WorldWideScience

Sample records for twin mars rovers

  1. Mars Rover Photos API

    Data.gov (United States)

    National Aeronautics and Space Administration — This API is designed to collect image data gathered by NASA's Curiosity, Opportunity, and Spirit rovers on Mars and make it more easily available to other...

  2. Mars Rover RTG Study

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1989-11-27

    This report summarizes the results of a Radioisotope Thermoelectric Generator (RTG) design study conducted by Fairchild Space Company at the direction of the U.S. Department of Energy's Office of Special Applications, in support of the Mars Rover and Sample Return mission under investigation at NASA's Jet Propulsion Laboratory. Presented at the 40th Congress of the IAF, Oct. 7-13, 1989 in Torremolinos, Malaga-Spain. The paper describes the design and analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the Mars Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space for the U.S. DOE in support of the JPL MRSR Project. The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It summarizes the baseline RTG's mass breakdown, and presents a detailed description of its thermal, thermoelectric, and electrical analysis. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost. Cross Reference CID #7135 dated 10/1989. There is a duplicate copy. This document is not relevant to the OSTI Library. Do not send.

  3. Mars Rover RTG Study

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1989-10-01

    Presented at the 40th Congress of the IAF, Oct. 7-13, 1989 in Torremolinos, Malaga-Spain. The paper describes the design and analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the Mars Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space for the U.S. DOE in support of the JPL MRSR Project. The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It summarizes the baseline RTG's mass breakdown, and presents a detailed description of its thermal, thermoelectric, and electrical analysis. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost. There is a duplicate copy and three copies in the file.

  4. Mars Exploration Rover mission

    Science.gov (United States)

    Crisp, Joy A.; Adler, Mark; Matijevic, Jacob R.; Squyres, Steven W.; Arvidson, Raymond E.; Kass, David M.

    2003-10-01

    In January 2004 the Mars Exploration Rover mission will land two rovers at two different landing sites that show possible evidence for past liquid-water activity. The spacecraft design is based on the Mars Pathfinder configuration for cruise and entry, descent, and landing. Each of the identical rovers is equipped with a science payload of two remote-sensing instruments that will view the surrounding terrain from the top of a mast, a robotic arm that can place three instruments and a rock abrasion tool on selected rock and soil samples, and several onboard magnets and calibration targets. Engineering sensors and components useful for science investigations include stereo navigation cameras, stereo hazard cameras in front and rear, wheel motors, wheel motor current and voltage, the wheels themselves for digging, gyros, accelerometers, and reference solar cell readings. Mission operations will allow commanding of the rover each Martian day, or sol, on the basis of the previous sol's data. Over a 90-sol mission lifetime, the rovers are expected to drive hundreds of meters while carrying out field geology investigations, exploration, and atmospheric characterization. The data products will be delivered to the Planetary Data System as integrated batch archives.

  5. On Mars Exploration Rovers - Spirit and Opportunity

    Institute of Scientific and Technical Information of China (English)

    李颖; 吴文忠

    2004-01-01

    NASA's twin Mars exploration rovers, now named Spirit and Opportunity, are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists eyes and hands, exploring an environment where humans can't yet go.

  6. Mars Rover RTG Study

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1989-08-25

    This report summarizes the results of a Radioisotope Thermoelectric Generator (RTG) design study conducted by Fairchild Space Company at the direction of the U.S. Department of Energy's Office of SpecialApplications, in suppport of the Mars Rover and Sample Return mission under investigation at NASA's Jet Propulsion Laboratory. The report is a rearranged, updated, and significantly expanded amalgam of three interrelated papers presented at the 24th Intersocity Energy Conversion Engineering Conference (IECEC) at Arlington, Virginia, on August 10, 1989.

  7. Mars Exploration Rover Heat Shield Recontact Analysis

    Science.gov (United States)

    Raiszadeh, Behzad; Desai, Prasun N.; Michelltree, Robert

    2011-01-01

    The twin Mars Exploration Rover missions landed successfully on Mars surface in January of 2004. Both missions used a parachute system to slow the rover s descent rate from supersonic to subsonic speeds. Shortly after parachute deployment, the heat shield, which protected the rover during the hypersonic entry phase of the mission, was jettisoned using push-off springs. Mission designers were concerned about the heat shield recontacting the lander after separation, so a separation analysis was conducted to quantify risks. This analysis was used to choose a proper heat shield ballast mass to ensure successful separation with low probability of recontact. This paper presents the details of such an analysis, its assumptions, and the results. During both landings, the radar was able to lock on to the heat shield, measuring its distance, as it descended away from the lander. This data is presented and is used to validate the heat shield separation/recontact analysis.

  8. NASA Mars Science Laboratory Rover

    Science.gov (United States)

    Olson, Tim

    2017-01-01

    Since August 2012, the NASA Mars Science Laboratory (MSL) rover Curiosity has been operating on the Martian surface. The primary goal of the MSL mission is to assess whether Mars ever had an environment suitable for life. MSL Science Team member Dr. Tim Olson will provide an overview of the rover's capabilities and the major findings from the mission so far. He will also share some of his experiences of what it is like to operate Curiosity's science cameras and explore Mars as part of a large team of scientists and engineers.

  9. Mars Science Laboratory Rover System Thermal Test

    Science.gov (United States)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.

    2012-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.

  10. The Mars Surveyor '01 Rover and Robotic Arm

    Science.gov (United States)

    Bonitz, Robert G.; Nguyen, Tam T.; Kim, Won S.

    1999-01-01

    The Mars Surveyor 2001 Lander will carry with it both a Robotic Arm and Rover to support various science and technology experiments. The Marie Curie Rover, the twin sister to Sojourner Truth, is expected to explore the surface of Mars in early 2002. Scientific investigations to determine the elemental composition of surface rocks and soil using the Alpha Proton X-Ray Spectrometer (APXS) will be conducted along with several technology experiments including the Mars Experiment on Electrostatic Charging (MEEC) and the Wheel Abrasion Experiment (WAE). The Rover will follow uplinked operational sequences each day, but will be capable of autonomous reactions to the unpredictable features of the Martian environment. The Mars Surveyor 2001 Robotic Arm will perform rover deployment, and support various positioning, digging, and sample acquiring functions for MECA (Mars Environmental Compatibility Assessment) and Mossbauer Spectrometer experiments. The Robotic Arm will also collect its own sensor data for engineering data analysis. The Robotic Arm Camera (RAC) mounted on the forearm of the Robotic Arm will capture various images with a wide range of focal length adjustment during scientific experiments and rover deployment

  11. Enhanced Engineering Cameras (EECAMs) for the Mars 2020 Rover

    Science.gov (United States)

    Maki, J. N.; McKinney, C. M.; Sellar, R. G.; Copley-Woods, D. S.; Gruel, D. C.; Nuding, D. L.; Valvo, M.; Goodsall, T.; McGuire, J.; Litwin, T. E.

    2016-10-01

    The Mars 2020 Rover will be equipped with a next-generation engineering camera imaging system that represents an upgrade over the previous Mars rover engineering cameras flown on the Mars Exploration Rover (MER) mission and the Mars Science Laboratory (MSL) rover mission.

  12. Mars Exploration Rover thermal test program overview

    Science.gov (United States)

    Pauken, Michael T.; Kinsella, Gary; Novak, Keith; Tsuyuki, Glenn

    2004-01-01

    In January 2004, two Mars Exploration Rovers (MER) landed on the surface of Mars to begin their mission as robotic geologists. A year prior to these historic landings, both rovers and the spacecraft that delivered them to Mars, were completing a series of environmental tests in facilities at the Jet Propulsion Laboratory. This paper describes the test program undertaken to validate the thermal design and verify the workmanship integrity of both rovers and the spacecraft. The spacecraft, which contained the rover within the aeroshell, were tested in a 7.5 m diameter thermal vacuum chamber. Thermal balance was performed for the near earth (hot case) condition and for the near Mars (cold case) condition. A solar simulator was used to provide the solar boundary condition on the solar array. IR lamps were used to simulate the solar heat load on the aeroshell for the off-sun attitudes experienced by the spacecraft during its cruise to Mars. Each rover was tested separately in a 3.0 m diameter thermal vacuum chamber over conditions simulating the warmest and coldest expected Mars diurnal temperature cycles. The environmental tests were conducted in a quiescent nitrogen atmosphere at a pressure of 8 to 10 Torr. In addition to thermal balance testing, the science instruments on board the rovers were tested successfully in the extreme environmental conditions anticipated for the mission. A solar simulator was not used in these tests.

  13. Photogrammetric processing of rover imagery of the 2003 Mars Exploration Rover mission

    Science.gov (United States)

    Di, Kaichang; Xu, Fengliang; Wang, Jue; Agarwal, Sanchit; Brodyagina, Evgenia; Li, Rongxing; Matthies, Larry

    In the 2003 Mars Exploration Rover (MER) mission, the twin rovers, Spirit and Opportunity, carry identical Athena instrument payloads and engineering cameras for exploration of the Gusev Crater and Meridiani Planum landing sites. This paper presents the photogrammetric processing techniques for high accuracy topographic mapping and rover localization at the two landing sites. Detailed discussions about camera models, reference frames, interest point matching, automatic tie point selection, image network construction, incremental bundle adjustment, and topographic product generation are given. The developed rover localization method demonstrated the capability of correcting position errors caused by wheel slippages, azimuthal angle drift and other navigation errors. A comparison was also made between the bundle-adjusted rover traverse and the rover track imaged from the orbit. Mapping products including digital terrain models, orthophotos, and rover traverse maps have been generated for over two years of operations, and disseminated to scientists and engineers of the mission through a web-based GIS. The maps and localization information have been extensively used to support tactical operations and strategic planning of the mission.

  14. LED minilidar for Mars rover

    Science.gov (United States)

    Shiina, Tatsuo; Yamada, Sonoko; Senshu, Hiroki; Otobe, Naohito; Hashimoto, George; Kawabata, Yasuhiro

    2016-10-01

    A mini-lidar to observe the activity of Martian atmosphere is developed. The 10cm-cube LED mini-lidar was designed to be onboard a Mars rover. The light source of the mini-lidar is a high powered LED of 385nm. LED was adopted as light source because of its toughness against circumference change and physical shock for launch. The pulsed power and the pulse repetition frequency of LED beam were designed as 0.75W (=7.5nJ/10ns) and 500kHz, respectively. Lidar echoes were caught by the specially designed Cassegrain telescope, which has the shorter telescope tube than the usual to meet the 10cm-cube size limit. The high-speed photon counter was developed to pursue to the pulse repetition frequency of the LED light. The measurement range is no shorter than 30m depending back-ground condition. Its spatial resolution was improved as 0.15m (=1ns) by this photon counter. The demonstrative experiment was conducted at large wind tunnel facility of Japan Meteorological Agency. The measurement target was smoke of glycerin particles. The smoke was flowed in the wind tunnel with wind speed of 0 - 5m. Smoke diffusion and its propagation due to the wind flow were observed by the LED mini-lidar. This result suggests that the developed lidar can pursue the structure and the motion of dust devil of >2m.

  15. Robotic Arm and Rover Actuator Systems for Mars Exploration

    Science.gov (United States)

    Reid, L.; Brawn, D.; Noon, D.

    1999-01-01

    Missions such as the Sojourner Rover, the Robotic Arm for Mars Polar Lander, and the 2003 Mars Rover, Athena, use numerous actuators that must operate reliably in extreme environments for long periods of time.

  16. The Curiosity Mars Rover's Fault Protection Engine

    Science.gov (United States)

    Benowitz, Ed

    2014-01-01

    The Curiosity Rover, currently operating on Mars, contains flight software onboard to autonomously handle aspects of system fault protection. Over 1000 monitors and 39 responses are present in the flight software. Orchestrating these behaviors is the flight software's fault protection engine. In this paper, we discuss the engine's design, responsibilities, and present some lessons learned for future missions.

  17. Supporting Increased Autonomy for a Mars Rover

    Science.gov (United States)

    Estlin, Tara; Castano, Rebecca; Gaines, Dan; Bornstein, Ben; Judd, Michele; Anderson, Robert C.; Nesnas, Issa

    2008-01-01

    This paper presents an architecture and a set of technology for performing autonomous science and commanding for a planetary rover. The MER rovers have outperformed all expectations by lasting over 1100 sols (or Martian days), which is an order of magnitude longer than their original mission goal. The longevity of these vehicles will have significant effects on future mission goals, such as objectives for the Mars Science Laboratory rover mission (scheduled to fly in 2009) and the Astrobiology Field Lab rover mission (scheduled to potentially fly in 2016). Common objectives for future rover missions to Mars include the handling of opportunistic science, long-range or multi-sol driving, and onboard fault diagnosis and recovery. To handle these goals, a number of new technologies have been developed and integrated as part of the CLARAty architecture. CLARAty is a unified and reusable robotic architecture that was designed to simplify the integration, testing and maturation of robotic technologies for future missions. This paper focuses on technology comprising the CLARAty Decision Layer, which was designed to support and validate high-level autonomy technologies, such as automated planning and scheduling and onboard data analysis.

  18. A computational system for a Mars rover

    Science.gov (United States)

    Lambert, Kenneth E.

    1989-01-01

    This paper presents an overview of an onboard computing system that can be used for meeting the computational needs of a Mars rover. The paper begins by presenting an overview of some of the requirements which are key factors affecting the architecture. The rest of the paper describes the architecture. Particular emphasis is placed on the criteria used in defining the system and how the system qualitatively meets the criteria.

  19. Mars Rover Curriculum: Impact Assessment and Evaluation

    Science.gov (United States)

    Bering, E. A., III; Carlson, C.; Nieser, K.; Slagle, E. M.; Jacobs, L. T.; Kapral, A. J.

    2014-12-01

    The University of Houston is in the process of developing a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model Mars rover: the Mars Rover Model Celebration (MRC). It focuses on students, teachers and parents in grades 3-8. Students design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. A total of 140 Mars Rover teachers from the 2012-2013 and 2013-2014 cohorts were invited to complete the Mars Rover Teacher Evaluation Survey. The survey was administered online and could be taken at the convenience of the participant. So far ~40 teachers have participated with responses still coming in. A total of 675 students from the 2013-2014 cohort were invited to submit brief self-assessments of their participation in the program. Teachers were asked to rate their current level of confidence in their ability to teach specific topics within the Earth and Life Science realms, as well as their confidence in their ability to implement teaching strategies with their students. The majority of teachers (81-90%) felt somewhat to very confident in their ability to effectively teach concepts related to earth and life sciences to their students. In addition, many of the teachers felt that their confidence in teaching these concepts increased somewhat to quite a bit as a result of their participation in the MRC program (54-88%). The most striking increase in this area was the reported 48% of teachers who felt their confidence in teaching "Earth and the solar system and universe" increased "Quite a bit" as a result of their participation in the MRC program. The vast majority of teachers (86-100%) felt somewhat to very confident in their ability to effectively implement all of the listed teaching strategies. The most striking increases were the percentage of teachers who felt their confidence increased "Quite a bit" as a result of their participation

  20. Requirements and Designs for Mars Rover RTGs

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred; Shirbacheh, M; Sankarankandath, V

    2012-01-19

    The current-generation RTGs (both GPHS and MOD) are designed for operation in a vacuum environment. The multifoil thermal insulation used in those RTGs only functions well in a good vacuum. Current RTGs are designed to operate with an inert cover gas before launch, and to be vented to space vacuum after launch. Both RTGs are sealed with a large number of metallic C-rings. Those seals are adequate for retaining the inert-gas overpressure during short-term launch operations, but would not be adequate to prevent intrusion of the Martian atmospheric gases during long-term operations there. Therefore, for the Mars Rover application, those RTGs just be modified to prevent the buildup of significant pressures of Mars atmosphere or of helium (from alpha decay of the fuel). In addition, a Mars Rover RTG needs to withstand a long-term dynamic environment that is much more severe than that seen by an RTG on an orbiting spacecraft or on a stationary planetary lander. This paper describes a typical Rover mission, its requirements, the environment it imposes on the RTG, and a design approach for making the RTG operable in such an environment. Specific RTG designs for various thermoelectric element alternatives are presented.; Reference CID #9268 and CID #9276.

  1. Design of a Mars rover and sample return mission

    Science.gov (United States)

    Bourke, Roger D.; Kwok, Johnny H.; Friedlander, Alan

    1990-01-01

    The design of a Mars Rover Sample Return (MRSR) mission that satisfies scientific and human exploration precursor needs is described. Elements included in the design include an imaging rover that finds and certifies safe landing sites and maps rover traverse routes, a rover that operates the surface with an associated lander for delivery, and a Mars communications orbiter that allows full-time contact with surface elements. A graph of MRSR candidate launch vehice performances is presented.

  2. Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation

    Science.gov (United States)

    Bell, J.F.; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.N.; Arneson, H.M.; Brown, D.; Collins, S.A.; Dingizian, A.; Elliot, S.T.; Hagerott, E.C.; Hayes, A.G.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.; Lemmon, M.T.; Morris, R.V.; Scherr, L.; Schwochert, M.; Shepard, M.K.; Smith, G.H.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Sullivan, W.T.; Wadsworth, M.

    2003-01-01

    The Panoramic Camera (Pancam) investigation is part of the Athena science payload launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The scientific goals of the Pancam investigation are to assess the high-resolution morphology, topography, and geologic context of each MER landing site, to obtain color images to constrain the mineralogic, photometric, and physical properties of surface materials, and to determine dust and aerosol opacity and physical properties from direct imaging of the Sun and sky. Pancam also provides mission support measurements for the rovers, including Sun-finding for rover navigation, hazard identification and digital terrain modeling to help guide long-term rover traverse decisions, high-resolution imaging to help guide the selection of in situ sampling targets, and acquisition of education and public outreach products. The Pancam optical, mechanical, and electronics design were optimized to achieve these science and mission support goals. Pancam is a multispectral, stereoscopic, panoramic imaging system consisting of two digital cameras mounted on a mast 1.5 m above the Martian surface. The mast allows Pancam to image the full 360?? in azimuth and ??90?? in elevation. Each Pancam camera utilizes a 1024 ?? 1024 active imaging area frame transfer CCD detector array. The Pancam optics have an effective focal length of 43 mm and a focal ratio f/20, yielding an instantaneous field of view of 0.27 mrad/pixel and a field of view of 16?? ?? 16??. Each rover's two Pancam "eyes" are separated by 30 cm and have a 1?? toe-in to provide adequate stereo parallax. Each eye also includes a small eight position filter wheel to allow surface mineralogic studies, multispectral sky imaging, and direct Sun imaging in the 400-1100 nm wavelength region. Pancam was designed and calibrated to operate within specifications on Mars at temperatures from -55?? to +5??C. An onboard calibration target and fiducial marks provide the capability

  3. Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation

    Science.gov (United States)

    Bell, J. F.; Squyres, S. W.; Herkenhoff, K. E.; Maki, J. N.; Arneson, H. M.; Brown, D.; Collins, S. A.; Dingizian, A.; Elliot, S. T.; Hagerott, E. C.; Hayes, A. G.; Johnson, M. J.; Johnson, J. R.; Joseph, J.; Kinch, K.; Lemmon, M. T.; Morris, R. V.; Scherr, L.; Schwochert, M.; Shepard, M. K.; Smith, G. H.; Sohl-Dickstein, J. N.; Sullivan, R. J.; Sullivan, W. T.; Wadsworth, M.

    2003-11-01

    The Panoramic Camera (Pancam) investigation is part of the Athena science payload launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The scientific goals of the Pancam investigation are to assess the high-resolution morphology, topography, and geologic context of each MER landing site, to obtain color images to constrain the mineralogic, photometric, and physical properties of surface materials, and to determine dust and aerosol opacity and physical properties from direct imaging of the Sun and sky. Pancam also provides mission support measurements for the rovers, including Sun-finding for rover navigation, hazard identification and digital terrain modeling to help guide long-term rover traverse decisions, high-resolution imaging to help guide the selection of in situ sampling targets, and acquisition of education and public outreach products. The Pancam optical, mechanical, and electronics design were optimized to achieve these science and mission support goals. Pancam is a multispectral, stereoscopic, panoramic imaging system consisting of two digital cameras mounted on a mast 1.5 m above the Martian surface. The mast allows Pancam to image the full 360° in azimuth and +/-90° in elevation. Each Pancam camera utilizes a 1024 × 1024 active imaging area frame transfer CCD detector array. The Pancam optics have an effective focal length of 43 mm and a focal ratio of f/20, yielding an instantaneous field of view of 0.27 mrad/pixel and a field of view of 16° × 16°. Each rover's two Pancam ``eyes'' are separated by 30 cm and have a 1° toe-in to provide adequate stereo parallax. Each eye also includes a small eight position filter wheel to allow surface mineralogic studies, multispectral sky imaging, and direct Sun imaging in the 400-1100 nm wavelength region. Pancam was designed and calibrated to operate within specifications on Mars at temperatures from -55° to +5°C. An onboard calibration target and fiducial marks provide the

  4. Operations Strategies for the Mars Exploration Rovers During the 2007 Martian Global Dust Storm

    Science.gov (United States)

    Seibert, Michael; Herman, Jennifer; ElDeeb, Dina

    2009-01-01

    In June and July 2007 Mars experienced a dust storm that grew to envelop all but the polar latitudes of the planet. This dust storm was the first global dust storm to occur while the twin Mars Exploration Rovers (MER) began surface operations. It is estimated that the dust in the atmosphere prevented over 99.6% of direct sunlight from reaching the surface at the peak of the storm. Data collected indicated that solar array energy output was reduced to approximately 15% of maximum. The reduction in insolation and energy output posed the greatest risk of ending the mission for both rovers at that time.

  5. The Athena Mars Rover Science Payload

    Science.gov (United States)

    Squyes, S. W.; Arvidson, R.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Klingelhoefer, G.; Haskin, L.

    1998-01-01

    The Mars Surveyor missions that will be launched in April of 2001 will include a highly capable rover that is a successor to the Mars Pathfinder mission's Sojourner rover. The design goals for this rover are a total traverse distance of at least 10 km and a total lifetime of at least one Earth year. The rover's job will be to explore a site in Mars' ancient terrain, searching for materials likely to preserve a record of ancient martian water, climate, and possibly biology. The rover will collect rock and soil samples, and will store them for return to Earth by a subsequent Mars Surveyor mission in 2005. The Athena Mars rover science payload is the suite of scientific instruments and sample collection tools that will be used to perform this job. The specific science objectives that NASA has identified for the '01 rover payload are to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition. (2) Determine the elemental and mineralogical composition of martian surface materials. (3) Determine the fine-scale textural properties of these materials. (4) Collect and store samples. The Athena payload has been designed to meet these objectives. The focus of the design is on field operations: making sure the rover can locate, characterize, and collect scientifically important samples in a dusty, dirty, real-world environment. The topography, morphology, and mineralogy of the scene around the rover will be revealed by Pancam/Mini-TES, an integrated imager and IR spectrometer. Pancam views the surface around the rover in stereo and color. It uses two high-resolution cameras that are identical in most respects to the rover's navigation cameras. The detectors are low-power, low-mass active pixel sensors with on-chip 12-bit analog-to-digital conversion. Filters provide 8-12 color spectral bandpasses over the spectral region from 0.4 to 1.1 micron Narrow-angle optics provide an angular resolution of 0

  6. The Athena Mars Rover Science Payload

    Science.gov (United States)

    Squyes, S. W.; Arvidson, R.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Klingelhoefer, G.; Haskin, L.

    1998-01-01

    The Mars Surveyor missions that will be launched in April of 2001 will include a highly capable rover that is a successor to the Mars Pathfinder mission's Sojourner rover. The design goals for this rover are a total traverse distance of at least 10 km and a total lifetime of at least one Earth year. The rover's job will be to explore a site in Mars' ancient terrain, searching for materials likely to preserve a record of ancient martian water, climate, and possibly biology. The rover will collect rock and soil samples, and will store them for return to Earth by a subsequent Mars Surveyor mission in 2005. The Athena Mars rover science payload is the suite of scientific instruments and sample collection tools that will be used to perform this job. The specific science objectives that NASA has identified for the '01 rover payload are to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition. (2) Determine the elemental and mineralogical composition of martian surface materials. (3) Determine the fine-scale textural properties of these materials. (4) Collect and store samples. The Athena payload has been designed to meet these objectives. The focus of the design is on field operations: making sure the rover can locate, characterize, and collect scientifically important samples in a dusty, dirty, real-world environment. The topography, morphology, and mineralogy of the scene around the rover will be revealed by Pancam/Mini-TES, an integrated imager and IR spectrometer. Pancam views the surface around the rover in stereo and color. It uses two high-resolution cameras that are identical in most respects to the rover's navigation cameras. The detectors are low-power, low-mass active pixel sensors with on-chip 12-bit analog-to-digital conversion. Filters provide 8-12 color spectral bandpasses over the spectral region from 0.4 to 1.1 micron Narrow-angle optics provide an angular resolution of 0

  7. Rover: Autonomous concepts for Mars exploration

    Science.gov (United States)

    Baiget, A.; Castets, B.; Chochon, H.; Hayard, M.; Lamarre, H.; Lamothe, A.

    1993-01-01

    The development of a mobile, autonomous vehicle that will be launched towards an unknown planet is considered. The rover significant constraints are: Ariane 5 compatibility, Earth/Mars transfer capability, 1000 km autonomous moving in Mars environment, on board localization, and maximum science capability. Two different types of subsystem were considered: classical subsystems (mechanical and mechanisms, thermal, telecommunications, power, onboard data processing) and robotics subsystem, (perception/navigation, autonomous displacement generation, autonomous localization). The needs of each subsystem were studied in terms of energy and data handling capability, in order to choose an on board architecture which best use the available capability, by means of specialized parts. A compromise must always be done between every subsystem in order to obtain the real need with respect to the goal, for example: between perception/navigation and the motion capability. A compromise must also be found between mechanical assembly and calibration need, which is a real problem.

  8. The NASA 2003 Mars Exploration Rover Panoramic Camera (Pancam) Investigation

    Science.gov (United States)

    Bell, J. F.; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Morris, R. V.; Athena Team

    2002-12-01

    The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360o of azimuth and from zenith to nadir, providing a complete view of the scene around the rover. Pancam utilizes two 1024x2048 Mitel frame transfer CCD detector arrays, each having a 1024x1024 active imaging area and 32 optional additional reference pixels per row for offset monitoring. Each array is combined with optics and a small filter wheel to become one "eye" of a multispectral, stereoscopic imaging system. The optics for both cameras consist of identical 3-element symmetrical lenses with an effective focal length of 42 mm and a focal ratio of f/20, yielding an IFOV of 0.28 mrad/pixel or a rectangular FOV of 16o\\x9D 16o per eye. The two eyes are separated by 30 cm horizontally and have a 1o toe-in to provide adequate parallax for stereo imaging. The cameras are boresighted with adjacent wide-field stereo Navigation Cameras, as well as with the Mini-TES instrument. The Pancam optical design is optimized for best focus at 3 meters range, and allows Pancam to maintain acceptable focus from infinity to within 1.5 meters of the rover, with a graceful degradation (defocus) at closer ranges. Each eye also contains a small 8-position filter wheel to allow multispectral sky imaging, direct Sun imaging, and surface mineralogic studies in the 400-1100 nm wavelength region. Pancam has been designed and calibrated to operate within specifications from -55oC to +5oC. An onboard calibration target and fiducial marks provide

  9. Slip Validation and Prediction for Mars Exploration Rovers

    Directory of Open Access Journals (Sweden)

    Jeng Yen

    2008-04-01

    Full Text Available This paper presents a novel technique to validate and predict the rover slips on Martian surface for NASA’s Mars Exploration Rover mission (MER. Different from the traditional approach, the proposed method uses the actual velocity profile of the wheels and the digital elevation map (DEM from the stereo images of the terrain to formulate the equations of motion. The six wheel speed from the empirical encoder data comprises the vehicle's velocity, and the rover motion can be estimated using mixed differential and algebraic equations. Applying the discretization operator to these equations, the full kinematics state of the rover is then resolved by the configuration kinematics solution in the Rover Sequencing and Visualization Program (RSVP. This method, with the proper wheel slip and sliding factors, produces accurate simulation of the Mars Exploration rovers, which have been validated with the earth-testing vehicle. This computational technique has been deployed to the operation of the MER rovers in the extended mission period. Particularly, it yields high quality prediction of the rover motion on high slope areas. The simulated path of the rovers has been validated using the telemetry from the onboard Visual Odometry (VisOdom. Preliminary results indicate that the proposed simulation is very effective in planning the path of the rovers on the high-slope areas.

  10. The Mars Exploration Rover Surface Mobility Flight Software: Driving Ambition

    Science.gov (United States)

    Biesiadecki, Jeffrey J.; Maimone, Mark W.

    2006-01-01

    In this paper we describe the software that has driven these rovers more than a combined 11,000 meters over the Martian surface, including its design and implementation, and summarize current mobility performance results from Mars.

  11. Thermal Design Overview of the Mars Exploration Rover Project

    Science.gov (United States)

    Tsuyuki, Glenn

    2001-01-01

    This slide presentation reviews the thermal design for the Mars exploration rover project. It includes information on the spacecraft configuration, the cruise scenario, landing scenario, instrument package, thermal environment, and spacecraft schematics.

  12. Visual Target Tracking on the Mars Exploration Rovers

    Science.gov (United States)

    Kim, Won; Biesiadecki, Jeffrey; Ali, Khaled

    2008-01-01

    Visual target tracking (VTT) software has been incorporated into Release 9.2 of the Mars Exploration Rover (MER) flight software, now running aboard the rovers Spirit and Opportunity. In the VTT operation (see figure), the rover is driven in short steps between stops and, at each stop, still images are acquired by actively aimed navigation cameras (navcams) on a mast on the rover (see artistic rendition). The VTT software processes the digitized navcam images so as to track a target reliably and to make it possible to approach the target accurately to within a few centimeters over a 10-m traverse.

  13. Mars Exploration Rovers Launch Contingency Efforts

    Science.gov (United States)

    McGrath, Brian E.; Frostbutter, David A.; Parthasarathy, Karungulam N.; Heyler, Gene A.; Chang, Yale

    2004-02-01

    On 10 June 2003 at 1:58 p.m. Eastern Daylight Time (EDT) and 7 July 2003 at 11:18 p.m. EDT, two separate spacecraft/rovers were successfully launched to Mars atop a Delta II 7925 and Delta II 7925H, respectively. Each spacecraft/rover carried eight Light Weight Radioisotope Heater Units (LWRHUs) for thermal conditioning of electronics during the cold Martian nights. As a part of the joint National Aeronautics and Space Administration/U. S. Department of Energy safety effort, a contingency plan was prepared to address the unlikely events of an accidental suborbital reentry or out-of-orbit reentry. The objective of the contingency plan was to develop and implement procedures to predict, within the first hour, the probable Earth Impact Footprints (EIFs) for the LWRHUs or other possible spacecraft debris after an accidental reentry. No ablation burn-through of the heat sources' aeroshells was expected, as a result of earlier testing. Any predictions would be used in subsequent notification and recovery efforts. The Johns Hopkins University Applied Physics Laboratory, as part of a multi-agency team, was responsible for prediction of the EIFs, and the time of reentry from a potential orbital decay. The tools used to predict the EIFs included a Three-Degree-of-Freedom (3DOF) trajectory simulation code, a Six-Degree-of-Freedom (6DOF) code, a database of aerodynamic coefficients for the LWRHUs and other spacecraft debris, secure links to obtain tracking data, and a high fidelity special perturbation orbit integrator code to predict time of spacecraft reentry from orbital decay. This paper will discuss the contingency plan and process, as well as highlight the improvements made to the analytical tools. Improvements to the 3DOF, aerodynamic database, and orbit integrator and inclusion of the 6DOF have significantly enhanced the prediction capabilities. In the days before launch, the trajectory simulation codes were exercised and predictions of hypothetical EIFs were produced

  14. Mars Exploration Rover mobility and robotic arm operational performance

    Science.gov (United States)

    Tunstel, Edward; Maimone, Mark; Trebi-Ollennu, Ashitey; Yen, Jeng; Petras, Richard; Wilson, Reg

    2005-01-01

    The purpose of this paper is to describe an actual instance of a practical human-robot system used on a NASA Mars rover mission that has been underway since January 2004 involving daily intercation between humans on Earth and mobile robots on Mars.

  15. Mars Rover Curiosity Traverses of Sand Ripples

    Science.gov (United States)

    Stein, N.; Arvidson, R. E.; Zhou, F.; Heverly, M.; Maimone, M.; Hartman, F.; Bellutta, P.; Iagnemma, K.; Senatore, C.

    2014-12-01

    Martian sand ripples present a challenge for rover mobility, with drives over ripples often characterized by high wheel sinkage and slippage that can lead to incipient embedding. Since landing in Gale Crater, Curiosity has traversed multiple sand ripples, including the transverse aeolian ridge (TAR) straddling Dingo Gap on sols 533 and 535. On sol 672, Curiosity crossed backward over a series of sand ripples before ending its drive after high motor currents initiated visual odometry (VO) processing, which detected 77% slip, well in excess of the imposed 60% slip limit. At the end of the drive, the right front wheel was deeply embedded at the base of a ripple flank with >20 cm sinkage and the rear wheels were near a ripple crest. As Curiosity continues its approach to Mount Sharp it will have to cross multiple ripples, and thus it is important to understand Curiosity's performance on sol 672 and over similar ripples. To this end the sol 672 drive was simulated in ARTEMIS (Adams-Based Rover Terramechanics Interaction Simulator), a software tool consisting of realistic rover mechanical models, a wheel-terrain interaction module for deformable and non-deformable surfaces, and realistic terrain models. ARTEMIS results, Dumont Dunes tests performed in the Mojave Desert using the Scarecrow test rover, and single wheel tests performed at MIT indicate that the high slip encountered on sol 672 likely occurred due to a combination of rover attack angle, ripple geometry, and soil properties. When ripple wavelength approaches vehicle length, the rover can reach orientations in which the leading wheels carry minimal normal loads and the trailing wheels sink deeply, resulting in high slippage and insufficient thrust to propel the rover over ripples. Even on relatively benign (i.e. low tilt) terrains, local morphology can impose high sinkage, thus impeding rover motion. Work is underway to quantify Curiosity's drive performance over various ripple geometries to retrieve soil

  16. Managing PV Power on Mars - MER Rovers

    Science.gov (United States)

    Stella, Paul M.; Chin, Keith; Wood, Eric; Herman, Jennifer; Ewell, Richard

    2009-01-01

    The MER Rovers have recently completed over 5 years of operation! This is a remarkable demonstration of the capabilities of PV power on the Martian surface. The extended mission required the development of an efficient process to predict the power available to the rovers on a day-to-day basis. The performance of the MER solar arrays is quite unlike that of any other Space array and perhaps more akin to Terrestrial PV operation, although even severe by that comparison. The impact of unpredictable factors, such as atmospheric conditions and dust accumulation (and removal) on the panels limits the accurate prediction of array power to short time spans. Based on the above, it is clear that long term power predictions are not sufficiently accurate to allow for detailed long term planning. Instead, the power assessment is essentially a daily activity, effectively resetting the boundary points for the overall predictive power model. A typical analysis begins with the importing of the telemetry from each rover's previous day's power subsystem activities. This includes the array power generated, battery state-of-charge, rover power loads, and rover orientation, all as functions of time. The predicted performance for that day is compared to the actual performance to identify the extent of any differences. The model is then corrected for these changes. Details of JPL's MER power analysis procedure are presented, including the description of steps needed to provide the final prediction for the mission planners. A dust cleaning event of the solar array is also highlighted to illustrate the impact of Martian weather on solar array performance

  17. Nuclear Safety Analysis for the Mars Exploration Rover 2003 Project

    Science.gov (United States)

    Firstenberg, Henry; Rutger, Lyle L.; Mukunda, Meera; Bartram, Bart W.

    2004-02-01

    The National Aeronautics and Space Administration's Mars Exploration Rover (MER) 2003 project is designed to place two mobile laboratories (Rovers) on Mars to remotely characterize a diversity of rocks and soils. Milestones accomplished so far include two successful launches of identical spacecraft (the MER-A and MER-B missions) from Cape Canaveral Air Force Station, Florida on June 10 and July 7, 2003. Each Rover uses eight Light Weight Radioisotope Heater Units (LWRHUs) fueled with plutonium-238 dioxide to provide local heating of Rover components. The LWRHUs are provided by the U.S. Department of Energy. In addition, small quantities of radioactive materials in sealed sources are used in scientific instrumentation on the Rover. Due to the radioactive nature of these materials and the potential for accidents, a formal Launch Approval Process requires the preparation of a Final Safety Analysis Report (FSAR) for submittal to and independent review by an Interagency Nuclear Safety Review Panel. This paper presents a summary of the FSAR in terms of potential accident scenarios, probabilities, source terms, radiological consequences, mission risks, and uncertainties in the reported results.

  18. Wheels and Suspension on Mars Science Laboratory Rover

    Science.gov (United States)

    2008-01-01

    This image from August 2008 shows NASA's Mars Science Laboratory rover in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment. The six wheels are half a meter (20 inches) in diameter. The deck is 1.1 meter (3.6 feet) above the ground. The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011. This image was taken at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Mission for NASA's Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  19. Creation and Control of an Internet Controlled Mars Rover Model

    Science.gov (United States)

    Angeli, Gabor; Walker, C.

    2007-12-01

    The latest project in a longstanding correspondence between NOAO Tucson and the CADIAS center in La Serena, Chile focuses on Mars and Mars exploration. The objective was to provide a user-friendly yet moderately versatile imitation of the Spirit and Opportunity MARS rovers to be used by grade school students. In addition to basic motion, the rover that was built is able to take color photographs from a rotating camera, and avoid harmful collisions or structural stress via 'bumper' sensors on each of the wheels. The rover is intended to be used remotely via the Internet, and controlled locally via wireless radio. The focus of the project was to create a system that is stable, versatile, and user friendly. The majority of the system was coded in Java, including the micro controller, providing stability and a reliable internet protocol. A partial implementation of Scheme was used as a scripting language, providing an abstraction in the means of communication and control of the robot and allowing for a level of versatility in the range of commands available to the rover and the ease of tweaking those commands. A graphical user interface was implemented to provide a safe means of controlling the rover, creating an 'action queue' of safe commands to be sent as a block to the rover. We hope the project will provide a useful education tool for students in Chile, and potentially in the future students in Tucson as well. Angeli's research was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation through Scientific Program Order No. 3 (AST-0243875) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  20. Improved Path Planning Onboard the Mars Exploration Rovers

    Science.gov (United States)

    Stentz, Anthony; Ferguson, David; Carsten, Joseph; Rankin, Arturo

    2007-01-01

    A revised version of the AutoNav (autonomous navigation with hazard avoidance) software running onboard each Mars Exploration Rover (MER) affords better obstacle avoidance than does the previous version. Both versions include GESTALT (Grid-based Estimation of Surface Traversability Applied to Local Terrain), a navigation program that generates local-terrain models from stereoscopic image pairs captured by onboard rover cameras; uses this information to evaluate candidate arcs that extend across the terrain from the current rover location; ranks the arcs with respect to hazard avoidance, minimization of steering time, and the direction towards the goal; and combines the rankings in a weighted vote to select an arc, along which the rover is then driven. GESTALT works well in navigating around small isolated obstacles, but tends to fail when the goal is on the other side of a large obstacle or multiple closely spaced small obstacles. When that occurs, the goal seeking votes and hazard avoidance votes conflict severely. The hazard avoidance votes will not allow the rover to drive through the unsafe area, and the waypoint votes will not allow enough deviation from the straight-line path for the rover to get around the hazard. The rover becomes stuck and is unable to reach the goal. The revised version of AutoNav utilizes a global path-planning program, Field D*, to evaluate the cost of traveling from the end of each GESTALT arc to the goal. In the voting process, Field D* arc votes supplant GESTALT goal-seeking arc votes. Hazard avoidance, steering bias, and Field D* votes are merged and the rover is driven a preset distance along the arc with the highest vote. Then new images are acquired and the process as described is repeated until the goal is reached. This new technology allows the rovers to autonomously navigate around much more complex obstacle arrangements than was previously possible. In addition, this improved autonomy enables longer traverses per Sol (a day

  1. Autonomous Navigation Results from the Mars Exploration Rover (MER) Mission

    Science.gov (United States)

    Maimone, Mark; Johnson, Andrew; Cheng, Yang; Willson, Reg; Matthies, Larry H.

    2004-01-01

    In January, 2004, the Mars Exploration Rover (MER) mission landed two rovers, Spirit and Opportunity, on the surface of Mars. Several autonomous navigation capabilities were employed in space for the first time in this mission. ]n the Entry, Descent, and Landing (EDL) phase, both landers used a vision system called the, Descent Image Motion Estimation System (DIMES) to estimate horizontal velocity during the last 2000 meters (m) of descent, by tracking features on the ground with a downlooking camera, in order to control retro-rocket firing to reduce horizontal velocity before impact. During surface operations, the rovers navigate autonomously using stereo vision for local terrain mapping and a local, reactive planning algorithm called Grid-based Estimation of Surface Traversability Applied to Local Terrain (GESTALT) for obstacle avoidance. ]n areas of high slip, stereo vision-based visual odometry has been used to estimate rover motion, As of mid-June, Spirit had traversed 3405 m, of which 1253 m were done autonomously; Opportunity had traversed 1264 m, of which 224 m were autonomous. These results have contributed substantially to the success of the mission and paved the way for increased levels of autonomy in future missions.

  2. The RIMFAX Ground Penetrating Radar on the Mars 2020 Rover.

    Science.gov (United States)

    Hamran, S. E.; Amundsen, H. E. F.; Carter, L. M.; Ghent, R. R.; Kohler, J.; Mellon, M. T.; Paige, D. A.

    2014-12-01

    The Radar Imager for Mars' Subsurface Exploration - RIMFAX is a Ground Penetrating Radar selected for NASA's Mars 2020 rover mission. RIMFAX will add a new dimension to the rover's toolset by providing the capability to image the shallow subsurface beneath the rover. The principal goals of the RIMFAX investigation are to image subsurface layering and structure, and to provide information regarding subsurface composition. Depending on materials, RIMFAX will image the subsurface stratigraphy to maximum depths of 10 to 500 meters, with vertical resolutions of 5 to 20 cm, with a horizontal sampling distance of 2 to 20 cm along the rover track. The resulting radar cross sections will provide important information on the geological context of surface outcrops as well as the geological and environmental history of the field area. The radar uses a Gated FMCW waveform and a single ultra wideband antenna that is used both for transmitting and receiving. The presentation will give an overview of the RIMFAX investigation, the radar system and show experimental results from a prototype radar.

  3. Mars' surface radiation environment measured with the Mars science laboratory's curiosity rover

    NARCIS (Netherlands)

    Hassler, D.M.; Zeitlin, C.; Wimmer-Schweingruber, R.F.; Ehresmann, B.; Rafkin, S.; Eigenbrode, J.L.; Brinza, D.E.; Weigle, G.; Böttcher, S.; Böhm, E.; Burmeister, S.; Guo, J.; Köhler, J.; Martin, C.; Reitz, G.; Cucinotta, F.A.; Kim, M.-H.; Grinspoon, D.; Bullock, M.A.; Posner, A.; Gómez-Elvira, J.; Vasavada, A.; Grotzinger, J.P.; MSL Science Team, the

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equival

  4. Mars' surface radiation environment measured with the Mars science laboratory's curiosity rover

    NARCIS (Netherlands)

    Hassler, D.M.; Zeitlin, C.; Wimmer-Schweingruber, R.F.; Ehresmann, B.; Rafkin, S.; Eigenbrode, J.L.; Brinza, D.E.; Weigle, G.; Böttcher, S.; Böhm, E.; Burmeister, S.; Guo, J.; Köhler, J.; Martin, C.; Reitz, G.; Cucinotta, F.A.; Kim, M.-H.; Grinspoon, D.; Bullock, M.A.; Posner, A.; Gómez-Elvira, J.; Vasavada, A.; Grotzinger, J.P.; MSL Science Team, the

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equival

  5. Autonomous Onboard Science Image Analysis for Future Mars Rover Missions

    Science.gov (United States)

    Gulick, V. C.; Morris, R. L.; Ruzon, M. A.; Roush, T. L.

    1999-01-01

    To explore high priority landing sites and to prepare for eventual human exploration, future Mars missions will involve rovers capable of traversing tens of kilometers. However, the current process by which scientists interact with a rover does not scale to such distances. Specifically, numerous command cycles are required to complete even simple tasks, such as, pointing the spectrometer at a variety of nearby rocks. In addition, the time required by scientists to interpret image data before new commands can be given and the limited amount of data that can be downlinked during a given command cycle constrain rover mobility and achievement of science goals. Experience with rover tests on Earth supports these concerns. As a result, traverses to science sites as identified in orbital images would require numerous science command cycles over a period of many weeks, months or even years, perhaps exceeding rover design life and other constraints. Autonomous onboard science analysis can address these problems in two ways. First, it will allow the rover to transmit only "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands. For example, a rover might autonomously acquire and return spectra of "interesting" rocks along with a high resolution image of those rocks in addition to returning the context images in which they were detected. Such approaches, coupled with appropriate navigational software, help to address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing fast, autonomous algorithms to enable such intelligent on-board decision making by spacecraft. Autonomous algorithms developed to date have the ability to identify rocks and layers in a scene, locate the horizon, and compress multi-spectral image data. Output from these algorithms could be used to autonomously obtain rock spectra, determine which images should be

  6. The Meteorological Station for the NASA's 2011 Mars Science Laboratory Rover

    Science.gov (United States)

    Moreno, J.; Gómez-Elvira, J.; Peña, A.; Serrano, J.

    2009-05-01

    This paper presents REMS, the Rover Environmental Monitoring Station for next NASA Mars Rover. It outlines the instrument design concept, the main requirements, the difficulties that were needed to overcome during the development and the validation and verification approach.

  7. Design and Structural Analysis of Mars Rover RTG

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred; Hamrick, T.; Sankarankandath, V.; Shirbacheh, M.

    1989-09-29

    The paper describes the design and the structural and mass analysis of a Radioisotope Thermoelectric Generators (RTGs) for powering the MARS Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space Company for the U.S. Department of Energy, in support of the Jet Propulsion Laboratory's MRSR project.; The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It identifies the key RTG design problem, i.e. venting the helium generated by the fuel's alpha decay without intrusion of the Martian atmosphere into the RTG, and proposes a design approach for solving that problem.; Using that approach, it describes a very conservative baseline RTG design. The design is based on the proven and safety-qualified General Purpose Heat Source module, and employs standard thermoelectric unicouples whose reliability and performance stability has been extensively demonstrated on previous space missions. The heat source of the 250-watt RTG consists of a stack of 18 separate modules that is supported at its ends but not along its length. The paper describes and analyzes the structure that holds the stack together during Earth launch and Mars operations but allows it to come apart in case of an inadvertent reentry.; A companion paper presented at this conference describes the RTG's thermal and electrical analysis, and compares its performance with that of several lighter but less conservative design options.; There is a duplicate copy in the ESD files. This document is not relevent to OSTI Library. Do not send.

