal naive primary blood and epithelial cells. Membranal MUC1 SP appears mainly as an independent entity but also co-localized with the full MUC1 molecule. MUC1-SP specific binding in BM-derived plasma cells can assist in selecting patients to be treated with anti-MUC1 SP therapeutic vaccine, ImMucin. A therapeutic potential of the anti-MUC1 SP antibodies was suggested by their ability to support of complement-mediated lysis of MUC1-positive tumor cells but not MUC1 negative tumor cells and normal naive primary epithelial cells. These findings suggest a novel cell surface presence of MUC1 SP domain, a potential therapeutic benefit for anti-MUC1 SP antibodies in MUC1-positive tumors and a selection tool for MM

  15. Pedal peptide/orcokinin-type neuropeptide signaling in a deuterostome: The anatomy and pharmacology of starfish myorelaxant peptide in Asterias rubens.

    Science.gov (United States)

    Lin, Ming; Egertová, Michaela; Zampronio, Cleidiane G; Jones, Alexandra M; Elphick, Maurice R

    2017-12-15

    Pedal peptide (PP) and orcokinin (OK) are related neuropeptides that were discovered in protostomian invertebrates (mollusks, arthropods). However, analysis of genome/transcriptome sequence data has revealed that PP/OK-type neuropeptides also occur in a deuterostomian phylum-the echinoderms. Furthermore, a PP/OK-type neuropeptide (starfish myorelaxant peptide, SMP) was recently identified as a muscle relaxant in the starfish Patiria pectinifera. Here mass spectrometry was used to identify five neuropeptides (ArPPLN1a-e) derived from the SMP precursor (PP-like neuropeptide precursor 1; ArPPLNP1) in the starfish Asterias rubens. Analysis of the expression of ArPPLNP1 and neuropeptides derived from this precursor in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed a widespread pattern of expression, with labeled cells and/or processes present in the radial nerve cords, circumoral nerve ring, digestive system (e.g., cardiac stomach) and body wall-associated muscles (e.g., apical muscle) and appendages (e.g., tube feet and papulae). Furthermore, our data provide the first evidence that neuropeptides are present in the lateral motor nerves and in nerve processes innervating interossicular muscles. In vitro pharmacological tests with SMP (ArPPLN1b) revealed that it causes dose-dependent relaxation of apical muscle, tube foot and cardiac stomach preparations from A. rubens. Collectively, these anatomical and pharmacological data indicate that neuropeptides derived from ArPPLNP1 act as inhibitory neuromuscular transmitters in starfish, which contrasts with the myoexcitatory actions of PP/OK-type neuropeptides in protostomian invertebrates. Thus, the divergence of deuterostomes and protostomes may have been accompanied by an inhibitory-excitatory transition in the roles of PP/OK-type neuropeptides as regulators of muscle activity. © 2017 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  16. Pedal peptide/orcokinin‐type neuropeptide signaling in a deuterostome: The anatomy and pharmacology of starfish myorelaxant peptide in Asterias rubens

    Science.gov (United States)

    Lin, Ming; Egertová, Michaela; Zampronio, Cleidiane G.; Jones, Alexandra M.

    2017-01-01

    Abstract Pedal peptide (PP) and orcokinin (OK) are related neuropeptides that were discovered in protostomian invertebrates (mollusks, arthropods). However, analysis of genome/transcriptome sequence data has revealed that PP/OK‐type neuropeptides also occur in a deuterostomian phylum—the echinoderms. Furthermore, a PP/OK‐type neuropeptide (starfish myorelaxant peptide, SMP) was recently identified as a muscle relaxant in the starfish Patiria pectinifera. Here mass spectrometry was used to identify five neuropeptides (ArPPLN1a‐e) derived from the SMP precursor (PP‐like neuropeptide precursor 1; ArPPLNP1) in the starfish Asterias rubens. Analysis of the expression of ArPPLNP1 and neuropeptides derived from this precursor in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed a widespread pattern of expression, with labeled cells and/or processes present in the radial nerve cords, circumoral nerve ring, digestive system (e.g., cardiac stomach) and body wall‐associated muscles (e.g., apical muscle) and appendages (e.g., tube feet and papulae). Furthermore, our data provide the first evidence that neuropeptides are present in the lateral motor nerves and in nerve processes innervating interossicular muscles. In vitro pharmacological tests with SMP (ArPPLN1b) revealed that it causes dose‐dependent relaxation of apical muscle, tube foot and cardiac stomach preparations from A. rubens. Collectively, these anatomical and pharmacological data indicate that neuropeptides derived from ArPPLNP1 act as inhibitory neuromuscular transmitters in starfish, which contrasts with the myoexcitatory actions of PP/OK‐type neuropeptides in protostomian invertebrates. Thus, the divergence of deuterostomes and protostomes may have been accompanied by an inhibitory–excitatory transition in the roles of PP/OK‐type neuropeptides as regulators of muscle activity. PMID:28880392

  17. Conservation of the abscission signaling peptide IDA during Angiosperm evolution: withstanding genome duplications and gain and loss of the receptors HAE/HSL2

    Directory of Open Access Journals (Sweden)

    Ida M. Stø

    2015-10-01

    Full Text Available The peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA, which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE and HAESA-LIKE2 (HSL2, controls different cell separation events in Arabidopsis thaliana. We hypothesize the involvement of this signaling module in abscission processes in other plant species even though they may shed other organs than A. thaliana. As the first step towards testing this hypothesis from an evolutionarily perspective we have identified genes encoding putative orthologues of IDA and its receptors by BLAST searches of publically available protein, nucleotide and genome databases for angiosperms. Genes encoding IDA or IDA-LIKE (IDL peptides and HSL proteins were found in all investigated species, which were selected as to represent each angiosperm order with available genomic sequences. The 12 amino acids representing the bioactive peptide in A. thaliana have virtually been unchanged throughout the evolution of the angiosperms; however, the number of IDL and HSL genes varies between different orders and species. The phylogenetic analyses suggest that IDA, HSL2 and the related HSL1 gene, were present in the species that gave rise to the angiosperms. HAE has arisen from HSL1 after a genome duplication that took place after the monocot - eudicots split. HSL1 has also independently been duplicated in the monocots, while HSL2 has been lost in gingers (Zingiberales and grasses (Poales. IDA has been duplicated in eudicots to give rise to functionally divergent IDL peptides. We postulate that the high number of IDL homologs present in the core eudicots is a result of multiple whole genome duplications. We substantiate the involvement of IDA and HAE/HSL2 homologs in abscission by providing gene expression data of different organ separation events from various species.

  18. The signal peptide-like segment of hpaXm is required for its association to the cell wall in transgenic tobacco plants.

    Science.gov (United States)

    Li, Le; Miao, Weiguo; Liu, Wenbo; Zhang, Shujian

    2017-01-01

    Harpins, encoded by hrp (hypersensitive response and pathogenicity) genes of Gram-negative plant pathogens, are elicitors of hypersensitive response (HR). HpaXm is a novel harpin-like protein described from cotton leaf blight bacteria, Xanthomonas citri subsp. malvacearum-a synonym of X. campestris pv. malvacearum (Smith 1901-1978). A putative signal peptide (1-MNSLNTQIGANSSFL-15) of hpaXm was predicted in the nitroxyl-terminal (N-terminal)by SignalP (SignalP 3.0 server). Here, we explored the function of the N-terminal leader peptide like segment of hpaXm using transgenic tobacco (Nicotiana tabacum cv. Xanthi nc.). Transgenic tobacco lines expressing the full-length hpaXm and the signal peptide-like segment-deleted mutant hpaXmΔLP were developed using transformation mediated by Agrobacterium tumefaciens. The target genes were confirmed integrated into the tobacco genomes and expressed normally. Using immune colloidal-gold detection technique, hpaXm protein was found to be transferred to the cytoplasm, the cell membrane, and organelles such as chloroplasts, mitochondria, and nucleus, as well as the cell wall. However, the deletion mutant hpaXmΔLP expressed in transgenic tobacco was found unable to cross the membrane to reach the cell wall. Additionally, soluble proteins extracted from plants transformed with hpaXm and hpaXmΔLP were bio-active. Defensive micro-HR induced by the transgene expression of hpaXm and hpaXmΔLP were observed on transgenic tobacco leaves. Disease resistance bioassays to tobacco mosaic virus (TMV) showed that tobacco plants transformed with hpaXm and with hpaXmΔLP exhibited enhanced resistance to TMV. In summary, the N-terminal signal peptide-like segment (1-45 bp) in hpaXm sequence is not necessary for transgene expression, bioactivity of hpaXm and resistance to TMV in transgenic tobacco, but is required for the protein to be translocated to the cell wall.

  19. The signal peptide-like segment of hpaXm is required for its association to the cell wall in transgenic tobacco plants.

    Directory of Open Access Journals (Sweden)

    Le Li

    Full Text Available Harpins, encoded by hrp (hypersensitive response and pathogenicity genes of Gram-negative plant pathogens, are elicitors of hypersensitive response (HR. HpaXm is a novel harpin-like protein described from cotton leaf blight bacteria, Xanthomonas citri subsp. malvacearum-a synonym of X. campestris pv. malvacearum (Smith 1901-1978. A putative signal peptide (1-MNSLNTQIGANSSFL-15 of hpaXm was predicted in the nitroxyl-terminal (N-terminalby SignalP (SignalP 3.0 server. Here, we explored the function of the N-terminal leader peptide like segment of hpaXm using transgenic tobacco (Nicotiana tabacum cv. Xanthi nc.. Transgenic tobacco lines expressing the full-length hpaXm and the signal peptide-like segment-deleted mutant hpaXmΔLP were developed using transformation mediated by Agrobacterium tumefaciens. The target genes were confirmed integrated into the tobacco genomes and expressed normally. Using immune colloidal-gold detection technique, hpaXm protein was found to be transferred to the cytoplasm, the cell membrane, and organelles such as chloroplasts, mitochondria, and nucleus, as well as the cell wall. However, the deletion mutant hpaXmΔLP expressed in transgenic tobacco was found unable to cross the membrane to reach the cell wall. Additionally, soluble proteins extracted from plants transformed with hpaXm and hpaXmΔLP were bio-active. Defensive micro-HR induced by the transgene expression of hpaXm and hpaXmΔLP were observed on transgenic tobacco leaves. Disease resistance bioassays to tobacco mosaic virus (TMV showed that tobacco plants transformed with hpaXm and with hpaXmΔLP exhibited enhanced resistance to TMV. In summary, the N-terminal signal peptide-like segment (1-45 bp in hpaXm sequence is not necessary for transgene expression, bioactivity of hpaXm and resistance to TMV in transgenic tobacco, but is required for the protein to be translocated to the cell wall.

  20. The Arabidopsis thaliana natriuretic peptide AtPNP-A is a systemic regulator of leaf dark respiration and signals via the phloem

    KAUST Repository

    Ruzvidzo, Oziniel

    2011-09-01

    Plant natriuretic peptides (PNPs) belong to a novel class of peptidic signaling molecules that share some structural similarity to the N-terminal domain of expansins and affect physiological processes such as water and ion homeostasis at nano-molar concentrations. Here we show that a recombinant Arabidopsis thaliana PNP (AtPNP-A) rapidly increased the rate of dark respiration in treated leaves after 5 min. In addition, we observed increases in lower leaves, and with a lag time of 10 min, the effect spread to the upper leaves and subsequently (after 15 min) to the opposite leaves. This response signature is indicative of phloem mobility of the signal, a hypothesis that was further strengthened by the fact that cold girdling, which affects phloem but not xylem or apoplastic processes, delayed the long distance AtPNP-A effect. We conclude that locally applied AtPNP-A can induce a phloem-mobile signal that rapidly modifies plant homeostasis in distal parts. © 2011 Elsevier GmbH.

  1. Signal peptide cleavage is essential for surface expression of a regulatory T cell surface protein, leucine rich repeat containing 32 (LRRC32

    Directory of Open Access Journals (Sweden)

    Sugiyama Hideaki

    2011-05-01

    Full Text Available Abstract Background Elevated numbers of regulatory T cells (Tregs have been implicated in certain cancers. Depletion of Tregs has been shown to increase anti-tumor immunity. Tregs also play a critical role in the suppression of autoimmune responses. The study of Tregs has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32, also known as Glycoprotein A Repetitions Predominant (GARP, has been postulated as a novel surface marker of activated Tregs. However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of Tregs expressing LRRC32. Results Using naturally-occurring freshly isolated Tregs, we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ Tregs are distinct from LRRC32- Tregs with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ Tregs are more potent suppressors than LRRC32- Tregs. Conclusions A cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent Treg populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of Tregs and the refinement of immunotherapeutic strategies aimed at targeting these cells.

  2. Sorting of a HaloTag protein that has only a signal peptide sequence into exocrine secretory granules without protein aggregation.

    Science.gov (United States)

    Fujita-Yoshigaki, Junko; Matsuki-Fukushima, Miwako; Yokoyama, Megumi; Katsumata-Kato, Osamu

    2013-11-15

    The mechanism involved in the sorting and accumulation of secretory cargo proteins, such as amylase, into secretory granules of exocrine cells remains to be solved. To clarify that sorting mechanism, we expressed a reporter protein HaloTag fused with partial sequences of salivary amylase protein in primary cultured parotid acinar cells. We found that a HaloTag protein fused with only the signal peptide sequence (Met(1)-Ala(25)) of amylase, termed SS25H, colocalized well with endogenous amylase, which was confirmed by immunofluorescence microscopy. Percoll-density gradient centrifugation of secretory granule fractions shows that the distributions of amylase and SS25H were similar. These results suggest that SS25H is transported to secretory granules and is not discriminated from endogenous amylase by the machinery that functions to remove proteins other than granule cargo from immature granules. Another reporter protein, DsRed2, that has the same signal peptide sequence also colocalized with amylase, suggesting that the sorting to secretory granules is not dependent on a characteristic of the HaloTag protein. Whereas Blue Native PAGE demonstrates that endogenous amylase forms a high-molecular-weight complex, SS25H does not participate in the complex and does not form self-aggregates. Nevertheless, SS25H was released from cells by the addition of a β-adrenergic agonist, isoproterenol, which also induces amylase secretion. These results indicate that addition of the signal peptide sequence, which is necessary for the translocation in the endoplasmic reticulum, is sufficient for the transportation and storage of cargo proteins in secretory granules of exocrine cells.

  3. Glucagon-like peptide-1 receptor signaling in acinar cells causes growth dependent release of pancreatic enzymes

    DEFF Research Database (Denmark)

    Albrechtsen, Nicolai Jacob Wewer; Albrechtsen, Reidar; Bremholm, l

    2016-01-01

    -like peptide 1 (GLP-1) on the exocrine pancreas. Here, we identify GLP-1 receptors on pancreatic acini and analyze the impact of receptor activation in humans, rodents, isolated acini, and cell lines from the exocrine pancreas. GLP-1 did not directly stimulate amylase or lipase release. However, we saw...

  4. Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors : interfamily incompatibility of perception but compatibility of downstream signalling

    NARCIS (Netherlands)

    Lori, Martina; van Verk, Marcel C; Hander, Tim; Schatowitz, Hendrik; Klauser, Dominik; Flury, Pascale; Gehring, Christoph A; Boller, Thomas; Bartels, Sebastian

    2015-01-01

    Plant elicitor peptides (Peps) are potent inducers of pattern-triggered immunity and amplify the immune response against diverse pathogens. Peps have been discovered and studied extensively in Arabidopsis and only recently orthologs in maize were also identified and characterized in more detail.

  5. Effective gene delivery into adipose-derived stem cells: transfection of cells in suspension with the use of a nuclear localization signal peptide-conjugated polyethylenimine.

    Science.gov (United States)

    Park, Eulsoon; Cho, Hong-Baek; Takimoto, Koichi

    2015-05-01

    Adipose-derived stem cells have the ability to turn into several clinically important cell types. However, it is difficult to transfect these cells with the use of conventional cationic lipid-based reagents. Polyethylenimine (PEI) is considered to be an inexpensive and effective tool for delivery of nucleic acids into mammalian cells. We used a linear PEI conjugated with the nuclear localization signal (NLS) peptide of Simian vacuolating virus 40 large T antigen (PEI-NLS) for transfection of plasmid DNA into adipose-derived cells. We also tested if transfection of cells in suspension might improve the degree and duration of exogenous gene expression. Transfection of cells in suspension with the use of a PEI conjugated with an NLS peptide resulted in high levels of reporter gene expression for an extended period of time in clonal 3T3-L1 preadipocytes and native human adipose-derived stem cells. The reporter gene expression increased for 3 days after the addition of the PEI-NLS peptide-DNA mixture in cell suspension and remained significant for at least 7 days. Cell density did not influence the level of reporter gene expression. Thus, the suspension method with the use of an NLS peptide-conjugated PEI leads to a robust and sustained expression of exogenous genes in adipose-derived cells. The devised transfection method may be useful for reprogramming of adipose-derived stem cells and cell-based therapy. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Signal peptide prediction suggests Mycobacterium tuberculosis curli pilin subunit secretion via the Sec pathway may hinder MTP overexpression in Escherichia coli

    International Nuclear Information System (INIS)

    Naidoo, N.; Pillay, B.; Bubb, M.; Kumar, A.; Chiliza, T.; Pillay, M.

    2017-01-01

    Introduction Mycobacterium tuberculosis curli pili (MTP) are novel, potential TB diagnostic biomarkers as they are important virulence attributes, unique to the M. tuberculosis complex (MTBC). The production of high quality recombinant transmembrane and secretory proteins that can serve as biomarkers may be challenging due to their secretion attributes. For example, the signal peptide of MTP governed by the classical secretion pathway may hinder the purification of the protein in E. coli systems. In this study, the secretion characteristics of MTP were determined and the cloning, expression and purification of MTP was attempted in E.coli. Materials and methods A fragment of MTP unique to MTBC was cloned into pet101 and pGEX-6P-1 vectors. The clones were confirmed by nucleotide sequencing and expression of the protein was attempted at IPTG concentrations ranging from 0.1mM to 1mM and at temperatures between 25 °C to 37 °C. The pGEX-6P-1/mtp clone expressed protein was purified, yielding a MTP-GST fusion protein and a free GST band that were analysed by LC/MS mass spectrometry. Inclusion body preparation attempted from the pet101/mtp clone yielded two bands at 10 kDa and below 10 kDa, both of which were analysed by LC/MS mass spectrometry. Transcription activity of both the clones was interrogated by real time PCR on the cDNA derived from the induced clones at various time points after induction with IPTG. The signal peptide and protein secretion characteristics of the MTP protein were determined by bioinformatics analysis of the amino acid sequence using publically available software. Results The truncated MTP fragments were successfully cloned in both the vectors as confirmed by nucleotide sequencing. Expression of the pGEX-6P-1/mtp clone using 0.5 mM IPTG at 27 °C demonstrated the presence of the expected fragment at approximately 35 kDa. This was confirmed by Western Blotting using anti-GST antibodies. However, purification of MTP in adequate quantities as a

  7. Signal peptide prediction suggests Mycobacterium tuberculosis curli pilin subunit secretion via the Sec pathway may hinder MTP overexpression in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Natasha Naidoo

    2017-07-01

    Full Text Available Introduction Mycobacterium tuberculosis curli pili (MTP are novel, potential TB diagnostic biomarkers as they are important virulence attributes, unique to the M. tuberculosis complex (MTBC. The production of high quality recombinant transmembrane and secretory proteins that can serve as biomarkers may be challenging due to their secretion attributes. For example, the signal peptide of MTP governed by the classical secretion pathway may hinder the purification of the protein in E. coli systems. In this study, the secretion characteristics of MTP were determined and the cloning, expression and purification of MTP was attempted in E.coli.  Materials and methods A fragment of MTP unique to MTBC was cloned into pet101 and pGEX-6P-1 vectors. The clones were confirmed by nucleotide sequencing and expression of the protein was attempted at IPTG concentrations ranging from 0.1mM to 1mM and at temperatures between 25 °C to 37 °C. The pGEX-6P-1/mtp clone expressed protein was purified, yielding a MTP-GST fusion protein and a free GST band that were analysed by LC/MS mass spectrometry. Inclusion body preparation attempted from the pet101/mtp clone yielded two bands at 10 kDa and below 10 kDa, both of which were analysed by LC/MS mass spectrometry. Transcription activity of both the clones was interrogated by real time PCR on the cDNA derived from the induced clones at various time points after induction with IPTG. The signal peptide and protein secretion characteristics of the MTP protein were determined by bioinformatics analysis of the amino acid sequence using publically available software.  Results The truncated MTP fragments were successfully cloned in both the vectors as confirmed by nucleotide sequencing. Expression of the pGEX-6P-1/mtp clone using 0.5 mM IPTG at 27 °C demonstrated the presence of the expected fragment at approximately 35 kDa. This was confirmed by Western Blotting using anti-GST antibodies. However, purification of MTP in

  8. Signal peptide prediction suggests Mycobacterium tuberculosis curli pilin subunit secretion via the Sec pathway may hinder MTP overexpression in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, N.; Pillay, B.; Bubb, M.; Kumar, A.; Chiliza, T.; Pillay, M.

    2017-07-01

    Introduction Mycobacterium tuberculosis curli pili (MTP) are novel, potential TB diagnostic biomarkers as they are important virulence attributes, unique to the M. tuberculosis complex (MTBC). The production of high quality recombinant transmembrane and secretory proteins that can serve as biomarkers may be challenging due to their secretion attributes. For example, the signal peptide of MTP governed by the classical secretion pathway may hinder the purification of the protein in E. coli systems. In this study, the secretion characteristics of MTP were determined and the cloning, expression and purification of MTP was attempted in E.coli. Materials and methods A fragment of MTP unique to MTBC was cloned into pet101 and pGEX-6P-1 vectors. The clones were confirmed by nucleotide sequencing and expression of the protein was attempted at IPTG concentrations ranging from 0.1mM to 1mM and at temperatures between 25 °C to 37 °C. The pGEX-6P-1/mtp clone expressed protein was purified, yielding a MTP-GST fusion protein and a free GST band that were analysed by LC/MS mass spectrometry. Inclusion body preparation attempted from the pet101/mtp clone yielded two bands at 10 kDa and below 10 kDa, both of which were analysed by LC/MS mass spectrometry. Transcription activity of both the clones was interrogated by real time PCR on the cDNA derived from the induced clones at various time points after induction with IPTG. The signal peptide and protein secretion characteristics of the MTP protein were determined by bioinformatics analysis of the amino acid sequence using publically available software. Results The truncated MTP fragments were successfully cloned in both the vectors as confirmed by nucleotide sequencing. Expression of the pGEX-6P-1/mtp clone using 0.5 mM IPTG at 27 °C demonstrated the presence of the expected fragment at approximately 35 kDa. This was confirmed by Western Blotting using anti-GST antibodies. However, purification of MTP in adequate quantities as a

  9. The fusion protein signal-peptide-coding region of canine distemper virus: a useful tool for phylogenetic reconstruction and lineage identification.

    Directory of Open Access Journals (Sweden)

    Nicolás Sarute

    Full Text Available Canine distemper virus (CDV; Paramyxoviridae, Morbillivirus is the etiologic agent of a multisystemic infectious disease affecting all terrestrial carnivore families with high incidence and mortality in domestic dogs. Sequence analysis of the hemagglutinin (H gene has been widely employed to characterize field strains, permitting the identification of nine CDV lineages worldwide. Recently, it has been established that the sequences of the fusion protein signal-peptide (Fsp coding region are extremely variable, suggesting that analysis of its sequence might be useful for strain characterization studies. However, the divergence of Fsp sequences among worldwide strains and its phylogenetic resolution has not yet been evaluated. We constructed datasets containing the Fsp-coding region and H gene sequences of the same strains belonging to eight CDV lineages. Both datasets were used to evaluate their phylogenetic resolution. The phylogenetic analysis revealed that both datasets clustered the same strains into eight different branches, corresponding to CDV lineages. The inter-lineage amino acid divergence was fourfold greater for the Fsp peptide than for the H protein. The likelihood mapping revealed that both datasets display strong phylogenetic signals in the region of well-resolved topologies. These features indicate that Fsp-coding region sequence analysis is suitable for evolutionary studies as it allows for straightforward identification of CDV lineages.

  10. The fusion protein signal-peptide-coding region of canine distemper virus: a useful tool for phylogenetic reconstruction and lineage identification.

    Science.gov (United States)

    Sarute, Nicolás; Calderón, Marina Gallo; Pérez, Ruben; La Torre, José; Hernández, Martín; Francia, Lourdes; Panzera, Yanina

    2013-01-01

    Canine distemper virus (CDV; Paramyxoviridae, Morbillivirus) is the etiologic agent of a multisystemic infectious disease affecting all terrestrial carnivore families with high incidence and mortality in domestic dogs. Sequence analysis of the hemagglutinin (H) gene has been widely employed to characterize field strains, permitting the identification of nine CDV lineages worldwide. Recently, it has been established that the sequences of the fusion protein signal-peptide (Fsp) coding region are extremely variable, suggesting that analysis of its sequence might be useful for strain characterization studies. However, the divergence of Fsp sequences among worldwide strains and its phylogenetic resolution has not yet been evaluated. We constructed datasets containing the Fsp-coding region and H gene sequences of the same strains belonging to eight CDV lineages. Both datasets were used to evaluate their phylogenetic resolution. The phylogenetic analysis revealed that both datasets clustered the same strains into eight different branches, corresponding to CDV lineages. The inter-lineage amino acid divergence was fourfold greater for the Fsp peptide than for the H protein. The likelihood mapping revealed that both datasets display strong phylogenetic signals in the region of well-resolved topologies. These features indicate that Fsp-coding region sequence analysis is suitable for evolutionary studies as it allows for straightforward identification of CDV lineages.

  11. A Novel Polymorphism of VLDLR Signal Peptide Coding Region and Its Association with Growth and Abdominal Fat Traits of Gaoyou Domestic Ducks

    Directory of Open Access Journals (Sweden)

    C Ming-liang

    Full Text Available ABSTRACT The VLDLR gene plays important roles in the growth and adiposity in humans and mice. The purpose of this study was to investigate the relationship between VLDLR gene genetic polymorphisms and growth and abdominal fat traits of the Gaoyou domestic duck. A total of 267 Gaoyou ducks were employed for testing. A 18bp deletion was identified in VLDLR signal peptide coding region. The results of c2 test suggested that the genotype frequencies of VLDLR signal peptide coding region were not in Hardy-Weinberg equilibrium. Least squares analysis showed that body weight (BW of -18bp/-18bp genotype ducks was significantly higher than those of other genotypes from six (BW6 (p0.05 and body weight for AFP and different genotypes had a significant effect on AFP (p<0.05. The results of Bonferroni t-test revealed that the abdominal fat percentage (AFP of -18bp/-18bp genotype was significantly lower than those of +18bp/-18bp (p<0.05. Preliminary studies have shown that VLDLR may be a candidate gene for the selection for growth and abdominal fat, and the results of the present study indicate that VLDLR strongly influences carcass abdominal fat content of Gaoyou ducks.

  12. Oxyntomodulin differentially affects glucagon-like peptide-1 receptor beta-arrestin recruitment and signaling through Galpha(s)

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Kubale, Valentina; Vrecl, Milka

    2007-01-01

    assays to measure agonist-induced recruitment of betaarrestins and G-protein-coupled receptor kinase (GRK) 2 to the GLP-1 receptor in addition to traditional measurements of second messenger generation. The peptide hormone oxyntomodulin is described in the literature as a full agonist on the glucagon...... and GLP-1 receptors. Surprisingly, despite being full agonists in GLP-1 receptor-mediated cAMP accumulation, oxyntomodulin and glucagon were observed to be partial agonists in recruiting betaarrestins and GRK2 to the GLP-1 receptor. We suggest that oxyntomodulin and glucagon are biased ligands on the GLP......The glucagon-like peptide (GLP)-1 receptor is a promising target for the treatment of type 2 diabetes and obesity, and there is great interest in characterizing the pharmacology of the GLP-1 receptor and its ligands. In the present report, we have applied bioluminescence resonance energy transfer...

  13. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner.

    Science.gov (United States)

    Araya, Takao; Miyamoto, Mayu; Wibowo, Juliarni; Suzuki, Akinori; Kojima, Soichi; Tsuchiya, Yumiko N; Sawa, Shinichiro; Fukuda, Hiroo; von Wirén, Nicolaus; Takahashi, Hideki

    2014-02-04

    Morphological plasticity of root systems is critically important for plant survival because it allows plants to optimize their capacity to take up water and nutrients from the soil environment. Here we show that a signaling module composed of nitrogen (N)-responsive CLE (CLAVATA3/ESR-related) peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase is expressed in the root vasculature in Arabidopsis thaliana and plays a crucial role in regulating the expansion of the root system under N-deficient conditions. CLE1, -3, -4, and -7 were induced by N deficiency in roots, predominantly expressed in root pericycle cells, and their overexpression repressed the growth of lateral root primordia and their emergence from the primary root. In contrast, clv1 mutants showed progressive outgrowth of lateral root primordia into lateral roots under N-deficient conditions. The clv1 phenotype was reverted by introducing a CLV1 promoter-driven CLV1:GFP construct producing CLV1:GFP fusion proteins in phloem companion cells of roots. The overaccumulation of CLE2, -3, -4, and -7 in clv1 mutants suggested the amplitude of the CLE peptide signals being feedback-regulated by CLV1. When CLE3 was overexpressed under its own promoter in wild-type plants, the length of lateral roots was negatively correlated with increasing CLE3 mRNA levels; however, this inhibitory action of CLE3 was abrogated in the clv1 mutant background. Our findings identify the N-responsive CLE-CLV1 signaling module as an essential mechanism restrictively controlling the expansion of the lateral root system in N-deficient environments.

  14. NCBI nr-aa BLAST: CBRC-XTRO-01-0031 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-0031 ref|YP_522550.1| Twin-arginine translocation pathway signal [Rhod...oferax ferrireducens T118] gb|ABD69019.1| Twin-arginine translocation pathway signal [Rhodoferax ferrireducens DSM 15236] YP_522550.1 1e-115 73% ...

  15. Peptidic β-sheet binding with Congo Red allows both reduction of error variance and signal amplification for immunoassays.

    Science.gov (United States)

    Wang, Yunyun; Liu, Ye; Deng, Xinli; Cong, Yulong; Jiang, Xingyu

    2016-12-15

    Although conventional enzyme-linked immunosorbent assays (ELISA) and related assays have been widely applied for the diagnosis of diseases, many of them suffer from large error variance for monitoring the concentration of targets over time, and insufficient limit of detection (LOD) for assaying dilute targets. We herein report a readout mode of ELISA based on the binding between peptidic β-sheet structure and Congo Red. The formation of peptidic β-sheet structure is triggered by alkaline phosphatase (ALP). For the detection of P-Selectin which is a crucial indicator for evaluating thrombus diseases in clinic, the 'β-sheet and Congo Red' mode significantly decreases both the error variance and the LOD (from 9.7ng/ml to 1.1 ng/ml) of detection, compared with commercial ELISA (an existing gold-standard method for detecting P-Selectin in clinic). Considering the wide range of ALP-based antibodies for immunoassays, such novel method could be applicable to the analysis of many types of targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A peptide from Porphyra yezoensis stimulates the proliferation of IEC-6 cells by activating the insulin-like growth factor I receptor signaling pathway.

    Science.gov (United States)

    Lee, Min-Kyeong; Kim, In-Hye; Choi, Youn-Hee; Nam, Taek-Jeong

    2015-02-01

    Porphyra yezoensis (P. yezoensis) is the most noteworthy red alga and is mainly consumed in China, Japan and Korea. In the present study, the effects of a P. yezoensis peptide (PY‑PE) on cell proliferation and the associated signaling pathways were examined in IEC‑6 rat intestinal epithelial cells. First, the MTS assay showed that PY‑PE induced cell proliferation in a dose‑dependent manner. Subsequently, the mechanism behind the proliferative activity induced by PY‑PE was determined. The insulin‑like growth factor‑I receptor (IGF‑IR) signaling pathway was the main focus as it plays an important role in the regulation of cell growth and proliferation. PY‑PE increased the protein and mRNA expression of IGF‑IR, insulin receptor substrate‑1, Shc and PY‑99. In addition, PY‑PE stimulated extracellular signal‑regulated kinase phosphorylation and phosphatidylinositol 3‑kinase/Akt activation but inhibited p38 and c‑Jun N‑terminal kinase phosphorylation. Furthermore, PY‑PE treatment increased protein and mRNA expression levels of activator protein‑1, which regulates cell proliferation and survival, in the nuclear fraction. These results have significant implications for understanding the role of cell proliferation signaling pathways in intestinal epithelial cells.

  17. Regulation of sagA, siaA and scpC by SilCR, a putative signaling peptide of Streptococcus pyogenes.

    Science.gov (United States)

    Salim, Kowthar Y; de Azavedo, Joyce C; Bast, Darrin J; Cvitkovitch, Dennis G

    2008-12-01

    SilCR, a 17 amino acid putative signaling peptide, was proposed to modulate gene expression in Streptococcus pyogenes. We showed that SilCR added exogenously to an M1 serotype strain lacking the sil locus upregulates the in vitro expression of sagA, siaA, and scpC, genes associated with S. pyogenes pathogenesis. Interestingly, only sagA and siaA were upregulated by SilCR in vivo, whereas the expression of scpC remained unaltered. A previous report indicated that exogenously added SilCR protects mice to some degree from developing necrotic lesions caused by an invasive strain of S. pyogenes. In contrast to this report, we found that SilCR did not reduce lesion formation in a subcutaneous murine model of S. pyogenes infection but rather appeared to delay wound healing.

  18. Clinical and molecular evidence of abnormal processing and trafficking of the vasopressin preprohormone in a large kindred with familial neurohypophyseal diabetes insipidus due to a signal peptide mutation

    DEFF Research Database (Denmark)

    Siggaard, C; Rittig, S; Corydon, T J

    1999-01-01

    of AVP-NPII [Ala(-1)Thr]. Genetic analysis and clinical studies of AVP secretion, urinary AVP, and urine output were performed in 16 affected and 16 unaffected family members and 11 spouses of a Danish adFNDI kindred carrying the Ala(-1)Thr mutation. Mutant complementary DNA carrying the same mutation......The autosomal dominant form of familial neurohypophyseal diabetes insipidus (adFNDI) is a rare disease characterized by postnatal onset of polyuria and a deficient neurosecretion of the antidiuretic hormone, arginine vasopressin (AVP). Since 1991, adFNDI has been linked to 31 different mutations...... of the gene that codes for the vasopressin-neurophysin II (AVP-NPII) precursor. The aims of the present study were to relate the clinical phenotype to the specific genotype and to the molecular genetic effects of the most frequently reported adFNDI mutation located at the cleavage site of the signal peptide...

  19. One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging

    Science.gov (United States)

    Yang, Lei; Jiang, Weihua; Qiu, Lipeng; Jiang, Xuewei; Zuo, Daiying; Wang, Dongkai; Yang, Li

    2015-03-01

    Strong blue fluorescent polyethylene glycol (PEG) anchored carbon nitride dots (CDs@PEG) with a high quantum yield (QY) of 75.8% have been synthesized by a one step hydrothermal treatment. CDs with a diameter of ca. 6 nm are well dispersed in water and present a graphite-like structure. Photoluminescence (PL) studies reveal that CDs display excitation-dependent behavior and are stable under various test conditions. Based on the as-prepared CDs, we designed novel cell nucleus targeting imaging carbon dots functionalized with a nuclear localization signal (NLS) peptide. The favourable biocompatibilities of CDs and NLS modified CDs (NLS-CDs) are confirmed by in vitro cytotoxicity assays. Importantly, intracellular localization experiments in MCF7 and A549 cells demonstrate that NLS-CDs could be internalized in the nucleus and show blue light, which indicates that CDs may serve as cell nucleus imaging probes.Strong blue fluorescent polyethylene glycol (PEG) anchored carbon nitride dots (CDs@PEG) with a high quantum yield (QY) of 75.8% have been synthesized by a one step hydrothermal treatment. CDs with a diameter of ca. 6 nm are well dispersed in water and present a graphite-like structure. Photoluminescence (PL) studies reveal that CDs display excitation-dependent behavior and are stable under various test conditions. Based on the as-prepared CDs, we designed novel cell nucleus targeting imaging carbon dots functionalized with a nuclear localization signal (NLS) peptide. The favourable biocompatibilities of CDs and NLS modified CDs (NLS-CDs) are confirmed by in vitro cytotoxicity assays. Importantly, intracellular localization experiments in MCF7 and A549 cells demonstrate that NLS-CDs could be internalized in the nucleus and show blue light, which indicates that CDs may serve as cell nucleus imaging probes. Electronic supplementary information (ESI) available: The formulation of PEGylation CD optimization procedure, Table S1 and Fig. S1-S7. See DOI: 10.1039/c5nr01080

  20. Anti-Inflammatory Action of an Antimicrobial Model Peptide That Suppresses the TRIF-Dependent Signaling Pathway via Inhibition of Toll-Like Receptor 4 Endocytosis in Lipopolysaccharide-Stimulated Macrophages.

    Directory of Open Access Journals (Sweden)

    Do-Wan Shim

    Full Text Available Antimicrobial peptides (AMPs, also called host defense peptides, particularly those with amphipathic helical structures, are emerging as target molecules for therapeutic development due to their immunomodulatory properties. Although the antimicrobial activity of AMPs is known to be exerted primarily by permeation of the bacterial membrane, the mechanism underlying its anti-inflammatory activity remains to be elucidated. We report potent anti-inflammatory activity of WALK11.3, an antimicrobial model peptide with an amphipathic helical conformation, in lipopolysaccharide (LPS-stimulated RAW264.7 cells. This peptide inhibited the expression of inflammatory mediators, including nitric oxide, COX-2, IL-1β, IL-6, INF-β, and TNF-α. Although WALK11.3 did not exert a major effect on all downstream signaling in the MyD88-dependent pathway, toll-like receptor 4 (TLR4- mediated pro-inflammatory signals were markedly attenuated in the TRIF-dependent pathway due to inhibition of the phosphorylation of STAT1 by attenuation of IRF3 phosphorylation. WALK11.3 specifically inhibited the endocytosis of TLR4, which is essential for triggering TRIF-mediated signaling in macrophage cells. Hence, we suggest that specific interference with TLR4 endocytosis could be one of the major modes of the anti-inflammatory action of AMPs. Our designed WALK11 peptides, which possess both antimicrobial and anti-inflammatory activities, may be promising molecules for the development of therapies for infectious inflammation.

  1. Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist Liraglutide Alters Bone Marrow Exosome-Mediated miRNA Signal Pathways in Ovariectomized Rats with Type 2 Diabetes.

    Science.gov (United States)

    Li, Jin; Fu, Ling-Zhi; Liu, Lu; Xie, Fen; Dai, Ru-Chun

    2017-11-14

    BACKGROUND Compared with normal postmenopausal women, estrogen deficiency and hyperglycemia in postmenopausal women with type 2 diabetes (T2DM) lead to more severe bone property degradation. Liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, has been reported to improve bone condition among people with T2DM but the precise mechanisms remain unclear. Exosomes work as mediators in cell-to-cell communication, delivering functional miRNAs between cells. We aimed to explore the role of exosomes in T2DM-related bone metabolic disorders and the bone protective mechanisms of liraglutide. MATERIAL AND METHODS We made comparative analyses of bone marrow-derived exosomal miRNAs from ovariectomized (OVX) control rats, OVX + T2DM rats, and OVX + T2DM + liraglutide-treated rats. miRNA profiles were generated using high-throughput sequencing. Target gene prediction and pathway analysis were performed to investigate the signal pathway alterations. Three miRNAs were randomly chosen to validate their absolute expression levels by real-time quantitative PCR. RESULTS Bone marrow-derived exosomal miRNAs were different with respect to miRNA numbers, species, and expression levels. miRNA spectra varied under T2DM condition and after liraglutide treatment. By bioinformatics analysis, we found T2DM and liraglutide administration lead to significant changes in exosomal miRNAs which targeted to insulin secretion and insulin-signaling pathway. Wnt signaling pathway alteration was the critical point regarding bone metabolism. CONCLUSIONS Our findings show the selective packaging of functional miRNA cargoes into exosomes due to T2DM and liraglutide treatment. Bone marrow exosome-mediated Wnt signaling pathway alteration may play a part in the bone protective effect of liraglutide.

  2. Functional characterization of a second pedal peptide/orcokinin-type neuropeptide signaling system in the starfish Asterias rubens.

    Science.gov (United States)

    Lin, Ming; Egertová, Michaela; Zampronio, Cleidiane G; Jones, Alexandra M; Elphick, Maurice R

    2018-04-01

    Molluscan pedal peptides (PPs) and arthropod orcokinins (OKs) are prototypes of a family of neuropeptides that have been identified in several phyla. Recently, starfish myorelaxant peptide (SMP) was identified as a PP/OK-type neuropeptide in the starfish Patiria pectinifera (phylum Echinodermata). Furthermore, analysis of transcriptome sequence data from the starfish Asterias rubens revealed two PP/OK-type precursors: an SMP-type precursor (A. rubens PP-like neuropeptide precursor 1; ArPPLNP1) and a second precursor (ArPPLNP2). We reported previously a detailed analysis of ArPPLNP1 expression in A. rubens and here we report the first functional characterization ArPPLNP2-derived neuropeptides. Sequencing of a cDNA encoding ArPPLNP2 revealed that it comprises eleven related neuropeptides (ArPPLN2a-k), the structures of several of which were confirmed using mass spectrometry. Analysis of the expression of ArPPLNP2 and neuropeptides derived from this precursor using mRNA in situ hybridization and immunohistochemistry revealed a widespread distribution, including expression in radial nerve cords, circumoral nerve ring, digestive system, tube feet and innervation of interossicular muscles. In vitro pharmacology revealed that the ArPPLNP2-derived neuropeptide ArPPLN2h has no effect on the contractility of tube feet or the body wall-associated apical muscle, contrasting with the relaxing effect of ArPPLN1b (ArSMP) on these preparations. ArPPLN2h does, however, cause dose-dependent relaxation of cardiac stomach preparations, with greater potency/efficacy than ArPPLN1b and with similar potency/efficacy to the SALMFamide neuropeptide S2. In conclusion, there are similarities in the expression patterns of ArPPLNP1 and ArPPLNP2 but our data also indicate specialization in the roles of neuropeptides derived from these two PP/OK-type precursors in starfish. © 2017 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  3. Functional characterization of a second pedal peptide/orcokinin‐type neuropeptide signaling system in the starfish Asterias rubens

    Science.gov (United States)

    Lin, Ming; Egertová, Michaela; Zampronio, Cleidiane G.; Jones, Alexandra M.