  8. Processing of Mars Exploration Rover Imagery for Science and Operations Planning

    Science.gov (United States)

    Alexander, Douglass A.; Deen, Robert G.; Andres, Paul M.; Zamani, Payam; Mortensen, Helen B.; Chen, Amy C.; Cayanan, Michael K.; Hall, Jeffrey R.; Klochko, Vadim S.; Pariser, Oleg; Stanley, Carol L.; Thompson, Charles K.; Yagi, Gary M.

    2006-01-01

    The twin Mars Exploration Rovers (MER) delivered an unprecedented array of image sensors to the Mars surface. These cameras were essential for operations, science, and public engagement. The Multimission Image Processing Laboratory (MIPL) at the Jet Propulsion Laboratory was responsible for the first-order processing of all of the images returned by these cameras. This processing included reconstruction of the original images, systematic and ad hoc generation of a wide variety of products derived from those images, and delivery of the data to a variety of customers, within tight time constraints. A combination of automated and manual processes was developed to meet these requirements, with significant inheritance from prior missions. This paper describes the image products generated by MIPL for MER and the processes used to produce and deliver them.

  9. Red rover: inside the story of robotic space exploration, from genesis to the mars rover curiosity

    CERN Document Server

    Wiens, Roger

    2013-01-01

    In its eerie likeness to Earth, Mars has long captured our imaginations—both as a destination for humankind and as a possible home to extraterrestrial life. It is our twenty-first century New World; its explorers robots, shipped 350 million miles from Earth to uncover the distant planet’s secrets.Its most recent scout is Curiosity—a one-ton, Jeep-sized nuclear-powered space laboratory—which is now roving the Martian surface to determine whether the red planet has ever been physically capable of supporting life. In Red Rover, geochemist Roger Wiens, the principal investigator for the ChemCam laser instrument on the rover and veteran of numerous robotic NASA missions, tells the unlikely story of his involvement in sending sophisticated hardware into space, culminating in the Curiosity rover's amazing journey to Mars.In so doing, Wiens paints the portrait of one of the most exciting scientific stories of our time: the new era of robotic space exploration. Starting with NASA’s introduction of the Discovery...

  10. Mars Rover Sample Return aerocapture configuration design and packaging constraints

    Science.gov (United States)

    Lawson, Shelby J.

    1989-01-01

    This paper discusses the aerodynamics requirements, volume and mass constraints that lead to a biconic aeroshell vehicle design that protects the Mars Rover Sample Return (MRSR) mission elements from launch to Mars landing. The aerodynamic requirements for Mars aerocapture and entry and packaging constraints for the MRSR elements result in a symmetric biconic aeroshell that develops a L/D of 1.0 at 27.0 deg angle of attack. A significant problem in the study is obtaining a cg that provides adequate aerodynamic stability and performance within the mission imposed constraints. Packaging methods that relieve the cg problems include forward placement of aeroshell propellant tanks and incorporating aeroshell structure as lander structure. The MRSR missions developed during the pre-phase A study are discussed with dimensional and mass data included. Further study is needed for some missions to minimize MRSR element volume so that launch mass constraints can be met.

  11. (Nearly) Seven Years on Mars: Adventure, Adversity, and Achievements with the NASA Mars Exploration Rovers Spirit and Opportunity

    Science.gov (United States)

    Bell, J. F.; Mars Exploration Rover Science; Engineering Teams

    2010-12-01

    NASA successfully landed twin rovers, Spirit and Opportunity, on Mars in January 2004, in the most ambitious mission of robotic exploration attempted to that time. Each rover is outfitted as a robot field geologist with an impressive array of scientific instruments--cameras, spectrometers, other sensors--designed to investigate the composition and geologic history of two distinctly-different landing sites. The sites were chosen because of their potential to reveal clues about the past history of water and climate on Mars, and thus to provide tests of the hypothesis that the planet may once have been an abode for life. In this presentation I will review the images, spectra, and chemical/mineralogic information that the rover team has been acquiring from the landing sites and along the rovers' 7.7 and 22.7 km traverse paths, respectively. The data and interpretations have been widely shared with the public and the scientific community through web sites, frequent press releases, and scientific publications, and they provide quantitative evidence that liquid water has played a role in the modification of the Martian surface during the earliest part of the planet's history. At the Spirit site in Gusev Crater, the role of water appears to have been relatively minor in general, although the recent discovery of enigmatic hydrated sulfate salt and amorphous silica deposits suggests that locally there may have been significant water-rock interactions, and perhaps even sustained hydrothermal activity. At the Opportunity site in Meridiani Planum, geologic and mineralogic evidence suggests that liquid water was stable at the surface and shallow subsurface for significant periods of early Martian geologic history. An exciting implication from both missions is that localized environments on early Mars may have been "habitable" by some terrestrial standards. As of early September 2010, the rovers had operated for 2210 and 2347 Martian days (sols), respectively, with the Spirit

  12. Mineralogical Results from the Mars Science Laboratory Rover Curiosity

    Science.gov (United States)

    Blake, David Frederick.

    2017-01-01

    NASA's CheMin instrument, the first X-ray Diffractometer flown in space, has been operating on Mars for nearly five years. CheMin was first to establish the quantitative mineralogy of the Mars global soil (1). The instrument was next used to determine the mineralogy of a 3.7 billion year old lacustrine mudstone, a result that, together with findings from other instruments on the MSL Curiosity rover, documented the first habitable environment found on another planet (2). The mineralogy of this mudstone from an ancient playa lake was also used to derive the maximum concentration of CO2 in the early Mars atmosphere, a surprisingly low value that calls into question the current theory that CO2 greenhouse warming was responsible for the warm and wet environment of early Mars. CheMin later identified the mineral tridymite, indicative of silica-rich volcanism, in mudstones of the Murray formation on Mt. Sharp. This discovery challenges the paradigm of Mars as a basaltic planet and ushers in a new chapter of comparative terrestrial planetology (3). CheMin is now being used to systematically sample the sedimentary layers that comprise the lower strata of Mt. Sharp, a 5,000 meter sequence of sedimentary rock laid down in what was once a crater lake, characterizing isochemical sediments that through their changing mineralogy, document the oxidation and drying out of the Mars in early Hesperian time.

  13. Accessing Information on the Mars Exploration Rovers Mission

    Science.gov (United States)

    Walton, J. D.; Schreiner, J. A.

    2005-12-01

    In January 2004, the Mars Exploration Rovers (MER) mission successfully deployed two robotic geologists - Spirit and Opportunity - to opposite sides of the red planet. Onboard each rover is an array of cameras and scientific instruments that send data back to Earth, where ground-based systems process and store the information. During the height of the mission, a team of about 250 scientists and engineers worked around the clock to analyze the collected data, determine a strategy and activities for the next day and then carefully compose the command sequences that would instruct the rovers in how to perform their tasks. The scientists and engineers had to work closely together to balance the science objectives with the engineering constraints so that the mission achieved its goals safely and quickly. To accomplish this coordinated effort, they adhered to a tightly orchestrated schedule of meetings and processes. To keep on time, it was critical that all team members were aware of what was happening, knew how much time they had to complete their tasks, and could easily access the information they need to do their jobs. Computer scientists and software engineers at NASA Ames Research Center worked closely with the mission managers at the Jet Propulsion Laboratory (JPL) to create applications that support the mission. One such application, the Collaborative Information Portal (CIP), helps mission personnel perform their daily tasks, whether they work inside mission control or the science areas at JPL, or in their homes, schools, or offices. With a three-tiered, service-oriented architecture (SOA) - client, middleware, and data repository - built using Java and commercial software, CIP provides secure access to mission schedules and to data and images transmitted from the Mars rovers. This services-based approach proved highly effective for building distributed, flexible applications, and is forming the basis for the design of future mission software systems. Almost two

  14. Exploration of Victoria crater by the mars rover opportunity

    Science.gov (United States)

    Squyres, S. W.; Knoll, A.H.; Arvidson, R. E.; Ashley, James W.; Bell, J.F.; Calvin, W.M.; Christensen, P.R.; Clark, B. C.; Cohen, B. A.; De Souza, P.A.; Edgar, L.; Farrand, W. H.; Fleischer, I.; Gellert, Ralf; Golombek, M.P.; Grant, J.; Grotzinger, J.; Hayes, A.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.; Klingelhofer, G.; Knudson, A.; Li, R.; McCoy, T.J.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Morris, R.V.; Rice, J. W.; Schroder, C.; Sullivan, R.J.; Yen, A.; Yingst, R.A.

    2009-01-01

    The Mars rover Opportunity has explored Victoria crater, a ???750-meter eroded impact crater formed in sulfate-rich sedimentary rocks. Impact-related stratigraphy is preserved in the crater walls, and meteoritic debris is present near the crater rim. The size of hematite-rich concretions decreases up-section, documenting variation in the intensity of groundwater processes. Layering in the crater walls preserves evidence of ancient wind-blown dunes. Compositional variations with depth mimic those ???6 kilometers to the north and demonstrate that water-induced alteration at Meridiani Planum was regional in scope.

  15. RAT magnet experiment on the Mars Exploration Rovers: Spirit and Opportunity beyond sol 500

    DEFF Research Database (Denmark)

    Leer, Kristoffer; Goetz, Walter; Chan, Marjorie A.;

    2011-01-01

    The Rock Abrasion Tool (RAT) magnet experiment on the Mars Exploration Rovers was designed to collect dust from rocks ground by the RAT of the two rovers on the surface of Mars. The dust collected on the magnets is now a mixture of dust from many grindings. Here the new data from the experiment a...

  16. Results of the Mars Exploration Rover Athena science investigation

    Science.gov (United States)

    Squyres, S. W.; Athena Science Team

    2004-05-01

    The Mars Exploration Rovers ``Spirit" and ``Opportunity" have performed missions of scientific exploration at Gusev Crater and Meridiani Planum on Mars. Their objective is to search for evidence of water activity at the two sites, and to assess the past habitability of the sites. The Gusev Crater site investigated by Spirit is a flat, rock-strewn plain. All rocks at the site investigated to date are olivine basalt. The rover has conducted a radial traverse through the ejecta blanket of the crater Bonneville. After investigation of this crater, the rover will continue its traverse toward the Columbia Hills, a range of hills over 100 m high approximately 2.5 km to the west. To date, no unambiguous evidence of aqueous activity has been found at the Gusev site. The lander carrying Opportunity came to rest in a 20-meter crater in Meridiani Planum. Exposed within this crater is a small outcrop of bedrock. The bedrock outcrop has been studied in detail, and shows compelling evidence for formation and alteration processes involving liquid water. This evidence includes (a) embedded hematite-rich spherules that appear to be concretions, (b) tabular voids with characteristics consistent with those of molds of crystals formed by precipitation from water, (c) extremely high sulfur content, suggesting a compositon of 30-40 salts by weight, (d) significant quantities of jarosite, (e) Cl/Br systematics similar to those of terrestrial evaporites, and (f) cross stratification indicative of deposition in a moving fluid environment, probably water. Precipitated minerals at the Meridiani site could be very effective at preserving evidence of conditions and processes in the aqueous environment there, making them an attractive potential target for future study.

  17. Performance of the Mechanically Pumped Fluid Loop Rover Heat Rejection System Used for Thermal Control of the Mars Science Laboratory Curiosity Rover on the Surface of Mars

    Science.gov (United States)

    Bhandari, Pradeep; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Miller, Jennifer; Karlmann, Paul; Liu, Yuanming; Anderson, Kevin

    2013-01-01

    The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, required a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to +50 C range. The RHRS harnesses some of the waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer and supply it to the rover. This design is the first instance of use of a RHRS for thermal control of a rover or lander on the surface of a planet. After an extremely successful landing on Mars (August 5), the rover and the RHRS have performed flawlessly for close to an earth year (half the nominal mission life). This paper will share the performance of the RHRS on the Martian surface as well as compare it to its predictions.

  18. Meteorites on Mars observed with Mars Exploration Rovers

    Science.gov (United States)

    Schroder, C.; Rodionov, D.S.; McCoy, T.J.; Jolliff, B.L.; Gellert, Ralf; Nittler, L.R.; Farrand, W. H.; Johnson, J. R.; Ruff, S.W.; Ashley, James W.; Mittlefehldt, D. W.; Herkenhoff, K. E.; Fleischer, I.; Haldemann, A.F.C.; Klingelhofer, G.; Ming, D. W.; Morris, R.V.; de Souza, P.A.; Squyres, S. W.; Weitz, C.; Yen, A. S.; Zipfel, J.; Economou, T.

    2008-01-01

    Reduced weathering rates due to the lack of liquid water and significantly greater typical surface ages should result in a higher density of meteorites on the surface of Mars compared to Earth. Several meteorites were identified among the rocks investigated during Opportunity's traverse across the sandy Meridiani plains. Heat Shield Rock is a IAB iron meteorite and has been officially recognized as 'Meridiani Planum.' Barberton is olivine-rich and contains metallic Fe in the form of kamacite, suggesting a meteoritic origin. It is chemically most consistent with a mesosiderite silicate clast. Santa Catarina is a brecciated rock with a chemical and mineralogical composition similar to Barberton. Barberton, Santa Catarina, and cobbles adjacent to Santa Catarina may be part of a strewn field. Spirit observed two probable iron meteorites from its Winter Haven location in the Columbia Hills in Gusev Crater. Chondrites have not been identified to date, which may be a result of their lower strengths and probability to survive impact at current atmospheric pressures. Impact craters directly associated with Heat Shield Rock, Barberton, or Santa Catarina have not been observed, but such craters could have been erased by eolian-driven erosion. Copyright 2008 by the American Geophysical Union.

  19. Mars Exploration Rover Opportunity Mobility Simulation of Traverses at Endeavour Crater, Mars

    Science.gov (United States)

    Coutrot, G. L.; Arvidson, R. E.

    2013-12-01

    Mars Rover Opportunity selected drives over Cape York and Solander Point were simulated using ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction Simulator), a dynamic computer-based model for rover drives over realistic terrains. Artemis provides insight into how Opportunity responds in terms of rover 3D slip (defined as 100*(1 - actual discance / commanded distance)) and wheel sinkages on tilted surfaces to retrieve soil properties and to have a useful tool for path planning. Elevation data for the simulations were derived from HiRISE setereo observations, complemented by Navcam and Pancam-based elevation maps. Mechanical properties were estimated based on previous drives and tests in the JPL Mars Yard and Mojave Desert. Soil properties were assigned to map cells based on examination of image data and characterization of the extent of bedrock as opposed to soil exposures. Two models were tested: the deformable soil model using the classical terramechanics equations and the contact model using Coulomb's laws of friction. Both models were run and parameters adjusted to match the flight rover 3D slip and wheel sinkage data... The deformable soil model reproduced accurately the drives in terms of rover 3D slip and wheel sinkage. The longitudinal shear deformation modulus and soil cohesion were found to be the two main parameters that strongly impacted results by affecting the shear stresses and slip values. For example, on the uphill segment of Matijevic Hill driven on sol 3212, the simulation requirestwo types of soil over bedrock, one with a cohesion of 2500 Pa and a deformation modulus of 5 mm, and one with a lower cohesion of 1000 Pa and a deformation modulus of 10 mm, matching the geologic map over Matijevic Hill that displays a change in soil type at this location.

  20. xLuna - D emonstrator on ESA Mars Rover

    Science.gov (United States)

    Braga, P.; Henriques, L.; Carvalho, B.; Chevalley, P.; Zulianello, M.

    2008-08-01

    There is a significant gap between the services offered by existing space qualified Real-Time Operating Systems (RTOS) and those required by the most demanding future space applications. New requirements for autonomy, terrain mapping and navigation, Simultaneous Location and Mapping (SLAM), improvement of the throughput of science tasks, all demand high level services such as file systems or POSIX compliant interfaces. xLuna is an operating system that aims fulfilling these new requirements. Besides providing the typical services that of an RTOS (tasks and interrupts management, timers, message queues, etc), it also includes most of the features available in modern general-purpose operating systems, such as Linux. This paper describes a case study that proposes to demonstrate the usage of xLuna on board a rover currently in use for the development of algorithms in preparation of a mission to Mars.

  1. The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars

    Science.gov (United States)

    Squyres, S. W.; Arvidson, R. E.; Bell, J. F.; Brückner, J.; Cabrol, N. A.; Calvin, W.; Carr, M. H.; Christensen, P. R.; Clark, B. C.; Crumpler, L.; Des Marais, D. J.; d'Uston, C.; Economou, T.; Farmer, J.; Farrand, W.; Folkner, W.; Golombek, M.; Gorevan, S.; Grant, J. A.; Greeley, R.; Grotzinger, J.; Haskin, L.; Herkenhoff, K. E.; Hviid, S.; Johnson, J.; Klingelhöfer, G.; Knoll, A. H.; Landis, G.; Lemmon, M.; Li, R.; Madsen, M. B.; Malin, M. C.; McLennan, S. M.; McSween, H. Y.; Ming, D. W.; Moersch, J.; Morris, R. V.; Parker, T.; Rice, J. W.; Richter, L.; Rieder, R.; Sims, M.; Smith, M.; Smith, P.; Soderblom, L. A.; Sullivan, R.; Wänke, H.; Wdowiak, T.; Wolff, M.; Yen, A.

    2004-12-01

    The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.

  2. Comparing Rover and Orbiter based observations at Meridiani Planum, Mars

    Science.gov (United States)

    Gellert, R.; Arvidson, R. E.; Campbell, J. L.; Clark, B. C.; Squyres, S.; Yen, A. S.

    2011-12-01

    The Alpha Particle X-ray Spectrometer (APXS) on board the MER rover Opportunity has documented the chemical composition of the bedrock at Meridiani Planum over the traverse of ~33 km so far. The bedrock is very high in sulfate, up to ~ 25 weight percents SO3, interpreted as sedimentary sandstone. The high precision and consistency of the acquired APXS data, mainly of the abraded samples, allowed the characterization of the homogeneous bedrock over the traverse. Inside Victoria and Endurance Crater the abundance of magnesium and sulfur dropped in a 1:1 molar ratio by about 30 % in parallel with an increase of chlorine by a factor of 3. This inferred the presence of magnesium sulfate and an unknown chlorine-compound. Moreover the identical change in soluble minerals between Victoria and Endurance craters (~6 km apart) might indicate a large scale change in a subsurface water table in the past. Using the scatter peak method in the APXS spectra, the excess of oxygen was determined to be equivalent to ~ 14% bound water for the average Meridiani outcrop. Besides bedrock, basaltic soil and a lag of hematitic concretions, the rover encountered several erratic rocks sitting on the plains. Both, iron-nickel meteorites and cobbles with a basaltic mineralogy are suggestive of emplacement as meteorites. The basaltic rocks, Bounce Rock and Marquette, are ejecta from different regions on Mars. The APXS data of even unbrushed surfaces, typically a mixture or airborne dust, soil and alteration rinds, clearly indicated significant differences to the dominating bedrock. Opportunity is expected to reach the rim of the Noachian-aged Endurance Crater in August 2011, where orbital instruments detected evidence for polyhydrated sulfates, Fe-Mg Smectites, as well as basaltic materials. It is unprecedented for a rover to drive into an area with these significant alteration minerals predicted from orbit. While the mineral spectrometers on the rover are now significantly degraded, the APXS

  3. "Where On Mars?": A Web Map Visualisation of the ExoMars 2018 Rover Candidate Landing Sites

    Science.gov (United States)

    Manaud, N.; Boix, O.; Vago, J.; Hill, A.; Iriberri, C.; Carrión, D.

    2015-10-01

    The ExoMars 2018 mission will deliver a European rover and a Russian surface platform to the surface of Mars. Armed with a drill that can bore 2 metres into rock, the ExoMars rover will travel across the Martian surface to search for signs of life, past or present. But where on Mars to land? - The search for a suitable ExoMars rover landing site began in December 2013, when the planetary science community was asked to propose candidates. Eight proposals were considered during a workshop held by the ExoMars Landing Site Selection Working Group (LSSWG). By the end of the workshop, there were four clear front-runners. Following additional review, the four sites have now been formally recommended for further detailed analysis [1]: Mawrth Vallis, Oxia Planum, Hypanis Vallis and Aram Dorsum. Scientists will continue working on the characterisation of these four sites until they provide their final recommendation in October 2017.

  4. Assessment of Mars Exploration Rover Landing Site Predictions

    Science.gov (United States)

    Golombek, M. P.

    2005-05-01

    Comprehensive analyses of remote sensing data during the 3-year effort to select the Mars Exploration Rover landing sites at Gusev crater and Meridiani Planum correctly predicted the safe and trafficable surfaces explored by the two rovers. Gusev crater was predicted to be a relatively low relief surface that was comparably dusty, but less rocky than the Viking landing sites. Available data for Meridiani Planum indicated a very flat plain composed of basaltic sand to granules and hematite that would look completely unlike any of the existing landing sites with a dark, low albedo surface, little dust and very few rocks. Orbital thermal inertia measurements of 315 J m-2 s-0.5 K-1 at Gusev suggested surfaces dominated by duricrust to cemented soil-like materials or cohesionless sand or granules, which is consistent with observed soil characteristics and measured thermal inertias from the surface. THEMIS thermal inertias along the traverse at Gusev vary from 285 at the landing site to 330 around Bonneville rim and show systematic variations that can be related to the observed increase in rock abundance (5-30%). Meridiani has an orbital bulk inertia of ~200, similar to measured surface inertias that correspond to observed surfaces dominated by 0.2 mm sand size particles. Rock abundance derived from orbital thermal differencing techniques suggested that Meridiani Planum would have very low rock abundance, consistent with the rock free plain traversed by Opportunity. Spirit landed in an 8% orbital rock abundance pixel, consistent with the measured 7% of the surface covered by rocks >0.04 m diameter at the landing site, which is representative of the plains away from craters. The orbital albedo of the Spirit traverse varies from 0.19 to 0.30, consistent with surface measurements in and out of dust devil tracks. Opportunity is the first landing in a low albedo portion of Mars as seen from orbit, which is consistent with the dark, dust-free surface and measured albedos. The

  5. Mars rover rock abrasion tool performance enhanced by ultrasonic technology.

    Science.gov (United States)

    Macartney, A.; Li, X.; Harkness, P.

    2016-12-01

    The Mars exploration Athena science goal is to explore areas where water may have been present on the early surface of Mars, and investigate the palaeo-environmental conditions of these areas in relation to the existence of life. The Rock Abrasion Tool (RAT) designed by Honeybee Robotics has been one of four key Athena science payload instruments mounted on the mechanical arm of the Spirit, Opportunity and Curiosity Mars Exploration Rovers. Exposed rock surfaces weather and chemically alter over time. Although such weathered rock can present geological interest in itself, there is a limit to what can be learned. If the geological history of a landing site is to be constructed, then it is important to analyse the unweathered rock interior as clearly as possible. The rock abrasion tool's role is to substitute for a geologist's hammer, removing the weathered and chemically altered outer surface of rocks in order to view the pristine interior. The RAT uses a diamond resin standard common grinding technique, producing a 5mm depth grind with a relatively high surface roughness, achieved over a number of hours per grind and consumes approximately 11 watts of energy. This study assesses the benefits of using ultrasonic assisted grinding to improve surface smoothness. A prototype Micro-Optic UltraSonic Exfoliator (MOUSE) is tested on a range of rock types and demonstrates a number of advantages over the RAT. In addition to a smoother grind finish, these advantages include a lower rate of tool tip wear when using a tungsten carbide tip as opposed to diamond resin, less moving parts, a grind speed of minutes instead of hours, and a power consumption of only 1-5 Watts.

  6. Conceptual Design and Architecture of Mars Exploration Rover (MER) for Seismic Experiments Over Martian Surfaces

    Science.gov (United States)

    Garg, Akshay; Singh, Amit

    2012-07-01

    Keywords: MER, Mars, Rover, Seismometer Mars has been a subject of human interest for exploration missions for quite some time now. Both rover as well as orbiter missions have been employed to suit mission objectives. Rovers have been preferentially deployed for close range reconnaissance and detailed experimentation with highest accuracy. However, it is essential to strike a balance between the chosen science objectives and the rover operations as a whole. The objective of this proposed mechanism is to design a vehicle (MER) to carry out seismic studies over Martian surface. The conceptual design consists of three units i.e. Mother Rover as a Surrogate (Carrier) and Baby Rovers (two) as seeders for several MEMS-based accelerometer / seismometer units (Nodes). Mother Rover can carry these Baby Rovers, having individual power supply with solar cells and with individual data transmission capabilities, to suitable sites such as Chasma associated with Valles Marineris, Craters or Sand Dunes. Mother rover deploys these rovers in two opposite direction and these rovers follow a triangulation pattern to study shock waves generated through firing tungsten carbide shells into the ground. Till the time of active experiments Mother Rover would act as a guiding unit to control spatial spread of detection instruments. After active shock experimentation, the babies can still act as passive seismometer units to study and record passive shocks from thermal quakes, impact cratering & landslides. Further other experiments / payloads (XPS / GAP / APXS) can also be carried by Mother Rover. Secondary power system consisting of batteries can also be utilized for carrying out further experiments over shallow valley surfaces. The whole arrangement is conceptually expected to increase the accuracy of measurements (through concurrent readings) and prolong life cycle of overall experimentation. The proposed rover can be customised according to the associated scientific objectives and further

  7. Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.

    Science.gov (United States)

    Hassler, Donald M; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L; Brinza, David E; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P

    2014-01-24

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  8. Parametric study of the factors affecting wheel slip and sinkage for the Mars Exploration Rovers

    Science.gov (United States)

    Johnson, J.; Kulchitsky, A. V.; Duvoy, P.; Arvidson, R. E.; Iagnemma, K.; Senatore, C.

    2013-12-01

    In 2004 two rovers landed on Mars to conduct scientific investigations of the Martian surface in an effort to better understand its surface geology, climate, and potential to support life. During the mission, both rovers experienced events of severe rover wheel sinkage and slip in the highly variable Martian regolith. Mars Exploration Rover (MER) Opportunity experienced high wheel slip and sinkage when it attempted to cross a series of wind-blown ripples. MER rover Spirit became immobilized after breaking through a soil crust into highly deformable poorly sorted sands. Events of MER rover wheel high-sinkage and slip make mobility difficult, creating challenges for rover drive planners and increasing the risk of ending a mission early due to a lack of rover mobility. The ARTEMIS (Adams- based Rover Terramechanics and Mobility Interaction Simulator) MER rover simulation tool was developed in an effort to improve the ability to simulate rover mobility on planetary surfaces to aid planning of rover drives and to extract a rover if it becomes embedded in soil [1]. While ARTEMIS has demonstrated its ability to simulate a wide variety of rover mobility scenarios using a library of empirically based terramechanics subroutines and high-resolution digital elevation maps of Mars, it has had less success at simulating the high-sinkage, high-slip conditions that pose the highest risk to rover mobility. To improve ARTEMIS's high-slip, high-sinkage terramechanics subroutines, the COUPi discrete element method (DEM) model of MER rover wheel motion under conditions of high-sinkage and slip is being used to examine the effects of soil particle size distribution (PSD), shape, and bulk density. DEM simulations of MER wheel digging tests and the resistance forces of penetrometers in soil have demonstrated the importance of particle shape and bulk density on soil strength [2, 3]. Simulations of the densification of particle beds as functions of the spread (ratio of largest to smallest

  9. Results From Mars Show Electrostatic Charging of the Mars Pathfinder Sojourner Rover

    Science.gov (United States)

    Kolecki, Joseph C.; Siebert, Mark W.

    1998-01-01

    Indirect evidence (dust accumulation) has been obtained indicating that the Mars Pathfinder rover, Sojourner, experienced electrostatic charging on Mars. Lander camera images of the Sojourner rover provide distinctive evidence of dust accumulation on rover wheels during traverses, turns, and crabbing maneuvers. The sol 22 (22nd Martian "day" after Pathfinder landed) end-of-day image clearly shows fine red dust concentrated around the wheel edges with additional accumulation in the wheel hubs. A sol 41 image of the rover near the rock "Wedge" (see the next image) shows a more uniform coating of dust on the wheel drive surfaces with accumulation in the hubs similar to that in the previous image. In the sol 41 image, note particularly the loss of black-white contrast on the Wheel Abrasion Experiment strips (center wheel). This loss of contrast was also seen when dust accumulated on test wheels in the laboratory. We believe that this accumulation occurred because the Martian surface dust consists of clay-sized particles, similar to those detected by Viking, which have become electrically charged. By adhering to the wheels, the charged dust carries a net nonzero charge to the rover, raising its electrical potential relative to its surroundings. Similar charging behavior was routinely observed in an experimental facility at the NASA Lewis Research Center, where a Sojourner wheel was driven in a simulated Martian surface environment. There, as the wheel moved and accumulated dust (see the following image), electrical potentials in excess of 100 V (relative to the chamber ground) were detected by a capacitively coupled electrostatic probe located 4 mm from the wheel surface. The measured wheel capacitance was approximately 80 picofarads (pF), and the calculated charge, 8 x 10(exp -9) coulombs (C). Voltage differences of 100 V and greater are believed sufficient to produce Paschen electrical discharge in the Martian atmosphere. With an accumulated net charge of 8 x 10(exp

  10. The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars

    Science.gov (United States)

    Rull, Fernando; Maurice, Sylvestre; Hutchinson, Ian; Moral, Andoni; Perez, Carlos; Diaz, Carlos; Colombo, Maria; Belenguer, Tomas; Lopez-Reyes, Guillermo; Sansano, Antonio; Forni, Olivier; Parot, Yann; Striebig, Nicolas; Woodward, Simon; Howe, Chris; Tarcea, Nicolau; Rodriguez, Pablo; Seoane, Laura; Santiago, Amaia; Rodriguez-Prieto, Jose A.; Medina, Jesús; Gallego, Paloma; Canchal, Rosario; Santamaría, Pilar; Ramos, Gonzalo; Vago, Jorge L.; RLS Team

    2017-07-01

    The Raman Laser Spectrometer (RLS) on board the ESA/Roscosmos ExoMars 2020 mission will provide precise identification of the mineral phases and the possibility to detect organics on the Red Planet. The RLS will work on the powdered samples prepared inside the Pasteur analytical suite and collected on the surface and subsurface by a drill system. Raman spectroscopy is a well-known analytical technique based on the inelastic scattering by matter of incident monochromatic light (the Raman effect) that has many applications in laboratory and industry, yet to be used in space applications. Raman spectrometers will be included in two Mars rovers scheduled to be launched in 2020. The Raman instrument for ExoMars 2020 consists of three main units: (1) a transmission spectrograph coupled to a CCD detector; (2) an electronics box, including the excitation laser that controls the instrument functions; and (3) an optical head with an autofocus mechanism illuminating and collecting the scattered light from the spot under investigation. The optical head is connected to the excitation laser and the spectrometer by optical fibers. The instrument also has two targets positioned inside the rover analytical laboratory for onboard Raman spectral calibration. The aim of this article was to present a detailed description of the RLS instrument, including its operation on Mars. To verify RLS operation before launch and to prepare science scenarios for the mission, a simulator of the sample analysis chain has been developed by the team. The results obtained are also discussed. Finally, the potential of the Raman instrument for use in field conditions is addressed. By using a ruggedized prototype, also developed by our team, a wide range of terrestrial analog sites across the world have been studied. These investigations allowed preparing a large collection of real, in situ spectra of samples from different geological processes and periods of Earth evolution. On this basis, we are working

  11. Automated Rock Detection and Shape Analysis from Mars Rover Imagery and 3D Point Cloud Data

    Institute of Scientific and Technical Information of China (English)

    Kaichang Di; Zongyu Yue; Zhaoqin Liu; Shuliang Wang

    2013-01-01

    A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data.It is based on a combination of Mars rover imagery and 3D point cloud data.First,Navcam or Pancam images taken by the Mars rovers are segmented into homogeneous objects with a mean-shift algorithm.Then,the objects in the segmented images are classified into small rock candidates,rock shadows,and large objects.Rock shadows and large objects are considered as the regions within which large rocks may exist.In these regions,large rock candidates are extracted through ground-plane fitting with the 3D point cloud data.Small and large rock candidates are combined and postprocessed to obtain the final rock extraction results.The shape properties of the rocks (angularity,circularity,width,height,and width-height ratio) have been calculated for subsequent geological studies.

  12. The Preparation for and Execution of Engineering Operations for the Mars Curiosity Rover Mission

    Science.gov (United States)

    Samuels, Jessica A.

    2013-01-01

    The Mars Science Laboratory Curiosity Rover mission is the most complex and scientifically packed rover that has ever been operated on the surface of Mars. The preparation leading up to the surface mission involved various tests, contingency planning and integration of plans between various teams and scientists for determining how operation of the spacecraft (s/c) would be facilitated. In addition, a focused set of initial set of health checks needed to be defined and created in order to ensure successful operation of rover subsystems before embarking on a two year science journey. This paper will define the role and responsibilities of the Engineering Operations team, the process involved in preparing the team for rover surface operations, the predefined engineering activities performed during the early portion of the mission, and the evaluation process used for initial and day to day spacecraft operational assessment.

  13. Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers

    Science.gov (United States)

    Trease, Brian; Arvidson, Raymond; Lindemann, Randel; Bennett, Keith; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine; Van Dyke, Lauren

    2011-01-01

    To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover (MER) project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting tool, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction Simulator), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using MSC-Adams dynamic modeling software. Newly modeled terrain-rover interactions include the rut-formation effect of deformable soils, using the classical Bekker-Wong implementation of compaction resistances and bull-dozing effects. The paper presents the details and implementation of the model with two case studies based on actual MER telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.

  14. The Mars Hand Lens Imager (MAHLI) aboard the Mars rover, Curiosity

    Science.gov (United States)

    Edgett, K. S.; Ravine, M. A.; Caplinger, M. A.; Ghaemi, F. T.; Schaffner, J. A.; Malin, M. C.; Baker, J. M.; Dibiase, D. R.; Laramee, J.; Maki, J. N.; Willson, R. G.; Bell, J. F., III; Cameron, J. F.; Dietrich, W. E.; Edwards, L. J.; Hallet, B.; Herkenhoff, K. E.; Heydari, E.; Kah, L. C.; Lemmon, M. T.; Minitti, M. E.; Olson, T. S.; Parker, T. J.; Rowland, S. K.; Schieber, J.; Sullivan, R. J.; Sumner, D. Y.; Thomas, P. C.; Yingst, R. A.

    2009-08-01

    The Mars Science Laboratory (MSL) rover, Curiosity, is expected to land on Mars in 2012. The Mars Hand Lens Imager (MAHLI) will be used to document martian rocks and regolith with a 2-megapixel RGB color CCD camera with a focusable macro lens mounted on an instrument-bearing turret on the end of Curiosity's robotic arm. The flight MAHLI can focus on targets at working distances of 20.4 mm to infinity. At 20.4 mm, images have a pixel scale of 13.9 μm/pixel. The pixel scale at 66 mm working distance is about the same (31 μm/pixel) as that of the Mars Exploration Rover (MER) Microscopic Imager (MI). MAHLI camera head placement is dependent on the capabilities of the MSL robotic arm, the design for which presently has a placement uncertainty of ~20 mm in 3 dimensions; hence, acquisition of images at the minimum working distance may be challenging. The MAHLI consists of 3 parts: a camera head, a Digital Electronics Assembly (DEA), and a calibration target. The camera head and DEA are connected by a JPL-provided cable which transmits data, commands, and power. JPL is also providing a contact sensor. The camera head will be mounted on the rover's robotic arm turret, the DEA will be inside the rover body, and the calibration target will be mounted on the robotic arm azimuth motor housing. Camera Head. MAHLI uses a Kodak KAI-2020CM interline transfer CCD (1600 x 1200 active 7.4 μm square pixels with RGB filtered microlenses arranged in a Bayer pattern). The optics consist of a group of 6 fixed lens elements, a movable group of 3 elements, and a fixed sapphire window front element. Undesired near-infrared radiation is blocked using a coating deposited on the inside surface of the sapphire window. The lens is protected by a dust cover with a Lexan window through which imaging can be ac-complished if necessary, and targets can be illuminated by sunlight or two banks of two white light LEDs. Two 365 nm UV LEDs are included to search for fluores-cent materials at night. DEA

  15. The Evolution of Three Dimensional Visualization for Commanding the Mars Rovers

    Science.gov (United States)

    Hartman, Frank R.; Wright, John; Cooper, Brian

    2014-01-01

    NASA's Jet Propulsion Laboratory has built and operated four rovers on the surface of Mars. Two and three dimensional visualization has been extensively employed to command both the mobility and robotic arm operations of these rovers. Stereo visualization has been an important component in this set of visualization techniques. This paper discusses the progression of the implementation and use of visualization techniques for in-situ operations of these robotic missions. Illustrative examples will be drawn from the results of using these techniques over more than ten years of surface operations on Mars.

  16. Acid Sulfate Weathering on Mars: Results from the Mars Exploration Rover Mission

    Science.gov (United States)

    Ming, Douglas W.; Morris, R. V.; Golden, D. C.

    2006-01-01

    Sulfur has played a major role in the formation and alteration of outcrops, rocks, and soils at the Mars Exploration Rover landing sites on Meridiani Planum and in Gusev crater. Jarosite, hematite, and evaporite sulfates (e.g., Mg and Ca sulfates) occur along with siliciclastic sediments in outcrops at Meridiani Planum. The occurrence of jarosite is a strong indicator for an acid sulfate weathering environment at Meridiani Planum. Some outcrops and rocks in the Columbia Hills in Gusev crater appear to be extensively altered as suggested by their relative softness as compared to crater floor basalts, high Fe(3+)/FeT, iron mineralogy dominated by nanophase Fe(3+) oxides, hematite and/or goethite, corundum-normative mineralogies, and the presence of Mg- and Casulfates. One scenario for aqueous alteration of these rocks and outcrops is that vapors and/or fluids rich in SO2 (volcanic source) and water interacted with rocks that were basaltic in bulk composition. Ferric-, Mg-, and Ca-sulfates, phosphates, and amorphous Si occur in several high albedo soils disturbed by the rover's wheels in the Columbia Hills. The mineralogy of these materials suggests the movement of liquid water within the host material and the subsequent evaporation of solutions rich in Fe, Mg, Ca, S, P, and Si. The presence of ferric sulfates suggests that these phases precipitated from highly oxidized, low-pH solutions. Several hypotheses that invoke acid sulfate weathering environments have been suggested for the aqueous formation of sulfate-bearing phases on the surface of Mars including (1) the oxidative weathering of ultramafic igneous rocks containing sulfides; (2) sulfuric acid weathering of basaltic materials by solutions enriched by volcanic gases (e.g., SO2); and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials.

  17. Performance Characteristics of Lithium-Ion Cells for Mars Sample Return Athena Rover

    Science.gov (United States)

    Ratnakumar, B. V.; Smart, M. C.; Ewell, R.; Surampudi, S.; Marsh, R.

    1999-01-01

    In contrast to the primary batteries (lithium thionyl chloride) on the Sojourner Mars Rover and the upcoming 2001 Mars Rover, the Mars Sample Return (MSR) Athena Rover will utilize rechargeable lithium ion batteries, following the footsteps of MSP 2001 Lander. The MSR Athena Rover will contain a rechargeable lithium ion battery of 16 V and a total energy of 150 Wh. The mass and volume of the projected power system will be a maximum of 3 kg and 2 liters, respectively. Each battery consists of twelve cells (6-7 Ah), combined in three parallel strings of four cells (16 V) each, such that the capability of the Rover shall be maintained even in the event of one string failure. In addition to the usual requirements of high specific energy and energy density and long cycle life (100 cycles), the battery is required to operate at wide range of temperatures, especially at sub-zero temperatures down to -20 C. In this paper, we report various performance characterization tests carried out on lithium ion cells, fabricated by different manufacturers under a NASA/DoD lithium ion battery consortium.

  18. A Strategy to Integrate Probabilistic Risk Assessment into Design and Development Processes for Aerospace Based pon Mars Exploration Rover Experiences

    Science.gov (United States)

    Nunes, Jeffery; Paulos, Todd; Everline, Chester J.; Dezfuli, Homayoon

    2006-01-01

    This paper will discuss the Probabilistic Risk Assessment (PRA) effort and its involvement with related activities during the development of the Mars Exploration Rover (MER). The Rovers were launched 2003.June.10 (Spirit) and 2003.July.7 (Opportunity), and both have proven very successful. Although designed for a 90-day mission, the Rovers have been operating for over two earth years. This paper will review aspects of how the MER project integrated PRA into the design and development process. A companion paper (Development of the Mars Exploration Rover PRA) will describe the MER PRA and design changes from those results.

  19. Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets

    Science.gov (United States)

    Kinch, K.M.; Sohl-Dickstein, J.; Bell, J.F.; Johnson, J. R.; Goetz, W.; Landis, G.A.

    2007-01-01

    The Panoramic Camera (Pancam) on the Mars Exploration Rover mission has acquired in excess of 20,000 images of the Pancam calibration targets on the rovers. Analysis of this data set allows estimates of the rate of deposition and removal of aeolian dust on both rovers. During the first 150-170 sols there was gradual dust accumulation on the rovers but no evidence for dust removal. After that time there is ample evidence for both dust removal and dust deposition on both rover decks. We analyze data from early in both rover missions using a diffusive reflectance mixing model. Assuming a dust settling rate proportional to the atmospheric optical depth, we derive spectra of optically thick layers of airfall dust that are consistent with spectra from dusty regions on the Martian surface. Airfall dust reflectance at the Opportunity site appears greater than at the Spirit site, consistent with other observations. We estimate the optical depth of dust deposited on the Spirit calibration target by sol 150 to be 0.44 ?? 0.13. For Opportunity the value was 0.39 ?? 0.12. Assuming 80% pore space, we estimate that the dust layer grew at a rate of one grain diameter per ???100 sols on the Spirit calibration target. On Opportunity the rate was one grain diameter per ???125 sols. These numbers are consistent with dust deposition rates observed by Mars Pathfinder taking into account the lower atmospheric dust optical depth during the Mars Pathfinder mission. Copyright 2007 by the American Geophysical Union.

  20. Onboard centralized frame tree database for intelligent space operations of the Mars Science Laboratory Rover.

    Science.gov (United States)

    Kim, Won S; Diaz-Calderon, Antonio; Peters, Stephen F; Carsten, Joseph L; Leger, Chris

    2014-11-01

    Planetary surface science operations performed by robotic space systems frequently require pointing cameras at various objects and moving a robotic arm end effector tool toward specific targets. Earlier NASA Mars Exploration Rovers did not have the ability to compute actual coordinates for given object coordinate frame names and had to be provided with explicit coordinates. Since it sometimes takes hours to more than a day to get final approval of certain calculated coordinates for command uplink via the Earth-based mission operations procedures, a highly desired enhancement for future rovers was to have the onboard automated capability to compute the coordinates for a given frame name. The Mars Science Laboratory (MSL) rover mission is the first to have a centralized coordinate transform database to maintain the knowledge of spatial relations. This onboard intelligence significantly simplifies communication and control between Earth-based human mission operators and the robotic rover on Mars by supporting higher level abstraction of commands using object and target names instead of coordinates. More specifically, the spatial relations of many object frames are represented hierarchically in a tree data structure, called the frame tree. Individual frame transforms are populated by their respective modules that have specific knowledge of the frames. Through this onboard centralized frame tree database, client modules can query transforms between any two frames and support spacecraft commands that use any frames maintained in the frame tree. Various operational examples in the MSL mission that have greatly benefitted from this onboard centralized frame tree database are presented.

  1. Field Experiments using Telepresence and Virtual Reality to Control Remote Vehicles: Application to Mars Rover Missions

    Science.gov (United States)

    Stoker, Carol

    1994-01-01

    This paper will describe a series of field experiments to develop and demonstrate file use of Telepresence and Virtual Reality systems for controlling rover vehicles on planetary surfaces. In 1993, NASA Ames deployed a Telepresence-Controlled Remotely Operated underwater Vehicle (TROV) into an ice-covered sea environment in Antarctica. The goal of the mission was to perform scientific exploration of an unknown environment using a remote vehicle with telepresence and virtual reality as a user interface. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research center, for over two months. Remote control used a bidirectional Internet link to the vehicle control computer. The operator viewed live stereo video from the TROV along with a computer-gene rated graphic representation of the underwater terrain showing file vehicle state and other related information. Tile actual vehicle could be driven either from within the virtual environment or through a telepresence interface. In March 1994, a second field experiment was performed in which [lie remote control system developed for the Antarctic TROV mission was used to control the Russian Marsokhod Rover, an advanced planetary surface rover intended for launch in 1998. Marsokhod consists of a 6-wheel chassis and is capable of traversing several kilometers of terrain each day, The rover can be controlled remotely, but is also capable of performing autonomous traverses. The rover was outfitted with a manipulator arm capable of deploying a small instrument, collecting soil samples, etc. The Marsokhod rover was deployed at Amboy Crater in the Mojave desert, a Mars analog site, and controlled remotely from Los Angeles. in two operating modes: (1) a Mars rover mission simulation with long time delay and (2) a Lunar rover mission simulation with live action video. A team of planetary

  2. Geologic overview of the Mars Science Laboratory rover mission at the Kimberley, Gale crater, Mars

    Science.gov (United States)

    Rice, Melissa S.; Gupta, Sanjeev; Treiman, Allan H.; Stack, Kathryn M.; Calef, Fred; Edgar, Lauren A.; Grotzinger, John; Lanza, Nina; Le Deit, Laetitia; Lasue, Jeremie; Siebach, Kirsten L.; Vasavada, Ashwin; Wiens, Roger C.; Williams, Joshua

    2017-01-01

    The Mars Science Laboratory (MSL) Curiosity rover completed a detailed investigation at the Kimberley waypoint within Gale crater from sols 571-634 using its full science instrument payload. From orbital images examined early in the Curiosity mission, the Kimberley region had been identified as a high-priority science target based on its clear stratigraphic relationships in a layered sedimentary sequence that had been exposed by differential erosion. Observations of the stratigraphic sequence at the Kimberley made by Curiosity are consistent with deposition in a prograding, fluvio-deltaic system during the late Noachian to early Hesperian, prior to the existence of most of Mount Sharp. Geochemical and mineralogic analyses suggest that sediment deposition likely took place under cold conditions with relatively low water-to-rock ratios. Based on elevated K2O abundances throughout the Kimberley formation, an alkali feldspar protolith is likely one of several igneous sources from which the sediments were derived. After deposition, the rocks underwent multiple episodes of diagenetic alteration with different aqueous chemistries and redox conditions, as evidenced by the presence of Ca-sulfate veins, Mn-oxide fracture fills, and erosion-resistant nodules. More recently, the Kimberley has been subject to significant aeolian abrasion and removal of sediments to create modern topography that slopes away from Mount Sharp, a process that has continued to the present day.