    2017-01-01

    Abstract Molluscan pedal peptides (PPs) and arthropod orcokinins (OKs) are prototypes of a family of neuropeptides that have been identified in several phyla. Recently, starfish myorelaxant peptide (SMP) was identified as a PP/OK‐type neuropeptide in the starfish Patiria pectinifera (phylum Echinodermata). Furthermore, analysis of transcriptome sequence data from the starfish Asterias rubens revealed two PP/OK‐type precursors: an SMP‐type precursor (A. rubens PP‐like neuropeptide precursor 1; ArPPLNP1) and a second precursor (ArPPLNP2). We reported previously a detailed analysis of ArPPLNP1 expression in A. rubens and here we report the first functional characterization ArPPLNP2‐derived neuropeptides. Sequencing of a cDNA encoding ArPPLNP2 revealed that it comprises eleven related neuropeptides (ArPPLN2a‐k), the structures of several of which were confirmed using mass spectrometry. Analysis of the expression of ArPPLNP2 and neuropeptides derived from this precursor using mRNA in situ hybridization and immunohistochemistry revealed a widespread distribution, including expression in radial nerve cords, circumoral nerve ring, digestive system, tube feet and innervation of interossicular muscles. In vitro pharmacology revealed that the ArPPLNP2‐derived neuropeptide ArPPLN2h has no effect on the contractility of tube feet or the body wall‐associated apical muscle, contrasting with the relaxing effect of ArPPLN1b (ArSMP) on these preparations. ArPPLN2h does, however, cause dose‐dependent relaxation of cardiac stomach preparations, with greater potency/efficacy than ArPPLN1b and with similar potency/efficacy to the SALMFamide neuropeptide S2. In conclusion, there are similarities in the expression patterns of ArPPLNP1 and ArPPLNP2 but our data also indicate specialization in the roles of neuropeptides derived from these two PP/OK‐type precursors in starfish. PMID:29218721

  4. Activation of the mTOR signaling pathway in breast cancer MCF-7 cells by a peptide derived from Porphyra yezoensis

    Science.gov (United States)

    PARK, SU-JIN; RYU, JINA; KIM, IN-HYE; CHOI, YOUN-HEE; NAM, TAEK-JEONG

    2015-01-01

    Seaweeds have beneficial nutritional and medicinal properties. Several studies have examined the polysaccharides found in the extracts of Porphyra yezoensis (PPY), although the effects of particular proteins have not been reported, and peptides from the marine alga PPY function in antitumor cell signaling, although the precise mechanism is not well understood. Apoptosis plays an important role in cell death, which affects cell proliferation. Generally, regulation of apoptosis requires participation of the p53 and Bcl-2 family by the mammalian target of rapamycin (mTOR) pathway, which is activated in a variety of malignant cancers. Autophagy is another signaling pathway that leads to degradation of cellular components by lysosomal activity, and the relationship between autophagy and cancer has been of interest for several years. The present study investigated mTOR pathway activation in MCF-7 cells treated with 500 ng PPY for 24 h by assessing LC3 as a monitor of autophagy. We observed that the p53/NF-κB and mTOR pathways were affected by PPY, which contributes to our understanding of the functional relationship between the Bcl-2 family and mTOR under apoptotic conditions in MCF-7 cells. PMID:25333576

  5. Activation of the mTOR signaling pathway in breast cancer MCF‑7 cells by a peptide derived from Porphyra yezoensis.

    Science.gov (United States)

    Park, Su-Jin; Ryu, Jina; Kim, In-Hye; Choi, Youn-Hee; Nam, Taek-Jeong

    2015-01-01

    Seaweeds have beneficial nutritional and medicinal properties. Several studies have examined the polysaccharides found in the extracts of Porphyra yezoensis (PPY), although the effects of particular proteins have not been reported, and peptides from the marine alga PPY function in antitumor cell signaling, although the precise mechanism is not well understood. Apoptosis plays an important role in cell death, which affects cell proliferation. Generally, regulation of apoptosis requires participation of the p53 and Bcl-2 family by the mammalian target of rapamycin (mTOR) pathway, which is activated in a variety of malignant cancers. Autophagy is another signaling pathway that leads to degradation of cellular components by lysosomal activity, and the relationship between autophagy and cancer has been of interest for several years. The present study investigated mTOR pathway activation in MCF-7 cells treated with 500 ng PPY for 24 h by assessing LC3 as a monitor of autophagy. We observed that the p53/NF-κB and mTOR pathways were affected by PPY, which contributes to our understanding of the functional relationship between the Bcl-2 family and mTOR under apoptotic conditions in MCF-7 cells.

  6. Amino acid sequence of the signal peptide of apoVLDL-II, a major apoprotein in avian very low density lipoproteins.

    Science.gov (United States)

    Chan, L; Bradley, W A; Means, A R

    1980-11-10

    ApoVLDL-II is a major apoprotein in avian very low density lipoproteins (Jackson, R. L., Lin, H.-Y., Chan, L., and Means, A.R. (1977) J. Biol. Chem. 252, 250-253). Partially purified apoVLDL-II mRNA was translated in vitro in a wheat germ system in the presence of various labeled amino acids. The product, designated preapoVLDL-II, was purified by immunoprecipitation and sodium dodecyl sulfate acrylamide gel electrophoresis. It was subjected to automated Edman degradation in a Beckman Sequencer. The signal peptide was found to be a 23-amino acid NH2-terminal extension of the mature protein with the following sequence: Met-Gln-Tyr-Arg-Ala-Leu-Val-Ile-Ala-Val-Ile-Leu-Leu-Leu-Ser-Thr-Val-Pro-Glu-Val-Cys-Ser-Lys where Lys is the NH2-terminal residue of mature apoVLDL-II. The abundance and distribution of the hydrophobic amino acid residues are very similar to those of other signal sequences and the average hydrophobicity for the 23 residues is -1227 cal/mol/residue. However, translocation of preapoVLDL-II would represent a unique case of vectorial migration of a protein through a membrane since apoVLDL-II is itself an apolipoprotein and binds lipid spontaneously.

  7. Measles Virus Nucleocapsid (MJVNP) Gene Expression and RANK Receptor Signaling in Osteoclast Precursors. Osteoclast Inhibitors Peptide Therapy for Pagets Disease

    Science.gov (United States)

    2005-10-31

    appeared in the IFN-γ receptor (-/-) mice than in wild type mice. IFN-γ failed to suppress osteoclastogenesis in bone marrow cell cultures derived...bone disease after osteoporosis and affects approximately 2-3 million people in the United States. We shown that bone marrow cells from patients...development in Paget’s disease. OIP-1 blocks these signaling events and inhibits MVNP induced osteoclastogenesis and elevated bone resorption activity in

  8. Glucagon-like peptide-1 receptor signalling reduces microvascular thrombosis, nitro-oxidative stress and platelet activation in endotoxaemic mice.

    Science.gov (United States)

    Steven, Sebastian; Jurk, Kerstin; Kopp, Maximilian; Kröller-Schön, Swenja; Mikhed, Yuliya; Schwierczek, Kathrin; Roohani, Siyer; Kashani, Fatemeh; Oelze, Matthias; Klein, Thomas; Tokalov, Sergey; Danckwardt, Sven; Strand, Susanne; Wenzel, Philip; Münzel, Thomas; Daiber, Andreas

    2017-06-01

    Excessive inflammation in sepsis causes microvascular thrombosis and thrombocytopenia associated with organ dysfunction and high mortality. The present studies aimed to investigate whether inhibition of dipeptidyl peptidase-4 (DPP-4) and supplementation with glucagon-like peptide-1 (GLP-1) receptor agonists improved endotoxaemia-associated microvascular thrombosis via immunomodulatory effects. Endotoxaemia was induced in C57BL/6J mice by a single injection of LPS (17.5 mg kg -1 for survival and 10 mg kg -1 for all other studies). For survival studies, treatment was started 6 h after LPS injection. For all other studies, drugs were injected 48 h before LPS treatment. Mice treated with LPS alone showed severe thrombocytopenia, microvascular thrombosis in the pulmonary circulation (fluorescence imaging), increased LDH activity, endothelial dysfunction and increased markers of inflammation in aorta and whole blood (leukocyte-dependent oxidative burst, nitrosyl-iron haemoglobin, a marker of nitrosative stress, and expression of inducible NOS). Treatment with the DPP-4 inhibitor linagliptin or the GLP-1 receptor agonist liraglutide, as well as genetic deletion of DPP-4 (DPP4 -/- mice) improved all these parameters. In GLP-1 receptor-deficient mice, both linagliptin and liraglutide lost their beneficial effects and improvement of prognosis. Incubation of platelets and cultured monocytes (containing GLP-1 receptor protein) with GLP-1 receptor agonists inhibited the monocytic oxidative burst and platelet activation, with a GLP-1 receptor-dependent elevation of cAMP levels and PKA activation. GLP-1 receptor activation in platelets by linagliptin and liraglutide strongly attenuated endotoxaemia-induced microvascular thrombosis and mortality by a cAMP/PKA-dependent mechanism, preventing systemic inflammation, vascular dysfunction and end organ damage. This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other

  9. Regulation of hypothalamic signaling by tuberoinfundibular peptide of 39 residues is critical for the response to cold: a novel peptidergic mechanism of thermoregulation.

    Science.gov (United States)

    Dimitrov, Eugene L; Kim, Yoon Yi; Usdin, Ted B

    2011-12-07

    Euthermia is critical for mammalian homeostasis. Circuits within the preoptic hypothalamus regulate temperature, with fine control exerted via descending GABAergic inhibition of presympathetic motor neurons that control brown adipose tissue (BAT) thermogenesis and cutaneous vascular tone. The thermoregulatory role of hypothalamic excitatory neurons is less clear. Here we report peptidergic regulation of preoptic glutamatergic neurons that contributes to temperature regulation. Tuberoinfundibular peptide of 39 residues (TIP39) is a ligand for the parathyroid hormone 2 receptor (PTH2R). Both peptide and receptor are abundant in the preoptic hypothalamus. Based on PTH2R and vesicular glutamate transporter 2 (VGlut2) immunolabeling in animals with retrograde tracer injection, PTH2R-containing glutamatergic fibers are presynaptic to neurons projecting from the median preoptic nucleus (MnPO) to the dorsomedial hypothalamus. Transneuronal retrograde pathway tracing with pseudorabies virus revealed connectivity between MnPO VGlut2 and PTH2R neurons and BAT. MnPO injection of TIP39 increased body temperature by 2°C for several hours. Mice lacking TIP39 signaling, either because of PTH2R-null mutation or brain delivery of a PTH2R antagonist had impaired heat production upon cold exposure, but no change in basal temperature and no impairment in response to a hot environment. Thus, TIP39 appears to act on PTH2Rs present on MnPO glutamatergic terminals to regulate their activation of projection neurons and subsequent sympathetic BAT activation. This excitatory mechanism of heat production appears to be activated on demand, during cold exposure, and parallels the tonic inhibitory GABAergic control of body temperature.

  10. The synthetic peptide CIGB-300 modulates CK2-dependent signaling pathways affecting the survival and chemoresistance of non-small cell lung cancer cell lines.

    Science.gov (United States)

    Cirigliano, Stéfano M; Díaz Bessone, María I; Berardi, Damián E; Flumian, Carolina; Bal de Kier Joffé, Elisa D; Perea, Silvio E; Farina, Hernán G; Todaro, Laura B; Urtreger, Alejandro J

    2017-01-01

    Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer-related deaths worldwide. Up to 80% of cancer patients are classified as non-small-cell lung cancer (NSCLC) and cisplatin remains as the gold standard chemotherapy treatment, despite its limited efficacy due to both intrinsic and acquired resistance. The CK2 is a Ser/Thr kinase overexpressed in various types of cancer, including lung cancer. CIGB-300 is an antitumor peptide with a novel mechanism of action, since it binds to CK2 substrates thus preventing the enzyme activity. The aim of this work was to analyze the effects of CIGB-300 treatment targeting CK2-dependent signaling pathways in NSCLC cell lines and whether it may help improve current chemotherapy treatment. The human NSCLC cell lines NCI-H125 and NIH-A549 were used. Tumor spheroids were obtained through the hanging-drop method. A cisplatin resistant A549 cell line was obtained by chronic administration of cisplatin. Cell viability, apoptosis, immunoblotting, immunofluorescence and luciferase reporter assays were used to assess CIGB-300 effects. A luminescent assay was used to monitor proteasome activity. We demonstrated that CIGB-300 induces an anti-proliferative response both in monolayer- and three-dimensional NSCLC models, presenting rapid and complete peptide uptake. This effect was accompanied by the inhibition of the CK2-dependent canonical NF-κB pathway, evidenced by reduced RelA/p65 nuclear levels and NF-κB protein targets modulation in both lung cancer cell lines, as well as conditionally reduced NF-κB transcriptional activity. In addition, NF-κB modulation was associated with enhanced proteasome activity, possibly through its α7/C8 subunit. Neither the peptide nor a classical CK2 inhibitor affected cytoplasmic β-CATENIN basal levels. Given that NF-κB activation has been linked to cisplatin-induced resistance, we explored whether CIGB-300 could bring additional therapeutic benefits to the standard

  11. Cationic antimicrobial peptides serve as activation signals for the Salmonella Typhimurium PhoPQ and PmrAB regulons in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Susan M Richards

    2012-07-01

    Full Text Available Salmonella enterica serovar Typhimurium uses two-component regulatory systems (TCRSs to respond to environmental stimuli. Upon infection, the TCRSs PhoP-PhoQ (PhoPQ and PmrA-PmrB (PmrAB are activated by environmental signals detected in the lumen of the intestine and within host cells. TCRS-mediated gene expression leads to upregulation of genes involved in lipopolysaccharide (LPS modification and cationic antimicrobial peptide (CAMP resistance. This research expands on previous studies which have shown that CAMPs can activate Salmonella TCRSs in vitro. The focus of this work was to determine if CAMPs can act as environmental signals for PhoPQ- and PmrAB-mediated gene expression in vitro, during infection of macrophages and in a mouse model of infection. Monitoring of PhoPQ and PmrAB activation using RIVET, alkaline phosphtase and β-galactosidase reporter fusion constructs demonstrated that S. Typhimurium PhoQ can sense CAMPs in vitro. In mouse macrophages, the cathelecidin CRAMP does not activate the PhoPQ regulon. Acidification of the Salmonella-containing vacuole activates PhoP- and PmrA-regulated loci but blocking acidification still does not reveal a role for CRAMP in TCRS activation in mouse macrophages. However, assays performed in susceptible wild type (WT, CRAMP knockout (KO and matrilysin (a metalloproteinase necessary for activating murine α-defensins KO mice suggest CRAMP, but not α-defensins, serve as a putative direct TCRS activation signal in the mouse intestine. These studies provide a better understanding of the in vivo environments that result in activation of these virulence-associated TCRSs.

  12. A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Quitterer, Ursula, E-mail: ursula.quitterer@pharma.ethz.ch [Molecular Pharmacology Unit, Swiss Federal Institute of Technology and University of Zurich, Zurich (Switzerland); Pohl, Armin; Langer, Andreas; Koller, Samuel; AbdAlla, Said [Molecular Pharmacology Unit, Swiss Federal Institute of Technology and University of Zurich, Zurich (Switzerland)

    2011-06-10

    Highlights: {yields} A new FRET-based method detects AT1/B2 receptor heterodimerization. {yields} First time application of AT1-Cerulean as a FRET donor. {yields} Method relies on signal peptide-enhanced cell surface delivery of AT1-Cerulean. {yields} A high FRET efficiency revealed efficient heterodimerization of AT1/B2R proteins. {yields} AT1/B2R heterodimers were functionally coupled to desensitization mechanisms. -- Abstract: Heterodimerization of the angiotensin II AT1 receptor with the receptor for the vasodepressor bradykinin, B2R, is known to sensitize the AT1-stimulated response of hypertensive individuals in vivo. To analyze features of that prototypic receptor heterodimer in vitro, we established a new method that uses fluorescence resonance energy transfer (FRET) and applies for the first time AT1-Cerulean as a FRET donor. The Cerulean variant of the green fluorescent protein as donor fluorophore was fused to the C-terminus of AT1, and the enhanced yellow fluorescent protein (EYFP) as acceptor fluorophore was fused to B2R. In contrast to AT1-EGFP, the AT1-Cerulean fusion protein was retained intracellularly. To facilitate cell surface delivery of AT1-Cerulean, a cleavable signal sequence was fused to the receptor's amino terminus. The plasma membrane-localized AT1-Cerulean resembled the native AT1 receptor regarding ligand binding and receptor activation. A high FRET efficiency of 24.7% between membrane-localized AT1-Cerulean and B2R-EYFP was observed with intact, non-stimulated cells. Confocal FRET microscopy further revealed that the AT1/B2 receptor heterodimer was functionally coupled to receptor desensitization mechanisms because activation of the AT1-Cerulean/B2R-EYFP heterodimer with a single agonist triggered the co-internalization of AT1/B2R. Receptor co-internalization was sensitive to inhibition of G protein-coupled receptor kinases, GRKs, as evidenced by a GRK-specific peptide inhibitor. In agreement with efficient AT1/B2R

  13. Microbial Disease Spectrum Linked to a Novel IL-12Rβ1 N-Terminal Signal Peptide Stop-Gain Homozygous Mutation with Paradoxical Receptor Cell-Surface Expression

    Science.gov (United States)

    Louvain de Souza, Thais; de Souza Campos Fernandes, Regina C.; Azevedo da Silva, Juliana; Gomes Alves Júnior, Vladimir; Gomes Coelho, Adelia; Souza Faria, Afonso C.; Moreira Salomão Simão, Nabia M.; Souto Filho, João T.; Deswarte, Caroline; Boisson-Dupuis, Stéphanie; Torgerson, Dara; Casanova, Jean-Laurent; Bustamante, Jacinta; Medina-Acosta, Enrique

    2017-01-01

    Patients with Mendelian Susceptibility to Mycobacterial Diseases (MSMD) exhibit variable vulnerability to infections by mycobacteria and other intramacrophagic bacteria (e.g., Salmonella and Klebsiella) and fungi (e.g., Histoplasma, Candida, Paracoccidioides, Coccidioides, and Cryptococcus). The hallmark of MSMD is the inherited impaired production of interferon gamma (IFN-γ) or the lack of response to it. Mutations in the interleukin (IL)-12 receptor subunit beta 1 (IL12RB1) gene accounts for 38% of cases of MSMD. Most IL12RB1 pathogenic allele mutations, including ten known stop-gain variants, cause IL-12Rβ1 complete deficiency (immunodeficiency-30, IMD30) by knocking out receptor cell-surface expression. IL12RB1 loss-of-function genotypes impair both IL-12 and IL-23 responses. Here, we assess the health effects of a rare, novel IL12RB1 stop-gain homozygous genotype with paradoxical IL-12Rβ1 cell-surface expression. We appraise four MSMD children from three unrelated Brazilian kindreds by clinical consultation, medical records, and genetic and immunologic studies. The clinical spectrum narrowed down to Bacillus Calmette-Guerin (BCG) vaccine-related suppurative adenitis in all patients with one death, and recrudescence in two, histoplasmosis, and recurrence in one patient, extraintestinal salmonellosis in one child, and cutaneous vasculitis in another. In three patients, we established the homozygous Trp7Ter predicted loss-of-function inherited genotype and inferred it from the heterozygote parents of the fourth case. The Trp7Ter mutation maps to the predicted IL-12Rβ1 N-terminal signal peptide sequence. BCG- or phytohemagglutinin-blasts from the three patients have reduced cell-surface expression of IL-12Rβ1 with impaired production of IFN-γ and IL-17A. Screening of 227 unrelated healthy subjects from the same geographic region revealed one heterozygous genotype (allele frequency 0.0022) vs. one in over 841,883 public genome/exomes. We also show that the

  14. Ca 2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca 2+ channels

    KAUST Repository

    Qia, Zhi

    2010-11-18

    A family of peptide signaling molecules (AtPeps) and their plasma membrane receptor AtPepR1 are known to act in pathogendefense signaling cascades in plants. Little is currently known about the molecular mechanisms that link these signaling peptides and their receptor, a leucine-rich repeat receptor-like kinase, to downstream pathogen-defense responses. We identify some cellular activities of these molecules that provide the context for a model for their action in signaling cascades. AtPeps activate plasma membrane inwardly conducting Ca 2+ permeable channels in mesophyll cells, resulting in cytosolic Ca 2+ elevation. This activity is dependent on their receptor as well as a cyclic nucleotide-gated channel (CNGC2). We also show that the leucine-rich repeat receptor- like kinase receptor AtPepR1 has guanylyl cyclase activity, generating cGMP from GTP, and that cGMP can activate CNGC2- dependent cytosolic Ca 2+ elevation. AtPep-dependent expression of pathogen-defense genes (PDF1.2, MPK3, and WRKY33) is mediated by the Ca 2+ signaling pathway associated with AtPep peptides and their receptor. The work presented here indicates that extracellular AtPeps, which can act as danger-associated molecular patterns, signal by interaction with their receptor, AtPepR1, a plasma membrane protein that can generate cGMP. Downstream from AtPep and AtPepR1 in a signaling cascade, the cGMP-activated channel CNGC2 is involved in AtPep- and AtPepR1-dependent inward Ca 2+ conductance and resulting cytosolic Ca 2+ elevation. The signaling cascade initiated by AtPeps leads to expression of pathogen- defense genes in a Ca 2+-dependent manner.

  15. cGMP and NHR signaling co-regulate expression of insulin-like peptides and developmental activation of infective larvae in Strongyloides stercoralis.

    Directory of Open Access Journals (Sweden)

    Jonathan D Stoltzfus

    2014-07-01

    Full Text Available The infectious form of the parasitic nematode Strongyloides stercoralis is a developmentally arrested third-stage larva (L3i, which is morphologically similar to the developmentally arrested dauer larva in the free-living nematode Caenorhabditis elegans. We hypothesize that the molecular pathways regulating C. elegans dauer development also control L3i arrest and activation in S. stercoralis. This study aimed to determine the factors that regulate L3i activation, with a focus on G protein-coupled receptor-mediated regulation of cyclic guanosine monophosphate (cGMP pathway signaling, including its modulation of the insulin/IGF-1-like signaling (IIS pathway. We found that application of the membrane-permeable cGMP analog 8-bromo-cGMP potently activated development of S. stercoralis L3i, as measured by resumption of feeding, with 85.1 ± 2.2% of L3i feeding in 200 µM 8-bromo-cGMP in comparison to 0.6 ± 0.3% in the buffer diluent. Utilizing RNAseq, we examined L3i stimulated with DMEM, 8-bromo-cGMP, or the DAF-12 nuclear hormone receptor (NHR ligand Δ7-dafachronic acid (DA--a signaling pathway downstream of IIS in C. elegans. L3i stimulated with 8-bromo-cGMP up-regulated transcripts of the putative agonistic insulin-like peptide (ILP -encoding genes Ss-ilp-1 (20-fold and Ss-ilp-6 (11-fold in comparison to controls without stimulation. Surprisingly, we found that Δ7-DA similarly modulated transcript levels of ILP-encoding genes. Using the phosphatidylinositol-4,5-bisphosphate 3-kinase inhibitor LY294002, we demonstrated that 400 nM Δ7-DA-mediated activation (93.3 ± 1.1% L3i feeding can be blocked using this IIS inhibitor at 100 µM (7.6 ± 1.6% L3i feeding. To determine the tissues where promoters of ILP-encoding genes are active, we expressed promoter::egfp reporter constructs in transgenic S. stercoralis post-free-living larvae. Ss-ilp-1 and Ss-ilp-6 promoters are active in the hypodermis and neurons and the Ss-ilp-7 promoter is active in the

  16. Curcumin Improves Amyloid β-Peptide (1-42) Induced Spatial Memory Deficits through BDNF-ERK Signaling Pathway.

    Science.gov (United States)

    Zhang, Lu; Fang, Yu; Xu, Yuming; Lian, Yajun; Xie, Nanchang; Wu, Tianwen; Zhang, Haifeng; Sun, Limin; Zhang, Ruifang; Wang, Zhenhua

    2015-01-01

    Curcumin, the most active component of turmeric, has various beneficial properties, such as antioxidant, anti-inflammatory, and antitumor effects. Previous studies have suggested that curcumin reduces the levels of amyloid and oxidized proteins and prevents memory deficits and thus is beneficial to patients with Alzheimer's disease (AD). However, the molecular mechanisms underlying curcumin's effect on cognitive functions are not well-understood. In the present study, we examined the working memory and spatial reference memory in rats that received a ventricular injection of amyloid-β1-42 (Aβ1-42), representing a rodent model of Alzheimer's disease (AD). The rats treated with Aβ1-42 exhibited obvious cognitive deficits in behavioral tasks. Chronic (seven consecutive days, once per day) but not acute (once a day) curcumin treatments (50, 100, and 200 mg/kg) improved the cognitive functions in a dose-dependent manner. In addition, the beneficial effect of curcumin is accompanied by increased BDNF levels and elevated levels of phosphorylated ERK in the hippocampus. Furthermore, the cognition enhancement effect of curcumin could be mimicked by the overexpression of BDNF in the hippocampus and blocked by either bilateral hippocampal injections with lentiviruses that express BDNF shRNA or a microinjection of ERK inhibitor. These findings suggest that chronic curcumin ameliorates AD-related cognitive deficits and that upregulated BDNF-ERK signaling in the hippocampus may underlie the cognitive improvement produced by curcumin.

  17. The milk-derived fusion peptide, ACFP, suppresses the growth of primary human ovarian cancer cells by regulating apoptotic gene expression and signaling pathways.

    Science.gov (United States)

    Zhou, Juan; Zhao, Mengjing; Tang, Yigui; Wang, Jing; Wei, Cai; Gu, Fang; Lei, Ting; Chen, Zhiwu; Qin, Yide

    2016-03-24

    ACFP is an anti-cancer fusion peptide derived from bovine milk protein. This study was to investigate the anti-cancer function and underlying mechanisms of ACFP in ovarian cancer. Fresh ovarian tumor tissues were collected from 53 patients who underwent initial debulking surgery, and primary cancer cells were cultured. Normal ovarian surface epithelium cells (NOSECs), isolated from 7 patients who underwent surgery for uterine fibromas, were used as normal control tissue. Anti-viabilities of ACFP were assessed by WST-1 (water-soluble tetrazolium 1), and apoptosis was measured using a flow cytometry-based assay. Gene expression profiles of ovarian cancer cells treated with ACFP were generated by cDNA microarray, and the expression of apoptotic-specific genes, such as bcl-xl, bax, akt, caspase-3, CDC25C and cyclinB1, was assessed by real time PCR and western blot analysis. Treatment with ACFP inhibited the viability and promoted apoptosis of primary ovarian cancer cells but exhibited little or no cytotoxicity toward normal primary ovarian cells. Mechanistically, the anti-cancer effects of ACFP in ovarian cells were shown to occur partially via changes in gene expression and related signal pathways. Gene expression profiling highlighted that ACFP treatment in ovarian cancer cells repressed the expression of bcl-xl, akt, CDC25C and cyclinB1 and promoted the expression of bax and caspase-3 in a time- and dose-dependent manner. Our results suggest that ACFP may represent a potential therapeutic agent for ovarian cancer that functions by altering the expression and signaling of cancer-related pathways in ovarian cancer cells.

  18. Synthetic Human TLR9-LRR11 Peptide Attenuates TLR9 Signaling by Binding to and thus Decreasing Internalization of CpG Oligodeoxynucleotides.

    Science.gov (United States)

    Pan, Xichun; Li, Bin; Kuang, Mei; Liu, Xin; Cen, Yanyan; Qin, Rongxin; Ding, Guofu; Zheng, Jiang; Zhou, Hong

    2016-02-22

    Toll-like receptor (TLR) 9 is an endosomal receptor recognizing bacterial DNA/CpG-containing oligodeoxynucleotides (CpG ODN). Blocking CpG ODN/TLR9 activity represents a strategy for therapeutic prevention of immune system overactivation. Herein, we report that a synthetic peptide (SP) representing the leucine-rich repeat 11 subdomain of the human TLR9 extracellular domain could attenuate CpG ODN/TLR9 activity in RAW264.7 cells by binding to CpG ODN and decreasing its internalization. Our results demonstrate that preincubation with SP specifically inhibited CpG ODN- but not lipopolysaccharide (LPS)- and lipopeptide (PAM3CSK4)-stimulated TNF-α and IL-6 release. Preincubation of SP with CpG ODN dose-dependently decreased TLR9-driven phosphorylation of IκBα and ERK and activation of NF-κB/p65. Moreover, SP dose-dependently decreased FAM-labeled CpG ODN internalization, whereas non-labeled CpG ODN reversed the inhibition. The KD value of SP-CpG ODN binding was within the micromolar range. Our results demonstrated that SP was a specific inhibitor of CpG ODN/TLR9 activity via binding to CpG ODN, leading to reduced ODN internalization and decreased activation of subsequent pathways within cells. Thus, SP could be used as a potential CpG ODN antagonist to block TLR9 signaling.

  19. Synthetic Human TLR9-LRR11 Peptide Attenuates TLR9 Signaling by Binding to and thus Decreasing Internalization of CpG Oligodeoxynucleotides

    Directory of Open Access Journals (Sweden)

    Xichun Pan

    2016-02-01

    Full Text Available Toll-like receptor (TLR 9 is an endosomal receptor recognizing bacterial DNA/CpG-containing oligodeoxynucleotides (CpG ODN. Blocking CpG ODN/TLR9 activity represents a strategy for therapeutic prevention of immune system overactivation. Herein, we report that a synthetic peptide (SP representing the leucine-rich repeat 11 subdomain of the human TLR9 extracellular domain could attenuate CpG ODN/TLR9 activity in RAW264.7 cells by binding to CpG ODN and decreasing its internalization. Our results demonstrate that preincubation with SP specifically inhibited CpG ODN- but not lipopolysaccharide (LPS- and lipopeptide (PAM3CSK4-stimulated TNF-α and IL-6 release. Preincubation of SP with CpG ODN dose-dependently decreased TLR9-driven phosphorylation of IκBα and ERK and activation of NF-κB/p65. Moreover, SP dose-dependently decreased FAM-labeled CpG ODN internalization, whereas non-labeled CpG ODN reversed the inhibition. The KD value of SP-CpG ODN binding was within the micromolar range. Our results demonstrated that SP was a specific inhibitor of CpG ODN/TLR9 activity via binding to CpG ODN, leading to reduced ODN internalization and decreased activation of subsequent pathways within cells. Thus, SP could be used as a potential CpG ODN antagonist to block TLR9 signaling.

  20. Mouse Mammary Tumor Virus Signal Peptide Uses a Novel p97-Dependent and Derlin-Independent Retrotranslocation Mechanism To Escape Proteasomal Degradation

    Directory of Open Access Journals (Sweden)

    Hyewon Byun

    2017-03-01

    Full Text Available Multiple pathogens, including viruses and bacteria, manipulate endoplasmic reticulum-associated degradation (ERAD to avoid the host immune response and promote their replication. The betaretrovirus mouse mammary tumor virus (MMTV encodes Rem, which is a precursor protein that is cleaved into a 98-amino-acid signal peptide (SP and a C-terminal protein (Rem-CT. SP uses retrotranslocation for ER membrane extraction and yet avoids ERAD by an unknown mechanism to enter the nucleus and function as a Rev-like protein. To determine how SP escapes ERAD, we used a ubiquitin-activated interaction trap (UBAIT screen to trap and identify transient protein interactions with SP, including the ERAD-associated p97 ATPase, but not E3 ligases or Derlin proteins linked to retrotranslocation, polyubiquitylation, and proteasomal degradation of extracted proteins. A dominant negative p97 ATPase inhibited both Rem and SP function. Immunoprecipitation experiments indicated that Rem, but not SP, is polyubiquitylated. Using both yeast and mammalian expression systems, linkage of a ubiquitin-like domain (UbL to SP or Rem induced degradation by the proteasome, whereas SP was stable in the absence of the UbL. ERAD-associated Derlin proteins were not required for SP activity. Together, these results suggested that Rem uses a novel p97-dependent, Derlin-independent retrotranslocation mechanism distinct from other pathogens to avoid SP ubiquitylation and proteasomal degradation.

  1. An intact signal peptide on dengue virus E protein enhances immunogenicity for CD8(+) T cells and antibody when expressed from modified vaccinia Ankara.

    Science.gov (United States)

    Quinan, Bárbara R; Flesch, Inge E A; Pinho, Tânia M G; Coelho, Fabiana M; Tscharke, David C; da Fonseca, Flávio G

    2014-05-23

    Dengue is a global public health concern and this is aggravated by a lack of vaccines or antiviral therapies. Despite the well-known role of CD8(+) T cells in the immunopathogenesis of Dengue virus (DENV), only recent studies have highlighted the importance of this arm of the immune response in protection against the disease. Thus, the majority of DENV vaccine candidates are designed to achieve protective titers of neutralizing antibodies, with less regard for cellular responses. Here, we used a mouse model to investigate CD8(+) T cell and humoral responses to a set of potential DENV vaccines based on recombinant modified vaccinia virus Ankara (rMVA). To enable this study, we identified two CD8(+) T cell epitopes in the DENV-3 E protein in C57BL/6 mice. Using these we found that all the rMVA vaccines elicited DENV-specific CD8(+) T cells that were cytotoxic in vivo and polyfunctional in vitro. Moreover, vaccines expressing the E protein with an intact signal peptide sequence elicited more DENV-specific CD8(+) T cells than those expressing E proteins in the cytoplasm. Significantly, it was these same ER-targeted E protein vaccines that elicited antibody responses. Our results support the further development of rMVA vaccines expressing DENV E proteins and add to the tools available for dengue vaccine development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Serum amyloid A stimulates matrix-metalloproteinase-9 upregulation via formyl peptide receptor like-1-mediated signaling in human monocytic cells

    International Nuclear Information System (INIS)

    Lee, Ha Young; Kim, Mi-Kyoung; Park, Kyoung Sun; Bae, Yun Hee; Yun, Jeanho; Park, Joo-In; Kwak, Jong-Young; Bae, Yoe-Sik

    2005-01-01

    In the present study, we found that serum amyloid A (SAA) stimulated matrix-metalloproteinase-9 (MMP-9) upregulation at the transcription and translational levels in THP-1 cells. SAA stimulated the activation of nuclear factor κB (NF-κB), which was required for the MMP-9 upregulation by SAA. The signaling events induced by SAA included the activation of ERK and intracellular calcium rise, which were found to be required for MMP-9 upregulation. Formyl peptide receptor like 1 (FPRL1) was found to be involved in the upregulation of MMP-9 by SAA. Among several FPRL1 agonists, including Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm), SAA selectively stimulated MMP-9 upregulation. With respect to the molecular mechanisms involved in the differential action of SAA and WKYMVm, we found that SAA could not competitively inhibit the binding of 125 I-labeled WKYMVm to FPRL1. Taken together, we suggest that SAA plays a role in the modulation of inflammatory and immune responses via FPRL1, by inducing MMP-9 upregulation in human monocytic cells

  3. Glucagon-like Peptide-1 receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake and motivation to feed.

    Science.gov (United States)

    Alhadeff, Amber L; Baird, John-Paul; Swick, Jennifer C; Hayes, Matthew R; Grill, Harvey J

    2014-08-01

    Central glucagon-like peptide-1 receptor (GLP-1R) activation reduces food intake and the motivation to work for food, but the neurons and circuits mediating these effects are not fully understood. Although lateral parabrachial nucleus (lPBN) neurons are implicated in the control of food intake and reward, the specific role of GLP-1R-expressing lPBN neurons is unexplored. Here, neuroanatomical tracing, immunohistochemical, and behavioral/pharmacological techniques are used to test the hypothesis that lPBN neurons contribute to the anorexic effect of central GLP-1R activation. Results indicate that GLP-1-producing neurons in the nucleus tractus solitarius project monosynaptically to the lPBN, providing a potential endogenous mechanism by which lPBN GLP-1R signaling may exert effects on food intake control. Pharmacological activation of GLP-1R in the lPBN reduced food intake, and conversely, antagonism of GLP-1R in the lPBN increased food intake. In addition, lPBN GLP-1R activation reduced the motivation to work for food under a progressive ratio schedule of reinforcement. Taken together, these data establish the lPBN as a novel site of action for GLP-1R-mediated control of food intake and reward.

  4. Possible involvement of integrin-mediated signalling in oocyte activation: evidence that a cyclic RGD-containing peptide can stimulate protein kinase C and cortical granule exocytosis in mouse oocytes

    Directory of Open Access Journals (Sweden)

    Carbone Maria

    2006-09-01

    Full Text Available Abstract Background Mammalian sperm-oocyte interaction at fertilization involves several combined interactions between integrins on the oocyte and integrin ligands (disintegrins on the sperm. Recent research has indicated the ability of peptides containing the RGD sequence that characterized several sperm disintegrins, to induce intracellular Ca2+ transients and to initiate parthenogenetic development in amphibian and bovine oocytes. In the present study, we investigate the hypothesis that an integrin-associated signalling may participate in oocyte activation signalling by determining the ability of a cyclic RGD-containing peptide to stimulate the activation of protein kinase C (PKC and the exocytosis of cortical granules in mouse oocytes. Methods An In-Vitro-Fertilization assay (IVF was carried in order to test the condition under which a peptide containing the RGD sequence, cyclo(Arg-Gly-Asp-D-Phe-Val, was able to inhibit sperm fusion with zona-free mouse oocytes at metaphase II stage. PKC activity was determined by means of an assay based on the ability of cell lysates to phosphorylate MARKS peptide, a specific PKC substrate. Loss of cortical granules was evaluated by measuring density in the oocyte cortex of cortical granules stained with LCA-biotin/Texas red-streptavidin. In all the experiments, effects of a control peptide containing a non RGD sequence, cyclo(Arg-Ala-Asp-D-Phe-Val, were evaluated. Results The IVF assay revealed that the fusion rate declined significantly when insemination was carried out in the presence of cyclic RGD peptide at concentrations > or = 250 microM (P Conclusion The presents results provide evidence that a cyclic RGD peptide highly effective in inhibiting sperm-oocyte interaction stimulates in mouse oocytes the activation of PKC and the exocytosis of cortical granules. These data support the view that RGD-binding receptors may function as signalling receptors giving rise integrated signalling not sufficient for

  5. Secretion of Pem-CMG, a peptide in the CHH/MIH/GIH family of Penaeus monodon, in Pichia pastoris is directed by secretion signal of the alpha-mating factor from Saccharomyces cerevisiae.

    Science.gov (United States)

    Treerattrakool, Supattra; Eurwilaichitr, Lily; Udomkit, Apinunt; Panyim, Sakol

    2002-09-30

    The CHH/MIH/GIH peptide family of black tiger prawn (Paneaus monodon) is important in shrimp reproduction and growth enhancement. In this study, the cDNA that encodes the complete peptide that is related to the CHH/MIH/GIH family (so-called, Pem-CMG) in the eyestalk of P. monodon was successfully expressed in a methylotrophic yeast Pichia pastoris under the control of an alcohol oxidase promoter. In order to obtain the secreted Pem-CMG, a secretion signal of either the Saccharomyces cerevisiae alpha-factor or Pem-CMG was employed. The results demonstrated that alphaPem-CMG, either with (alpha2EACMG) or without (alphaCMG) the Glu-Ala repeats, was secreted into the medium, while Pem-CMG with its own secretion signal failed to be secreted. The total protein amount that was secreted from the transformant that contained either alpha2EACMG or alphaMG was approximately 60 mg/l and 150 mg/l, respectively. The N-terminus of the Pem-CMG peptide of both alpha2EACMG and alphaCMG was correctly processed. This produced the mature Pem-CMG peptide.

  6. An Essential Role for (p)ppGpp in the Integration of Stress Tolerance, Peptide Signaling, and Competence Development in Streptococcus mutans.

    Science.gov (United States)

    Kaspar, Justin; Kim, Jeong N; Ahn, Sang-Joon; Burne, Robert A

    2016-01-01

    The microbes that inhabit the human oral cavity are subjected to constant fluctuations in their environment. To overcome these challenges and gain a competitive advantage, oral streptococci employ numerous adaptive strategies, many of which appear to be intertwined with the development of genetic competence. Here, we demonstrate that the regulatory circuits that control development of competence in Streptococcus mutans, a primary etiological agent of human dental caries, are integrated with key stress tolerance pathways by the molecular alarmone (p)ppGpp. We first observed that the growth of a strain that does not produce (p)ppGpp (ΔrelAPQ, (p)ppGpp(0)) is not sensitive to growth inhibition by comX inducing peptide (XIP), unlike the wild-type strain UA159, even though XIP-dependent activation of the alternative sigma factor comX by the ComRS pathway is not impaired in the (p)ppGpp(0) strain. Overexpression of a (p)ppGpp synthase gene (relP) in the (p)ppGpp(0) mutant restored growth inhibition by XIP. We also demonstrate that exposure to micromolar concentrations of XIP elicited changes in (p)ppGpp accumulation in UA159. Loss of the RelA/SpoT homolog (RSH) enzyme, RelA, lead to higher basal levels of (p)ppGpp accumulation, but to decreased sensitivity to XIP and to decreases in comR promoter activity and ComX protein levels. By introducing single amino acid substitutions into the RelA enzyme, the hydrolase activity of the enzyme was shown to be crucial for full com gene induction and transformation by XIP. Finally, loss of relA resulted in phenotypic changes to ΔrcrR mutants, highlighted by restoration of transformation and ComX protein production in the otherwise non-transformable ΔrcrR-NP mutant. Thus, RelA activity and its influence on (p)ppGpp pools appears to modulate competence signaling and development through RcrRPQ and the peptide effectors encoded within rcrQ. Collectively, this study provides new insights into the molecular mechanisms that integrate

  7. An essential role for (pppGpp in the integration of stress tolerance, peptide signaling and competence development in Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Justin Kaspar

    2016-07-01

    Full Text Available The microbes that inhabit the human oral cavity are subjected to constant fluctuations in their environment. To overcome these challenges and gain a competitive advantage, oral streptococci employ numerous adaptive strategies, many of which appear to be intertwined with the development of genetic competence. Here, we demonstrate that the regulatory circuits that control development of competence in Streptococcus mutans, a primary etiological agent of human dental caries, are integrated with key stress tolerance pathways by the molecular alarmone (pppGpp. We first observed that the growth of a strain that does not produce (pppGpp (ΔrelAPQ, (pppGpp0 is not sensitive to growth inhibition by comX inducing peptide (XIP, unlike the wild-type strain UA159, even though XIP-dependent activation of the alternative sigma factor comX by the ComRS pathway is not impaired in the (pppGpp0 strain. Overexpression of a (pppGpp synthase gene (relP in the (pppGpp0 mutant restored growth inhibition by XIP. We also demonstrate that exposure to micromolar concentrations of XIP elicited changes in (pppGpp accumulation in UA159. Loss of the RelA/SpoT homolog (RSH enzyme, RelA, lead to higher basal levels of (pppGpp accumulation, but to decreased sensitivity to XIP and to decreases in comR promoter activity and ComX protein levels. By introducing single amino acid substitutions into the RelA enzyme, the hydrolase activity of the enzyme was shown to be crucial for full com gene induction and transformation by XIP. Finally, loss of relA resulted in phenotypic changes to ΔrcrR mutants, highlighted by restoration of transformation and ComX protein production in the otherwise non-transformable ΔrcrR-NP mutant. Thus, RelA activity and its influence on (ppGpp pools appears to modulate competence signaling and development through RcrRPQ and the peptide effectors encoded within rcrQ. Collectively, this study provides new insights into the molecular mechanisms that integrate

  8. Kefir peptides prevent high-fructose corn syrup-induced non-alcoholic fatty liver disease in a murine model by modulation of inflammation and the JAK2 signaling pathway.