  3. Remote sensing and terramechanics study of Mars using orbital and rover data sets

    Science.gov (United States)

    Lichtenberg, Kimberly Ann

    Orbital observations, rover-based remote-sensing and in-situ observations, and terramechanics modeling can be used collaboratively to examine the interplay between material properties, scientific setting, and mobility issues facing rovers on other worlds. In this thesis, these types of observations are used concurrently to identify the surface properties on a regional scale for the Gusev Crater Spirit landing site, to understand how the rover interacted with these materials while driving, and as a look ahead to a candidate new landing site, Aram Chaos, with exposed materials that contain key evidence for past environmental conditions. Comparison of rover-based and orbital spectral reflectance data over Spirit's traverses show that cratered plains in Gusev Crater are dominated by nanophase ferric-oxide-rich dust covering weakly altered basaltic sands. Comparison of Mars Odyssey THEMIS-derived thermal inertia values with Mars Express OMEGA-derived spectral parameters shows that although the dust cover can be optically thick (0.4 to 2.5 mum wavelength region) in some areas, it is not thick enough (˜1 cm) to mask the thermal inertia of the underlying substrate. Mobility in the above materials with a five-wheeled rover---Spirit's right front drive actuator is non-functioning---is analyzed in a modeling environment to assess mobility issues facing current and future rovers, specifically how to minimize the effect of an inoperable wheel on rover mobility and determining the rolling resistance of an embedded rover. This includes generation and use of mobility hazard maps as a tactical planning tool. A detailed stratigraphic and mineralogical description of a candidate new landing site, Aram Chaos (˜3°N, 339°E), is presented based on orbital data primarily from the Mars Reconnaissance Orbiter. Two sedimentary units overlie the basement chaos material representing the original plains fill in Aram Crater: the first and oldest is comprised of ferric hydroxysulfate

  4. Design and Preliminary Thermal Performance of the Mars Science Laboratory Rover Heat Exchangers

    Science.gov (United States)

    Mastropietro, A. J.; Beatty, John; Kelly, Frank; Birur, Gajanana; Bhandari, Pradeep; Pauken, Michael; Illsley, Peter; Liu, Yuanming; Bame, David; Miller, Jennifer

    2010-01-01

    The challenging range of proposed landing sites for the Mars Science Laboratory Rover requires a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 degrees Centigrade and as warm as 38 degrees Centigrade, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 degrees Centigrade to 50 degrees Centigrade range. The MPFL also manages significant waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG). The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Two similar Heat Exchanger (HX) assemblies were designed to both acquire the heat from the MMRTG and radiate waste heat from the onboard electronics to the surrounding Martian environment. Heat acquisition is accomplished on the interior surface of each HX while heat rejection is accomplished on the exterior surface of each HX. Since these two surfaces need to be at very different temperatures in order for the MPFL to perform efficiently, they need to be thermally isolated from one another. The HXs were therefore designed for high in-plane thermal conductivity and extremely low through-thickness thermal conductivity by using aerogel as an insulator inside composite honeycomb sandwich panels. A complex assembly of hand welded and uniquely bent aluminum tubes are bonded onto the HX panels and were specifically designed to be easily mated and demated to the rest of the Rover Heat Recovery and Rejection System (RHRS) in order to ease the integration effort. During the cruise phase to Mars, the HX assemblies serve the additional function of transferring heat from the Rover MPFL to the separate Cruise Stage MPFL so that heat

  5. Mastcam-Z: Designing a Geologic, Stereoscopic, and Multispectral Pair of Zoom Cameras for the NASA Mars 2020 Rover

    Science.gov (United States)

    Bell, J. F.; Maki, J. N.; Mehall, G. L.; Ravine, M. A.; Caplinger, M. A.; Mastcam-Z Team

    2016-10-01

    Mastcam-Z is a stereoscopic, multispectral imaging investigation selected for flight on the Mars 2020 rover mission. In this presentation we review our science goals and requirements and describe our CDR-level design and operational plans.

  6. MarsTwin: an M-mission to Mars with two geophysical laboratories

    Science.gov (United States)

    Dehant, V. M.; Breuer, D.; Grott, M.; Spohn, T.; Lognonne, P.; Read, P. L.; Vennerstroem, S.; Banerdt, B.

    2010-12-01

    Mars-Twin - a mission proposed for the running ESA cosmic vision M call - if selected it will be the first European mission to focus on interior processes and the early evolution of Mars, providing essential constraints for models of the thermal, geochemical, and geologic evolution of Mars and for a better understanding of SNC meteorites and future samples from Mars. Our fundamental understanding of the interior of the Earth comes from geophysics, geodesy, geochemistry, geomagnetism, and petrology. For geophysics, seismology, geodesy, magnetic field measurements, and surface heat flow have revealed the basic internal layering of the Earth, its thermal structure, its gross compositional stratification, as well as significant lateral variations in these quantities. The landers will also provide meteorological stations to monitor the Martian meteorology and climate and to obtain new measurements in the Martian boundary layer. The Mars-Twin mission will fill a longstanding gap in the scientific exploration of the solar system by performing an in-situ investigation of the interior of an Earth-like planet other than our own. Mars-Twin will provide unique and critical information about the fundamental processes of terrestrial planet formation and evolution. This investigation has been ranked as a high priority in virtually every set of European, US and international high-level planetary science recommendations for the past 30 years, and the objectives for the Mars-Twin mission are derived directly from these recommendations. In addition to geophysics, the mission will provide important constraints for the Astrobiology of Mars by helping to understand why Mars fails to have a magnetic field, by helping to understand the evolution of the climate, and by providing a limit to the chemoautrophic biosphere through a measurement of the heat flow. The paper will also address the synergy between the lander instruments and the possible orbiter instruments.

  7. Automated science target selection for future Mars rovers: A machine vision approach for the future ESA ExoMars 2018 rover mission

    Science.gov (United States)

    Tao, Yu; Muller, Jan-Peter

    2013-04-01

    The ESA ExoMars 2018 rover is planned to perform autonomous science target selection (ASTS) using the approaches described in [1]. However, the approaches shown to date have focused on coarse features rather than the identification of specific geomorphological units. These higher-level "geoobjects" can later be employed to perform intelligent reasoning or machine learning. In this work, we show the next stage in the ASTS through examples displaying the identification of bedding planes (not just linear features in rock-face images) and the identification and discrimination of rocks in a rock-strewn landscape (not just rocks). We initially detect the layers and rocks in 2D processing via morphological gradient detection [1] and graph cuts based segmentation [2] respectively. To take this further requires the retrieval of 3D point clouds and the combined processing of point clouds and images for reasoning about the scene. An example is the differentiation of rocks in rover images. This will depend on knowledge of range and range-order of features. We show demonstrations of these "geo-objects" using MER and MSL (released through the PDS) as well as data collected within the EU-PRoViScout project (http://proviscout.eu). An initial assessment will be performed of the automated "geo-objects" using the OpenSource StereoViewer developed within the EU-PRoViSG project (http://provisg.eu) which is released in sourceforge. In future, additional 3D measurement tools will be developed within the EU-FP7 PRoViDE2 project, which started on 1.1.13. References: [1] M. Woods, A. Shaw, D. Barnes, D. Price, D. Long, D. Pullan, (2009) "Autonomous Science for an ExoMars Rover-Like Mission", Journal of Field Robotics Special Issue: Special Issue on Space Robotics, Part II, Volume 26, Issue 4, pages 358-390. [2] J. Shi, J. Malik, (2000) "Normalized Cuts and Image Segmentation", IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 22. [3] D. Shin, and J.-P. Muller (2009

  8. REMS: the environmental sensor suite for the Mars Science Laboratory rover

    OpenAIRE

    2012-01-01

    The Rover Environmental Monitoring Station (REMS) will investigate environ- mental factors directly tied to current habitability at the Martian surface during the Mars Sci- ence Laboratory (MSL) mission. Three major habitability factors are addressed by REMS: the thermal environment, ultraviolet irradiation, and water cycling. The thermal environment is determined by a mixture of processes, chief amongst these being the meteorological. Ac- cordingly, the REMS sensors have been ...

  9. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    OpenAIRE

    2010-01-01

    We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight cal...

  10. Exploration of Mars with the ChemCam LIBS Instrument and the Curiosity Rover

    Science.gov (United States)

    Newsom, Horton E.

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity rover landed on Mars in August 2012, and has been exploring the planet ever since. Dr. Horton E. Newsom will discuss the MSL's design and main goal, which is to characterize past environments that may have been conducive to the evolution and sustainability of life. He will also discuss Curiosity's science payload, and remote sensing, analytical capabilities, and direct discoveries of the Chemistry & Camera (ChemCam) instrument, which is the first Laser Induced Breakdown Spectrometer (LIBS) to operate on another planetary surface and determine the chemistry of the rocks and soils.

  11. Cross-stratified Facies Observed by the Mars Science Laboratory Rover at Gale Crater, Mars

    Science.gov (United States)

    Edgar, Lauren; Rubin, Dave; Grotzinger, John; Bell, Jim; Calef, Fred; Dromart, Gilles; Gupta, Sanjeev; Kah, Linda; Lewis, Kevin; Mangold, Nicolas; Schieber, Jurgen; Stack, Katie; Sumner, Dawn; MSL Science Team

    2013-04-01

    The Mars Science Laboratory Curiosity rover has investigated a number of sedimentary rock outcrops since landing in Gale crater. From the Rocknest location, during sols 59 to 100, Curiosity observed a range of cross-bedded deposits spanning more than 60 m in lateral extent. Cross-bedding is best exposed in an ~80-cm-thick outcrop known as Shaler. Observations using the Mast Cameras of cross-bedding both at Shaler and Rocknest enabled the recognition of several distinct cross-bedded facies. Analysis of cross-bedding geometries provides insight into the depositional environment. On the basis of inferred grain size, erosional resistance, color, and sedimentary structures, we have identified four facies: 1) resistant cross-stratified facies, 2) smooth, fine-grained cross-stratified facies, 3) dark gray, pitted facies, and 4) recessive, vertically fractured facies. Sedimentary structures include simple and compound cross-bedding, angular discontinuities between lamina sets, and potential soft-sediment deformation. Trough cross-bedding suggests that bedforms had sinuous crestlines. Cross-bed sets range from centimeter to decimeter in scale. Small cm-scale climbing ripples were identified in the vicinity of Rocknest. Where climbing bedforms are visible, they climb at subcritical angles, resulting in preservation of only the lee slopes. Analysis of cross-bedding dip directions indicate a range of sediment transport directions. Grain transport under turbulent flows was required to produce the observed cross-bedded facies. We consider three possible depositional environments: eolian, fluvial, and pyroclastic surge. Pyroclastic surge deposits often contain bedforms with supercritical angles of climb, evidence for unidirectional transport radially away from a point source, contain volcanic indicators such as bombs and accretionary lapilli, and display distinct trends in grain size and facies from proximal to distal deposits or in vertical section. These characteristics do not

  12. Mars' atmosphere: Earth's sister and statistical twin

    Science.gov (United States)

    Chen, Wilbur; Lovejoy, Shaun; Muller, Jan-Peter

    2016-04-01

    Satellite-based Martian re-analyses have allowed unprecedented comparisons between our atmosphere and that of our sister planet, underlining various similarities and differences in their respective dynamics. Yet by focusing on large scale structures and deterministic mechanisms they have improved our understanding of the dynamics only over fairly narrow ranges of (near) planetary scales. However, the Reynolds numbers of the flows on both planets are larger than 1011 and dissipation only occurs at centimetric (Mars) or millimetric scales (Earth) so that over most of their scale ranges, the dynamics are fully turbulent. In this presentation, we therefore examine the high level, statistical, turbulent laws for the temperature, horizontal wind and surface pressure, finding that Earth and Mars have virtually identical statistical exponents: their statistics are very similar over wide ranges. Therefore, it would seem that with the exception of certain aspects of the largest scales (such as the role of dust in atmospheric heating on Mars, or of water in its various phases on Earth), that the nonlinear dynamics are very similar. We argue that this is a prediction of the classical laws of turbulence when extended to planetary scales, and that it supports our use of turbulent laws on both planetary atmospheres.

  13. 3D Vision on Mars: Stereo processing and visualizations for NASA and ESA rover missions

    Science.gov (United States)

    Huber, Ben

    2016-07-01

    Three dimensional (3D) vision processing is an essential component of planetary rover mission planning and scientific data analysis. Standard ground vision processing products are digital terrain maps, panoramas, and virtual views of the environment. Such processing is currently developed for the PanCam instrument of ESA's ExoMars Rover mission by the PanCam 3D Vision Team under JOANNEUM RESEARCH coordination. Camera calibration, quality estimation of the expected results and the interfaces to other mission elements such as operations planning, rover navigation system and global Mars mapping are a specific focus of the current work. The main goals of the 3D Vision team in this context are: instrument design support & calibration processing: Development of 3D vision functionality Visualization: development of a 3D visualization tool for scientific data analysis. 3D reconstructions from stereo image data during the mission Support for 3D scientific exploitation to characterize the overall landscape geomorphology, processes, and the nature of the geologic record using the reconstructed 3D models. The developed processing framework PRoViP establishes an extensible framework for 3D vision processing in planetary robotic missions. Examples of processing products and capabilities are: Digital Terrain Models, Ortho images, 3D meshes, occlusion, solar illumination-, slope-, roughness-, and hazard-maps. Another important processing capability is the fusion of rover and orbiter based images with the support of multiple missions and sensors (e.g. MSL Mastcam stereo processing). For 3D visualization a tool called PRo3D has been developed to analyze and directly interpret digital outcrop models. Stereo image products derived from Mars rover data can be rendered in PRo3D, enabling the user to zoom, rotate and translate the generated 3D outcrop models. Interpretations can be digitized directly onto the 3D surface, and simple measurements of the outcrop and sedimentary features

  14. The Development of the Chemin Mineralogy Instrument and Its Deployment on Mars (and Latest Results from the Mars Science Laboratory Rover Curiosity)

    Science.gov (United States)

    Blake, David F.

    2014-01-01

    The CheMin instrument (short for "Chemistry and Mineralogy") on the Mars Science Laboratory rover Curiosity is one of two "laboratory quality" instruments on board the Curiosity rover that is exploring Gale crater, Mars. CheMin is an X-ray diffractometer that has for the first time returned definitive and fully quantitative mineral identifications of Mars soil and drilled rock. I will describe CheMin's 23-year development from an idea to a spacecraft qualified instrument, and report on some of the discoveries that Curiosity has made since its entry, descent and landing on Aug. 6, 2012, including the discovery and characterization of the first habitable environment on Mars.

  15. Rover imaging system for the Mars rover/sample return mission

    Science.gov (United States)

    1993-02-01

    In the past year, the conceptual design of a panoramic imager for the Mars Environmental Survey (MESUR) Pathfinder was finished. A prototype camera was built and its performace in the laboratory was tested. The performance of this camera was excellent. Based on this work, we have recently proposed a small, lightweight, rugged, and highly capable Mars Surface Imager (MSI) instrument for the MESUR Pathfinder mission. A key aspect of our approach to optimization of the MSI design is that we treat image gathering, coding, and restoration as a whole, rather than as separate and independent tasks. Our approach leads to higher image quality, especially in the representation of fine detail with good contrast and clarity, without increasing either the complexity of the camera or the amount of data transmission. We have made significant progress over the past year in both the overall MSI system design and in the detailed design of the MSI optics. We have taken a simple panoramic camera and have upgraded it substantially to become a prototype of the MSI flight instrument. The most recent version of the camera utilizes miniature wide-angle optics that image directly onto a 3-color, 2096-element CCD line array. There are several data-taking modes, providing resolution as high as 0.3 mrad/pixel. Analysis tasks that were performed or that are underway with the test data from the prototype camera include the following: construction of 3-D models of imaged scenes from stereo data, first for controlled scenes and later for field scenes; and checks on geometric fidelity, including alignment errors, mast vibration, and oscillation in the drive system. We have outlined a number of tasks planned for Fiscal Year '93 in order to prepare us for submission of a flight instrument proposal for MESUR Pathfinder.

  16. Planetary micro-rover operations on Mars using a Bayesian framework for inference and control

    Science.gov (United States)

    Post, Mark A.; Li, Junquan; Quine, Brendan M.

    2016-03-01

    With the recent progress toward the application of commercially-available hardware to small-scale space missions, it is now becoming feasible for groups of small, efficient robots based on low-power embedded hardware to perform simple tasks on other planets in the place of large-scale, heavy and expensive robots. In this paper, we describe design and programming of the Beaver micro-rover developed for Northern Light, a Canadian initiative to send a small lander and rover to Mars to study the Martian surface and subsurface. For a small, hardware-limited rover to handle an uncertain and mostly unknown environment without constant management by human operators, we use a Bayesian network of discrete random variables as an abstraction of expert knowledge about the rover and its environment, and inference operations for control. A framework for efficient construction and inference into a Bayesian network using only the C language and fixed-point mathematics on embedded hardware has been developed for the Beaver to make intelligent decisions with minimal sensor data. We study the performance of the Beaver as it probabilistically maps a simple outdoor environment with sensor models that include uncertainty. Results indicate that the Beaver and other small and simple robotic platforms can make use of a Bayesian network to make intelligent decisions in uncertain planetary environments.

  17. Multi-Mission Radioisotope Thermoelectric Generator Heat Exchangers for the Mars Science Laboratory Rover

    Science.gov (United States)

    Mastropietro, A. J.; Beatty, John S.; Kelly, Frank P.; Bhandari, Pradeep; Bame, David P.; Liu, Yuanming; Birux, Gajanana C.; Miller, Jennifer R.; Pauken, Michael T.; Illsley, Peter M.

    2012-01-01

    The addition of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to the Mars Science Laboratory (MSL) Rover requires an advanced thermal control system that is able to both recover and reject the waste heat from the MMRTG as needed in order to maintain the onboard electronics at benign temperatures despite the extreme and widely varying environmental conditions experienced both on the way to Mars and on the Martian surface. Based on the previously successful Mars landed mission thermal control schemes, a mechanically pumped fluid loop (MPFL) architecture was selected as the most robust and efficient means for meeting the MSL thermal requirements. The MSL heat recovery and rejection system (HRS) is comprised of two Freon (CFC-11) MPFLs that interact closely with one another to provide comprehensive thermal management throughout all mission phases. The first loop, called the Rover HRS (RHRS), consists of a set of pumps, thermal control valves, and heat exchangers (HXs) that enables the transport of heat from the MMRTG to the rover electronics during cold conditions or from the electronics straight to the environment for immediate heat rejection during warm conditions. The second loop, called the Cruise HRS (CHRS), is thermally coupled to the RHRS during the cruise to Mars, and provides a means for dissipating the waste heat more directly from the MMRTG as well as from both the cruise stage and rover avionics by promoting circulation to the cruise stage radiators. A multifunctional structure was developed that is capable of both collecting waste heat from the MMRTG and rejecting the waste heat to the surrounding environment. It consists of a pair of honeycomb core sandwich panels with HRS tubes bonded to both sides. Two similar HX assemblies were designed to surround the MMRTG on the aft end of the rover. Heat acquisition is accomplished on the interior (MMRTG facing) surface of each HX while heat rejection is accomplished on the exterior surface of

  18. Middleware and Web Services for the Collaborative Information Portal of NASA's Mars Exploration Rovers Mission

    Science.gov (United States)

    Sinderson, Elias; Magapu, Vish; Mak, Ronald

    2004-01-01

    We describe the design and deployment of the middleware for the Collaborative Information Portal (CIP), a mission critical J2EE application developed for NASA's 2003 Mars Exploration Rover mission. CIP enabled mission personnel to access data and images sent back from Mars, staff and event schedules, broadcast messages and clocks displaying various Earth and Mars time zones. We developed the CIP middleware in less than two years time usins cutting-edge technologies, including EJBs, servlets, JDBC, JNDI and JMS. The middleware was designed as a collection of independent, hot-deployable web services, providing secure access to back end file systems and databases. Throughout the middleware we enabled crosscutting capabilities such as runtime service configuration, security, logging and remote monitoring. This paper presents our approach to mitigating the challenges we faced, concluding with a review of the lessons we learned from this project and noting what we'd do differently and why.

  19. Identification and Analysis of Landing sites for the ESA ExoMars Rover (2018)

    Science.gov (United States)

    Balme, Matthew; Bridges, John; Fawdon, Peter; Grindrod, Peter; Gupta, Sanjeev; Michalski, Joe; Conway, Susan

    2014-05-01

    The exploration and search for life on Mars forms a cornerstone of international solar system exploration. In 2018, the European Space agency will launch the ExoMars Rover and Lander to further this exploration. The key science objectives of the ExoMars Rover are to: 1) search for signs of past and present life on Mars; 2) investigate the water/geochemical environment as a function of depth in the shallow subsurface; and 3) to characterise the surface environment. To meet these objectives ExoMars will drill into the sub-surface to look for indicators of past life using a range of complementary techniques, including assessment of morphology (potential fossil organisms), mineralogy (past environments) and a search for organic molecules and their chirality (biomarkers). The choice of landing site is vital if ExoMars' scientific objectives are to be met. The landing site must: (i) be ancient (≥3.6 Ga); (ii) show abundant morphological and mineral evidence for long-term, or frequently reoccurring, aqueous activity; (iii) include numerous sedimentary outcrops that (iv) are distributed over the landing region (the typical Rover traverse range is only a few km, but the uncertainty in the location of the landing site forms an elliptical of size ~ 100 by 15 km); and (v) have little dust coverage. In addition, in order to land and operate safely, various 'engineering constraints' apply, including: (i) latitude limited to 5º S to 25º N; (ii) maximum altitude of the landing site 2 km below Mars's datum, (iii) few steep slopes within the uncertainty ellipse. These constraints are onerous. In particular, the objective to drill into sediments, the requirement for distributed targets within the ellipse, and the ellipse size, make ExoMars site selection extremely challenging. To meet these challenges, we have begun an intensive study of the martian landscape to identify as many possible ExoMars landing sites as possible. We have converted the current engineering constraints into

  20. Development of a Thermal Control Architecture for the Mars Exploration Rovers

    Science.gov (United States)

    Novak, Keith S.; Phillips, Charles J.; Birur, Gajanana C.; Sunada, Eric T.; Pauken, Michael T.

    2003-01-01

    In May and June of 2003, the National Aeronautics and Space Administration (NASA) will launch two roving science vehicles on their way to Mars. They will land on Mars in January and February of 2004 and carry out 90-Sol missions. This paper addresses the thermal design architecture of the Mars Exploration Rover (MER) developed for Mars surface operations. The surface atmosphere temperature on Mars can vary from 0°C in the heat of the day to -100°C in the early morning, prior to sunrise. Heater usage at night must be minimized in order to conserve battery energy. The desire to minimize nighttime heater energy led to a design in which all temperature sensitive electronics and the battery were placed inside a well-insulated (carbon-opacified aerogel lined) Warm Electronics Box (WEB). In addition, radioisotope heater units (RHU's, non-electric heat sources) were mounted on the battery and electronics inside the WEB. During the Martian day, the electronics inside the WEB dissipate a large amount of energy (over 710 W*hrs). This heat energy raises the internal temperatures inside the WEB. Hardware items that have similar temperature limits were conductively coupled together to share heat and concentrate thermal mass. Thermal mass helped to minimize temperature increases in the hot case (with maximum internal dissipation) and minimize temperature decreases in the cold case (with minimum internal dissipation). In order to prevent the battery from exceeding its maximum allowable flight temperature, wax-actuated passive thermal switches were placed between the battery and an external radiator. This paper discusses the design philosophies and system requirements that resulted in a successful Mars rover thermal design.

  1. Mars Rover Model Celebration: Using Planetary Exploration To Enrich STEM Teaching In Elementary And Middle School

    Science.gov (United States)

    Bering, E. A.; Ramsey, J.; Dominey, W.; Kapral, A.; Carlson, C.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.

    2011-12-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The program culminates in a capstone event held at the University of Houston (or other central location in the other communities that will be involved

  2. The Mars Astrobiology Explorer-Cacher (MAX-C): a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG) October 14, 2009.

    Science.gov (United States)

    2010-03-01

    This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.

  3. Results of the Alpha-Particle-X-Ray Spectrometer on Board of the Mars Exploration Rovers

    Science.gov (United States)

    Geller, R.; Zipfel, J.; Brueckner, J.; Dreibus, G.; Lugmair, G.; Rieder, R.; Waenke, H.; Klingelhoefer, G.; Clark, B. C.; Ming, D. W.

    2005-01-01

    The Mars Exploration Rovers Spirit and Opportunity landed at Gusev crater and Meridiani Planum. The Alpha Particle X-ray Spectrometer (APXS) is part of the instrument suite on both rovers. It is equipped with six 244Cm sources which provide x-ray excitation with alpha-particles (PIXE) and x-ray radiation (XRF). This combination allows x-ray spectroscopy of elements from Na to Br in the energy range of 0.9 to 16 keV. X-ray detectors with a high energy resolution of 160 eV at Fe K allow us to separate even closely spaced energy peaks, such as Na, Mg, Al and Si. The APXS is attached to the rover s arm and provides in-situ measurements of the chemical composition of soils, surfaces of rocks and outcrops and their abraded surfaces. This abstract gives an overview of APXS results obtained during the first year of operation on both landing sites.

  4. Principal Components Analysis of Reflectance Spectra from the Mars Exploration Rover Opportunity

    Science.gov (United States)

    Mercer, C. M.; Cohen, B. A.

    2010-01-01

    In the summer of 2007 a global dust storm on Mars effectively disabled Opportunity's Miniature Thermal Emission Spectrometer (Mini-TES), the primary instrument used by the Athena Science Team to identify locally unique rocks on the Martian surface. The science team needs another way to distinguish interesting rocks from their surroundings on a tactical timescale. This study was designed to develop the ability to identify locally unique rocks on the Martian surface remotely using the Mars Exploration Rovers' Panoramica Camera (PanCam) instrument. Meridiani bedrock observed by Opportunity is largely characterized by sulfate-rich sandstones and hematite spherules. Additionally, loose fragments of bedrock and "cobbles" of foreign origin collet on the surface, some of which are interpreted as meteorites.

  5. AIAA Educator Academy - Mars Rover Curriculum: A 6 week multidisciplinary space science based curriculum

    Science.gov (United States)

    Henriquez, E.; Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.

    2013-12-01

    The Curiosity mission has captured the imagination of children, as NASA missions have done for decades. The AIAA and the University of Houston have developed a flexible curriculum program that offers children in-depth science and language arts learning culminating in the design and construction of their own model rover. The program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students learn to research Mars in order to pick a science question about Mars that is of interest to them. They learn principles of spacecraft design in order to build a model of a Mars rover to carry out their mission on the surface of Mars. The model is a mock-up, constructed at a minimal cost from art supplies. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the structure and organization of the 6 week curriculum. A set of 30 new 5E lesson plans have been written to support this project as a classroom activity. The challenge of developing interactive

  6. Ground Truthing Orbital Clay Mineral Observations with the APXS Onboard Mars Exploration Rover Opportunity

    Science.gov (United States)

    Schroeder, C.; Gellert, R.; VanBommel, S.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. S.; Yen, A. S.

    2016-01-01

    NASA's Mars Exploration Rover Opportunity has been exploring approximately 22 km diameter Endeavour crater since 2011. Its rim segments predate the Hesperian-age Burns formation and expose Noachian-age material, which is associated with orbital Fe3+-Mg-rich clay mineral observations [1,2]. Moving to an orders of magnitude smaller instrumental field of view on the ground, the clay minerals were challenging to pinpoint on the basis of geochemical data because they appear to be the result of near-isochemical weathering of the local bedrock [3,4]. However, the APXS revealed a more complex mineral story as fracture fills and so-called red zones appear to contain more Al-rich clay minerals [5,6], which had not been observed from orbit. These observations are important to constrain clay mineral formation processes. More detail will be added as Opportunity is heading into her 10th extended mission, during which she will investigate Noachian bedrock that predates Endeavour crater, study sedimentary rocks inside Endeavour crater, and explore a fluid-carved gully. ESA's ExoMars rover will land on Noachian-age Oxia Planum where abundant Fe3+-Mg-rich clay minerals have been observed from orbit, but the story will undoubtedly become more complex once seen from the ground.

  7. Equipping an FPGA-Based Mars Rover With an LN-200 IMU

    Science.gov (United States)

    Zola, Nicholas J.

    2005-01-01

    The Mars Exploration Rovers (MER) currently navigating the surface of Mars are outfitted with an advanced stereovision correlation algorithm which allows them to "see" three-dimensionally and autonomously avoid obstac'les in their path. A bottleneck of this system is that it is computationally intense and requires 3 minutes of processing for every correlated image and path choice. Taking advantage of the optimization and reprogrammability of FPGAs, the Mobility Avionics lab has reduced this process to under a second. The lab is demonstrating the advancement with a prototype rover, complete with an LN-200 inertial measurement unit (IMU), which is a flight spare from MER. The LN-200 is a space-grade, six degrees-of-freedom IMU using three fiber-optic gyroscopes and three silicon accelerometers and no moving parts. It has particular power-sequencing needs and communicates with a specialized serial protocol (SDLC over RS-422), requiring specific hardware and software for proper functionality and interfacing with an FPGA. The process of incorporating the LN-200 into the system is described herein.

  8. Learning from the Mars Rover Mission: Scientific Discovery, Learning and Memory

    Science.gov (United States)

    Linde, Charlotte

    2005-01-01

    Purpose: Knowledge management for space exploration is part of a multi-generational effort. Each mission builds on knowledge from prior missions, and learning is the first step in knowledge production. This paper uses the Mars Exploration Rover mission as a site to explore this process. Approach: Observational study and analysis of the work of the MER science and engineering team during rover operations, to investigate how learning occurs, how it is recorded, and how these representations might be made available for subsequent missions. Findings: Learning occurred in many areas: planning science strategy, using instrumen?s within the constraints of the martian environment, the Deep Space Network, and the mission requirements; using software tools effectively; and running two teams on Mars time for three months. This learning is preserved in many ways. Primarily it resides in individual s memories. It is also encoded in stories, procedures, programming sequences, published reports, and lessons learned databases. Research implications: Shows the earliest stages of knowledge creation in a scientific mission, and demonstrates that knowledge management must begin with an understanding of knowledge creation. Practical implications: Shows that studying learning and knowledge creation suggests proactive ways to capture and use knowledge across multiple missions and generations. Value: This paper provides a unique analysis of the learning process of a scientific space mission, relevant for knowledge management researchers and designers, as well as demonstrating in detail how new learning occurs in a learning organization.

  9. Overview of the magnetic properties experiments onboard the two Mars Exploration Rovers, Spirit and Opportunity

    Science.gov (United States)

    Leer, K.; Bertelsen, P.; Goetz, W.; Hviid, S. F.; Madsen, D. E.; Madsen, M. B.; Olsen, M.; The, A.

    2007-05-01

    The two Mars Exploration Rovers, Spirit and Opportunity, are each equipped with seven magnets designed for three different purposes: 1. The Filter and Capture magnets collect dust from the atmosphere. The dust can be investigated by the science instruments on the robotic arm and imaged by the Panoramic Camera. Analyzes of the dust shows that the magnetic component in the martian dust is magnetite, hematite together with paramagnetic and possibly superparamagnetic compounds is responsible for the yellowish color of the dust and the presence of olivine shows that the dust is formed without any appreciable presence of water. 2. The ring shaped Sweep magnet is design to detect non-magnetic particles. The experiment has been negative so far, showing that all particles must be composite and magnetic. This experience has been used to design a new camera calibration target for the Phoenix 2007, the sweep effect significantly preventing the calibration target to get dusty during the mission. 3. The Rock Abrasion Tool magnets are design to support the Mössbauer measurements on rocks giving additional information about the magnetic minerals contained in rocks. We here report on the results from the rovers and the neer future prospective for magnetic properties experiments on Mars.

  10. What Can the Curiosity Rover Tell Us About the Climate of Mars?

    Science.gov (United States)

    Haberle, Robert M.

    2013-01-01

    What Can the Curiosity Rover Tell Us About the Climate of Mars? Assessing the habitability of Gale Crater is the goal of the Curiosity Rover, which has been gathering data since landing on the Red Planet last August. To meet that goal, Curiosity brought with it a suite of instruments to measure the biological potential of the landing site, the geology and chemistry of its surface, and local environmental conditions. Some of these instruments illuminate the nature of the planet fs atmosphere and climate system, both for present day conditions as well as for conditions that existed billions of years ago. For present day conditions, Curiosity has a standard meteorology package that measures pressure, temperature, winds and humidity, plus a sensor the measures the UV flux. These data confirm what we learned from previous missions namely that today Mars is a cold, dry, and barren desert-like planet. For past conditions, however, wetter and probably warmer conditions are indicated. Curiosities cameras reveal gravel beds that must have formed by flowing rivers, and sedimentary deposits of layered sand and mudstones possibly associated with lakes. An ancient aqueous environment is further supported by the presence of sulfate veins coursing through some of the rocks in Yellowknife Bay where Curiosity is planning its first drilling activity. I will discuss these results and their implications in this lecture.

  11. Principal Components Analysis of Reflectance Spectra Returned by the Mars Exploration Rover Opportunity

    Science.gov (United States)

    Mercer, C. M.; Cohen, Barbara A.

    2010-01-01

    The Mars Exploration Rover Opportunity has spent over six years exploring the Martian surface near its landing site at Meridiani Planum. Meridiani bedrock observed by the rover is largely characterized by sulfate-rich sandstones and hematite spherules, recording evidence of ancient aqueous environments [1]. The region is a deflationary surface, allowing hematite spherules, fragments of bedrock, and "cobbles" of foreign origin to collect loosely on the surface. These cobbles may be meteorites (e.g., Barberton, Heat Shield Rock, Santa Catarina) [2], or rock fragments of exotic composition derived from adjacent terranes or from the subsurface and delivered to Meridiani Planum as impact ejecta [3]. The cobbles provide a way to better understand Martian meteorites and the lithologic diversity of Meridiani Planum by examining the various rock types located there. In the summer of 2007, a global dust storm on Mars effectively disabled Opportunity's Miniature Thermal Emission Spectrometer (Mini-TES), which served as the Athena Science Team s primary tool for remotely identifying rocks of interest on a tactical timescale for efficient rover planning. While efforts are ongoing to recover use of the Mini-TES, the team is currently limited to identifying rocks of interest by visual inspection of images returned from Opportunity's Panoramic Camera (Pancam). This study builds off of previous efforts to characterize cobbles at Meridiani Planum using a database of reflectance spectra extracted from Pancam 13-Filter (13F) images [3]. We analyzed the variability of rock spectra in this database and identified physical characteristics of Martian rocks that could potentially account for the observed variance. By understanding such trends, we may be able to distinguish between rock types at Meridiani Planum and regain the capability to remotely identify locally unique rocks.

  12. Dust Accumulation and Solar Panel Array Performance on the Mars Exploration Rover (MER) Project

    Science.gov (United States)

    Turgay, Eren H.

    2004-01-01

    One of the most fundamental design considerations for any space vehicle is its power supply system. Many options exist, including batteries, fuel cells, nuclear reactors, radioisotopic thermal generators (RTGs), and solar panel arrays. Solar arrays have many advantages over other types of power generation. They are lightweight and relatively inexpensive, allowing more mass and funding to be allocated for other important devices, such as scientific instruments. For Mars applications, solar power is an excellent option, especially for long missions. One might think that dust storms would be a problem; however, while dust blocks some solar energy, it also scatters it, making it diffuse rather than beamed. Solar cells are still able to capture this diffuse energy and convert it into substantial electrical power. For these reasons, solar power was chosen to be used on the 1997 Mars Pathfinder mission. The success of this mission set a precedent, as NASA engineers have selected solar power as the energy system of choice for all future Mars missions, including the Mars Exploration Rover (MER) Project. Solar sells have their drawbacks, however. They are difficult to manufacture and are relatively fragile. In addition, solar cells are highly sensitive to different parts of the solar spectrum, and finding the correct balance is crucial to the success of space missions. Another drawback is that the power generated is not a constant with respect to time, but rather changes with the relative angle to the sun. On Mars, dust accumulation also becomes a factor. Over time, dust settles out of the atmosphere and onto solar panels. This dust blocks and shifts the frequency of the incoming light, degrading solar cell performance. My goal is to analyze solar panel telemetry data from the two MERs (Spirit and Opportunity) in an effort to accurately model the effect of dust accumulation on solar panels. This is no easy process due to the large number of factors involved. Changing solar

  13. Dust Accumulation and Solar Panel Array Performance on the Mars Exploration Rover (MER) Project

    Science.gov (United States)

    Turgay, Eren H.

    2004-01-01

    One of the most fundamental design considerations for any space vehicle is its power supply system. Many options exist, including batteries, fuel cells, nuclear reactors, radioisotopic thermal generators (RTGs), and solar panel arrays. Solar arrays have many advantages over other types of power generation. They are lightweight and relatively inexpensive, allowing more mass and funding to be allocated for other important devices, such as scientific instruments. For Mars applications, solar power is an excellent option, especially for long missions. One might think that dust storms would be a problem; however, while dust blocks some solar energy, it also scatters it, making it diffuse rather than beamed. Solar cells are still able to capture this diffuse energy and convert it into substantial electrical power. For these reasons, solar power was chosen to be used on the 1997 Mars Pathfinder mission. The success of this mission set a precedent, as NASA engineers have selected solar power as the energy system of choice for all future Mars missions, including the Mars Exploration Rover (MER) Project. Solar sells have their drawbacks, however. They are difficult to manufacture and are relatively fragile. In addition, solar cells are highly sensitive to different parts of the solar spectrum, and finding the correct balance is crucial to the success of space missions. Another drawback is that the power generated is not a constant with respect to time, but rather changes with the relative angle to the sun. On Mars, dust accumulation also becomes a factor. Over time, dust settles out of the atmosphere and onto solar panels. This dust blocks and shifts the frequency of the incoming light, degrading solar cell performance. My goal is to analyze solar panel telemetry data from the two MERs (Spirit and Opportunity) in an effort to accurately model the effect of dust accumulation on solar panels. This is no easy process due to the large number of factors involved. Changing solar

  14. Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars

    Science.gov (United States)

    Stack, Kathryn M.; Edwards, Christopher; Grotzinger, J. P.; Gupta, S.; Sumner, D.; Edgar, Lauren; Fraeman, A.; Jacob, S.; LeDeit, L.; Lewis, K.W.; Rice, M.S.; Rubin, D.; Calef, F.; Edgett, K.; Williams, R.M.E.; Williford, K.H.

    2016-01-01

    This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity’s Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.

  15. Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars

    Science.gov (United States)

    Stack, K. M.; Edwards, C. S.; Grotzinger, J. P.; Gupta, S.; Sumner, D. Y.; Calef, F. J.; Edgar, L. A.; Edgett, K. S.; Fraeman, A. A.; Jacob, S. R.; Le Deit, L.; Lewis, K. W.; Rice, M. S.; Rubin, D.; Williams, R. M. E.; Williford, K. H.

    2016-12-01

    This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity's Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.

  16. Determination of spectral parameters for lines targeted by the Tunable Laser Spectrometer (TLS) on the Mars Curiosity rover

    Science.gov (United States)

    Manne, Jagadeeshwari; Webster, Christopher R.

    2016-03-01

    Molecular line parameters of line strengths, self- and foreign-broadening by nitrogen, carbon dioxide and helium gas have been experimentally determined for infrared ro-vibrational spectral lines of water and carbon dioxide at 2.78 μm targeted by the Tunable Laser Spectrometer (TLS) in the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover. Good agreement is found by comparison with the line parameters reported in the HITRAN-2012 database.

  17. Visible and near-infrared multispectral analysis of rocks at Meridiani Planum, Mars, by the Mars Exploration Rover Opportunity

    Science.gov (United States)

    Farrand, W. H.; Bell, J.F.; Johnson, J. R.; Jolliff, B.L.; Knoll, A.H.; McLennan, S.M.; Squyres, S. W.; Calvin, W.M.; Grotzinger, J.P.; Morris, R.V.; Soderblom, J.; Thompson, S.D.; Watters, W.A.; Yen, A. S.

    2007-01-01

    Multispectral measurements in the visible and near infrared of rocks at Meridiani Planum by the Mars Exploration Rover Opportunity's Pancam are described. The Pancam multispectral data show that the outcrops of the Burns formation consist of two main spectral units which in stretched 673, 535, 432 nm color composites appear buff- and purple-colored. These units are referred to as the HFS and LFS spectral units based on higher and lower values of 482 to 535 nm slope. Spectral characteristics are consistent with the LFS outcrop consisting of less oxidized, and the HFS outcrop consisting of more oxidized, iron-bearing minerals. The LFS surfaces are not as common and appear, primarily, at the distal ends of outcrop layers and on steep, more massive surfaces, locations that are subject to greater eolian erosion. Consequently, the HFS surfaces are interpreted as a weathering rind. Further inherent spectral differences between layer's and between different outcrop map units, both untouched and patches abraded by the rover's Rock Abrasion Tool, are also described. Comparisons of the spectral parameters of the Meridiani outcrop with a set of laboratory reflectance measurements of Fe3+-bearing minerals show that the field of outcrop measurements plots near the fields of hematite, ferrihydrite, poorly crystalline goethite, and schwertmannite. Rind and fracture fill materials, observed intermittently at outcrop exposures, are intermediate in their spectral character between both the HFS and LFS spectral classes and other, less oxidized, surface materials (basaltic sands, spherules, and cobbles). Copyright 2007 by the American Geophysical Union.

  18. Aram Dorsum, Candidate ExoMars Rover Landing Site: a Noachian Inverted Fluvial Channel System in Arabia Terra Mars

    Science.gov (United States)

    Balme, Matthew; Grindrod, Peter; Sefton-Nash, Elliot; Davis, Joel; Gupta, Sanjeev; Fawdon, Peter

    2016-04-01

    Much of Mars' Noachian-aged southern highlands is dissected by systems of fluvial channels and valleys > 3.7 Ga in age. Arabia Terra, lying between the southern highlands and the northern lowlands, is similarly ancient, yet apparently has few valley networks. This regional lack of valley networks only matches Noachian precipitation predictions from climate models if the Noachian climate was dry and cold [1]. In this scenario, highlands dissection was caused by transient flows of meltwater from large, regionally restricted ice-bodies. However, new results [2,3] show that Arabia Terra is not as poorly dissected as previously thought, and in fact there are extensive networks of inverted channel systems. Here, we describe an example of such a system - Aram Dorsum - which has been studied extensively as an ExoMars Rover candidate landing site. Aram Dorsum is an ~100 km long, 1-2 km wide, branching, flat-topped ridge system, in western Arabia Terra. We have mapped the system using CTX images, DEMs and other data. We interpret the ridge system to be fluvial in origin, preserved in positive relief due to infill and differential erosion; this working hypothesis is used as a conceptual framework for the study. Aram Dorsum is a branching, multi-level, contributory network, set in surrounding floodplains-like material. This demonstrates that it was a relatively long-lived, aggradational fluvial system, rather than an erosional outflow or bedrock-carved fluvial channel. Interestingly, the system shows little evidence for unconfined lateral channel migration, so there must have been significant bank stability. Aram Dorsum was therefore probably once a sizable river and, as just one example of many similar systems, is an exemplar for the middle part of a regional sediment transport system that could have extended from the southern highlands to the northern lowlands. Like Aram Dorsum, many of these other recently-recognized fluvial systems have an origin more consistent with

  19. Contamination Knowledge Strategy for the Mars 2020 Sample-Collecting Rover

    Science.gov (United States)

    Farley, K. A.; Williford, K.; Beaty, D W.; McSween, H. Y.; Czaja, A. D.; Goreva, Y. S.; Hausrath, E.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; McLennan, S. M.; Pratt, L. M.; Sephton, M. A.; Steele, A.; Weiss, B. P.; Hays, L. E.

    2017-01-01

    The Mars 2020 rover will collect carefully selected samples of rock and regolith as it explores a potentially habitable ancient environment on Mars. Using the drill, rock cores and regolith will be collected directly into ultraclean sample tubes that are hermetically sealed and, later, deposited on the surface of Mars for potential return to Earth by a subsequent mission. Thorough characterization of any contamination of the samples at the time of their analysis will be essential for achieving the objectives of Mars returned sample science (RSS). We refer to this characterization as contamination knowledge (CK), which is distinct from contamination control (CC). CC is the set of activities that limits the input of contaminating species into a sample, and is specified by requirement thresholds. CK consists of identifying and characterizing both potential and realized contamination to better inform scientific investigations of the returned samples. Based on lessons learned by other sample return missions with contamination-sensitive scientific objectives, CC needs to be "owned" by engineering, but CK needs to be "owned" by science. Contamination present at the time of sample analysis will reflect the sum of contributions from all contamination vectors up to that point in time. For this reason, understanding the integrated history of contamination may be crucial for deciphering potentially confusing contaminant-sensitive observations. Thus, CK collected during the Mars sample return (MSR) campaign must cover the time period from the initiation of hardware construction through analysis of returned samples in labs on Earth. Because of the disciplinary breadth of the scientific objectives of MSR, CK must include a broad spectrum of contaminants covering inorganic (i.e., major, minor, and trace elements), organic, and biological molecules and materials.

  20. Biogenic iron mineralization at Iron Mountain, CA with implications for detection with the Mars Curiosity rover

    Science.gov (United States)

    Williams, Amy J.; Sumner, Dawn Y.; Alpers, Charles N.; Campbell, Kate M.; Nordstrom, D. Kirk

    2014-01-01

    (Introduction) Microbe-mineral interactions and biosignature preservation in oxidized sulfidic ore bodies (gossans) are prime candidates for astrobiological study. Such oxidized iron systems have been proposed as analogs for some Martian environments. Recent studies identified microbial fossils preserved as mineral-coated filaments. This study documents microbially-mediated mineral biosignatures in hydrous ferric oxide (HFO) and ferric oxyhydroxysulfates (FOHS) in three environments at Iron Mountain, CA. We investigated microbial community preservation via HFO and FOHS precipitation and the formation of filamentous mineral biosignatures. These environments included 1) actively precipitating (1000's yrs), naturally weathered HFO from in situ gossan, and 3) remobilized iron deposits, which contained lithified clastics and zones of HFO precipitate. We used published biogenicity criteria as guidelines to characterize the biogenicity of mineral filaments. These criteria included A) an actively precipitating environment where microbes are known to be coated in minerals, B) presence of extant microbial communities with carbon signatures, C) structures observable as a part of the host rock, and D) biological morphology, including cellular lumina, multiple member population, numerous taxa, variable and 3-D preservation, biological size ranges, uniform diameter, and evidence of flexibility. This study explores the relevance and detection of these biosignatures to possible Martian biosignatures. Similar filamentous biosignatures are resolvable by the Mars Hand Lens Imager (MAHLI) onboard the Mars Science Laboratory (MSL) rover, Curiosity, and may be identifiable as biogenic if present on Mars.

  1. Methods and decision making on a Mars rover for identification of fossils

    Science.gov (United States)

    Eberlein, Susan; Yates, Gigi

    1989-01-01

    A system for automated fusion and interpretation of image data from multiple sensors, including multispectral data from an imaging spectrometer is being developed. Classical artificial intelligence techniques and artificial neural networks are employed to make real time decision based on current input and known scientific goals. Emphasis is placed on identifying minerals which could indicate past life activity or an environment supportive of life. Multispectral data can be used for geological analysis because different minerals have characteristic spectral reflectance in the visible and near infrared range. Classification of each spectrum into a broad class, based on overall spectral shape and locations of absorption bands is possible in real time using artificial neural networks. The goal of the system is twofold: multisensor and multispectral data must be interpreted in real time so that potentially interesting sites can be flagged and investigated in more detail while the rover is near those sites; and the sensed data must be reduced to the most compact form possible without loss of crucial information. Autonomous decision making will allow a rover to achieve maximum scientific benefit from a mission. Both a classical rule based approach and a decision neural network for making real time choices are being considered. Neural nets may work well for adaptive decision making. A neural net can be trained to work in two steps. First, the actual input state is mapped to the closest of a number of memorized states. After weighing the importance of various input parameters, the net produces an output decision based on the matched memory state. Real time, autonomous image data analysis and decision making capabilities are required for achieving maximum scientific benefit from a rover mission. The system under development will enhance the chances of identifying fossils or environments capable of supporting life on Mars

  2. Estimates of power requirements for a manned Mars rover powered by a nuclear reactor

    Science.gov (United States)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    1991-01-01

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are met using an SP-100 type reactor. The primary electric power needs, which include 30-kWe net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine (FPSE) yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle (CBC) using He/Xe as the working fluid. The specific mass of the nuclear reactor power systrem, including a man-rated radiation shield, ranged from 150-kg/kWe to 190-kg/kWe and the total mass of the Rover vehicle varied depend upon the cruising speed.

  3. Performance Testing of Lithium Li-ion Cells and Batteries in Support of JPL's 2003 Mars Exploration Rover Mission

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; Ewell, R. C.; Whitcanack, L. D.; Surampudi, S.; Puglia, F.; Gitzendanner, R.

    2007-01-01

    In early 2004, JPL successfully landed two Rovers, named Spirit and Opportunity, on the surface of Mars after traveling > 300 million miles over a 6-7 month period. In order to operate for extended duration on the surface of Mars, both Rovers are equipped with rechargeable Lithium-ion batteries, which were designed to aid in the launch, correct anomalies during cruise, and support surface operations in conjunction with a triple-junction deployable solar arrays. The requirements of the Lithium-ion battery include the ability to provide power at least 90 sols on the surface of Mars, operate over a wide temperature range (-20(super 0)C to +40(super 0)C), withstand long storage periods (e.g., including pre-launch and cruise period), operate in an inverted position, and support high currents (e.g., firing pyro events). In order to determine the inability of meeting these requirements, ground testing was performed on a Rover Battery Assembly Unit RBAU), consisting of two 8-cell 8 Ah lithium-ion batteries connected in parallel. The RBAU upon which the performance testing was performed is nearly identical to the batteries incorporated into the two Rovers currently on Mars. The primary focus of this paper is to communicate the latest results regarding Mars surface operation mission simulation testing, as well as, the corresponding performance capacity loss and impedance characteristics as a function of temperature and life. As will be discussed, the lithium-ion batteries (fabricated by Yardney Technical Products, Inc.) have been demonstrated to far exceed the requirements defined by the mission, being able to support the operation of the rovers for over three years, and are projected to support an even further extended mission.

  4. The Antarctic permafrost as a testbed for REMS (Rover Environmental Monitoring Station-Mars Science Laboratory)

    Science.gov (United States)

    Esteban, B.; Ramos, M.; Sebastián, E.; Armiens, C.; Gómez-Elvira, J.; Cabos, W.; de Pablo, M. A.

    2009-04-01

    The present climatic characteristics of Mars favor the presence of extense permafrost areas in this lonely planet. Therefore environmental parameters that are included in Martian Rover missions are also used for monitoring thermal soil surface evolution in order to study the permafrost active layer thickness and the energy balance in the soil-atmosphere boundary limit layer. The REMS (Rover Environmental Monitoring Station) is an environmental station designed by the Centro de Astrobiología (CAB- Spain) with the collaboration of national and international partners (CRISA/EADS, UPC and FMI), which is part of the payload of the MSL (Mars Science Laboratory) NASA mission to Mars (http://mars.jpl.nasa.gov/msl/overview/). This mission is expected to be launched in the final months of 2009, and mainly consists of a Rover, with a complete set of scientific instruments; the Rover will carry the biggest, most advanced suite of instruments for scientific studies ever sent to the Martian surface. Five sensors compose the REMS instrument: ground (GT-REMS) and air temperatures, wind speed and direction, pressure, humidity and ultraviolet radiation (UV-REMS). A simplified setup of the REMS was deployed on Antarctica in the surroundings of the Spanish Antarctic Stations on Livingston and Deception Islands (Maritime Antarctica), where the permafrost distribution is well-known. The aim of the experiment was to check REMS's sensors response against hard environmental conditions and calibrates their measures with standard Antarctic devices. The experimental apparatuses included some standard meteorological and thermopiles sensors corresponding to the REMS. All the sensors are mounted in a 1.8 m mast and include a Pt100 air temperature sensor with shield solar protection on the mast top, a Kipp and Zonnen CNR1 net radiometer for measuring infrared (5-50 μm) and short wave solar (305-2800 nm) radiation at 1.5 m high, GT-REMS sensor and its amplification box at 0.7 m high and finally

  5. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    Directory of Open Access Journals (Sweden)

    Miguel Ramos

    2010-10-01

    Full Text Available We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS Ground Temperature Sensor (GTS, an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.

  6. Note: Planetary gravities made simple: Sample test of a Mars rover wheel

    Science.gov (United States)

    Viera-López, G.; Serrano-Muñoz, A.; Amigó-Vega, J.; Cruzata, O.; Altshuler, E.

    2017-08-01

    We introduce an instrument for a wide spectrum of experiments on gravities other than our planet's. It is based on a large Atwood machine where one of the loads is a bucket equipped with a single board computer and different sensors. The computer is able to detect the falling (or rising) and then the stabilization of the effective gravity and to trigger actuators depending on the experiment. Gravities within the range 0.4 g-1.2 g are easily achieved with acceleration noise of the order of 0.01 g. Under Martian gravity, we are able to perform experiments of approximately 1.5 s duration. The system includes features such as WiFi and a web interface with tools for the setup, monitoring, and data analysis of the experiment. We briefly show a case study in testing the performance of a model Mars rover wheel in low gravities.

  7. Indicators and Methods to Understand Past Environments from ExoMars Rover Drills

    Science.gov (United States)

    Kereszturi, A.; Bradak, B.; Chatzitheodoridis, E.; Ujvari, G.

    2016-03-01

    Great advances are expected during the analysis of drilled material acquired from 2 m depth by ExoMars rover, supported by the comparison to local context, and the joint use of different instruments. Textural information might be less detailed relatively to what is usually obtained at outcrops during classical geological field work on the Earth, partly because of the lack of optical imaging of the borehole wall and also because the collected samples are crushed. However sub-mm scale layering and some other sedimentary features might be identified in the borehole wall observations, or in the collected sample prior to crushing, and also at nearby outcrops. The candidate landing sites provide different targets and focus for research: Oxia Planum requires analysis of phyllosilicates and OH content, at Mawrth Vallis the layering of various phyllosilicates and the role of shallow-subsurface leaching should be emphasized. At Aram Dorsum the particle size and fluvial sedimentary features will be interesting. Hydrated perchlorates and sulphates are ideal targets possibly at every landing sites because of OH retention, especially if they are mixed with smectites, thus could point to even ancient wet periods. Extensive use of information from the infrared wall scanning will be complemented for geological context by orbital and rover imaging of nearby outcrops. Information from the context is especially useful to infer the possible action of past H2O. Separation of the ice and liquid water effects will be supported by cation abundance and sedimentary context. Shape of grains also helps here, and composition of transported grains points to the weathering potential of the environment in general. The work on Mars during the drilling and sample analysis will provide brand new experience and knowledge for future missions.

  8. Indicators and Methods to Understand Past Environments from ExoMars Rover Drills

    Science.gov (United States)

    Kereszturi, A.; Bradak, B.; Chatzitheodoridis, E.; Ujvari, G.

    2016-11-01

    Great advances are expected during the analysis of drilled material acquired from 2 m depth by ExoMars rover, supported by the comparison to local context, and the joint use of different instruments. Textural information might be less detailed relatively to what is usually obtained at outcrops during classical geological field work on the Earth, partly because of the lack of optical imaging of the borehole wall and also because the collected samples are crushed. However sub-mm scale layering and some other sedimentary features might be identified in the borehole wall observations, or in the collected sample prior to crushing, and also at nearby outcrops. The candidate landing sites provide different targets and focus for research: Oxia Planum requires analysis of phyllosilicates and OH content, at Mawrth Vallis the layering of various phyllosilicates and the role of shallow-subsurface leaching should be emphasized. At Aram Dorsum the particle size and fluvial sedimentary features will be interesting. Hydrated perchlorates and sulphates are ideal targets possibly at every landing sites because of OH retention, especially if they are mixed with smectites, thus could point to even ancient wet periods. Extensive use of information from the infrared wall scanning will be complemented for geological context by orbital and rover imaging of nearby outcrops. Information from the context is especially useful to infer the possible action of past H2O. Separation of the ice and liquid water effects will be supported by cation abundance and sedimentary context. Shape of grains also helps here, and composition of transported grains points to the weathering potential of the environment in general. The work on Mars during the drilling and sample analysis will provide brand new experience and knowledge for future missions.

  9. Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission

    CERN Document Server

    Lemmon, Mark T; Bell, James F; Smith, Michael D; Cantor, Bruce A; Smith, Peter H

    2014-01-01

    Dust aerosol plays a fundamental role in the behavior and evolution of the Martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for characterization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 {\\mu}m effective radius during northern summer and a 2 {\\mu}m effective radius at the onset of a dust lifting event. The solar longitude (LS) 20-136{\\deg} period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near LS=50 and 115{\\deg}. In addition to water ice clouds, ...

  10. Dust Aerosol, Clouds, and the Atmospheric Optical Depth Record over 5 Mars Years of the Mars Exploration Rover Mission

    Science.gov (United States)

    Lemmon, Mark T.; Wolff, Michael J.; Bell, James F., III; Smith, Michael D.; Cantor, Bruce A.; Smith, Peter H.

    2014-01-01

    Dust aerosol plays a fundamental role in the behavior and evolution of the Martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for characterization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 micrometer effective radius during northern summer and a 2 micrometer effective radius at the onset of a dust lifting event. The solar longitude (L (sub s)) 20-136 degrees period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near LS = 50 and 115 degrees. In addition to water ice clouds, a water ice haze may also be present, and carbon dioxide clouds may be present early in the season. Variations in dust opacity are important to the energy balance of each site, and work with seasonal variations in insolation to control dust devil frequency at the Spirit site.

  11. Non-Detection of Methane in the Mars Atmosphere by the Curiosity Rover

    Science.gov (United States)

    Webster, Chris R.; Mahaffy, Paul R.; Atreya, Sushil K.; Flesch, Gregory J.; Farley, Kenneth A.

    2014-01-01

    By analogy with Earth, methane in the atmosphere of Mars is a potential signature of ongoing or past biological activity on the planet. During the last decade, Earth-based telescopic and Mars orbit remote sensing instruments have reported significant abundances of methane in the Martian atmosphere ranging from several to tens of parts-per-billion by volume (ppbv). Observations from Earth showed plumes of methane with variations on timescales much faster than expected and inconsistent with localized patches seen from orbit, prompting speculation of sources from sub-surface methanogen bacteria, geological water-rock reactions or infall from comets, micro-meteorites or interplanetary dust. From measurements on NASAs Curiosity Rover that landed near Gale Crater on 5th August 2012, we here report no definitive detection of methane in the near-surface Martian atmosphere. Our in situ measurements were made using the Tunable Laser Spectrometer (TLS) in the Sample Analysis at Mars (SAM) instrument suite6 that made three separate searches on Martian sols 79, 81 and 106 after landing. The measured mean value of 0.39 plus or minus 1.4 ppbv corresponds to an upper limit for methane abundance of 2.7 ppbv at the 95 confidence level. This result is in disagreement with both the remote sensing spacecraft observations taken at lower sensitivity and the telescopic observations that relied on subtraction of a very large contribution from terrestrial methane in the intervening observation path. Since the expected lifetime of methane in the Martian atmosphere is hundreds of years, our results question earlier observations and set a low upper limit on the present day abundance, reducing the probability of significant current methanogenic microbial activity on Mars.

  12. The Chemcam LIBS and Imaging Instrument Suite on the Curiosity Mars Rover, and Terrestrial Field Testing of LIBS

    Science.gov (United States)

    Wiens, R. C.; Clegg, S. M.; Barefield, J. E., II; Maurice, S.

    2014-12-01

    The Curiosity rover that landed on Mars in 2012 includes an instrument suite consisting of a laser-induced breakdown spectrometer (LIBS) and a remote micro-imager (RMI). The LIBS is effectively the first Mars microprobe, as its interrogation region is 0.35-0.5 mm in diameter; it can access targets up to 7 m from the rover. The LIBS pulsed laser excites atoms and ions from the target, creating a plasma that emits light at characteristic wavelengths. When calibrated, LIBS provides quantitative elemental abundances. The elements observed on Mars include H, Li, O, F, Na, Mg, Al, Si, S, Cl, Ca, Ti, Cr, Mn, Fe, Zn, Rb, Sr, Ba. The first few laser shots clear the surface of dust, allowing unobscured analyses of the targets. Within the first two years of operation ChemCam has returned > 150,000 spectra from > 4,000 locations along the rover traverse. The RMI is the highest resolution (0.04 mrad) remote imager on the rover and provides context before/after images of the LIBS targets as well as long-distance stand-alone imagery. The ChemCam LIBS instrument concept was developed based on laboratory LIBS instrumentation. For terrestrial field work ChemCam's design with its unshielded laser beam is an eye safety hazard. However, hand-held devices with closed laser-beam designs have been developed. In order to provide a realistic field test prior to the launch of the rover the ChemCam team fielded a backpack LIBS system featuring a shielded laser beam. The system was calibrated using the same 66 geological standards used by the ChemCam instrument prior to flight. During the field test, data was sent remotely to a team back at Los Alamos, effectively imitating operations on Mars and data analysis on the ground. The ground team successfully reported accurate results, identifying the site as rich in kaolinite clay soils.

  13. Studying the NE Eridania sedimentary sequence through the Mars 2020 rover

    Science.gov (United States)

    Pajola, M.; Carter, J.; Rossato, S.; Baratti, E.; Mangili, C.; Coradini, M.; McBride, K. S.

    2014-04-01

    The landing sites we are proposing for the next Mars 2020 rover span between 28°29'30"S-28°53'0"S Latitude and 178°56'30"W°178°28'0"W Longitude, i.e. on the NE floor of a 1.1×106 km2 closed drainage basin [1]. This area, see Fig. 1, belongs to the bigger (3×106 km2) Eridania basin that gave birth to the Ma'adim Vallis through catastrophic overflow, and presenting a water table between 950 and 1250 m [1,2,3]. The crater counting chronology for this area gives an age between Early to Middle Noachian [4]. By means of OMEGA [5] and CRISM [6] data, a large clay-bearing sedimentary unit has been identified over almost the entire margin of the Eridania basin [7]. On our specific site, i.e. the NE margin of the Eridania basin, sequences of aqueous minerals are observed. Such sedimentary minerals are accessible through erosional windows into the first several tens of meters of the sedimentary sequence. The top-down mineral sequence identified on the landing sites area presents an unaltered capping unit that is overlying an Al-rich clay stratum (see Fig. 2) akin to Al-smectite and/or kaolins with a 3.8 Ga) during which liquid water was durably stable at the surface. The most valuable candidates for ancient Martian microbial life sustainability and preservation are longlasting environments, characterized by the presence of ponding water [10,11,12]: hence, the proposed site presents a high exobiological potential that is just waiting to be unveiled. Besides that, when putting into context the future results on Eridania Basin, i.e. the Ma'adim Vallis source, together with those obtained from the Spirit rover inside Gusev Crater (see Fig. 1), i.e. the Ma'adim Vallis mouth, a wide understanding of this intriguing canyon and of the Mars megaflooding age is foreseen. Besides the above scientific analysis showing than the NE side of the Eridania region fulfills entirely the Mars 2020 scientific requirements [13], the location of the proposed landing sites widely meets all the

  14. Eridania Basin: An ancient paleolake floor as the next landing site for the Mars 2020 rover

    Science.gov (United States)

    Pajola, Maurizio; Rossato, Sandro; Carter, John; Baratti, Emanuele; Pozzobon, Riccardo; Erculiani, Marco Sergio; Coradini, Marcello; McBride, Karen

    2016-09-01

    The search for traces of past Martian life is directly connected to ancient paleolakes, where ponding water or low-energy water fluxes were present for long time intervals. The Eridania paleolakes system, located along the 180° meridian, is one of the largest lacustrine environments that were once present on Mars. Morphological features suggest that it was constituted by connected depressions filled by water to maximum depths of ∼2400 m and a volume of at least 562,000 km3. We focused our attention on the northern side of the Eridania Basin, where high-albedo, uneven patches of material characterized by the absence of dust are present. Based on OMEGA and CRISM orbital imaging spectroscopy data, a large clay-bearing unit has been identified there. In particular, a set of aqueous minerals in present in the stratigraphy, being visible through erosional windows in the first several tens of meters of the sedimentary sequence. Below this capping unit, a thin Al-rich clay stratum attributable to Al-smectite and/or kaolins is present. This overlies a Fe-rich clay stratum, attributable to the nontronite smectite. At the base of the mineralogic sequence a stratum that could be either a zeolite or more likely a hydrated sulfate is present. In addition, small deposits of alunite (a rare phase on Mars), and jarosite are here found at several locations. Such stratigraphy is interpreted as originating from a surface weathering process similar to terrestrial abiotic pedogenesis; nonetheless, possible exobiologic processes can be also invoked to explain it. NASA's Spirit rover landed on Gusev crater in 2004, near the mouth of the Ma'adim Vallis, which connects this crater with the considered paleolakes system. The Eridania site provides the unique opportunity to complete the measurements obtained in Gusev crater, while investigating the exposed mineralogical sequence in its depositionary setting. In addition, the extremely favorable landing parameters, such as elevation, slope

  15. Mars dust mineralogy and structure obtained by a simple Mars rover instrumentation development - suggestions for future missions.

    Science.gov (United States)

    Nørnberg, Per

    2016-04-01

    Selective spectroscopic observations of the dust on the surface of Mars have neither been possible from Earth nor from orbiters as ESA, Mars Express or NASA, MRO. Even in surface soil sampling detailed chemical or mineralogical information about Martian dust cannot be separated from the soil. Remote spectroscopic data contain a mixture of mineralogical components which do not provide any specific information on the dust. Information about chemical composition and mineralogy of the Martian airborne dust was derived from APXS and Mössbauer data from the MER rovers by Goetz et al. (2005). This paper concluded that magnetite and not maghemite is the magnetic phase of the dust, and also that the presence of olivine indicates that liquid water did not play a dominant role in the formation of atmospheric dust. The dust is most likely formed by mechanical comminution comparable to the fine fractions of dust in dune sand on Earth (Nørnberg, P. 2002). Our Mars dust model operates with particles (2-3 μm) that inside consists of primary minerals which are either oxidized down to tenths of nm below the surface or have captured electrically charged nanoparticles of hematite on the surface giving the dust its red colour. Experiments done by Merrison, J.P. et al. ( 2010) showed that mechanical tumbling (abrasion)of a mixture of 10g quartz and 1 g magnetite in a dry process in a Martian atmosphere transformed magnetite to hematite. This experiment supports the dry comminution process indicated by Goetz et al (2005). The XRD analyses on the NASA, MSL are done on a mixture of soil material in which the dust accounts for only a minor part. However, if dust could have been captured separately from the atmosphere e.g. by magnets on the MSL and taken off by e.g. tape or another mechanism that could be transferred into the target holder of the XRD diffractometer on the rover, it could by Rietveld analyses have provided valuable quantitative information on the mineral content of the

  16. Mars Rover Model Celebration: Developing Inquiry Based Lesson Plans to Teach Planetary Science In Elementary And Middle School

    Science.gov (United States)

    Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.; Dominey, W.; Ramsey, J.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.

    2012-12-01

    The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the development of a detailed set of new 5E lesson plans to

  17. The WISDOM Radar: Unveiling the Subsurface Beneath the ExoMars Rover and Identifying the Best Locations for Drilling

    Science.gov (United States)

    Ciarletti, Valérie; Clifford, Stephen; Plettemeier, Dirk; Le Gall, Alice; Hervé, Yann; Dorizon, Sophie; Quantin-Nataf, Cathy; Benedix, Wolf-Stefan; Schwenzer, Susanne; Pettinelli, Elena; Heggy, Essam; Herique, Alain; Berthelier, Jean-Jacques; Kofman, Wlodek; Vago, Jorge L.; Hamran, Svein-Erik; WISDOM Team

    2017-07-01

    The search for evidence of past or present life on Mars is the principal objective of the 2020 ESA-Roscosmos ExoMars Rover mission. If such evidence is to be found anywhere, it will most likely be in the subsurface, where organic molecules are shielded from the destructive effects of ionizing radiation and atmospheric oxidants. For this reason, the ExoMars Rover mission has been optimized to investigate the subsurface to identify, understand, and sample those locations where conditions for the preservation of evidence of past life are most likely to be found. The Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar has been designed to provide information about the nature of the shallow subsurface over depth ranging from 3 to 10 m (with a vertical resolution of up to 3 cm), depending on the dielectric properties of the regolith. This depth range is critical to understanding the geologic evolution stratigraphy and distribution and state of subsurface H2O, which provide important clues in the search for life and the identification of optimal drilling sites for investigation and sampling by the Rover's 2-m drill. WISDOM will help ensure the safety and success of drilling operations by identification of potential hazards that might interfere with retrieval of subsurface samples.

  18. First Iron Meteorites Observed By the Mars Science Laboratory (MSL) Rover Curiosity

    Science.gov (United States)

    Johnson, J. R.; Bell, J. F., III; Gasnault, O.; Le Mouelic, S.; Rapin, W.; Bridges, J.; Wellington, D. F.

    2014-12-01

    The MSL rover Curiosity acquired images of two large (>1m) boulders that exhibited surface textures and visible/near-infrared spectra (445-1012nm) consistent with iron meteorites, similar to those observed by the Mars Exploration Rover (MER) missions. The rocks were first observed on Sol 634 from ~110m distance and subsequently imaged on Sol 637 using Mastcam and the Remote Micro-Imager (RMI) on ChemCam. The rock "Lebanon" was observed from ~43m, and the rock "Littleton" from ~63m, revealing lustrous blue-gray color and small surface pits consistent with regmaglypts. On Sol 640, Lebanon (at ~12m distance), a nearby fragment, and Littleton (~36m) were imaged with Mastcam at 3 times of day. This included multispectral images of Lebanon along with a 6-frame RMI mosaic and a single position on Littleton. After a ~1.5 m drive closer to the rocks, additional Mastcam images were obtained prior to departure. At high resolution the surfaces were smooth with mm-scale, intermittent pockmarks. Collections of sand within regmaglypts suggested previous episodes of at least partial burial and exhumation. Mastcam reflectance spectra were red-sloped, with variations specular reflections, similar to laboratory spectra of iron meteorites (and MER spectra of similar rocks). The rocks did not exhibit the cavernous weathering or purple-hued, patchy coatings associated with meteorites observed by MER. The lack of such physio-chemical weathering may be consistent with the less acidic environments postulated for Gale Crater rocks. The close proximity of these rocks suggests they were part of the same fall. The lack of an associated impact crater suggests the event was either unable to create an impact crater (e.g., low angle entry through a thicker atmosphere), or the rocks survived after erosion of associated impact structure(s). Iron meteorites such as these may therefore provide "witness plates" to processes and environments experienced in this region since their arrival.

  19. 探测器发现火星曾经环境湿润适合生存%Rover Finds Mars Was Wet Enogh for Life

    Institute of Scientific and Technical Information of China (English)

    钱妮娜

    2004-01-01

    @@ Mars may once have been a wet place where life could flourish, according to NASA scientists who say a robot rover has found evidence that rocks on the Red Planet "were once soaked with liquid water."

  20. The Close-Up Imager Onboard the ESA ExoMars Rover: Objectives, Description, Operations, and Science Validation Activities

    Science.gov (United States)

    Josset, Jean-Luc; Westall, Frances; Hofmann, Beda A.; Spray, John; Cockell, Charles; Kempe, Stephan; Griffiths, Andrew D.; De Sanctis, Maria Cristina; Colangeli, Luigi; Koschny, Detlef; Föllmi, Karl; Verrecchia, Eric; Diamond, Larryn; Josset, Marie; Javaux, Emmanuelle J.; Esposito, Francesca; Gunn, Matthew; Souchon-Leitner, Audrey L.; Bontognali, Tomaso R. R.; Korablev, Oleg; Erkman, Suren; Paar, Gerhard; Ulamec, Stephan; Foucher, Frédéric; Martin, Philippe; Verhaeghe, Antoine; Tanevski, Mitko; Vago, Jorge L.

    2017-07-01

    The Close-Up Imager (CLUPI) onboard the ESA ExoMars Rover is a powerful high-resolution color camera specifically designed for close-up observations. Its accommodation on the movable drill allows multiple positioning. The science objectives of the instrument are geological characterization of rocks in terms of texture, structure, and color and the search for potential morphological biosignatures. We present the CLUPI science objectives, performance, and technical description, followed by a description of the instrument's planned operations strategy during the mission on Mars. CLUPI will contribute to the rover mission by surveying the geological environment, acquiring close-up images of outcrops, observing the drilling area, inspecting the top portion of the drill borehole (and deposited fines), monitoring drilling operations, and imaging samples collected by the drill. A status of the current development and planned science validation activities is also given.

  1. The SuperCam Remote-Sensing Instrument Suite for the Mars 2020 Rover Mission

    Science.gov (United States)

    Wiens, R. C.; Maurice, S.; Clegg, S. M.; Rull, F.; Sharma, S. K.; Anderson, R. B.; Beyssac, O.; Bonal, L.; DeFlores, L. P.; Dromart, G.; Fischer, W. W.; Forni, O.; Gasnault, O.; Grotzinger, J. P.; Johnson, J. R.; Martinez-Frias, J.; Mangold, N.; McLennan, S. M.; Montmessin, F.

    2015-12-01

    The SuperCam remote-sensing instrument suite in development for the Mars 2020 rover represents a significant advance from its precursor, ChemCam, by adding Raman spectroscopy (to 12 m distance) and visible and near-infrared (VISIR) reflectance spectroscopy. For Raman spectroscopy the LIBS Nd:YAG laser is frequency-doubled to 532 nm (green Raman). A transmission spectrometer with an intensified CCD covers 150-4400 cm-1 spectral range at a resolution of 10 cm-1. The system is adjustably time-gated, removing much of the mineral fluorescence from the Raman spectra and also facilitating time-resolved fluorescence studies. The infrared range covers 1.3-2.6 microns in addition to the existing 400-840 nm range on ChemCam. Additional upgrades include doubling the LIBS resolution in the 535-860 nm range and adding color to the Remote Micro-Imager (RMI), which is the highest resolution remote imager on the rover. A large-scale effort is being applied to the on-board standards, being led by U. Valladolid in Spain, with targets contributed by many institutions. The number of geological targets will be increased from 8 (on ChemCam) to 22, planned to include end-member plagioclase feldspars, hi- and low-Ca pyroxene, olivines, several fine-grained basalts, hematite, jarosite, carbonates, apatite, and several synthetic targets doped with trace elements. Three Spectralon targets are planned for IR calibration and several color bands for the RMI. All but the Spectralon and color bands should be available for LIBS calibration, and many are also being designed for Raman and VISIR calibration. For LIBS this collection of standards will significantly improve the accuracy relative to ChemCam; other precision improvements are anticipated to come from correcting for variable plasma temperature. The presentation will illustrate how Mars datasets will be significantly improved via this multi-technique approach and will give a first look at prototype SuperCam spectra.

  2. A Motor Drive Electronics Assembly for Mars Curiosity Rover: An Example of Assembly Qualification for Extreme Environments

    Science.gov (United States)

    Kolawa, Elizabeth; Chen, Yuan; Mojarradi, Mohammad M.; Weber, Carissa Tudryn; Hunter, Don J.

    2013-01-01

    This paper describes the technology development and infusion of a motor drive electronics assembly for Mars Curiosity Rover under space extreme environments. The technology evaluation and qualification as well as space qualification of the assembly are detailed and summarized. Because of the uncertainty of the technologies operating under the extreme space environments and that a high level reliability was required for this assembly application, both component and assembly board level qualifications were performed.

  3. Using Advanced Computing in Applied Dynamics: From the Dynamics of Granular Material to the Motion of the Mars Rover

    Science.gov (United States)

    2013-08-26

    USING ADVANCED COMPUTING IN APPLIED DYNAMICS: FROM THE DYNAMICS OF GRANULAR MATERIAL TO THE MOTION OF THE MARS ROVER Dan Negrut NVIDIA CUDA ...for public release. #24389 12 Lab’s Research Heterogeneous Cluster • More than 50,000 GPU scalar processors • More than 1,200 CPU cores • Fast...emerging hardware” : • GPUs and clusters of CPUs • “open engineering problems” : • Fluid-solid interaction, vehicle mobility, soil modeling

  4. Slope Morphology of Twin Peaks, Mars Pathfinder Landing Site

    Science.gov (United States)

    Hobbs, Steven; Paine, Colin; Clarke, Jon; Caprarelli, Graziella

    2010-05-01

    Development of slope form over time has long been a concern of geomorphologists, although recently this concern has been moved to slope processes rather than form. There are two basic approaches. The first is theoretical, involving modeling of different types and rates of processes, and calculation of results in terms of slope evolution over time. Comparisons with real-life slopes can follow this approach [1], [2]. The second, inductive, approach involves field measurements to test ideas about slope evolution starting from the assumption that observed slopes represent different stages of an essentially similar evolution [3]. Space is substituted for time, and a number of slopes, assumed to be of increasing age, are measured and placed in an evolutionary sequence (e.g. [4], [5], [6]). [5] showed that slope angles are modally distributed, with the modal angles controlled by the materials (regolith) of which the slopes are formed, and by the processes operating on them. Data can be obtained directly from field work or from digital elevation models (DEM) derived from remote sensing investigations [7]. DEMs are particularly useful to study inaccessible planets, such as Mars, where on site observations are restricted to only a few landing sites. Here we present a study of slopes on the Twin Peaks, two small hills located 780 m north and 910 m south of the Mars Pathfinder landing site at the mouth of the Ares and Tiu flood channels. The presence of streamlined hills, jumbled surfaces and conglomerates suggested the region was modified by massive flooding 1.8 - 3.5 billion years ago [8], [9]. The streamlined forms and terraces of the Twin Peaks were taken to indicate catastrophic flood conditions that were believed to be prevalent in the area [8]. It was also suggested that the northernmost peak was topped by floodwater, causing its flatter appearance. Other researchers postulated alternative geomorphological origins for the features observed at the Pathfinder landing site

  5. Chromatographic, Spectroscopic and Mass Spectrometric Approaches for Exploring the Habitability of Mars in 2012 and Beyond with the Curiosity Rover

    Science.gov (United States)

    Mahaffy, Paul

    2012-01-01

    The Sample Analysis at Mars (SAM) suite of instruments on the Curiosity Rover of Mars Science Laboratory Mission is designed to provide chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples. The goals of the science investigation enabled by the gas chromatograph mass spectrometer and tunable laser spectrometer instruments of SAM are to work together with the other MSL investigations is to quantitatively assess habitability through a series of chemical and geological measurements. We describe the multi-column gas chromatograph system employed on SAM and the approach to extraction and analysis of organic compounds that might be preserved in ancient martian rocks.

  6. Overview of the magnetic properties experiments on the Mars Exploration Rovers

    Science.gov (United States)

    Madsen, M.B.; Goetz, W.; Bertelsen, P.; Binau, C.S.; Folkmann, F.; Gunnlaugsson, H.P.; Hjollum, J.I.; Hviid, S.F.; Jensen, J.; Kinch, K.M.; Leer, K.; Madsen, D.E.; Merrison, J.; Olsen, M.; Arneson, H.M.; Bell, J.F.; Gellert, Ralf; Herkenhoff, K. E.; Johnson, J. R.; Johnson, M.J.; Klingelhofer, G.; McCartney, E.; Ming, D. W.; Morris, R.V.; Proton, J.B.; Rodionov, D.; Sims, M.; Squyres, S. W.; Wdowiak, T.; Yen, A. S.

    2009-01-01

    The Mars Exploration Rovers have accumulated airborne dust on different types of permanent magnets. Images of these magnets document the dynamics of dust capture and removal over time. The strongly magnetic subset of airborne dust appears dark brown to black in Panoramic Camera (Pancam) images, while the weakly magnetic one is bright red. Images returned by the Microscopic Imager reveal the formation of magnetic chains diagnostic of magnetite-rich grains with substantial magnetization (>8 Am2 kg-1). On the basis of M??ssbauer spectra the dust contains magnetite, olivine, pyroxene, and nanophase oxides in varying proportions, depending on wind regime and landing site. The dust contains a larger amount of ferric iron (Fe3+/Fe tot ??? 0.6) than rocks in the Gusev plains (???0.1-0.2) or average Gusev soil (???0.3). Alpha Particle X-Ray Spectrometer data of the dust show that some of the iron in magnetite is substituted by titanium and chromium. The good correlation of the amount of calcium and sulfur in the dust may be caused by the presence of a calcium sulfate related phase. The overall mineralogical composition points to a basaltic origin of the airborne dust, although some alteration has taken place as indicated by the large degree of oxidation. Copyright 2009 by the American Geophysical Union.

  7. Identifying and Interpreting Stratification in Sedimentary Rocks on Mars: Insight from Rover and Orbital Observations and Terrestrial Field Analogs

    Science.gov (United States)

    Edgar, Lauren A.

    Sedimentary rocks on Mars provide insight into past aqueous and atmospheric processes, climate regimes, and potential habitability. The stratigraphic architecture of sedimentary rocks on Mars is similar to that of Earth, indicating that the processes that govern deposition and erosion on Mars can be reasonably inferred through reference to analogous terrestrial systems. This dissertation aims to understand Martian surface processes through the use of (1) ground-based observations from the Mars Exploration Rovers, (2) orbital data from the High Resolution Imaging Science Experiment onboard the Mars Reconnaissance Orbiter, and (3) the use of terrestrial field analogs to understand bedforms and sediment transport on Mars. Chapters 1 and 2 trace the history of aqueous activity at Meridiani Planum, through the reconstruction of eolian bedforms at Victoria crater, and the identification of a potential mudstone facies at Santa Maria crater. Chapter 3 uses Terrestrial Laser Scanning to study cross-bedding in pyroclastic surge deposits on Earth in order to understand sediment transport in these events and to establish criteria for their identification on Mars. The final chapter analyzes stratal geometries in the Martian North Polar Layered Deposits using tools for sequence stratigraphic analysis, to better constrain past surface processes and past climate conditions on Mars.

  8. Evolved Gas Analyses of the Murray Formation in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument

    Science.gov (United States)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Thompson, L. M.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2017-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 13 samples from Gale Crater. All SAM-evolved gas analyses have yielded a multitude of volatiles (e.g., H2O, SO2, H2S, CO2, CO, NO, O2, HCl) [1- 6]. The objectives of this work are to 1) Characterize recent evolved SO2, CO2, O2, and NO gas traces of the Murray formation mudstone, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results relative to understanding the geological history of Gale Crater.

  9. Evolved Gas Analyses of Sedimentary Materials in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument from Yellowknife Bay to the Stimson Formation

    Science.gov (United States)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 10 samples from Gale Crater. All SAM evolved gas analyses have yielded a multitude of volatiles (e.g, H2O, SO2, H2S, CO2, CO, NO, O2, HC1). The objectives of this work are to 1) Characterize the evolved H2O, SO2, CO2, and O2 gas traces of sediments analyzed by SAM through sol 1178, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results releative to understanding the geochemical history of Gale Crater.

  10. Integrating the Teaching of Space Science, Planetary Exploration And Robotics In Elementary And Middle School with Mars Rover Models

    Science.gov (United States)

    Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.

    2005-05-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system

  11. Mars Rover proposed for 2018 to seek signs of life and to cache samples for potential return to Earth

    Science.gov (United States)

    Pratt, Lisa; Beaty, David; Westall, Frances; Parnell, John; Poulet, François

    2010-05-01

    Mars Rover proposed for 2018 to seek signs of life and to cache samples for potential return to Earth Lisa Pratt, David Beatty, Frances Westall, John Parnell, François Poulet, and the MRR-SAG team The search for preserved evidence of life is the keystone concept for a new generation of Mars rover capable of exploring, sampling, and caching diverse suites of rocks from outcrops. The proposed mission is conceived to address two general objectives: conduct high-priority in situ science and make concrete steps towards the possible future return of samples to Earth. We propose the name Mars Astrobiology Explorer-Cacher (MAX-C) to best reflect the dual purpose of the proposed mission. The scientific objective of the proposed MAX-C would require rover access to a site with high preservation potential for physical and chemical biosignatures in order to evaluate paleo-environmental conditions, characterize the potential for preservation of biosignatures, and access multiple sequences of geological units in a search for evidence of past life and/or prebiotic chemistry. Samples addressing a variety of high-priority scientific objectives should be collected, documented, and packaged in a manner suitable for possible return to Earth by a future mission. Relevant experience from study of ancient terrestrial strata, martian meteorites, and from the Mars exploration Rovers indicates that the proposed MAX-C's interpretive capability should include: meter to submillimeter texture (optical imaging), mineral identification, major element content, and organic molecular composition. Analytical data should be obtained by direct investigation of outcrops and should not entail acquisition of rock chips or powders. We propose, therefore, a set of arm-mounted instruments that would be capable of interrogating a relatively smooth, abraded surface by creating co-registered 2-D maps of visual texture, mineralogy and geochemical properties. This approach is judged to have particularly high

  12. The WISDOM Radar onboard the Rover of the ExoMars mission (Invited)

    Science.gov (United States)

    Ciarletti, V.; Corbel, C.; Plettemeier, D.; Clifford, S. M.; Cais, P.; Hamran, S.

    2009-12-01

    The most fundamental and basic aspect of the geologic characterization of any environment is understanding its stratigraphy and structure - which provides invaluable insights into its origin, the processes and events by which it evolved, and (through the examination of superpositional and cross-cutting relationships) their relative timing. The WISDOM GPR onboard the Rover of the ESA ExoMars mission (2016) has the ability to investigate and characterize the nature of the subsurface remotely, providing high-resolution (several cm-scale) data on subsurface stratigraphy, structure, and the magnitude and scale of spatial heterogeneity, to depths in excess of 3 m. Unlike traditional imaging systems or spectrometers, which are limited to characterization of the visible surface, WISDOM can access what lies beneath - providing an understanding of the 3-dimensional geologic context of the landing site along the Rover path. WISDOM will address a variety of high-priority scientific objectives: (1) Understand the geology and geologic evolution of the landing site, including local lithology, stratigraphy and structure. (2) Characterize the 3-D electromagnetic properties of the Landing Site - including the scale and magnitude of spatial heterogeneity - for comparison with those measured at larger scales by MARSIS, SHARAD and any future orbital radars. (3) Understand the local distribution and state of shallow subsurface H2O and other volatiles, including the potential presence of segregated ground ice (as ice lenses and wedges), the persistent or transient occurrence of liquid water/brine, and deposits of methane hydrate and (4) identify the most promising locations for drilling that combine targets of high scientific interest. In addition to these objectives, there are also clear scientific and operational benefits when WISDOM is operated in concert with the rover’s drill and its associated analytical instruments, which will determine the compositional and physical properties

  13. An Instrument for In-situ Triage of Mars 2020 Rover Samples for Organics and Chronology

    Science.gov (United States)

    Anderson, F.; Whitaker, T.; Andrews, J.

    2013-12-01

    We have developed a prototype instrument for triaging samples for elemental chemistry, organics, and Rb-Sr dates on the Mars 2020 Rover. Determining organic content and rock age are key drivers for Mars Sample Return (MSR). By identifying samples with organics, and potentially a range of dates, we increase near-term science return, while maximizing scientific and political will to compel the ultimate return of samples. Though organics have proven difficult to identify in-situ, understanding their distribution and variety could provide key constraints on the possibility of life; on the other hand, datable outcrops are clearly present at a range of potential landing sites, and could provide insight into the evolution of both local and global geology, and the history of solar system bombardment. Our instrument uses laser desorption resonance ionization mass spectrometry (LDRIMS) for Rb-Sr dates, and a subset of the LDRIMS lasers for L2MS measurements of organics. With LDRIMS, a sample is placed in a time-of-flight (TOF) mass spectrometer and surface atoms, molecules, and ions are desorbed with a 213 nm laser. The plume of expanding atoms is present for many μs, during which it is first illuminated with laser light tuned to ionize only Sr, and then 1-3 μs later, Rb . This eliminates isobars for Rb and Sr, and insures that the measured atoms come from the same ablation event, and hence target materials. L2MS uses high-power IR laser ablation to desorb neutral organic molecules, followed by a second, UV laser beam for ionization. Advantages of L2MS include the measurement of a wide array of elements, and it is one of the most sensitive available organic detection methods, with demonstrated detection to 10-18. We have previously demonstrated dates on granites with an average of 1.727×0.087 Ga (MSWD=1; ×0.062 for MSWD=2); both values have a precision and accuracy exceeding that called for by NASA. Finally, we have demonstrated ppm-level detections of organics in the

  14. Correlating multispectral imaging and compositional data from the Mars Exploration Rovers and implications for Mars Science Laboratory

    Science.gov (United States)

    Anderson, Ryan B.; Bell, James F.

    2013-01-01

    In an effort to infer compositional information about distant targets based on multispectral imaging data, we investigated methods of relating Mars Exploration Rover (MER) Pancam multispectral remote sensing observations to in situ alpha particle X-ray spectrometer (APXS)-derived elemental abundances and Mössbauer (MB)-derived abundances of Fe-bearing phases at the MER field sites in Gusev crater and Meridiani Planum. The majority of the partial correlation coefficients between these data sets were not statistically significant. Restricting the targets to those that were abraded by the rock abrasion tool (RAT) led to improved Pearson’s correlations, most notably between the red–blue ratio (673 nm/434 nm) and Fe3+-bearing phases, but partial correlations were not statistically significant. Partial Least Squares (PLS) calculations relating Pancam 11-color visible to near-IR (VNIR; ∼400–1000 nm) “spectra” to APXS and Mössbauer element or mineral abundances showed generally poor performance, although the presence of compositional outliers led to improved PLS results for data from Meridiani. When the Meridiani PLS model for pyroxene was tested by predicting the pyroxene content of Gusev targets, the results were poor, indicating that the PLS models for Meridiani are not applicable to data from other sites. Soft Independent Modeling of Class Analogy (SIMCA) classification of Gusev crater data showed mixed results. Of the 24 Gusev test regions of interest (ROIs) with known classes, 11 had >30% of the pixels in the ROI classified correctly, while others were mis-classified or unclassified. k-Means clustering of APXS and Mössbauer data was used to assign Meridiani targets to compositional classes. The clustering-derived classes corresponded to meaningful geologic and/or color unit differences, and SIMCA classification using these classes was somewhat successful, with >30% of pixels correctly classified in 9 of the 11 ROIs with known classes. This work shows

  15. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars

    Science.gov (United States)

    Stern, Jennifer C.; Sutter, Brad; Freissinet, Caroline; Navarro-González, Rafael; McKay, Christopher P.; Archer, P. Douglas; Buch, Arnaud; Brunner, Anna E.; Coll, Patrice; Eigenbrode, Jennifer L.; Fairen, Alberto G.; Franz, Heather B.; Glavin, Daniel P.; Kashyap, Srishti; McAdam, Amy C.; Ming, Douglas W.; Steele, Andrew; Szopa, Cyril; Wray, James J.; Martín-Torres, F. Javier; Zorzano, Maria-Paz; Conrad, Pamela G.; Mahaffy, Paul R.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Grotzinger, John; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; - Torres, F. Javier Martín; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d’Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Vasavada, Ashwin R.; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2015-01-01

    The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110–300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70–260 and 330–1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen. PMID:25831544

  16. 好奇心号巡视器及其特点分析%Mars Curiosity Rover and Its Characteristics

    Institute of Scientific and Technical Information of China (English)

    岳宗玉; 邸凯昌

    2012-01-01

    “火星科学实验室”(Mars Science Laboratory,MSL)是NASA于2011年11月26日发射的火星探测器,其上的好奇心号(Curiosity)巡视器已经于2012年8月6日着陆火星;其主要科学目标包括研究火星存在生命的可能性、火星气候特征、火星地质过程,并为将来的载人着陆作准备;经过多次论证,其着陆区为盖尔撞击坑(Gale Crater)。与过去的火星巡视器相比,它携带了更加先进的科学仪器,能够精确分析采集样品的化学成分、光谱特征等;在科学工作小组的指导下,其运行模式包括行走、勘查、接近目标、接触目标与样品分析;通过上述工作,“火星科学实验室”将对火星生命及可居住性进行全面探测。%Mars Science Laboratory (MSL or Curiosity) is the Mars rover launched by NASA on November 26, 2011 and landed Mars on August 6, 2012. The principal scientific goals include studying the probability of the existence of life on Mars, the characteristics of Mars climate, the geological processes related with the habitability, and the preparation for future manned mis- sions. Gale crater is selected as the landing site after extensive studies and comparisons. Com- pared with the past Mars rovers, MSL carries much more advanced scientific payloads, which enable more accurate analysis of the collected samples; composition and spectrum, etc. The operation modes include traverse, reconnaissance, approaching and contacting targets, and sample analysis. Through surface operation and investigation, MSL wilt comprehensively explore the possible existence of life and habitability of Mars.

  17. Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars

    Science.gov (United States)

    Mangold, N.; Forni, O.; Dromart, G.; Stack, K.; Wiens, R. C.; Gasnault, O.; Sumner, D. Y.; Nachon, M.; Meslin, P.-Y.; Anderson, R. B.; Barrachough, B.; Bell, J. F., III; Berger, G.; Blaney, D. L.; Bridges, J. C.; Calef, F.; Clark, B.; Clegg, S. M.; Cousin, A.; Edgar, L.; Edgett, K.; Ehlmann, B.; Fabre, C.; Fisk, M.; Grotzinger, J.; Gupta, S.; Herkenhoff, K. E.; Hurowitz, J.; Johnson, J. R.; Kah, L. C.; Lanza, N.; Lasue, J.; Le Mouélic, S.; Léveillé, R.; Lewin, E.; Malin, N.; McLennan, S.; Maurice, S.; Melikechi, N.; Mezzacappa, A.; Milliken, R.; Newsom, H.; Allila, A.; Rowland, S. K.; Sautter, V.; Schmidt, M.; Schröder, S.; d'Uston, C.; Vaniman, D.; Williams, R.