    Science.gov (United States)

    Chen, H L; Tsai, T C; Tsai, Y C; Liao, J W; Yen, C C; Chen, C M

    2016-12-12

    formation of fatty liver by activating JAK2 signal transduction through the JAK2/STAT3 and JAK2/AMPK pathways in the high-fructose-induced fatty liver animal model. Therefore, kefir peptides may have the potential for clinical application for the prevention or treatment of clinical metabolic syndrome.

  9. Can signal peptide-CUB-EGF domain-containing protein (SCUBE) levels be a marker of angiogenesis in patients with psoriasis?

    Science.gov (United States)

    Capkin, Arzu Aydın; Demir, Selim; Mentese, Ahmet; Bulut, Çağlar; Ayar, Ahmet

    2017-04-01

    Angiogenesis is an important process being involved in the pathogenesis of psoriasis and promises new potential parameter for diagnosis and screening of treatment. This study investigated the levels of signal peptide-CUB-EGF (epidermal growth factor-like protein) family domain-containing protein (SCUBE) 1 and 3. Potential value as a novel marker of angiogenesis in patients with psoriasis is also evaluated by assessing possible relation of SCUBE-1 and 3 with disease activity in conjunction with vascular endothelial growth factor (VEGF) levels, as an established marker of angiogenesis. Forty-eight patients with psoriasis (aged >18 years) and 48 age- and gender-matched healthy controls were included. Detailed information was obtained through history and physical examination. Psoriasis area and severity index (PASI) scores were calculated. Blood SCUBE 1 and 3, and VEGF levels were measured by enzyme-linked immunosorbent assay. The mean PASI score of the patients was 6.7 ± 4.1. Patients' serum SCUBE 1 and 3 and VEGF levels were significantly higher than those of the controls (P = 0.001). The sensitivity and specificity were calculated as 83 and 62% for the 0.67 ng/ml cut-off level of SCUBE 1, and 63 and 71% for the 2.57 ng/ml cut-off level of SCUBE 3, respectively. A cut-off VEGF level of 310 ng/mL predicted the presence of psoriasis with a sensitivity of 50% and specificity of 77%. The results of this pioneering study indicate that SCUBE protein family appears to have a probable role in the pathogenesis and angiogenesis development in psoriasis and SCUBE 1 and 3 may be novel markers of angiogenesis in psoriasis.

  10. The Signal Peptide of a Recently Integrated Endogenous Sheep Betaretrovirus Envelope Plays a Major Role in Eluding Gag-Mediated Late Restriction ▿

    Science.gov (United States)

    Armezzani, Alessia; Arnaud, Frédérick; Caporale, Marco; di Meo, GiuliaPia; Iannuzzi, Leopoldo; Murgia, Claudio; Palmarini, Massimo

    2011-01-01

    The exogenous and pathogenic Jaagsiekte sheep retrovirus (JSRV) coexists with highly related and biologically active endogenous retroviruses (enJSRVs). The endogenous enJS56A1 locus possesses a defective Gag polyprotein which blocks the late replication steps of related exogenous and endogenous retroviruses by a mechanism known as JSRV late restriction (JLR). Conversely, enJSRV-26, which most likely integrated into the sheep genome less than 200 years ago, is able to escape JLR. In this study, we demonstrate that the ability of enJSRV-26 to escape JLR is due to a single-amino-acid substitution in the signal peptide (SP) of its envelope glycoprotein. We show that enJSRV-26 SP does not localize to the nucleolus, unlike the functional SPs of related exogenous and endogenous sheep betaretroviruses. In addition, enJSRV-26 SP function as a posttranscriptional regulator of viral gene expression is impaired. enJSRV-26 JLR escape relies on the presence of the functional enJS56A1 SP. Moreover, we show that the ratio between enJSRV-26 and enJS56A1 Gag is critical to elude JLR. Interestingly, we found that the domestic sheep has acquired, by genome amplification, several copies of the enJS56A1 provirus. These data further reinforce the notion that transdominant enJSRV proviruses have been positively selected in domestic sheep, and that the coevolution between endogenous and exogenous sheep betaretroviruses and their host is still occurring. PMID:21593182

  11. Peptide dendrimers

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šebestík, Jaroslav; Ježek, Jan

    2005-01-01

    Roč. 11, - (2005), 757-788 ISSN 1075-2617 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : multiple antigen peptides * peptide dendrimers * synthetic vaccine * multipleantigenic peptides Subject RIV: CC - Organic Chemistry Impact factor: 1.803, year: 2005

  12. Predicting Secretory Proteins with SignalP

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2017-01-01

    SignalP is the currently most widely used program for prediction of signal peptides from amino acid sequences. Proteins with signal peptides are targeted to the secretory pathway, but are not necessarily secreted. After a brief introduction to the biology of signal peptides and the history...

  13. Cathelicidin Antimicrobial Peptides with Reduced Activation of Toll-Like Receptor Signaling Have Potent Bactericidal Activity against Colistin-Resistant Bacteria

    Directory of Open Access Journals (Sweden)

    Cheng Kao

    2016-09-01

    Full Text Available The world is at the precipice of a postantibiotic era in which medical procedures and minor injuries can result in bacterial infections that are no longer effectively treated by antibiotics. Cathelicidins are peptides produced by animals to combat bacterial infections and to regulate innate immune responses. However, cathelicidins are potent activators of the inflammatory response. Cathelicidins with reduced proinflammatory activity and potent bactericidal activity in the low micromolar range against Gram-negative bacteria have been identified. Motifs in cathelicidins that impact bactericidal activity and cytotoxicity to human cells have been elucidated and used to generate peptides that have reduced activation of proinflammatory cytokine production and reduced cytotoxicity to human cells. The resultant peptides have bactericidal activities comparable to that of colistin and can kill colistin-resistant bacteria.

  14. Subunit Organization in the TatA Complex of the Twin Arginine Protein Translocase

    OpenAIRE

    White, Gaye F.; Schermann, Sonya M.; Bradley, Justin; Roberts, Andrew; Greene, Nicholas P.; Berks, Ben C.; Thomson, Andrew J.

    2009-01-01

    The Tat system is used to transport folded proteins across the cytoplasmic membrane in bacteria and archaea and across the thylakoid membrane of plant chloroplasts. Multimers of the integral membrane TatA protein are thought to form the protein-conducting element of the Tat pathway. Nitroxide radicals were introduced at selected positions within the transmembrane helix of Escherichia coli TatA and used to probe the structure of detergent-solubilized TatA complexes by EPR spectroscopy. A compa...

  15. The contribution of serotonin 5-HT2C and melanocortin-4 receptors to the satiety signaling of glucagon-like peptide 1 and liraglutide, a glucagon-like peptide 1 receptor agonist, in mice.

    Science.gov (United States)

    Nonogaki, Katsunori; Suzuki, Marina; Sanuki, Marin; Wakameda, Mamoru; Tamari, Tomohiro

    2011-07-29

    Glucagon-like peptide 1 (GLP-1), an insulinotropic gastrointestinal peptide produced mainly from intestinal endocrine L-cells, and liraglutide, a GLP-1 receptor (GLP-1R) agonist, induce satiety. The serotonin 5-HT2C receptor (5-HT2CR) and melanoroctin-4 receptor (MC4R) are involved in the regulation of food intake. Here we show that systemic administration of GLP-1 (50 and 200μg/kg)-induced anorexia was blunted in mice with a 5HT2CR null mutation, and was attenuated in mice with a heterozygous MC4R mutation. On the other hand, systemic administration of liraglutide (50 and 100μg/kg) suppressed food intake in mice lacking 5-HT2CR, mice with a heterozygous mutation of MC4R and wild-type mice matched for age. Moreover, once-daily consecutive intraperitoneal administration of liraglutide (100μg/kg) over 3days significantly suppressed daily food intake and body weight in mice with a heterozygous mutation of MC4R as well as wild-type mice. These findings suggest that GLP-1 and liraglutide induce anorexia via different central pathways. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Peptide Optical waveguides.

    Science.gov (United States)

    Handelman, Amir; Apter, Boris; Shostak, Tamar; Rosenman, Gil

    2017-02-01

    Small-scale optical devices, designed and fabricated onto one dielectric substrate, create integrated optical chip like their microelectronic analogues. These photonic circuits, based on diverse physical phenomena such as light-matter interaction, propagation of electromagnetic waves in a thin dielectric material, nonlinear and electro-optical effects, allow transmission, distribution, modulation, and processing of optical signals in optical communication systems, chemical and biological sensors, and more. The key component of these optical circuits providing both optical processing and photonic interconnections is light waveguides. Optical confinement and transmitting of the optical waves inside the waveguide material are possible due to the higher refractive index of the waveguides in comparison with their surroundings. In this work, we propose a novel field of bionanophotonics based on a new concept of optical waveguiding in synthetic elongated peptide nanostructures composed of ordered peptide dipole biomolecules. New technology of controllable deposition of peptide optical waveguiding structures by nanofountain pen technique is developed. Experimental studies of refractive index, optical transparency, and linear and nonlinear waveguiding in out-of-plane and in-plane diphenylalanine peptide nanotubes have been conducted. Optical waveguiding phenomena in peptide structures are simulated by the finite difference time domain method. The advantages of this new class of bio-optical waveguides are high refractive index contrast, wide spectral range of optical transparency, large optical nonlinearity, and electro-optical effect, making them promising for new applications in integrated multifunctional photonic circuits. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  17. A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bingyu [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Luo, Qing, E-mail: qing.luo@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Mao, Xinjian [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Xu, Baiyao [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Yang, Li [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Ju, Yang [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Song, Guanbin, E-mail: song@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2014-03-10

    Tendon injuries are common in sports and are frequent reasons for orthopedic consultations. The management of damaged tendons is one of the most challenging problems in orthopedics. Mechano-growth factor (MGF), a recently discovered growth repair factor, plays positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. We used a scratch wound assay in this study to demonstrate that MGF-C25E (a synthetic mechano-growth factor E peptide) promotes the migration of rat tenocytes and that this promotion is accompanied by an elevation in the expression of the following signaling molecules: focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2). Inhibitors of the FAK and ERK1/2 pathways inhibited the MGF-C25E-induced tenocyte migration, indicating that MGF-C25E promotes tenocyte migration through the FAK-ERK1/2 signaling pathway. The analysis of the mechanical properties showed that the Young's modulus of tenocytes was decreased through treatment of MGF-C25E, and an obvious formation of pseudopodia and F-actin was observed in MGF-C25E-treated tenocytes. The inhibition of the FAK or ERK1/2 signals restored the decrease in Young's modulus and inhibited the formation of pseudopodia and F-actin. Overall, our study demonstrated that MGF-C25E promotes rat tenocyte migration by lessening cell stiffness and increasing pseudopodia formation via the FAK-ERK1/2 signaling pathway. - Highlights: • Mechano-growth factor E peptide (MGF-C25E) promotes migration of rat tenocytes. • MGF-C25E activates the FAK-ERK1/2 pathway in rat tenocytes. • MGF-C25E induces the actin remodeling and the formation of pseudopodia, and decreases the stiffness in rat tenocytes. • MGF-C25E promotes tenocyte migration via altering stiffness and forming pseudopodia by the activation of the

  18. A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Bingyu; Luo, Qing; Mao, Xinjian; Xu, Baiyao; Yang, Li; Ju, Yang; Song, Guanbin

    2014-01-01

    Tendon injuries are common in sports and are frequent reasons for orthopedic consultations. The management of damaged tendons is one of the most challenging problems in orthopedics. Mechano-growth factor (MGF), a recently discovered growth repair factor, plays positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. We used a scratch wound assay in this study to demonstrate that MGF-C25E (a synthetic mechano-growth factor E peptide) promotes the migration of rat tenocytes and that this promotion is accompanied by an elevation in the expression of the following signaling molecules: focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2). Inhibitors of the FAK and ERK1/2 pathways inhibited the MGF-C25E-induced tenocyte migration, indicating that MGF-C25E promotes tenocyte migration through the FAK-ERK1/2 signaling pathway. The analysis of the mechanical properties showed that the Young's modulus of tenocytes was decreased through treatment of MGF-C25E, and an obvious formation of pseudopodia and F-actin was observed in MGF-C25E-treated tenocytes. The inhibition of the FAK or ERK1/2 signals restored the decrease in Young's modulus and inhibited the formation of pseudopodia and F-actin. Overall, our study demonstrated that MGF-C25E promotes rat tenocyte migration by lessening cell stiffness and increasing pseudopodia formation via the FAK-ERK1/2 signaling pathway. - Highlights: • Mechano-growth factor E peptide (MGF-C25E) promotes migration of rat tenocytes. • MGF-C25E activates the FAK-ERK1/2 pathway in rat tenocytes. • MGF-C25E induces the actin remodeling and the formation of pseudopodia, and decreases the stiffness in rat tenocytes. • MGF-C25E promotes tenocyte migration via altering stiffness and forming pseudopodia by the activation of the

  19. Rice Bioactive Peptide Binding with TLR4 To Overcome H2O2-Induced Injury in Human Umbilical Vein Endothelial Cells through NF-κB Signaling.

    Science.gov (United States)

    Liang, Ying; Lin, Qinlu; Huang, Ping; Wang, Yuqian; Li, Jiajia; Zhang, Lin; Cao, Jianzhong

    2018-01-17

    Reactive oxygen species-induced vessel endothelium injury is crucial in cardiovascular diseases progression. Rice-derived bran bioactive peptides (RBAP) might exert antioxidant effect through unknown mechanisms. Herein, we validated the antioxidant effect and mechanism of RBAP on H 2 O 2 -induced oxidative injury in human umbilical vein endothelial cells (HUVECs). Here, HUVECs were treated with RBAP under H 2 O 2 stimulation; the effects of RBAP on HUVECs oxidative injury were evaluated. H 2 O 2 injury-induced cell morphology changes were ameliorated by RBAP. The effect of H 2 O 2 - on HUVEC apoptosis (percentage of apoptotic cell: 38.00 ± 2.00 in H 2 O 2 group vs 21.07 ± 2.06 in RBAP + H 2 O 2 group, P = 0.0013 compared to H 2 O 2 group), the protein levels of cleaved caspase-3 (relative protein expression: 2.90 ± 0.10 in H 2 O 2 group vs 1.82 ± 0.09 in RBAP + H 2 O 2 group, P < 0.0001 compared to H 2 O 2 group) and p-p65 (relative protein expression: 1.86 ± 0.09 in H 2 O 2 group vs 1.35 ± 0.08 in RBAP + H 2 O 2 group, P < 0.0001 compared to H 2 O 2 group) could be attenuated by RBAP. RBAP exerts its protective function through binding with Toll-like receptor 4 (TLR4). Taken together, RBAP protects HUVECs against H 2 O 2 -induced oxidant injury, which provided the theoretical basis for the molecular mechanism of rice deep processing and exploitation of functional peptides.

  20. Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ali Adem Bahar

    2013-11-01

    Full Text Available The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs, a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics.

  1. Coding assignment and nucleotide sequence of simian rotavirus SA11 gene segment 10: location of glycosylation sites suggests that the signal peptide is not cleaved.

    OpenAIRE

    Both, G W; Siegman, L J; Bellamy, A R; Atkinson, P H

    1983-01-01

    A cloned DNA copy of simian rotavirus SA11 genomic segment 10 was used to confirm the assignment of the nonstructural glycoprotein NCVP5 to this gene. Determination of the nucleotide sequence for gene 10 indicated that NCVP5 is 175 amino acids in length and has an N-terminal hydrophobic region with the characteristics of a signal sequence for membrane translocation. Unexpectedly, this region was also the location for the only two potential glycosylation sites within the molecule, asparagine r...

  2. Effects of glyceryl trinitrate and calcitonin-gene-related peptide on BOLD signal and arterial diameter –methodological studies by fMRI and MRA

    DEFF Research Database (Denmark)

    Asghar, Mohammed Sohail; Ashina, Messoud

    2013-01-01

    of measuring task-related hemodynamic changes. Pharmacological substances that induce hemodynamic changes can therefore potentially alter the BOLD-signal that in turn falsely can be interpreted as changes in neuronal activity. It is therefore important to characterize possible effects of a pharmacological...... substance on the BOLD-response per see before that substance can be used in an fMRI experiment. Furthermore MR-angiography is useful in determining the vascular site-of-action of vasoactive substances....

  3. IL-1F5, F6, F8, and F9: a novel IL-1 family signaling system that is active in psoriasis and promotes keratinocyte antimicrobial peptide expression

    Science.gov (United States)

    Johnston, Andrew; Xing, Xianying; Guzman, Andrew M.; Riblett, MaryBeth; Loyd, Candace M.; Ward, Nicole L.; Wohn, Christian; Prens, Errol P.; Wang, Frank; Maier, Lisa E.; Kang, Sewon; Voorhees, John J.; Elder, James T.; Gudjonsson, Johann E.

    2011-01-01

    IL-1F6, IL-1F8 and IL-1F9 and the IL-1R6(RP2) receptor antagonist IL-1F5 constitute a novel IL-1 signaling system that is poorly characterized in skin. To further characterize these cytokines in healthy and inflamed skin, we studied their expression in healthy control (NN), uninvolved psoriasis (PN) and psoriasis plaque (PP) skin using QRT-PCR and immunohistochemistry. Expression of IL-1F5, -1F6, -1F8, and -1F9 were increased 2-3 orders of magnitude in PP versus PN skin, which was supported immunohistologically. Moreover, treatment of psoriasis with etanercept led to significantly decreased IL-1F5, -1F6, -1F8 and -1F9 mRNAs, concomitant with clinical improvement. Similarly increased expression of IL-1F5, -1F6, -1F8 and -1F9 was seen in the involved skin of two mouse models of psoriasis. Suggestive of their importance in inflamed epithelia, IL-1α and TNF-α induced IL-1F5, -1F6, -1F8, and -1F9 transcript expression by normal human keratinocytes. Microarray analysis revealed that these cytokines induce the expression of anti-microbial peptides and matrix metalloproteins by reconstituted human epidermis. In particular, IL-1F8 increased mRNA expression of HBD2, HBD3 and CAMP and protein secretion of HBD2 and HBD3. Collectively, our data suggest important roles for these novel cytokines in inflammatory skin diseases and identify these peptides as potential targets for antipsoriatic therapies. PMID:21242515

  4. Amino-terminal domain of the v-fms oncogene product includes a functional signal peptide that directs synthesis of a transforming glycoprotein in the absence of feline leukemia virus gag sequences

    International Nuclear Information System (INIS)

    Wheeler, E.F.; Roussel, M.F.; Hampe, A.; Walker, M.H.; Fried, V.A.; Look, A.T.; Rettenmier, C.W.; Sherr, C.J.

    1986-01-01

    The nucleotide sequence of a 5' segment of the human genomic c-fms proto-oncogene suggested that recombination between feline leukemia virus and feline c-fms sequences might have occurred in a region encoding the 5' untranslated portion of c-fms mRNA. The polyprotein precursor gP180/sup gag-fms/ encoded by the McDonough strain of feline sarcoma virus was therefore predicted to contain 34 v-fms-coded amino acids derived from sequences of the c-fms gene that are not ordinarily translated from the proto-oncogene mRNA. The (gP180/sup gag-fms/) polyprotein was cotranslationally cleaved near the gag-fms junction to remove its gag gene-coded portion. Determination of the amino-terminal sequence of the resulting v-fms-coded glycoprotein, gp120/sup v-fms/, showed that the site of proteolysis corresponded to a predicted signal peptidase cleavage site within the c-fms gene product. Together, these analyses suggested that the linked gag sequences may not be necessary for expression of a biologically active v-fms gene product. The gag-fms sequences of feline sarcoma virus strain McDonough and the v-fms sequences alone were inserted into a murine retroviral vector containing a neomycin resistance gene. The authors conclude that a cryptic hydrophobic signal peptide sequence in v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms gene product within membranous organelles. It seems likely that the proteolytic cleavage of gP180/gag-fms/ is mediated by signal peptidase and that the amino termini of gp140/sup v-fms/ and the c-fms gene product are identical

  5. JAK2/STAT5/Bcl-xL signalling is essential for erythropoietin-mediated protection against apoptosis induced in PC12 cells by the amyloid β−peptide Aβ25–35

    Science.gov (United States)

    Ma, Rong; Hu, Jing; Huang, Chengfang; Wang, Min; Xiang, Jizhou; Li, Gang

    2014-01-01

    BACKGROUND AND PURPOSE Erythropoietin (EPO) exerts neuroprotective actions in the CNS, including protection against apoptosis induced by the amyloid β−peptide Aβ25–35. However, it remains unclear which signalling pathway activated by EPO is involved in this neuroprotection. Here, we have investigated whether JAK2/STAT5/Bcl-xL and ERK1/2 signalling pathways are essential for EPO-mediated protection against apoptosis induced by Aβ25–35. EXPERIMENTAL APPROACH EPO was added to cultures of PC12 cells, 1 h before Aβ25–35. For kinase inhibitor studies, AG490 and PD98059 were added to PC12 cells, 0.5 h before the addition of EPO. Transfection with siRNA was used to knockdown STAT5. Activation of JAK2/STAT5/Bcl-xL and ERK1/2 signalling pathways were investigated by Western blotting. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl-tetrazolium bromide assay and apoptosis was detected by TUNEL and acridine orange–ethidium bromide double staining. KEY RESULTS EPO increased phosphorylation of JAK2 and STAT5 in PC12 cells treated with Aβ25–35. Furthermore, EPO modulated the nuclear translocation of phospho-STAT5, which increased expression of Bcl-xL and decreased levels of caspase-3. These beneficial effects were blocked by the JAK2 inhibitor, AG490 or STAT5 knockdown. However, the ERK1/2 pathway did not play a crucial role in our model. CONCLUSIONS AND IMPLICATIONS EPO protected PC12 cells against Aβ25–35-induced neurotoxicity. Activation of JAK2/STAT5/Bcl-xL pathway was important in EPO-mediated neuroprotection. EPO may serve as a novel protective agent against Aβ25–35-induced cytotoxicity in, for instance, Alzheimer's disease. PMID:24597613

  6. Neuropeptide VGF C-Terminal Peptide TLQP-62 Alleviates Lipopolysaccharide-Induced Memory Deficits and Anxiety-like and Depression-like Behaviors in Mice: The Role of BDNF/TrkB Signaling.

    Science.gov (United States)

    Li, Chenli; Li, Mengmeng; Yu, Hanjie; Shen, Xinbei; Wang, Jinting; Sun, Xin; Wang, Qinwen; Wang, Chuang

    2017-09-20

    Peripheral inflammatory responses affect central nervous system (CNS) function, manifesting in symptoms of memory deficits, depression, and anxiety. Previous studies have revealed that neuropeptide VGF (nonacronymic) C-terminal peptide TLQP-62 rapidly reinforces brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signaling, regulating memory consolidation and antidepressant-like action. However, whether it is beneficial for lipopolysaccharide (LPS)-induced neuropsychiatric dysfunction in mice is unknown. Herein, we explored the involvement of BDNF/TrkB signaling and biochemical alterations in inflammatory or oxidative stress markers in the alleviating effects of TLQP-62 on LPS-induced neuropsychiatric dysfunction. The mice were treated with TLQP-62 (2 μg/side) via intracerebroventricular (i.c.v.) injection 1 h before LPS (0.5 mg/kg, i.p.) administration. Our results showed that a single treatment with LPS (0.5 mg/kg, i.p) is sufficient to produce recognition memory deficits (in the novel object recognition test), depression-like behavior (in the forced swim test and sucrose preference test), and anxiety-like behavior (in the elevated zero maze). However, pretreatment with TLQP-62 prevented LPS-induced behavioral dysfunction, neuroinflammatory, and oxidative responses. In addition, our results further demonstrated that a reduction in BDNF expression mediated by BDNF-shRNA lentivirus significantly blocked the effects of TLQP-62, suggesting the critical role of BDNF/TrkB signaling in the neuroprotective effects of TLQP-62 in the mice. In conclusion, TLQP-62 could be a therapeutic approach for neuropsychiatric disorders, which are closely associated with neuroinflammation and oxidative stress.

  7. Spatial expression of components of a calcitonin receptor-like receptor (CRL) signalling system (CRL, calcitonin gene-related peptide, adrenomedullin, adrenomedullin-2/intermedin) in mouse and human heart valves.

    Science.gov (United States)

    Pfeil, Uwe; Bharathala, Subhashini; Murtaza, Ghulam; Mermer, Petra; Papadakis, Tamara; Boening, Andreas; Kummer, Wolfgang

    2016-12-01

    Heart valves are highly organized structures determining the direction of blood flow through the heart. Smooth muscle cells within the valve are thought to play an active role during the heart cycle, rather than being just passive flaps. The mature heart valve is composed of extracellular matrix (ECM), various differentiations of valvular interstitial cells (VIC), smooth muscle cells and overlying endothelium. VIC are important for maintaining the structural integrity of the valve, thereby affecting valve function and ECM remodelling. Accumulating evidence suggests an important role of calcitonin receptor-like receptor (CRL) signalling in preventing heart damage under several pathological conditions. Thus we investigate the existence of a putative CRL signalling system in mouse and human heart valves by real-time RT-PCR, laser-assisted microdissection, immunofluorescence and NADPH-diaphorase histochemistry. Mouse and human heart valves expressed mRNAs for the CRL ligands adrenomedullin (AM), adrenomedullin-2 (AM-2) and calcitonin gene-related peptide (CGRP) and for their receptor components, i.e., CRL and receptor-activity-modifying proteins 1-3. Immunofluorescence analysis revealed AM-, AM-2- and CRL-immunolabelling in endothelial cells and VIC, whereas CGRP immunoreactivity was restricted to nerve fibres and some endothelial cells. Nitric oxide synthase activity, as demonstrated by NADPH-diaphorase histochemistry, was shown mainly in valvular endothelial cells in mice, whereas in human aortic valves, VIC and smooth muscle cells were positive. Our results showed the presence of an intrinsic AM/AM-2/CGRP signalling system in murine and human heart valves with distinct cellular localization, suggesting its involvement in the regulation of valve stiffness and ECM production and turnover.

  8. Protein chaperones Q8ZP25_SALTY from Salmonella typhimurium and HYAE_ECOLI from Escherichia coli exhibit thioredoxin-like structures despite lack of canonical thioredoxin active site sequence motive

    Science.gov (United States)

    Parish, David; Benach, Jordi; Liu, Goahua; Singarapu, Kiran Kumar; Xiao, Rong; Acton, Thomas; Su, Min; Bansal, Sonal; Prestegard, James H.; Hunt, John; Montelione, Gaetano T.

    2010-01-01

    The structure of the 142-residue protein Q8ZP25_SALTY encoded in the genome of Salmonella typhimurium LT2 was determined independently by NMR and X-ray crystallography, and the structure of the 140-residue protein HYAE_ECOLI encoded in the genome of Eschericia coli was determined by NMR. The two proteins belong to Pfam [1] PF07449, which currently comprises 50 members, and belongs itself to the ‘thioredoxin-like clan’. However, protein HYAE_ECOLI and the other proteins of Pfam PF07449 do not contain the canonical Cys-X-X-Cys active site sequence motif of thioredoxin. Protein HYAE_ECOLI was previously classified as a [NiFe] hydrogenase-1 specific chaperone interacting with the twin-arginine translocation (Tat) signal peptide. The structures presented here exhibit the expected thioredoxin-like fold and support the view that members of Pfam family PF07449 specifically interact with Tat signal peptides. PMID:19039680

  9. Synthetic antifreeze peptide

    OpenAIRE

    1991-01-01

    A synthetic antifreeze peptide and a synthetic gene coding for the antifreeze peptide have been produced. The antifreeze peptide has a greater number of repeating amino acid sequences than is present in the native antifreeze peptides from winter flounder upon which the synthetic antifreeze peptide was modeled. Each repeating amino acid sequence has two polar amino acid residues which are spaced a controlled distance apart so that the antifreeze peptide may inhibit ice formation. The synthetic...

  10. Galanin-like peptide (GALP) neurone-specific phosphoinositide 3-kinase signalling regulates GALP mRNA levels in the hypothalamus of males and luteinising hormone levels in both sexes.

    Science.gov (United States)

    Aziz, R; Beymer, M; Negrón, A L; Newshan, A; Yu, G; Rosati, B; McKinnon, D; Fukuda, M; Lin, R Z; Mayer, C; Boehm, U; Acosta-Martínez, M

    2014-07-01

    Galanin-like peptide (GALP) neurones participate in the metabolic control of reproduction and are targets of insulin and leptin regulation. Phosphoinositide 3-kinase (PI3K) is common to the signalling pathways utilised by both insulin and leptin. Therefore, we investigated whether PI3K signalling in neurones expressing GALP plays a role in the transcriptional regulation of the GALP gene and in the metabolic control of luteinising hormone (LH) release. Accordingly, we deleted PI3K catalytic subunits p110α and p110β via conditional gene targeting (cKO) in mice (GALP-p110α/β cKO). To monitor PI3K signalling in GALP neurones, these animals were also crossed with Cre-dependent FoxO1GFP reporter mice. Compared to insulin-infused control animals, the PI3K-Akt-dependent FoxO1GFP nuclear exclusion in GALP neurones was abolished in GALP-p110α/β cKO mice. We next used food deprivation to investigate whether the GALP-neurone specific ablation of PI3K activity affected the susceptibility of the gonadotrophic axis to negative energy balance. Treatment did not affect LH levels in either sex. However, a significant genotype effect on LH levels was observed in females. By contrast, no genotype effect on LH levels was observed in males. A sex-specific genotype effect on hypothalamic GALP mRNA was observed, with fed and fasted GALP-p110α/β cKO males having lower GALP mRNA expression compared to wild-type fed males. Finally, the effects of gonadectomy and steroid hormone replacement on GALP mRNA levels were investigated. Compared to vehicle-treated mice, steroid hormone replacement reduced mediobasal hypothalamus GALP expression in wild-type and GALP-p110α/β cKO animals. In addition, within the castrated and vehicle-treated group and compared to wild-type mice, LH levels were lower in GALP-p110α/β cKO males. Double immunofluorescence using GALP-Cre/R26-YFP mice showed androgen and oestrogen receptor co-localisation within GALP neurones. Our data demonstrate that GALP

  11. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42)-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells

    Science.gov (United States)

    Yang, Ju; Shen, Ting-ting; Chen, Yi; Yang, Xue-Sen

    2016-01-01

    Inflammatory activation of microglia and β amyloid (Aβ) deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer’s disease (AD). Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells). Here, we explored the prostaglandin-E2 (PGE2)-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1–42) (fAβ42)-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA) agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP), and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases. PMID:26824354

  12. Liraglutide, a glucagon-like peptide-1 receptor agonist, facilitates osteogenic proliferation and differentiation in MC3T3-E1 cells through phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), extracellular signal-related kinase (ERK)1/2, and cAMP/protein kinase A (PKA) signaling pathways involving β-catenin.

    Science.gov (United States)

    Wu, Xuelun; Li, Shilun; Xue, Peng; Li, Yukun

    2017-11-15

    Previous studies have proven that glucagon-like peptide-1 (GLP-1) and its receptor agonist exert favorable anabolic effects on skeletal metabolism. However, whether GLP-1 could directly impact osteoblast-mediated bone formation is still controversial, and the underlying molecular mechanism remains to be elucidated. Thus in this paper, we investigated the effects of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, on murine MC3T3-E1 preosteoblasts proliferation and differentiation and explored the potential cellular basis. Our study confirmed the presence of GLP-1R in MC3T3-E1, and demonstrated that liraglutide promotes osteoblasts proliferation at an intermediate concentration (100nM) and time (48h), upregulated the expression of osteoblastogenic biomarkers at various stages, and stimulated osteoblastic mineralization. Liraglutide also elevated the intracellular cAMP level and phosphorylation of AKT, ERK and β-catenin simultaneously with increased nuclear β-catenin content and transcriptional activity. Pretreatment of cells with the inhibitors LY294002, PD98059, H89 and GLP-1R and β-catenin siRNA partially blocked the liraglutide-induced signaling activation and attenuated the facilitating effect of liraglutide on MC3T3-E1 cells. Collectively, liraglutide was capable of acting upon osteoblasts directly through GLP-1R by activating PI3K/AKT, ERK1/2, cAMP/PKA/β-cat-Ser675 signaling to promote bone formation via GLP-1R. Thus, GLP-1 analogues may be potential therapeutic strategy for the treatment of osteoporosis in diabetics. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Transesterification of plant oils using Staphylococcus haemolyticus L62 lipase displayed on Escherichia coli cell surface using the OmpA signal peptide and EstAβ8 anchoring motif.

    Science.gov (United States)

    Jo, Jin Chul; Kim, Soon-Ja; Kim, Hyung Kwoun

    2014-12-01

    Staphylococcus haemolyticus L62 (SHL62) lipase was displayed on the outer membrane of Escherichia coli using the OmpA signal peptide and the autotransporter EstAβ8 protein. Localization of SHL62 lipase on the outer membrane of E. coli was confirmed using immunofluorescence microscopy and flow cytometry analysis. Lipase activity of the displayed SHL62 lipase was also measured using spectrophotometry and pH titration. SHL62 lipase activity of whole cells reached 2.0U/ml culture (OD600nm of 10) when it was measured by the p-nitrophenyl caprylate assay after being induced with 1mM IPTG for 24h. The optimum temperature and pH for the lipase was 45°C and 10, respectively. Furthermore, it maintained more than 90% of maximum lipase activity at up to 50°C and in a pH range of 5-9. The hydrolytic activity assay conduted with various substrates confirmed that p-nitrophenyl caprylate and corn oil were preferred substrates among various synthetic and natural substrates, respectively. The displayed SHL62 lipase produced fatty acid esters from various alcohols and plant oils through transesterification. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Implication of C-type natriuretic peptide-3 signaling in glycosaminoglycan synthesis and chondrocyte hypertrophy during TGF-β1 induced chondrogenic differentiation of chicken bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Kocamaz, Erdogan; Gok, Duygu; Cetinkaya, Ayse; Tufan, A Cevik

    2012-10-01

    This study investigated the involvement of CNP-3, chick homologue for human C-type natriuretic peptide (CNP), in TGF-β1 induced chondrogenic differentiation of chicken bone marrow-derived mesenchymal stem cells (MSCs). Chondrogenic differentiation of MSCs in pellet cultures was induced by TGF-β1. Chondrogenic differentiation and glycosaminoglycan synthesis were analyzed on the basis of basic histology, collagen type II expression, and Alcian blue staining. Antibodies against CNP and NPR-B were used to block their function during these processes. Results revealed that expression of CNP-3 and NPR-B in MSCs were regulated by TGF-β1 in monolayer cultures at mRNA level. In pellet cultures of MSCs, TGF-β1 successfully induced chondrogenic differentiation and glycosaminoglycan synthesis. Addition of CNP into the TGF-β1 supplemented chondrogenic differentiation medium further induced the glycosaminoglycan synthesis and hypertrophy of differentiated chondrocytes in these pellets. Pellets induced with TGF-β1 and treated with antibodies against CNP and NPR-B, did show collagen type II expression, however, Alcian blue staining showing glycosaminoglycan synthesis was significantly suppressed. In conclusion, CNP-3/NPR-B signaling may strongly be involved in synthesis of glycosaminoglycans of the chondrogenic matrix and hypertrophy of differentiated chondrocytes during TGF-β1 induced chondrogenic differentiation of MSCs.

  15. Contamination risks in work with synthetic peptides: flg22 as an example of a pirate in commercial peptide preparations.

    Science.gov (United States)

    Mueller, Katharina; Chinchilla, Delphine; Albert, Markus; Jehle, Anna K; Kalbacher, Hubert; Boller, Thomas; Felix, Georg

    2012-08-01

    The pattern recognition receptor FLAGELLIN SENSING2 (FLS2) renders plant cells responsive to subnanomolar concentrations of flg22, the active epitope of bacterial flagellin. We recently observed that a preparation of the peptide IDL1, a signal known to regulate abscission processes via the receptor kinases HAESA and HAESA-like2, apparently triggered Arabidopsis thaliana cells in an FLS2-dependent manner. However, closer investigation revealed that this activity was due to contamination by a flg22-type peptide, and newly synthesized IDL1 peptide was completely inactive in FLS2 signaling. This raised alert over contamination events occurring in the process of synthesis or handling of peptides. Two recent reports have suggested that FLS2 has further specificities for structurally unrelated peptides derived from CLV3 and from Ax21. We thus scrutinized these peptides for activity in Arabidopsis cells as well. While responding to peptides do occur and can be detected even in trace amounts by FLS2.

  16. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  17. [SYNTHETIC PEPTIDE VACCINES].

    Science.gov (United States)

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  18. Biologically Active and Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    Carlos E. Salas

    2015-01-01

    Full Text Available Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  19. Tips and Tricks for Exogenous Application of Synthetic Post-translationally Modified Peptides to Plants.

    Science.gov (United States)

    Czyzewicz, Nathan; Stes, Elisabeth; De Smet, Ive

    2017-01-01

    The first signaling peptide discovered and purified was insulin in 1921. However, it was not until 1991 that the first peptide signal, systemin, was discovered in plants. Since the discovery of systemin, peptides have emerged as a potent and diverse class of signaling molecules in plant systems. Peptides consist of small amino acid sequences, which often act as ligands of receptor kinases. However, not all peptides are created equal, and signaling peptides are grouped into several subgroups dependent on the type of post-translational processing they undergo. Here, we focus on the application of synthetic, post-translationally modified peptides (PTMPs) to plant systems, describing several methods appropriate for the use of peptides in Arabidopsis thaliana and crop models.

  20. Cell-Type Specific Penetrating Peptides: Therapeutic Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Maliha Zahid

    2015-07-01

    Full Text Available Cell penetrating peptides (CPP, also known as protein transduction domains (PTD, are small peptides able to carry peptides, proteins, nucleic acid, and nanoparticles, including viral particles, across the cellular membranes into cells, resulting in internalization of the intact cargo. In general, CPPs can be broadly classified into tissue-specific and non-tissue specific peptides, with the latter further sub-divided into three types: (1 cationic peptides of 6–12 amino acids in length comprised predominantly of arginine, lysine and/or ornithine residues; (2 hydrophobic peptides such as leader sequences of secreted growth factors or cytokines; and (3 amphipathic peptides obtained by linking hydrophobic peptides to nuclear localizing signals. Tissue-specific peptides are usually identified by screening of large peptide phage display libraries. These transduction peptides have the potential for a myriad of diagnostic as well as therapeutic applications, ranging from delivery of fluorescent or radioactive compounds for imaging, to delivery of peptides and proteins of therapeutic potential, and improving uptake of DNA, RNA, siRNA and even viral particles. Here we review the potential applications as well as hurdles to the tremendous potential of these CPPs, in particular the cell-type specific peptides.

  1. Accurate de novo design of hyperstable constrained peptides

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Gaurav; Mulligan, Vikram Khipple; Bahl, Christopher D.; Gilmore, Jason M.; Harvey, Peta J.; Cheneval, Olivier; Buchko, Garry W.; Pulavarti, Surya V. S. R. K.; Kaas, Quentin; Eletsky, Alexander; Huang, Po-Ssu; Johnsen, William A.; Greisen, Per Jr; Rocklin, Gabriel J.; Song, Yifan; Linsky, Thomas W.; Watkins, Andrew; Rettie, Stephen A.; Xu, Xianzhong; Carter, Lauren P.; Bonneau, Richard; Olson, James M.; Coutsias, Evangelos; Correnti, Colin E.; Szyperski, Thomas; Craik, David J.; Baker, David

    2016-09-14

    Covalently-crosslinked peptides present attractive opportunities for developing new therapeutics. Lying between small molecule and protein therapeutics in size, natural crosslinked peptides play critical roles in signaling, virulence and immunity. Engineering novel peptides with precise control over their three-dimensional structures is a significant challenge. Here we describe the development of computational methods for de novo design of conformationally-restricted peptides, and the use of these methods to design hyperstable disulfide-stabilized miniproteins, heterochiral peptides, and N-C cyclic peptides. Experimentally-determined X-ray and NMR structures for 12 of the designs are nearly identical to the computational models. The computational design methods and stable scaffolds provide the basis for a new generation of peptide-based drugs.

  2. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  3. New dendrimer - Peptide host - Guest complexes: Towards dendrimers as peptide carriers

    DEFF Research Database (Denmark)

    Boas, Ulrik; Sontjens, S.H.M.; Jensen, Knud Jørgen

    2002-01-01

    Adamantyl urea and adamantyl thiourea modified poly(propylene imine) dendrimers act as hosts for N-terminal tert-butoxycarbonyl (Boc)-protected peptides and form chloroform-soluble complexes. investigations with NMR spectroscopy show that the peptide is bound to the dendrimer by ionic interactions...... between the dendrimer outer shell tertiary amines and the C-terminal carboxylic acid of the peptide, and also through host-urea to peptide-amide hydrogen bonding. The hydrogen-bonding nature of the peptide dendrimer interactions was further confirmed by using Fourier transform IR spectroscopy, for which...... on the dendrimer host. The influence of side-chain motif on interactions with the host is analyzed by using seven different N-Boc-protected tripeptides as guests for the dendrimer, Downfield shifts of up to 1.3 ppm were observed for the guest amide NH-proton signals. These shifts decrease with increasing...

  4. New dendrimer - Peptide host - Guest complexes: Towards dendrimers as peptide carriers

    DEFF Research Database (Denmark)

    Boas, Ulrik; Sontjens, S.H.M.; Jensen, Knud Jørgen

    2002-01-01

    Adamantyl urea and adamantyl thiourea modified poly(propylene imine) dendrimers act as hosts for N-terminal tert-butoxycarbonyl (Boc)-protected peptides and form chloroform-soluble complexes. investigations with NMR spectroscopy show that the peptide is bound to the dendrimer by ionic interactions...... the NH- and CO-stretch signals of the peptide amide moieties shift towards lower wave-numbers upon complexation with the dendrimer. Spatial analysis of the complexes with NOESY spectroscopy generally shows close proximity of the N-terminal Boc group of the peptide to the peripheral adamantyl groups...... on the dendrimer host. The influence of side-chain motif on interactions with the host is analyzed by using seven different N-Boc-protected tripeptides as guests for the dendrimer, Downfield shifts of up to 1.3 ppm were observed for the guest amide NH-proton signals. These shifts decrease with increasing...

  5. Designer Natriuretic Peptides

    Science.gov (United States)

    Lee, Candace Y. W.; Lieu, Hsiao; Burnett, John C.

    2011-01-01

    Designer natriuretic peptides (NPs) are novel hybrid peptides that are engineered from the native NPs through addition, deletion, or substitution of amino acid(s) with a goal toward optimization of pharmacological actions while minimizing undesirable effects. In this article, selected peptides that were designed in our laboratory are reviewed, and future directions for research and development of designer NPs are discussed. PMID:19158603

  6. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  7. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  8. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  9. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  10. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  11. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  12. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  13. Systematic discovery of new recognition peptides mediating protein interaction networks

    DEFF Research Database (Denmark)

    Neduva, Victor; Linding, Rune; Su-Angrand, Isabelle

    2005-01-01

    Many aspects of cell signalling, trafficking, and targeting are governed by interactions between globular protein domains and short peptide segments. These domains often bind multiple peptides that share a common sequence pattern, or "linear motif" (e.g., SH3 binding to PxxP). Many domains are kn...