    2015-03-01

    The Yellowknife Bay formation represents a ~5 m thick stratigraphic section of lithified fluvial and lacustrine sediments analyzed by the Curiosity rover in Gale crater, Mars. Previous works have mainly focused on the mudstones that were drilled by the rover at two locations. The present study focuses on the sedimentary rocks stratigraphically above the mudstones by studying their chemical variations in parallel with rock textures. Results show that differences in composition correlate with textures and both manifest subtle but significant variations through the stratigraphic column. Though the chemistry of the sediments does not vary much in the lower part of the stratigraphy, the variations in alkali elements indicate variations in the source material and/or physical sorting, as shown by the identification of alkali feldspars. The sandstones contain similar relative proportions of hydrogen to the mudstones below, suggesting the presence of hydrous minerals that may have contributed to their cementation. Slight variations in magnesium correlate with changes in textures suggesting that diagenesis through cementation and dissolution modified the initial rock composition and texture simultaneously. The upper part of the stratigraphy (~1 m thick) displays rocks with different compositions suggesting a strong change in the depositional system. The presence of float rocks with similar compositions found along the rover traverse suggests that some of these outcrops extend further away in the nearby hummocky plains.

  18. Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars

    Science.gov (United States)

    Mangold, Nicolas; Forni, Olivier; Dromart, G.; Stack, K.M.; Wiens, Roger C.; Gasnault, Olivier; Sumner, Dawn Y.; Nachon, Marion; Meslin, Pierre-Yves; Anderson, Ryan B.; Barraclough, Bruce; Bell, J.F.; Berger, G.; Blaney, D.L.; Bridges, J.C.; Calef, F.; Clark, Brian R.; Clegg, Samuel M.; Cousin, Agnes; Edgar, L.; Edgett, Kenneth S.; Ehlmann, B.L.; Fabre, Cecile; Fisk, M.; Grotzinger, John P.; Gupta, S.C.; Herkenhoff, Kenneth E.; Hurowitz, J.A.; Johnson, J. R.; Kah, Linda C.; Lanza, Nina L.; Lasue, Jeremie; Le Mouélic, S.; Lewin, Eric; Malin, Michael; McLennan, Scott M.; Maurice, S.; Melikechi, Noureddine; Mezzacappa, Alissa; Milliken, Ralph E.; Newsome, H.L.; Ollila, A.; Rowland, Scott K.; Sautter, Violaine; Schmidt, M.E.; Schroder, S.; D'Uston, C.; Vaniman, Dave; Williams, R.A.

    2015-01-01

    The Yellowknife Bay formation represents a ~5 m thick stratigraphic section of lithified fluvial and lacustrine sediments analyzed by the Curiosity rover in Gale crater, Mars. Previous works have mainly focused on the mudstones that were drilled by the rover at two locations. The present study focuses on the sedimentary rocks stratigraphically above the mudstones by studying their chemical variations in parallel with rock textures. Results show that differences in composition correlate with textures and both manifest subtle but significant variations through the stratigraphic column. Though the chemistry of the sediments does not vary much in the lower part of the stratigraphy, the variations in alkali elements indicate variations in the source material and/or physical sorting, as shown by the identification of alkali feldspars. The sandstones contain similar relative proportions of hydrogen to the mudstones below, suggesting the presence of hydrous minerals that may have contributed to their cementation. Slight variations in magnesium correlate with changes in textures suggesting that diagenesis through cementation and dissolution modified the initial rock composition and texture simultaneously. The upper part of the stratigraphy (~1 m thick) displays rocks with different compositions suggesting a strong change in the depositional system. The presence of float rocks with similar compositions found along the rover traverse suggests that some of these outcrops extend further away in the nearby hummocky plains.

  19. Mars Rover Curriculum: Teacher Self Reporting of Increased Frequency and Confidence in their Science and Language Arts Instruction

    Science.gov (United States)

    Bering, E. A.; Carlson, C.; Nieser, K.; Slagle, E.

    2013-12-01

    The University of Houston is in the process of developing a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model Mars rover. The program is called the Mars Rover Model Celebration (MRC). It focuses on students, teachers and parents in grades 3-8. Students design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. A total of 65 Mars Rover teachers from the 2012-2013 cohort were invited to complete the Mars Rover Teacher Evaluation Survey. The survey was administered online and could be taken at the convenience of the participant. In total, 29 teachers participated in the survey. Teachers were asked to rate their current level of confidence in their ability to teach specific topics within the Earth and Life Science realms, as well as their confidence in their ability to implement teaching strategies with their students. In addition, they were asked to rate the degree to which they felt their confidence increased in the past year as a result of their participation in the MRC program. The majority of teachers (81-90%) felt somewhat to very confident in their ability to effectively teach concepts related to earth and life sciences to their students. In addition, many of the teachers felt that their confidence in teaching these concepts increased somewhat to quite a bit as a result of their participation in the MRC program (54-88%). The most striking increase in this area was the reported 48% of teachers who felt their confidence in teaching 'Earth and the solar system and universe' increased 'Quite a bit' as a result of their participation in the MRC program. The vast majority of teachers (86-100%) felt somewhat to very confident in their ability to effectively implement all of the listed teaching strategies. In addition, the vast majority reported believing that their confidence increased somewhat to quite a bit as a result of their

  20. Determination of foreign broadening coefficients for Methane Lines Targeted by the Tunable Laser Spectrometer (TLS) on the Mars Curiosity Rover

    Science.gov (United States)

    Manne, Jagadeeshwari; Bui, Thinh Q.; Webster, Christopher R.

    2017-04-01

    Molecular line parameters of foreign- broadening by air, carbon dioxide, and helium gas have been experimentally determined for infrared ro-vibrational spectral lines of methane isotopologues (12CH4 and 13CH4) at 3057 cm-1 targeted by the Tunable Laser Spectrometer (TLS) in the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover. From multi-spectrum analyses with the speed-dependent Voigt line profile with Rosenkrantz line-mixing, speed-dependence and line-mixing effects were quantified for methane spectra at total pressures up to 200 mbar. The fitted air-broadening coefficients deviated from 8-25% to those reported in the HITRAN-2012 database.

  1. Preliminary Geological Map of the Peace Vallis Fan Integrated with In Situ Mosaics From the Curiosity Rover, Gale Crater, Mars

    Science.gov (United States)

    Sumner, D. Y.; Palucis, M.; Dietrich, B.; Calef, F.; Stack, K. M.; Ehlmann, B.; Bridges, J.; Dromart, J.; Eigenbrode, J.; Farmer, J.; Grant, J.; Grotzinger, J.; Hamilton, V.; Hardgrove, C.; Kah, L.; Leveille, R.; Mangold, N.; Rowland, S.; Williams, R.

    2013-01-01

    A geomorphically defined alluvial fan extends from Peace Vallis on the NW wall of Gale Crater, Mars into the Mars Science Laboratory (MSL) Curiosity rover landing ellipse. Prior to landing, the MSL team mapped the ellipse and surrounding areas, including the Peace Vallis fan. Map relationships suggest that bedded rocks east of the landing site are likely associated with the fan, which led to the decision to send Curiosity east. Curiosity's mast camera (Mastcam) color images are being used to refine local map relationships. Results from regional mapping and the first 100 sols of the mission demonstrate that the area has a rich geological history. Understanding this history will be critical for assessing ancient habitability and potential organic matter preservation at Gale Crater.

  2. Modeling turbulent flows in the atmospheric boundary layer of Mars: application to Gale crater, Mars, landing site of the Curiosity rover

    Science.gov (United States)

    Anderson, William; Day, Kenzie; Kocurek, Gary

    2016-11-01

    Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the exclusive mode of landscape variability on Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater). Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. We have also run one simulation of flow over a digital elevation map of Gale crater. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This was accomplished using three-dimensional datasets (momentum and vorticity) retrieved from LES. As a result, helical vortices occupy the inner region of the crater and, therefore, are primarily responsible for aeolian morphodynamics in the crater. We have also used the immersed-boundary method body force distribution to compute the aerodynamic surface stress on the crater. These results suggest that secondary flows - originating from flow separation at the crater - have played an important role in shaping landscape features observed in craters (including the dune fields observed on Mars, many of which are actively evolving). None.

  3. Abundance and Isotopic Composition of Gases in the Martian Atmosphere: First Results from the Mars Curiosity Rover

    Science.gov (United States)

    Mahaffy, Paul; Webster, Chris R.; Atreya, Sushil K.; Franz, Heather; Wong, Michael; Conrad, Pamela G.; Harpold, Dan; Jones, John J.; Leshin, Laurie, A.; Manning, Heidi; Owen, Tobias; Pepin, Robert O.; Squyres, Steven; Trainer, Melissa

    2013-01-01

    Repeated measurements of the composition of the Mars atmosphere from Curiosity Rover yield a (40)Ar/N2 ratio 1.7 times greater and the (40)Ar/(36)Ar ratio 1.6 times smaller than the Viking Lander values in 1976. The unexpected change in (40)Ar/N2 ratio probably results from different instrument characteristics although we cannot yet rule out some unknown atmospheric process. The new (40)Ar/(36)Ar ratio is more aligned with Martian meteoritic values. Besides Ar and N2 the Sample Analysis at Mars instrument suite on the Curiosity Rover has measured the other principal components of the atmosphere and the isotopes. The resulting volume mixing ratios are: CO2 0.960(+/- 0.007); (40)Ar 0.0193(+/- 0.0001); N2 0.0189(+/- 0.0003); O2 1.45(+/- 0.09) x 10(exp -3); and CO 5.45(+/- 3.62) x 10(exp 4); and the isotopes (40)Ar/(36)Ar 1.9(+/- 0.3) x 10(exp 3), and delta (13)C and delta (18)O from CO2 that are both several tens of per mil more positive than the terrestrial averages. Heavy isotope enrichments support the hypothesis of large atmospheric loss. Moreover, the data are consistent with values measured in Martian meteorites, providing additional strong support for a Martian origin for these rocks.

  4. Measurements on High-Silica Features using the Dynamic Albedo of Neutrons Instrument on the Mars Science Laboratory Curiosity Rover

    Science.gov (United States)

    Hardgrove, C. J.; Gabriel, T. S. J.

    2016-12-01

    The Mars Science Laboratory (MSL) Curiosity rover has traversed over several plateaus of the Stimson formation, composed of mafic aeolian sandstones which overlie the Murray formation. These dark sedimentary rocks exhibit lighter colored fluid-alteration halo-forming features. Throughout the Naukluft Plateau region, these halo features are exposed at the surface, extend laterally for tens of meters and are about 1 meter wide. The halos were investigated extensively by Curiosity's geochemical instruments (APXS, Chemin, Chemcam and SAM). With respect to the host Stimson rocks, these fracture halos were found to be significantly enriched in silica and low in iron, among other geochemical variations. Hydrogen, chlorine, and iron have significant neutron microscopic scattering and absorption cross sections. Significant changes in the local abundances of these elements will change the timing and magnitude of the thermal and epithermal neutron count rates observed by the Dynamic Albedo of Neutrons (DAN) instrument. On Sols 1316 to 1329 we performed dedicated measurements on these features with Curiosity by orienting the rover such that DAN was directly over the fracture halos. These fracture halos were also investigated by Curiosity's other geochemical instruments, and co-located DAN measurements were acquired to help constrain abundances of these elements at decimeter-scale depths. Using the bulk geochemistry for both the altered and unaltered Stimson formation, we model a variety of hydrogen contents and burial depths for the altered and unaltered Stimson formation within the approximately 3 meter diameter DAN instrument field of view. Measurements of chemical abundances from both the Alpha Particle X-ray Spectrometer and the Sample Analysis at Mars instrument suite on targets "Lubango" and "Okoruso" provide necessary constraints on these models. Using simulations of neutron scattering we then outline the abundances of hydrogen, chlorine, and iron at depth at the

  5. Martian Surface Mineralogy from Rovers with Spirit, Opportunity, and Curiosity

    Science.gov (United States)

    Morris, Richard V.

    2016-01-01

    Beginning in 2004, NASA has landed three well-instrumented rovers on the equatorial martian surface. The Spirit rover landed in Gusev crater in early January, 2004, and the Opportunity rover landed on the opposite side of Mars at Meridian Planum 21 days later. The Curiosity rover landed in Gale crater to the west of Gusev crater in August, 2012. Both Opportunity and Curiosity are currently operational. The twin rovers Spirit and Opportunity carried Mossbauer spectrometers to determine the oxidation state of iron and its mineralogical composition. The Curiosity rover has an X-ray diffraction instrument for identification and quantification of crystalline materials including clay minerals. Instrument suites on all three rovers are capable of distinguishing primary rock-forming minerals like olivine, pyroxene and magnetite and products of aqueous alteration in including amorphous iron oxides, hematite, goethite, sulfates, and clay minerals. The oxidation state of iron ranges from that typical for unweathered rocks and soils to nearly completely oxidized (weathered) rocks and soils as products of aqueous and acid-sulfate alteration. The in situ rover mineralogy also serves as ground-truth for orbital observations, and orbital mineralogical inferences are used for evaluating and planning rover exploration.

  6. Design and Testing of a Linear Ion Trap for the Mars Organic Molecule Analyzer (MOMA) Investigation on the 2018 ExoMars Rover

    Science.gov (United States)

    Brinckerhoff, W. B.; van Amerom, F.; Danell, R.; Pinnick, V. T.; Arevalo, R. D.; Li, X.; Hovmand, L.; Siljestrom, S.; Mahaffy, P. R.; Goetz, W.; Goesmann, F.; Steininger, H.

    2013-12-01

    The 2018 ExoMars rover mission includes the Mars Organic Molecule Analyzer (MOMA) investigation. MOMA will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from radiative and oxidative degradation. When combined with the complement of instruments in the rover's Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds. MOMA includes an ion trap mass spectrometer (ITMS) that is designed to analyze molecular composition of (i) gas evolved from pyrolyzed powder samples and separated on a gas chromatograph and (ii) ions directly desorbed from solid samples at Mars ambient pressure using a pulsed laser and a fast-valve capillary ion inlet system. This 'dual source' approach gives MOMA unprecedented breadth of detection over a wide range of molecular weights and volatilities. Analysis of nonvolatile, higher-molecular weight organics such as carboxylic acids and peptides even in the presence of significant perchlorate concentrations is enabled by the extremely short (~1 ns) pulses of the desorption laser. Use of the ion trap's tandem mass spectrometry mode permits selective focus on key species for isolation and controlled fragmentation, providing structural analysis capabilities. The flight-like engineering test unit (ETU) of the ITMS, now under construction, will be used to verify breadboard performance with high fidelity, while simultaneously supporting the development of analytical scripts and spectral libraries using synthetic and natural Mars analog samples guided by current results from MSL. ETU campaign data will strongly advise the specifics of the calibration applied to the MOMA flight model as well as the science operational procedures during the mission.

  7. Rover-based visual target tracking validation and mission infusion

    Science.gov (United States)

    Kim, Won S.; Steele, Robert D.; Ansar, Adnan I.; Ali, Khaled; Nesnas, Issa

    2005-01-01

    The Mars Exploration Rovers (MER'03), Spirit and Opportunity, represent the state of the art in rover operations on Mars. This paper presents validation experiments of different visual tracking algorithms using the rover's navigation camera.

  8. Mesoscale modeling of the water vapor cycle at Mawrth Vallis: a Mars2020 and ExoMars exploration rovers high-priority landing site

    Science.gov (United States)

    Pla-García, Jorge

    2017-04-01

    Introduction: The Mars Regional Atmospheric Modeling System (MRAMS) was used to predict meteorological conditions that are likely to be encountered by the Mars 2020 (NASA) Rover at several of their respective proposed landing sites during entry, descent, and landing at Ls5 [1] and by the ExoMars (ESA) Rover at one of the final landing sites. MRAMS is ideally suited for this type of investigation; the model is explicitly designed to simu-late Mars' atmospheric circulations at the mesoscale and smaller with realistic, high-resolution surface proper-ties [2, 3]. One of the sights studied for both rovers was Mawrth Vallis (MV), an ancient water outflow channel with light colored clay-rich rocks in the mid-latitude north hemisphere (Oxia Palus quadrangle). MV is the northernmost of the Mars2020 and ExoMars landing sites and the closest to the northern polar cap water source. The primary source of water vapor to the atmosphere is the northern polar cap during the northern summer. In order to highlight MV habitability implications, additional numerical experiments at Ls90, 140 and 180, highest column abundance of water vapor is found over MV [4], were performed to study how the atmospheric circulation connects MV with the polar water source. Once the winter CO2 retreats, the underlying polar water ice is exposed and begins to sublimate. The water is transported equatorward where it is manifested in the tropical aphelion cloud belt. If transport is assumed to be the result of the summer Hadley Cell, then the polar water is carried aloft in the northern high latitude rising branch before moving equatorward and eventually toward the southern high latitudes. Thus, the mean meridional summer circulation precludes a direct water vapor connection between MV and the polar source. Around the equinoxes (Ls0 and Ls180), there is a brief transition period where the rising branch quickly crosses from one hemisphere into the other as it migrates to its more typical solstitial location

  9. Rover Panorama from Sols 75 & 76

    Science.gov (United States)

    1998-01-01

    This Sojourner rover panorama from Sols 75 and 76 is the only true panorama product (as opposed to the normal 'tiled' full frames) produced by the rover. This panorama ranges from Big Crater on the left (about azimuth 160 degrees), past the Twin Peaks and almost all the way to the north horizon, for a swath of about 200 degrees in azimuth.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  10. Winds measured by the Rover Environmental Monitoring Station (REMS) during the Mars Science Laboratory (MSL) rover's Bagnold Dunes Campaign and comparison with numerical modeling using MarsWRF

    Science.gov (United States)

    Newman, Claire E.; Gómez-Elvira, Javier; Marin, Mercedes; Navarro, Sara; Torres, Josefina; Richardson, Mark I.; Battalio, J. Michael; Guzewich, Scott D.; Sullivan, Robert; de la Torre, Manuel; Vasavada, Ashwin R.; Bridges, Nathan T.

    2017-07-01

    A high density of REMS wind measurements were collected in three science investigations during MSL's Bagnold Dunes Campaign, which took place over ∼80 sols around southern winter solstice (Ls∼90°) and constituted the first in situ analysis of the environmental conditions, morphology, structure, and composition of an active dune field on Mars. The Wind Characterization Investigation was designed to fully characterize the near-surface wind field just outside the dunes and confirmed the primarily upslope/downslope flow expected from theory and modeling of the circulation on the slopes of Aeolis Mons in this season. The basic pattern of winds is 'upslope' (from the northwest, heading up Aeolis Mons) during the daytime (∼09:00-17:00 or 18:00) and 'downslope' (from the southeast, heading down Aeolis Mons) at night (∼20:00 to some time before 08:00). Between these times the wind rotates largely clockwise, giving generally westerly winds mid-morning and easterly winds in the early evening. The timings of these direction changes are relatively consistent from sol to sol; however, the wind direction and speed at any given time shows considerable intersol variability. This pattern and timing is similar to predictions from the MarsWRF numerical model, run at a resolution of ∼490 m in this region, although the model predicts the upslope winds to have a stronger component from the E than the W, misses a wind speed peak at ∼09:00, and under-predicts the strength of daytime wind speeds by ∼2-4 m/s. The Namib Dune Lee Investigation reveals 'blocking' of northerly winds by the dune, leaving primarily a westerly component to the daytime winds, and also shows a broadening of the 1 Hz wind speed distribution likely associated with lee turbulence. The Namib Dune Side Investigation measured primarily daytime winds at the side of the same dune, in support of aeolian change detection experiments designed to put limits on the saltation threshold, and also appears to show the

  11. The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in-flight calibration, validation, and data archiving

    Science.gov (United States)

    Bell, James F.; Godber, A.; McNair, S.; Caplinger, M.A.; Maki, J.N.; Lemmon, M.T.; Van Beek, J.; Malin, M.C.; Wellington, D.; Kinch, K.M.; Madsen, M.B.; Hardgrove, C.; Ravine, M.A.; Jensen, E.; Harker, D.; Anderson, Ryan; Herkenhoff, Kenneth E.; Morris, R.V.; Cisneros, E.; Deen, R.G.

    2017-01-01

    The NASA Curiosity rover Mast Camera (Mastcam) system is a pair of fixed-focal length, multispectral, color CCD imagers mounted ~2 m above the surface on the rover's remote sensing mast, along with associated electronics and an onboard calibration target. The left Mastcam (M-34) has a 34 mm focal length, an instantaneous field of view (IFOV) of 0.22 mrad, and a FOV of 20° × 15° over the full 1648 × 1200 pixel span of its Kodak KAI-2020 CCD. The right Mastcam (M-100) has a 100 mm focal length, an IFOV of 0.074 mrad, and a FOV of 6.8° × 5.1° using the same detector. The cameras are separated by 24.2 cm on the mast, allowing stereo images to be obtained at the resolution of the M-34 camera. Each camera has an eight-position filter wheel, enabling it to take Bayer pattern red, green, and blue (RGB) “true color” images, multispectral images in nine additional bands spanning ~400–1100 nm, and images of the Sun in two colors through neutral density-coated filters. An associated Digital Electronics Assembly provides command and data interfaces to the rover, 8 Gb of image storage per camera, 11 bit to 8 bit companding, JPEG compression, and acquisition of high-definition video. Here we describe the preflight and in-flight calibration of Mastcam images, the ways that they are being archived in the NASA Planetary Data System, and the ways that calibration refinements are being developed as the investigation progresses on Mars. We also provide some examples of data sets and analyses that help to validate the accuracy and precision of the calibration

  12. FIDO Rover

    Science.gov (United States)

    1999-01-01

    The Field Integrated Design and Operations (FIDO) rover is being used in ongoing NASA field tests to simulate driving conditions on Mars. FIDO is at a geologically interesting site in central Nevada while it is controlled from the mission control room at JPL's Planetary Robotics Laboratory in Pasadena. FIDO uses a robot arm to manipulate science instruments and it has a new mini-corer or drill to extract and cache rock samples. Several camera systems onboard allow the rover to collect science and navigation images by remote-control. The rover is about the size of a coffee table and weighs as much as a St. Bernard, about 70 kilograms (150 pounds). It is approximately 85 centimeters (about 33 inches) wide, 105 centimeters (41 inches) long, and 55 centimeters (22 inches) high. The rover moves up to 300 meters an hour (less than a mile per hour) over smooth terrain, using its onboard stereo vision systems to detect and avoid obstacles as it travels 'on-the-fly.' During these tests, FIDO is powered by both solar panels that cover the top of the rover and by replaceable, rechargeable batteries.

  13. Microbial Ecology of a Crewed Rover Traverse in the Arctic: Low Microbial Dispersal and Implications for Planetary Protection on Human Mars Missions

    Science.gov (United States)

    Schuerger, Andrew C.; Lee, Pascal

    2015-01-01

    Between April 2009 and July 2011, the NASA Haughton-Mars Project (HMP) led the Northwest Passage Drive Expedition (NWPDX), a multi-staged long-distance crewed rover traverse along the Northwest Passage in the Arctic. In April 2009, the HMP Okarian rover was driven 496 km over sea ice along the Northwest Passage, from Kugluktuk to Cambridge Bay, Nunavut, Canada. During the traverse, crew members collected samples from within the rover and from undisturbed snow-covered surfaces around the rover at three locations. The rover samples and snow samples were stored at subzero conditions (-20C to -1C) until processed for microbial diversity in labs at the NASA Kennedy Space Center, Florida. The objective was to determine the extent of microbial dispersal away from the rover and onto undisturbed snow. Interior surfaces of the rover were found to be associated with a wide range of bacteria (69 unique taxa) and fungi (16 unique taxa). In contrast, snow samples from the upwind, downwind, uptrack, and downtrack sample sites exterior to the rover were negative for both bacteria and fungi except for two colony-forming units (cfus) recovered from one downwind (1 cfu; site A4) and one uptrack (1 cfu; site B6) sample location. The fungus, Aspergillus fumigatus (GenBank JX517279), and closely related bacteria in the genus Brevibacillus were recovered from both snow (B. agri, GenBank JX517278) and interior rover surfaces. However, it is unknown whether the microorganisms were deposited onto snow surfaces at the time of sample collection (i.e., from the clothing or skin of the human operator) or via airborne dispersal from the rover during the 12-18 h layovers at the sites prior to collection. Results support the conclusion that a crewed rover traveling over previously undisturbed terrain may not significantly contaminate the local terrain via airborne dispersal of propagules from the vehicle. Key Words: Planetary protection-Contamination-Habitability-Haughton Crater-Mars. Astrobiology

  14. Microbial Ecology of a Crewed Rover Traverse in the Arctic: Low Microbial Dispersal and Implications for Planetary Protection on Human Mars Missions

    Science.gov (United States)

    Schuerger, Andrew C.; Lee, Pascal

    2015-01-01

    Between April 2009 and July 2011, the NASA Haughton-Mars Project (HMP) led the Northwest Passage Drive Expedition (NWPDX), a multi-staged long-distance crewed rover traverse along the Northwest Passage in the Arctic. In April 2009, the HMP Okarian rover was driven 496 km over sea ice along the Northwest Passage, from Kugluktuk to Cambridge Bay, Nunavut, Canada. During the traverse, crew members collected samples from within the rover and from undisturbed snow-covered surfaces around the rover at three locations. The rover samples and snow samples were stored at subzero conditions (-20C to -1C) until processed for microbial diversity in labs at the NASA Kennedy Space Center, Florida. The objective was to determine the extent of microbial dispersal away from the rover and onto undisturbed snow. Interior surfaces of the rover were found to be associated with a wide range of bacteria (69 unique taxa) and fungi (16 unique taxa). In contrast, snow samples from the upwind, downwind, uptrack, and downtrack sample sites exterior to the rover were negative for both bacteria and fungi except for two colony-forming units (cfus) recovered from one downwind (1 cfu; site A4) and one uptrack (1 cfu; site B6) sample location. The fungus, Aspergillus fumigatus (GenBank JX517279), and closely related bacteria in the genus Brevibacillus were recovered from both snow (B. agri, GenBank JX517278) and interior rover surfaces. However, it is unknown whether the microorganisms were deposited onto snow surfaces at the time of sample collection (i.e., from the clothing or skin of the human operator) or via airborne dispersal from the rover during the 12-18 h layovers at the sites prior to collection. Results support the conclusion that a crewed rover traveling over previously undisturbed terrain may not significantly contaminate the local terrain via airborne dispersal of propagules from the vehicle. Key Words: Planetary protection-Contamination-Habitability-Haughton Crater-Mars. Astrobiology

  15. Research from the NASA Twins Study and Omics in Support of Mars Missions

    Science.gov (United States)

    Kundrot, C.; Shelhamer, M.; Scott, G.

    2015-01-01

    The NASA Twins Study, NASA's first foray into integrated omic studies in humans, illustrates how an integrated omics approach can be brought to bear on the challenges to human health and performance on a Mars mission. The NASA Twins Study involves US Astronaut Scott Kelly and his identical twin brother, Mark Kelly, a retired US Astronaut. No other opportunity to study a twin pair for a prolonged period with one subject in space and one on the ground is available for the foreseeable future. A team of 10 principal investigators are conducting the Twins Study, examining a very broad range of biological functions including the genome, epigenome, transcriptome, proteome, metabolome, gut microbiome, immunological response to vaccinations, indicators of atherosclerosis, physiological fluid shifts, and cognition. A novel aspect of the study is the integrated study of molecular, physiological, cognitive, and microbiological properties. Major sample and data collection from both subjects for this study began approximately six months before Scott Kelly's one year mission on the ISS, continue while Scott Kelly is in flight and will conclude approximately six months after his return to Earth. Mark Kelly will remain on Earth during this study, in a lifestyle unconstrained by this study, thereby providing a measure of normal variation in the properties being studied. An overview of initial results and the future plans will be described as well as the technological and ethical issues raised for spaceflight studies involving omics.

  16. Chemical Composition by the APXS along the Downhill Traverse of the Mars Exploration Rover Spirit at Gusev Crater

    Science.gov (United States)

    Bruckner, J.; Dreibus, G.; Gellert, R.; Clark, B.C.; Cohen, B.; McCoy, T.; Ming, D.W.; Mittlefehldt, D.W.; Yen, A.; Athena Science Team

    2006-01-01

    The Alpha Particle X-ray Spectrometer (APXS) onboard the Mars Exploration Rover Spirit continues to determine the elemental composition of samples at Gusev Crater. Starting around sol 600 the rover descended Husband Hill, which is part of the Columbia Hills, visited the inner basin with a large dune field, called 'El Dorado', and parked at Low Ridge to conserve energy during the martian winter. Many unique samples were discovered by the instruments onboard Spirit during her downhill traverse. Here, we report only on the chemical data obtained by the APXS. The compositions of some of the soil samples are comparable to the mean soil determined along the earlier traverse. However, a light-toned subsurface sample (disturbed by the rover wheels), called Dead Sea Samra , showed the highest sulfur content of all soil samples, the lowest Na, Mg, Al, Cl, K, Ca, Ti, Mn, and Zn, among the lowest Si and P, and among the highest Cr, Fe and Ni. Assuming ferric sulfate as a major mineral, large amounts of a pure silica phase must be present. Color and quantity of Dead Sea Samra resemble somewhat an earlier soil called Paso Robles , though the latter is a mixture of sulfates with phosphate-rich soil. Manganese in Dead Sea Samra is so low that the Fe/Mn ratio exceeds 300, a value that has never been found previously on Mars (Fe/Mn ratio of 46 for Gusev basalts), indicating that only Fe(3+) occurs. The dune field El Dorado contained granulated material that exhibited the highest Mg and Ni concentrations and the lowest S and Cl compared to all other soils implying an enrichment of olivine-rich sands. Two outcrops, called Algonquin and Comanche , revealed compositions that differ significantly from those of earlier outcrops as they have the highest concentrations of Mg, Fe, and Ni (except for Ni in Independence) and the lowest of Al, K (detection limit), Ca, and Ti of all brushed and almost all abraded rocks. Normative estimates assign them the highest olivine contents ever found for

  17. Chemical Composition by the APXS along the Downhill Traverse of the Mars Exploration Rover Spirit at Gusev Crater

    Science.gov (United States)

    Brueckner, J.; Dreibus, G.; Gellert, R.; Clark, B. C.; Cohen, B.; McCoy, T.; Ming, D. W.; Mittlefehldt, D. W.; Yen, A.; Team, A. S.

    2006-12-01

    The Alpha Particle X-ray Spectrometer (APXS) onboard the Mars Exploration Rover Spirit continues to determine the elemental composition of samples at Gusev Crater. Starting around sol 600 the rover descended Husband Hill, which is part of the Columbia Hills, visited the inner basin with a large dune field, called `El Dorado', and parked at `Low Ridge' to conserve energy during the martian winter. Many unique samples were discovered by the instruments onboard Spirit during her downhill traverse. Here, we report only on the chemical data obtained by the APXS. The compositions of some of the soil samples are comparable to the mean soil determined along the earlier traverse. However, a light-toned subsurface sample (disturbed by the rover wheels), called `Dead Sea Samra', showed the highest sulfur content of all soil samples, the lowest Na, Mg, Al, Cl, K, Ca, Ti, Mn, and Zn, among the lowest Si and P, and among the highest Cr, Fe and Ni. Assuming ferric sulfate as a major mineral, large amounts of a pure silica phase must be present. Color and quantity of Dead Sea Samra resemble somewhat an earlier soil called `Paso Robles', though the latter is a mixture of sulfates with phosphate-rich soil. Manganese in Dead Sea Samra is so low that the Fe/Mn ratio exceeds 300, a value that has never been found previously on Mars (Fe/Mn ratio of 46 for Gusev basalts), indicating that only Fe3+ occurs. The dune field El Dorado contained granulated material that exhibited the highest Mg and Ni concentrations and the lowest S and Cl compared to all other soils implying an enrichment of olivine-rich sands. Two outcrops, called `Algonquin' and `Comanche', revealed compositions that differ significantly from those of earlier outcrops as they have the highest concentrations of Mg, Fe, and Ni (except for Ni in `Independence') and the lowest of Al, K (detection limit), Ca, and Ti of all brushed and almost all abraded rocks. Normative estimates assign them the highest olivine contents ever

  18. The Proposed Mars Astrobiology Explorer - Cacher [MAX-C] Rover: First Step in a Potential Sample Return Campaign

    Science.gov (United States)

    Allen, Carlton C.; Beaty, David W.

    2010-01-01

    Sample return from Mars has been advocated by numerous scientific advisory panels for over 30 years, most prominently beginning with the National Research Council s [1] strategy for the exploration of the inner solar system, and most recently by the Mars Exploration Program Analysis Group (MEPAG s) Next Decade Science Analysis Group [2]. Analysis of samples here on Earth would have enormous advantages over in situ analyses in producing the data quality needed to address many of the complex scientific questions the community has posed about Mars. Instead of a small, predetermined set of analytical techniques, state of the art preparative and instrumental resources of the entire scientific community could be applied to the samples. The analytical emphasis could shift as the meaning of each result becomes better appreciated. These arguments apply both to igneous rocks and to layered sedimentary materials, either of which could contain water and other volatile constituents. In 2009 MEPAG formed the Mid-Range Rover Science Analysis Group (MRR-SAG) to formulate a mission concept that would address two general objectives: (1) conduct high-priority in situ science and (2) make concrete steps towards the potential return of samples to Earth. This analysis resulted in a mission concept named the Mars Astrobiology Explorer-Cacher (MAX-C), which was envisioned for launch in the 2018 opportunity. After extensive discussion, this group concluded that by far the most definitive contribution to sample return by this mission would be to collect and cache, in an accessible location, a suite of compelling samples that could potentially be recovered and returned by a subsequent mission. This would have the effect of separating two of the essential functions of MSR, the acquisition of the sample collection and its delivery to martian orbit, into two missions.

  19. One Martian Year of in Situ Chemistry by the APXS on Board the Mars Exploration Rover Opportunity at Meridiani Planum

    Science.gov (United States)

    Brueckner, J.; Dreibus, G.; Gellert, R.; Clark, B. C.; Klingelhoefer, G.; Lugmair, G.; Ming, D.; Rieder, R.; Waenke, H.; Yen, A.; Zipfel, J.

    2005-12-01

    Two in-situ instruments, the Alpha Particle X-ray Spectrometer (APXS) and the Moessbauer Spectrometer (MB), gathered geochemical and mineralogical data along the traverse of the Mars Exploration Rover Opportunity at Meridiani Planum. Eagle crater, the landing site of the rover, contains undisturbed soils that resemble those at Gusev crater; however, the Fe, Ni, and Cr contents and Fe/Si ratios of Meridiani soils are higher than those of Gusev soils. The enrichment of Fe results from an admixture of the mineral hematite as determined by MB. This mineral occurs as a finely disseminated component of the outcrop rocks as well as in mm- to several mm-sized spherules, nicknamed blueberries, which are spread at the landing site and along the several kilometers traverse to the Erebus crater. The formation of hematite is typically an indicator for aqueous activity under oxidizing conditions. Light-toned layered outcrops were discovered in Eagle crater and later in other craters, as well as along the rover's traverse. Most of these undisturbed rock surfaces have a factor of 2 to 3 higher S concentrations compared to the soils. In Eagle crater, ground rock surfaces (exposed by the Rock Abrasion Tool, or RAT) showed even higher S contents of up to 9.5 weight percent. Assuming all SO3 is bound to Mg and Ca sulfates and, according to MB data, to ferric sulfates, mainly jarosite, these rocks contain about 40 weight percent sulfates. High concentrations of Br were discovered in some soils excavated with the rover wheels and rocks ground with the RAT. The high abundances of S and Br in these rocks point to ancient occurrence of acidified water and the formation of brines, which could have been occasionally evaporated. Small quantities of the hematite-rich spherules (ca. 2 volume percent) were found in the rocks of Eagle crater. The acidic conditions during the formation of the hematitic spherules in the rocks as concretions allowed co-precipitation of Fe2O3 and NiO but no MnO. When

  20. Mars

    CERN Document Server

    Payment, Simone

    2017-01-01

    This curriculum-based, fun, and approachable book offers everything young readers need to know to begin their study of the Red Planet. They will learn about the fundamental aspects of the Mars, including its size, mass, surface features, interior, orbit, and spin. Further, they will learn about the history of the missions to Mars, including the Viking spacecraft and the Curiosity and MAVEN rovers. Finally, readers will learn about why scientists think there's a chance that Mars is or was suitable for life. With stunning imagery from NASA itself, readers will have a front seat-view of the missi

  1. SuperCam Remote Sensing on the Mars 2020 Rover: Science Goals and Overview

    Science.gov (United States)

    Wiens, R. C.; Maurice, S.; Rull, F.; SuperCam Team

    2016-10-01

    The Mars 2020 Science Definition Team (SDT) report emphasized the importance of fine-scale measurements, suggesting that the numerous pin-point observations made at remote distances by ChemCam was a very desirable capability.

  2. The CheMin XRD on the Mars Science Laboratory Rover Curiosity: Construction, Operation, and Quantitative Mineralogical Results from the Surface of Mars

    Science.gov (United States)

    Blake, David F.

    2015-01-01

    The Mars Science Laboratory mission was launched from Cape Canaveral, Florida on Nov. 26, 2011 and landed in Gale crater, Mars on Aug. 6, 2012. MSL's mission is to identify and characterize ancient "habitable" environments on Mars. MSL's precision landing system placed the Curiosity rover within 2 km of the center of its 20 X 6 km landing ellipse, next to Gale's central mound, a 5,000 meter high pile of laminated sediment which may contain 1 billion years of Mars history. Curiosity carries with it a full suite of analytical instruments, including the CheMin X-ray diffractometer, the first XRD flown in space. CheMin is essentially a transmission X-ray pinhole camera. A fine-focus Co source and collimator transmits a 50µm beam through a powdered sample held between X-ray transparent plastic windows. The sample holder is shaken by a piezoelectric actuator such that the powder flows like a liquid, each grain passing in random orientation through the beam over time. Forward-diffracted and fluoresced X-ray photons from the sample are detected by an X-ray sensitive Charge Coupled Device (CCD) operated in single photon counting mode. When operated in this way, both the x,y position and the energy of each photon are detected. The resulting energy-selected Co Kalpha Debye-Scherrer pattern is used to determine the identities and amounts of minerals present via Rietveld refinement, and a histogram of all X-ray events constitutes an X-ray fluorescence analysis of the sample.The key role that definitive mineralogy plays in understanding the Martian surface is a consequence of the fact that minerals are thermodynamic phases, having known and specific ranges of temperature, pressure and composition within which they are stable. More than simple compositional analysis, definitive mineralogical analysis can provide information about pressure/temperature conditions of formation, past climate, water activity and the like. Definitive mineralogical analyses are necessary to establish

  3. Potential precursor compounds for chlorohydrocarbons detected in Gale Crater, Mars, by the SAM instrument suite on the Curiosity Rover

    Science.gov (United States)

    Miller, Kristen E.; Eigenbrode, Jennifer L.; Freissinet, Caroline; Glavin, Daniel P.; Kotrc, Benjamin; Francois, Pascaline; Summons, Roger E.

    2016-03-01

    The detection of chlorinated organic compounds in near-surface sedimentary rocks by the Sample Analysis at Mars (SAM) instrument suite aboard the Mars Science Laboratory Curiosity rover represents an important step toward characterizing habitable environments on Mars. However, this discovery also raises questions about the identity and source of their precursor compounds and the processes by which they become chlorinated. Here we present the results of analog experiments, conducted under conditions similar to SAM gas chromatography-mass spectrometry analyses, in which we pyrolyzed potential precursor compounds in the presence of various Cl salts and Fe oxides that have been identified in Martian sediments. While chloromethanes could not be unambiguously identified, 1,2-dichloropropane (1,2-DCP), which is one of the chlorinated compounds identified in SAM data, is formed from the chlorination of aliphatic precursors. Additionally, propanol produced more 1,2-DCP than nonfunctionalized aliphatics such as propane or hexanes. Chlorinated benzenes ranging from chlorobenzene to hexachlorobenzene were identified in experiments with benzene carboxylic acids but not with benzene or toluene. Lastly, the distribution of chlorinated benzenes depended on both the substrate species and the nature and concentration of the Cl salt. Ca and Mg perchlorate, both of which release O2 in addition to Cl2 and HCl upon pyrolysis, formed less chlorobenzene relative to the sum of all chlorinated benzenes than in experiments with ferric chloride. FeCl3, a Lewis acid, catalyzes chlorination but does not aid combustion. Accordingly, both the precursor chemistry and sample mineralogy exert important controls on the distribution of chlorinated organics.

  4. Updates from the MSL-RAD Experiment on the Mars Curiosity Rover

    Science.gov (United States)

    Zeitlin, Cary

    2015-01-01

    The MSL-RAD instrument continues to operate flawlessly on Mars. As of this writing, some 1040 sols (Martian days) of data have been successfully acquired. Several improvements have been made to the instrument's configuration, particularly aimed at enabling the analysis of neutral-particle data. The dose rate since MSL's landing in August 2012 has remained remarkably stable, reflecting the unusual and very weak solar maximum of Cycle 24. Only a few small SEP events have been observed by RAD, which is shielded by the Martian atmosphere. Gale Crater, where Curiosity landed, is 4.4 km below the mean surface of Mars, and the column depth of atmosphere above is approximately 20 g/sq cm, which provides significant attenuation of GCR heavy ions and SEPs. Recent analysis results will be presented, including updated estimates of the neutron contributions to dose and dose equivalent in cruise and on the surface of Mars.

  5. What We Might Know About Gusev Crater if the Mars Exploration Rover Spirit Mission were Coupled with a Mars Sample Return Mission

    Science.gov (United States)

    Morris, Richard V.

    2008-01-01

    The science instruments on the Mars Exploration Rover (MER) Spirit have provided an enormous amount of chemical and mineralogical data during more than 1450 sols of exploration at Gusev crater. The Moessbauer (MB) instrument identified 10 Fe-bearing phases at Gusev Crater: olivine, pyroxene, ilmenite, chromite, and magnetite as primary igneous phases and nanophase ferric oxide (npOx), goethite, hematite, a ferric sulfate, and pyrite/marcusite as secondary phases. The Miniature Thermal Emission Spectrometer (Mini-TES) identified some of these Fe-bearing phases (olivine and pyroxene), non- Fe-bearing phases (e.g., feldspar), and an amorphous high-SiO2 phase near Home Plate. Chemical data from the Alpha Particle X-Ray Spectrometer (APXS) provided the framework for rock classification, chemical weathering/alteration, and mineralogical constraints. APXS-based mineralogical constraints include normative calculations (with Fe(3+)/FeT from MB), elemental associations, and stoichiometry (e.g., 90% SiO2 implicates opalline silica). If Spirit had cached a set of representative samples and if those samples were returned to the Earth for laboratory analysis, what value is added by Mars Sample return (MSR) over and above the mineralogical and chemical data provided by MER?

  6. Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover

    Science.gov (United States)

    Mahaffy, P. R.; Bleacher, L.; Jones, A.; Atreya, S. K.; Manning, H. L.; Cabane, M.; Webster, C. R.; Sam Team

    2010-12-01

    Introduction: An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers. SAM Instrument Suite: SAM’s instruments are a Quadrupole Mass Spectrometer (QMS), a 6-column Gas Chromatograph (GC), and a 2-channel Tunable Laser Spectrometer (TLS). SAM can identify organic compounds in Mars rocks to sub-ppb sensitivity and secure precise isotope ratios for C, H, and O in carbon dioxide and water and measure trace levels of methane and its carbon 13 isotope. The SAM gas processing system consists of valves, heaters, pressure sensors, gas scrubbers and getters, traps, and gas tanks used for calibration or combustion experiments [2]. A variety of calibrant compounds interior and exterior to SAM will allow the science and engineering teams to assess SAM’s performance. SAM has been calibrated and tested in a Mars-like environment. Keeping Educators and the Public Informed: The Education and Public Outreach (EPO) goals of the SAM team are to make this complex chemical laboratory and its data widely available to educators, students, and the public. Formal education activities include developing templates for professional development workshops for educators to teach them about SAM and Curiosity, incorporating data into Mars Student Data Teams, and writing articles

  7. Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover

    Science.gov (United States)

    Mahaffy, P. R.; Bleacher, L.; Jones, A.; Conrad, P. G.; Cabane, M.; Webster, C. R.; Atreya, S. A.; Manning, H.

    2010-01-01

    An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers.

  8. In Situ Sedimentological Evidence for Climate Change in Early Mars Provided by the Curiosity Rover in Gale Crater

    Science.gov (United States)

    Heydari, Ezat; Fairen, Alberto G.

    2016-10-01

    The Striated formation is one of the rock units that was deposited in Gale crater, Mars, during the Late Noachian to Hesperian time (4.2 to 3.6 billion years ago). It crops out for 3 km along the Curiosity's traverse. The Striated formation strikes N65○E and has a depositional dip of 10○ - 20○ to SE. It consists of 500 m to 1000 m of highly rhythmic layers each 1 m to 4 m in thickness. Study of MAHLI and MastCam images provided by the Curiosity Rover indicates that layers form fining-upward cycles consisting of thick-bedded to massive conglomerate at the base that grades upward to thinly bedded conglomerate, then to pebbly sandstone, and topped by laminated, fine grained sandstone. Layers show slump folds, soft sediment deformation, and cross-beddings.The highly rhythmic occurrence and the fining-upward grain size characteristic indicate that each layer within the Striated formation is a coarse-grained turbidite: a type of rock that forms when sediments move down-hill by gravity-driven turbidity flows and deposit in deep waters. We propose that turbidite layers of the Striated formation are related to delivery of sediments to Gale crater by megafloods through its northern rim. Upon entering Gale crater, sediments moved down-hill and deposited as turbidite layers when the crater may have been filled to the rim with water. About 1000 to 3000 turbidite layers are present suggesting the occurrences of as many megafloods during hothouse climatic intervals when Mars was warmer than the Present and had plenty of liquid water. Floods were generated by one or a combination of the following processes: (1) torrential rain along the margins of Mars's Northern Ocean, 500 km to 1000 km to the north, (2) rapid melting of ice in highland areas, and (3) tsunamis formed by impacts on the Northern Ocean. Cold and/or dry climate of icehouse intervals may have followed each warming episode. Mars's climate forcing mechanism and periodicities of climate change are not clear at this

  9. Mars Science Laboratory Curiosity rover initial Mastcam geomorphologic and multispectral characterization of the Gale crater field site

    Science.gov (United States)

    Bell, J. F.; Malin, M.; Maki, J.; Dietrich, W. E.; Edgett, K. S.; Edwards, L.; Garvin, J. B.; Hallet, B.; Herkenhoff, K. E.; Heydari, E.; Johnson, J. R.; Kah, L. C.; Lemmon, M. T.; Minitti, M.; Olson, T. S.; Parker, T. J.; Rice, M. S.; Rowland, S. K.; Schieber, J.; Sletten, R. S.; Sullivan, R. J.; Sumner, D. Y.; Thomas, P. C.; Yingst, R.; Team, M.