  14. Peptides and Food Intake

    Directory of Open Access Journals (Sweden)

    Carmen Sobrino Crespo

    2014-04-01

    Full Text Available Nutrients created by the digestion of food are proposed to active G protein coupled receptors on the luminal side of enteroendocrine cells e.g. the L-cell. This stimulates the release of gut hormones. Hormones released from the gut and adipose tissue play an important rol in the regulation of food intake and energy expenditure (1.Many circulating signals, including gut hormones, can influence the activity of the arcuate nucleus (ARC neurons directly, after passing across the median eminence. The ARC is adjacent to the median eminence, a circumventricular organ with fenestrated capillaries and hence an incomplete blood-brain barrier (2. The ARC of the hypothalamus is believed to play a crucial role in the regulation of food intake and energy homeostasis. The ARC contains two populations of neurons with opposing effect on food intake (3. Medially located orexigenic neurons (i.e those stimulating appetite express neuropeptide Y (NPY and agouti-related protein (AgRP (4-5. Anorexigenic neurons (i.e. those inhibiting appetite in the lateral ARC express alpha-melanocyte stimulating hormone (α-MSH derived from pro-opiomelanocortin (POMC and cocaine and amphetamine-regulated transcript (CART (6. The balance between activities of these neuronal circuits is critical to body weight regulation.In contrast, other peripheral signals influence the hypothalamus indirectly via afferent neuronal pathway and brainstem circuits. In this context gastrointestinal’s vagal afferents are activated by mechanoreceptors and chemoreceptors, and converge in the nucleus of the tractus solitaries (NTS of the brainstem. Neuronal projections from the NTS, in turn, carry signals to the hypotalamus (1, 7. Gut hormones also alter the activity of the ascending vagal pathway from the gut to the brainstem. In the cases of ghrelin and Peptide tyrosine tyrosine (PYY, there are evidences for both to have a direct action on the arcuate nucleus and an action via the vagus nerve a

  15. Humanin: a harbinger of mitochondrial-derived peptides?

    Science.gov (United States)

    Lee, Changhan; Yen, Kelvin; Cohen, Pinchas

    2013-05-01

    Mitochondria have been largely considered as 'end-function' organelles, servicing the cell by producing energy and regulating cell death in response to complex signals. Being cellular entities with vital roles, mitochondria communicate back to the cell and actively engage in determining major cellular policies. These signals, collectively referred to as retrograde signals, are encoded in the nuclear genome or are secondary products of mitochondrial metabolism. Here, we discuss humanin, the first small peptide of a putative set of mitochondrial-derived peptides (MDPs), which exhibits strong cytoprotective actions against various stress and disease models. The study of humanin and other mitochondrial-derived retrograde signal peptides will aid in the identification of genes and peptides with therapeutic and diagnostic potential in treating human diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Instructing cells with programmable peptide DNA hybrids

    Science.gov (United States)

    Freeman, Ronit; Stephanopoulos, Nicholas; Álvarez, Zaida; Lewis, Jacob A; Sur, Shantanu; Serrano, Chris M; Boekhoven, Job; Lee, Sungsoo S.; Stupp, Samuel I.

    2017-01-01

    The native extracellular matrix is a space in which signals can be displayed dynamically and reversibly, positioned with nanoscale precision, and combined synergistically to control cell function. Here we describe a molecular system that can be programmed to control these three characteristics. In this approach we immobilize peptide-DNA (P-DNA) molecules on a surface through complementary DNA tethers directing cells to adhere and spread reversibly over multiple cycles. The DNA can also serve as a molecular ruler to control the distance-dependent synergy between two peptides. Finally, we use two orthogonal DNA handles to regulate two different bioactive signals, with the ability to independently up- or downregulate each over time. This enabled us to discover that neural stem cells, derived from the murine spinal cord and organized as neurospheres, can be triggered to migrate out in response to an exogenous signal but then regroup into a neurosphere as the signal is removed. PMID:28691701

  17. Acylation of Therapeutic Peptides

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Jensen, Simon Bjerregaard

    to the harsh and selective gastrointestinal system, and development has lacked far behind injection therapy. Peptide acylation is a powerful tool to alter the pharmacokinetics, biophysical properties and chemical stability of injectable peptide drugs, primarily used to prolong blood circulation....... This work aims to characterize acylated analogues of two therapeutic peptides by systematically increasing acyl chain length in order to elucidate its influence on membrane interaction and intestinal cell translocation in vitro. The studied peptides are the 33 amino acid Glucagon-like peptide-2 (GLP-2...... peptides can increase in vitro intestinal permeability, modestly for GLP-2 and drastically for sCT, and might benefit oral delivery. GLP-2 results provide a well-founded predictive power for future peptide analogues, whereas sCT results hold great promise for future analogues, albeit with a larger...

  18. Peptidomic approaches to the identification and characterization of functional peptides in Hydra.

    Science.gov (United States)

    Takahashi, Toshio; Fujisawa, Toshitaka

    2010-01-01

    Little is known about peptides that control developmental processes such as cell differentiation and pattern formation in metazoans. The cnidarian Hydra is one of the most basal metazoans and is a key model system for studying the peptides involved in these processes. We developed a novel peptidomic approach to the isolation and identification of functional signalling peptides from Hydra (the Hydra peptide project). First, peptides extracted from the tissue of Hydra magnipapillata are purified to homogeneity using high-performance liquid chromatography (HPLC). The isolated peptides are then tested for their ability to alter gene expression in Hydra using differential display-PCR (DD-PCR). If gene expression is altered, the peptide is considered as a putative signalling peptide and is subjected to amino acid sequencing. Following the sequencing, synthetic peptides are produced and compared to their native counterparts by HPLC and/or mass spectrometry (MS). The synthetic peptides, which are available in larger quantities than their native analogues, are then tested in a variety of biological assays in Hydra to determine their functions. Here we present our strategies and a systematic approach to the identification and characterization of novel signalling peptides in Hydra. We also describe our high-throughput reverse-phase nano-flow liquid chromatography matrix-assisted laser desorption ionization time-of-flight mass spectrometry (LC-MALDI-TOF-MS/MS) approach, which was proved to be a powerful tool in the discovery of novel signalling peptides.

  19. Cell Penetrating Peptides and Cationic Antibacterial Peptides

    Science.gov (United States)

    Rodriguez Plaza, Jonathan G.; Morales-Nava, Rosmarbel; Diener, Christian; Schreiber, Gabriele; Gonzalez, Zyanya D.; Lara Ortiz, Maria Teresa; Ortega Blake, Ivan; Pantoja, Omar; Volkmer, Rudolf; Klipp, Edda; Herrmann, Andreas; Del Rio, Gabriel

    2014-01-01

    Cell penetrating peptides (CPP) and cationic antibacterial peptides (CAP) have similar physicochemical properties and yet it is not understood how such similar peptides display different activities. To address this question, we used Iztli peptide 1 (IP-1) because it has both CPP and CAP activities. Combining experimental and computational modeling of the internalization of IP-1, we show it is not internalized by receptor-mediated endocytosis, yet it permeates into many different cell types, including fungi and human cells. We also show that IP-1 makes pores in the presence of high electrical potential at the membrane, such as those found in bacteria and mitochondria. These results provide the basis to understand the functional redundancy of CPPs and CAPs. PMID:24706763

  20. The Role of “Mixed” Orexigenic and Anorexigenic Signals and Autoantibodies Reacting with Appetite-Regulating Neuropeptides and Peptides of the Adipose Tissue-Gut-Brain Axis: Relevance to Food Intake and Nutritional Status in Patients with Anorexia Nervosa and Bulimia Nervosa

    Science.gov (United States)

    Papezova, Hana; Vondra, Karel; Hill, Martin; Hainer, Vojtech; Nedvidkova, Jara

    2013-01-01

    Eating disorders such as anorexia (AN) and bulimia nervosa (BN) are characterized by abnormal eating behavior. The essential aspect of AN is that the individual refuses to maintain a minimal normal body weight. The main features of BN are binge eating and inappropriate compensatory methods to prevent weight gain. The gut-brain-adipose tissue (AT) peptides and neutralizing autoantibodies play an important role in the regulation of eating behavior and growth hormone release. The mechanisms for controlling food intake involve an interplay between gut, brain, and AT. Parasympathetic, sympathetic, and serotoninergic systems are required for communication between brain satiety centre, gut, and AT. These neuronal circuits include neuropeptides ghrelin, neuropeptide Y (NPY), peptide YY (PYY), cholecystokinin (CCK), leptin, putative anorexigen obestatin, monoamines dopamine, norepinephrine (NE), serotonin, and neutralizing autoantibodies. This extensive and detailed report reviews data that demonstrate that hunger-satiety signals play an important role in the pathogenesis of eating disorders. Neuroendocrine dysregulations of the AT-gut-brain axis peptides and neutralizing autoantibodies may result in AN and BN. The circulating autoantibodies can be purified and used as pharmacological tools in AN and BN. Further research is required to investigate the orexigenic/anorexigenic synthetic analogs and monoclonal antibodies for potential treatment of eating disorders in clinical practice. PMID:24106499

  1. The Role of “Mixed” Orexigenic and Anorexigenic Signals and Autoantibodies Reacting with Appetite-Regulating Neuropeptides and Peptides of the Adipose Tissue-Gut-Brain Axis: Relevance to Food Intake and Nutritional Status in Patients with Anorexia Nervosa and Bulimia Nervosa

    Directory of Open Access Journals (Sweden)

    Kvido Smitka

    2013-01-01

    Full Text Available Eating disorders such as anorexia (AN and bulimia nervosa (BN are characterized by abnormal eating behavior. The essential aspect of AN is that the individual refuses to maintain a minimal normal body weight. The main features of BN are binge eating and inappropriate compensatory methods to prevent weight gain. The gut-brain-adipose tissue (AT peptides and neutralizing autoantibodies play an important role in the regulation of eating behavior and growth hormone release. The mechanisms for controlling food intake involve an interplay between gut, brain, and AT. Parasympathetic, sympathetic, and serotoninergic systems are required for communication between brain satiety centre, gut, and AT. These neuronal circuits include neuropeptides ghrelin, neuropeptide Y (NPY, peptide YY (PYY, cholecystokinin (CCK, leptin, putative anorexigen obestatin, monoamines dopamine, norepinephrine (NE, serotonin, and neutralizing autoantibodies. This extensive and detailed report reviews data that demonstrate that hunger-satiety signals play an important role in the pathogenesis of eating disorders. Neuroendocrine dysregulations of the AT-gut-brain axis peptides and neutralizing autoantibodies may result in AN and BN. The circulating autoantibodies can be purified and used as pharmacological tools in AN and BN. Further research is required to investigate the orexigenic/anorexigenic synthetic analogs and monoclonal antibodies for potential treatment of eating disorders in clinical practice.

  2. Antimicrobial Peptides: Versatile Biological Properties

    Directory of Open Access Journals (Sweden)

    Muthuirulan Pushpanathan

    2013-01-01

    Full Text Available Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries.

  3. Ammonium sulfate and MALDI in-source decay: a winning combination for sequencing peptides

    OpenAIRE

    Delvolve, Alice; Woods, Amina S.

    2009-01-01

    In previous papers we highlighted the role of ammonium sulfate in increasing peptide fragmentation by in source decay (ISD). The current work systematically investigated effects of MALDI extraction delay, peptide amino acid composition, matrix and ammonium sulfate concentration on peptides ISD fragmentation. The data confirmed that ammonium sulfate increased peptides signal to noise ratio as well as their in source fragmentation resulting in complete sequence coverage regardless of the amino ...

  4. Exploring the chemical space of quorum sensing peptides.

    Science.gov (United States)

    Wynendaele, Evelien; Gevaert, Bert; Stalmans, Sofie; Verbeke, Frederick; De Spiegeleer, Bart

    2015-09-01

    Quorum sensing peptides are signalling molecules that are produced by mainly gram-positive bacteria. These peptides can exert different effects, ranging from intra- and interspecies bacterial virulence to bacterial-host interactions. To better comprehend these functional differences, we explored their chemical space, bacterial species distribution and receptor-binding properties using multivariate data analyses, with information obtained from the Quorumpeps database. The quorum sensing peptides can be categorized into three main clusters, which, in turn, can be divided into several subclusters: the classification is based on characteristic chemical properties, including peptide size/compactness, hydrophilicity/lipophilicity, cyclization and the presence of (unnatural) S-containing and aromatic amino acids. Most of the bacterial species synthesize peptides located into one cluster. However, some Streptococcus, Stapylococcus, Clostridium, Bacillus and Lactobacillus species produce peptides that are distributed over more than one cluster, with the quorum sensing peptides of Bacillus subtilis even occupying the total peptide space. The AgrC, FsrC and LamC receptors are only activated by cyclic (thio)lacton or lactam quorum sensing peptides, while the lipophilic isoprenyl-modified peptides solely bind the ComP receptor in Bacillus species. © 2015 Wiley Periodicals, Inc.

  5. The latest developments in synthetic peptides with immunoregulatory activities.

    Science.gov (United States)

    Zhou, Chun-lei; Lu, Rong; Lin, Gang; Yao, Zhi

    2011-02-01

    In the past few years, many researches have provided us with much data demonstrating the abilities of synthetic peptides to impact immune response in vitro and in vivo. These peptides were designed according to the structure of some important protein molecules which play a key role in immune response, so they act with specific targets. The class I and II MHC-derived peptides inhibit the TCR recognition of antigen peptide-MHC complex. Rationally designed CD80 and CD154-binding peptides block the interaction between cell surface costimulatory molecules on antigen-presenting cells (APCs) and T cells. Some peptides were designed to inhibit the activities of cell signal proteins, including JNK, NF-κB and NFAT. Some peptide antagonists competitively bind to important cytokines and inhibit their activities, such as TNF-α, TGF-β and IL-1β inhibitory peptides. Adhesion molecule ICAM-1 derived peptides block the T cell adhesion and activation. These immunoregulatory peptides showed therapeutic effect in several animal models, including collagen-induced arthritis (CIA), autoimmune cystitis model, murine skin transplant model and cardiac allograft model. These results give us important implications for the development of a novel therapy for immune mediated diseases. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Antimicrobial Peptides in Reptiles

    Science.gov (United States)

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  7. Activation of BNGR-A24 by direct interaction with tachykinin-related peptides from the silkworm Bombyx mori leads to the Gq- and Gs-coupled signaling cascades.

    Science.gov (United States)

    He, Xiaobai; Zang, Jiashu; Li, Xiangmei; Shao, Jiajie; Yang, Huipeng; Yang, Jingwen; Huang, Haishan; Chen, Linjie; Shi, Liangen; Zhu, Chenggang; Zhang, Guozheng; Zhou, Naiming

    2014-10-28

    Tachykinins constitute one of the largest peptide families in the animal kingdom and exert their diverse actions via G protein-coupled receptors (GPCRs). In this study, the Bombyx tachykinin-related peptides (TKRPs) were identified as specific endogenous ligands for the Bombyx neuropeptide GPCR A24 (BNGR-A24) and thus designated BNGR-A24 as BmTKRPR. Using both mammalian cell line HEK293 and insect cell line Sf21, further characterization demonstrated that BmTKRPR was activated, thus resulting in intracellular accumulation of cAMP, Ca(2+) mobilization, and ERK1/2 phosphorylation in a Gs and Gq inhibitor-sensitive manner. Moreover, quantitative reverse transcriptase polymerase chain reaction analysis and dsRNA-mediated knockdown experiments suggested a possible role for BmTKRPR in the regulation of feeding and growth. Our findings enhance the understanding of the Bombyx TKRP system in the regulation of fundamental physiological processes.

  8. Orexin/Hypocretin Signaling.

    Science.gov (United States)

    Kukkonen, Jyrki P

    Orexin/hypocretin peptide (orexin-A and orexin-B) signaling is believed to take place via the two G-protein-coupled receptors (GPCRs), named OX 1 and OX 2 orexin receptors, as described in the previous chapters. Signaling of orexin peptides has been investigated in diverse endogenously orexin receptor-expressing cells - mainly neurons but also other types of cells - and in recombinant cells expressing the receptors in a heterologous manner. Findings in the different systems are partially convergent but also indicate cellular background-specific signaling. The general picture suggests an inherently high degree of diversity in orexin receptor signaling.In the current chapter, I present orexin signaling on the cellular and molecular levels. Discussion of the connection to (potential) physiological orexin responses is only brief since these are in focus of other chapters in this book. The same goes for the post-synaptic signaling mechanisms, which are dealt with in Burdakov: Postsynaptic actions of orexin. The current chapter is organized according to the tissue type, starting from the central nervous system. Finally, receptor signaling pathways are discussed across tissues, cell types, and even species.

  9. Anti-inflammatory properties of a novel peptide interleukin 1 receptor antagonist

    DEFF Research Database (Denmark)

    Klementiev, Boris; Li, Shizhong; Korshunova, Irina

    2014-01-01

    Interleukin 1 (IL-1) is implicated in neuroinflammation, an essential component of neurodegeneration. We evaluated the potential anti-inflammatory effect of a novel peptide antagonist of IL-1 signaling, Ilantide.......Interleukin 1 (IL-1) is implicated in neuroinflammation, an essential component of neurodegeneration. We evaluated the potential anti-inflammatory effect of a novel peptide antagonist of IL-1 signaling, Ilantide....

  10. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  11. Class of cyclic ribosomal peptide synthetic genes in filamentous fungi.

    Science.gov (United States)

    Nagano, Nozomi; Umemura, Myco; Izumikawa, Miho; Kawano, Jin; Ishii, Tomoko; Kikuchi, Moto; Tomii, Kentaro; Kumagai, Toshitaka; Yoshimi, Akira; Machida, Masayuki; Abe, Keietsu; Shin-Ya, Kazuo; Asai, Kiyoshi

    2016-01-01

    Ustiloxins were found recently to be the first example of cyclic peptidyl secondary metabolites that are ribosomally synthesized in filamentous fungi. In this work, two function-unknown genes (ustYa/ustYb) in the gene cluster for ustiloxins from Aspergillus flavus were found experimentally to be involved in cyclization of the peptide. Their homologous genes are observed mainly in filamentous fungi and mushrooms. They have two "HXXHC" motifs that might form active sites. Computational genome analyses showed that these genes are frequently located near candidate genes for ribosomal peptide precursors, which have signal peptides at the N-termini and repeated sequences with core peptides for the cyclic portions, in the genomes of filamentous fungi, particularly Aspergilli, as observed in the ustiloxin gene cluster. Based on the combination of the ustYa/ustYb homologous genes and the nearby ribosomal peptide precursor candidate genes, 94 ribosomal peptide precursor candidates that were identified computationally from Aspergilli genome sequences were classified into more than 40 types including a wide variety of core peptide sequences. A set of the predicted ribosomal peptide biosynthetic genes was experimentally verified to synthesize a new cyclic peptide compound, designated as asperipin-2a, which comprises the amino acid sequence in the corresponding precursor gene, distinct from the ustiloxin precursors. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Exploring peptide hormones in plants: identification of four peptide hormone-receptor pairs and two post-translational modification enzymes.

    Science.gov (United States)

    Matsubayashi, Yoshikatsu

    2018-01-01

    The identification of hormones and their receptors in multicellular organisms is one of the most exciting research areas and has lead to breakthroughs in understanding how their growth and development are regulated. In particular, peptide hormones offer advantages as cell-to-cell signals in that they can be synthesized rapidly and have the greatest diversity in their structure and function. Peptides often undergo post-translational modifications and proteolytic processing to generate small oligopeptide hormones. In plants, such small post-translationally modified peptides constitute the largest group of peptide hormones. We initially explored this type of peptide hormone using bioassay-guided fractionation and later by in silico gene screening coupled with biochemical peptide detection, which led to the identification of four types of novel peptide hormones in plants. We also identified specific receptors for these peptides and transferases required for their post-translational modification. This review summarizes how we discovered these peptide hormone-receptor pairs and post-translational modification enzymes, and how these molecules function in plant growth, development and environmental adaptation.

  13. Exploring peptide hormones in plants: identification of four peptide hormone-receptor pairs and two post-translational modification enzymes

    Science.gov (United States)

    MATSUBAYASHI, Yoshikatsu

    2018-01-01

    The identification of hormones and their receptors in multicellular organisms is one of the most exciting research areas and has lead to breakthroughs in understanding how their growth and development are regulated. In particular, peptide hormones offer advantages as cell-to-cell signals in that they can be synthesized rapidly and have the greatest diversity in their structure and function. Peptides often undergo post-translational modifications and proteolytic processing to generate small oligopeptide hormones. In plants, such small post-translationally modified peptides constitute the largest group of peptide hormones. We initially explored this type of peptide hormone using bioassay-guided fractionation and later by in silico gene screening coupled with biochemical peptide detection, which led to the identification of four types of novel peptide hormones in plants. We also identified specific receptors for these peptides and transferases required for their post-translational modification. This review summarizes how we discovered these peptide hormone–receptor pairs and post-translational modification enzymes, and how these molecules function in plant growth, development and environmental adaptation. PMID:29434080

  14. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    Introduction: A frightening increase in the number of isolated multidrug resistant bacterial strains linked to the decline in novel antimicrobial drugs entering the market is a great cause for concern. Cationic antimicrobial peptides (AMPs) have lately been introduced as a potential new class...... of antimicrobial drugs, and computational methods utilizing molecular descriptors can significantly accelerate the development of new peptide drug candidates. Areas covered: This paper gives a broad overview of peptide and amino-acid scale descriptors available for AMP modeling and highlights which...

  15. Preclinical Evidence on the Anticancer Properties of Food Peptides.

    Science.gov (United States)

    Rajendran, Subin R C K; Ejike, Chukwunonso E C C; Gong, Min; Hannah, William; Udenigwe, Chibuike C

    2017-01-01

    Natural, synthetic and analogues of peptides have shown prospects for application in cancer chemotherapy. Notably, some food protein-derived peptides are known to possess anticancer activities in cultured cancer cells, and also in animal cancer models via different mechanisms including induction of apoptosis, cell cycle arrest, cellular membrane disruption, inhibition of intracellular signalling, topoisomerases and proteases, and antiangiogenic activity. Although the mechanism of several anticancer food peptides is yet to be clearly elucidated, there is potential for practical applications of the peptides as functional food and nutraceutical ingredients, especially in adjuvant cancer therapy. This review describes the aetiological mechanisms of cancers and the production, structures, mechanisms of action, availability, and cellular and physiological anticancer activities of the food peptides. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  17. Tumor-Penetrating Peptides

    Science.gov (United States)

    Teesalu, Tambet; Sugahara, Kazuki N.; Ruoslahti, Erkki

    2013-01-01

    Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC), contains the integrin-binding RGD motif. RGD mediates tumor-homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR) motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular “zip code” of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies, and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is present in the

  18. Novel Endogenous Antimicrobial Peptides

    OpenAIRE

    Nordahl, Emma

    2009-01-01

    Antimicrobial peptides serve as a first line of defence against invading microorganisms and are an essential part of our fast innate immune system. They are ancient molecules found in all classes of life. Antimicrobial peptides rapidly kill a broad spectrum of microbes and are immunomodulatory, i.e. having additional actions influencing inflammation and other innate immune responses. Results presented in this thesis demonstrate that proteases of common human pathogens degrade and inactivate t...

  19. PeptideMine - A webserver for the design of peptides for protein-peptide binding studies derived from protein-protein interactomes

    Directory of Open Access Journals (Sweden)

    Gopal Balasubramanian

    2010-09-01

    Full Text Available Abstract Background Signal transduction events often involve transient, yet specific, interactions between structurally conserved protein domains and polypeptide sequences in target proteins. The identification and validation of these associating domains is crucial to understand signal transduction pathways that modulate different cellular or developmental processes. Bioinformatics strategies to extract and integrate information from diverse sources have been shown to facilitate the experimental design to understand complex biological events. These methods, primarily based on information from high-throughput experiments, have also led to the identification of new connections thus providing hypothetical models for cellular events. Such models, in turn, provide a framework for directing experimental efforts for validating the predicted molecular rationale for complex cellular processes. In this context, it is envisaged that the rational design of peptides for protein-peptide binding studies could substantially facilitate the experimental strategies to evaluate a predicted interaction. This rational design procedure involves the integration of protein-protein interaction data, gene ontology, physico-chemical calculations, domain-domain interaction data and information on functional sites or critical residues. Results Here we describe an integrated approach called "PeptideMine" for the identification of peptides based on specific functional patterns present in the sequence of an interacting protein. This approach based on sequence searches in the interacting sequence space has been developed into a webserver, which can be used for the identification and analysis of peptides, peptide homologues or functional patterns from the interacting sequence space of a protein. To further facilitate experimental validation, the PeptideMine webserver also provides a list of physico-chemical parameters corresponding to the peptide to determine the feasibility of

  20. Electrostatic Force Microscopy of Self Assembled Peptide Structures

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Pantagos, Spyros P.

    2011-01-01

    In this report electrostatic force microscopy (EFM) is used to study different peptide self-assembled structures, such as tubes and particles. It is shown that not only geometrical information can be obtained using EFM, but also information about the composition of different structures. In partic...... compared to the radius of the AFM tip used. Finally, an agreement between the detected signal and the structure of the hollow peptide tubes is demonstrated....

  1. Kinase activity and specificity assay using synthetic peptides.

    Science.gov (United States)

    Wu, Xu Na; Schulze, Waltraud X

    2015-01-01

    Phosphorylation of substrate proteins by protein kinases can lead to activation or inactivation of signaling pathways or metabolic processes. Precise understanding of activity and specificity of protein kinases are important questions in characterization of kinase functions. Here, we describe a procedure to study kinase activity and specificity using kinase-GFP complexes purified from plant material and synthetic peptides as substrates. Magnetic GFP beads allow purifying receptor-like kinase-GFP complexes from microsomal fractions. Kinase-GFP complexes are then incubated with ATP and the synthetic peptides for kinase reaction. Phosphorylation of substrate peptides is then identified and quantified by mass spectrometry.

  2. Peptide aldehyde inhibitors of bacterial peptide deformylases.

    Science.gov (United States)

    Durand, D J; Gordon Green, B; O'Connell, J F; Grant, S K

    1999-07-15

    Bacterial peptide deformylases (PDF, EC 3.5.1.27) are metalloenzymes that cleave the N-formyl groups from N-blocked methionine polypeptides. Peptide aldehydes containing a methional or norleucinal inhibited recombinant peptide deformylase from gram-negative Escherichia coli and gram-positive Bacillus subtilis. The most potent inhibitor was calpeptin, N-CBZ-Leu-norleucinal, which was a competitive inhibitor of the zinc-containing metalloenzymes, E. coli and B. subtilis PDF with Ki values of 26.0 and 55.6 microM, respectively. Cobalt-substituted E. coli and B. subtilis deformylases were also inhibited by these aldehydes with Ki values for calpeptin of 9.5 and 12.4 microM, respectively. Distinct spectral changes were observed upon binding of calpeptin to the Co(II)-deformylases, consistent with the noncovalent binding of the inhibitor rather than the formation of a covalent complex. In contrast, the chelator 1,10-phenanthroline caused the time-dependent inhibition of B. subtilis Co(II)-PDF activity with the loss of the active site metal. The fact that calpeptin was nearly equipotent against deformylases from both gram-negative and gram-positive bacterial sources lends further support to the idea that a single deformylase inhibitor might have broad-spectrum antibacterial activity. Copyright 1999 Academic Press.

  3. The anti-obesity effects of a tuna peptide on 3T3-L1 adipocytes are mediated by the inhibition of the expression of lipogenic and adipogenic genes and by the activation of the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Kim, Young-Min; Kim, In-Hye; Choi, Jeong-Wook; Lee, Min-Kyeong; Nam, Taek-Jeong

    2015-08-01

    The differentiation of 3T3-L1 cells into adipocytes involves the activation of an organized system of obesity-related genes, of which those encoding CCAAT/enhancer-binding proteins (C/EBPs) and the Wnt-10b protein may play integral roles. In a previous study of ours, we found that a specific peptide found in tuna (sequence D-I-V-D-K-I-E-I; termed TP-D) inhibited 3T3-L1 cell differentiation. In the present study, we observed that the expression of expression of C/EBPs and Wnt-10b was associated with obesity. The initial step of 3T3-L1 cell differentiation involved the upregulation of C/EBP-α expression, which in turn activated various subfactors. An upstream effector of glycogen synthase kinase-3β (GSK-3β) inhibited Wnt-10b expression in 3T3-L1 adipocytes. In a previous study of ours, we sequenced the tuna peptide via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and quadrupole time-of-flight mass spectrometry (Q-TOF MS/MS) and confirmed the anti-obesity effects thereof in 3T3-L1 adipocytes. In the present study, we demonstrate that TP-D inhibits C/EBP and promotes Wnt-10b mRNA expression, thus activating the Wnt pathway. The inhibition of lipid accumulation was measured using a glucose and triglyceride (TG) assay. Our results confirmed that TP-D altered the expression levels of C/EBP-related genes in a dose-dependent manner and activated the Wnt signaling pathway. In addition, we confirmed that total adiponectin and high-molecular weight (HMW) adiponectin levels were reduced by treatment with TP-D. These data indicate that TP-D inhibits adipocyte differentiation through the inhibition of C/EBP genes and the subsequent activation of the Wnt/β-catenin signaling pathway.

  4. Granin-derived peptides.

    Science.gov (United States)

    Troger, Josef; Theurl, Markus; Kirchmair, Rudolf; Pasqua, Teresa; Tota, Bruno; Angelone, Tommaso; Cerra, Maria C; Nowosielski, Yvonne; Mätzler, Raphaela; Troger, Jasmin; Gayen, Jaur R; Trudeau, Vance; Corti, Angelo; Helle, Karen B

    2017-07-01

    The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Diversity-oriented peptide stapling

    DEFF Research Database (Denmark)

    Tran, Thu Phuong; Larsen, Christian Ørnbøl; Røndbjerg, Tobias

    2017-01-01

    The introduction of macrocyclic constraints in peptides (peptide stapling) is an important tool within peptide medicinal chemistry for stabilising and pre-organising peptides in a desired conformation. In recent years, the copper-catalysed azide-alkyne cycloaddition (CuAAC) has emerged as a power......The introduction of macrocyclic constraints in peptides (peptide stapling) is an important tool within peptide medicinal chemistry for stabilising and pre-organising peptides in a desired conformation. In recent years, the copper-catalysed azide-alkyne cycloaddition (CuAAC) has emerged...... incorporating two azide-modified amino acids with 1,3,5-triethynylbenzene efficiently provides (i, i+7)- and (i, i+9)-stapled peptides with a single free alkyne positioned on the staple, that can be further conjugated or dimerised. A unique feature of the present method is that it provides easy access...

  6. Peptide Integrated Optics.

    Science.gov (United States)

    Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil

    2018-02-01

    Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Pronase E-Based Generation of Fluorescent Peptide Fragments: Tracking Intracellular Peptide Fate in Single Cells.

    Science.gov (United States)

    Mainz, Emilie R; Dobes, Nicholas C; Allbritton, Nancy L

    2015-08-04

    The ability to track intracellular peptide proteolysis at the single cell level is of growing interest, particularly as short peptide sequences continue to play important roles as biosensors, therapeutics, and endogenous participants in antigen processing and intracellular signaling. We describe a rapid and inexpensive methodology to generate fluorescent peptide fragments from a parent sequence with diverse chemical properties, including aliphatic, nonpolar, basic, acidic, and non-native amino acids. Four peptide sequences with existing biochemical applications were fragmented using incubation with Pronase E and/or formic acid, and in each case a complete set of fluorescent fragments was generated for use as proteolysis standards in chemical cytometry. Fragment formation and identity was monitored with capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) and matrix assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-MS) to confirm the presence of all sequences and yield fragmentation profiles across Pronase E concentrations which can readily be used by others. As a pilot study, Pronase E-generated standards from an Abl kinase sensor and an ovalbumin antigenic peptide were then employed to identify proteolysis products arising from the metabolism of these sequences in single cells. The Abl kinase sensor fragmented at 4.2 ± 4.8 zmol μM(-1) s(-1) and the majority of cells possessed similar fragment identities. In contrast, an ovalbumin epitope peptide was degraded at 8.9 ± 0.1 zmol μM(-1) s(-1), but with differential fragment formation between individual cells. Overall, Pronase E-generated peptide standards were a rapid and efficient method to identify proteolysis products from cells.

  8. Synthetic antibiofilm peptides.

    Science.gov (United States)

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  10. Peptide Vaccine Against Paracoccidioidomycosis.

    Science.gov (United States)

    Taborda, Carlos P; Travassos, Luiz R

    2017-01-01

    The chapter reviews methods utilized for the isolation and characterization of a promising immunogen candidate, aiming at a human vaccine against paracoccidioidomycosis. Peptide P10 carries a T-CD4+ epitope and was identified as an internal sequence of the major diagnostic antigen known as gp43 glycoprotein. It successfully treated massive intratracheal infections by virulent Paracoccidioides brasiliensis in combination with chemotherapy.An introduction about the systemic mycosis was found essential to understand the various options that were considered to design prophylactic and therapeutic vaccine protocols using peptide P10.

  11. Glucagon-like peptide 1 receptor agonist ameliorates the insulin resistance function of islet β cells via the activation of PDX-1/JAK signaling transduction in C57/BL6 mice with high-fat diet-induced diabetes.

    Science.gov (United States)

    Hao, Tao; Zhang, Hongtao; Li, Sheyu; Tian, Haoming

    2017-04-01

    Long-term exposure to a high-fat diet (HFD) causes glucotoxicity and lipotoxicity in islet β cells and leads to the development of metabolic dysfunctions. Reductions in pancreatic and duodenal homeobox-1 (PDX-1) expression have been shown to induce type 2 diabetes mellitus by causing impairments to islet β cells. Glucagon-like peptide 1 (GLP-1) treatment reduces endogenous insulin resistance in HFD-induced type 2 diabetes mellitus. In the present study, the underlying mechanism by which GLP-1 exerts its function in type 2 diabetes mellitus was investigated. The effect of liraglutide (GLP-1 receptor agonist) administration on glucose tolerance, insulin release, and glucose-dependent insulinotropic polypeptide level was detected in a HFD-induced diabetes C57/BL6 mouse model. Moreover, the role of liraglutide administration on the activity of PDX-1 was quantified to demonstrate the association between the two indicators. The results showed that administration of liraglutide could ameliorate the impairments to β cells due to HFD consumption. Liraglutide restored the insulin capacity and stimulated glucose disposal by improving the function and increasing the number of islet β cells. Furthermore, the hyperplasia and redundant function of islet α cells were inhibited by liraglutide treatment as well. At the molecular level, administration of liraglutide induced the expression of PDX-1, MafA, p-JAK2 and p-Stat3 in HFD model to relatively normal levels. It was suggested that the effect of liraglutide-induced activation of GLP-1 was exerted via activation of PDX-1 rather than its function in decreasing body weight. The study demonstrated that GLP-1 played an essential role in type 2 diabetes mellitus.

  12. NCAM Mimetic Peptides: An Update

    DEFF Research Database (Denmark)

    Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    of combinatorial peptide libraries. The C3 and NBP10 peptides target the first Ig module whereas the ENFIN2 and ENFIN11 peptides target fibronectin type III (FN3) modules of NCAM. A number of NCAM mimetics can induce neurite outgrowth and exhibit neuroprotective and synaptic plasticity modulating properties...

  13. brain natriuretic peptide

    African Journals Online (AJOL)

    Background: Recently brain natriuretic peptide (BNP) level has been introduced as a screening test for congestive heart failure (CHF) in children. The current CHF assessment scores are not satisfactory as they use a large number of variables. Objective: To evaluate two CHF scores: a modified clinical score and an echo-.

  14. Brain Peptides and Psychopharmacology

    Science.gov (United States)

    Arehart-Treichel, Joan

    1976-01-01

    Proteins isolated from the brain and used as drugs can improve and apparently even transfer mental states and behavior. Much of the pioneering work and recent research with humans and animals is reviewed and crucial questions that are being posed about the psychologically active peptides are related. (BT)

  15. Are antimicrobial peptides an alternative for conventional antibiotics?

    International Nuclear Information System (INIS)

    Kamysz, W.

    2005-01-01

    Antimicrobial peptides are widespread in living organisms and constitute an important component of innate immunity to microbial infections. By the early 1980' s , more than 800 different antimicrobial peptides had been isolated from mammals, amphibians, fish, insects, plants and bacterial species. In humans, they are produced by granulocytes, macrophages and most epithelial and endothelial cells. Newly discovered antibiotics have antibacterial, antifungal, antiviral and even antiprotozoal activity. Occasionally, a single antibiotic may have a very wide spectrum of activity and may show activity towards various kinds of microorganisms. Although antimicrobial activity is the most typical function of peptides, they are also characterized by numerous other properties. They stimulate the immune system, have anti-neoplastic properties and participate in cell signalling and proliferation regulation. As antimicrobial peptides from higher eukaryotes differ structurally from conventional antibiotics produced by bacteria and fungi, they offer novel templates for pharmaceutical compounds, which could be used effectively against the increasing number of resistant microbes. (author)

  16. Cell wall trapping of autocrine peptides for human G-protein-coupled receptors on the yeast cell surface.

    Directory of Open Access Journals (Sweden)

    Jun Ishii

    Full Text Available G-protein-coupled receptors (GPCRs regulate a wide variety of physiological processes and are important pharmaceutical targets for drug discovery. Here, we describe a unique concept based on yeast cell-surface display technology to selectively track eligible peptides with agonistic activity for human GPCRs (Cell Wall Trapping of Autocrine Peptides (CWTrAP strategy. In our strategy, individual recombinant yeast cells are able to report autocrine-positive activity for human GPCRs by expressing a candidate peptide fused to an anchoring motif. Following expression and activation, yeast cells trap autocrine peptides onto their cell walls. Because captured peptides are incapable of diffusion, they have no impact on surrounding yeast cells that express the target human GPCR and non-signaling peptides. Therefore, individual yeast cells can assemble the autonomous signaling complex and allow single-cell screening of a yeast population. Our strategy may be applied to identify eligible peptides with agonistic activity for target human GPCRs.

  17. Immunosuppressive peptides and their therapeutic applications☆

    Science.gov (United States)

    Thell, Kathrin; Hellinger, Roland; Schabbauer, Gernot; Gruber, Christian W.

    2014-01-01

    The immune system is vital for detecting and evading endogenous and exogenous threats to the body. Failure to regulate this homeostasis leads to autoimmunity, which is often associated with malfunctioning T cell signaling. Several medications are available to suppress over-reactive T lymphocytes, but many of the currently marketed drugs produce severe and life-threatening side-effects. Ribosomally synthesized peptides are gaining recognition from the pharmaceutical industry for their enhanced selectivity and decreased toxicity compared with small molecules; in particular, circular peptides exhibit remarkable stability and increased oral administration properties. For example, plant cyclotides effectively inhibit T lymphocyte proliferation. They are composed of a head-to-tail cyclized backbone and a cystine-knot motif, which confers them with remarkable stability, thus making them attractive pharmaceutical tools. PMID:24333193

  18. [Biosynthesis of opioid peptides].

    Science.gov (United States)

    Rossier, J

    1988-01-01

    The endogenous opioid peptides all contain the enkephalin sequence Tyr-Gly-Gly-Phe-Met and Tyr-Gly-Gly-Phe-Leu at their aminoterminus. Three distinct families of these peptides (endorphins, enkephalins and dynorphins) are present in different neuronal pathways within the central nervous system. Molecular genetics have shown that these three families of opioid peptides are derived from three distinct precursors. Pro-opiomelanocortin gives rise to the endorphins, as well as adrenocorticotropic hormone (ACTH) and the melanotropic hormones (MSH's). [Met] enkephalin, [Leu] enkephalin and the related heptapeptide [Met] enkephalin-Arg6-Phe7 and octapeptide [Met] enkephalin-Arg6-Gly7-Leu8 are derived from proenkephalin. The third family is derived from prodynorphin and includes dynorphin A, dynorphin B (also known as rimorphin) and alpha- and beta-neo-endorphin. The structure of the genes coding for these precursors are similar, suggesting the possibility of one common ancestral gene. The most common scheme for enzymatic maturation of precursors proposes the action of a trypsin-like endopeptidase followed by a carboxypeptidase B-like exopeptidase. However, we have provided evidence that this combination of trypsin-like and carboxypeptidase B-like enzymes may not be the only mechanism for liberating enkephalin from low molecular weight enkephalin-containing peptides. Indeed, endo-oligopeptidase A, an enzyme, known to hydrolyze the Phe5-Ser6 bond of bradykinin and the Arg8-Arg9 bond of neurotensin, has been shown to produce, by a single cleavage, [Leu] enkephalin or [Met] enkephalin from small enkephalin-containing peptides, (Camargo et al., 1987, J. Neurochem. 48, 1258-1263).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  20. ARA-PEPs: a repository of putative sORF-encoded peptides in Arabidopsis thaliana.

    Science.gov (United States)

    Hazarika, Rashmi R; De Coninck, Barbara; Yamamoto, Lidia R; Martin, Laura R; Cammue, Bruno P A; van Noort, Vera

    2017-01-17

    Many eukaryotic RNAs have been considered non-coding as they only contain short open reading frames (sORFs). However, there is increasing evidence for the translation of these sORFs into bioactive peptides with potent signaling, antimicrobial, developmental, antioxidant roles etc. Yet only a few peptides encoded by sORFs are annotated in the model organism Arabidopsis thaliana. To aid the functional annotation of these peptides, we have developed ARA-PEPs (available at http://www.biw.kuleuven.be/CSB/ARA-PEPs ), a repository of putative peptides encoded by sORFs in the A. thaliana genome starting from in-house Tiling arrays, RNA-seq data and other publicly available datasets. ARA-PEPs currently lists 13,748 sORF-encoded peptides with transcriptional evidence. In addition to existing data, we have identified 100 novel transcriptionally active regions (TARs) that might encode 341 novel stress-induced peptides (SIPs). To aid in identification of bioactivity, we add functional annotation and sequence conservation to predicted peptides. To our knowledge, this is the largest repository of plant peptides encoded by sORFs with transcript evidence, publicly available and this resource will help scientists to effortlessly navigate the list of experimentally studied peptides, the experimental and computational evidence supporting the activity of these peptides and gain new perspectives for peptide discovery.

  1. Novel Peptide/Protein Delivery System Targeting erbB2-Overexpressing Breast Cancer Cells

    National Research Council Canada - National Science Library

    Yu, Dihua

    2002-01-01

    .... During this funding year, we focused on the delivery of erbB2 signal-blocking ESP peptides (objective 2) . Because of the complexity of biotin-penetratin-AHNP-ESP, the synthesis was unsuccessful...

  2. The Arabidopsis peptide kiss of death is an inducer of programmed cell death

    OpenAIRE

    Blanvillain, Robert; Young, Bennett; Cai, Yao-min; Hecht, Valérie; Varoquaux, Fabrice; Delorme, Valérie; Lancelin, Jean-Marc; Delseny, Michel; Gallois, Patrick

    2011-01-01

    This study identifies a novel regulator of cell death in plants and shows that the 25-amino-acid peptide kiss of death regulates programmed cell death at an early step in the cell death-signalling cascade.

  3. Antibody Production with Synthetic Peptides.

    Science.gov (United States)

    Lee, Bao-Shiang; Huang, Jin-Sheng; Jayathilaka, Lasanthi P; Lee, Jenny; Gupta, Shalini

    2016-01-01

    Peptides (usually 10-20 amino acid residues in length) can be used as effectively as proteins in raising antibodies producing both polyclonal and monoclonal antibodies routinely with titers higher than 20,000. Peptide antigens do not function as immunogens unless they are conjugated to proteins. Production of high quality antipeptide antibodies is dependent upon peptide sequence selection, the success of peptide synthesis, peptide-carrier protein conjugation, the humoral immune response in the host animal, the adjuvant used, the peptide dose administered, the injection method, and the purification of the antibody. Peptide sequence selection is probably the most critical step in the production of antipeptide antibodies. Although the process for designing peptide antigens is not exact, several guidelines and computational B-cell epitope prediction methods can help maximize the likelihood of producing antipeptide antibodies that recognize the protein. Antibodies raised by peptides have become essential tools in life science research. Virtually all phospho-specific antibodies are now produced using phosphopeptides as antigens. Typically, 5-20 mg of peptide is enough for antipeptide antibody production. It takes 3 months to produce a polyclonal antipeptide antibody in rabbits that yields ~100 mL of serum which corresponds to ~8-10 mg of the specific antibody after affinity purification using a peptide column.

  4. Unanticipated functional diversity among the TatA-type components of the Tat protein translocase.

    Science.gov (United States)

    Eimer, Ekaterina; Kao, Wei-Chun; Fröbel, Julia; Blümmel, Anne-Sophie; Hunte, Carola; Müller, Matthias

    2018-01-22

    Twin-arginine translocation (Tat) systems transport folded proteins that harbor a conserved arginine pair in their signal peptides. They assemble from hexahelical TatC-type and single-spanning TatA-type proteins. Many Tat systems comprise two functionally diverse, TatA-type proteins, denominated TatA and TatB. Some bacteria in addition express TatE, which thus far has been characterized as a functional surrogate of TatA. For the Tat system of Escherichia coli we demonstrate here that different from TatA but rather like TatB, TatE contacts a Tat signal peptide independently of the proton-motive force and restricts the premature processing of a Tat signal peptide. Furthermore, TatE embarks at the transmembrane helix five of TatC where it becomes so closely spaced to TatB that both proteins can be covalently linked by a zero-space cross-linker. Our results suggest that in addition to TatB and TatC, TatE is a further component of the Tat substrate receptor complex. Consistent with TatE being an autonomous TatAB-type protein, a bioinformatics analysis revealed a relatively broad distribution of the tatE gene in bacterial phyla and highlighted unique protein sequence features of TatE orthologs.

  5. Effects of central gastrin-releasing peptide on glucose metabolism

    NARCIS (Netherlands)

    Jha, Pawan Kumar; Foppen, Ewout; Challet, Etienne; Kalsbeek, A.

    2015-01-01

    Gastrin-releasing peptide (GRP) mediated signals in the central nervous system (CNS) influence many functions associated with energy metabolism. The purpose of the present study was to investigate the central effect of GRP on glucose metabolism in the male rat. Intracerebroventricular (icv)

  6. Exciton Coupling of Phenylalanine Reveals Conformational Changes of Cationic Peptides

    DEFF Research Database (Denmark)

    Bortolini, Christian; Liu, Lei; Hoffmann, Soren V.

    2017-01-01

    Circular dichroism (CD) is a versatile tool to investigate the secondary structure of proteins. Conventionally, CD signals in the far-UV region are primarily attributed to peptide bond absorption; likewise aromatic residue analysis has typically only focussed on the near-UV absorption characteris...

  7. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  8. Retrograde signaling

    DEFF Research Database (Denmark)

    Kleine, Tatjana; Leister, Dario Michael

    2016-01-01

    The term retrograde signaling refers to the fact that chloroplasts and mitochondria utilize specific signaling molecules to convey information on their developmental and physiological states to the nucleus and modulate the expression of nuclear genes accordingly. Signals emanating from plastids...... of retrograde signaling has since been extended and revised. Elements of several 'operational' signaling circuits have come to light, including metabolites, signaling cascades in the cytosol and transcription factors. Here, we review recent advances in the identification and characterization of retrograde...

  9. Radiolabelled peptides vs. nanoparticle-peptide complexes for medical applications

    International Nuclear Information System (INIS)

    Ferro F, G.

    2007-01-01

    Full text: The principle that peptide receptors can be used successfully for in vivo targeting of human cancers has been provided and the peptide-receptor radionuclide therapy for malignant tumors is a real treatment option. Targeted entry into cells is an increasingly important area of research. The diagnoses and treatment of disease by novel methods would be enhanced greatly by the efficient transport of materials to living cell nuclei. Membrane-trans locating peptides complexed to nanoparticles are small enough (30 nm) to cross the nuclear membrane and to enter the cell via receptor-mediated endocytosis, emerging as a new type of pharmaceuticals. Pharmacokinetic properties and molecular specificity of iron or gold nanoparticle-peptide complexes that do not induce biological toxicity is a topic of world interest in current and future medical investigations. Some perspectives and achievements on the preparation, pharmacokinetics and dosimetry of radiolabelled peptides versus nanoparticle-peptide complexes for medical applications are presented. (Author)

  10. Strong piezoelectricity in bioinspired peptide nanotubes.

    Science.gov (United States)

    Kholkin, Andrei; Amdursky, Nadav; Bdikin, Igor; Gazit, Ehud; Rosenman, Gil

    2010-02-23

    We show anomalously strong shear piezoelectric activity in self-assembled diphenylalanine peptide nanotubes (PNTs), indicating electric polarization directed along the tube axis. Comparison with well-known piezoelectric LiNbO(3) and lateral signal calibration yields sufficiently high effective piezoelectric coefficient values of at least 60 pm/V (shear response for tubes of approximately 200 nm in diameter). PNTs demonstrate linear deformation without irreversible degradation in a broad range of driving voltages. The results open up a wide avenue for developing new generations of "green" piezoelectric materials and piezonanodevices based on bioactive tubular nanostructures potentially compatible with human tissue.

  11. Cloning of precursors for two MIH/VIH-related peptides in the prawn, Macrobrachium rosenbergii.

    Science.gov (United States)

    Yang, W J; Rao, K R

    2001-11-30

    Two cDNA clones (634 and 1366 bp) encoding MIH/VIH (molt-inhibiting hormone/vitellogenesis-inhibiting hormone)-related peptides were isolated and sequenced from a Macrobrachium rosenbergii eyestalk ganglia cDNA library. The clones contain a 360 and 339 bp open-reading frame, and their conceptually translated peptides consist of a 41 and 34 amino acid signal peptide, respectively, and a 78 amino acid residue mature peptide hormone. The amino acid sequences of the peptides exhibit higher identities with other known MIHs and VIH (44-69%) than with CHHs (28-33%). This is the first report describing the cloning and sequencing of two MIH/VIH-related peptides in a single crustacean species. Transcription of these mRNAs was detected in the eyestalk ganglia, but not in the thoracic ganglia, hepatopancreas, gut, gill, heart, or muscle.

  12. Peptide-enhanced oral delivery of therapeutic peptides and proteins

    DEFF Research Database (Denmark)

    Kristensen, Mie; Foged, Camilla; Berthelsen, Jens

    2013-01-01

    Systemic therapy upon oral delivery of biologics, such as peptide and protein drugs is limited due to their large molecular size, their low enzymatic stability and their inability to cross the intestinal epithelium. Ways to overcome the epithelial barrier include the use of peptide-based excipients...... throughout the gastrointestinal (GI) tract, chemical stability is an inherent challenge when employing amino acid-based excipients for oral delivery, and multiple approaches have been investigated to improve this. The exact mechanisms of transepithelial translocation are discussed, and it is believed...... for oral delivery of peptide and protein drugs highlighting recent studies and the most promising compounds from these classes of peptide excipients....

  13. Immunomodulatory effects of anti-microbial peptides.

    Science.gov (United States)

    Otvos, Laszlo

    2016-09-01

    Anti-microbial peptides (AMPs) were originally thought to exert protecting actions against bacterial infection by disintegrating bacterial membranes. Upon identification of internal bacterial targets, the view changed and moved toward inhibition of prokaryote-specific biochemical processes. However, the level of none of these activities can explain the robust efficacy of some of these peptides in animal models of systemic and cutaneous infections. A rapidly growing panel of reports suggests that AMPs, now called host-defense peptides (HDPs), act through activating the immune system of the host. This includes recruitment and activation of macrophages and mast cells, inducing chemokine production and altering NF-κB signaling processes. As a result, both pro- and anti-inflammatory responses are elevated together with activation of innate and adaptive immunity mechanisms, wound healing, and apoptosis. HDPs sterilize the systemic circulation and local injury sites significantly more efficiently than pure single-endpoint in vitro microbiological or biochemical data would suggest and actively aid recovering from tissue damage after or even without bacterial infections. However, the multiple and, often opposing, immunomodulatory functions of HDPs require exceptional care in therapeutic considerations.

  14. [Novel achievements in development and application of GPCR-peptides].

    Science.gov (United States)

    Shpakov, A O; Derkach, K V

    2015-01-01

    One of the approaches to creating the regulators of G-protein-coupled receptors (GPCR) is the development of peptides that structurally correspond to the functionally important regions of the intracellular extracellular loops of the receptors. GPCR-peptides can selectively regulate the functional activity of homologous receptor and affect the hormonal signal transduction via the receptor. Among the peptides corresponding to the intracellular regions of GPCR, their derivatives modified with hydrophobic radicals exhibit the highest activity and selectivity of action in vitro and in vivo. Ample evidence demonstrates that lipophilic GPCR-peptides may be used to treat diseases and various abnormalities that depend on the functional activity of receptors homologous to them. In turn, the peptides corresponding to the extracellular regions of GPCR can be used as functional probes for studying the specific interaction between the receptors and their ligands, as well as for studying the etiology and pathogenesis of autoimmune diseases caused by the production of antibodies to GPCR antigenic determinants that are localized in the receptor extracellular loops. The present review focuses on the recent achievements in development and application of GPCR-peptides and on the prospects for their further use in medicine and fundamental biology.

  15. Microneedle Enhanced Delivery of Cosmeceutically Relevant Peptides in Human Skin

    Science.gov (United States)

    Mohammed, Yousuf H.; Yamada, Miko; Lin, Lynlee L.; Grice, Jeffrey E.; Roberts, Michael S.; Raphael, Anthony P.; Benson, Heather A. E.; Prow, Tarl W.

    2014-01-01

    Peptides and proteins play an important role in skin health and well-being. They are also found to contribute to skin aging and melanogenesis. Microneedles have been shown to substantially enhance skin penetration and may offer an effective means of peptide delivery enhancement. The aim of this investigation was to assess the influence of microneedles on the skin penetration of peptides using fluorescence imaging to determine skin distribution. In particular the effect of peptide chain length (3, 4, 5 amino acid chain length) on passive and MN facilitated skin penetration was investigated. Confocal laser scanning microscopy was used to image fluorescence intensity and the area of penetration of fluorescently tagged peptides. Penetration studies were conducted on excised full thickness human skin in Franz type diffusion cells for 1 and 24 hours. A 2 to 22 fold signal improvement in microneedle enhanced delivery of melanostatin, rigin and pal-KTTKS was observed. To our knowledge this is the first description of microneedle enhanced skin permeation studies on these peptides. PMID:25033398

  16. Microneedle enhanced delivery of cosmeceutically relevant peptides in human skin.

    Directory of Open Access Journals (Sweden)

    Yousuf H Mohammed

    Full Text Available Peptides and proteins play an important role in skin health and well-being. They are also found to contribute to skin aging and melanogenesis. Microneedles have been shown to substantially enhance skin penetration and may offer an effective means of peptide delivery enhancement. The aim of this investigation was to assess the influence of microneedles on the skin penetration of peptides using fluorescence imaging to determine skin distribution. In particular the effect of peptide chain length (3, 4, 5 amino acid chain length on passive and MN facilitated skin penetration was investigated. Confocal laser scanning microscopy was used to image fluorescence intensity and the area of penetration of fluorescently tagged peptides. Penetration studies were conducted on excised full thickness human skin in Franz type diffusion cells for 1 and 24 hours. A 2 to 22 fold signal improvement in microneedle enhanced delivery of melanostatin, rigin and pal-KTTKS was observed. To our knowledge this is the first description of microneedle enhanced skin permeation studies on these peptides.

  17. Binding of peptides to HLA-DQ molecules: peptide binding properties of the disease-associated HLA-DQ(alpha 1*0501, beta 1*0201) molecule

    DEFF Research Database (Denmark)

    Johansen, B H; Buus, S; Vartdal, F

    1994-01-01

    Peptide binding to DQ molecules has not previously been described. Here we report a biochemical peptide-binding assay specific for the DQ2 [i.e. DQ(alpha 1*0501, beta 1*0201)] molecule. This molecule was chosen since it shows a strong association to diseases such as celiac disease and insulin......-dependent diabetes mellitus. Initially we radiolabelled some selected peptides and tested them for binding to affinity-purified DQ2 molecules. One of the peptides, a Mycobacterium bovis (MB) 65 kDa 243-255Y peptide, displayed a good signal-to-noise ratio and was thus chosen as an indicator peptide in the DQ2 binding...... to DQ2 was specific, as shown in inhibition experiments with a panel of 47 peptides, differing in length, sequence, and origin. The binding of peptides to DR3 was tested in a similar assay with a Mycobacterium tuberculosis 65 kDa 3-13 peptide as the binding indicator. DQ2 and DR3 molecules bound...

  18. Surface modification using peptide functionalized bilayers

    Science.gov (United States)

    Stroumpoulis, Dimitrios

    Engineering materials that are capable of supporting cell and tissue growth is a challenging task that involves identifying and incorporating biological signals into the material surfaces or scaffolds. One approach towards bioactivity in materials is to mimic the function of the extracellular matrix (ECM) by displaying adhesion promoting oligopeptides. Supported planar bilayers (SPB) are a good platform to study molecular interactions at interfaces, since transmembrane proteins and peptides can be incorporated in a biologically relevant environment with precise control over their concentration and presentation. SPBs can be formed on flat surfaces using the Langmuir-Blodgett (LB) technique or alternatively from vesicle solutions. The fusion of vesicles with solid substrates offers simplicity and enhanced bilayer deposition rates over the LB method, whereas it can also be used with convex and enclosed surfaces. Ellipsometry and a mass transport model were used to investigate the kinetics of SPB formation on silicon dioxide surfaces from 100 nm diameter 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) vesicles. For the range of concentrations studied, 0.025 to 0.380 mg/ml, a monotonic increase in the ellipsometric signal with time was observed until saturation and the adsorption rate constant was calculated. Further, a Monte Carlo model was used to simulate the SPB formation process and the computational results were successfully fit to the experimental data. Lipid vesicles displaying RGD peptide amphiphiles were fused onto glass coverslips to control the ability of these surfaces to support cell adhesion and growth. Cell adhesion was prevented on phosphatidylcholine bilayers in the absence of RGD, whereas cells adhered and spread in the presence of accessible RGD amphiphiles. This specific interaction between cells and RGD peptides was further explored in a concentration dependent fashion by creating a surface composition array using a microfluidic device. For the

  19. The Equine PeptideAtlas

    DEFF Research Database (Denmark)

    Bundgaard, Louise; Jacobsen, Stine; Sorensen, Mette A.

    2014-01-01

    Equine PeptideAtlas encompassing high-resolution tandem MS analyses of 51 samples representing a selection of equine tissues and body fluids from healthy and diseased animals. The raw data were processed through the Trans-Proteomic Pipeline to yield high quality identification of proteins and peptides...... analyses, and emphasizes the value of the Equine PeptideAtlas as a resource for the design of targeted quantitative proteomic studies....

  20. Structural Characterization of Peptide Antibodies

    DEFF Research Database (Denmark)

    Chailyan, Anna; Marcatili, Paolo

    2015-01-01

    The role of proteins as very effective immunogens for the generation of antibodies is indisputable. Nevertheless, cases in which protein usage for antibody production is not feasible or convenient compelled the creation of a powerful alternative consisting of synthetic peptides. Synthetic peptides...... can be modified to obtain desired properties or conformation, tagged for purification, isotopically labeled for protein quantitation or conjugated to immunogens for antibody production. The antibodies that bind to these peptides represent an invaluable tool for biological research and discovery...

  1. One Hundred Years of Peptide Chemistry

    Indian Academy of Sciences (India)

    thus a chiral center. Today, 20 amino acids are known as genetically encoded as building blocks of peptides and proteins. Almost all of them present in peptides have L-configura- tion. D-amino acids have been found only in small peptides of bacterial cell walls, peptide antibiotics and peptides in South American frog skin.

  2. 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove.

    Science.gov (United States)

    Petosa, C; Masters, S C; Bankston, L A; Pohl, J; Wang, B; Fu, H; Liddington, R C

    1998-06-26

    14-3-3 proteins bind a variety of molecules involved in signal transduction, cell cycle regulation and apoptosis. 14-3-3 binds ligands such as Raf-1 kinase and Bad by recognizing the phosphorylated consensus motif, RSXpSXP, but must bind unphosphorylated ligands, such as glycoprotein Ib and Pseudomonas aeruginosa exoenzyme S, via a different motif. Here we report the crystal structures of the zeta isoform of 14-3-3 in complex with two peptide ligands: a Raf-derived phosphopeptide (pS-Raf-259, LSQRQRSTpSTPNVHMV) and an unphosphorylated peptide derived from phage display (R18, PHCVPRDLSWLDLEANMCLP) that inhibits binding of exoenzyme S and Raf-1. The two peptides bind within a conserved amphipathic groove on the surface of 14-3-3 at overlapping but distinct sites. The phosphoserine of pS-Raf-259 engages a cluster of basic residues (Lys49, Arg56, Arg60, and Arg127), whereas R18 binds via the amphipathic sequence, WLDLE, with its two acidic groups coordinating the same basic cluster. 14-3-3 is dimeric, and its two peptide-binding grooves are arranged in an antiparallel fashion, 30 A apart. The ability of each groove to bind different peptide motifs suggests how 14-3-3 can act in signal transduction by inducing either homodimer or heterodimer formation in its target proteins.

  3. ROS signalling - specificity is required

    DEFF Research Database (Denmark)

    Møller, Ian M; Sweetlove, Lee J

    2010-01-01

    Reactive oxygen species (ROS) production increases in plants under stress. ROS can damage cellular components, but they can also act in signal transduction to help the cell counteract the oxidative damage in the stressed compartment. H2O2 might induce a general stress response, but it does not have...... the required specificity to selectively regulate nuclear genes required for dealing with localized stress, e.g. in chloroplasts or mitochondria. Here we argue that peptides deriving from proteolytic breakdown of oxidatively damaged proteins have the requisite specificity to act as secondary ROS messengers...... and regulate source-specific genes and in this way contribute to retrograde ROS signalling during oxidative stress. Likewise, unmodified peptides deriving from the breakdown of redundant proteins could help coordinate organellar and nuclear gene expression...

  4. CLE peptides regulate lateral root development in response to nitrogen nutritional status of plants.

    Science.gov (United States)

    Araya, Takao; von Wirén, Nicolaus; Takahashi, Hideki

    2014-01-01

    CLE (CLAVATA3/embryo surrounding region (ESR)) peptides control meristem functions in plants. Our recent study highlights the critical role of a peptide-receptor signaling module composed of nitrogen (N)-responsive CLE peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase in controlling lateral root development in Arabidopsis thaliana. CLE1, -3, -4 and -7 are expressed in root pericycle cells in Arabidopsis roots under N-limited growth conditions. Overexpression of these CLE genes inhibits lateral root emergence from the primary root. The inhibitory action of N-responsive CLE peptides on lateral root development requires the function of CLV1 expressed in phloem companion cells in roots, suggesting that downstream signals are transferred through phloem for systemic regulation of root system architecture. An additional mechanism downstream of CLV1 feedback-regulates transcript levels of N-responsive CLE genes in roots for fine-tuning the signal amplitude.

  5. GOLVEN secretory peptides regulate auxin carrier turnover during plant gravitropic responses.

    Science.gov (United States)

    Whitford, Ryan; Fernandez, Ana; Tejos, Ricardo; Pérez, Amparo Cuéllar; Kleine-Vehn, Jürgen; Vanneste, Steffen; Drozdzecki, Andrzej; Leitner, Johannes; Abas, Lindy; Aerts, Maarten; Hoogewijs, Kurt; Baster, Pawel; De Groodt, Ruth; Lin, Yao-Cheng; Storme, Véronique; Van de Peer, Yves; Beeckman, Tom; Madder, Annemieke; Devreese, Bart; Luschnig, Christian; Friml, Jiří; Hilson, Pierre

    2012-03-13

    Growth and development are coordinated by an array of intercellular communications. Known plant signaling molecules include phytohormones and hormone peptides. Although both classes can be implicated in the same developmental processes, little is known about the interplay between phytohormone action and peptide signaling within the cellular microenvironment. We show that genes coding for small secretory peptides, designated GOLVEN (GLV), modulate the distribution of the phytohormone auxin. The deregulation of the GLV function impairs the formation of auxin gradients and alters the reorientation of shoots and roots after a gravity stimulus. Specifically, the GLV signal modulates the trafficking dynamics of the auxin efflux carrier PIN-FORMED2 involved in root tropic responses and meristem organization. Our work links the local action of secretory peptides with phytohormone transport. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Glucagon-like peptide-1 excites firing and increases GABAergic miniature postsynaptic currents (mPSCs in gonadotropin-releasing hormone (GnRH neurons of the male mice via activation of nitric oxide (NO and suppression of endocannabinoid signaling pathways

    Directory of Open Access Journals (Sweden)

    Imre Farkas

    2016-09-01

    Full Text Available Glucagon-like peptide-1 (GLP-1, a metabolic signal molecule, regulates reproduction, although, the involved molecular mechanisms have not been elucidated, yet. Therefore, responsiveness of gonadotropin-releasing hormone (GnRH neurons to the GLP-1 analog Exendin-4 and elucidation of molecular pathways acting downstream to the GLP-1 receptor (GLP-1R have been challenged. Loose patch-clamp recordings revealed that Exendin-4 (100 nM–5 μM elevated firing rate in hypothalamic GnRH-GFP neurons of male mice via activation of GLP-1R. Whole-cell patch-clamp measurements demonstrated increased excitatory GABAergic miniature postsynaptic currents (mPSCs frequency after Exendin-4 administration, which was eliminated by the GLP-1R antagonist Exendin-3(9-39 (1 μM. Intracellular application of the G-protein inhibitor GDP-beta-S (2 mM impeded action of Exendin-4 on mPSCs, suggesting direct excitatory action of GLP-1 on GnRH neurons. Blockade of nitric-oxide (NO synthesis by L-NAME (100 μM or NPLA (1 μM or intracellular scavenging of NO by CPTIO (1 mM partially attenuated the excitatory effect of Exendin-4. Similar partial inhibition was achieved by hindering endocannabinoid pathway using CB1 inverse-agonist AM251 (1 μM. Simultaneous blockade of NO and endocannabinoid signaling mechanisms eliminated action of Exendin-4 suggesting involvement of both retrograde machineries. Intracellular application of the TRPV1-antagonist AMG9810 (10 μM or the FAAH-inhibitor PF3845 (5 μM impeded the GLP-1-triggered endocannabinoid pathway indicating an anandamide-TRPV1-sensitive control of 2-AG production. Furthermore, GLP-1 immunoreactive axons innervated GnRH neurons in the hypothalamus suggesting that GLP-1 of both peripheral and neuronal sources can modulate GnRH neurons. RT-qPCR study confirmed the expression of GLP-1R and nNOS mRNAs in GnRH-GFP neurons. Immuno-electron microscopic analysis revealed the presence of neuronal nitric oxide synthase (nNOS protein in Gn

  7. Peptide Vaccines for Cancer

    Directory of Open Access Journals (Sweden)

    Kono K

    2013-10-01

    Full Text Available Background: In general, the preferable characteristic of the target molecules for development of cancer vaccines are high immunogenicity, very common expression in cancer cells, specific expression in cancer cells and essential molecules for cell survival (to avoid loss of expression. We previously reported that three novel HLA-A24-restricted immunodominant peptides, which were derived from three different oncoantigens, TTK, LY6K, and IMP-3,were promising targets for cancer vaccination for esophageal squamous cell carcinoma (ESCCpatients. Then, we had performed a phase I clinical trial using three HLA-A24-binding peptides and the results had been shown to be promising for ESCC. Therefore, we further performed a multicenter, non-randomized phase II clinical trial. Patients and Methods: Sixty ESCC patients were enrolled to evaluate OS, PFS, immunological response employing ELISPOT and pentamer assays. Each of the three peptides was administered with IFA weekly. All patients received the vaccination without knowing an HLA-A type, and the HLA types were key-opened at the analysis point. Hence, the endpoints were set to evaluate differences between HLA-A*2402-positive (24(+ and -negative (24(- groups. Results: The OS in the 24 (+ group (n=35 tended to be better than that in the 24(- group (n=25 (MST 4.6 vs. 2.6 month, respectively, p = 0.121, although the difference was not statistically significant. However, the PFS in the 24(+ group was significantly better than that in the 24(- group (p = 0.032. In the 24(+ group, ELISPOT assay indicated that the LY6K-, TTK-, and IMP3-specific CTL responses were observed after the vaccination in 63%, 45%, and 60% of the 24(+ group, respectively. The patients having LY6K-, TTK-, and IMP3-specific CTL responses revealed the better OS than those not having CTL induction, respectively. The patients showing the CTL induction for multiple peptides have better clinical responses. Conclusion: The immune response induced

  8. Synthetic Advances in Insulin-like Peptides Enable Novel Bioactivity.

    Science.gov (United States)

    Liu, Fa; Li, Pengyun; Gelfanov, Vasily; Mayer, John; DiMarchi, Richard

    2017-08-15

    exploratory in vivo studies requiring a large quantity of peptide. Tangentially, we demonstrate the use of these methods to study the relative importance of the IGF-1 connecting peptide to its biological activity. We report the translation of these finding in search of an insulin analog that might be comparably enhanced by a suitable connecting peptide for interaction with the insulin receptor, as occurs with IGF-1 and its receptor. The results identify a unique receptor site in the IGF-1 receptor from which this enhancement derives. The selective substitution of this specific IGF-1 receptor sequence into the homologous site in the insulin receptor generated a chimeric receptor that was equally capable of signaling with insulin or IGF-1. This novel receptor proved to enhance the potency of lower affinity insulin ligands when they were supplemented with the IGF-1 connecting peptide that similarly enhanced IGF-1 activity at its receptor. The chimeric insulin receptor demonstrated no further enhancement of potency for native insulin when it was similarly prepared as a single-chain analogue with a native IGF-1 connecting peptide. These results suggest a more highly evolved insulin receptor structure where the requirement for an additional structural element to achieve high potency interaction as demonstrated for IGF-1 is no longer required.

  9. Natriuretic peptides in cardiometabolic regulation and disease

    DEFF Research Database (Denmark)

    Zois, Nora E; Bartels, Emil D; Hunter, Ingrid

    2014-01-01

    these conditions can coexist and potentially lead to heart failure, a syndrome associated with a functional natriuretic peptide deficiency despite high circulating concentrations of immunoreactive peptides. Therefore, dysregulation of the natriuretic peptide system, a 'natriuretic handicap', might be an important...

  10. Radiolabeling of methionine containing proteins and peptides

    International Nuclear Information System (INIS)

    Garlick, R.K.; Jirousek, L.

    1986-01-01

    A process for radiolabeling methionine-containing peptides and proteins is disclosed. The process comprises the steps of oxidizing the protein or peptide, radiolabeling and reducing the radiolabeled protein or peptide. (author)

  11. The order of expression is a key factor in the production of active transglutaminase in Escherichia coli by co-expression with its pro-peptide

    Science.gov (United States)

    2011-01-01

    Background Streptomyces transglutaminase (TGase) is naturally synthesized as zymogen (pro-TGase), which is then processed to produce active enzyme by the removal of its N-terminal pro-peptide. This pro-peptide is found to be essential for overexpression of soluble TGase in E. coli. However, expression of pro-TGase by E. coli requires protease-mediated activation in vitro. In this study, we developed a novel co- expression method for the direct production of active TGase in E. coli. Results A TGase from S. hygroscopicus was expressed in E. coli only after fusing with the pelB signal peptide, but fusion with the signal peptide induced insoluble enzyme. Therefore, alternative protocol was designed by co-expressing the TGase and its pro-peptide as independent polypeptides under a single T7 promoter using vector pET-22b(+). Although the pro-peptide was co-expressed, the TGase fused without the signal peptide was undetectable in both soluble and insoluble fractions of the recombinant cells. Similarly, when both genes were expressed in the order of the TGase and the pro-peptide, the solubility of TGase fused with the signal peptide was not improved by the co-expression with its pro-peptide. Interestingly, active TGase was only produced by the cells in which the pro-peptide and the TGase were fused with the signal peptide and sequentially expressed. The purified recombinant and native TGase shared the similar catalytic properties. Conclusions Our results indicated that the pro-peptide can assist correct folding of the TGase inter-molecularly in E. coli, and expression of pro-peptide prior to that of TGase was essential for the production of active TGase. The co-expression strategy based on optimizing the order of gene expression could be useful for the expression of other functional proteins that are synthesized as a precursor. PMID:22196373

  12. Peptide radiopharmaceuticals in nuclear medicine

    International Nuclear Information System (INIS)

    Blok, D.; Vermeij, P.; Feitsma, R.I.J.; Pauwels, E.J.K.

    1999-01-01

    This article reviews the labelling of peptides that are recognised to be of interest for nuclear medicine or are the subject of ongoing nuclear medicine research. Applications and approaches to the labelling of peptide radiopharmaceuticals are discussed, and drawbacks in their development considered. (orig.)

  13. Antimicrobial peptides in the airway.

    Science.gov (United States)

    Laube, D M; Yim, S; Ryan, L K; Kisich, K O; Diamond, G

    2006-01-01

    The airway provides numerous defense mechanisms to prevent microbial colonization by the large numbers of bacteria and viruses present in ambient air. An important component of this defense is the antimicrobial peptides and proteins present in the airway surface fluid (ASF), the mucin-rich fluid covering the respiratory epithelium. These include larger proteins such as lysozyme and lactoferrin, as well as the cationic defensin and cathelicidin peptides. While some of these peptides, such as human beta-defensin (hBD)-1, are present constitutively, others, including hBD2 and -3 are inducible in response to bacterial recognition by Toll-like receptor-mediated pathways. These peptides can act as microbicides in the ASF, but also exhibit other activities, including potent chemotactic activity for cells of the innate and adaptive immune systems, suggesting they play a complex role in the host defense of the airway. Inhibition of antimicrobial peptide activity or gene expression can result in increased susceptibility to infections. This has been observed with cystic fibrosis (CF), where the CF phenotype leads to reduced antimicrobial capacity of peptides in the airway. Pathogenic virulence factors can inhibit defensin gene expression, as can environmental factors such as air pollution. Such an interference can result in infections by airway-specific pathogens including Bordetella bronchiseptica, Mycobacterium tuberculosis, and influenza virus. Research into the modulation of peptide gene expression in animal models, as well as the optimization of peptide-based therapeutics shows promise for the treatment and prevention of airway infectious diseases.

  14. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper...

  15. Chemical Synthesis of Antimicrobial Peptides.

    Science.gov (United States)

    Münzker, Lena; Oddo, Alberto; Hansen, Paul R

    2017-01-01

    Solid-phase peptide synthesis (SPPS) is the method of choice for chemical synthesis of peptides. In this nonspecialist review, we describe commonly used resins, linkers, protecting groups, and coupling reagents in 9-fluorenylmethyloxycarbonyl (Fmoc) SPPS. Finally, a detailed protocol for manual Fmoc SPPS is presented.

  16. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    N.D. Zegers (Netty)

    1995-01-01

    textabstractSynthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps

  17. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the

  18. Urinary Peptides in Rett Syndrome.

    Science.gov (United States)

    Solaas, K. M.; Skjeldal, O.; Gardner, M. L. G.; Kase, B. F.; Reichelt, K. L.

    2002-01-01

    A study found a significantly higher level of peptides in the urine of 53 girls with Rett syndrome compared with controls. The elevation was similar to that in 35 girls with infantile autism. Levels of peptides were lower in girls with classic Rett syndrome than those with congenital Rett syndrome. (Contains references.) (Author/CR)

  19. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    2013-01-01

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  20. Effects of altered TatC proteins on protein secretion efficiency via the twin-arginine translocation pathway of Bacillus subtilis

    NARCIS (Netherlands)

    Eijlander, Robyn T.; Kolbusz, Magdalena A.; Berendsen, Erwin M.; Kuipers, Oscar P.

    Protein translocation via the Tat machinery in thylakoids and bacteria occurs through a cooperation between the TatA, TatB and TatC subunits, of which the TatC protein forms the initial Tat substrate-binding site. The Bacillus subtilis Tat machinery lacks TatB and comprises two separate TatAC

  1. Subunit organization in the TatA complex of the twin arginine protein translocase: a site-directed EPR spin labeling study.

    Science.gov (United States)

    White, Gaye F; Schermann, Sonya M; Bradley, Justin; Roberts, Andrew; Greene, Nicholas P; Berks, Ben C; Thomson, Andrew J

    2010-01-22

    The Tat system is used to transport folded proteins across the cytoplasmic membrane in bacteria and archaea and across the thylakoid membrane of plant chloroplasts. Multimers of the integral membrane TatA protein are thought to form the protein-conducting element of the Tat pathway. Nitroxide radicals were introduced at selected positions within the transmembrane helix of Escherichia coli TatA and used to probe the structure of detergent-solubilized TatA complexes by EPR spectroscopy. A comparison of spin label mobilities allowed classification of individual residues as buried within the TatA complex or exposed at the surface and suggested that residues Ile(12) and Val(14) are involved in interactions between helices. Analysis of inter-spin distances suggested that the transmembrane helices of TatA subunits are arranged as a single-walled ring containing a contact interface between Ile(12) on one subunit and Val(14) on an adjacent subunit. Experiments in which labeled and unlabeled TatA samples were mixed demonstrate that TatA subunits are exchanged between TatA complexes. This observation is consistent with the TatA dynamic polymerization model for the mechanism of Tat transport.

  2. Patched Targeting Peptides for Imaging and Treatment of Hedgehog Positive Breast Tumors

    Directory of Open Access Journals (Sweden)

    Daniel Smith

    2014-01-01

    Full Text Available High tumor hedgehog expression is correlated with poor prognosis in invasive ductal carcinoma. Peptides which bind the patched receptor have recently been reported to have a growth inhibitory effect in tumors with activated hedgehog signaling. We sought to examine growth inhibition with these peptides in breast cancer cells and use these peptides as molecular imaging probes to follow changes in hedgehog expression after chemotherapy. Significant growth inhibition was observed in breast cancer cell lines treated with PTCH-blocking peptides. Significant in vitro uptake was observed with both FITC- and 99mTc-EC-peptide conjugates. In vivo imaging studies displayed greater accumulation of 99mTc-labeled peptides within tumors as compared to adjacent muscle tissue. Patched receptor expression increased after treatment and this correlated with an increase in tumor radiotracer uptake. These studies suggest that peptides which bind the sonic hedgehog docking site in patched receptor correlate with patched expression and can be used to image patched in vivo. Further, our data suggest that radiolabeled peptides may enable us to examine the activity of the hedgehog signaling pathway and to evaluate response to anti-cancer therapies.

  3. Maize Bioactive Peptides against Cancer

    Science.gov (United States)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  4. Calcitonin gene-related peptide antagonism and cluster headache

    DEFF Research Database (Denmark)

    Ashina, Håkan; Newman, Lawrence; Ashina, Sait

    2017-01-01

    Calcitonin gene-related peptide (CGRP) is a key signaling molecule involved in migraine pathophysiology. Efficacy of CGRP monoclonal antibodies and antagonists in migraine treatment has fueled an increasing interest in the prospect of treating cluster headache (CH) with CGRP antagonism. The exact...... role of CGRP and its mechanism of action in CH have not been fully clarified. A search for original studies and randomized controlled trials (RCTs) published in English was performed in PubMed and in ClinicalTrials.gov . The search term used was "cluster headache and calcitonin gene related peptide......" and "primary headaches and calcitonin gene related peptide." Reference lists of identified articles were also searched for additional relevant papers. Human experimental studies have reported elevated plasma CGRP levels during both spontaneous and glyceryl trinitrate-induced cluster attacks. CGRP may play...

  5. Characterization of glucagon-like peptide-1 receptor beta-arrestin 2 interaction: a high-affinity receptor phenotype

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Martini, Lene; Schwartz, Thue W

    2005-01-01

    for the fusion constructs was observed. We conclude that the glucagon-like peptide 1 fusion construct mimics the natural interaction of the receptor with (beta)arr2 with respect to binding peptide ligands, G protein-mediated signaling and internalization, and that this distinct molecular phenotype is reminiscent...

  6. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan [Institute; Department; Samaeekia, Ravand [Institute; Department; Schnorenberg, Mathew R. [Institute; Department; Medical; Sasmal, Dibyendu K. [Institute; Huang, Jun [Institute; Tirrell, Matthew V. [Institute; Institute; LaBelle, James L. [Department

    2017-08-24

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.

  7. Purification and use of E. coli peptide deformylase for peptide deprotection in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia; Sonke, Theo; Quaedflieg, Peter J.; Janssen, Dick B.

    Peptide deformylases (PDFs) catalyze the removal of the formyl group from the N-terminal methionine residue in nascent polypeptide chains in prokaryotes. Its deformylation activity makes PDF an attractive candidate for the biocatalytic deprotection of formylated peptides that are used in

  8. Isolation, characterization, and expression analyses of plant elicitor peptides (Pep) genes in maize

    Science.gov (United States)

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. In plant families, peptides with analogous activity have remained elusive. Peps are conserved signals across diverse plant families regulating antiherbivore defenses and are likely to be the missing...

  9. Tailoring peptide amphiphiles and their assemblies for biomedical applications

    Science.gov (United States)

    Lin, Brian

    Peptide amphiphiles (PAs) are molecules composed of a peptide conjugated to a hydrophobic moiety, commonly a fatty acid. They closely resemble the structure of naturally occurring lipopeptides, produced by microbes as signaling and antimicrobial agents. The amphiphilic nature of PAs in concert with the large number of discovered functional peptides inspired scientists to exploit this molecular architecture for producing synthetic self-assembled bioactive materials. PA assemblies are sought after for a wide breadth of applications including disease therapy, regenerative medicine, and catalysis. However, with PAs, the peptide chemistry is a double-edged sword. The peptide component contributes significantly to both the activity and self-assembly. The physiochemical properties of different PAs lead to unique aggregation stability and morphological characteristics which are unpredictable, a priori. Therefore it is challenging to design bioactive PAs and control their self-assembly, simultaneously. This limitation slows the development of PAs for medical use. In this dissertation, methods to control the self-assembly of PAs and the effects of acylating a functional peptide will be discussed. In one part, efforts to direct the self-assembly of PAs into small spherical aggregates, a morphology infrequently observed, will be described. In another section, a strategy to control the stability of PA assemblies will be discussed. In the last section, a pH-responsive membrane perturbing peptide was modified with fatty acid tails and the properties of the resulting PAs will be presented. This dissertation provides some fundamental insight for the use and design of PA self-assemblies.

  10. A collagen-targeted biomimetic RGD peptide to promote osteogenesis.

    Science.gov (United States)

    Visser, Rick; Arrabal, Pilar M; Santos-Ruiz, Leonor; Fernandez-Barranco, Raul; Becerra, Jose; Cifuentes, Manuel

    2014-01-01

    Osteogenesis is a complex, multifactorial process in which many different signals interact. The bone morphogenetic proteins (BMPs) are the most potent inducers of osteoblastic differentiation, although very high doses of BMPs in combination with collagen type I formulations have to be used for clinical applications. Although integrin-binding arginine-glycine-aspartic acid (RGD) biomimetic peptides have shown some promising abilities to promote the attachment of cells to biomaterials and to direct their differentiation, the linking of these peptides to collagen sponges usually implies chemical manipulation steps. In this study, we describe the design and characterization of a synthetic collagen-targeted RGD biomimetic (CBD-RGD) peptide formed from a collagen-binding domain derived from the von Willebrand factor and the integrin-binding RGD sequence. This peptide was demonstrated to bind to absorbable collagen type I sponges (ACSs) without performing any chemical linking, and to induce the differentiation of MC3T3-E1 mouse preosteoblasts and rat bone marrow-derived mesenchymal stem cells. Furthermore, in vivo experiments showed that ACSs functionalized with CBD-RGD and loaded with a subfunctional dose of BMP-2-formed ectopic bone in rats, while nonfunctionalized sponges loaded with the same amount of BMP-2 did not. These results indicate that the combination of this biomimetic peptide with the currently used collagen+BMP system might be a promising approach to improve osteogenesis and to reduce the doses of BMPs needed in clinical orthopedics.

  11. The FMRFamide-like peptide family in nematodes

    Directory of Open Access Journals (Sweden)

    Katleen ePeymen

    2014-06-01

    Full Text Available In the three decades since the FMRFamide peptide was isolated from the mollusk Macrocallista nimbosa, structurally similar peptides sharing a C-terminal RFamide motif have been identified across the animal kingdom. FMRFamide-like peptides (FLPs represent the largest known family of neuropeptides in invertebrates. In the phylum Nematoda, at least 32 flp genes are classified, making the FLP system of nematodes unusually complex. The diversity of the nematode FLP complement is most extensively mapped in Caenorhabditis elegans, where over 70 FLPs have been predicted. FLPs have shown to be expressed in the majority of the 302 C. elegans neurons including interneurons, sensory and motor neurons. The vast expression of FLPs is reflected in the broad functional repertoire of nematode FLP signaling, including neuroendocrine and neuromodulatory effects on locomotory activity, reproduction, feeding, and behavior. In contrast to the many identified nematode FLPs, only few peptides have been assigned a receptor and there is the need to clarify the pathway components and working mechanisms of the FLP signaling network. Here, we review the diversity, distribution, and functions of FLPs in nematodes.

  12. Delivery systems for antimicrobial peptides

    DEFF Research Database (Denmark)

    Nordström, Randi; Malmsten, Martin

    2017-01-01

    on the identification such peptides, as well as on their optimization to reach potent antimicrobial and anti-inflammatory effects at simultaneously low toxicity against human cells. In comparison, delivery systems for antimicrobial peptides have attracted considerably less interest. However, such delivery systems......, or through achieving co-localization with intracellular pathogens. Here, an overview is provided of the current understanding of delivery systems for antimicrobial peptides, with special focus on AMP-carrier interactions, as well as consequences of these interactions for antimicrobial and related biological...

  13. Mechanical stabilization of proteolytically degradable polyethylene glycol dimethacrylate hydrogels through peptide interaction.