    2013-12-01

    The Mars Science Laboratory Curiosity rover landed in Gale crater on August 6, 2012 and has been enabling the exploration of a variety of geologic terrains between the rover's landing site at Bradbury Rise and the nearby topographic low point known as Yellowknife Bay. Curiosity carries a multispectral imaging system known as Mastcam, which consists of two boresighted CCD cameras, one of which acquires relatively wide field images (34-mm focal length, 18.4x15 degree FOV) and the other of which obtains narrower-angle telephoto images (100-mm focal length, 6.3x5.1 degree FOV). Each of these cameras has an 8-position filter wheel to enable imaging through broadband RGB Bayer filtes, nine specific narrowband filters in the 445 to 1012 nm region to enabled limited detectability of certain ferric, ferrous, and hydrated minerals, and neutral density solar filters for monitoring of atmospheric opacity. The Mastcams acquire images designed primarily to address specific scientific goals in geology, mineralogy, and atmospheric science, but also to support operational decisions related to rover driving, arm instrument placement, and rover subsystems status. Here we provide an overview of the initial scientific imaging results from the Mastcam investigation, from sol 0 (landing sol) through the end of the drilling campaign in Yellowknife Bay and the beginning of the long drive from there to the base of Mt. Sharp. A diversity of materials exposed at the surface have been encountered. This includes angular to sub-angular rock fragments scattered across the surface, boulder to fine gravel in size, variably dusty, and commonly fine grained. Thin outcrops of pebble to gravel conglomerate have been encountered across Bradbury rise. Granular ripples and other fine grained deposits were periodically encountered. In the wind-eroded Yellowknife Bay area, extensive polygonally fractured outcrops of sandstone and mudstone (with light-toned fracture fills) were discovered. The occurrence of

  10. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, C., E-mail: cecile.fabre@g2r.uhp-nancy.fr [G2R, Nancy Universite (France); Maurice, S.; Cousin, A. [IRAP, Toulouse (France); Wiens, R.C. [LANL, Los Alamos, NM (United States); Forni, O. [IRAP, Toulouse (France); Sautter, V. [MNHN, Paris (France); Guillaume, D. [GET, Toulouse (France)

    2011-03-15

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD < 5% for concentration variations > 0.1 wt.% using electronic microprobe, and < 10% for concentration variations > 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor

  11. Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES-derived thermal inertia

    Science.gov (United States)

    Fergason, R.L.; Christensen, P.R.; Bell, J.F.; Golombek, M.P.; Herkenhoff, K. E.; Kieffer, H.H.

    2006-01-01

    The Miniature Thermal Emission Spectrometer (Mini-TES) on board the two Mars Exploration Rovers provides the first opportunity to observe thermal properties from the Martian surface, relate these properties to orbital data, and perform soil conductivity experiments under Martian conditions. The thermal inertias of soils, bedforms, and rock at each landing site were derived to quantify the physical properties of these features and understand geologic processes occurring at these localities. The thermal inertia for the. Gusev plains rock target Bonneville Beacon (???1200 J m-2 K-1 s-1/2) is consistent with a dense, basaltic rock, but the rocks at the Columbia Hills have a lower thermal inertia (???620 J m-2 K-1 s-1/2), suggesting that they have a volcaniclasic origin. Bedforms on the floors of craters at both landing sites have thermal inertias of 200 J m-2 K-1 s-1/2, consistent with a particle diameter of ???160 ??m. This diameter is comparable to the most easily moved grain size in the current atmosphere on Mars, suggesting that these bedforms may have formed under current atmospheric conditions. Along the Meridiani plains, the thermal inertia is lower than that derived from TES and Thermal Emission Imaging System (THEMIS) orbital data. This discrepancy is not well understood. Mini-TES-derived thermal inertias at Gusev along a ???2.5 km traverse follow trends in thermal inertia measured from orbit with TES and THEMIS. However, along the traverse, there are variability and mixing of particle sizes that are not resolved in the orbital thermal inertia data due to meter-scale processes that are not identifiable at larger scales. Copyright 2006 by the American Geophysical Union.

  12. A systems analysis of the impact of navigation instrumentation on-board a Mars rover, based on a covariance analysis of navigation performance. M.S. Thesis, Massachusetts Inst. of Technology

    Science.gov (United States)

    Leber, Douglas Eric

    1992-01-01

    As part of the Space Exploration Initiative, the exploration of Mars will undoubtedly require the use of rovers, both manned and unmanned. Many mission scenarios have been developed, incorporating rovers which range in size from a few centimeters to ones large enough to carry a manned crew. Whatever the mission, accurate navigation of the rover on the Martian surface will be necessary. This thesis considers the initial rover missions, where minimal in-situ navigation aids will be available on Mars. A covariance analysis of the rover's navigation performance is conducted, assuming minimal on-board instrumentation (gyro compass and speedometer), a single orbiting satellite, and a surface beacon at the landing site. Models of the on-board instruments are varied to correspond to the accuracy of various levels of these instruments currently available. A comparison is made with performance of an on-board IMU. Landing location and satellite orbits are also varied.

  13. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    Science.gov (United States)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J. L.; Graham, H. V.; Archer, P. D., Jr.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; hide

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precise measurements of the abundance and carbon isotopic composition (delta(sup 13)C) of the evolved CO2 and hydrogen isotopic composition (deltaD) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx.550 C and above approx.550 C. The combustion experiment on SAM, if properly designed and executed, has the potential to answer multiple questions regarding the origins of volatiles seen thus far in SAM evolved gas analysis (EGA) on Mars. Constraints imposed by SAM and MSL time and power resources, as well as SAM consumables (oxygen gas), will limit the number of SAM combustion experiments, so it is imperative to design an experiment targeting the most pressing science questions. Low temperature combustion experiments will primarily target the quantification of carbon (and nitrogen) contributed by SAM wet chemistry reagants MTBSTFA (N-Methyl-N-tert-butyldimethylsilyltrifluoroacetamide) and DMF (Dimethylformamide), which have been identified in the background of blank and sample runs and may adsorb to the sample while the cup is in the Sample Manipulation System (SMS). In addition, differences between the sample and "blank" may yield information regarding abundance and delta(sup 13)C of bulk (both organic and inorganic) martian carbon. High temperature combustion experiments primarily aim to detect refractory organic matter, if present in Cumberland fines, as well as address the question of quantification and deltaD value of water evolution associated with hydroxyl hydrogen in clay minerals.

  14. Astrobiology and the Exploration of Gusev Crater by the Mars Exploration Rover Spirit

    Science.gov (United States)

    DesMarais, I. David

    2005-01-01

    We assess the availability of nutrient elements, energy and liquid water on the plains surrounding Columbia Memorial Station by evaluating data from Spirit in the context of previous Mars missions, Earth-based studies of martian meteorites and studies of microbial communities on Earth that represent potential analogs of martian biota. The compositions of Gusev basalts resemble those of olivine basalts beneath the seabed on Earth that deep drilling has shown to support life. Of particular relevance to biology, phosphate abundances are much greater in Gusev basalts (0.84 +/- 0.07 wt. % P2O5) than in oceanic basalts (typically 0.06 wt. %).

  15. Development and Testing of Laser-induced Breakdown Spectroscopy for the Mars Rover Program: Elemental Analyses at Stand-Off Distances

    Science.gov (United States)

    Cremers, D. A.; Wiens, R. C.; Arp, Z. A.; Harris, R. D.; Maurice, S.

    2003-01-01

    arms. The placement of such an instrument on a rover would allow the sampling of locations distant from the landing site. Here we give a description of the LIBS method and its advantages. We discuss recent work on determining its characteristics for Mars exploration, including accuracy, detection limits, and suitability for determining the presence of water ice and hydrated minerals. We also give a description of prototype instruments we have tested in field settings.

  16. Risk analysis of earth return options for the Mars rover/sample return mission

    Science.gov (United States)

    1988-01-01

    Four options for return of a Mars surface sample to Earth were studied to estimate the risk of mission failure and the risk of a sample container breach that might result in the release of Martian life forms, should such exist, in the Earth's biosphere. The probabilities calculated refer only to the time period from the last midcourse correction burn to possession of the sample on Earth. Two extreme views characterize this subject. In one view, there is no life on Mars, therefore there is no significant risk and no serious effort is required to deal with back contamination. In the other view, public safety overrides any desire to return Martian samples, and any risk of damaging contamination greater than zero is unacceptable. Zero risk requires great expense to achieve and may prevent the mission as currently envisioned from taking place. The major conclusion is that risk of sample container breach can be reduced to a very low number within the framework of the mission as now envisioned, but significant expense and effort, above that currently planned is needed. There are benefits to the public that warrant some risk. Martian life, if it exists, will be a major discovery. If it does not, there is no risk.

  17. Characteristics of terrestrial basaltic rock populations: Implications for Mars lander and rover science and safety

    Science.gov (United States)

    Craddock, Robert A.; Golombek, Matthew P.

    2016-08-01

    We analyzed the morphometry of basaltic rock populations that have been emplaced or affected by a variety of geologic processes, including explosive volcanic eruptions (as a proxy for impact cratering), catastrophic flooding, frost shattering, salt weathering, alluvial deposition, and chemical weathering. Morphometric indices for these rock populations were compared to an unmodified population of rocks that had broken off a solidified lava flow to understand how different geologic processes change rock shape. We found that a majority of rocks have an sphericity described as either a disc or sphere in the Zingg classification system and posit that this is a function of cooling fractures in the basalt (Zingg [1935] Schweiz. Miner. Petrogr. Mitt., 15, 39-140). Angularity (roundness) is the most diagnostic morphometric index, but the Corey Shape Factor (CSF), Oblate-Prolate Index (OPI) and deviation from compactness (D) also sometimes distinguished weathering processes. Comparison of our results to prior analyses of rock populations found at the Mars Pathfinder, Spirit, and Curiosity landing sites support previous conclusions. The observation that the size-frequency distribution of terrestrial rock populations follow exponential functions similar to lander and orbital measurements of rocks on Mars, which is expected from fracture and fragmentation theory, indicates that these distributions are being dominantly controlled by the initial fracture and fragmentation of the basalt.

  18. Automated localisation of Mars rovers using co-registered HiRISE-CTX-HRSC orthorectified images and wide baseline Navcam orthorectified mosaics

    Science.gov (United States)

    Tao, Yu; Muller, Jan-Peter; Poole, William

    2016-12-01

    We present a wide range of research results in the area of orbit-to-orbit and orbit-to-ground data fusion, achieved within the EU-FP7 PRoVisG project and EU-FP7 PRoViDE project. We focus on examples from three Mars rover missions, i.e. MER-A/B and MSL, to provide examples of a new fully automated offline method for rover localisation. We start by introducing the mis-registration discovered between the current HRSC and HiRISE datasets. Then we introduce the HRSC to CTX and CTX to HiRISE co-registration workflow. Finally, we demonstrate results of wide baseline stereo reconstruction with fixed mast position rover stereo imagery and its application to ground-to-orbit co-registration with HiRISE orthorectified image. We show examples of the quantitative assessment of recomputed rover traverses, and extensional exploitation of the co-registered datasets in visualisation and within an interactive web-GIS.

  19. Two Years of Chemical Sampling on Meridiani Planum by the Alpha Particle X-Ray Spectrometer Onboard the Mars Exploration Rover Opportunity

    Science.gov (United States)

    Bruckner, J.; Gellert, R.; Clark, B.C.; Dreibus, G.; Rieder, R.; Wanke, H.; d'Uston, C.; Economou, T.; Klingelhofer, G.; Lugmair, G.; Ming, D.W.; Squyres, S.W.; Yen, A.; Zipfel, J.

    2006-01-01

    For over two terrestrial years, the Mars Exploration Rover Opportunity has been exploring the martian surface at Meridiani Planum using the Athena instrument payload [1], including the Alpha Particle X-Ray Spectrometer (APXS). The APXS has a small sensor head that is mounted on the robotic arm of the rover. The chemistry, mineralogy and morphology of selected samples were investigated by the APXS along with the Moessbauer Spectrometer (MB) and the Microscopic Imager (MI). The Rock Abrasion Tool (RAT) provided the possibility to dust and/or abrade rock surfaces down to several millimeters to expose fresh material for analysis. We report here on APXS data gathered along the nearly 6-kilometers long traverse in craters and plains of Meridiani.

  20. Mineralogic Context of the Circum-Chryse Planitia Candidate Landing Sites for the ExoMars Rover Mission

    Science.gov (United States)

    Carter, John; Loizeau, Damien; Quantin, Cathy; Balme, Matt; Poulet, Francois; Gupta, Sanjeev; Vago, Jorge; Bibring, Jean-Pierre

    2015-04-01

    The ExoMars rover mission [1] will sample ancient, aqueously altered terrains to search for traces of extinct life and characterize the water history of Early Mars. These objectives translate into site-specific constraints in order to maximize the opportunity to access morphological and/or chemical markers for past aqueous environments and possibly life [2]. Currently, four candidate landing sites are being considered, all located on the margin of Chryse Planitia and all exhibiting hydrous clays within or near the ellipse. Assessing the composition and morphologic/stratigraphic context of these clays is necessary to narrow down possible formation scenarios and help rank the sites according to their relevance to the science goals. This work investigates the aqueous mineralogy of the circum-Chyrse region -where the LS are proposed-, in order to provide a framework for future in-depth investigations. Regional mapping of the clay mineralogy was performed using the OMEGA and CRISM NIR imaging spectrometers [3,4]. Global coverage of the circum-Chryse margin was achieved with OMEGA while detailed mapping was carried out locally with OMEGA and CRISM. Over 250 observations with pixel scales ranging 20 m - 4 km were investigated. Additionally, detailed analysis of the clay chemical composition was carried out using linear unmixing which provided the relative abundances of several Fe/Mg-rich phyllosilicate endmembers in the region. The analysis revealed large exposures of dominantly Fe/Mg-rich phyllosilicates over most of the preserved Noachian-aged margins of Chryse Planitia. These minerals have spectral features which are generally similar to what is found elsewhere on Mars [5], consistent with either vermiculites or smectite-bearing mixed-layered clays [6,7]. A regional outlier exists at and around the Mawrth Vallis LS: the most common clay there is likely Fe-rich nontronite associated with Al-rich phyllosilicates within layered deposits [8,9], indicating a different

  1. Performance of the Linear Ion Trap Mass Spectrometer for the Mars Organic Molecule Analyzer (MOMA) Investigation on the 2018 Exomars Rover

    Science.gov (United States)

    Arevalo, Ricardo, Jr.; Brinckerhoff, William B.; Pinnick, Veronica T.; van Amerom, Friso H. W.; Danell, Ryan M.; Li, Xiang; Getty, Stephanie; Hovmand, Lars; Atanassova, Martina; Mahaffy, Paul R.; Chu, Zhiping; Goesmann, Fred; Steininger, Harald

    2014-01-01

    The 2018 ExoMars rover mission includes the Mars Organic Molecule Analyzer (MOMA) investigation. MOMA will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from degradation derived from cosmic radiation and/or oxidative chemical reactions. When combined with the complement of instruments in the rover's Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds. The MOMA investigation is led by the Max Planck Institute for Solar System Research (MPS) with the mass spectrometer subsystem provided by NASA GSFC. MOMA's linear ion trap mass spectrometer (ITMS) is designed to analyze molecular composition of: (i) gas evolved from pyrolyzed powder samples and separated in a gas chromatograph; and, (ii) ions directly desorbed from crushed solid samples at Mars ambient pressure, as enabled by a pulsed UV laser system, fast-actuating aperture valve and capillary ion inlet. Breadboard ITMS and associated electronics have been advanced to high end-to-end fidelity in preparation for flight hardware delivery to Germany in 2015.

  2. Design of a Mars atmosphere simulation chamber and testing a Raman Laser Spectrometer (RLS) under conditions pertinent to Mars rover missions

    National Research Council Canada - National Science Library

    Motamedi, K; Colin, AP; Hooijschuur, JH; Postma, O; Lootens, R; Pruijser, D; Stoevelaar, R; Ariese, F; Hutchinson, I B; Ingley, R; Davies, GR

    2015-01-01

    .... In this context, the European Space Agency (ESA) and NASA selected a Raman spectrometer in the payload of the future ExoMars and Mars 2020 missions to identify organic compounds and mineral products indicative of biological activity on Mars...

  3. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description

    Science.gov (United States)

    Maurice, S.; Wiens, R. C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; Bernardin, J.; Berthé, M.; Bridges, N.; Blaney, D.; Bouyé, M.; Caïs, P.; Clark, B.; Clegg, S.; Cousin, A.; Cremers, D.; Cros, A.; DeFlores, L.; Derycke, C.; Dingler, B.; Dromart, G.; Dubois, B.; Dupieux, M.; Durand, E.; d'Uston, L.; Fabre, C.; Faure, B.; Gaboriaud, A.; Gharsa, T.; Herkenhoff, K.; Kan, E.; Kirkland, L.; Kouach, D.; Lacour, J.-L.; Langevin, Y.; Lasue, J.; Le Mouélic, S.; Lescure, M.; Lewin, E.; Limonadi, D.; Manhès, G.; Mauchien, P.; McKay, C.; Meslin, P.-Y.; Michel, Y.; Miller, E.; Newsom, H. E.; Orttner, G.; Paillet, A.; Parès, L.; Parot, Y.; Pérez, R.; Pinet, P.; Poitrasson, F.; Quertier, B.; Sallé, B.; Sotin, C.; Sautter, V.; Séran, H.; Simmonds, J. J.; Sirven, J.-B.; Stiglich, R.; Striebig, N.; Thocaven, J.-J.; Toplis, M. J.; Vaniman, D.

    2012-09-01

    ChemCam is a remote sensing instrument suite on board the "Curiosity" rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (˜90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

  4. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description

    Science.gov (United States)

    Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; Bernardin, J.; Berthé, M.; Bridges, N.; Blaney, D.; Bouyé, M.; Caïs, P.; Clark, B.; Clegg, S.; Cousin, A.; Cremers, D.; Cros, A.; DeFlores, L.; Derycke, C.; Dingler, B.; Dromart, G.; Dubois, B.; Dupieux, M.; Durand, E.; d'Uston, L.; Fabre, C.; Faure, B.; Gaboriaud, A.; Gharsa, T.; Herkenhoff, K.; Kan, E.; Kirkland, L.; Kouach, D.; Lacour, J.-L.; Langevin, Y.; Lasue, J.; Le Mouélic, S.; Lescure, M.; Lewin, E.; Limonadi, D.; Manhès, G.; Mauchien, P.; McKay, C.; Meslin, P.-Y.; Michel, Y.; Miller, E.; Newsom, Horton E.; Orttner, G.; Paillet, A.; Parès, L.; Parot, Y.; Pérez, R.; Pinet, P.; Poitrasson, F.; Quertier, B.; Sallé, B.; Sotin, C.; Sautter, V.; Séran, H.; Simmonds, J.J.; Sirven, J.-B.; Stiglich, R.; Striebig, N.; Thocaven, J.-J.; Toplis, M.J.; Vaniman, D.

    2012-01-01

    ChemCam is a remote sensing instrument suite on board the "Curiosity" rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (˜90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

  5. Mars Atmospheric Escape Recorded by H, C and O Isotope Ratios in Carbon Dioxide and Water Measured by the Sam Tunable Laser Spectrometer on the Curiosity Rover

    Science.gov (United States)

    Webster, C. R.; Mahaffy, P. R.; Leshin, L. A.; Atreya, S. K.; Flesch, G. J.; Stern, J.; Christensen, L. E.; Vasavada, A. R.; Owen, T.; Niles, P. B.; Jones, J. H.; Franz, H.

    2013-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biological activity [2]. For Mars, measurements to date have indicated enrichment in all the heavier isotopes consistent with atmospheric escape processes, but with uncertainty too high to tie the results with the more precise isotopic ratios achieved from SNC meteoritic analyses. We will present results to date of H, C and O isotope ratios in CO2 and H2O made to high precision (few per mil) using the Tunable Laser Spectrometer (TLS) that is part of the Sample Analysis at Mars (SAM) instrument suite on MSL s Curiosity Rover.

  6. Extraction of compositional and hydration information of sulfates from laser-induced plasma spectra recorded under Mars atmospheric conditions - Implications for ChemCam investigations on Curiosity rover

    Energy Technology Data Exchange (ETDEWEB)

    Sobron, Pablo, E-mail: pablo.sobron@asc-csa.gc.ca [Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130 (United States); Wang, Alian [Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130 (United States); Sobron, Francisco [Unidad Asociada UVa-CSIC a traves del Centro de Astrobiologia, Parque Tecnologico de Boecillo, Parcela 203, Boecillo (Valladolid), 47151 (Spain)

    2012-02-15

    Given the volume of spectral data required for providing accurate compositional information and thereby insight in mineralogy and petrology from laser-induced breakdown spectroscopy (LIBS) measurements, fast data processing tools are a must. This is particularly true during the tactical operations of rover-based planetary exploration missions such as the Mars Science Laboratory rover, Curiosity, which will carry a remote LIBS spectrometer in its science payload. We have developed: an automated fast pre-processing sequence of algorithms for converting a series of LIBS spectra (typically 125) recorded from a single target into a reliable SNR-enhanced spectrum; a dedicated routine to quantify its spectral features; and a set of calibration curves using standard hydrous and multi-cation sulfates. These calibration curves allow deriving the elemental compositions and the degrees of hydration of various hydrous sulfates, one of the two major types of secondary minerals found on Mars. Our quantitative tools are built upon calibration-curve modeling, through the correlation of the elemental concentrations and the peak areas of the atomic emission lines observed in the LIBS spectra of standard samples. At present, we can derive the elemental concentrations of K, Na, Ca, Mg, Fe, Al, S, O, and H in sulfates, as well as the hydration degrees of Ca- and Mg-sulfates, from LIBS spectra obtained in both Earth atmosphere and Mars atmospheric conditions in a Planetary Environment and Analysis Chamber (PEACh). In addition, structural information can be potentially obtained for various Fe-sulfates. - Highlights: Black-Right-Pointing-Pointer Routines for LIBS spectral data fast automated processing. Black-Right-Pointing-Pointer Identification of elements and determination of the elemental composition. Black-Right-Pointing-Pointer Calibration curves for sulfate samples in Earth and Mars atmospheric conditions. Black-Right-Pointing-Pointer Fe curves probably related to the crystalline

  7. Transient atmospheric effects of the landing of the Mars Science Laboratory rover: The emission and dissipation of dust and carbazic acid

    Science.gov (United States)

    Moores, John E.; Schieber, Juergen; Kling, Alexandre M.; Haberle, Robert M.; Moore, Casey A.; Anderson, Mark S.; Katz, Ira; Yavrouian, Andre; Malin, Michael C.; Olson, Timothy; Rafkin, Scot C. R.; Lemmon, Mark T.; Sullivan, Robert J.; Comeaux, Keith; Vasavada, Ashwin R.

    2016-09-01

    Imaging during and after the landing of the Mars Science Laboratory (MSL) rover in 2012 provides a means to examine two transitory phenomena for the first time: the settling of the plume of material raised by the powered terminal descent, and the possible dispersal of 140 kg of hydrazine into the atmosphere as fine-grained solid carbazic acid. The peri-landing images, acquired by the Mars Descent Imager (MARDI) and the rover hazard cameras (Hazcams), allow the first comparison of post-landing geological assessment of surface deflation with the plume itself. Examination of the Hazcam images acquired over a period of 4011 s shows that only a small fraction (350-1000 kg) of the total mass of fine-grained surface material displaced by the landing (4000 kg) remained in the atmosphere for this duration. Furthermore, a large component of this dust occurs as particles for which the characteristic optical radius is 20-60 μm, preventing them from being substantially mixed with the atmospheric column by eddy diffusion. Examination of the MARDI record over 225 s post-landing reveals a rapidly settling component that comprised approximately 1800-2400 kg and had a larger particle size with an optical radius of 360-470 μm. The possible release of hydrazine by the sky crane stage also may have created particles of carbazic acid that would, analogous to the dust, spread through eddy diffusivity and settle to the ground. Peri-landing Hazcam images of the plume created during sky crane destruction constrains the particle radius to be either less than 23 μm or greater than 400 μm. When combined with a Lagrangian model of the atmosphere, such particle sizes suggest that the carbazic acid was either deposited very near the sky crane crash site, or was widely dispersed as small particles which would have been quickly photodissociated to volatile ammonia and carbon dioxide. Surfaces visited by the MSL rover, Curiosity, would have received at most <0.2 ppb of carbazic acid and levels

  8. Results of the First Astronaut-Rover (ASRO) Field Experiment: Lessons and Directions for the Human Exploration of Mars

    Science.gov (United States)

    Cabrol, N. A.; Kosmo, J. J.; Trevino, R. C.; Thomas, H.; Eppler, D.; Bualat, M. G.; Baker, K.; Huber, E.; Sierhuis, M.; Grin, E. A.

    1999-01-01

    The first Astronaut-Rover Interaction field experiment (hereafter designated as the ASRO project) took place Feb. 22-27, 1999, in Silver Lake, Mojave Desert, CA. The ASRO project is the result of a joint project between NASA Ames Research Center and Johnson Space Center. In the perspective of the Human Exploration and Development of Space (HEDS) of the Solar System, this interaction - the astronaut and the rover as a complementary and interactive team - in the field is critical to assess but had never been tested before the Silver Lake experiment. Additional information is contained in the original extended abstract.

  9. A search of dust-devils and convective vortices inside Mars' Gale crater from REMS data on the MSL rover during 1159 sols

    Science.gov (United States)

    Ordonez-Etxeberria, Inaki; Hueso, Ricardo; Sanchez-Lavega, Agustin

    2016-10-01

    The Mars Science Laboratory (MSL) rover carries a meteorological suite of detectors that constitute the Rover Environmental Monitoring Station (REMS) instrument (Gomez-Elvira et al, 2012). REMS investigates the meteorological conditions at Gale crater with a set of sensors that obtain pressure, air temperature and ground temperature measurements among others. We have run a search of atmospheric warm vortices that could result in dust devils and present a statistical study of the frequency of these events in the REMS pressure and temperature data from its first 1159 sols, from 7 August 2012 (Ls 152) to 10 November 2015 (Ls 67).A systematic search of short events (time-scales of a few seconds) of pressure drops results in 662 pressure drops with a signal stronger than 0.5 Pa, and with an average duration of 6.4 seconds. Of these events, 404 were diurnal (~61%, with the Sun over the horizon) and 258 were nocturnal. The diurnal pressure drops contains the most intense events and they peak close to noon (12:00-14:00 LMST) extending into the early afternoon hours. The nocturnal sudden pressure drops concentrate in the 20:00-23:00 LMST time interval and present a strong seasonality since they occur only from late spring to early summer. We interpret these nocturnal events not as local warm vortices, but as a consequence of local surface turbulence which is enhanced at Gale crater at summer night-time by the competition between local orographic circulation and global Hadley cell circulation (Rafkin et al, 2016).A comparison of the REMS diurnal data and similar pressure drop events in other latitudes from previous missions shows that the frequency of these events at Gale crater is significantly lower with less intense events than in other Mars locations explored by Mars Pathfinder and Phoenix. This agrees with the difficulties in finding external evidences of dust devils from MSL images or dust-devil tracks in the surface.

  10. Bringing data back from Mars: in-situ communications role--the rover to orbiter to Earth link

    Science.gov (United States)

    Bell, D. J.

    2001-01-01

    Over the coming decade, an international fleet of spacecraft will carry out the most intensive exploration to date of another world in our solar system. A wide range of orbiters, landers and rovers will conduct a linking together--detailed in-situ inbestigations, culminating in an eventual return of Martian surface, subsurface, and atmospheric samples to Earth for detailed laboratory evaluation.

  11. Ultra-high-precision alignment of the elastomerically mounted elements of the science camera lenses for the Mars Science Laboratory (MSL) rover.

    Science.gov (United States)

    Ghaemi, F Tony

    2011-09-10

    Cameras built for space exploration are required to meet stringent environmental conditions, such as thermal and dynamic loads for both the optics (camera lens) and imaging electronics. On a multitude of spaceborne imaging instruments, optical elements are supported in their mounts via an elastomeric bonding approach using a room temperature vulcanizing silicone as the bonding agent. Employing this integration method, we achieved element-to-element alignment, measured as the total indicated runout, using a high-precision contact probe to be on the order of half a wavelength of He-Ne laser light, or 0.3 μm, on the Malin Space Science Systems lenses for the Mars Science Laboratory (MSL) cameras. This is a higher precision than the current industry state-of-the-art, and it was achieved for the very challenging small diameter lens elements. This paper describes the design philosophy, implementation, and integration method that resulted in achieving this level of precision for interelement alignment. The results are based on actual measurements that were made during the process of building the MSL rover's science camera lenses, namely Mastcams, the Mars Hand Lens Imager, and the Mars Descent Imager. The optical designs of these cameras lenses are described in detail in [Opt. Eng.48, 103002 (2009)], while further information on the four science cameras can be found at http://www.msss.com.

  12. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars

    OpenAIRE

    Stern, Jennifer C.; McKay, Christopher P; Archer, P. Douglas; Brunner, Anna E.; Eigenbrode, Jennifer L.; Fairen, Alberto G.; Franz, Heather B.; Glavin, Daniel P.; Kashyap, Srishti; McAdam, Amy C.; Ming, Douglas W.; Wray, James J.; Martín-Torres, F. Javier; Zorzano, Maria-Paz; Conrad, Pamela G.

    2015-01-01

    We present data supporting the presence of an indigenous source of fixed nitrogen on the surface of Mars in the form of nitrate. This fixed nitrogen may indicate the first stage in development of a primitive nitrogen cycle on the surface of ancient Mars and would have provided a biochemically accessible source of nitrogen.

  13. Rover Magnets All Around

    Science.gov (United States)

    2004-01-01

    This illustration shows the locations of the various magnets on the Mars Exploration Rover, which are: its front side, or chest; its back, near the color calibration target; and on its rock abrasion tool. Scientists will use these tools to collect dust for detailed studies. The origins of martian dust are a mystery, although it is believed to come from at least one of three sources: volcanic ash, pulverized rocks or mineral precipitates from liqiud water. By studying the dust with the rover's two spectrometers, scientists hope to find an answer.

  14. Marvin: MARtian Vehicular INvestigator A Proposal for a Long-Range Pressurized Rover

    Science.gov (United States)

    1999-01-01

    NASA is planning manned missions to Mars in the near future. In order to fully exploit the available time on the surface for exploration, a roving vehicle is necessary. A nine-member student design team from the Wichita State University Department of Aerospace Engineering developed the MARtian Vehicular INvestigator (MARVIN) a manned, pressurized, long distance rover. In order to meet the unique requirements for successful operation in the harsh Martian environment a four wheeled, rover was designed with a composite pressure vessel six meters long and 2.5 meters in diameter. The rover is powered by twin proton exchange membrane fuel cells which provide electricity to the drive motors and onboard systems. The MARVIN concept is expected to have a 1500 km range with a maximum speed of 25 km/hr and a 14-day endurance.

  15. Microscope on Mars

    Science.gov (United States)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  16. Microscope on Mars

    Science.gov (United States)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  17. Mars Methane Detection and Variability at Gale Crater Measured by the TLS instrument in SAM on the Curiosity Rover

    Science.gov (United States)

    Webster, C. R.; Mahaffy, P. R.; Atreya, S. K.; Flesch, G.

    2015-12-01

    Over the last several years, Earth-based telescopic and Mars orbit remote sensing instruments have reported significant abundances of methane on Mars ranging to tens of parts-per-billion by volume (ppbv). These observations have reported "plumes" or localized patches of methane with variations on timescales much faster than model predictions, leading to speculation of sources from sub-surface methanogen bacteria, geological water-rock reactions, degassing of infalling comets, or UV degradation of micro-meteorites or interplanetary dust. Using the Tunable Laser Spectrometer (TLS) in the Sample Analysis at Mars (SAM) instrument suite on Curiosity, we report in situ detection of methane at background levels of ~0.7 ppbv and also in an episodic release at ten times this value. We will discuss the mechanisms that are believed contributing to these two regimes, report new measurements made since the publication in Science1, and discuss the evidence and implications for seasonal vs. episodic release. Reference 1. "Mars Methane Detection and Variability at Gale Crater", C. R. Webster et al., Science, 347, 415-417 (2015). The research described here was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

  18. Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R.V.; Bell, J.F.; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, K.W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhfer, G.; McEwen, A.; Rice, J.W.; Rice, M.; deSouza, P.; Hurowitz, J.

    2011-01-01

    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity

  19. Hydrogen and chlorine abundances in the Kimberley formation of Gale crater measured by the DAN instrument on board the Mars Science Laboratory Curiosity rover

    Science.gov (United States)

    Litvak, M. L.; Mitrofanov, I. G.; Hardgrove, C.; Stack, K. M.; Sanin, A. B.; Lisov, D.; Boynton, W. V.; Fedosov, F.; Golovin, D.; Harshman, K.; Jun, I.; Kozyrev, A. S.; Kuzmin, R. O.; Malakhov, A.; Milliken, R.; Mischna, M.; Moersch, J.; Mokrousov, M.; Nikiforov, S.; Starr, R.; Tate, C.; Tret'yakov, V. I.; Vostrukhin, A.

    2016-05-01

    The Dynamic Albedo of Neutron (DAN) instrument on board the Mars Science Laboratory Curiosity rover acquired a series of measurements as part of an observational campaign of the Kimberley area in Gale crater. These observations were planned to assess the variability of bulk hydrogen and neutron-absorbing elements, characterized as chlorine-equivalent concentration, in the geologic members of the Kimberley formation and in surface materials exposed throughout the area. During the traverse of the Kimberley area, Curiosity drove primarily over the "Smooth Hummocky" unit, a unit composed primarily of sand and loose rocks, with occasional stops at bedrock of the Kimberley formation. During the Kimberley campaign, DAN detected ranges of water equivalent hydrogen (WEH) and chlorine-equivalent concentrations of 1.5-2.5 wt % and 0.6-2 wt %, respectively. Results show that as the traverse progressed, DAN observed an overall decrease in both WEH and chlorine-equivalent concentration measured over the sand and loose rocks of the Smooth Hummocky unit. DAN measurements of WEH and chlorine-equivalent concentrations in the well-exposed sedimentary bedrock of the Kimberley formation show fluctuations with stratigraphic position. The Kimberley campaign also provided an opportunity to compare measurements from DAN with those from the Sample Analysis at Mars (SAM) and the Alpha-Particle X-ray Spectrometer (APXS) instruments. DAN measurements obtained near the Windjana drill location show a WEH concentration of ~1.5 wt %, consistent with the concentration of low-temperature absorbed water measured by SAM for the Windjana drill sample. A comparison between DAN chlorine-equivalent concentrations measured throughout the Kimberley area and APXS observations of corresponding local surface targets and drill fines shows general agreement between the two instruments.

  20. An Ldrims Instrument for Portable Rb-Sr Dating with Accuracy of Better than ±150 MA for the MARS-2020 Rover

    Science.gov (United States)

    Anderson, F. Scott; Whitaker, Tom; Hamilton, Victoria; Nowicki, Keith

    2013-04-01

    Using a laser desorption resonance ionization mass spectrometer (LDRIMS), we can now demonstrate repeatable dates with portable hardware that could be carried on MER- or MSL-sized rovers. This is important because NASA is developing science requirements for a Mars 2020 rover mission based on MSL hardware, and for Mars, the National Research Council Decadal Survey (NRC DS) specifically supports: "...long-term development of instruments ... focusing on the most important future in situ measurements... [including] ... in situ geochronology experiments". The LDRIMS instrument can produce these science measurements today, and in so doing, triage samples for Mars Sample Return. The LDRIMS technique can be miniaturized and avoids the mass interference issues requiring unwieldy chemical separation for traditional geochronology techniques. With LDRIMS sample is placed in a time-of-flight (TOF) mass spectrometer and surface atoms, molecules, and ions are desorbed with a 213 nm laser. Ions are suppressed by an electric field and the plume of expanding particles is present for many μs, during which it is first illuminated with laser light tuned to ionize only Sr, and then 1-3 μs later, for Rb. This eliminates isobars for Rb and Sr, insures that the measured atoms come from the same ablation event, and hence target materials, and reduces the total number of measurements required. The LDRIMS system has demonstrated a sensitivity of 300 parts-per-trillion, and isotope ratio precisions of ±0.3 to ±0.1% in 3000-5000 ablations of one spot on a sample in 3-5 minutes. The bench top prototype has been tested on the Boulder Creek Granite (BCG) from Elephant Butte, Colorado, comprised primarily of a gneissic quartz monzonite and granodiorite. Whole rock Rb-Sr TIMS measurements of the BCG, and our own preliminary micro-drill TIMS measurements of individual minerals, are consistent with an age of 1700±40 Ma. To obtain a LDRIMS date using the BCG sample, we measured hundreds of spots

  1. Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at "El Dorado" and surroundings at Gusev Crater

    Science.gov (United States)

    Sullivan, R.; Arvidson, R.; Bell, J.F.; Gellert, Ralf; Golombek, M.; Greeley, R.; Herkenhoff, K.; Johnson, J.; Thompson, S.; Whelley, P.; Wray, J.

    2008-01-01

    The ripple field known as 'El Dorado' was a unique stop on Spirit's traverse where dust-raising, active mafic sand ripples and larger inactive coarse-grained ripples interact, illuminating several long-standing issues of Martian dust mobility, sand mobility, and the origin of transverse aeolian ridges. Strong regional wind events endured by Spirit caused perceptible migration of ripple crests in deposits SSE of El Dorado, erasure of tracks in sandy areas, and changes to dust mantling the site. Localized thermal vortices swept across El Dorado, leaving paths of reduced dust but without perceptibly damaging nearly cohesionless sandy ripple crests. From orbit, winds responsible for frequently raising clay-sized dust into the atmosphere do not seem to significantly affect dunes composed of (more easily entrained) sand-sized particles, a long-standing paradox. This disparity between dust mobilization and sand mobilization on Mars is due largely to two factors: (1) dust occurs on the surface as fragile, low-density, sand-sized aggregates that are easily entrained and disrupted, compared with clay-sized air fall particles; and (2) induration of regolith is pervasive. Light-toned bed forms investigated at Gusev are coarse-grained ripples, an interpretation we propose for many of the smallest linear, light-toned bed forms of uncertain origin seen in high-resolution orbital images across Mars. On Earth, wind can organize bimodal or poorly sorted loose sediment into coarse-grained ripples. Coarse-grained ripples could be relatively common on Mars because development of durable, well-sorted sediments analogous to terrestrial aeolian quartz sand deposits is restricted by the lack of free quartz and limited hydraulic sediment processing. Copyright 2008 by the American Geophysical Union.

  2. Relays from Mars demonstrate international interplanetary networking

    Science.gov (United States)

    2004-08-01

    .” In addition, Mars Express is verifying two other operating modes with Opportunity and the twin rover, Spirit, from a greater distance. On 3 and 6 August, when Mars Express listened to Spirit, it was about 6000 kilometres above the surface. At this range it successfully tracked a beacon from Spirit, demonstrating a capability that can be used to locate another craft during critical events, such as the descent to a planet’s surface, or for orbital rendez-vous manoeuvres. “Establishing a reliable communication network around Mars or other planets is crucial for future exploration missions, as it will allow improved coverage and also an increase in the amount of data that can be brought back to Earth,” said Con McCarthy, from ESA’s Mars Express project, “the tracking mode will enable ESA and NASA to pinpoint a spacecraft’s position more accurately during critical mission phases.” The final session of the series, scheduled for 13 August with Opportunity, will demonstrate a mode for gaining navigational information from the ‘Doppler shift’ in the radio signal.

  3. Overview of Initial Results From Studies of the Bagnold Dune Field on Mars by the Curiosity Rover

    Science.gov (United States)

    Bridges, Nathan; Ehlmann, Bethany; Ewing, Ryan; Newman, Claire; Sullivan, Robert; Conrad, Pamela; Cousin, Agnes; Edgett, Kenneth; Fisk, Martin; Fraeman, Abigail; Johnson, Jeffrey; Lamb, Michael; Lapotre, Mathieu; Le Mouélic, Stéphane; Martinez, German; Meslin, Pierre-Yves; Thompson, Lucy; van Beek, Jason; Vasavada, Ashwin; Wiens, Roger

    2016-04-01

    The Curiosity Rover is currently studying the Bagnold Dunes in Gale Crater. Here we provide a general overview of results and note that other EGU presentations will focus on specific aspects. The in situ activities have not yet occurred as of this writing, but other analyses have been performed approaching and within the dunefield. ChemCam passive spectra of Bagnold Dune sands are consistent with the presence of olivine. Two APXS spots on the High Dune stoss slope margin, and two others in an engineering test sand patch, show less inferred dust, greater Si, and higher Fe/Mn than other "soils" in Gale Crater. ChemCam analyses of more than 300 soils along the Curiosity traverse show that both fine and coarse soils have increasing iron and alkali content as the Bagnold Dunes are approached, a trend that may reflect admixtures of local rocks (alkalis + iron) to the fines, but also a contribution of Bagnold-like sand (iron) that increases toward the dunefield. MAHLI images of sands on the lower east stoss slope of High Dune show medium and coarse sand in ripple forms, and very fine and fine sand in ripple troughs. Most grains are dark gray, but some are also brick-red/brown, white, green translucent, yellow, brown„ colorless translucent, or vitreous spheres HiRISE orbital images show that the Bagnold Dunes migrate on the order of decimeters or more per Earth year. Prior to entering the dune field, wind disruption of dump piles and grain movement was observed over multi-sol time spans, demonstrating that winds are of sufficient strength to mobilize unconsolidated material, either through direct aerodynamic force or via the action of smaller impacting grains. Within the dune field, we are, as of this writing, engaged in change detection experiments with Mastcam and ChemCam's RMI camera. Data we have so far, spanning 8 sols from the same location, shows no changes. Mastcam and RMI images of the stoss sides of Namib, Noctivaga, and High Dune show that the "ripples" seen

  4. Robotic Arm of Rover 1

    Science.gov (United States)

    2003-01-01

    JPL engineers examine the robotic arm of Mars Exploration Rover 1. The arm is modeled after a human arm, complete with joints, and holds four devices on its end, the Rock Abrasion Tool which can grind into Martian rocks, a microscopic imager, and two spectrometers for elemental and iron-mineral identification.

  5. Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets

    Science.gov (United States)

    Arvidson, R. E.; Poulet, F.; Morris, R.V.; Bibring, J.-P.; Bell, J.F.; Squyres, S. W.; Christensen, P.R.; Bellucci, G.; Gondet, B.; Ehlmann, B.L.; Farrand, W. H.; Fergason, R.L.; Golombeck, M.; Griffes, J.L.; Grotzinger, J.; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhofer, G.; Langevin, Y.; Ming, D.; Seelos, K.; Sullivan, R.J.; Ward, J.G.; Wiseman, S.M.; Wolff, M.J.

    2006-01-01

    The ???5 km of traverses and observations completed by the Opportunity rover from Endurance crater to the Fruitbasket outcrop show that the Meridiani plains consist of sulfate-rich sedimentary rocks that are largely covered by poorly-sorted basaltic aeolian sands and a lag of granule-sized hematitic concretions. Orbital reflectance spectra obtained by Mars Express OMEGA over this region are dominated by pyroxene, plagioclase feldspar, crystalline hematite (i.e., concretions), and nano-phase iron oxide dust signatures, consistent with Pancam and Mini-TES observations. Mo??ssbauer Spectrometer observations indicate more olivine than observed with the other instruments, consistent with preferential optical obscuration of olivine features in mixtures with pyroxene and dust. Orbital data covering bright plains located several kilometers to the south of the landing site expose a smaller areal abundance of hematite, more dust, and a larger areal extent of outcrop compared to plains proximal to the landing site. Low-albedo, low-thermal-inertia, windswept plains located several hundred kilometers to the south of the landing site are predicted from OMEGA data to have more hematite and fine-grained olivine grains exposed as compared to the landing site. Low calcium pyroxene dominates spectral signatures from the cratered highlands to the south of Opportunity. A regional-scale model is presented for the formation of the plains explored by Opportunity, based on a rising ground water table late in the Noachian Era that trapped and altered local materials and aeolian basaltic sands. Cessation of this aqueous process led to dominance of aeolian processes and formation of the current configuration of the plains. Copyright 2006 by the American Geophysical Union.

  6. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    Science.gov (United States)

    Wiens, R.C.; Maurice, S.; Lasue, J.; Forni, O.; Anderson, R.B.; Clegg, S.; Bender, S.; Blaney, D.; Barraclough, B.L.; Cousin, A.; DeFlores, L.; Delapp, D.; Dyar, M.D.; Fabre, C.; Gasnault, O.; Lanza, N.; Mazoyer, J.; Melikechi, N.; Meslin, P.-Y.; Newsom, H.; Ollila, A.; Perez, R.; Tokar, R.; Vaniman, D.

    2013-01-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  7. Light-toned salty soils and co-existing Si-rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills

    Science.gov (United States)

    Wang, Alian; Bell, J.F.; Li, Ron; Johnson, J. R.; Farrand, W. H.; Cloutis, E.A.; Arvidson, R. E.; Crumpler, L.; Squyres, S. W.; McLennan, S.M.; Herkenhoff, K. E.; Ruff, S.W.; Knudson, A.T.; Chen, Wei; Greenberger, R.

    2008-01-01

    Light-toned soils were exposed, through serendipitous excavations by Spirit Rover wheels, at eight locations in the Columbia Hills. Their occurrences were grouped into four types on the basis of geomorphic settings. At three major exposures, the light-toned soils are hydrous and sulfate-rich. The spatial distributions of distinct types of salty soils vary substantially: with centimeter-scaled heterogeneities at Paso Robles, Dead Sea, Shredded, and Champagne-Penny, a well-mixed nature for light-toned soils occurring near and at the summit of Husband Hill, and relatively homogeneous distributions in the two layers at the Tyrone site. Aeolian, fumarolic, and hydrothermal fluid processes are suggested to be responsible for the deposition, transportation, and accumulation of these light-toned soils. In addition, a change in Pancam spectra of Tyrone yellowish soils was observed after being exposed to current Martian surface conditions for 175 sols. This change is interpreted to be caused by the dehydration of ferric sulfates on the basis of laboratory simulations and suggests a relative humidity gradient beneath the surface. Si-rich nodules and soils were observed near the major exposures of S-rich soils. They possess a characteristic feature in Pancam visible near-infrared (Vis-NIR) spectra that may be diagnostic of hydrated species, and this spectral feature can be used to search for additional Si-rich species. The exposures of hydrated salty soils within various geomorphic settings imply the potential existence of hydrous minerals in similar settings over a much wider area. Hydrous sulfates represent one of the candidates that may contribute the high level of water equivalent hydrogen in equatorial regions detected by the Neutron Spectrometer on Mars Odyssey.

  8. Modeling of low-temperature plasmas generated using laser-induced breakdown spectroscopy: the ChemCam diagnostic tool on the Mars Science Laboratory Rover

    Science.gov (United States)

    Colgan, James

    2016-05-01

    We report on efforts to model the low-temperature plasmas generated using laser-induced breakdown spectroscopy (LIBS). LIBS is a minimally invasive technique that can quickly and efficiently determine the elemental composition of a target and is employed in an extremely wide range of applications due to its ease of use and fast turnaround. In particular, LIBS is the diagnostic tool used by the ChemCam instrument on the Mars Science Laboratory rover Curiosity. In this talk, we report on the use of the Los Alamos plasma modeling code ATOMIC to simulate LIBS plasmas, which are typically at temperatures of order 1 eV and electron densities of order 10 16 - 17 cm-3. At such conditions, these plasmas are usually in local-thermodynamic equilibrium (LTE) and normally contain neutral and singly ionized species only, which then requires that modeling must use accurate atomic structure data for the element under investigation. Since LIBS devices are often employed in a very wide range of applications, it is therefore desirable to have accurate data for most of the elements in the periodic table, ideally including actinides. Here, we discuss some recent applications of our modeling using ATOMIC that have explored the plasma physics aspects of LIBS generated plasmas, and in particular discuss the modeling of a plasma formed from a basalt sample used as a ChemCam standard1. We also highlight some of the more general atomic physics challenges that are encountered when attempting to model low-temperature plasmas. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396. Work performed in conjunction with D. P. Kilcrease, H. M. Johns, E. J. Judge, J. E. Barefield, R. C. Wiens, S. M. Clegg.

  9. The effects of weathering on the strength and chemistry of Columbia River Basalts and their implications for Mars Exploration Rover Rock Abrasion Tool (RAT) results

    Science.gov (United States)

    Thomson, B. J.; Hurowitz, J. A.; Baker, L. L.; Bridges, N. T.; Lennon, A. M.; Paulsen, G.; Zacny, K.

    2014-08-01

    Basalt physical properties such as compressive strength and density are directly linked to their chemistry and constitution; as weathering progresses, basalts gradually become weaker and transition from intact rock to saprolite and ultimately, to soil. Here we quantify the degree of weathering experienced by the Adirondack-class basalts at the Mars Exploration Rover Spirit site by performing comparative analyses on the strength and chemistry of a series of progressively weathered Columbia River Basalt (CRB) from western Idaho and eastern Washington. CRB samples were subjected to compressive strength tests, Rock Abrasion Tool grinds, neutron activation analysis, and inductively coupled plasma optical emission spectroscopy. Analyses of terrestrial basalts indicate linked strength-chemical changes, as expected. Weathering sufficient to induce the loss of more than 50% of some cations (including >50% of MgO and MnO as well as ∼38% of Fe2O3 and 34% of CaO) was observed to weaken these samples by as much as 50% of their original strength. In comparison with the terrestrial samples, Adirondack-class basalts are most similar to the weakest basalt samples measured in terms of compressive strength, yet they do not exhibit a commensurate amount of chemical alteration. Since fluvial and lacustrine activity in Gusev crater appears to have been limited after the emplacement of flood basalt lavas, the observed weakness is likely attributable to thin-film weathering on exposed, displaced rocks in the Gusev plains (in addition to some likely shock effects). The results indicate that Adirondack-class basalts may possess a several mm-thick weak outer rind encasing an interior that is more pristine than otherwise indicated, and also suggest that long rock residence times may be the norm.

  10. Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater

    Science.gov (United States)

    Arvidson, R. E.; Bell, J. F.; Bellutta, P.; Cabrol, N. A.; Catalano, J. G.; Cohen, J.; Crumpler, L. S.; Des Marais, D. J.; Estlin, T. A.; Farrand, W. H.; Gellert, R.; Grant, J. A.; Greenberger, R. N.; Guinness, E. A.; Herkenhoff, K. E.; Herman, J. A.; Iagnemma, K. D.; Johnson, J. R.; Klingelhöfer, G.; Li, R.; Lichtenberg, K. A.; Maxwell, S. A.; Ming, D. W.; Morris, R. V.; Rice, M. S.; Ruff, S. W.; Shaw, A.; Siebach, K. L.; de Souza, P. A.; Stroupe, A. W.; Squyres, S. W.; Sullivan, R. J.; Talley, K. P.; Townsend, J. A.; Wang, A.; Wright, J. R.; Yen, A. S.

    2010-09-01

    This paper summarizes Spirit Rover operations in the Columbia Hills, Gusev crater, from sol 1410 (start of the third winter campaign) to sol 2169 (when extrication attempts from Troy stopped to winterize the vehicle) and provides an overview of key scientific results. The third winter campaign took advantage of parking on the northern slope of Home Plate to tilt the vehicle to track the sun and thus survive the winter season. With the onset of the spring season, Spirit began circumnavigating Home Plate on the way to volcanic constructs located to the south. Silica-rich nodular rocks were discovered in the valley to the north of Home Plate. The inoperative right front wheel drive actuator made climbing soil-covered slopes problematical and led to high slip conditions and extensive excavation of subsurface soils. This situation led to embedding of Spirit on the side of a shallow, 8 m wide crater in Troy, located in the valley to the west of Home Plate. Examination of the materials exposed during embedding showed that Spirit broke through a thin sulfate-rich soil crust and became embedded in an underlying mix of sulfate and basaltic sands. The nature of the crust is consistent with dissolution and precipitation in the presence of soil water within a few centimeters of the surface. The observation that sulfate-rich deposits in Troy and elsewhere in the Columbia Hills are just beneath the surface implies that these processes have operated on a continuing basis on Mars as landforms have been shaped by erosion and deposition.

  11. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, R.C., E-mail: rwiens@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Maurice, S.; Lasue, J.; Forni, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Anderson, R.B. [United States Geological Survey, Flagstaff, AZ (United States); Clegg, S. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Bender, S. [Planetary Science Institute, Tucson, AZ (United States); Blaney, D. [Jet Propulsion Laboratory, Pasadena, CA (United States); Barraclough, B.L. [Planetary Science Institute, Tucson, AZ (United States); Cousin, A. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Deflores, L. [Jet Propulsion Laboratory, Pasadena, CA (United States); Delapp, D. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Dyar, M.D. [Mount Holyoke College, South Hadley, MA (United States); Fabre, C. [Georessources, Nancy (France); Gasnault, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Lanza, N. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Mazoyer, J. [LESIA, Observatoire de Paris, Meudon (France); Melikechi, N. [Delaware State University, Dover, DE (United States); Meslin, P.-Y. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Newsom, H. [University of New Mexico, Albuquerque, NM (United States); and others

    2013-04-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  12. Potential sources of artifacts and backgrounds generated by the sample preparation of the SAM experiment aboard the Curiosity Rover on Mars

    Science.gov (United States)

    Buch, Arnaud; Belmahdi, Imene; Szopa, Cyril; Freissinet, Caroline; Glavin, Daniel P.; Eigenbrode, Jennifer; Summons, Roger; Miller, Kristen; Coll, Patrice; cabane, Michel; Navarro-Gonzalez, Rafael; Stern, Jennifer; Coscia, David; Teinturier, Samuel; Bonnet, Jean-Yves; Dequaire, Tristan; Mahaffy, Paul; MSL Science Team

    2016-10-01

    Sample Analysis at Mars (SAM) is one of the instruments of the MSL mission. Three analytical devices are onboard SAM: the Tunable Laser Spectrometer (TLS), the Gas Chromatography (GC) and the Mass Spectrometer (MS). To adapt the nature of a sample to the analytical devices used on SAM, a sample preparation and gas processing system is implemented with (a) a pyrolysis system, (b) wet chemistry: MTBSTFA and TMAH (c) the hydrocarbon trap (silica beads, Tenax® TA and Carbosieve G) which is employed to concentrate volatiles released from the sample prior to GC-MS analysis [1].Volatile compounds and abundant chlorinated hydrocarbons have been detected with SAM when analyzing samples collected in several sites explored by Curiosity rover. Some volatile compounds (chlorinated and non-chlorinated) come from the degradation of the MTBSTFA under high temperature or by the reaction of Martian oxychlorine compounds (present in the samples) with terrestrial carbon coming from the derivatization agent (MTBSTFA) used in SAM [2,3]. But other chlorinated compounds do not follow this pathway. For example, Chlorobenzene has been detected by SAM but it cannot be formed by the reaction of MTBSTFA and perchlorates. Then, two other reaction pathways for chlorobenzene were therefore proposed: (1) reactions between the volatile thermal degradation products of perchlorates (e.g. O2, Cl2 and HCl) and Tenax® and (2) the interaction of perchlorates (T>200°C) with organic material from Mars's soil such as benzenecarboxylates. However, even if major part of the chlorobenzene detected has been identified as Martian origin [4] it is important to list all the potential byproducts able to be released from the Tenax®.Thus, this study inventory all the possible compounds which are originated from Tenax®, MTBSTFA and their interaction with perchlorate.References: [1] Buch, A. et al. (2009) J chrom. A, 43, 143-151. [2] Glavin, D., A. et al. (2013), LPSC. [3] Eigenbrode, J. et al. (2013), LPSC. [4

  13. Planetary rovers robotic exploration of the solar system

    CERN Document Server

    Ellery, Alex

    2016-01-01

    The increasing adoption of terrain mobility – planetary rovers – for the investigation of planetary surfaces emphasises their central importance in space exploration. This imposes a completely new set of technologies and methodologies to the design of such spacecraft – and planetary rovers are indeed, first and foremost, spacecraft. This introduces vehicle engineering, mechatronics, robotics, artificial intelligence and associated technologies to the spacecraft engineer’s repertoire of skills. Planetary Rovers is the only book that comprehensively covers these aspects of planetary rover engineering and more. The book: • discusses relevant planetary environments to rover missions, stressing the Moon and Mars; • includes a brief survey of previous rover missions; • covers rover mobility, traction and control systems; • stresses the importance of robotic vision in rovers for both navigation and science; • comprehensively covers autonomous navigation, path planning and multi-rover formations on ...

  14. MARVY: Mars Velocity Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The successful landing of the large Mars rover Curiosity on August 5, 2012 outlined the increasing complexity of safely landing large rovers on the planet. A precise...

  15. Two Years Onboard the MER Opportunity Rover

    Science.gov (United States)

    Estlin, Tara; Anderson, Robert C.; Bornstein, Benjamin; Burl, Michael; Castano, Rebecca; Gaines, Daniel; Judd, Michele; Thompson, David R.

    2012-01-01

    The Autonomous Exploration for Gathering Increased Science (AEGIS) system provides automated data collection for planetary rovers. AEGIS is currently being used onboard the Mars Exploration Rover (MER) mission's Opportunity to provide autonomous targeting of the MER Panoramic camera. Prior to AEGIS, targeted data was collected in a manual fashion where targets were manually identified in images transmitted to Earth and the rover had to remain in the same location for one to several communication cycles. AEGIS enables targeted data to be rapidly acquired with no delays for ground communication. Targets are selected by AEGIS through the use of onboard data analysis techniques that are guided by scientist-specified objectives. This paper provides an overview of the how AEGIS has been used on the Opportunity rover, focusing on usage that occurred during a 21 kilometer historic trek to the Mars Endeavour crater.

  16. Rovers as Geological Helpers for Planetary Surface Exploration

    Science.gov (United States)

    Stoker, Carol; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Rovers can be used to perform field science on other planetary surfaces and in hostile and dangerous environments on Earth. Rovers are mobility systems for carrying instrumentation to investigate targets of interest and can perform geologic exploration on a distant planet (e.g. Mars) autonomously with periodic command from Earth. For nearby sites (such as the Moon or sites on Earth) rovers can be teleoperated with excellent capabilities. In future human exploration, robotic rovers will assist human explorers as scouts, tool and instrument carriers, and a traverse "buddy". Rovers can be wheeled vehicles, like the Mars Pathfinder Sojourner, or can walk on legs, like the Dante vehicle that was deployed into a volcanic caldera on Mt. Spurr, Alaska. Wheeled rovers can generally traverse slopes as high as 35 degrees, can avoid hazards too big to roll over, and can carry a wide range of instrumentation. More challenging terrain and steeper slopes can be negotiated by walkers. Limitations on rover performance result primarily from the bandwidth and frequency with which data are transmitted, and the accuracy with which the rover can navigate to a new position. Based on communication strategies, power availability, and navigation approach planned or demonstrated for Mars missions to date, rovers on Mars will probably traverse only a few meters per day. Collecting samples, especially if it involves accurate instrument placement, will be a slow process. Using live teleoperation (such as operating a rover on the Moon from Earth) rovers have traversed more than 1 km in an 8 hour period while also performing science operations, and can be moved much faster when the goal is simply to make the distance. I will review the results of field experiments with planetary surface rovers, concentrating on their successful and problematic performance aspects. This paper will be accompanied by a working demonstration of a prototype planetary surface rover.

  17. Interannual, seasonal and diurnal Mars surface environmental cycles observed from Viking to Curiosity

    Science.gov (United States)

    Martinez, German; Vicente-Retortillo, Álvaro; Kemppinen, Osku; Fischer, Erik; Fairen, Alberto G.; Guzewich, Scott David; Haberle, Robert; Lemmon, Mark T.; Newman, Claire E.; Renno, Nilton O.; Richardson, Mark I.; Smith, Michael D.; De la Torre, Manuel; Vasavada, Ashwin R.

    2016-10-01

    We analyze in-situ environmental data from the Viking landers to the Curiosity rover to estimate atmospheric pressure, near-surface air and ground temperature, relative humidity, wind speed and dust opacity with the highest confidence possible. We study the interannual, seasonal and diurnal variability of these quantities at the various landing sites over a span of more than twenty Martian years to characterize the climate on Mars and its variability. Additionally, we characterize the radiative environment at the various landing sites by estimating the daily UV irradiation (also called insolation and defined as the total amount of solar UV energy received on flat surface during one sol) and by analyzing its interannual and seasonal variability.In this study we use measurements conducted by the Viking Meteorology Instrument System (VMIS) and Viking lander camera onboard the Viking landers (VL); the Atmospheric Structure Instrument/Meteorology (ASIMET) package and the Imager for Mars Pathfinder (IMP) onboard the Mars Pathfinder (MPF) lander; the Miniature Thermal Emission Spectrometer (Mini-TES) and Pancam instruments onboard the Mars Exploration Rovers (MER); the Meteorological Station (MET), Thermal Electrical Conductivity Probe (TECP) and Phoenix Surface Stereo Imager (SSI) onboard the Phoenix (PHX) lander; and the Rover Environmental Monitoring Station (REMS) and Mastcam instrument onboard the Mars Science Laboratory (MSL) rover.A thorough analysis of in-situ environmental data from past and present missions is important to aid in the selection of the Mars 2020 landing site. We plan to extend our analysis of Mars surface environmental cycles by using upcoming data from the Temperature and Wind sensors (TWINS) instrument onboard the InSight mission and the Mars Environmental Dynamics Analyzer (MEDA) instrument onboard the Mars 2020 mission.

  18. The Challenges in Applying Magnetroesistive Sensors on the 'Curiosity' Rover

    Science.gov (United States)

    Johnson, Michael R.

    2013-01-01

    Magnetoresistive Sensors were selected for use on the motor encoders throughout the Curiosity Rover for motor position feedback devices. The Rover contains 28 acuators with a corresponding number of encoder assemblies. The environment on Mars provides opportunities for challenges to any hardware design. The encoder assemblies presented several barriers that had to be vaulted in order to say the rover was ready to fly. The environment and encoder specific design features provided challenges that had to be solved in time to fly.

  19. An Approach of Attitude Estimation by Using Vision-Aided IMU for Mars Rover%基于视觉和MEMS-IMU融合的火星车导航定向技术

    Institute of Scientific and Technical Information of China (English)

    娄路

    2012-01-01

    The autonomous navigation and attitude estimation is one of the most challenge tasks of planetary rover operations. The heading information is an important part of Mars rover navigation , and its precision will affect the localization precision and the performance of navigation directly, especially for long range and long duration travel on the Mars. In order to acquire the attitude and heading, the visual aided MEMS-IMU methods are presented, which use accelerometer to correct gyro biases and develop an appearance-based algorithm to measure heading/rotation with monocular camera. The methods are simple f realtime and reliable, and the experimental results demonstrate the effectiveness of the approach proposed.%火星探测车需要在复杂非结构化火星地表环境下完成自主导航定位任务.针对火星车导航定位传感器的低功耗、微型化的发展趋势,提出一种基于MEMS - IMU的传感器补偿融合、单目视觉航向测定的方法.该方法能克服火星复杂地表和单一性地貌环境可能导致的测试误差过大问题.模拟环境下的实验数据结果显示该方法具备实时性好、可靠性高的特点,姿态估计和航向测量的准确率较高.

  20. Mars

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    Mars exploration has never been more active, and our understanding of the planet is advancing rapidly. New discoveries reveal gullies carved by recent groundwater flow, thick ice deposits protected by rocks and soil even at the equator, and new evidence for lakes and seas in Mars' past. The Martian surface has some of the oldest planetary crust in the solar system, containing clues to conditions in early planets that cannot be obtained elsewhere.Beginning with a discussion of Mars as a planet in orbit, Mars, Revised Edition covers fundamental facts about this planet, including its mass and siz

  1. Mars

    CERN Document Server

    Day, Trevor

    2006-01-01

    Discusses the fundamental facts concerning this mysterious planet, including its mass, size, and atmosphere, as well as the various missions that helped planetary scientists document the geological history of Mars. This volume also describes Mars'' seasons with their surface effects on the planet and how they have changed over time.

  2. Determining best practices in reconnoitering sites for habitability potential on Mars using a semi-autonomous rover: A GeoHeuristic Operational Strategies Test

    Science.gov (United States)

    Yingst, R. A.; Berger, J.; Cohen, B. A.; Hynek, B.; Schmidt, M. E.

    2017-03-01

    We tested science operations strategies developed for use in remote mobile spacecraft missions, to determine whether reconnoitering a site of potential habitability prior to in-depth study (a walkabout-first strategy) can be a more efficient use of time and resources than the linear approach commonly used by planetary rover missions. Two field teams studied a sedimentary sequence in Utah to assess habitability potential. At each site one team commanded a human "rover" to execute observations and conducted data analysis and made follow-on decisions based solely on those observations. Another team followed the same traverse using traditional terrestrial field methods, and the results of the two teams were compared. Test results indicate that for a mission with goals similar to our field case, the walkabout-first strategy may save time and other mission resources, while improving science return. The approach enabled more informed choices and higher team confidence in choosing where to spend time and other consumable resources. The walkabout strategy may prove most efficient when many close sites must be triaged to a smaller subset for detailed study or sampling. This situation would arise when mission goals include finding, identifying, characterizing or sampling a specific material, feature or type of environment within a certain area.

  3. Mars Pathfinder

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    First of NASA's Discovery missions. Launched in December 1996 and arrived at Mars on 4 July 1997. Mainly intended as a technology demonstration mission. Used airbags to cushion the landing on Mars. The Carl Sagan Memorial station returned images of an ancient flood plain in Ares Vallis. The 10 kg Sojourner rover used an x-ray spectrometer to study the composition of rocks and travelled about 100 ...

  4. Ground Contact Model for Mars Science Laboratory Mission Simulations

    Science.gov (United States)

    Raiszadeh, Behzad; Way, David

    2012-01-01

    The Program to Optimize Simulated Trajectories II (POST 2) has been successful in simulating the flight of launch vehicles and entry bodies on earth and other planets. POST 2 has been the primary simulation tool for the Entry Descent, and Landing (EDL) phase of numerous Mars lander missions such as Mars Pathfinder in 1997, the twin Mars Exploration Rovers (MER-A and MER-B) in 2004, Mars Phoenix lander in 2007, and it is now the main trajectory simulation tool for Mars Science Laboratory (MSL) in 2012. In all previous missions, the POST 2 simulation ended before ground impact, and a tool other than POST 2 simulated landing dynamics. It would be ideal for one tool to simulate the entire EDL sequence, thus avoiding errors that could be introduced by handing off position, velocity, or other fight parameters from one simulation to the other. The desire to have one continuous end-to-end simulation was the motivation for developing the ground interaction model in POST 2. Rover landing, including the detection of the postlanding state, is a very critical part of the MSL mission, as the EDL landing sequence continues for a few seconds after landing. The method explained in this paper illustrates how a simple ground force interaction model has been added to POST 2, which allows simulation of the entire EDL from atmospheric entry through touchdown.

  5. Zephyr: A Landsailing Rover for Venus

    Science.gov (United States)

    Landis, Geoffrey A.; Oleson, Steven R.; Grantier, David

    2014-01-01

    With an average temperature of 450C and a corrosive atmosphere at a pressure of 90 bars, the surface of Venus is the most hostile environment of any planetary surface in the solar system. Exploring the surface of Venus would be an exciting goal, since Venus is a planet with significant scientific mysteries, and interesting geology and geophysics. Technology to operate at the environmental conditions of Venus is under development. A rover on the surface of Venus with capability comparable to the rovers that have been sent to Mars would push the limits of technology in high-temperature electronics, robotics, and robust systems. Such a rover would require the ability to traverse the landscape on extremely low power levels. We have analyzed an innovative concept for a planetary rover: a sail-propelled rover to explore the surface of Venus. Such a rover can be implemented with only two moving parts; the sail, and the steering. Although the surface wind speeds are low (under 1 m/s), at Venus atmospheric density even low wind speeds develop significant force. Under funding by the NASA Innovative Advanced Concepts office, a conceptual design for such a rover has been done. Total landed mass of the system is 265 kg, somewhat less than that of the MER rovers, with a 12 square meter rigid sail. The rover folds into a 3.6 meter aeroshell for entry into the Venus atmosphere and subsequent parachute landing on the surface. Conceptual designs for a set of hightemperature scientific instruments and a UHF communication system were done. The mission design lifetime is 50 days, allowing operation during the sunlit portion of one Venus day. Although some technology development is needed to bring the high-temperature electronics to operational readiness, the study showed that such a mobility approach is feasible, and no major difficulties are seen.

  6. Rover Attitude and Pointing System Simulation Testbed

    Science.gov (United States)

    Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam

    2009-01-01

    The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.

  7. Bringing Terramechanics to bear on Planetary Rover Design

    Science.gov (United States)

    Richter, L.

    2007-08-01

    Thus far, planetary rovers have been successfully operated on the Earth's moon and on Mars. In particular, the two NASA Mars Exploration Rovers (MERs) ,Spirit' and ,Opportunity' are still in sustained daily operations at two sites on Mars more than 3 years after landing there. Currently, several new planetary rover missions are in development targeting Mars (the US Mars Science Lab vehicle for launch in 2009 and ESA's ExoMars rover for launch in 2013), with lunar rover missions under study by China and Japan for launches around 2012. Moreover, the US Constellation program is preparing pre-development of lunar rovers for initially unmanned and, subsequently, human missions to the Moon with a corresponding team dedicated to mobility system development having been set up at the NASA Glenn Research Center. Given this dynamic environment, it was found timely to establish an expert group on off-the-road mobility as relevant for robotic vehicles that would involve individuals representing the various on-going efforts on the different continents. This was realized through the International Society of Terrain-Vehicle Systems (ISTVS), a research organisation devoted to terramechanics and to the ,science' of off-the-road vehicle development which as a result is just now establishing a Technical Group on Terrestrial and Planetary Rovers. Members represent space-related as well as military research institutes and universities from the US, Germany, Italy, and Japan. The group's charter for 2007 is to define its objectives, functions, organizational structure and recommended research objectives to support planetary rover design and development. Expected areas of activity of the ISTVS-sponsored group include: the problem of terrain specification for planetary rovers; identification of limitations in modelling of rover mobility; a survey of existing rover mobility testbeds; the consolidation of mobility predictive models and their state of validation; sensing and real

  8. Influence of Oxychlorine Phases During the Pyrolysis of Organic Molecules: Implications for the Quest of Organics on Mars with the SAM Experiment Onboard the Curiosity Rover

    Science.gov (United States)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Glavin, D. P.; Freissinet, C.; Eigenbrode, J. L.; Archer, P. D., Jr,; Sutter, B.; Mahaffy, P.

    2017-01-01

    One among the main objectives of the Sample Analysis at Mars (SAM) experiment is the in situ molecular analysis of gases evolving from solid samples heated up to approximately 850 degrees Centigrade, and collected by Curiosity on Mars surface/sub-surface in Gale crater. With this aim, SAM uses a gas-chromatograph coupled to a quadrupole mass spectrometer (GC-QMS) devoted to separate, detect and identify both volatile inorganic and organic compounds. SAM detected chlorinated organic molecules produced in evolved gas analysis (EGA) experiments. Several of these were also detected by the Viking experiments in 1976. SAM also detected oxychlorine compounds that were present at the Phoenix landing site. The oxychlorines may be prevelant over much of the martian surface. The C1 to C3 aliphatic chlorohydrocarbons (chloromethane and di- and trichloromethane) detected by SAM were attributed to reaction products occurring between the oxychlorines phases and the organic compounds coming from SAM instrument background. But SAM also showed the presence of a large excess of chlorobenzene and C2 to C4 dichloroalkanes among the volatile species released by the Cumberland sample of the Sheepbed mudstone. For the first time in the history of the Mars exploration, this proved the presence of Mars indigenous organic material at the Mars' surface. However, the identification of the precursor organic compounds of these chlorohydrocarbons is difficult due to the complexity of the reactions occurring during the sample pyrolysis. Laboratory pyrolysis experiments have demonstrated that oxychlorines phases such as perchlorates and chlorates, decomposed into dioxygen and volatile chlorine bearing molecules (HCl and/or Cl2) during the pyrolysis. These chemical species can then react with the organic molecules present in the martian solid samples through oxidation, chlorination and oxychlorination processes.

  9. The Mars Exploration Program: Past, Present and Future (?)

    Science.gov (United States)

    Hubbard, Scott

    NASA's Mars Exploration Program was redesigned in 2000, following the twin losses of the Mars Climate Orbiter and Mars Polar Lander in late 1999. The new science based program was grounded in community consensus based priorities and had as its aim understanding Mars as a system. The popular phrase used to describe the goals of the mission sequence was "Follow the Water". A new queue of missions was put in place for the decade 2001 - 2010 and a new community based competitive opportunity, the Mars Scout program, was initiated. The strategic mission implementation has been unchanged since the new program was announced in October 2000. Those projects successfully launched and deployed thus far include Mars Odyssey, the two Mars rovers Spirit and Opportunity, Mars Reconnaissance Obiter and the Phoenix Scout Mission. The final project of the decade, the Mars Science Laboratory, is in the last stages of development with launch slated for the Fall of 2009. The President's budget announced in February 2008 for Fiscal 2009, contained little in the way of definitive objectives for Mars program in the decade 2011-2020 and proposed to reduce the Mars budget drastically over the five year budget period. This paper will review the programmatic and scientific progress thus far in meeting the original objectives as outlined in October 2000. A look ahead to the potential missions and goals for the next decade will be provided with particular emphasis on the status of Mars Sample Return mission. Bibliography: G. Scott Hubbard, Firouz M. Naderi, James B. Garvin, Following the water, the new program for Mars exploration, Acta Astronautica 51(1-9):337-350, 2002.

  10. Thermal Reactivity of Organic Molecules in the Presence of Chlorates and Perchlorates and the Quest for Organics on Mars with the SAM Experiment Onboard the Curiostiy Rover

    Science.gov (United States)

    Szopa, Cyril; Millan, Maeva; Buch, Arnaud; Belmahdi, Imene; Coll, Patrice; Glavin, Daniel P.; Freissinet, Caroline; Eigenbrode, Jennifer; archer, doug; sutter, brad; Summons, Roger; Navarro-Gonzalez, Rafael; Mahaffy, Paul; cabane, Michel

    2016-10-01

    One of the main objectives of the Sample Analysis at Mars (SAM) experiment is the in situ molecular analysis of gases evolving from solid samples collected by Curiosity when they are heated up to ~850°C. With this aim SAM uses a gas-chromatograph coupled to a mass spectrometer (GC-MS) able to detect and identify both inorganic and organic molecules released by the samples.During the pyrolysis, chemical reactions occur between oxychlorines, probably homogeneously distributed at Mars's surface, and organic compounds SAM seeks for. This was confirmed by the first chlorohydrocarbons (chloromethane and di- and trichloromethane) detected by SAM that were entirely attributed to reaction products occurring between these oxychlorines and organics from instrument background. But SAM also detected in the Sheepbed mudstone of Gale crater, chloroalkanes produced by reaction between oxychlorines and Mars indigenous organics, proving for the first time the presence of organics in the soil of Mars. However, the identification of the molecules at the origin of these chloroalkanes is much more difficult due to the complexity of the reactivity occurring during the sample pyrolysis. If a first study has already been done recently with this aim, it was relatively limited in terms of parameters investigated.This is the reason why, we performed a systematic study in the laboratory to help understanding the influence of oxychlorines on organic matter during pyrolysis. With this aim, different organic compounds from various chemical families (e.g. amino and carboxylic acids) mixed with different perchlorates and chlorates, in concentrations compatible with the Mars soil from estimations done with SAM measurements, were pyrolyzed under SAM like conditions. The products of reaction were analyzed and identified by GC-MS in order to show a possible correlation between them and the parent molecule. Different parameters were tested for the pyrolysis to evaluate their potential influence on the

  11. Peeling Back the Layers of Mars

    Science.gov (United States)

    2004-01-01

    This is a 3-D model of the trench excavated by the Mars Exploration Rover Opportunity on the 23rd day, or sol, of its mission. An oblique view of the trench from a bit above and to the right of the rover's right wheel is shown. The model was generated from images acquired by the rover's front hazard-avoidance cameras.

  12. Observations of rock spectral classes by the Opportunity rover's Pancam on northern Cape York and on Matijevic Hill, Endeavour Crater, Mars

    Science.gov (United States)

    Farrand, W. H.; Bell, J. F.; Johnson, J. R.; Rice, M. S.; Jolliff, B. L.; Arvidson, R. E.

    2014-11-01

    The Opportunity rover's exploration of the portion of the rim of Endeavour crater known as Cape York included examination of the sulfate-bearing Grasberg formation and the Matijevic Hill region. Multispectral visible and near-infrared (VNIR) Pancam observations were used to characterize reflectance properties of rock units. Using spectral end-member detection and classification approaches including a principal components/n-dimensional visualization, automatic sequential maximum angle convex cone method, and classification through hierarchical clustering, six main spectral classes of rock surfaces were identified: light-toned veins, Grasberg fm., the smectite-bearing Matijevic formation, the hematitic "blueberry" spherules, resistant spherules within the Matijevic fm. dubbed "newberries," and the Shoemaker formation impact breccia. Some of these could be divided into spectral subclasses. There were three types of veins: veins in the bench unit of Cape York, thinner veins in the Matijevic fm., and boxwork pattern-forming veins. The bench unit veins had higher 535 nm band depths than the other two vein subclasses and a steeper 934 to 1009 nm slope. The Grasberg fm. has VNIR spectral features that are interpreted to indicate higher fractions of red hematite than in the sulfate-bearing Burns Fm. The Matijevic fm. includes both light-toned, fine-grained matrix, and dark-toned veneers. The latter has a weak near-infrared absorption band centered near 950 nm consistent with nontronite. Observations of Rock Abrasion Tool brushed and ground newberries indicated that cuttings from the RAT grind had a longer wavelength reflectance maximum and deeper 535 nm band depth, consistent with more oxidized materials. Greater oxidation of cementing materials in the newberries is consistent with a diagenetic concretion origin.

  13. 欧洲“火星快车”探测器自行底盘概念设计的启示%The concept design of the self-propelling chassis for European ExoMars rover

    Institute of Scientific and Technical Information of China (English)

    王宇燕

    2013-01-01

    通过对月球车和火星车的跟踪调研,重点介绍了俄罗斯所承担的欧洲空间局“火星快车”项目中火星车自行底盘概念的设计思想和具体实施情况.结合火星表面的复杂环境,研制方探讨了几种底盘结构设计方案,通过对比分析确立了6×6×4+4Ⅲ方案为优化方案;根据该优化方案研制的比例模型样机通过行走试验验证,结果表明自行底盘概念设计思想正确,有助于提高行星车在复杂地形中的运动能力、稳定性和可靠性.最后针对我国深空探测项目实施的需求,提出了拟开展工作建议.%This paper describes the conceptual design of the self propelling chassis developed by Russia for the ESA project ExoMars. In the context of the complex environment on the surface of the Mars, several design plans of the Mars probe chassis are discussed, among which the optimized plan of 6×6×4+4 Ⅲ is identified, that means four steering drives and four stepped-driven wheels-stepping device and balanced suspension. The scale model prototype developed according to the optimized plan was tested in the test field. The results show that the conceptual design of the self propelling chassis is correct, and can increase the mobility, stability and reliability of the planet rover. In the end, some proposals are put forward in light of implementing China's deep space exploration projects.

  14. Mars Sample Transfer Testbed (MSTT) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The task will assess the requirements for a testbed to study the retrieval of a Mars sample cache from the Martian surface, or from a Mars caching rover, and...

  15. Mars Science Laboratory Engineering Cameras

    Science.gov (United States)

    Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.

    2012-01-01

    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.

  16. Risk-Aware Planetary Rover Operation: Autonomous Terrain Classification and Path Planning

    Science.gov (United States)

    Ono, Masahiro; Fuchs, Thoams J.; Steffy, Amanda; Maimone, Mark; Yen, Jeng

    2015-01-01

    Identifying and avoiding terrain hazards (e.g., soft soil and pointy embedded rocks) are crucial for the safety of planetary rovers. This paper presents a newly developed groundbased Mars rover operation tool that mitigates risks from terrain by automatically identifying hazards on the terrain, evaluating their risks, and suggesting operators safe paths options that avoids potential risks while achieving specified goals. The tool will bring benefits to rover operations by reducing operation cost, by reducing cognitive load of rover operators, by preventing human errors, and most importantly, by significantly reducing the risk of the loss of rovers.

  17. Channel and tube flow features associated with the Twin Craters Lava Flow, Zuni-Bandera Volcanic Field, NM: Insights into similar features on Mars

    Science.gov (United States)

    Samuels, R.; deWet, A.; Bleacher, J. E.; von Meerscheidt, H. C.; Hamilton, C.; Garry, W. B.

    2013-12-01

    The Zuni-Bandera Volcanic Field lies near the center of the Jemez lineament that extends from central Arizona to northeastern New Mexico. The Jemez lineament is a result of rifting in the Earth's crust and is associated with volcanic activity that spans the last 16 Ma. The youngest volcanic activity associated with the lineament includes basaltic lava that was erupted 3 ka ago to form the McCartys Flow. The Twin Craters flow is moderately older (18.0 ka), but it also well-preserved and provides an ideal location to investigate volcanic processes and landforms. In this study, we combined detailed field observations and mapping with remote sensing to better understand variations in morphology along the transport system of the flow . The Twin Craters flow is characterized as an aā and tube-fed pāhoehoe flow with braided or branching tubes and channels; and associated aā and pāhoehoe break-outs. It is possible that the variations in morphology along the same transport structure might be related to pre-flow slope, which might have also been variable along flow. Shatter ring features are thought to be related to changes in eruption rate, and therefore, local flux through the system. However, over-pressurization of the tube might also be related to changes in local discharge rate associated with the ponding and release of lava within the transport system that may be due to interactions between the lava and obstacles along the flow's path (see Mallonee et al., this meeting). Many of these features are similar to features present in the Tharsis Montes region of Mars and particularly on the southern apron of Ascraeus Mons. The detailed description of the morphology of the Twin Craters Lava Flow and the understanding of the emplacement mechanisms will be crucial in identifying the processes that formed the Ascraeus flows and channels. This will aid in determining if the lava surface textures are directly related to eruption conditions or if they have been significantly

  18. Mars Mission Surface Operation Simulation Testing of Lithium-Ion Batteries

    Science.gov (United States)

    Smart, M. C.; Bugga, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.

    2003-01-01

    The objectives of this program are to 1) Assess viability of using lithium-ion technology for future NASA applications, with emphasis upon Mars landers and rovers which will operate on the planetary surface; 2) Support the JPL 2003 Mars Exploration Rover program to assist in the delivery and testing of a 8 AHr Lithium-Ion battery (Lithion/Yardney) which will power the rover; 3) Demonstrate applicability of using lithium-ion technologyfor future Mars applications: Mars 09 Science Laboratory (Smart Lander) and Future Mars Surface Operations (General). Mission simulation testing was carried out for cells and batteries on the Mars Surveyor 2001 Lander and the 2003 Mars Exploration Rover.

  19. FIDO Rover Retracted Arm and Camera

    Science.gov (United States)

    1999-01-01

    The Field Integrated Design and Operations (FIDO) rover extends the large mast that carries its panoramic camera. The FIDO is being used in ongoing NASA field tests to simulate driving conditions on Mars. FIDO is controlled from the mission control room at JPL's Planetary Robotics Laboratory in Pasadena. FIDO uses a robot arm to manipulate science instruments and it has a new mini-corer or drill to extract and cache rock samples. Several camera systems onboard allow the rover to collect science and navigation images by remote-control. The rover is about the size of a coffee table and weighs as much as a St. Bernard, about 70 kilograms (150 pounds). It is approximately 85 centimeters (about 33 inches) wide, 105 centimeters (41 inches) long, and 55 centimeters (22 inches) high. The rover moves up to 300 meters an hour (less than a mile per hour) over smooth terrain, using its onboard stereo vision systems to detect and avoid obstacles as it travels 'on-the-fly.' During these tests, FIDO is powered by both solar panels that cover the top of the rover and by replaceable, rechargeable batteries.

  20. Curiosity rover LEGO® version could land soon

    Science.gov (United States)

    Showstack, Randy

    2012-09-01

    Now that NASA's Curiosity rover has landed on Mars, a smaller LEGO® plastic brick construction version could be landing in toy stores. Less than 2 weeks after Curiosity set down on 5 August, a LEGO® set concept model designed by a mechanical and aerospace engineer who worked on the real rover garnered its 10,000th supporter on the Web site of CUUSOO, a Japanese partner of the LEGO® group. That milestone triggered a company review that began in September 2012 to test the model's “playability, safety, and ft with the LEGO® brand,” according to a congratulatory statement from the company to designer Stephen Pakbaz. Pakbaz told Eos that he has been an avid LEGO® and space exploration fan for most of his life. “For me, creating a LEGO® model of Curiosity using my firsthand knowledge of the rover was inevitable. What I enjoyed most was being able to faithfully replicate and subsequently demonstrate the rocker-bogie suspension system to friends, family, and coworkers,” he noted, referring to the suspension system that allows the rover to climb over obstacles while keeping its wheels on the ground. Pakbaz, who is currently with Orbital Sciences Corporation, was involved with aspects of the rover while working at the Jet Propulsion Laboratory from 2007 to 2011 as a mechanical engineer.

  1. Adams-Based Rover Terramechanics and Mobility Simulator - ARTEMIS

    Science.gov (United States)

    Trease, Brian P.; Lindeman, Randel A.; Arvidson, Raymond E.; Bennett, Keith; VanDyke, Lauren P.; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine

    2013-01-01

    The Mars Exploration Rovers (MERs), Spirit and Opportunity, far exceeded their original drive distance expectations and have traveled, at the time of this reporting, a combined 29 kilometers across the surface of Mars. The Rover Sequencing and Visualization Program (RSVP), the current program used to plan drives for MERs, is only a kinematic simulator of rover movement. Therefore, rover response to various terrains and soil types cannot be modeled. Although sandbox experiments attempt to model rover-terrain interaction, these experiments are time-intensive and costly, and they cannot be used within the tactical timeline of rover driving. Imaging techniques and hazard avoidance features on MER help to prevent the rover from traveling over dangerous terrains, but mobility issues have shown that these methods are not always sufficient. ARTEMIS, a dynamic modeling tool for MER, allows planned drives to be simulated before commands are sent to the rover. The deformable soils component of this model allows rover-terrain interactions to be simulated to determine if a particular drive path would take the rover over terrain that would induce hazardous levels of slip or sink. When used in the rover drive planning process, dynamic modeling reduces the likelihood of future mobility issues because high-risk areas could be identified before drive commands are sent to the rover, and drives planned over these areas could be rerouted. The ARTEMIS software consists of several components. These include a preprocessor, Digital Elevation Models (DEMs), Adams rover model, wheel and soil parameter files, MSC Adams GUI (commercial), MSC Adams dynamics solver (commercial), terramechanics subroutines (FORTRAN), a contact detection engine, a soil modification engine, and output DEMs of deformed soil. The preprocessor is used to define the terrain (from a DEM) and define the soil parameters for the terrain file. The Adams rover model is placed in this terrain. Wheel and soil parameter files

  2. Student Participation in Rover Field Trials

    Science.gov (United States)

    Bowman, C. D.; Arvidson, R. E.; Nelson, S. V.; Sherman, D. M.; Squyres, S. W.

    2001-12-01

    The LAPIS program was developed in 1999 as part of the Athena Science Payload education and public outreach, funded by the JPL Mars Program Office. For the past three years, the Athena Science Team has been preparing for 2003 Mars Exploration Rover Mission operations using the JPL prototype Field Integrated Design and Operations (FIDO) rover in extended rover field trials. Students and teachers participating in LAPIS work with them each year to develop a complementary mission plan and implement an actual portion of the annual tests using FIDO and its instruments. LAPIS is designed to mirror an end-to-end mission: Small, geographically distributed groups of students form an integrated mission team, working together with Athena Science Team members and FIDO engineers to plan, implement, and archive a two-day test mission, controlling FIDO remotely over the Internet using the Web Interface for Telescience (WITS) and communicating with each other by email, the web, and teleconferences. The overarching goal of LAPIS is to get students excited about science and related fields. The program provides students with the opportunity to apply knowledge learned in school, such as geometry and geology, to a "real world" situation and to explore careers in science and engineering through continuous one-on-one interactions with teachers, Athena Science Team mentors, and FIDO engineers. A secondary goal is to help students develop improved communication skills and appreciation of teamwork, enhanced problem-solving skills, and increased self-confidence. The LAPIS program will provide a model for outreach associated with future FIDO field trials and the 2003 Mars mission operations. The base of participation will be broadened beyond the original four sites by taking advantage of the wide geographic distribution of Athena team member locations. This will provide greater numbers of students with the opportunity to actively engage in rover testing and to explore the possibilities of

  3. Scout Rover Applications for Forward Acquisition of Soil and Terrain Data

    Science.gov (United States)

    Sonsalla, R.; Ahmed, M.; Fritsche, M.; Akpo, J.; Voegele, T.

    2014-04-01

    As opposed to the present mars exploration missions future mission concepts ask for a fast and safe traverse through vast and varied expanses of terrain. As seen during the Mars Exploration Rover (MER) mission the rovers suffered a lack of detailed soil and terrain information which caused Spirit to get permanently stuck in soft soil. The goal of the FASTER1 EU-FP7 project is to improve the mission safety and the effective traverse speed for planetary rover exploration by determining the traversability of the terrain and lowering the risk to enter hazardous areas. To achieve these goals, a scout rover will be used for soil and terrain sensing ahead of the main rover. This paper describes a highly mobile, and versatile micro scout rover that is used for soil and terrain sensing and is able to co-operate with a primary rover as part of the FASTER approach. The general reference mission idea and concept is addressed within this paper along with top-level requirements derived from the proposed ESA/NASA Mars Sample Return mission (MSR) [4]. Following the mission concept and requirements [3], a concept study for scout rover design and operations has been performed [5]. Based on this study the baseline for the Coyote II rover was designed and built as shown in Figure 1. Coyote II is equipped with a novel locomotion concept, providing high all terrain mobility and allowing to perform side-to-side steering maneuvers which reduce the soil disturbance as compared to common skid steering [6]. The rover serves as test platform for various scout rover application tests ranging from locomotion testing to dual rover operations. From the lessons learned from Coyote II and for an enhanced design, a second generation rover (namely Coyote III) as shown in Figure 2 is being built. This rover serves as scout rover platform for the envisaged FASTER proof of concept field trials. The rover design is based on the test results gained by the Coyote II trials. Coyote III is equipped with two

  4. Conjoined Twins

    Science.gov (United States)

    ... sites of conjoined twins. Abdomen. Omphalopagus (om-fuh-LOP-uh-gus) twins are joined near the bellybutton. ... brain tissue. Head and chest. Cephalopagus (sef-uh-LOP-uh-gus) twins are joined at the face ...

  5. Ender as Viewed by the Rover

    Science.gov (United States)

    1998-01-01

    These anaglyph views of Ender, due south of the lander, were produced by combining left and right views from the IMP (left image) and two right eye frames taken from different viewing angles from the rover (right image). For the rover, one of the right eye frames was distorted using Photoshop to approximate the projection of the left eye view (without this, the stereo pair is painful to view). Then, for both the lander and rover, the left view is assigned to the red color plane and the right view to the green and blue color planes (cyan), to produce a stereo anaglyph mosaic. This mosaic can be viewed in 3-D on your computer monitor or in color print form by wearing red-blue 3-D glasses.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  6. Moessbauer In Situ Studies of the Surface of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Klingelhoefer, G., E-mail: klingel@mail.uni-mainz.de [Johannes Gutenberg Universitaet, Inst. Anorganische and Analytische Chemie (Germany)

    2004-11-15

    For the first time in history, a Moessbauer spectrometer was placed on the surface of another planet. Our miniaturized Moessbauer spectrometer MIMOS II is part of the instrument payload of NASA's twin Mars Exploration Rovers (MER) 'Spirit' and 'Opportunity', which in January 2004 successfully landed at the Gusev crater and the Meridiani Planum landing sites, respectively. MIMOS II determines the Fe-bearing mineralogy of Martian soils and rocks at the Rovers' respective landing sites. The main goals of this planetary twin mission are to: (1) identify hydrologic, hydrothermal, and other processes that have operated and affected materials at the landing sites; (2) identify and investigate the rocks and soils at both landing sites, as there is a possible chance that they may preserve evidence of ancient environmental conditions and possible prebiotic or biotic activities. With MIMOS II, besides other minerals the Fe silicate olivine has been identified in both soil and rocks at both landing sites. At the Meridiani site the Fe sulfate jarosite has been identified by MIMOS II which is definitive mineralogical proof of the presence of water at this site in the past.

  7. Dust Storm Impacts on Human Mars Mission Equipment and Operations

    Science.gov (United States)

    Rucker, M. A.

    2017-06-01

    NASA has accumulated a wealth of experience between the Apollo program and robotic Mars rover programs, but key differences between those missions and a human Mars mission that will require unique approaches to mitigate potential dust storm concerns.

  8. ACARDIAC TWIN

    OpenAIRE

    Vinayachandran; Jyothi,; Bindu; Umadevi

    2014-01-01

    Acardiac twin is a very rare complication occurring in monozygotic twins in which one fetus develops normally (pump twin) and the other (recipient twin) demonstrate cardiac non development and othe r anomalies. This may represent an extreme form of TTTS, also referred to as TRAP sequence. 1,2,

  9. Rover waste assay system

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched {sup 235}U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for {sup 137}Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs.

  10. Mars Methane Analogue Mission (M3): Near Subsurface Electromagnetic Techniques and Analysis

    Science.gov (United States)

    Boivin, A.; Samson, C.; Holladay, J. S.; Cloutis, E. A.; Ernst, R. E.