    Science.gov (United States)

    Lim, Hyun Ju; Khan, Zara; Lu, Xi; Perera, T Hiran; Wilems, Thomas S; Ravivarapu, Krishna T; Smith Callahan, Laura A

    2018-03-09

    Balancing enhancement of neurite extension against loss of matrix support in synthetic hydrogels containing proteolytically degradable and bioactive signaling peptides to optimize tissue formation is difficult. Using a systematic approach, polyethylene glycol hydrogels containing concurrent continuous concentration gradients of the laminin derived bioactive signaling peptide, Ile-Lys-Val-Ala-Val (IKVAV), and collagen derived matrix metalloprotease degradable peptide, GPQGIWGQ, were fabricated and characterized. During proteolytic degradation of the concentration gradient hydrogels, the IKVAV and IWGQ cleavage fragment from GPQGIWGQ were found to interact and stabilize the bulk Young's Modulus of the hydrogel. Further testing of discrete samples containing GPQGIWGQ or its cleavage fragments, GPQG and IWGQ, indicates hydrophobic interactions between the peptides are not necessary for mechanical stabilization of the hydrogel, but changes in the concentration ratio between the peptides tethered in the hydrogel and salts and ions in the swelling solution can affect the stabilization. Encapsulation of human induced pluripotent stem cell derived neural stem cells did not reduce the mechanical properties of the hydrogel over a 14 day neural differentiation culture period, and IKVAV was found to maintain concentration dependent effects on neurite extension and mRNA gene expression of neural cytoskeletal markers, similar to previous studies. As a result, this work has significant implications for the analysis of biological studies in matrices, as the material and mechanical properties of the hydrogel may be unexpectedly temporally changing during culture due to interactions between peptide signaling elements, underscoring the need for greater matrix characterization during the degradation and cell culture. Greater emulation of the native extracellular matrix is necessary for tissue formation. To achieve this, matrices are becoming more complex, often including multiple

  14. Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Mundy, John; Skriver, Karen

    2002-01-01

    function. Annotation of the Arabidopsis genome sequence has made it possible to identify peptide-encoding genes. However, such annotational identification is impeded because small genes are poorly predicted by gene-prediction algorithms, thus prompting the alternative approaches described here. We...... initially performed a systematic analysis of short polypeptides encoded by annotated genes on two Arabidopsis chromosomes using SignalP to identify potentially secreted peptides. Subsequent homology searches with selected, putatively secreted peptides, led to the identification of a potential, large...... Arabidopsis family of 34 genes. The predicted peptides are characterized by a conserved C-terminal sequence motif and additional primary structure conservation in a core region. The majority of these genes had not previously been annotated. A subset of the predicted peptides show high overall sequence...

  15. Detection of cancer cells using a peptide nanotube–folic acid modified graphene electrode

    DEFF Research Database (Denmark)

    Castillo, John J.; Svendsen, Winnie Edith; Rozlosnik, Noemi

    2013-01-01

    This article describes the preparation of a graphene electrode modified with a new conjugate of peptide nanotubes and folic acid for the selective detection of human cervical cancer cells over-expressing folate receptors. The functionalization of peptide nanotubes with folic acid was confirmed...... by fluorescence microscopy and atomic force microscopy. The peptide nanotube–folic acid modified graphene electrode was characterized by scanning electron microscopy and cyclic voltammetry. The modification of the graphene electrode with peptide nanotube–folic acid led to an increase in the current signal....... The human cervical cancer cells were bound to the modified electrode through the folic acid–folate receptor interaction. Cyclic voltammograms in the presence of [Fe(CN)6]3/4 as a redox species demonstrated that the binding of the folate receptor from human cervical cancer cells to the peptide nanotube...

  16. Engineering antibody fitness and function using membrane-anchored display of correctly folded proteins.

    Science.gov (United States)

    Karlsson, Amy J; Lim, Hyung-Kwon; Xu, Hansen; Rocco, Mark A; Bratkowski, Matthew A; Ke, Ailong; DeLisa, Matthew P

    2012-02-10

    A hallmark of the bacterial twin-arginine translocation (Tat) pathway is its ability to export folded proteins. Here, we discovered that overexpressed Tat substrate proteins form two distinct, long-lived translocation intermediates that are readily detected by immunolabeling methods. Formation of the early translocation intermediate Ti-1, which exposes the N- and C-termini to the cytoplasm, did not require an intact Tat translocase, a functional Tat signal peptide, or a correctly folded substrate. In contrast, formation of the later translocation intermediate, Ti-2, which exhibits a bitopic topology with the N-terminus in the cytoplasm and C-terminus in the periplasm, was much more particular, requiring an intact translocase, a functional signal peptide, and a correctly folded substrate protein. The ability to directly detect Ti-2 intermediates was subsequently exploited for a new protein engineering technology called MAD-TRAP (membrane-anchored display for Tat-based recognition of associating proteins). Through the use of just two rounds of mutagenesis and screening with MAD-TRAP, the intracellular folding and antigen-binding activity of a human single-chain antibody fragment were simultaneously improved. This approach has several advantages for library screening, including the unique involvement of the Tat folding quality control mechanism that ensures only native-like proteins are displayed, thus eliminating poorly folded sequences from the screening process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Protein Chaperones Q8ZP25_SALTY from Salmonella Typhimurium and HYAE_ECOLI from Escherichia coli Exhibit Thioredoxin-like Structures Despite Lack of Canonical Thioredoxin Active Site Sequence Motif

    Energy Technology Data Exchange (ETDEWEB)

    Parish, D.; Benach, J; Liu, G; Singarapu, K; Xiao, R; Acton, T; Hunt, J; Montelione, G; Szyperski, T; et. al.

    2008-01-01

    The structure of the 142-residue protein Q8ZP25 SALTY encoded in the genome of Salmonella typhimurium LT2 was determined independently by NMR and X-ray crystallography, and the structure of the 140-residue protein HYAE ECOLI encoded in the genome of Escherichia coli was determined by NMR. The two proteins belong to Pfam (Finn et al. 34:D247-D251, 2006) PF07449, which currently comprises 50 members, and belongs itself to the 'thioredoxin-like clan'. However, protein HYAE ECOLI and the other proteins of Pfam PF07449 do not contain the canonical Cys-X-X-Cys active site sequence motif of thioredoxin. Protein HYAE ECOLI was previously classified as a (NiFe) hydrogenase-1 specific chaperone interacting with the twin-arginine translocation (Tat) signal peptide. The structures presented here exhibit the expected thioredoxin-like fold and support the view that members of Pfam family PF07449 specifically interact with Tat signal peptides.

  18. TatBC-independent TatA/Tat substrate interactions contribute to transport efficiency.

    Science.gov (United States)

    Taubert, Johannes; Hou, Bo; Risselada, H Jelger; Mehner, Denise; Lünsdorf, Heinrich; Grubmüller, Helmut; Brüser, Thomas

    2015-01-01

    The Tat system can transport folded, signal peptide-containing proteins (Tat substrates) across energized membranes of prokaryotes and plant plastids. A twin-arginine motif in the signal peptide of Tat substrates is recognized by TatC-containing complexes, and TatA permits the membrane passage. Often, as in the model Tat systems of Escherichia coli and plant plastids, a third component - TatB - is involved that resembles TatA but has a higher affinity to TatC. It is not known why most TatA dissociates from TatBC complexes in vivo and distributes more evenly in the membrane. Here we show a TatBC-independent substrate-binding to TatA from Escherichia coli, and we provide evidence that this binding enhances Tat transport. First hints came from in vivo cross-linking data, which could be confirmed by affinity co-purification of TatA with the natural Tat substrates HiPIP and NrfC. Two positions on the surface of HiPIP could be identified that are important for the TatA interaction and transport efficiency, indicating physiological relevance of the interaction. Distributed TatA thus may serve to accompany membrane-interacting Tat substrates to the few TatBC spots in the cells.

  19. Protein chaperones Q8ZP25_SALTY from Salmonella typhimurium and HYAE_ECOLI from Escherichia coli exhibit thioredoxin-like structures despite lack of canonical thioredoxin active site sequence motif.

    Science.gov (United States)

    Parish, David; Benach, Jordi; Liu, Goahua; Singarapu, Kiran Kumar; Xiao, Rong; Acton, Thomas; Su, Min; Bansal, Sonal; Prestegard, James H; Hunt, John; Montelione, Gaetano T; Szyperski, Thomas

    2008-12-01

    The structure of the 142-residue protein Q8ZP25_SALTY encoded in the genome of Salmonella typhimurium LT2 was determined independently by NMR and X-ray crystallography, and the structure of the 140-residue protein HYAE_ECOLI encoded in the genome of Escherichia coli was determined by NMR. The two proteins belong to Pfam (Finn et al. 34:D247-D251, 2006) PF07449, which currently comprises 50 members, and belongs itself to the 'thioredoxin-like clan'. However, protein HYAE_ECOLI and the other proteins of Pfam PF07449 do not contain the canonical Cys-X-X-Cys active site sequence motif of thioredoxin. Protein HYAE_ECOLI was previously classified as a [NiFe] hydrogenase-1 specific chaperone interacting with the twin-arginine translocation (Tat) signal peptide. The structures presented here exhibit the expected thioredoxin-like fold and support the view that members of Pfam family PF07449 specifically interact with Tat signal peptides.

  20. Novel peptides with tyrosinase inhibitory activity

    NARCIS (Netherlands)

    Schurink, M.; Berkel, van W.J.H.; Wichers, H.J.; Boeriu, C.G.

    2007-01-01

    Tyrosinase inhibition by peptides may find its application in food, cosmetics or medicine. In order to identify novel tyrosinase inhibitory peptides, protein-based peptide libraries made by SPOT synthesis were used to screen for peptides that show direct interaction with tyrosinase. One of the

  1. Characterization of Synthetic Peptides by Mass Spectrometry.

    Science.gov (United States)

    Prabhala, Bala K; Mirza, Osman; Højrup, Peter; Hansen, Paul R

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI-TOF-MS and LC-MS of synthetic peptides.

  2. Hypothalamic CART is a new anorectic peptide regulated by leptin.

    Science.gov (United States)

    Kristensen, P; Judge, M E; Thim, L; Ribel, U; Christjansen, K N; Wulff, B S; Clausen, J T; Jensen, P B; Madsen, O D; Vrang, N; Larsen, P J; Hastrup, S

    1998-05-07

    The mammalian hypothalamus strongly influences ingestive behaviour through several different signalling molecules and receptor systems. Here we show that CART (cocaine- and amphetamine-regulated transcript), a brain-located peptide, is a satiety factor and is closely associated with the actions of two important regulators of food intake, leptin and neuropeptide Y. Food-deprived animals show a pronounced decrease in expression of CART messenger RNA in the arcuate nucleus. In animal models of obesity with disrupted leptin signalling, CART mRNA is almost absent from the arcuate nucleus. Peripheral administration of leptin to obese mice stimulates CART mRNA expression. When injected intracerebroventricularly into rats, recombinant CART peptide inhibits both normal and starvation-induced feeding, and completely blocks the feeding response induced by neuropeptide Y. An antiserum against CART increases feeding in normal rats, indicating that CART may be an endogenous inhibitor of food intake in normal animals.

  3. Neoglycolipidation for modulating peptide properties

    DEFF Research Database (Denmark)

    van Witteloostuijn, Søren Blok

    regulation of appetite, food intake, and glucose homeostasis, and many of these peptides display a signicant potential for treatment of obesity and/or type 2 diabetes. This Ph.D. thesis describes three novel approaches for utilizing gut peptides as the starting point for developing obesity and diabetes drugs....... Subsequent stereological analyses of the pancreata showed that chronic treatment with GUB06-046 led to increased cell mass in db/db mice. The results of projects I and II clearly illustrate how chemical modications can improve the pharmacological properties of native peptides. Collectively, the ndings...... of this thesis contribute to emphasize the tremendous therapeutic potential of gut peptides for treatment of obesity and diabetes....

  4. New vasoactive peptides in cirrhosis

    DEFF Research Database (Denmark)

    Kimer, Nina; Goetze, Jens Peter; Bendtsen, Flemming

    2014-01-01

    BACKGROUND: Patients with cirrhosis have substantial circulatory imbalance between vasoconstrictive and vasodilating forces. The study of circulatory vasoactive peptides may provide important pathophysiological information. This study aimed to assess concentrations, organ extraction and relations...

  5. Moonlighting peptides with emerging function.

    Directory of Open Access Journals (Sweden)

    Jonathan G Rodríguez Plaza

    Full Text Available Hunter-killer peptides combine two activities in a single polypeptide that work in an independent fashion like many other multi-functional, multi-domain proteins. We hypothesize that emergent functions may result from the combination of two or more activities in a single protein domain and that could be a mechanism selected in nature to form moonlighting proteins. We designed moonlighting peptides using the two mechanisms proposed to be involved in the evolution of such molecules (i.e., to mutate non-functional residues and the use of natively unfolded peptides. We observed that our moonlighting peptides exhibited two activities that together rendered a new function that induces cell death in yeast. Thus, we propose that moonlighting in proteins promotes emergent properties providing a further level of complexity in living organisms so far unappreciated.

  6. The physical and functional borders of transit peptide-like sequences in secondary endosymbionts.

    Science.gov (United States)

    Felsner, Gregor; Sommer, Maik S; Maier, Uwe G

    2010-10-19

    Plastids rely on protein supply by their host cells. In plastids surrounded by two membranes (primary plastids) targeting of these proteins is facilitated by an N-terminal targeting signal, the transit peptide. In secondary plastids (surrounded by three or four membranes), transit peptide-like regions are an essential part of a bipartite topogenic signal sequence (BTS), and generally found adjacent to a N-terminally located signal peptide of the plastid pre-proteins. As in primary plastids, for which no wealth of functional information about transit peptide features exists, the transit peptide-like regions used for import into secondary ones show some common features only, which are also poorly characterized. We modified the BTS (in the transit peptide-like region) of the plastid precursor fucoxanthin-chlorophyll a/c binding protein D (FcpD) fused to GFP as model substrate for the characterization of pre-protein import into the secondary plastids of diatoms. Thereby we show that (i) pre-protein import is highly charge dependent. Positive net charge is necessary for transport across the plastid envelope, but not across the periplastid membrane. Acidic net charge perturbs pre-protein import within the ER. Moreover, we show that (ii) the mature domain of the pre-protein can provide intrinsic transit peptide functions. Our results indicate important characteristics of targeting signals of proteins imported into secondary plastids surrounded by four membranes. In addition, we show a self-targeting mechanism, in which the mature protein domain contributes to the transit peptide function. Thus, this phenomenon lowers the demand for pre-sequences evolved during the course of endosymbiosis.

  7. Matrix-assisted peptide synthesis on nanoparticles.

    Science.gov (United States)

    Khandadash, Raz; Machtey, Victoria; Weiss, Aryeh; Byk, Gerardo

    2014-09-01

    We report a new method for multistep peptide synthesis on polymeric nanoparticles of differing sizes. Polymeric nanoparticles were functionalized via their temporary embedment into a magnetic inorganic matrix that allows multistep peptide synthesis. The matrix is removed at the end of the process for obtaining nanoparticles functionalized with peptides. The matrix-assisted synthesis on nanoparticles was proved by generating various biologically relevant peptides. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  8. Folding and membrane insertion of the pore-forming peptide gramicidin occur as a concerted process.

    Science.gov (United States)

    Hicks, Matthew R; Damianoglou, Angeliki; Rodger, Alison; Dafforn, Timothy R

    2008-11-07

    Many antibiotic peptides function by binding and inserting into membranes. Understanding this process provides an insight into the fundamentals of both membrane protein folding and antibiotic peptide function. For the first time, in this work, flow-aligned linear dichroism (LD) is used to study the folding of the antibiotic peptide gramicidin. LD provides insight into the combined processes of peptide folding and insertion and has the advantage over other similar techniques of being insensitive to off-membrane aggregation events. By combining LD data with conventional measurements of protein fluorescence and circular dichroism, the mechanism of gramicidin insertion is elucidated. The mechanism consists of five separately assignable steps that include formation of a water-insoluble gramicidin aggregate, dissociation from the aggregate, partitioning of peptide to the membrane surface, oligomerisation on the surface and concerted insertion and folding of the peptide to the double-helical form of gramicidin. Measurement of the rates of each step shows that although changes in the fluorescence signal cease 10 s after the initiation of the process, the insertion of the peptide into the membrane is actually not complete for a further 60 min. This last membrane insertion phase is only apparent by measurement of LD and circular dichroism signal changes. In summary, this study demonstrates the importance of multi-technique approaches, including LD, in studies of membrane protein folding.

  9. DAMPD: A manually curated antimicrobial peptide database

    KAUST Repository

    Seshadri Sundararajan, Vijayaraghava

    2011-11-21

    The demand for antimicrobial peptides (AMPs) is rising because of the increased occurrence of pathogens that are tolerant or resistant to conventional antibiotics. Since naturally occurring AMPs could serve as templates for the development of new anti-infectious agents to which pathogens are not resistant, a resource that contains relevant information on AMP is of great interest. To that extent, we developed the Dragon Antimicrobial Peptide Database (DAMPD, http://apps.sanbi.ac.za/dampd) that contains 1232 manually curated AMPs. DAMPD is an update and a replacement of the ANTIMIC database. In DAMPD an integrated interface allows in a simple fashion querying based on taxonomy, species, AMP family, citation, keywords and a combination of search terms and fields (Advanced Search). A number of tools such as Blast, ClustalW, HMMER, Hydrocalculator, SignalP, AMP predictor, as well as a number of other resources that provide additional information about the results are also provided and integrated into DAMPD to augment biological analysis of AMPs. The Author(s) 2011. Published by Oxford University Press.

  10. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  11. Humanin signal for Alzheimer's disease.

    Science.gov (United States)

    Matsuoka, Masaaki

    2011-01-01

    Despite a bulk of evidence supporting the idea that increased neurotoxic insults lead to Alzheimer's disease (AD), the possibility still remains that insufficiency of an endogenous defense system contributes to the disease progression. Humanin is a bioactive peptide that is likely to inhibit both neuronal death and dysfunction only related to AD by binding to a Humanin receptor on the cell-surface and by activating a STAT3-mediated signal, preventing the onset of dementia. A couple of recent studies presented evidence suggesting that the Humanin signal is decreased in neurons of AD patients. If this is the case, the restoration or activation of the Humanin signal in neurons may change the course of AD.

  12. Morintides: cargo-free chitin-binding peptides from Moringa oleifera.

    Science.gov (United States)

    Kini, Shruthi G; Wong, Ka H; Tan, Wei Liang; Xiao, Tianshu; Tam, James P

    2017-03-31

    Hevein-like peptides are a family of cysteine-rich and chitin-binding peptides consisting of 29-45 amino acids. Their chitin-binding property is essential for plant defense against fungi. Based on the number of cysteine residues in their sequences, they are divided into three sub-families: 6C-, 8C- and 10C-hevein-like peptides. All three subfamilies contain a three-domain precursor comprising a signal peptide, a mature hevein-like peptide and a C-terminal domain comprising a hinge region with protein cargo in 8C- and 10C-hevein-like peptides. Here we report the isolation and characterization of two novel 8C-hevein-like peptides, designated morintides (mO1 and mO2), from the drumstick tree Moringa oleifera, a drought-resistant tree belonging to the Moringaceae family. Proteomic analysis revealed that morintides comprise 44 amino acid residues and are rich in cysteine, glycine and hydrophilic amino acid residues such as asparagine and glutamine. Morintides are resistant to thermal and enzymatic degradation, able to bind to chitin and inhibit the growth of phyto-pathogenic fungi. Transcriptomic analysis showed that they contain a three-domain precursor comprising an endoplasmic reticulum (ER) signal sequence, a mature peptide domain and a C-terminal domain. A striking feature distinguishing morintides from other 8C-hevein-like peptides is a short and protein-cargo-free C-terminal domain. Previously, a similar protein-cargo-free C-terminal domain has been observed only in ginkgotides, the 8C-hevein-like peptides from a gymnosperm Ginkgo biloba. Thus, morintides, with a cargo-free C-terminal domain, are a stand-alone class of 8C-hevein-like peptides from angiosperms. Our results expand the existing library of hevein-like peptides and shed light on molecular diversity within the hevein-like peptide family. Our work also sheds light on the anti-fungal activity and stability of 8C-hevein-like peptides.

  13. Signal detection

    International Nuclear Information System (INIS)

    Tholomier, M.

    1985-01-01

    In a scanning electron microscope, whatever is the measured signal, the same set is found: incident beam, sample, signal detection, signal amplification. The resulting signal is used to control the spot luminosity with the observer cathodoscope. This is synchronized with the beam scanning on the sample; on the cathodoscope, the image in secondary electrons, backscattered electrons,... of the sample surface is reconstituted. The best compromise must be found between a register time low enough to remove eventual variations (under the incident beam) of the nature of the observed phenomenon, and a good spatial resolution of the image and a signal-to-noise ratio high enough. The noise is one of the basic limitations of the scanning electron microscope performance. The whose measurement line must be optimized to reduce it [fr

  14. TAP-Dependent and -Independent Peptide Import into Dendritic Cell Phagosomes.

    Science.gov (United States)

    Lawand, Myriam; Abramova, Anastasia; Manceau, Valérie; Springer, Sebastian; van Endert, Peter

    2016-11-01

    Cross-presentation of phagocytosed Ags by MHC class I (MHC-I) molecules is thought to involve transport of cytosolic peptides into dendritic cell phagosomes, mediated by TAP transporters recruited from the endoplasmic reticulum. However, because pure and tightly sealed phagosomes are difficult to obtain, direct evidence for peptide transport into phagosomes has remained limited. Moreover, the parameters determining peptide uptake by, and survival in, phagosomes remain little characterized. In this study, we monitored peptide import into phagosomes by flow cytometry using two types of fluorescent reporter peptides, one of which directly bound to intraphagosomal beads. We observed that a peptide with high TAP affinity is imported into phagosomes in a TAP- and ATP-dependent manner, as expected. However, surprisingly, import of the OVA peptide SIINFEKL, a CD8 + T cell epitope frequently used to study cross-presentation, is ATP-dependent but substantially TAP-independent. The half-life of both reporter peptides is shortened by enhanced phagosome maturation triggered by TLR signaling. Conversely, formation of complexes with MHC-I molecules enhances peptide accumulation in phagosomes. Collectively, these results confirm that TAP can import peptides into phagosomes, but they suggest that some peptides, including the popular SIINFEKL, can enter phagosomes also via a second unknown energy-dependent mechanism. Therefore, the frequently reported TAP dependence of cross-presentation of phagocytosed OVA may principally reflect a requirement for recycling MHC-I molecules rather than SIINFEKL import into phagosomes via TAP. Copyright © 2016 by The American Association of Immunologists, Inc.

  15. Physicochemical properties determining the detection probability of tryptic peptides in Fourier transform mass spectrometry. A correlation study

    DEFF Research Database (Denmark)

    Nielsen, Michael L; Savitski, Mikhail M; Kjeldsen, Frank

    2004-01-01

    Sequence verification and mapping of posttranslational modifications require nearly 100% sequence coverage in the "bottom-up" protein analysis. Even in favorable cases, routine liquid chromatography-mass spectrometry detects from protein digests peptides covering 50-90% of the sequence. Here we...... investigated the reasons for limited peptide detection, considering various physicochemical aspects of peptide behavior in liquid chromatography-Fourier transform mass spectrometry (LC-FTMS). No overall correlation was found between the detection probability and peptide mass. In agreement with literature data...... between pI and signal response. An explanation of this paradoxal behavior was found through the observation that more acidic tryptic peptide lengths tend to be longer. Longer peptides tend to acquire higher average charge state in positive mode electrospray ionization than more basic but shorter...

  16. Plant natriuretic peptides control of synthesis and systemic effects

    KAUST Repository

    Wang, Yuhua

    2011-10-01

    Plant natriuretic peptides (PNPs) are signaling molecules that are secreted into the apoplast particularly under conditions of biotic and abiotic stress. At the local level, PNPs modulate their own expression via feed forward and feedback loops to enable tuning of the response at the transcript and protein level and to prevent overexpression. PNPs also employ a systemic signal, possibly electrical, to rapidly alter photosynthesis and respiration not only in treated leaves but also in upper and lower leaves thereby modulating and integrating physiological responses at the level of the whole plant. © 2011 Landes Bioscience.

  17. A rapid and clean synthetic approach to cyclic peptides via micro-flow peptide chain elongation and photochemical cyclization: synthesis of a cyclic RGD peptide.

    Science.gov (United States)

    Mifune, Yuto; Nakamura, Hiroyuki; Fuse, Shinichiro

    2016-11-29

    A cyclic RGD peptide was efficiently synthesized based on micro-flow, triphosgene-mediated peptide chain elongation and micro-flow photochemical macrolactamization. Our approach enabled a rapid (amidation for peptide chain elongation peptide.

  18. Gold nanoparticle-enhanced secondary ion mass spectrometry imaging of peptides on self-assembled monolayers.

    Science.gov (United States)

    Kim, Young-Pil; Oh, Eunkeu; Hong, Mi-Young; Lee, Dohoon; Han, Min-Kyu; Shon, Hyun Kyong; Moon, Dae Won; Kim, Hak-Sung; Lee, Tae Geol

    2006-03-15

    We demonstrate the use of gold nanoparticles (AuNPs) to enhance the secondary ion emission of peptides in time-of-flight secondary ion mass spectrometry (TOF-SIMS). The signal intensity of peptides adsorbed onto AuNPs was significantly increased when compared to that of self-assembled monolayers (SAMs). This gold nanoparticle-enhanced SIMS, termed NE-SIMS, enabled the sensitive detection of subtle modifications of peptides, such as phosphorylation. From a quantitative analysis of the amounts of adsorbed peptides and AuNPs on SAMs using quartz crystal microbalance and surface plasmon resonance spectroscopy, the ratio of peptide molecule to AuNP on amine-SAMs was revealed to be 18-19:1. When considering the ratio of peptide to matrix (1:10(3)-10(6)) employed in a matrix-enhanced SIMS, the use of AuNPs gave rise to a significantly increased secondary ion emission of peptides. Peptides were adsorbed onto patterned AuNPs on SAMs using a microfluidic system, and well-contrasted molecular ion images were obtained. NE-SIMS is expected to be applied to a chip-based analysis of modification of biomolecules in a label-free manner.

  19. Conformational analysis of a synthetic fish kisspeptin 1 peptide in membrane mimicking environments.

    Science.gov (United States)

    Thakuria, Dimpal; Shahi, Neetu; Singh, Atul Kumar; Khangembam, Victoria Chanu; Singh, Arvind Kumar; Kumar, Satish

    2017-01-01

    Kisspeptin 1 is a neuropeptide hormone of the RFamide family, which act as an upstream regulator of brain-pituitary-gonad (BPG) axis in most vertebrates including teleosts. In the present study, a 16 amino acid long putative mature bioactive peptide (kiss 1) from preprokisspeptin 1 of golden mahseer, Tor putitora (Hamilton, 1822), was synthesized and characterized using an integrated (experimental and in silico) approach. The far-UV circular dichroism (CD) spectrum of this peptide was evaluated both in aqueous and membrane mimicking solvents (TFE, HFIP and Dioxane). The results indicate that kiss 1 peptide adopted helical, turn and β conformations in membrane like environments. The near-UV CD spectroscopy was also carried out to examine the tertiary packing around aromatic residues of kiss 1 peptide and the peptide-membrane complex. The kiss 1 peptide exhibited little signal in water, but a prominent negative band was observed at around 275 nm when membrane mimetic solution was added. The observed ordered conformations of kiss 1 peptide in the different solvents indicated its potential biological activity which could enhance the secretion of gonadotropin-releasing hormone (GnRH) at BPG axis. The conformational information generated from the present study reinforces the application prospects of bioactive synthetic peptide analogs of kisspeptin 1 in improving the reproductive performances of important cultivable fish species.

  20. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  1. Phosphoinositide signaling.

    Science.gov (United States)

    Boss, Wendy F; Im, Yang Ju

    2012-01-01

    "All things flow and change…even in the stillest matter there is unseen flux and movement." Attributed to Heraclitus (530-470 BC), from The Story of Philosophy by Will Durant. Heraclitus, a Greek philosopher, was thinking on a much larger scale than molecular signaling; however, his visionary comments are an important reminder for those studying signaling today. Even in unstimulated cells, signaling pathways are in constant metabolic flux and provide basal signals that travel throughout the organism. In addition, negatively charged phospholipids, such as the polyphosphorylated inositol phospholipids, provide a circuit board of on/off switches for attracting or repelling proteins that define the membranes of the cell. This template of charged phospholipids is sensitive to discrete changes and metabolic fluxes-e.g., in pH and cations-which contribute to the oscillating signals in the cell. The inherent complexities of a constantly fluctuating system make understanding how plants integrate and process signals challenging. In this review we discuss one aspect of lipid signaling: the inositol family of negatively charged phospholipids and their functions as molecular sensors and regulators of metabolic flux in plants.

  2. Exploration of the Medicinal Peptide Space.

    Science.gov (United States)

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs.

  3. Cyclic peptide therapeutics: past, present and future.

    Science.gov (United States)

    Zorzi, Alessandro; Deyle, Kaycie; Heinis, Christian

    2017-06-01

    Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that make them an attractive modality for the development of therapeutics. Over 40 cyclic peptide drugs are currently in clinical use and around one new cyclic peptide drug enters the market every year on average. The vast majority of clinically approved cyclic peptides are derived from natural products, such as antimicrobials or human peptide hormones. New powerful techniques based on rational design and in vitro evolution have enabled the de novo development of cyclic peptide ligands to targets for which nature does not offer solutions. A look at the cyclic peptides currently under clinical evaluation shows that several have been developed using such techniques. This new source for cyclic peptide ligands introduces a freshness to the field, and it is likely that de novo developed cyclic peptides will be in clinical use in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Perspectives and Peptides of the Next Generation

    Science.gov (United States)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  5. Therapeutic effects of cell-permeant peptides that activate G proteins downstream of growth factors.

    Science.gov (United States)

    Ma, Gary S; Aznar, Nicolas; Kalogriopoulos, Nicholas; Midde, Krishna K; Lopez-Sanchez, Inmaculada; Sato, Emi; Dunkel, Ying; Gallo, Richard L; Ghosh, Pradipta

    2015-05-19

    In eukaryotes, receptor tyrosine kinases (RTKs) and trimeric G proteins are two major signaling hubs. Signal transduction via trimeric G proteins has long been believed to be triggered exclusively by G protein-coupled receptors (GPCRs). This paradigm has recently been challenged by several studies on a multimodular signal transducer, Gα-Interacting Vesicle associated protein (GIV/Girdin). We recently demonstrated that GIV's C terminus (CT) serves as a platform for dynamic association of ligand-activated RTKs with Gαi, and for noncanonical transactivation of G proteins. However, exogenous manipulation of this platform has remained beyond reach. Here we developed cell-permeable GIV-CT peptides by fusing a TAT-peptide transduction domain (TAT-PTD) to the minimal modular elements of GIV that are necessary and sufficient for activation of Gi downstream of RTKs, and used them to engineer signaling networks and alter cell behavior. In the presence of an intact GEF motif, TAT-GIV-CT peptides enhanced diverse processes in which GIV's GEF function has previously been implicated, e.g., 2D cell migration after scratch-wounding, invasion of cancer cells, and finally, myofibroblast activation and collagen production. Furthermore, topical application of TAT-GIV-CT peptides enhanced the complex, multireceptor-driven process of wound repair in mice in a GEF-dependent manner. Thus, TAT-GIV peptides provide a novel and versatile tool to manipulate Gαi activation downstream of growth factors in a diverse array of pathophysiologic conditions.

  6. Genome-wide analyses reveal a role for peptide hormones in planarian germline development.

    Directory of Open Access Journals (Sweden)

    James J Collins

    Full Text Available Bioactive peptides (i.e., neuropeptides or peptide hormones represent the largest class of cell-cell signaling molecules in metazoans and are potent regulators of neural and physiological function. In vertebrates, peptide hormones play an integral role in endocrine signaling between the brain and the gonads that controls reproductive development, yet few of these molecules have been shown to influence reproductive development in invertebrates. Here, we define a role for peptide hormones in controlling reproductive physiology of the model flatworm, the planarian Schmidtea mediterranea. Based on our observation that defective neuropeptide processing results in defects in reproductive system development, we employed peptidomic and functional genomic approaches to characterize the planarian peptide hormone complement, identifying 51 prohormone genes and validating 142 peptides biochemically. Comprehensive in situ hybridization analyses of prohormone gene expression revealed the unanticipated complexity of the flatworm nervous system and identified a prohormone specifically expressed in the nervous system of sexually reproducing planarians. We show that this member of the neuropeptide Y superfamily is required for the maintenance of mature reproductive organs and differentiated germ cells in the testes. Additionally, comparative analyses of our biochemically validated prohormones with the genomes of the parasitic flatworms Schistosoma mansoni and Schistosoma japonicum identified new schistosome prohormones and validated half of all predicted peptide-encoding genes in these parasites. These studies describe the peptide hormone complement of a flatworm on a genome-wide scale and reveal a previously uncharacterized role for peptide hormones in flatworm reproduction. Furthermore, they suggest new opportunities for using planarians as free-living models for understanding the reproductive biology of flatworm parasites.

  7. Peptide aptamers expressed in the secretory pathway interfere with cellular PrPSc formation.

    Science.gov (United States)

    Gilch, Sabine; Kehler, Claudia; Schätzl, Hermann M

    2007-08-10

    Prion diseases are rare and obligatory fatal neurodegenerative disorders caused by the accumulation of a misfolded isoform (PrPSc) of the host-encoded prion protein (PrPc). Prophylactic and therapeutic regimens against prion diseases are very limited. To extend such strategies we selected peptide aptamers binding to PrP from a combinatorial peptide library presented on the Escherichia coli thioredoxin A (trxA) protein as a scaffold. In a yeast two-hybrid screen employing full-length murine PrP (aa 23-231) as a bait we identified three peptide aptamers that reproducibly bind to PrP. Treatment of prion-infected cells with recombinantly expressed aptamers added to the culture medium abolished PrPSc conversion with an IC50 between 350 and 700 nM. For expression in eukaryotic cells, peptide aptamers were fused to an N-terminal signal peptide for entry of the secretory pathway. The C terminus was modified by a glycosyl-phosphatidyl-inositol-(GPI) anchoring signal, a KDEL retention motif and the transmembrane and cytosolic domain of LAMP-I, respectively. These peptide aptamers retained their binding properties to PrPc and, depending on peptide sequence and C-terminal modification, interfered with endogenous PrPSc conversion upon expression in prion-infected cells. Notably, infection of cell cultures could be prevented by expression of KDEL peptide aptamers. For the first time, we show that trxA-based peptide aptamers can be targeted to the secretory pathway, thereby not losing the affinity for their target protein. Beside their inhibitory effect on prion conversion, these molecules could be used as fundament for rational drug design.

  8. Characterization of Synthetic Peptides by Mass Spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala K; Mirza, Osman; Højrup, Peter

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI-TOF-MS an......Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI...

  9. An engineered genetic selection for ternary protein complexes inspired by a natural three-component hitchhiker mechanism.

    Science.gov (United States)

    Lee, Hyeon-Cheol; Portnoff, Alyse D; Rocco, Mark A; DeLisa, Matthew P

    2014-12-22

    The bacterial twin-arginine translocation (Tat) pathway is well known to translocate correctly folded monomeric and dimeric proteins across the tightly sealed cytoplasmic membrane. We identified a naturally occurring heterotrimer, the Escherichia coli aldehyde oxidoreductase PaoABC, that is co-translocated by the Tat translocase according to a ternary "hitchhiker" mechanism. Specifically, the PaoB and PaoC subunits, each devoid of export signals, are escorted to the periplasm in a piggyback fashion by the Tat signal peptide-containing subunit PaoA. Moreover, export of PaoA was blocked when either PaoB or PaoC was absent, revealing a surprising interdependence for export that is not seen for classical secretory proteins. Inspired by this observation, we created a bacterial three-hybrid selection system that links the formation of ternary protein complexes with antibiotic resistance. As proof-of-concept, a bispecific antibody was employed as an adaptor that physically crosslinked one antigen fused to a Tat export signal with a second antigen fused to TEM-1 β-lactamase (Bla). The resulting non-covalent heterotrimer was exported in a Tat-dependent manner, delivering Bla to the periplasm where it hydrolyzed β-lactam antibiotics. Collectively, these results highlight the remarkable flexibility of the Tat system and its potential for studying and engineering ternary protein interactions in living bacteria.

  10. IQ-motif peptides as novel anti-microbial agents.

    Science.gov (United States)

    McLean, Denise T F; Lundy, Fionnuala T; Timson, David J

    2013-04-01

    The IQ-motif is an amphipathic, often positively charged, α-helical, calmodulin binding sequence found in a number of eukaryote signalling, transport and cytoskeletal proteins. They share common biophysical characteristics with established, cationic α-helical antimicrobial peptides, such as the human cathelicidin LL-37. Therefore, we tested eight peptides encoding the sequences of IQ-motifs derived from the human cytoskeletal scaffolding proteins IQGAP2 and IQGAP3. Some of these peptides were able to inhibit the growth of Escherichia coli and Staphylococcus aureus with minimal inhibitory concentrations (MIC) comparable to LL-37. In addition some IQ-motifs had activity against the fungus Candida albicans. This antimicrobial activity is combined with low haemolytic activity (comparable to, or lower than, that of LL-37). Those IQ-motifs with anti-microbial activity tended to be able to bind to lipopolysaccharide. Some of these were also able to permeabilise the cell membranes of both Gram positive and Gram negative bacteria. These results demonstrate that IQ-motifs are viable lead sequences for the identification and optimisation of novel anti-microbial peptides. Thus, further investigation of the anti-microbial properties of this diverse group of sequences is merited. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Antiviral active peptide from oyster

    Science.gov (United States)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  12. Dietary bioactive peptides: Human studies.

    Science.gov (United States)

    Bouglé, Dominique; Bouhallab, Saïd

    2017-01-22

    Current opinion strongly links nutrition and health. Among nutrients, proteins, and peptides which are encrypted in their sequences and released during digestion could play a key role in improving health. These peptides have been claimed to be active on a wide spectrum of biological functions or diseases, including blood pressure and metabolic risk factors (coagulation, obesity, lipoprotein metabolism, and peroxidation), gut and neurological functions, immunity, cancer, dental health, and mineral metabolism. A majority of studies involved dairy peptides, but the properties of vegetal, animal, and sea products were also assessed. However, these allegations are mainly based on in vitro and experimental studies which are seldom confirmed in humans. This review focused on molecules which were tested in humans, and on the mechanisms explaining discrepancies between experimental and human studies.

  13. CART (cocaine- and amphetamine-regulated transcript) peptide specific binding sites in PC12 cells have characteristics of CART peptide receptors

    Czech Academy of Sciences Publication Activity Database

    Nagelová, Veronika; Pirnik, Z.; Železná, Blanka; Maletínská, Lenka

    2014-01-01

    Roč. 1547, Feb 14 (2014), s. 16-24 ISSN 0006-8993 R&D Projects: GA ČR GAP303/10/1368 Institutional support: RVO:61388963 Keywords : CART peptide * PC12 cell * differentiation * binding * signaling * c-Jun Subject RIV: CE - Biochemistry Impact factor: 2.843, year: 2014

  14. Designer interface peptide grafts target estrogen receptor alpha dimerization

    International Nuclear Information System (INIS)

    Chakraborty, S.; Asare, B.K.; Biswas, P.K.; Rajnarayanan, R.V.

    2016-01-01

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  15. Designer interface peptide grafts target estrogen receptor alpha dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S. [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Asare, B.K. [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States); Biswas, P.K., E-mail: pbiswas@tougaloo.edu [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Rajnarayanan, R.V., E-mail: rajendra@buffalo.edu [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States)

    2016-09-09

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  16. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth

    2014-01-01

    in decompensated disease. In contrast, their biological effects on the cerebral hemodynamics are poorly understood. In this mini-review, we summarize the hemodynamic effects of the natriuretic peptides with a focus on the cerebral hemodynamics. In addition, we will discuss its potential implications in diseases...... where alteration of the cerebral hemodynamics plays a role such as migraine and acute brain injury including stroke. We conclude that a possible role of the peptides is feasible as evaluated from animal and in vitro studies, but more research is needed in humans to determine the precise response...

  17. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  18. Biodegradable Peptide-Silica Nanodonuts.

    Science.gov (United States)

    Maggini, Laura; Travaglini, Leana; Cabrera, Ingrid; Castro-Hartmann, Pablo; De Cola, Luisa

    2016-03-07

    We report hybrid organosilica toroidal particles containing a short peptide sequence as the organic component of the hybrid systems. Once internalised in cancer cells, the presence of the peptide allows for interaction with peptidase enzymes, which attack the nanocarrier effectively triggering its structural breakdown. Moreover, these biodegradable nanovectors are characterised by high cellular uptake and exocytosis, showing great potential as biodegradable drug carriers. To demonstrate this feature, doxorubicin was employed and its delivery in HeLa cells investigated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies...... are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors...... such as structure, accessibility and amino acid composition are crucial. Since small peptides tend not to be immunogenic, it may be necessary to conjugate them to carrier proteins in order to enhance immune presentation. Several strategies for conjugation of peptide-carriers applied for immunization exist...

  20. The intracellular pharmacokinetics of terminally capped peptides.

    NARCIS (Netherlands)

    Ruttekolk, I.R.R.; Witsenburg, J.J.; Glauner, H.B.; Bovee-Geurts, P.H.M.; Ferro, E.S.; Verdurmen, W.P.R.; Brock, R.E.

    2012-01-01

    With significant progress in delivery technologies, peptides and peptidomimetics are receiving increasing attention as potential therapeutics also for intracellular applications. However, analyses of the intracellular behavior of peptides are a challenge; therefore, knowledge on the intracellular

  1. Strategic approaches to optimizing peptide ADME properties.

    Science.gov (United States)

    Di, Li

    2015-01-01

    Development of peptide drugs is challenging but also quite rewarding. Five blockbuster peptide drugs are currently on the market, and six new peptides received first marketing approval as new molecular entities in 2012. Although peptides only represent 2% of the drug market, the market is growing twice as quickly and might soon occupy a larger niche. Natural peptides typically have poor absorption, distribution, metabolism, and excretion (ADME) properties with rapid clearance, short half-life, low permeability, and sometimes low solubility. Strategies have been developed to improve peptide drugability through enhancing permeability, reducing proteolysis and renal clearance, and prolonging half-life. In vivo, in vitro, and in silico tools are available to evaluate ADME properties of peptides, and structural modification strategies are in place to improve peptide developability.

  2. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  3. Tumor Associated Antigenic Peptides in Prostate Cancer

    National Research Council Canada - National Science Library

    Tiwari, Raj

    2001-01-01

    .... Since this tumor rejection property was specifically mediated by tumor denved and not non-tumor derived gp96-peptide complexes, and that gp96 preparations stripped of its peptides are non-immunogenic...

  4. Peptides: Production, bioactivity, functionality, and applications

    DEFF Research Database (Denmark)

    Hajfathalian, Mona; Ghelichi, Sakhi; García Moreno, Pedro Jesús

    2017-01-01

    Production of peptides with various effects from proteins of different sources continues to receive academic attention. Researchers of different disciplines are putting increasing efforts to produce bioactive and functional peptides from different sources such as plants, animals, and food industry...

  5. The IDA-LIKE peptides IDL6 and IDL7 are negative modulators of stress responses in Arabidopsis thaliana.

    Science.gov (United States)

    Vie, Ane Kjersti; Najafi, Javad; Winge, Per; Cattan, Ester; Wrzaczek, Michael; Kangasjärvi, Jaakko; Miller, Gad; Brembu, Tore; Bones, Atle M

    2017-06-15

    Small signalling peptides have emerged as important cell to cell messengers in plant development and stress responses. However, only a few of the predicted peptides have been functionally characterized. Here, we present functional characterization of two members of the IDA-LIKE (IDL) peptide family in Arabidopsis thaliana, IDL6 and IDL7. Localization studies suggest that the peptides require a signal peptide and C-terminal processing to be correctly transported out of the cell. Both IDL6 and IDL7 appear to be unstable transcripts under post-transcriptional regulation. Treatment of plants with synthetic IDL6 and IDL7 peptides resulted in down-regulation of a broad range of stress-responsive genes, including early stress-responsive transcripts, dominated by a large group of ZINC FINGER PROTEIN (ZFP) genes, WRKY genes, and genes encoding calcium-dependent proteins. IDL7 expression was rapidly induced by hydrogen peroxide, and idl7 and idl6 idl7 double mutants displayed reduced cell death upon exposure to extracellular reactive oxygen species (ROS). Co-treatment of the bacterial elicitor flg22 with IDL7 peptide attenuated the rapid ROS burst induced by treatment with flg22 alone. Taken together, our results suggest that IDL7, and possibly IDL6, act as negative modulators of stress-induced ROS signalling in Arabidopsis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Conformationally constrained peptides target the allosteric kinase dimer interface and inhibit EGFR activation.

    Science.gov (United States)

    Fulton, Melody D; Hanold, Laura E; Ruan, Zheng; Patel, Sneha; Beedle, Aaron M; Kannan, Natarajan; Kennedy, Eileen J

    2018-03-15

    Although EGFR is a highly sought-after drug target, inhibitor resistance remains a challenge. As an alternative strategy for kinase inhibition, we sought to explore whether allosteric activation mechanisms could effectively be disrupted. The kinase domain of EGFR forms an atypical asymmetric dimer via head-to-tail interactions and serves as a requisite for kinase activation. The kinase dimer interface is primarily formed by the H-helix derived from one kinase monomer and the small lobe of the second monomer. We hypothesized that a peptide designed to resemble the binding surface of the H-helix may serve as an effective disruptor of EGFR dimerization and activation. A library of constrained peptides was designed to mimic the H-helix of the kinase domain and interface side chains were optimized using molecular modeling. Peptides were constrained using peptide "stapling" to structurally reinforce an alpha-helical conformation. Peptide stapling was demonstrated to notably enhance cell permeation of an H-helix derived peptide termed EHBI2. Using cell-based assays, EHBI2 was further shown to significantly reduce EGFR activity as measured by EGFR phosphorylation and phosphorylation of the downstream signaling substrate Akt. To our knowledge, this is the first H-helix-based compound targeting the asymmetric interface of the kinase domain that can successfully inhibit EGFR activation and signaling. This study presents a novel, alternative targeting site for allosteric inhibition of EGFR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. EGFR tyrosine kinase inhibitory peptide attenuates Helicobacter pylori-mediated hyper-proliferation in AGS enteric epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Himaya, S.W.A. [Marine Bio-Process Research Center, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Dewapriya, Pradeep [Department of Chemistry, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Kim, Se-Kwon, E-mail: sknkim@pknu.ac.kr [Marine Bio-Process Research Center, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Department of Chemistry, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of)

    2013-06-15

    Helicobacter pylori infection is one of the most critical causes of stomach cancer. The current study was conducted to explore the protective effects of an isolated active peptide H-P-6 (Pro-Gln-Pro-Lys-Val-Leu-Asp-Ser) from microbial hydrolysates of Chlamydomonas sp. against H. pylori-induced carcinogenesis. The peptide H-P-6 has effectively suppressed H. pylori-induced hyper-proliferation and migration of gastric epithelial cells (AGS). However, the peptide did not inhibit the viability of the bacteria or invasion into AGS cells. Therefore, the effect of the peptide on regulating H. pylori-induced molecular signaling was investigated. The results indicated that H. pylori activates the EGFR tyrosine kinase signaling and nuclear translocation of the β-catenin. The EGFR activation has led to the up-regulation of PI3K/Akt signaling pathway. Moreover, the nuclear translocation levels of β-catenin were significantly increased as a result of Akt mediated down-regulation of GSK3/β protein levels in the cytoplasm. Both of these consequences have resulted in increased expression of cell survival and migration related genes such as c-Myc, cyclin-D, MMP-2 and matrilysin. Interestingly, the isolated peptide potently inhibited H. pylori-mediated EGFR activation and thereby down-regulated the subsequent P13K/Akt signaling leading to β-catenin nuclear translocation. The effect of the peptide was confirmed with the use of EGFR tyrosine kinase inhibitor AG1487 and molecular docking studies. Collectively this study identifies a potent peptide which regulates the H. pylori-induced hyper-proliferation and migration of AGS cells at molecular level. - Highlights: • Chlamydomonas sp. derived peptide H-P-6 inhibits H. pylori-induced pathogenesis. • H-P-6 suppresses H. pylori-induced hyper-proliferation and migration of AGS cells. • The peptide inhibits H. pylori-induced EGFR activation.

  8. Development and use of engineered peptide deformylase in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia

    2012-01-01

    Deze thesis beschrijft het onderzoek naar potentieel van het gebruik van het peptide deformylase (PDF) in chemo enzymatische peptide synthese. PDF is geschikt voor selective N terminale deformylatie van bepaalde N-formyl-peptides zonder gelijktijdige hydrolyse van de peptide binding. Door de

  9. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    Science.gov (United States)

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  10. STM studies of synthetic peptide monolayers

    Science.gov (United States)

    Bergeron, David J.; Clauss, Wilfried; Pilloud, Denis L.; Leslie Dutton, P.; Johnson, Alan T.

    1998-08-01

    We have used scanning probe microscopy to investigate self-assembled monolayers of chemically synthesized peptides. We find that the peptides form a dense uniform monolayer, above which is found a sparse additional layer. Using scanning tunneling microscopy, submolecular resolution can be obtained, revealing the alpha helices which constitute the peptide. The nature of the images is not significantly affected by the incorporation of redox cofactors (hemes) in the peptides.

  11. Antimicrobial activities of heparin-binding peptides.

    OpenAIRE

    Andersson, Emma; Rydengård, Victoria; Sonesson, Andreas; Mörgelin, Matthias; Björck, Lars; Schmidtchen, Artur

    2004-01-01

    Antimicrobial peptides are effector molecules of the innate immune system. We recently showed that the human antimicrobial peptides alpha-defensin and LL-37 bind to glycosaminoglycans (heparin and dermatan sulphate). Here we demonstrate the obverse, i.e. structural motifs associated with heparin affinity (cationicity, amphipaticity, and consensus regions) may confer antimicrobial properties to a given peptide. Thus, heparin-binding peptides derived from laminin isoforms, von Willebrand factor...

  12. Production of cecropin A antimicrobial peptide in rice seed endosperm

    Science.gov (United States)

    2014-01-01

    Background Cecropin A is a natural antimicrobial peptide that exhibits rapid, potent and long-lasting lytic activity against a broad spectrum of pathogens, thus having great biotechnological potential. Here, we report a system for producing bioactive cecropin A in rice seeds. Results Transgenic rice plants expressing a codon-optimized synthetic cecropin A gene drived by an endosperm-specific promoter, either the glutelin B1 or glutelin B4 promoter, were generated. The signal peptide sequence from either the glutelin B1 or the glutelin B4 were N-terminally fused to the coding sequence of the cecropin A. We also studied whether the presence of the KDEL endoplasmic reticulum retention signal at the C-terminal has an effect on cecropin A subcellular localization and accumulation. The transgenic rice plants showed stable transgene integration and inheritance. We show that cecropin A accumulates in protein storage bodies in the rice endosperm, particularly in type II protein bodies, supporting that the glutelin N-terminal signal peptides play a crucial role in directing the cecropin A to this organelle, independently of being tagged with the KDEL endoplasmic reticulum retention signal. The production of cecropin A in transgenic rice seeds did not affect seed viability or seedling growth. Furthermore, transgenic cecropin A seeds exhibited resistance to infection by fungal and bacterial pathogens (Fusarium verticillioides and Dickeya dadantii, respectively) indicating that the in planta-produced cecropin A is biologically active. Conclusions Rice seeds can sustain bioactive cecropin A production and accumulation in protein bodies. The system might benefit the production of this antimicrobial agent for subsequent applications in crop protection and food preservation. PMID:24755305

  13. One Hundred Years of Peptide Chemistry

    Indian Academy of Sciences (India)

    ber of residues are often denoted as peptides. The chemical synthesis of peptides, as envisaged by Fischer, involves ... known as genetically encoded as building blocks of peptides and proteins. Almost all of .... inhibit final stages of the enzymatic construction of the bacterial peptidoglycan cell wall component, a network of.

  14. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of <200-nm bilayer vesicles composed of anionic and neutral lipids as well as cholesterol. Vesicle disruption, or peptide potency, was monitored with a sensitive fluorescence leakage assay. Detailed molecular information on peptidemembrane interactions and peptide structure was further gained through vibrational spectroscopy combined with circular dichroism. Finally, steady-state fluorescence experiments yielded insight into the local environment of native or engineered tryptophan residues in melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  15. Ribosome evolution: Emergence of peptide synthesis machinery

    Indian Academy of Sciences (India)

    allows the histidine to position close to the PTC during the reaction, it may contribute to improving peptide bond formation. Thus, it is important to analyse biomolecular interactions in terms of the dynamic nature of the structure. 3. Origin of peptide bond formation and the RNA world. Minihelix-based peptide bond formation ...

  16. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  17. Synthetic Procedures for Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  18. Responsiveness of beta-escin-permeabilized rabbit gastric gland model: effects of functional peptide fragments.

    Science.gov (United States)

    Akagi, K; Nagao, T; Urushidani, T

    1999-09-01

    We established a beta-escin-permeabilized gland model with the use of rabbit isolated gastric glands. The glands retained an ability to secrete acid, monitored by [14C]aminopyrine accumulation, in response to cAMP, forskolin, and histamine. These responses were all inhibited by cAMP-dependent protein kinase inhibitory peptide. Myosin light-chain kinase inhibitory peptide also suppressed aminopyrine accumulation, whereas the inhibitory peptide of protein kinase C or that of calmodulin kinase II was without effect. Guanosine-5'-O-(3-thiotriphosphate) (GTPgammaS) abolished cAMP-stimulated acid secretion concomitantly, interfering with the redistribution of H+-K+-ATPase from tubulovesicles to the apical membrane. To identify the targets of GTPgammaS, effects of peptide fragments of certain GTP-binding proteins were examined. Although none of the peptides related to Rab proteins showed any effect, the inhibitory peptide of Arf protein inhibited cAMP-stimulated secretion. These results demonstrate that our new model, the beta-escin-permeabilized gland, allows the introduction of relatively large molecules, e.g., peptides, into the cell, and will be quite useful for analyzing signal transduction of parietal cell function.

  19. Human Leukocyte Antigen F Presents Peptides and Regulates Immunity through Interactions with NK Cell Receptors.

    Science.gov (United States)

    Dulberger, Charles L; McMurtrey, Curtis P; Hölzemer, Angelique; Neu, Karlynn E; Liu, Victor; Steinbach, Adriana M; Garcia-Beltran, Wilfredo F; Sulak, Michael; Jabri, Bana; Lynch, Vincent J; Altfeld, Marcus; Hildebrand, William H; Adams, Erin J

    2017-06-20

    Evidence is mounting that the major histocompatibility complex (MHC) molecule HLA-F (human leukocyte antigen F) regulates the immune system in pregnancy, infection, and autoimmunity by signaling through NK cell receptors (NKRs). We present structural, biochemical, and evolutionary analyses demonstrating that HLA-F presents peptides of unconventional length dictated by a newly arisen mutation (R62W) that has produced an open-ended groove accommodating particularly long peptides. Compared to empty HLA-F open conformers (OCs), HLA-F tetramers bound with human-derived peptides differentially stained leukocytes, suggesting peptide-dependent engagement. Our in vitro studies confirm that NKRs differentiate between peptide-bound and peptide-free HLA-F. The complex structure of peptide-loaded β 2 m-HLA-F bound to the inhibitory LIR1 revealed similarities to high-affinity recognition of the viral MHC-I mimic UL18 and a docking strategy that relies on contacts with HLA-F as well as β 2 m, thus precluding binding to HLA-F OCs. These findings provide a biochemical framework to understand how HLA-F could regulate immunity via interactions with NKRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The effects of newly formed synthetic peptide on bone regeneration in rat calvarial defects.

    Science.gov (United States)

    Choi, Jung-Yoo; Jung, Ui-Won; Kim, Chang-Sung; Eom, Tae-Kwan; Kang, Eun-Jung; Cho, Kyoo-Sung; Kim, Chong-Kwan; Choi, Seong-Ho

    2010-02-01

    Significant interest has emerged in the design of cell scaffolds that incorporate peptide sequences that correspond to known signaling domains in extracellular matrix and bone morphogenetic protein. The purpose of this study was to evaluate the bone regenerative effects of the synthetic peptide in a critical-size rat calvarial defect model. Eight millimeter diameter standardized, circular, transosseus defects created on the cranium of forty rats were implanted with synthetic peptide, collagen, or both synthetic peptide and collagen. No material was was implanted the control group. The healing of each group was evaluated histologically and histomorphometrically after 2- and 8-week healing intervals. Surgical implantation of the synthetic peptide and collagen resulted in enhanced local bone formation at both 2 and 8 weeks compared to the control group. When the experimental groups were compared to each other, they showed a similar pattern of bone formation. The defect closure and new bone area were significantly different in synthetic peptide and collagen group at 8 weeks. Concerning the advantages of biomaterials, synthetic peptide can be an effective biomaterial for damaged periodontal regeneration.

  1. Glucagon-like peptide-1

    DEFF Research Database (Denmark)

    Deacon, C F; Holst, Jens Juul; Carr, R D

    1999-01-01

    Type 2 diabetes mellitus is a metabolic disease resulting in raised blood sugar which, if not satisfactorily controlled, can cause severe and often debilitating complications. Unfortunately, for many patients, the existing therapies do not give adequate control. Glucagon-like peptide-1 (GLP-1...

  2. Peptide Receptor Radionuclide Therapy & Oncology

    NARCIS (Netherlands)

    H. Bergsma (Hendrik)

    2017-01-01

    markdownabstractNeuroendocrine tumors (NETs) are rare neoplasms with differences in clinical presentation, course and prognosis. Most of the NETs express the somatostatine receptor, which can be utilized for imaging and therapy. Radiolabeled somatostatin analogs can be used for peptide receptor

  3. Glucagon-like peptide-1

    DEFF Research Database (Denmark)

    Deacon, C F; Holst, Jens Juul; Carr, R D

    1999-01-01

    Type 2 diabetes mellitus is a metabolic disease resulting in raised blood sugar which, if not satisfactorily controlled, can cause severe and often debilitating complications. Unfortunately, for many patients, the existing therapies do not give adequate control. Glucagon-like peptide-1 (GLP-1...... advantages offered by GLP-1 and give the hope of providing effective glycemic control without the risk of overt hypoglycemia....

  4. Synthetic peptides for diagnostic use

    NARCIS (Netherlands)

    Meloen, R.H.; Langedijk, J.P.M.; Langeveld, J.P.M.

    1997-01-01

    Synthetic peptides representing relevant B-cell epitopes are, potentially, ideal antigens to be used in diagnostic assays because of their superior properties with respect to quality control as compared to those of biologically derived molecules and the much higher specificity that sometimes can be

  5. Next generation natriuretic peptide measurement

    DEFF Research Database (Denmark)

    Hunter, Ingrid; Goetze, Jens P

    2012-01-01

    in the molecular heterogeneity could in itself contain valuable information of clinical status, and the time seems right for industry and dedicated researchers in the field to get together and discuss the next generation natriuretic peptide measurement. In such an environment, new strategies can be developed...

  6. Atrial natriuretic peptides in plasma

    DEFF Research Database (Denmark)

    Goetze, Jens P; Holst Hansen, Lasse; Terzic, Dijana

    2015-01-01

    derivatizations. In this mini-review, we summarize measurement of the principal cardiac hormone, e.g. atrial natriuretic peptide (ANP) and its precursor fragments. We also highlight some of the analytical pitfalls and problems and the concurrent clinical "proof of concept". We conclude that biochemical research...

  7. Discordant expression of pro-B-type and pro-C-type natriuretic peptide in newborn infants of mothers with type 1 diabetes

    DEFF Research Database (Denmark)

    Nybo, M.; Nielsen, Lars Bo; Nielsen, S.J.

    2007-01-01

    Maternal diabetes increases the risk of hypertrophic cardiomyopathy in the fetus. As signaling via the C-type natriuretic peptide (CNP) specific receptor protects against cardiac hypertrophy, we examined whether maternal type 1 diabetes affects the plasma concentrations of proCNP-derived peptides...

  8. Coqui frogs persist with the deadly chytrid fungus despite a lack of defensive antimicrobial peptides.

    Science.gov (United States)

    Rollins-Smith, Louise A; Reinert, Laura K; Burrowes, Patricia A

    2015-02-10

    The amphibian skin fungus Batrachochytrium dendrobatidis (Bd) occurs widely in Puerto Rico and is thought to be responsible for the apparent extinction of 3 species of endemic frogs in the genus Eleutherodactylus, known as coquis. To examine immune defenses which may protect surviving species, we induced secretion of skin peptides from adult common coqui frogs E. coqui collected from upland forests at El Yunque. By matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, we were unable to detect peptide signals suggestive of antimicrobial peptides, and enriched peptides showed no capacity to inhibit growth of Bd. Thus, it appears that E. coqui depend on other skin defenses to survive in the presence of this deadly fungus.

  9. Defying the stereotype: non-canonical roles of the peptide hormones guanylin and uroguanylin

    Directory of Open Access Journals (Sweden)

    Nirmalya eBasu

    2011-06-01

    Full Text Available The peptide hormones uroguanylin and guanylin have been traditionally thought to be mediators of fluid-ion homeostasis in the vertebrate intestine. They serve as ligands for receptor guanylyl cyclase C (GC-C, and both receptor and ligands are expressed predominantly in the intestine. Ligand binding to GC-C results in increased cGMP production in the cell which governs downstream signaling. In the last decade, a significant amount of research has unraveled novel functions for this class of peptide hormones, in addition to their action as intestinal secretagogues. An additional receptor for uroguanylin, receptor guanylyl cyclase D, has also been identified. Thus, unconventional roles of these peptides in regulating renal filtration, olfaction, reproduction and cell proliferation have begun to be elucidated in detail. These varied effects suggest that these peptide hormones act in an autocrine, paracrine as well as endocrine manner to regulate diverse cellular processes.

  10. PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Ying S.; Egertson, Jarrett D.; Bollinger, James G.; Searle, Brian C.; Payne, Samuel H.; Noble, William Stafford; MacCoss, Michael J.

    2017-08-07

    Data-independent acquisition (DIA) is an emerging mass spectrometry (MS)-based technique for unbiased and reproducible measurement of protein mixtures. DIA tandem mass spectrometry spectra are often highly multiplexed, containing product ions from multiple cofragmenting precursors. Detecting peptides directly from DIA data is therefore challenging; most DIA data analyses require spectral libraries. Here we present PECECAN (http://pecan.maccosslab.org), a library-free, peptide-centric tool that robustly and accurately detects peptides directly from DIA data. PECECAN reports evidence of detection based on product ion scoring, which enables detection of low-abundance analytes with poor precursor ion signal. We demonstrate the chromatographic peak picking accuracy and peptide detection capability of PECECAN, and we further validate its detection with data-dependent acquisition and targeted analyses. Lastly, we used PECECAN to build a plasma proteome library from DIA data and to query known sequence variants.

  11. Isoform-Selective Disruption of AKAP-Localized PKA Using Hydrocarbon Stapled Peptides

    Science.gov (United States)

    2015-01-01

    A-kinase anchoring proteins (AKAPs) play an important role in the spatial and temporal regulation of protein kinase A (PKA) by scaffolding critical intracellular signaling complexes. Here we report the design of conformationally constrained peptides that disrupt interactions between PKA and AKAPs in an isoform-selective manner. Peptides derived from the A Kinase Binding (AKB) domain of several AKAPs were chemically modified to contain an all-hydrocarbon staple and target the docking/dimerization domain of PKA-R, thereby occluding AKAP interactions. The peptides are cell-permeable against diverse human cell lines, are highly isoform-selective for PKA-RII, and can effectively inhibit interactions between AKAPs and PKA-RII in intact cells. These peptides can be applied as useful reagents in cell-based studies to selectively disrupt AKAP-localized PKA-RII activity and block AKAP signaling complexes. In summary, the novel hydrocarbon-stapled peptides developed in this study represent a new class of AKAP disruptors to study compartmentalized RII-regulated PKA signaling in cells. PMID:24422448

  12. Truncated Autoinducing Peptide Conjugates Selectively Recognize and Kill Staphylococcus aureus.

    Science.gov (United States)

    Tsuchikama, Kyoji; Shimamoto, Yasuhiro; Anami, Yasuaki

    2017-06-09

    The accessory gene regulator (agr) of Staphylococcus aureus coordinates various pathogenic events and is recognized as a promising therapeutic target for virulence control. S. aureus utilizes autoinducing peptides (AIPs), cyclic-peptide signaling molecules, to mediate the agr system. Despite the high potency of synthetic AIP analogues in agr inhibition, the potential of AIP molecules as a delivery vehicle for antibacterial agents remains unexplored. Herein, we report that truncated AIP scaffolds can be fused with fluorophore and cytotoxic photosensitizer molecules without compromising their high agr inhibitory activity, binding affinity to the receptor AgrC, or cell specificity. Strikingly, a photosensitizer-AIP conjugate exhibited 16-fold greater efficacy in a S. aureus cell-killing assay than a nontargeting analogue. These findings highlight the potential of truncated AIP conjugates as useful chemical tools for in-depth biological studies and as effective anti-S. aureus agents.

  13. Signal Processing

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Signal processing techniques, extensively used nowadays to maximize the performance of audio and video equipment, have been a key part in the design of hardware and software for high energy physics detectors since pioneering applications in the UA1 experiment at CERN in 1979

  14. Squalestatin alters the intracellular trafficking of a neurotoxic prion peptide

    Directory of Open Access Journals (Sweden)

    Williams Alun

    2007-11-01

    Full Text Available Abstract Background Neurotoxic peptides derived from the protease-resistant core of the prion protein are used to model the pathogenesis of prion diseases. The current study characterised the ingestion, internalization and intracellular trafficking of a neurotoxic peptide containing amino acids 105–132 of the murine prion protein (MoPrP105-132 in neuroblastoma cells and primary cortical neurons. Results Fluorescence microscopy and cell fractionation techniques showed that MoPrP105-132 co-localised with lipid raft markers (cholera toxin and caveolin-1 and trafficked intracellularly within lipid rafts. This trafficking followed a non-classical endosomal pathway delivering peptide to the Golgi and ER, avoiding classical endosomal trafficking via early endosomes to lysosomes. Fluorescence resonance energy transfer analysis demonstrated close interactions of MoPrP105-132 with cytoplasmic phospholipase A2 (cPLA2 and cyclo-oxygenase-1 (COX-1, enzymes implicated in the neurotoxicity of prions. Treatment with squalestatin reduced neuronal cholesterol levels and caused the redistribution of MoPrP105-132 out of lipid rafts. In squalestatin-treated cells, MoPrP105-132 was rerouted away from the Golgi/ER into degradative lysosomes. Squalestatin treatment also reduced the association between MoPrP105-132 and cPLA2/COX-1. Conclusion As the observed shift in peptide trafficking was accompanied by increased cell survival these studies suggest that the neurotoxicity of this PrP peptide is dependent on trafficking to specific organelles where it activates specific signal transduction pathways.

  15. Quorum Sensing Peptides Selectively Penetrate the Blood-Brain Barrier.

    Science.gov (United States)

    Wynendaele, Evelien; Verbeke, Frederick; Stalmans, Sofie; Gevaert, Bert; Janssens, Yorick; Van De Wiele, Christophe; Peremans, Kathelijne; Burvenich, Christian; De Spiegeleer, Bart

    2015-01-01

    Bacteria communicate with each other by the use of signaling molecules, a process called 'quorum sensing'. One group of quorum sensing molecules includes the oligopeptides, which are mainly produced by Gram-positive bacteria. Recently, these quorum sensing peptides were found to biologically influence mammalian cells, promoting i.a. metastasis of cancer cells. Moreover, it was found that bacteria can influence different central nervous system related disorders as well, e.g. anxiety, depression and autism. Research currently focuses on the role of bacterial metabolites in this bacteria-brain interaction, with the role of the quorum sensing peptides not yet known. Here, three chemically diverse quorum sensing peptides were investigated for their brain influx (multiple time regression technique) and efflux properties in an in vivo mouse model (ICR-CD-1) to determine blood-brain transfer properties: PhrCACET1 demonstrated comparatively a very high initial influx into the mouse brain (Kin = 20.87 μl/(g×min)), while brain penetrabilities of BIP-2 and PhrANTH2 were found to be low (Kin = 2.68 μl/(g×min)) and very low (Kin = 0.18 μl/(g×min)), respectively. All three quorum sensing peptides were metabolically stable in plasma (in vitro) during the experimental time frame and no significant brain efflux was observed. Initial tissue distribution data showed remarkably high liver accumulation of BIP-2 as well. Our results thus support the potential role of some quorum sensing peptides in different neurological disorders, thereby enlarging our knowledge about the microbiome-brain axis.

  16. Signaling in plant resistance responses: divergence and cross-talk of defense pathways

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Schaller, A.; Mauch-Mani, B.; Conrath, U.

    2006-01-01

    Plants possess inducible defense mechanisms to protect themselves against attack by microbial pathogens and herbivorous insects. The endogenous signalling molecules salicylic acid, ethylene, and jasmonic acid, and the peptide messenger systemin play important roles in the regulation of these induced

  17. Insect Peptides - Perspectives in Human Diseases Treatment.

    Science.gov (United States)

    Chowanski, Szymon; Adamski, Zbigniew; Lubawy, Jan; Marciniak, Pawel; Pacholska-Bogalska, Joanna; Slocinska, Malgorzata; Spochacz, Marta; Szymczak, Monika; Urbanski, Arkadiusz; Walkowiak-Nowicka, Karolina; Rosinski, Grzegorz

    2017-01-01

    Insects are the largest and the most widely distributed group of animals in the world. Their diversity is a source of incredible variety of different mechanisms of life processes regulation. There are many agents that regulate immunology, reproduction, growth and development or metabolism. Hence, it seems that insects may be a source of numerous substances useful in human diseases treatment. Especially important in the regulation of insect physiology are peptides, like neuropeptides, peptide hormones or antimicrobial peptides. There are two main aspects where they can be helpful, 1) Peptides isolated from insects may become potential drugs in therapy of different diseases, 2) A lot of insect peptide hormones show structural or functional homology to mammalian peptide hormones and the comparative studies may give a new look on human disorders. In our review we focused on three group of insect derived peptides: 1) immune-active peptides, 2) peptide hormones and 3) peptides present in venoms. In our review we try to show the considerable potential of insect peptides in searching for new solutions for mammalian diseases treatment. We summarise the knowledge about properties of insect peptides against different virulent agents, anti-inflammatory or anti-nociceptive properties as well as compare insect and mammalian/vertebrate peptide endocrine system to indicate usefulness of knowledge about insect peptide hormones in drug design. The field of possible using of insect delivered peptide to therapy of various human diseases is still not sufficiently explored. Undoubtedly, more attention should be paid to insects due to searching new drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Intracellular Delivery of Proteins via Fusion Peptides in Intact Plants.

    Directory of Open Access Journals (Sweden)

    Kiaw Kiaw Ng

    Full Text Available In current plant biotechnology, the introduction of exogenous DNA encoding desired traits is the most common approach used to modify plants. However, general plant transformation methods can cause random integration of exogenous DNA into the plant genome. To avoid these events, alternative methods, such as a direct protein delivery system, are needed to modify the plant. Although there have been reports of the delivery of proteins into cultured plant cells, there are currently no methods for the direct delivery of proteins into intact plants, owing to their hierarchical structures. Here, we demonstrate the efficient fusion-peptide-based delivery of proteins into intact Arabidopsis thaliana. Bovine serum albumin (BSA, 66 kDa was selected as a model protein to optimize conditions for delivery into the cytosol. The general applicability of our method to large protein cargo was also demonstrated by the delivery of alcohol dehydrogenase (ADH, 150 kDa into the cytosol. The compatibility of the fusion peptide system with the delivery of proteins to specific cellular organelles was also demonstrated using the fluorescent protein Citrine (27 kDa conjugated to either a nuclear localization signal (NLS or a peroxisomal targeting signal (PTS. In conclusion, our designed fusion peptide system can deliver proteins with a wide range of molecular weights (27 to 150 kDa into the cells of intact A. thaliana without interfering with the organelle-targeting peptide conjugated to the protein. We expect that this efficient protein delivery system will be a powerful tool in plant biotechnology.

  19. Insect immunity: expression of the two major inducible antibacterial peptides, defensin and diptericin, in Phormia terranovae.

    Science.gov (United States)

    Dimarcq, J L; Zachary, D; Hoffmann, J A; Hoffmann, D; Reichhart, J M

    1990-01-01

    Injections of low doses of bacteria into larvae of Phormia terranovae induce the appearance of potent bactericidal peptides in the blood, among which predominate the anti-Gram positive insect defensins and the anti-Gram negative diptericins. Insect defensins show significant homologies to mammalian (including human) microbicidal peptides present in polymorphonuclear leukocytes and macrophages. We report the molecular cloning of cDNAs and primer extension studies which indicate that insect defensin is produced as a prepro-peptide yielding mature defensin A (40 residues) after cleavage of a putative signal peptide (23 residues) and a prosequence (34 residues). Previous studies have established that diptericin (82 residues) is matured from a pre-peptide by cleavage of a putative signal peptide (19 residues) and C-terminal amidation. Using oligonucleotide probes complementary to the sequences of the mRNAs for defensin and diptericin, we show by in situ hybridization that both antibacterial peptides are concomitantly synthesized by the same cells: thrombocytoids, a specialized blood cell type, and adipocytes. Transcriptional studies based on hybridization of RNAs to cDNAs of defensin and diptericin indicate that the transcription of both genes is induced regardless of the nature of the stimulus (injection of Gram positive or Gram negative bacteria, lipopolysaccharides). Even a sterile injury applied to axenically raised larvae is efficient in inducing the transcription of both genes suggesting that the local disruption of the integument aspecifically initiates a signalling mechanism which the thrombocytoids and the adipocytes are able to interpret. The transcription of immune genes is relatively short lived and a second challenge yields a response similar to that of the first stimulus, indicating that the experimental insects do not keep a 'memory' of their first injection. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2369900

  20. Preparation of polypeptides comprising multiple TAA peptides.

    Science.gov (United States)

    Ni, Bing; Jia, Zhengcai; Wu, Yuzhang

    2014-01-01

    Polypeptides consisting of multiple tumor-associated antigen epitopes (multiepitope peptides) are commonly used as therapeutic peptide cancer vaccines in experimental studies and clinical trials. These methods include polypeptides composed of multiple major histocompatibility complex (MHC) class I-restricted cytotoxic T cell (CTL) epitopes and those containing multiple CTL epitopes and one T helper (Th) epitope. This chapter describes a complete set of methods for preparing multiepitope peptides and branched multiple antigen peptides (MAPs), including sequence design, peptide synthesis, purification, preservation, and the preparation of polypeptide solutions.

  1. Improved prediction of signal peptides: SignalP 3.0

    DEFF Research Database (Denmark)

    Bendtsen, Jannick Dyrløv; Nielsen, Henrik; von Heijne, G.

    2004-01-01

    discrimination improvement is mainly due to the elimination of false-positive predictions, as well as the introduction of a new discrimination score for the neural network. The new method has been benchmarked against other available methods. Predictions can be made at the publicly available web server http://www.cbs.dtu.dk/services/SignaIP/....

  2. Silver nanoparticles as matrix for laser desorption/ionization mass spectrometry of peptides

    International Nuclear Information System (INIS)

    Hua Lin; Chen Jianrong; Ge Liya; Tan, Swee Ngin

    2007-01-01

    Silver nanoparticle synthesized from chemical reduction has been successfully utilized as a matrix in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) of peptides. Acting as a substrate to adsorb analytes, as well as a transmission medium for UV laser, silver nanoparticle was found to assist in the desorption/ionization of peptides with little or no induced fragmentation. The size of the nanoparticle was typically in the range of 160 ± 20 nm. One of the key advantages of silver nanoparticle for peptides analysis is its simple step for on-probe sample preparation. In addition, it also minimizes the interferences of sodium dodecyl sulfate (SDS) surfactant background signal, resulting in cleaner mass spectra and more sensitive signal, when compared to α-cyano-4-hydroxycinnamic acid (CCA) matrix

  3. Computer-Aided Design of Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Hancock, Robert E.W.; Jenssen, Håvard

    2010-01-01

    An increasing number of reported cases of drug resistant Staphylococcus aureus and Pseudomonas aeruginosa, demonstrate the urgent need for new therapeutics that are effective against such and other multi-drug resistant bacteria. Antimicrobial peptides have for two decades now been looked upon...... as interesting leads for development of new therapeutics combating these drug resistant microbes. High-throughput screening of peptide libraries have generated large amounts of information on peptide activities. However, scientists still struggle with explaining the specific peptide motifs resulting...... in antimicrobial activity. Consequently, the majority of peptides put into clinical trials have failed at some point, underlining the importance of a thorough peptide optimization. An important tool in peptide design and optimization is quantitative structure-activity relationship (QSAR) analysis, correlating...

  4. Natural and synthetic peptides with antifungal activity.

    Science.gov (United States)

    Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

    2016-08-01

    In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections.

  5. Synthesis and Characterization of a Gd-DOTA-D-Permeation Peptide for Magnetic Resonance Relaxation Enhancement of Intracellular Targets

    Directory of Open Access Journals (Sweden)

    Andrew M. Prantner

    2003-10-01

    Full Text Available Many MR contrast agents have been developed and proven effective for extracellular nontargeted applications, but exploitation of intracellular MR contrast agents has been elusive due to the permeability barrier of the plasma membrane. Peptide transduction domains can circumvent this permeability barrier and deliver cargo molecules to the cell interior. Based upon enhanced cellular uptake of permeation peptides with D-amino acid residues, an all-D Tat basic domain peptide was conjugated to DOTA and chelated to gadolinium. Gd-DOTA-D-Tat peptide in serum at room temperature showed a relaxivity of 7.94 ± 0.11 mM−1 sec−1 at 4.7 T. The peptide complex displayed no significant binding to serum proteins, was efficiently internalized by human Jurkat leukemia cells resulting in intracellular T1 relaxation enhancement, and in preliminary T1-weighted MRI experiments, significantly enhanced liver, kidney, and mesenteric signals.

  6. Prolonged signal-averaged P wave duration as a prognostic marker for morbidity and mortality in patients with congestive heart failure

    DEFF Research Database (Denmark)

    Dixen, Ulrik; Wallevik, Laura; Hansen, Maja

    2003-01-01

    To evaluate the prognostic roles of prolonged signal-averaged P wave duration (SAPWD), raised levels of natriuretic peptides, and clinical characteristics in patients with stable congestive heart failure (CHF).......To evaluate the prognostic roles of prolonged signal-averaged P wave duration (SAPWD), raised levels of natriuretic peptides, and clinical characteristics in patients with stable congestive heart failure (CHF)....

  7. Extracellular Matrix Glycoprotein-Derived Synthetic Peptides Differentially Modulate Glioma and Sarcoma Cell Migration.

    Science.gov (United States)

    Brösicke, Nicole; Sallouh, Muhammad; Prior, Lisa-Marie; Job, Albert; Weberskirch, Ralf; Faissner, Andreas

    2015-07-01

    Glycoproteins of the extracellular matrix (ECM) regulate proliferation, migration, and differentiation in numerous cell lineages. ECM functions are initiated by small peptide sequences embedded in large constituents that are recognized by specific cellular receptors. In this study, we have investigated the biological effects of peptides derived from collagen type IV and tenascin-C compared to the well-known RGD peptide originally discovered in fibronectin. The influence of glycoproteins and corresponding peptides on the migration of the glioma cell lines U-251-MG and U-373-MG and the sarcoma line S-117 was studied. When the cell lines were tested in a modified Boyden chamber assay on filters coated with the ECM glycoproteins, glioma cells showed a strong migration response on tenascin-C and the basal lamina constituent collagen IV, in contrast to S-117 cells. In order to identify relevant stimulatory motifs, peptides derived from fibronectin (6NHX-GRGDSF), tenascin-C (TN-C, VSWRAPTA), and collagen type IV (MNYYSNS) were compared, either applied in solution in combination with ECM glycoprotein substrates, in solution in the presence of untreated membranes, or coated on the filters of the Boyden chambers. Using this strategy, we could identify the novel tenascin-C-derived peptide motif VSWRAPTA as a migration stimulus for glioma cells. Furthermore, while kin peptides generally blocked the effects of the respective homologous ECM proteins, unexpected effects were observed in heterologous situations. There, in several cases, addition of soluble peptides strongly boosted the response to the coated ECM proteins. We propose that peptides may synergize or antagonize each other by stimulating different signaling pathways.

  8. Coumarin tags for analysis of peptides by MALDI-TOF MS and MS/MS. 2. Alexa Fluor 350 tag for increased peptide and protein Identification by LC-MALDI-TOF/TOF MS.

    Science.gov (United States)

    Pashkova, Anna; Chen, Hsuan-Shen; Rejtar, Tomas; Zang, Xin; Giese, Roger; Andreev, Victor; Moskovets, Eugene; Karger, Barry L

    2005-04-01

    The goal of this study was the development of N-terminal tags to improve peptide identification using high-throughput MALDI-TOF/TOF MS. Part 1 of the study was focused on the influence of derivatization on the intensities of MALDI-TOF MS signals of peptides. In part 2, various derivatization approaches for the improvement of peptide fragmentation efficiency in MALDI-TOF/TOF MS are explored. We demonstrate that permanent cation tags, while significantly improving signal intensity in the MS mode, lead to severe suppression of MS/MS fragmentation, making these tags unsuitable for high-throughput MALDI-TOF/TOF MS analysis. In the present work, it was found that labeling with Alexa Fluor 350, a coumarin tag containing a sulfo group, along with guanidation of epsilon-amino groups of Lys, could enhance unimolecular fragmentation of peptides with the formation of a high-intensity y-ion series, while the peptide intensities in the MS mode were not severely affected. LC-MALDI-TOF/TOF MS analysis of tryptic peptides from the SCX fractions of an E. coli lysate revealed improved peptide scores, a doubling of the total number of peptides, and a 30% increase in the number of proteins identified, as a result of labeling. Furthermore, by combining the data from native and labeled samples, confidence in correct identification was increased, as many proteins were identified by different peptides in the native and labeled data sets. Additionally, derivatization was found not to impair chromatographic behavior of peptides. All these factors suggest that labeling with Alexa Fluor 350 is a promising approach to the high-throughput LC-MALDI-TOF/TOF MS analysis of proteomic samples.

  9. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    International Nuclear Information System (INIS)

    Park, Ji-Ae; Lee, Yong Jin; Ko, In Ok; Kim, Tae-Jeong; Chang, Yongmin; Lim, Sang Moo; Kim, Kyeong Min; Kim, Jung Young

    2014-01-01

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images

  10. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Ae, E-mail: jpark@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yong Jin; Ko, In Ok [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Tae-Jeong; Chang, Yongmin [Institute of Biomedical Engineering, Kyungpook National University, Daegu (Korea, Republic of); Lim, Sang Moo [Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kyeong Min [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jung Young, E-mail: jykim@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2014-12-12

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.

  11. Degradation and antioxidant activities of peptides and zinc-peptide complexes during in vitro gastrointestinal digestion.

    Science.gov (United States)

    Wang, Chan; Li, Bo; Wang, Bo; Xie, Ningning

    2015-04-15

    The degradation characteristics of three peptides (Ser-Met, Asn-Cys-Ser, and glutathione) and their zinc-peptide complexes were studied using a two-stage in vitro digestion model. Enzyme-resistant peptides and zinc-peptide complexes, antioxidant activities, and free amino acids released by digestive enzymes, were measured in this study. The results revealed that the three peptides and their zinc-peptide complexes were resistant to pepsin but not to pancreatin. Pancreatin can partly hydrolyse both peptides and zinc-peptide complexes, but more than half of them remaining in their original form after gastrointestinal digestion. The coordination of zinc improved the enzymatic resistance of the peptide due to lower solubility of complexes and affected the hydrolytic site of pepsin and pancreatin. Zinc-Asn-Cys-Ser, which is highly resistant to enzymatic hydrolysis and maintains Zn in a soluble form, may have potential to improve Zn bioavailability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Analysis of peptide uptake and location of root hair-promoting peptide accumulation in plant roots.

    Science.gov (United States)

    Matsumiya, Yoshiki; Taniguchi, Rikiya; Kubo, Motoki

    2012-03-01

    Peptide uptake by plant roots from degraded soybean-meal products was analyzed in Brassica rapa and Solanum lycopersicum. B. rapa absorbed about 40% of the initial water volume, whereas peptide concentration was decreased by 75% after 24 h. Analysis by reversed-phase HPLC showed that number of peptides was absorbed by the roots during soaking in degraded soybean-meal products for 24 h. Carboxyfluorescein-labeled root hair-promoting peptide was synthesized, and its localization, movement, and accumulation in roots were investigated. The peptide appeared to be absorbed by root hairs and then moved to trichoblasts. Furthermore, the peptide was moved from trichoblasts to atrichoblasts after 24 h. The peptide was accumulated in epidermal cells, suggesting that the peptide may have a function in both trichoblasts and atrichoblasts. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  13. Sequence-specific inhibition of duck hepatitis B virus reverse transcription by peptide nucleic acids (PNA)

    DEFF Research Database (Denmark)

    Robaczewska, Magdalena; Narayan, Ramamurthy; Seigneres, Beatrice

    2005-01-01

    BACKGROUND/AIMS: Peptide nucleic acids (PNAs) appear as promising new antisense agents, that have not yet been examined as hepatitis B virus (HBV) inhibitors. Our aim was to study the ability of PNAs targeting the duck HBV (DHBV) encapsidation signal epsilon to inhibit reverse transcription (RT...

  14. Ghrelin and other gastrointestinal peptides involved in the control of food intake.

    Science.gov (United States)

    Tassone, F; Broglio, F; Gianotti, L; Arvat, E; Ghigo, E; Maccario, M

    2007-01-01

    The increasing prevalence of obesity has triggered intense research on its pharmacotherapy. Besides central neuroendocrine pathways, many peripheral endocrino-metabolic signals have been investigated, but only few are probably of some utility in weight loss. This review reports about ghrelin and other gastrointestinal peptides involved in hunger and satiety.

  15. Modulation of taste responsiveness by the satiation hormone peptide YY.

    Science.gov (United States)

    La Sala, Michael S; Hurtado, Maria D; Brown, Alicia R; Bohórquez, Diego V; Liddle, Rodger A; Herzog, Herbert; Zolotukhin, Sergei; Dotson, Cedrick D

    2013-12-01

    It has been hypothesized that the peripheral taste system may be modulated in the context of an animal's metabolic state. One purported mechanism for this phenomenon is that circulating gastrointestinal peptides modulate the functioning of the peripheral gustatory system. Recent evidence suggests endocrine signaling in the oral cavity can influence food intake (FI) and satiety. We hypothesized that these hormones may be affecting FI by influencing taste perception. We used immunohistochemistry along with genetic knockout models and the specific reconstitution of peptide YY (PYY) in saliva using gene therapy protocols to identify a role for PYY signaling in taste. We show that PYY is expressed in subsets of taste cells in murine taste buds. We also show, using brief-access testing with PYY knockouts, that PYY signaling modulates responsiveness to bitter-tasting stimuli, as well as to lipid emulsions. We show that salivary PYY augmentation, via viral vector therapy, rescues behavioral responsiveness to a lipid emulsion but not to bitter stimuli and that this response is likely mediated via activation of Y2 receptors localized apically in taste cells. Our findings suggest distinct functions for PYY produced locally in taste cells vs. that circulating systemically.

  16. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    Multi-drug resistance to antibiotics represents a global health challenge that results in increased morbidity and mortality rates. The annual death-toll is >700.000 people world-wide, rising to ~10 million by 2050. New antibiotics are lacking, and few are under development as return on investment...... is considered poor compared to medicines for lifestyle diseases. According to the WHO we could be moving towards a post-antibiotic era in which previously treatable infections become fatal. Of special importance are multidrug resistant bacteria from the ESKAPE group (Enterococcus faecium, Staphylococcus aureus...... and toxicity by utilizing of the fruit fly Drosophila melanogaster as a whole animal model. This was carried out by testing of antimicrobial peptides targeting Gram-positive bacteria exemplified by the important human pathogen methicillin resistant S. aureus (MRSA). The peptide BP214 was developed from...

  17. Structural Basis of Rap Phosphatase Inhibition by Phr Peptides

    Science.gov (United States)

    Gallego del Sol, Francisca; Marina, Alberto

    2013-01-01

    Two-component systems, composed of a sensor histidine kinase and an effector response regulator (RR), are the main signal transduction devices in bacteria. In Bacillus, the Rap protein family modulates complex signaling processes mediated by two-component systems, such as competence, sporulation, or biofilm formation, by inhibiting the RR components involved in these pathways. Despite the high degree of sequence homology, Rap proteins exert their activity by two completely different mechanisms of action: inducing RR dephosphorylation or blocking RR binding to its target promoter. However the regulatory mechanism involving Rap proteins is even more complex since Rap activity is antagonized by specific signaling peptides (Phr) through a mechanism that remains unknown at the molecular level. Using X-ray analyses, we determined the structure of RapF, the anti-activator of competence RR ComA, alone and in complex with its regulatory peptide PhrF. The structural and functional data presented herein reveal that peptide PhrF blocks the RapF-ComA interaction through an allosteric mechanism. PhrF accommodates in the C-terminal tetratricopeptide repeat domain of RapF by inducing its constriction, a conformational change propagated by a pronounced rotation to the N-terminal ComA-binding domain. This movement partially disrupts the ComA binding site by triggering the ComA disassociation, whose interaction with RapF is also sterically impaired in the PhrF-induced conformation of RapF. Sequence analyses of the Rap proteins, guided by the RapF-PhrF structure, unveil the molecular basis of Phr recognition and discrimination, allowing us to relax the Phr specificity of RapF by a single residue change. PMID:23526880

  18. Peptide-targeted polymer cancerostatics

    Czech Academy of Sciences Publication Activity Database

    Böhmová, Eliška; Pola, Robert

    2016-01-01

    Roč. 65, Suppl. 2 (2016), S153-S164 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : HPMA copolymers * tumor targeting * peptides Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.461, year: 2016 http://www.biomed.cas.cz/physiolres/pdf/65%20Suppl%202/65_S153.pdf

  19. Biopharmaceuticals: From peptide to drug

    Science.gov (United States)

    Hannappel, Margarete

    2017-08-01

    Biologics are therapeutic proteins or peptides that are produced by means of biological processes within living organisms and cells. They are highly specific molecules and play a crucial role as therapeutics for the treatment of severe and chronic diseases (e.g. cancer, rheumatoid arthritis, diabetes, autoimmune disorders). The development of new biologics and biologics-based drugs gains more and more importance in the fight against various diseases. A short overview on biotherapeutical drug development is given. Cone snails are a large group of poisonous, predatory sea snails with more than 700 species. They use a very powerful venom which rapidly inactivates and paralyzes their prey. Most bioactive venom components are small peptides (conotoxins, conopeptides) which are precisely directed towards a specific target (e.g. ion channel, receptors). Due to their small size, their precision and speed of action, naturally occurring cone snail venom peptides represent an attractive source for the identification and design of novel biological drug entities. The Jagna cone snail project is an encouraging initiative to map the ecological variety of cone snails around the island of Bohol (Philippines) and to conserve the biological information for potential future application.

  20. Coffee, hunger, and peptide YY.

    Science.gov (United States)

    Greenberg, James A; Geliebter, Allan

    2012-06-01

    There is evidence from several empirical studies suggesting that coffee may help people control body weight. Our objective was to assess the effects of caffeine, caffeinated coffee, and decaffeinated coffee, both alone and in combination with 75 g of glucose, on perceived hunger and satiety and related peptides. We conducted a placebo-controlled single-blinded randomized 4-way crossover trial. Eleven healthy male volunteers (mean age, 23.5 ± 5.7 years; mean BMI, 23.6 ± 4.2 kg/m(2)) ingested 1 of 3 test beverages (caffeine in water, caffeinated coffee, or decaffeinated coffee) or placebo (water), and 60 minutes later they ingested the glucose. Eight times during each laboratory visit, hunger and satiety were assessed by visual analog scales, and blood samples were drawn to measure 3 endogenous peptides associated with hunger and satiety: ghrelin, peptide YY (PYY), and leptin. Compared to placebo, decaffeinated coffee yielded significantly lower hunger during the whole 180-minute study period and higher plasma PYY for the first 90 minutes (p hunger or PYY. Caffeinated coffee showed a pattern between that of decaffeinated coffee and caffeine in water. These findings suggest that one or more noncaffeine ingredients in coffee may have the potential to decrease body weight. Glucose ingestion did not change the effects of the beverages. Our randomized human trial showed that decaffeinated coffee can acutely decrease hunger and increase the satiety hormone PYY.

  1. Chemical methods for peptide and protein production.

    Science.gov (United States)

    Chandrudu, Saranya; Simerska, Pavla; Toth, Istvan

    2013-04-12

    Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported α-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  2. Chemical Methods for Peptide and Protein Production

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-04-01

    Full Text Available Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported a-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  3. Natriuretic Peptides: Biochemistry, Physiology, Clinical Implication

    Directory of Open Access Journals (Sweden)

    I. A. Kozlova

    2009-01-01

    Full Text Available In the past years, the interest of theorists and clinicians has steadily increased in the myocardially secreted hormones – natriuretic peptides. At the Congress of the European Society of Anesthesiology (Munich, 2007, B-type natriuretic peptides were included into the list of the parameters of perioperative laboratory monitoring that is expedient in the practice of anesthetists and resuscitation specialists. The literature review shows the history of discovery and identification of different types of natriuretic peptides and considers the matters of their biochemistry. It also details information on the synthesis, secretion, and clearance of these peptides, as well as their receptor apparatus in various organs and tissues. The physiology of the regulatory system is described, as applied to the cardiovascular, excretory, central nervous systems, and the neuroendocrine one. Special attention is given to the current publications on the control of B-type natriuretic peptides as biomarkers of cardiac dysfunction. The diagnostic and prognostic values of peptides are analyzed in chronic circulatory insufficiency, coronary heart disease, and other car-diological and non-cardiological diseases. The prognostic value of elevated B-type natriuretic peptide levels in cardiac surgery is separately considered. It is concluded that the changes in the level of B-type natriuretic peptides in different clinical situations are the subject of numerous researches mainly made in foreign countries. The bulk of these researches are devoted to the study of peptides in cardiology and other areas of therapy. Studies on the use of peptides in reanimatology are relatively few and their results are rather discordant. The foregoing opens up wide prospects for studying the use of B-type natriuretic peptides in Russian intensive care and anesthesiology. Key words: natriuretic peptides, brain nautriuretic peptides, NT-proBNP.

  4. Prosocial Signalling

    DEFF Research Database (Denmark)

    Kahsay, Goytom Abraha

    signalling can cause reverse price reactions resembling the crowding-out of pre-existing motives for prosocial behavior seen in situations of volunteering and charitable giving. Using a unique combination of questionnaire and purchase panel data, it presents evidence of such reputation-driven reverse price...... reactions in the Danish market for organic milk. The second paper proposes a self-image model to account consumers’ behaviour under PWYW. It finds that when a good’s fixed price is lower than an exogenously given threshold fair value, PWYW can lead to a lower utility, which may lead to lower purchase rate...

  5. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    Full Text Available As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32 can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized

  6. PptAB Exports Rgg Quorum-Sensing Peptides in Streptococcus.

    Directory of Open Access Journals (Sweden)

    Jennifer C Chang

    Full Text Available A transposon mutagenesis screen designed to identify mutants that were defective in peptide-pheromone signaling of the Rgg2/Rgg3 pathway in Streptococcus pyogenes generated insertions in sixteen loci displaying diminished reporter activity. Fourteen unique transposon insertions were mapped to pptAB, an ABC-type transporter recently described to export sex pheromones of Enterococcus faecalis. Consistent with an idea that PptAB exports signaling peptides, the pheromones known as SHPs (short hydrophobic peptides were no longer detected in cell-free culture supernatants in a generated deletion mutant of pptAB. PptAB exporters are conserved among the Firmicutes, but their function and substrates remain unclear. Therefore, we tested a pptAB mutant generated in Streptococcus mutans and found that while secretion of heterologously expressed SHP peptides required PptAB, secretion of the S. mutans endogenous pheromone XIP (sigX inducing peptide was only partially disrupted, indicating that a secondary secretion pathway for XIP exists.

  7. PptAB Exports Rgg Quorum-Sensing Peptides in Streptococcus.

    Science.gov (United States)

    Chang, Jennifer C; Federle, Michael J

    2016-01-01

    A transposon mutagenesis screen designed to identify mutants that were defective in peptide-pheromone signaling of the Rgg2/Rgg3 pathway in Streptococcus pyogenes generated insertions in sixteen loci displaying diminished reporter activity. Fourteen unique transposon insertions were mapped to pptAB, an ABC-type transporter recently described to export sex pheromones of Enterococcus faecalis. Consistent with an idea that PptAB exports signaling peptides, the pheromones known as SHPs (short hydrophobic peptides) were no longer detected in cell-free culture supernatants in a generated deletion mutant of pptAB. PptAB exporters are conserved among the Firmicutes, but their function and substrates remain unclear. Therefore, we tested a pptAB mutant generated in Streptococcus mutans and found that while secretion of heterologously expressed SHP peptides required PptAB, secretion of the S. mutans endogenous pheromone XIP (sigX inducing peptide) was only partially disrupted, indicating that a secondary secretion pathway for XIP exists.

  8. FAMILY OF FLP PEPTIDES IN CAENORHABDITIS ELEGANS AND RELATED NEMATODES

    Directory of Open Access Journals (Sweden)

    Chris eLi

    2014-10-01

    Full Text Available Neuropeptides regulate all aspects of behavior in multicellular organisms. Because of their ability to act at long distances, neuropeptides can exert their effects beyond the conventional synaptic connections, thereby adding an intricate layer of complexity to the activity of neural networks. In the nematode Caenorhabditis elegans, a large number of neuropeptide genes that are expressed throughout the nervous system has been identified. The actions of these peptides supplement the synaptic connections of the 302 neurons, allowing for fine tuning of neural networks and increasing the ways in which behaviors can be regulated. In this review, we focus on a large family of genes encoding FMRFamide-related peptides. These genes, the flp genes, have been used as a starting point to identifying flp genes throughout Nematoda. Nematodes have the largest family of FMRFamide-related peptides described thus far. The challenges in the future are the elucidation of their functions and the identification of the receptors and signaling pathways through which they function.

  9. Mass Spectrometry Imaging and Identification of Peptides Associated with Cephalic Ganglia Regeneration in Schmidtea mediterranea*

    Science.gov (United States)

    Ong, Ta-Hsuan; Romanova, Elena V.; Roberts-Galbraith, Rachel H.; Yang, Ning; Zimmerman, Tyler A.; Collins, James J.; Lee, Ji Eun; Kelleher, Neil L.; Newmark, Phillip A.; Sweedler, Jonathan V.

    2016-01-01

    Tissue regeneration is a complex process that involves a mosaic of molecules that vary spatially and temporally. Insights into the chemical signaling underlying this process can be achieved with a multiplex and untargeted chemical imaging method such as mass spectrometry imaging (MSI), which can enable de novo studies of nervous system regeneration. A combination of MSI and multivariate statistics was used to differentiate peptide dynamics in the freshwater planarian flatworm Schmidtea mediterranea at different time points during cephalic ganglia regeneration. A protocol was developed to make S. mediterranea tissues amenable for MSI. MS ion images of planarian tissue sections allow changes in peptides and unknown compounds to be followed as a function of cephalic ganglia regeneration. In conjunction with fluorescence imaging, our results suggest that even though the cephalic ganglia structure is visible after 6 days of regeneration, the original chemical composition of these regenerated structures is regained only after 12 days. Differences were observed in many peptides, such as those derived from secreted peptide 4 and EYE53-1. Peptidomic analysis further identified multiple peptides from various known prohormones, histone proteins, and DNA- and RNA-binding proteins as being associated with the regeneration process. Mass spectrometry data also facilitated the identification of a new prohormone, which we have named secreted peptide prohormone 20 (SPP-20), and is up-regulated during regeneration in planarians. PMID:26884331

  10. Purification, characterisation and cDNA cloning of an antimicrobial peptide from Macadamia integrifolia.

    Science.gov (United States)

    Marcus, J P; Goulter, K C; Green, J L; Harrison, S J; Manners, J M

    1997-03-15

    An antimicrobial peptide with no significant amino acid sequence similarity to previously described peptides has been isolated from the nut kernels of Macadcamia integrifolia. The peptide, termed MiAMP1, is highly basic with an estimated pI of 10.1, a mass of 8.1 kDa and contains 76 amino acids including 6 cysteine residues. A cDNA clone containing the entire coding region corresponding to the peptide was obtained. The deduced amino acid sequence of the cDNA indicated a 26-amino-acid signal peptide at the N-terminus of the preprotein. Purified MiAMP1 inhibited the growth of a variety of fungal, oomycete and gram-positive bacterial phytopathogens in vitro. Some pathogens exhibited close to 100% inhibition in less than 1 microM peptide (5 microg/ml). Antimicrobial activity was diminished against most, but not all, microbes in the presence of calcium and potassium chloride salts (1 mM and 50 mM, respectively). MiAMP1 was active against bakers yeast, was inactive against Escherichia coli and was non-toxic to plant and mammalian cells. Analysis of genomic DNA indicated that MiAMP1 was encoded on a single copy gene containing no introns. The MiAMP1 gene may prove useful in genetic manipulations to increase disease resistance in transgenic plants.

  11. Potent peptidic fusion inhibitors of influenza virus

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, Rameshwar U.; Juraszek, Jarek; Brandenburg, Boerries; Buyck, Christophe; Schepens, Wim B. G.; Kesteleyn, Bart; Stoops, Bart; Vreeken, Rob J.; Vermond, Jan; Goutier, Wouter; Tang, Chan; Vogels, Ronald; Friesen, Robert H. E.; Goudsmit, Jaap; van Dongen, Maria J. P.; Wilson, Ian A.

    2017-09-28

    Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH–induced conformational rearrangements associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule– and peptide-based therapeutics against influenza virus.

  12. Designing anticancer peptides by constructive machine learning.

    Science.gov (United States)

    Grisoni, Francesca; Neuhaus, Claudia; Gabernet, Gisela; Müller, Alex; Hiss, Jan; Schneider, Gisbert

    2018-04-21

    Constructive machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a generative model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on alpha-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Second extracellular loop of human glucagon-like peptide-1 receptor (GLP-1R) has a critical role in GLP-1 peptide binding and receptor activation.

    Science.gov (United States)

    Koole, Cassandra; Wootten, Denise; Simms, John; Miller, Laurence J; Christopoulos, Arthur; Sexton, Patrick M

    2012-02-03

    The glucagon-like peptide-1 receptor (GLP-1R) is a therapeutically important family B G protein-coupled receptor (GPCR) that is pleiotropically coupled to multiple signaling effectors and, with actions including regulation of insulin biosynthesis and secretion, is one of the key targets in the management of type II diabetes mellitus. However, there is limited understanding of the role of the receptor core in orthosteric ligand binding and biological activity. To assess involvement of the extracellular loop (ECL) 2 in ligand-receptor interactions and receptor activation, we performed alanine scanning mutagenesis of loop residues and assessed the impact on receptor expression and GLP-1(1-36)-NH(2) or GLP-1(7-36)-NH(2) binding and activation of three physiologically relevant signaling pathways as follows: cAMP formation, intracellular Ca(2+) (Ca(2+)(i)) mobilization, and phosphorylation of extracellular signal-regulated kinases 1 and 2 (pERK1/2). Although antagonist peptide binding was unaltered, almost all mutations affected GLP-1 peptide agonist binding and/or coupling efficacy, indicating an important role in receptor activation. However, mutation of several residues displayed distinct pathway responses with respect to wild type receptor, including Arg-299 and Tyr-305, where mutation significantly enhanced both GLP-1(1-36)-NH(2)- and GLP-1(7-36)-NH(2)-mediated signaling bias for pERK1/2. In addition, mutation of Cys-296, Trp-297, Asn-300, Asn-302, and Leu-307 significantly increased GLP-1(7-36)-NH(2)-mediated signaling bias toward pERK1/2. Of all mutants studied, only mutation of Trp-306 to alanine abolished all biological activity. These data suggest a critical role of ECL2 of the GLP-1R in the activation transition(s) of the receptor and the importance of this region in the determination of both GLP-1 peptide- and pathway-specific effects.

  14. Use of Galerina marginata genes and proteins for peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2016-03-01

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  15. Use of Galerina marginata genes and proteins for peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2017-03-21

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  16. Use of galerina marginata genes and proteins for peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2018-04-03

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  17. Production of peptide antisera specific for mouse and rat proinsulin C-peptide 2

    DEFF Research Database (Denmark)

    Blume, N; Madsen, O D; Kofod, Hans

    1990-01-01

    Mice and rats have two functional non-allelic insulin genes. By using a synthetic peptide representing a common sequence in mouse and rat C-peptide 2 as antigen, we have produced rabbit antisera specific for an epitope which is not present in mouse or rat C-peptide 1. Long-term immunization did...... not seem to increase the end point titre as tested in direct ELISA. The specificity of the antiserum was determined by competitive ELISA and histochemistry on pancreas sections. Only the synthetic C-peptide 2, but not the homologous synthetic C-peptide 1 from mouse and rat competed efficiently in ELISA...... for antibody binding to the immunizing antigen. Antisera to C-peptide 2, stained islet beta-cells on mouse and rat, but not monkey pancreas sections in immunocytochemical analysis. Preabsorption to the synthetic C-peptide 2, but not the synthetic mouse and rat C-peptide 1 abolished staining. In conclusion we...

  18. Synthetic peptide vaccines: palmitoylation of peptide antigens by a thioester bond increases immunogenicity

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Tesser, G.I.

    1997-01-01

    Synthetic peptides have frequently been used to immunize animals. However, peptides less than about 20 to 30 amino acids long are poor immunogens. In general, to increase its immunogenicity, the presentation of the peptide should be improved, and molecular weight needs to be increased. Many...... attempts have been made to couple peptide immunogens to different carrier proteins [e.g. keyhole limper haemocyanin (KLH) or ovalbumin]. This leads to very complex structures, however. We used a controlled conjugation of a peptide to a single long-chain fatty acid like palmitic acid by a thioester...... or an amide bond. It was found that these S-palmitoylated peptides were much more immunogenic than N-palmitoylated peptides and at least similar to KLH-conjugated peptides with respect to appearance and magnitude of induced antibodies (canine parvovirus) or immunocastration effect (gonadotropin...

  19. An Evaluation of Peptide-Bond Isosteres

    OpenAIRE

    Choudhary, Amit; Raines, Ronald T.

    2011-01-01

    Peptide-bond isosteres can enable a deep interrogation of the structure and function of a peptide or protein by amplifying or attenuating particular chemical properties. In this minireview, the electronic, structural, and conformational attributes of four such isosteres—thioamides, esters, alkenes, and fluoroalkenes—are examined in detail. In particular, the ability of these isosteres to partake in noncovalent interactions is compared with that of the peptide bond. The consequential perturbat...

  20. Restriction of anti-peptide antibody specificity by enzyme-modified Sepharose-peptide immunoadsorbents.

    Science.gov (United States)

    Trinca, M L; Muratti, E; Camera, M; Chersi, A

    1988-06-01

    Sepharose-peptide immunoadsorbents, employed for the isolation of specific antibodies from the sera of rabbits immunized with carrier protein-peptide conjugates, were digested with suitable proteolytic enzymes, in order to obtain the splitting of a part of the peptide bound to the gel. This new modified immunoadsorbent can be advantageously used for the isolation of antibody subsets, that do not cross-react with related peptides exhibiting high sequence homology with the immunogens.

  1. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    This thesis describes the design and synthesis of peptide-based serine protease inhibitors. The targeted protease, urokinase-type plasminogen activator (uPA) activates plasminogen, which plays a major role in cancer metastasis. The peptide upain-2 (S 1 ,S 12-cyclo-AcCSWRGLENHAAC-NH2) is a highly...... of novel peptide-based protease inhibitors, efforts were made towards improved methods for peptide synthesis. The coupling of Fmoc-amino acids onto N-methylated peptidyl resins was investigated. These couplings can be low yielding and the effect of the use of microwave heating combined with the coupling...

  2. Ligand selectivity of a synthetic CXCR4 mimetic peptide.

    Science.gov (United States)

    Groß, Andrea; Brox, Regine; Damm, Dominik; Tschammer, Nuška; Schmidt, Barbara; Eichler, Jutta

    2015-07-15

    The chemokine receptor CXCR4 belongs to the family of seven-transmembrane G-protein coupled receptors (GPCRs). It is activated by its natural ligand SDF-1α. In addition, CXCR4, along with CCR5, serve as coreceptors during HIV-1 entry into its target cell. Recently, we introduced a CXCR4 mimetic peptide, termed CX4-M1, which presents the three extracellular loops (ECLs) of the receptor. CX4-M1 was shown to selectively bind to gp120 of X4-tropic, that is, CXCR4 using, HIV-1, as well as to peptides that present the V3-loops of these gp120 proteins. Furthermore, CX4-M1 selectively inhibits infection of cells with X4-tropic HIV-1. We have now adapted the sequence of the ECLs presented by CX4-M1 to the recently published crystal structure of CXCR4. The binding behavior, as well as the effect on HIV-1 infection, of the resulting peptide (CX4-Mc) was very similar to CX4-M1, validating retrospectively the original design of CX4-M1. A peptide presenting the ECLs of CCR5 (CR5-M), on the other hand, did neither bind to gp120 from X4-tropic HIV-1, nor did it inhibit infection of cells with X4-tropic HIV-1. Furthermore, we could show that CX4-M1, as well as CX4-Mc, but not CR5-M, are selectively recognized by anti-CXCR4 antibodies, bind to SDF-1α, and also inhibit SDF-1α signaling, extending the scope of selective functional CXCR4 mimicry through CX4-M1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Destabilization of Human Insulin Fibrils by Peptides of Fruit Bromelain Derived From Ananas comosus (Pineapple).

    Science.gov (United States)

    Das, Sromona; Bhattacharyya, Debasish

    2017-12-01

    Deposition of insulin aggregates in human body leads to dysfunctioning of several organs. Effectiveness of fruit bromelain from pineapple in prevention of insulin aggregate was investigated. Proteolyses of bromelain was done as par human digestive system and the pool of small peptides was separated from larger peptides and proteins. Under conditions of growth of insulin aggregates from its monomers, this pool of peptides restricted the reaction upto formation of oligomers of limited size. These peptides also destabilized preformed insulin aggregates to oligomers. These processes were followed fluorimetrically using Thioflavin T and 1-ANS, size-exclusion HPLC, dynamic light scattering, atomic force microscopy, and transmission electron microscopy. Sequences of insulin (A and B chains) and bromelain were aligned using Clustal W software to predict most probable sites of interactions. Synthetic tripeptides corresponding to the hydrophobic interactive sites of bromelain showed disaggregation of insulin suggesting specificity of interactions. The peptides GG and AAA serving as negative controls showed no potency in destabilization of aggregates. Disaggregation potency of the peptides was also observed when insulin was deposited on HepG2 liver cells where no formation of toxic oligomers occurred. Amyloidogenic des-octapeptide (B23-B30 of insulin) incapable of cell signaling showed cytotoxicity similar to insulin. This toxicity could be neutralized by bromelain derived peptides. FT-IR and far-UV circular dichroism analysis indicated that disaggregated insulin had structure distinctly different from that of its hexameric (native) or monomeric states. Based on the stoichiometry of interaction and irreversibility of disaggregation, the mechanism/s of the peptides and insulin interactions has been proposed. J. Cell. Biochem. 118: 4881-4896, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Sum Frequency Generation Vibrational Spectroscopy Studies on ModelPeptide Adsorption at the Hydrophobic Solid-Water and HydrophilicSolid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    York, Roger L. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been used to study the interfacial structure of several polypeptides and amino acids adsorbed to hydrophobic and hydrophilic surfaces under a variety of experimental conditions. Peptide sequence, peptide chain length, peptide hydrophobicity, peptide side-chain type, surface hydrophobicity, and solution ionic strength all affect an adsorbed peptide's interfacial structure. Herein, it is demonstrated that with the choice of simple, model peptides and amino acids, surface specific SFG vibrational spectroscopy can be a powerful tool to elucidate the interfacial structure of these adsorbates. Herein, four experiments are described. In one, a series of isosequential amphiphilic peptides are synthesized and studied when adsorbed to both hydrophobic and hydrophilic surfaces. On hydrophobic surfaces of deuterated polystyrene, it was determined that the hydrophobic part of the peptide is ordered at the solid-liquid interface, while the hydrophilic part of the peptide appears to have a random orientation at this interface. On a hydrophilic surface of silica, it was determined that an ordered peptide was only observed if a peptide had stable secondary structure in solution. In another experiment, the interfacial structure of a model amphiphilic peptide was studied as a function of the ionic strength of the solution, a parameter that could change the peptide's secondary structure in solution. It was determined that on a hydrophobic surface, the peptide's interfacial structure was independent of its structure in solution. This was in contrast to the adsorbed structure on a hydrophilic surface, where the peptide's interfacial structure showed a strong dependence on its solution secondary structure. In a third experiment, the SFG spectra of lysine and proline amino acids on both hydrophobic and hydrophilic surfaces were obtained by using a different experimental geometry that increases the SFG signal

  5. Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity

    Directory of Open Access Journals (Sweden)

    Vivier Melané A

    2008-07-01

    Full Text Available Abstract Background Latest research shows that small antimicrobial peptides play a role in the innate defense system of plants. These peptides typically contribute to preformed defense by developing protective barriers around germinating seeds or between different tissue layers within plant organs. The encoding genes could also be upregulated by abiotic and biotic stimuli during active defense processes. The peptides display a broad spectrum of antimicrobial activities. Their potent anti-pathogenic characteristics have ensured that they are promising targets in the medical and agricultural biotechnology sectors. Results A berry specific cDNA sequence designated Vv-AMP1, Vitis vinifera antimicrobial peptide 1, was isolated from Vitis vinifera. Vv-AMP1 encodes for a 77 amino acid peptide that shows sequence homology to the family of plant defensins. Vv-AMP1 is expressed in a tissue specific, developmentally regulated manner, being only expressed in berry tissue at the onset of berry ripening and onwards. Treatment of leaf and berry tissue with biotic or abiotic factors did not lead to increased expression of Vv-AMP1 under the conditions tested. The predicted signal peptide of Vv-AMP1, fused to the green fluorescent protein (GFP, showed that the signal peptide allowed accumulation of its product in the apoplast. Vv-AMP1 peptide, produced in Escherichia coli, had a molecular mass of 5.495 kDa as determined by mass spectrometry. Recombinant Vv-AMP1 was extremely heat-stable and showed strong antifungal activity against a broad spectrum of plant pathogenic fungi, with very high levels of activity against the wilting disease causing pathogens Fusarium oxysporum and Verticillium dahliae. The Vv-AMP1 peptide did not induce morphological changes on the treated fungal hyphae, but instead strongly inhibited hyphal elongation. A propidium iodide uptake assay suggested that the inhibitory activity of Vv-AMP1 might be associated with altering the membrane

  6. TAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst

    Science.gov (United States)

    Hermann, Clemens; van Hateren, Andy; Trautwein, Nico; Neerincx, Andreas; Duriez, Patrick J; Stevanović, Stefan; Trowsdale, John; Deane, Janet E; Elliott, Tim; Boyle, Louise H

    2015-01-01

    Our understanding of the antigen presentation pathway has recently been enhanced with the identification that the tapasin-related protein TAPBPR is a second major histocompatibility complex (MHC) class I-specific chaperone. We sought to determine whether, like tapasin, TAPBPR can also influence MHC class I peptide selection by functioning as a peptide exchange catalyst. We show that TAPBPR can catalyse the dissociation of peptides from peptide-MHC I complexes, enhance the loading of peptide-receptive MHC I molecules, and discriminate between peptides based on affinity in vitro. In cells, the depletion of TAPBPR increased the diversity of peptides presented on MHC I molecules, suggesting that TAPBPR is involved in restricting peptide presentation. Our results suggest TAPBPR binds to MHC I in a peptide-receptive state and, like tapasin, works to enhance peptide optimisation. It is now clear there are two MHC class I specific peptide editors, tapasin and TAPBPR, intimately involved in controlling peptide presentation to the immune system. DOI: http://dx.doi.org/10.7554/eLife.09617.001 PMID:26439010

  7. TAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst.

    Science.gov (United States)

    Hermann, Clemens; van Hateren, Andy; Trautwein, Nico; Neerincx, Andreas; Duriez, Patrick J; Stevanović, Stefan; Trowsdale, John; Deane, Janet E; Elliott, Tim; Boyle, Louise H

    2015-10-06

    Our understanding of the antigen presentation pathway has recently been enhanced with the identification that the tapasin-related protein TAPBPR is a second major histocompatibility complex (MHC) class I-specific chaperone. We sought to determine whether, like tapasin, TAPBPR can also influence MHC class I peptide selection by functioning as a peptide exchange catalyst. We show that TAPBPR can catalyse the dissociation of peptides from peptide-MHC I complexes, enhance the loading of peptide-receptive MHC I molecules, and discriminate between peptides based on affinity in vitro. In cells, the depletion of TAPBPR increased the diversity of peptides presented on MHC I molecules, suggesting that TAPBPR is involved in restricting peptide presentation. Our results suggest TAPBPR binds to MHC I in a peptide-receptive state and, like tapasin, works to enhance peptide optimisation. It is now clear there are two MHC class I specific peptide editors, tapasin and TAPBPR, intimately involved in controlling peptide presentation to the immune system.

  8. Connecting peptide (c-peptide) and the duration of diabetes mellitus ...

    African Journals Online (AJOL)

    Objective: C-peptide is derived from proinsulin and it is secreted in equimolar concentration with insulin. Plasma C-peptide is more stable than insulin and it provides an indirect measure of insulin secretory reserve and beta cell function. To determine relationship between C-peptide and duration of diabetes mellitus, age, ...

  9. Synthetic peptide vaccines: palmitoylation of peptide antigens by an thioester bond increases immunogenicity

    NARCIS (Netherlands)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Tesser, G.I.; Dalsgaard, K.; Langeveld, J.P.M.; Boshuizen, R.S.; Meloen, R.H.

    1997-01-01

    Synthetic peptides have frequently been used to immunize animals. However, peptides less than about 20 to 30 amino acids long are poor immunogens. In general, to increase its immunogenicity, the presentation of the peptide should be improved, and molecular weight needs to be increased. Many attempts

  10. Obviation of hydrogen fluoride in Boc chemistry solid phase peptide synthesis of peptide-αthioesters.

    Science.gov (United States)

    Gates, Zachary P; Dhayalan, Balamurugan; Kent, Stephen B H

    2016-11-29

    Under suitable conditions, trifluoromethanesulfonic acid performs comparably to hydrogen fluoride for the on-resin global deprotection of peptides prepared by Boc chemistry solid phase peptide synthesis (SPPS). Obviation of hydrogen fluoride in Boc chemistry SPPS enables the straightforward synthesis of peptide- α thioesters for use in native chemical ligation.

  11. Towards automated discrimination of lipids versus peptides from full scan mass spectra

    Directory of Open Access Journals (Sweden)

    Piotr Dittwald

    2014-09-01

    Full Text Available Although physicochemical fractionation techniques play a crucial role in the analysis of complex mixtures, they are not necessarily the best solution to separate specific molecular classes, such as lipids and peptides. Any physical fractionation step such as, for example, those based on liquid chromatography, will introduce its own variation and noise. In this paper we investigate to what extent the high sensitivity and resolution of contemporary mass spectrometers offers viable opportunities for computational separation of signals in full scan spectra. We introduce an automatic method that can discriminate peptide from lipid peaks in full scan mass spectra, based on their isotopic properties. We systematically evaluate which features maximally contribute to a peptide versus lipid classification. The selected features are subsequently used to build a random forest classifier that enables almost perfect separation between lipid and peptide signals without requiring ion fragmentation and classical tandem MS-based identification approaches. The classifier is trained on in silico data, but is also capable of discriminating signals in real world experiments. We evaluate the influence of typical data inaccuracies of common classes of mass spectrometry instruments on the optimal set of discriminant features. Finally, the method is successfully extended towards the classification of individual lipid classes from full scan mass spectral features, based on input data defined by the Lipid Maps Consortium.

  12. Atrial natriuretic peptides in plasma

    DEFF Research Database (Denmark)

    Goetze, Jens Peter; Hansen, Lasse H; Terzic, Dijana

    2014-01-01

    Measurement of cardiac natriuretic peptides in plasma has gained a diagnostic role in the assessment of heart failure. Plasma measurement is though hampered by the marked instability of the hormones, which has led to the development of analyses that target N-terminal fragments from the prohormone....... These fragments are stable in plasma and represent surrogate markers of the actual natriuretic hormone. Post-translational processing of the precursors, however, is revealing itself to be a complex event with new information still being reported on proteolysis, covalent modifications, and amino acid...

  13. Biodiscovery of Aluminum Binding Peptides

    Science.gov (United States)

    2013-08-01

    et al., "Biomimetic synthesis and patterning of silver nanoparticles," Nat. Mater. 1(3), 169-172 (2002). [5] Van Dorst, B., et al., "Phage display...Biotechnol. 68(4), 505-509 (2005). [10] Lee, Y. J., et al., "Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes...34Sequestration of zinc oxide by fimbrial designer chelators," Appl. Environ. Microbiol. 66(1), 10-14 (2000). [26] Hnilova, M., et al., "Peptide-directed co

  14. Effect of a Fusion Peptide by Covalent Conjugation of a Mitochondrial Cell-Penetrating Peptide and a Glutathione Analog Peptide

    Directory of Open Access Journals (Sweden)

    Carmine Pasquale Cerrato

    2017-06-01

    Full Text Available Previously, we designed and synthesized a library of mitochondrial antioxidative cell-penetrating peptides (mtCPPs superior to the parent peptide, SS31, to protect mitochondria from oxidative damage. A library of antioxidative glutathione analogs called glutathione peptides (UPFs, exceptional in hydroxyl radical elimination compared with glutathione, were also designed and synthesized. Here, a follow-up study is described, investigating the effects of the most promising members from both libraries on reactive oxidative species scavenging ability. None of the peptides influenced cell viability at the concentrations used. Fluorescence microscopy studies showed that the fluorescein-mtCPP1-UPF25 (mtgCPP internalized into cells, and spectrofluorometric analysis determined the presence and extent of peptide into different cell compartments. mtgCPP has superior antioxidative activity compared with mtCPP1 and UPF25 against H2O2 insult, preventing ROS formation by 2- and 3-fold, respectively. Moreover, we neither observed effects on mitochondrial membrane potential nor production of ATP. These data indicate that mtgCPP is targeting mitochondria, protecting them from oxidative damage, while also being present in the cytosol. Our hypothesis is based on a synergistic effect resulting from the fused peptide. The mitochondrial peptide segment is targeting mitochondria, whereas the glutathione analog peptide segment is active in the cytosol, resulting in increased scavenging ability.

  15. Plant natriuretic peptides are apoplastic and paracrine stress response molecules

    KAUST Repository

    Wang, Yuhua

    2011-04-07

    Higher plants contain biologically active proteins that are recognized by antibodies against human atrial natriuretic peptide (ANP). We identified and isolated two Arabidopsis thaliana immunoreactive plant natriuretic peptide (PNP)-encoding genes, AtPNP-A and AtPNP-B, which are distantly related members of the expansin superfamily and have a role in the regulation of homeostasis in abiotic and biotic stresses, and have shown that AtPNP-A modulates the effects of ABA on stomata. Arabidopsis PNP (PNP-A) is mainly expressed in leaf mesophyll cells, and in protoplast assays we demonstrate that it is secreted using AtPNP-A:green fluorescent protein (GFP) reporter constructs and flow cytometry. Transient reporter assays provide evidence that AtPNP-A expression is enhanced by heat, osmotica and salt, and that AtPNP-A itself can enhance its own expression, thereby generating a response signature diagnostic for paracrine action and potentially also autocrine effects. Expression of native AtPNP-A is enhanced by osmotica and transiently by salt. Although AtPNP-A expression is induced by salt and osmotica, ABA does not significantly modulate AtPNP-A levels nor does recombinant AtPNP-A affect reporter expression of the ABA-responsive RD29A gene. Together, these results provide experimental evidence that AtPNP-A is stress responsive, secreted into the apoplastic space and can enhance its own expression. Furthermore, our findings support the idea that AtPNP-A, together with ABA, is an important component in complex plant stress responses and that, much like in animals, peptide signaling molecules can create diverse and modular signals essential for growth, development and defense under rapidly changing environmental conditions. © 2011 The Author.

  16. peptide

    Indian Academy of Sciences (India)

    Prakash

    The effects on memory formation and cognitive abilities due to injection of amyloid fragments into the brain have been very inconsistent until now. It has been ... determining the molecular basis of the recognition and assembly processes fostering amyloid-fibril formation is a very complicated task. Moreover, the synthesis of ...

  17. IDENTIFICATION OF THE POTENTIAL ACTIVE-SITE OF THE SIGNAL PEPTIDASE SIPS OF BACILLUS-SUBTILIS - STRUCTURAL AND FUNCTIONAL SIMILARITIES WITH LEXA-LIKE PROTEASES

    NARCIS (Netherlands)

    VANDIJL, JM; DEJONG, A; VENEMA, G; BRON, S

    1995-01-01

    Signal peptidases remove signal peptides from secretory proteins. By comparing the type I signal peptidase, SipS, of Bacillus subtilis with signal peptidases from prokaryotes, mitochondria, and the endoplasmic reticular membrane, patterns of conserved amino acids were discovered. The conserved

  18. In-Source Decay and Pseudo-MS3 of Peptide and Protein Ions Using Liquid AP-MALDI

    Science.gov (United States)

    Ait-Belkacem, Rima; Dilillo, Marialaura; Pellegrini, Davide; Yadav, Avinash; de Graaf, Erik L.; McDonnell, Liam A.

    2016-12-01

    Atmospheric pressure MALDI on a Q-Exactive instrument was optimized for in-source decay and pseudo-MS3. The dependence of AP-MALDI ISD on the MALDI liquid matrix was investigated for peptides and proteins. The liquid matrices enabled long-life ISD signal, and exhibited high fragment ion yield and signal stability. Extensive a-, b-, c-, y-, and z-type fragment series were observed depending on the matrix used but were most extensive with 2,5-DHB. Complete sequence coverage of small peptide and intact protein-terminus sequence tags were obtained and confirmed using HCD as a pseudo-MS3 method.

  19. Synthetic mimics of antimicrobial peptides.

    Science.gov (United States)

    Som, Abhigyan; Vemparala, Satyavani; Ivanov, Ivaylo; Tew, Gregory N

    2008-01-01

    Infectious diseases and antibiotic resistance are now considered the most imperative global healthcare problem. In the search for new treatments, host defense, or antimicrobial, peptides have attracted considerable attention due to their various unique properties; however, attempts to develop in vivo therapies have been severely limited. Efforts to develop synthetic mimics of antimicrobial peptides (SMAMPs) have increased significantly in the last decade, and this review will focus primarily on the structural evolution of SMAMPs and their membrane activity. This review will attempt to make a bridge between the design of SMAMPs and the fundamentals of SMAMP-membrane interactions. In discussions regarding the membrane interaction of SMAMPs, close attention will be paid to the lipid composition of the bilayer. Despite many years of study, the exact conformational aspects responsible for the high selectivity of these AMPs and SMAMPs toward bacterial cells over mammalian cells are still not fully understood. The ability to design SMAMPs that are potently antimicrobial, yet nontoxic to mammalian cells has been demonstrated with a variety of molecular scaffolds. Initial animal studies show very good tissue distribution along with more than a 4-log reduction in bacterial counts. The results on SMAMPs are not only extremely promising for novel antibiotics, but also provide an optimistic picture for the greater challenge of general proteomimetics.

  20. Peptide amphiphile self-assembly

    Science.gov (United States)

    Iscen, Aysenur; Schatz, George C.

    2017-08-01

    Self-assembly is a process whereby molecules organize into structures with hierarchical order and complexity, often leading to functional materials. Biomolecules such as peptides, lipids and DNA are frequently involved in self-assembly, and this leads to materials of interest for a wide variety of applications in biomedicine, photonics, electronics, mechanics, etc. The diversity of structures and functions that can be produced provides motivation for developing theoretical models that can be used for a molecular-level description of these materials. Here we overview recently developed computational methods for modeling the self-assembly of peptide amphiphiles (PA) into supramolecular structures that form cylindrical nanoscale fibers using molecular-dynamics simulations. Both all-atom and coarse-grained force field methods are described, and we emphasize how these calculations contribute insight into fiber structure, including the importance of β-sheet formation. We show that the temperature at which self-assembly takes place affects the conformations of PA chains, resulting in cylindrical nanofibers with higher β-sheet content as temperature increases. We also present a new high-density PA model that shows long network formation of β-sheets along the long axis of the fiber, a result that correlates with some experiments. The β-sheet network is mostly helical in nature which helps to maintain strong interactions between the PAs both radially and longitudinally. Contribution to Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.