    2012-03-01

    As part of the Canadian Space Agency's Mars Methane Analogue Mission, a micro-rover mission, an Electromagnetic Induction Sounder (EMIS) was used with the goal of demonstrating its value as a potential science instrument onboard future rovers.

  11. The University Rover Challenge: A competition highlighting Human and Robotic partnerships for exploration

    Science.gov (United States)

    Smith, Heather; Duncan, Andrew

    2016-07-01

    The University Rover Challenge began in 2006 with 4 American college teams competing, now in it's 10th year there are 63 teams from 12 countries registered to compete for the top rover designed to assist humans in the exploration of Mars. The Rovers compete aided by the University teams in four tasks (3 engineering and 1 science) in the Mars analog environment of the Utah Southern Desert in the United States. In this presentation we show amazing rover designs with videos demonstrating the incredible ingenuity, skill and determination of the world's most talented college students. We describe the purpose and results of each of the tasks: Astronaut Assistant, Rover Dexterity, Terrain maneuvering, and Science. We explain the evolution of the competition and common challenges faced by the robotic explorers

  12. A Mars 1984 mission

    Science.gov (United States)

    1977-01-01

    Mission objectives are developed for the next logical step in the investigation of the local physical and chemical environments and the search for organic compounds on Mars. The necessity of three vehicular elements: orbiter, penetrator, and rover for in situ investigations of atmospheric-lithospheric interactions is emphasized. A summary report and committee recommendations are included with the full report of the Mars Science Working Group.

  13. A Modular Re-configurable Rover System

    Science.gov (United States)

    Bouloubasis, A.; McKee, G.; Active Robotics Lab

    design allows the MTR to lift, lower, roll or tilt its body. It also provides the ability to lift any of the legs by nearly 300mm, enhancing internal re-configurability and therefore rough terrain stability off the robotic vehicle. A modular software and control architecture will be used so that integration to, and operation through the MTR, of different Packs can be demonstrated. An on-board high-level controller [4] will communicate with a small network of micro-controllers through an RS485 bus. Additional processing power could be obtained through a Pack with equivalent or higher computational capabilities. 1 The nature of the system offers many opportunities for behavior based control. The control system must accommodate not only rover based behaviors like obstacle avoidance and vehicle stabilization, but also any additional behaviors that different Packs may introduce. The Ego-Behavior Architecture (EBA) [5] comprises a number of behaviors which operate autonomously and independent of each other. This facilitates the design and suits the operation of the MTR since it fulfills the need for uncomplicated assimilation of new behaviors in the existing architecture. Our work at the moment focuses on the design and construction of the mechanical and electronic systems for the MTR and an associated Pack. References [1] NASA, Human Exploration of Mars: The Reference Mission (Version 3.0 with June, 1998 Addendum) of the NASA Mars Exploration Study Team, Exploration Office, Advanced Development Office, Lyndon B. Johnson Space Center, Houston, TX 77058, June, 1998. [2] A. Trebi-Ollennu, H Das Nayer, H Aghazarian, A ganino, P Pirjanian, B Kennedy, T Huntsberger and P Schenker, Mars Rover Pair Cooperatively Transporting a Long Payload, in Proceedings of the 2002 IEEE International Conference on Robotics and Automation, May 2002, pp. 3136-3141. [3] A. K. Bouloubasis, G. T McKee, P. S. Schenker, A Behavior-Based Manipulator for Multi-Robot Transport Tasks, in proceedings of the

  14. Nuclear thermal rocket workshop reference system Rover/NERVA

    Science.gov (United States)

    Borowski, Stanley K.

    1991-01-01

    The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed.

  15. Twin births

    DEFF Research Database (Denmark)

    Hoffmann, Elise; Oldenburg, Anna; Rode, Line;

    2012-01-01

    To assess morbidity and mortality in twin pregnancy deliveries, according to chorionicity and mode of delivery.......To assess morbidity and mortality in twin pregnancy deliveries, according to chorionicity and mode of delivery....

  16. Low Cost Mars Sample Return Utilizing Dragon Lander Project

    Science.gov (United States)

    Stoker, Carol R.

    2014-01-01

    We studied a Mars sample return (MSR) mission that lands a SpaceX Dragon Capsule on Mars carrying sample collection hardware (an arm, drill, or small rover) and a spacecraft stack consisting of a Mars Ascent Vehicle (MAV) and Earth Return Vehicle (ERV) that collectively carry the sample container from Mars back to Earth orbit.

  17. Aerokats and Rover

    Science.gov (United States)

    Bland, G.; Miles, T.; Nagchaudhuri, A.; Henry, A.; Coronado, P.; Smith, S.; Bydlowski, D.; Gaines, J.; Hartman, C.

    2015-12-01

    Two novel tools are being developed for team-based environmental and science observations suitable for use in Middle School through Undergraduate settings. Partnerships with NASA's Goddard Space Flight Center are critical for this work, and the concepts and practices are aimed at providing affordable and easy-to-field hardware to the classroom. The Advanced Earth Research Observation Kites and Atmospheric and Terrestrial Sensors (AEROKATS) system brings affordable and easy-to-field remote sensing and in-situ measurements within reach for local-scale Earth observations and data gathering. Using commercial kites, a wide variety of sensors, and a new NASA technology, AEROKATS offers a quick-to-learn method to gather airborne remote sensing and in-situ data for classroom analysis. The Remotely Operated Vehicle for Education and Research (ROVER) project introduces team building for mission operations and research, using modern technologies for exploring aquatic environments. ROVER projects use hobby-type radio control hardware and common in-water instrumentation, to highlight the numerous roles and responsibilities needed in real-world research missions, such as technology, operations, and science disciplines. NASA GSFC's partnerships have enabled the fielding of several AEROKATS and ROVER prototypes, and results suggest application of these methods is feasible and engaging.

  18. Autonomous Science Analyses of Digital Images for Mars Sample Return and Beyond

    Science.gov (United States)

    Gulick, V. C.; Morris, R. L.; Ruzon, M.; Roush, T. L.

    1999-01-01

    program has been dubbed the "Grad Student on Mars Project". We envision, for example, an appropriately intelligent Athena-like rover at the Pathfinder landing site might be able to traverse over the ridge towards "Twin Peaks" to obtain better information on the stratigraphy of these "streamlined islands" or of the size, composition and morphology of boulders located on them. Along the traverse, the intelligent rover would collect and analyze images and obtain spectra of geologically interesting features or regions. The intelligent rover might also traverse further up Arcs Vallis, and find additional paleoflood stage indicators such as slackwater deposits. Recognizing additional regions where boulders are imbricated, noting changes in their size, distribution, morphology, composition and the associated changes in channel geometry would yield important information on the outflow channel's paleoflood history, Representative images and associated supporting data from these locations could be downlinked to Earth along with the data requested by scientists from the previous uplink opportunity. Our initial work has focused on recognizing geologically interesting portions of images. Here we summarize some of the algorithms to date.

  19. Design of a nuclear-powered rover for lunar or Martian exploration

    Energy Technology Data Exchange (ETDEWEB)

    Trellue, H.R.; Trautner, R.; Houts, M.G.; Poston, D.I.; Giovig, K. [Los Alamos National Lab., NM (United States); Baca, J.A.; Lipinski, R.J. [Sandia National Labs. (United States)

    1998-08-01

    To perform more advanced studies on the surface of the moon or Mars, a rover must provide long-term power ({ge}10 kW{sub e}). However, a majority of rovers in the past have been designed for much lower power levels (i.e., on the order of watts) or for shorter operating periods using stored power. Thus, more advanced systems are required to generate additional power. One possible design for a more highly powered rover involves using a nuclear reactor to supply energy to the rover and material from the surface of the moon or Mars to shield the electronics from high neutron fluxes and gamma doses. Typically, one of the main disadvantages of using a nuclear-powered rover is that the required shielding would be heavy and expensive to include as part of the payload on a mission. Obtaining most of the required shielding material from the surface of the moon or Mars would reduce the cost of the mission and still provide the necessary power. This paper describes the basic design of a rover that uses the Heatpipe Power System (HPS) as an energy source, including the shielding and reactor control issues associated with the design. It also discusses briefly the amount of power that can be produced by other power methods (solar/photovoltaic cells, radioisotope power supplies, dynamic radioisotope power systems, and the production of methane or acetylene fuel from the surface of Mars) as a comparison to the HPS.

  20. Fast Optical Hazard Detection for Planetary Rovers Using Multiple Spot Laser Triangulation

    Science.gov (United States)

    Matthies, L.; Balch, T.; Wilcox, B.

    1997-01-01

    A new laser-based optical sensor system that provides hazard detection for planetary rovers is presented. It is anticipated that the sensor can support safe travel at speeds up to 6cm/second for large (1m) rovers in full sunlight on Earth or Mars. The system overcomes limitations in an older design that require image differencing ot detect a laser stripe in full sun.

  1. Integrated Development Environment for Rover

    Directory of Open Access Journals (Sweden)

    S.Murali

    2013-04-01

    Full Text Available Today, robotics is an auspicious and fast-growing branch of technology that involves the manufacturing, design, and maintenance of robot machines that can operate in an autonomous fashion and can be used in a wide variety of applications including space exploration, weaponry, household, and transportation. More particularly, in space applications, a common type of robots has been of widespread use in the recent years. It is called planetary rover which is a robot vehicle that moves across the surface of a planet and conducts detailed geological studies pertaining to the properties of the landing cosmic environment. IDE (Integrated Development Environment for Rover is the development environment for the language Rova. We developed a language called rova, this language only built for the machine rover. Rover is a remotely controlled vehicle, which consists of camera to capture the images. The dynamicmodel of a Six-Wheeled Articulated lunar rover is researched in this paper.Refer to vehicle dynamics theory, the forces acting on the wheels are analyzed in terms of mechanical principles and configuration features on rough terrain. The language Rova consists of set of instruction and some control structures,which is used to control the Rover and to capture the videos and images. Using this IDE we can send the signal to the Rover and the Rover will respond according to the signal. And it will send images and videos to the system.

  2. A new analysis of Mars "Special Regions": findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2).

    Science.gov (United States)

    Rummel, John D; Beaty, David W; Jones, Melissa A; Bakermans, Corien; Barlow, Nadine G; Boston, Penelope J; Chevrier, Vincent F; Clark, Benton C; de Vera, Jean-Pierre P; Gough, Raina V; Hallsworth, John E; Head, James W; Hipkin, Victoria J; Kieft, Thomas L; McEwen, Alfred S; Mellon, Michael T; Mikucki, Jill A; Nicholson, Wayne L; Omelon, Christopher R; Peterson, Ronald; Roden, Eric E; Sherwood Lollar, Barbara; Tanaka, Kenneth L; Viola, Donna; Wray, James J

    2014-11-01

    A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth-including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of

  3. A new analysis of Mars "Special Regions": findings of the Second MEPAG Special Regions Science Analysis Group (SR-SAG2)

    Science.gov (United States)

    Rummel, John D.; Beaty, David W.; Jones, Melissa A.; Bakermans, Corien; Barlow, Nadine G.; Boston, Penelope J.; Chevrier, Vincent F.; Clark, Benton C.; de Vera, Jean-Pierre P.; Gough, Raina V.; Hallsworth, John E.; Head, James W.; Hipkin, Victoria J.; Kieft, Thomas L.; McEwen, Alfred S.; Mellon, Michael T.; Mikucki, Jill A.; Nicholson, Wayne L.; Omelon, Christopher R.; Peterson, Ronald; Roden, Eric E.; Lollar, Barbara Sherwood; Tanaka, Kenneth L.; Viola, Donna; Wray, James J.

    2014-01-01

    A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth—including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations

  4. Assessment of Proficiency During Simulated Rover Operations Following Long-Duration Spaceflight

    Science.gov (United States)

    Wood, S. J.; Dean, S. L.; De Dios, Y. E.; MacDougall, H. G.; Moore, S. T.

    2011-01-01

    Following long-duration space travel, pressurized rovers will enhance crew mobility to explore Mars and other planetary surfaces. Adaptive changes in sensorimotor function may limit the crew s proficiency when performing some rover operations shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify postflight decrements in operational proficiency in a motion-based rover simulation after International Space Station (ISS) expeditions. Given that postflight performance will also be influenced by the level of preflight proficiency attained, a ground-based normative study was conducted to characterize the acquisition of skills over multiple sessions.

  5. Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets

    Science.gov (United States)

    Felder, Michael; Nesnas, Issa A.; Pivtoraiko, Mihail; Kelly, Alonzo; Volpe, Richard

    2011-01-01

    Exploring planetary surfaces typically involves traversing challenging and unknown terrain and acquiring in-situ measurements at designated locations using arm-mounted instruments. We present field results for a new implementation of an autonomous capability that enables a rover to traverse and precisely place an arm-mounted instrument on remote targets. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover's mast cameras. The rover then autonomously traverse the rocky terrain for a distance of 10 - 15 m, tracks the target(s) of interest during the traverse, positions itself for approaching the target, and then precisely places an arm-mounted instrument within 2-3 cm from the originally designated target. The rover proceeds to acquire science measurements with the instrument. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight thread-the-needle maneuvers. We integrated these algorithms on the newly refurbished Athena Mars research rover and fielded them in the JPL Mars Yard. We conducted 43 runs with targets at distances ranging from 5 m to 15 m and achieved a success rate of 93% for placement of the instrument within 2-3 cm.

  6. Small rover exploration capabilities

    Science.gov (United States)

    Salotti, Jean-Marc; Laithier, Corentin; Machut, Benoit; Marie, Aurélien; Bruneau, Audrey; Grömer, Gernot; Foing, Bernard H.

    2015-05-01

    For a human mission to the Moon or Mars, an important question is to determine the best strategy for the choice of surface vehicles. Recent studies suggest that the first missions to Mars will be strongly constrained and that only small unpressurized vehicles will be available. We analyze the exploration capabilities and limitations of small surface vehicles from the user perspective. Following the “human centered design” paradigm, the team focused on human systems interactions and conducted the following experiments: - Another member of our team participated in the ILEWG EuroMoonMars 2013 simulation at the Mars Desert Research Station in Utah during the same period of time. Although the possible traverses were restricted, a similar study with analog space suits and quads has been carried out. - Other experiments have been conducted in an old rock quarry close to Bordeaux, France. An expert in the use of quads for all types of terrains performed a demonstration and helped us to characterize the difficulties, the risks and advantages and drawbacks of different vehicles and tools. The vehicles that will be used on the surface of Mars have not been defined yet. Nevertheless, the results of our project already show that using a light and unpressurized vehicle (in the order of 150 kg) for the mobility on the Martian surface can be a true advantage. Part of the study was dedicated to the search for appropriate tools that could be used to make the vehicles easier to handle, safer to use and more efficient in the field to cross an obstacle. The final recommendation is to use winches and ramps, which already are widely used by quad drivers. We report on the extension of the reachable areas if such tools were available. This work has been supported by ILEWG, EuroMoonMars and the Austrian Space Forum (OEWF).

  7. Twin pregnancy

    DEFF Research Database (Denmark)

    Sperling, Lene; Tabor, A

    2001-01-01

    Determination of chorionicity is one of the most important issues in the management of twin pregnancy. Modern ultrasound equipment has made it possible to accurately assess placentation already in the first trimester with the lambda sign. With regard to prenatal diagnosis, it is important to know...... for clinicians caring for twin pregnancies....

  8. Pressurized Lunar Rover (PLR)

    Science.gov (United States)

    Creel, Kenneth; Frampton, Jeffrey; Honaker, David; McClure, Kerry; Zeinali, Mazyar; Bhardwaj, Manoj; Bulsara, Vatsal; Kokan, David; Shariff, Shaun; Svarverud, Eric

    The objective of this project was to design a manned pressurized lunar rover (PLR) for long-range transportation and for exploration of the lunar surface. The vehicle must be capable of operating on a 14-day mission, traveling within a radius of 500 km during a lunar day or within a 50-km radius during a lunar night. The vehicle must accommodate a nominal crew of four, support two 28-hour EVA's, and in case of emergency, support a crew of six when near the lunar base. A nominal speed of ten km/hr and capability of towing a trailer with a mass of two mt are required. Two preliminary designs have been developed by two independent student teams. The PLR 1 design proposes a seven meter long cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, lighting, robotic arms, tools, and equipment for exploratory experiments. The rover uses a simple mobility system with six wheels on the main vehicle and two on the trailer. The nonpressurized trailer contains a modular radioisotope thermoelectric generator (RTG) supplying 6.5 kW continuous power. A secondary energy storage for short-term peak power needs is provided by a bank of lithium-sulfur dioxide batteries. The life support system is partly a regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center allowing the center to be used as a safe haven during solar flares. The PLR 1 has a total mass of 6197 kg. It has a top speed of 18 km/hr and is capable of towing three metric tons, in addition to the RTG trailer. The PLR 2 configuration consists of two four-meter diameter, cylindrical hulls which are passively connected by a flexible passageway, resulting in the overall vehicle length of 11 m. The vehicle is driven by eight independently suspended wheels. The dual-cylinder concept allows articulated as well as double

  9. Vibration and Acoustic Testing for Mars Micromission Spacecraft

    Science.gov (United States)

    Kern, Dennis L.; Scharton, Terry D.

    1999-01-01

    The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the

  10. Rover's Wheel Churns Up Bright Martian Soil

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Spirit acquired this mosaic with the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters. The view presented here is an approximately true-color rendering.

  11. Circolo enogastronomico "Della Rovere" = The Della Rovere Club

    Index Scriptorium Estoniae

    2012-01-01

    Della Rovere Klubist, mis on Itaalia Önogastronoomiliste Ühenduste Föderatsiooni ja Euroopa Önogastronoomia Vennaskondade Nõukogu liige ja mille missiooniks on kohalike traditsioonide säilitamine, erinevate toiduainete omaduste tutvustamine, veinikultuuri õpetamine jne

  12. Circolo enogastronomico "Della Rovere" = The Della Rovere Club

    Index Scriptorium Estoniae

    2012-01-01

    Della Rovere Klubist, mis on Itaalia Önogastronoomiliste Ühenduste Föderatsiooni ja Euroopa Önogastronoomia Vennaskondade Nõukogu liige ja mille missiooniks on kohalike traditsioonide säilitamine, erinevate toiduainete omaduste tutvustamine, veinikultuuri õpetamine jne

  13. Nitrogen on Mars: Insights from Curiosity

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; Jackson, W. A.; Navarro-Gonzalez, Rafael; McKay, Chrisopher P.; Ming, W.; Archer, P. Douglas; Glavin, D. P.; Fairen, A. G.; Mahaffy, Paul R.

    2017-01-01

    Recent detection of nitrate on Mars indicates that nitrogen fixation processes occurred in early martian history. Data collected by the Sample Analysis at Mars (SAM) instrument on the Curiosity Rover can be integrated with Mars analog work in order to better understand the fixation and mobility of nitrogen on Mars, and thus its availability to putative biology. In particular, the relationship between nitrate and other soluble salts may help reveal the timing of nitrogen fixation and post-depositional behavior of nitrate on Mars. In addition, in situ measurements of nitrogen abundance and isotopic composition may be used to model atmospheric conditions on early Mars.

  14. Using Wind Driven Tumbleweed Rovers to Explore Martian Gully Features

    Science.gov (United States)

    Antol, Jeffrey; Woodard, Stanley E.; Hajos, Gregory A.; Heldmann, Jennifer L.; Taylor, Bryant D.

    2005-01-01

    Gully features have been observed on the slopes of numerous Martian crater walls, valleys, pits, and graben. Several mechanisms for gully formation have been proposed, including: liquid water aquifers (shallow and deep), melting ground ice, snow melt, CO2 aquifers, and dry debris flow. Remote sensing observations indicate that the most likely erosional agent is liquid water. Debate concerns the source of this water. Observations favor a liquid water aquifer as the primary candidate. The current strategy in the search for life on Mars is to "follow the water." A new vehicle known as a Tumbleweed rover may be able to conduct in-situ investigations in the gullies, which are currently inaccessible by conventional rovers. Deriving mobility through use of the surface winds on Mars, Tumbleweed rovers would be lightweight and relatively inexpensive thus allowing multiple rovers to be deployed in a single mission to survey areas for future exploration. NASA Langley Research Center (LaRC) is developing deployable structure Tumbleweed concepts. An extremely lightweight measurement acquisition system and sensors are proposed for the Tumbleweed rover that greatly increases the number of measurements performed while having negligible mass increase. The key to this method is the use of magnetic field response sensors designed as passive inductor-capacitor circuits that produce magnetic field responses whose attributes correspond to values of physical properties for which the sensors measure. The sensors do not need a physical connection to a power source or to data acquisition equipment resulting in additional weight reduction. Many of the sensors and interrogating antennae can be directly placed on the Tumbleweed using film deposition methods such as photolithography thus providing further weight reduction. Concepts are presented herein for methods to measure subsurface water, subsurface metals, planetary winds and environmental gases.

  15. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars

    NARCIS (Netherlands)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; Franz, H. B.; Atreya, S. K.; Brinckerhoff, W. B.; Cabane, M.; Coll, P.; Conrad, P. G.; Des Marais, D. J.; Dworkin, J. P.; Fairén, A. G.; François, P.; Grotzinger, J. P.; Kashyap, S.; ten Kate, I. L.; Leshin, L. A.; Malespin, C. A.; Martin, M. G.; Martin-Torres, F. J.; Mcadam, A. C.; Ming, D. W.; Navarro-González, R.; Pavlov, A. A.; Prats, B. D.; Squyres, S. W.; Steele, A.; Stern, J. C.; Sumner, D. Y.; Sutter, B.; Zorzano, M. P.

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. C

  16. Interactive 3D Mars Visualization

    Science.gov (United States)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  17. Mars Museum Visualization Alliance

    Science.gov (United States)

    Sohus, A. M.; Viotti, M. A.; de Jong, E. M.

    2004-11-01

    The Mars Museum Visualization Alliance is a collaborative effort funded by the Mars Public Engagement Office and supported by JPL's Informal Education staff and the Solar System Visualization Project to share the adventure of exploration and make Mars a real place. The effort started in 2002 with a small working group of museum professionals to learn how best to serve museum audiences through informal science educators. By the time the Mars Exploration Rovers landed on Mars in January 2004, over 100 organizations were partners in the Alliance, which has become a focused community of Mars educators. The Alliance provides guaranteed access to images, information, news, and resources for use by the informal science educators with their students, educators, and public audiences. Thousands of people have shared the adventure of exploring Mars and now see it as a real place through the efforts of the Mars Museum Visualization Alliance partners. The Alliance has been lauded for "providing just the right inside track for museums to do what they do best," be that webcasts, live presentations with the latest images and information, high-definition productions, planetarium shows, or hands-on educational activities. The Alliance is extending its mission component with Cassini, Genesis, Deep Impact, and Stardust. The Mars Exploration and Cassini Programs, as well as the Genesis, Deep Impact, and Stardust Projects, are managed for NASA by the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.

  18. The Mars Pathfinder Mission

    Science.gov (United States)

    Golombek, M. P.

    1996-09-01

    The Mars Pathfinder mission is a Discovery class mission that will place a small lander and rover on the surface of Mars on July 4, 1997. The Pathfinder flight system is a single small lander, packaged within an aeroshell and back cover with a back-pack-style cruise stage. The vehicle will be launched, fly independently to Mars, and enter the atmosphere directly on approach behind the aeroshell. The vehicle is slowed by a parachute and 3 small solid rockets before landing on inflated airbags. Petals of a small tetrahedron shaped lander open up, to right the vehicle. The lander is solar powered with batteries and will operate on the surface for up to a year, downlinking data on a high-gain antenna. Pathfinder will be the first mission to use a rover, with 3 imagers and an alpha proton X-ray spectrometer, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which will provide a calibration point or "ground truth" for orbital remote sensing observations. The rover (includes a series of technology experiments), the instruments (including a stereo multispectral surface imager on a pop up mast and an atmospheric structure instrument-surface meteorology package) and the telemetry system will allow investigations of: the surface morphology and geology at meter scale, the petrology and geochemistry of rocks and soils, the magnetic properties of dust, soil mechanics and properties, a variety of atmospheric investigations and the rotational and orbital dynamics of Mars. Landing downstream from the mouth of a giant catastrophic outflow channel, Ares Vallis, offers the potential of identifying and analyzing a wide variety of crustal materials, from the ancient heavily cratered terrain, intermediate-aged ridged plains and reworked channel deposits, thus allowing first-order scientific investigations of the early differentiation and evolution of the crust, the development of weathering products and early environments and conditions on Mars.

  19. Human Mars Surface Mission Nuclear Power Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2018-01-01

    A key decision facing Mars mission designers is how to power a crewed surface field station. Unlike the solar-powered Mars Exploration Rovers (MER) that could retreat to a very low power state during a Martian dust storm, human Mars surface missions are estimated to need at least 15 kilowatts of electrical (kWe) power simply to maintain critical life support and spacecraft functions. 'Hotel' loads alone for a pressurized crew rover approach two kWe; driving requires another five kWe-well beyond what the Curiosity rover’s Radioisotope Power System (RPS) was designed to deliver. Full operation of a four-crew Mars field station is estimated at about 40 kWe. Clearly, a crewed Mars field station will require a substantial and reliable power source, beyond the scale of robotic mission experience. This paper explores the applications for both fission and RPS nuclear options for Mars.

  20. Absolute Navigation Information Estimation for Micro Planetary Rovers

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2016-03-01

    Full Text Available This paper provides algorithms to estimate absolute navigation information, e.g., absolute attitude and position, by using low power, weight and volume Microelectromechanical Systems-type (MEMS sensors that are suitable for micro planetary rovers. Planetary rovers appear to be easily navigable robots due to their extreme slow speed and rotation but, unfortunately, the sensor suites available for terrestrial robots are not always available for planetary rover navigation. This makes them difficult to navigate in a completely unexplored, harsh and complex environment. Whereas the relative attitude and position can be tracked in a similar way as for ground robots, absolute navigation information, unlike in terrestrial applications, is difficult to obtain for a remote celestial body, such as Mars or the Moon. In this paper, an algorithm called the EASI algorithm (Estimation of Attitude using Sun sensor and Inclinometer is presented to estimate the absolute attitude using a MEMS-type sun sensor and inclinometer, only. Moreover, the output of the EASI algorithm is fused with MEMS gyros to produce more accurate and reliable attitude estimates. An absolute position estimation algorithm has also been presented based on these on-board sensors. Experimental results demonstrate the viability of the proposed algorithms and the sensor suite for low-cost and low-weight micro planetary rovers.

  1. Extraterrestrial Moessbauer spectroscopy: more than 3 years of Mars exploration and developments for future missions

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Christian, E-mail: christian.schroeder-1@nasa.gov [NASA Johnson Space Center, Astromaterials Research and Exploration Science, Mail Code KR (United States); Klingelhoefer, Goestar, E-mail: klingel@mail.uni-mainz.de [Johannes Gutenberg-Universitaet, Institut fuer Anorganische und Analytische Chemie (Germany); Morris, Richard V., E-mail: richard.v.morris@nasa.gov [NASA Johnson Space Center, Astromaterials Research and Exploration Science, Mail Code KR (United States); Rodionov, Daniel S., E-mail: rodionov@iki.rssi.ru; Fleischer, Iris, E-mail: fleischi@uni-mainz.de; Blumers, Mathias, E-mail: mblumers@uni-mainz.de [Johannes Gutenberg-Universitaet, Institut fuer Anorganische und Analytische Chemie (Germany)

    2008-02-15

    After almost 4 years of operating on the surface of Mars, Moessbauer spectroscopy has become a mature technique for robotic planetary exploration. The combination of quantitative information about the distribution of Fe among its oxidation and coordination states, identification of Fe-bearing phases, and relative distribution of Fe among those phases provides valuable contributions to the search for past water activity, the assessment of past environmental conditions, and the suitability for life of the two NASA Mars Exploration Rover landing sites. Experience from the Mars Exploration Rover Mission highlights needs for improvement of the instruments for future missions such as the Russian Phobos-Grunt and the European ExoMars rover.

  2. Volatiles and Isotopes and the Exploration of Ancient and Modern Martian Habitability with the Curiosity Rover

    Science.gov (United States)

    Mhaffy, P. R.

    2015-01-01

    The Mars Science Laboratory Mission was designed to pave the way for the study of life beyond Earth through a search for a habitable environment in a carefully selected landing site on Mars. Its ongoing exploration of Gale Crater with the Curiosity Rover has provided a rich data set that revealed such an environment in an ancient lakebed [1]. Volatile and isotope measurements of both the atmosphere and solids contribute to our growing understanding of both modern and ancient environments.

  3. Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets

    Science.gov (United States)

    Nesnas, Issa A.; Pivtoraiko, Mihail N.; Kelly, Alonzo; Fleder, Michael

    2012-01-01

    This software controls a rover platform to traverse rocky terrain autonomously, plan paths, and avoid obstacles using its stereo hazard and navigation cameras. It does so while continuously tracking a target of interest selected from 10 20 m away. The rover drives and tracks the target until it reaches the vicinity of the target. The rover then positions itself to approach the target, deploys its robotic arm, and places the end effector instrument on the designated target to within 2-3-cm accuracy of the originally selected target. This software features continuous navigation in a fairly rocky field in an outdoor environment and the ability to enable the rover to avoid large rocks and traverse over smaller ones. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover s mast cameras. The navigation software uses stereo imaging, traversability analysis, path planning, trajectory generation, and trajectory execution. It also includes visual target tracking of a designated target selected from 10 m away while continuously navigating the rocky terrain. Improvements in this design include steering while driving, which uses continuous curvature paths. There are also several improvements to the traversability analyzer, including improved data fusion of traversability maps that result from pose estimation uncertainties, dealing with boundary effects to enable tighter maneuvers, and handling a wider range of obstacles. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight, thread-the-needle maneuvers. These algorithms were integrated on the newly refurbished Athena Mars research rover, and were fielded in the JPL Mars Yard. Forty-three runs were conducted with targets at distances ranging from 5 to 15 m, and a success rate of 93% was achieved for placement of the instrument within

  4. Atacama Rover Astrobiology Drilling Studies: Roving to Find Subsurface Preserved Biomarkers

    Science.gov (United States)

    Glass, B.; Davila, A.; Parro, V.; Quinn, R.; Willis, P.; Brinckerhoff, W.; DiRuggiero, J.; Williams, M.; Bergman, D.; Stoker, C.

    2016-05-01

    The ARADS project is a NASA PSTAR that will drill into a Mars analog site in search of biomarkers. Leading to a field test of an integrated rover-drill system with four prototype in-situ instruments for biomarker detection and analysis.

  5. Twin Baryogenesis

    CERN Document Server

    Farina, Marco; Shin, Chang Sub

    2016-01-01

    In the context of Twin Higgs models, we study a simple mechanism that simultaneously generates asymmetries in the dark and visible sector through the out-of-equilibrium decay of a TeV scale particle charged under a combination of baryon and twin baryon number. We predict the dark matter to be a 5 GeV twin baryon, which is easy to achieve because of the similarity between the two confinement scales. Dark matter is metastable and can decay to three quarks, yielding indirect detection signatures. The mechanism requires the introduction of a new colored particle, typically within the reach of the LHC, of which we study the rich collider phenomenology, including prompt and displaced dijets, multi-jets, monojets and monotops.

  6. APXS on board Chandrayaan-2 Rover

    Science.gov (United States)

    Shanmugam, M.; Sripada, V. S. Murty; Acharya, Y. B.; Goyal, S. K.

    2012-07-01

    Alpha Particle X-ray Spectrometer (APXS) is a well proven instrument for quantitative in situ elemental analysis of the planetary surfaces and has been successfully employed for Mars surface exploration. Chandrayaan-2, ISRO's second lunar mission having an Orbiter, Lander and Rover has provided an opportunity to explore the lunar surface with superior detectors such as Silicon Drift Detector (SDD) with energy resolution of about 150eV @ 5.9keV. The objective of the APXS instrument is to analyse several soil/rock samples along the rover traverse for the major elements with characteristic X-rays in 1 to 25keV range. The working principle of APXS involves measuring the intensity of characteristic X-rays emitted from the sample due to Alpha Particle Induced X-ray Emission (PIXE) and X-ray florescence (XRF) processes using suitable radioactive sources, allowing the determination of elements from Na to Br, spanning the energy range of 0.9 to 16keV. For this experiment ^{244}Cm radioactive source has been chosen which emits both Alpha particles (5.8MeV) and X-rays (14.1keV, 18keV). APXS uses six Alpha sources, each about 5mCi activity. Unlike Mars, lunar environment poses additional challenges due to the regolith and extreme surface temperature changes, to operate the APXS. Our APXS instrument consists of two packages namely APXS sensor head and APXS signal electronics. The sensor head assembly contains SDD, six alpha sources and front end electronic circuits such as preamplifier and shaper circuits and will be mounted on a robotic arm which on command brings the sensor head close to the lunar surface at a height of 35±10mm. SDD module to be used in the experiment has 30mm ^{2} active detector area with in-built peltier cooler and heat sink to maintain the detector at about -35°C. The detector is covered with 8 micron thick Be window which results in the low energy threshold of about 1keV. The size of the APXS sensor head is 70x70x70mm ^{3} (approx). APXS signal

  7. Lunar Rover Drivetrain Development to TRL-6

    Science.gov (United States)

    Visscher, P.; Edmundson, P.; Ghafoor, N.; Jones, H.; Kleinhenz, J.; Picard, M.

    2015-10-01

    The LRPDP and SPRP rovers are designed to provide high mobility and robustness in a lunar working environment and are compatible with various lunar surface activities. TRL-6 testing is scheduled for late 2015 on the rover drivetrain components.

  8. Human Robotic Systems (HRS): Rover Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In FY15, the HRS Rover Technologies will begin design of a prototype rover designed for the lunar surface, begin development of resource efficient navigation...

  9. Autonomous Rover for Polar GPR Surveys

    Science.gov (United States)

    Ray, L.; Lever, J. H.; Courville, Z.; Walker, B.; Arcone, S. A.

    2015-12-01

    We deployed Yeti, an 80-kg, 4WD battery-powered rover to conduct ground-penetrating radar (GPR) surveys over crevasse-ridden ice sheets in Antarctica and Greenland. The rover navigated using GPS waypoint following and had 3 - 4 hr endurance at 5 km/hr while towing 60 - 70 kg of GPR equipment. Yeti's low ground pressure allowed it to cross thinly bridged crevasses without interrupting a survey. In Feb - Mar 2014, Yeti executed 23 autonomous GPR surveys covering 94 km of terrain on the ice transition to the main ice sheet in northwest Greenland. This was the first robotic effort directly to support manual crevasse surveys to map a safe route for vehicle travel, in this case a resupply traverse to Summit Station. Yeti towed a radar controller, 400 MHz antenna, GPS receiver and battery pack. Radar scan rate was 16 scans/m and pulse timing allowed good spatial resolution to about 20-m depth. The resulting data allowed us to map hundreds of subsurface crevasses and provide the results nightly to the manual survey team to compliment its efforts. We met our objectives: (a) to enhance operational efficiency of the concurrent manual surveys, and (b) to create a geo-referenced database of crevasse signatures to validate aerial- and satellite-based crevasse-mapping platforms. In Oct - Nov 2014, we deployed Yeti in Antarctica to conduct systematic GPR surveys across a crevasse-ridden section of the shear margin between the Ross and McMurdo ice shelves and thereby gain insight into its state of fracture and long-term stability. Yeti flawlessly executed a total of 613 km of autonomous GPR surveys at temperatures as low as - 33ºC. The rover towed a a radar controlling a 400 MHz and a 200 MHz antenna, the latter added to profile 160 m through the ice sheet. The main survey grid covered 5.7 km x 5.0 km, with survey lines at 50-m spacing oriented west-east across the Shear Zone (575 km total length). Yeti's tracks normally deviated only 1 - 2 m from a straight line between the two

  10. Revolutionary High Mobility Rovers for Rugged Terrain

    Science.gov (United States)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Cheung, C. Y.; Wesenberg, R. P.; Dorband, J. E.; Lunsford, A. W.

    2006-05-01

    Reconfigurable architecture is essential in exploration because reaching features of the great potential interest, whether searching for life in volcanic terrain or water in at the bottom of craters, will require crossing a wide range of terrains. Such areas of interest are largely inaccessible to permanently appendaged vehicles. For example, morphology and geochemistry of interior basins, walls, and ejecta blankets of volcanic or impact structures must all be studied to understand the nature of a geological event. One surface might be relatively flat and navigable, while another could be rough, variably sloping, broken, or dominated by unconsolidated debris. To be totally functional, structures must form pseudo-appendages varying in size, rate, and manner of deployment (gait). We have already prototyped a simple robotic walker from a single reconfigurable tetrahedron (with struts as sides and nodes as apices) capable of tumbling and are simulating and building a prototype of the more evolved 12Tetrahedral Walker (Autonomous Moon or Mars Investigator) which has interior nodes for payload, more continuous motion, and is commandable through a user friendly interface. We are currently developing a more differentiated architecture to form detachable, reconfigurable, reshapable linearly extendable bodies to act as manual assistant subsystems on rovers, with extensions terminating in a wider range of sensors. We are now simulating gaits for and will be building a prototype rover arm. Ultimately, complex continuous n-tetrahedral structures will have deployable outer skin, and even higher degrees of freedom. Tetrahedral rover advantages over traditional wheeled or tread robots are being demonstrated and include abilities to: 1) traverse terrain more rugged in terms of slope, roughness, and obstacle size; 2) precisely place and lower instruments into hard-to-reach crevices; 3) sample more locations per unit time; 4) conform to virtually any terrain; 5) avoid falling down or

  11. The case for Mars III: Strategies for exploration - Technical

    Science.gov (United States)

    Stoker, Carol R. (Editor)

    1989-01-01

    Papers on issues related to Mars exploration are presented, covering topics such as the social implications of manned missions to Mars, mission strategies, mission designs, the economics of a Mars mission, Space Station support for a Mars mission, a Diagnostic and Environmental Monitoring System, and a zero-g CELSS/recreation facility for an earth/Mars crew shuttle. Other topics include biomedical concerns and fitness in spaceflight, spaceflight environment habitability, the Mars Rover/Sample Return Mission, a rooitic Mars surface sampler, a Mars Orbiter, and scientific goals of Mars exploration. Additional topics include Space Station evolution, mission options, modeling advanced space systems, computer support for Mars missions, launch system options, advanced propulsion techniques, the utilization of resources on Mars, the development of a Martian base, and options for mobility on Mars.

  12. Mars Science Laboratory Entry, Descent, and Landing System Overview

    Science.gov (United States)

    Steltzner, Adam D.; Burkhart, P. Dan; Chen, Allen; Comeaux, Keith A.; Guernsey, Carl S.; Kipp, Devin M.; Lorenzoni, Leila V.; Mendeck, Gavin F.; Powell, Richard W.; Rivellini, Tommaso P.; San Martin, A. Miguel; Sell, Steven W.; Prakash, Ravi; Way, David W.

    2010-01-01

    In 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems by delivering the largest and most capable rover to date to the surface of Mars. In addition to landing more mass than prior missions to Mars, MSL will offer access to regions of Mars that have been previously unreachable. The MSL EDL sequence is a result of a more stringent requirement set than any of its predecessors. Notable among these requirements is landing a 900 kg rover in a landing ellipse much smaller than that of any previous Mars lander. In meeting these requirements, MSL is extending the limits of the EDL technologies qualified by the Mars Viking, Mars Pathfinder, and Mars Exploration Rover missions. Thus, there are many design challenges that must be solved for the mission to be successful. Several pieces of the EDL design are technological firsts, such as guided entry and precision landing on another planet, as well as the entire Sky Crane maneuver. This paper discusses the MSL EDL architecture and discusses some of the challenges faced in delivering an unprecedented rover payload to the surface of Mars.

  13. VR for Mars Pathfinder

    Science.gov (United States)

    Blackmon, Theodore

    1998-01-01

    Virtual reality (VR) technology has played an integral role for Mars Pathfinder mission, operations Using an automated machine vision algorithm, the 3d topography of the Martian surface was rapidly recovered fro -a the stereo images captured. by the Tender camera to produce photo-realistic 3d models, An advanced, interface was developed for visualization and interaction with. the virtual environment of the Pathfinder landing site for mission scientists at the Space Flight Operations Facility of the Jet Propulsion Laboratory. The VR aspect of the display allowed mission scientists to navigate on Mars in Bud while remaining here on Earth, thus improving their spatial awareness of the rock field that surrounds the lenders Measurements of positions, distances and angles could be easily extracted from the topographic models, providing valuable information for science analysis and mission. planning. Moreover, the VR map of Mars has also been used to assist with the archiving and planning of activities for the Sojourner rover.

  14. ExoMars 2018 Landing Site Selection Process

    Science.gov (United States)

    Vago, Jorge L.; Kminek, Gerhard; Rodionov, Daniel

    The ExoMars 2018 mission will include two science elements: a Rover and a Surface Platform. The ExoMars Rover will carry a comprehensive suite of instruments dedicated to geology and exobiology research named after Louis Pasteur. The Rover will be able to travel several kilometres searching for traces of past and present signs of life. It will do this by collecting and analysing samples from outcrops, and from the subsurface—down to 2-m depth. The very powerful combination of mobility with the ability to access locations where organic molecules can be well preserved is unique to this mission. After the Rover will have egressed, the ExoMars Surface Platform will begin its science mission to study the surface environment at the landing location. This talk will describe the landing site selection process and introduce the scientific, planetary protection, and engineering requirements that candidate landing sites must comply with in order to be considered for the mission.

  15. Integrated Development Environment for Rover

    OpenAIRE

    Murali, S; N. Jaisankar

    2013-01-01

    Today, robotics is an auspicious and fast-growing branch of technology that involves the manufacturing, design, and maintenance of robot machines that can operate in an autonomous fashion and can be used in a wide variety of applications including space exploration, weaponry, household, and transportation. More particularly, in space applications, a common type of robots has been of widespread use in the recent years. It is called planetary rover which is a robot vehicle that moves across the...

  16. ExoMars 2016 arrives at Mars

    Science.gov (United States)

    Svedhem, Hakan; Vago, Jorge L.; ExoMars Team

    2016-10-01

    The Trace Gas Orbiter (TGO) and the Schiaparelli Entry, descent and landing Demonstrator Model (EDM) will arrive at Mars on 19 October 2016. The TGO and the EDM are part of the first step of the ExoMars Programme. They will be followed by a Rover and a long lived Surface Platform to be launched in 2020.The EDM is attached to the TGO for the full duration of the cruise to Mars and will be separated three days before arrival at Mars. After separation the TGO will perform a deflection manoeuvre and, on 19 October (during the EDM landing), enter into a highly elliptical near equatorial orbit. TGO will remain in this parking orbit until January 2017, when the orbital plane inclination will be changed to 74 degrees and aerobraking to the final 400 km near circular orbit will start. The final operational orbit is expected to be reached at the end of 2017.The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector for search of subsurface hydrogen. The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The main objective of the EDM is to demonstrate the capability of performing a safe entry, descent and landing on the surface, but it does carry a descent camera and a small battery powered meteorological package that may operate for a few days on the surface.The ExoMars programme is a joint activity by the European Space Agency(ESA) and ROSCOSMOS, Russia. ESA is providing the TGO spacecraft and Schiaparelli (EDM) and two of the TGO instruments and ROSCOSMOS is providing the launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission at the surface of Mars, the TGO will handle the communication between the Earth and the Rover and

  17. Multijunction Solar Cells Optimized for the Mars Surface Solar Spectrum

    Science.gov (United States)

    Edmondson, Kenneth M.; Fetzer, Chris; Karam, Nasser H.; Stella, Paul; Mardesich, Nick; Mueller, Robert

    2007-01-01

    This paper gives an update on the performance of the Mars Exploration Rovers (MER) which have been continually performing for more than 3 years beyond their original 90-day missions. The paper also gives the latest results on the optimization of a multijunction solar cell that is optimized to give more power on the surface of Mars.

  18. MOMA: the challenge to search for organics and biosignatures on Mars

    Science.gov (United States)

    Goetz, W.; Brinckerhoff, W. B.; Arevalo, R.; Freissinet, C.; Getty, S.; Glavin, D. P.; Siljeström, S.; Buch, A.; Stalport, F.; Grubisic, A.; Li, X.; Pinnick, V.; Danell, R.; van Amerom, F. H. W.; Goesmann, F.; Steininger, H.; Grand, N.; Raulin, F.; Szopa, C.; Meierhenrich, U.; Brucato, J. R.

    2016-07-01

    This paper describes strategies to search for, detect, and identify organic material on the surface and subsurface of Mars. The strategies described include those applied by landed missions in the past and those that will be applied in the future. The value and role of ESA's ExoMars rover and of her key science instrument Mars Organic Molecule Analyzer (MOMA) are critically assessed.

  19. Rocks: Windows to History of Mars

    Science.gov (United States)

    2004-01-01

    This full-resolution image taken by the panoramic camera onboard the Mars Exploration Rover Spirit before it rolled off the lander shows the rocky surface of Mars. Scientists are eager to begin examining the rocks because, unlike soil, these 'little time capsules' hold memories of the ancient processes that formed them. Data from the camera's red, green and blue filters were combined to create this approximate true color picture.

  20. Rocks: Windows to History of Mars-2

    Science.gov (United States)

    2004-01-01

    This full-resolution image taken by the panoramic camera onboard the Mars Exploration Rover Spirit before it rolled off the lander shows the rocky surface of Mars. Scientists are eager to begin examining the rocks because, unlike soil, these 'little time capsules' hold memories of the ancient processes that formed them. The lander's deflated airbags can be seen in the foreground. Data from the camera's red, green and blue filters were combined to create this approximate true color picture.

  1. Volatile and Isotopic Imprints of Ancient Mars

    Science.gov (United States)

    Mahaffy, Paul R.; Conrad, Pamela G.

    2015-01-01

    The science investigations enabled by Curiosity rover's instruments focus on identifying and exploring the habitability of the Martian environment. Measurements of noble gases, organic and inorganic compounds, and the isotopes of light elements permit the study of the physical and chemical processes that have transformed Mars throughout its history. Samples of the atmosphere, volatiles released from soils, and rocks from the floor of Gale Crater have provided a wealth of new data and a window into conditions on ancient Mars.

  2. Visual Feedback for Rover-based Coring

    Science.gov (United States)

    Backes, Paul; Helmick, Daniel; Bajracharya, Max

    2008-01-01

    Technology for coring from a low-mass rover has been developed to enable core sample acquisition where a planetary rover experiences moderate slip during the coring operation. A new stereo vision technique, Absolute Motion Visual Odometry, is used to measure rover slip during coring and the slip is accommodated through corresponding arm pose updating. Coring rate is controlled by feedback of themeasured force of the coring tool against the environment. Test results in the JPL Marsyard show for the first time that coring from a low-mass rover with slip is feasible.

  3. Rover-Based Instrumentation and Scientific Investigations During the 2012 Analog Field Test on Mauna Kea Volcano, Hawaii

    Science.gov (United States)

    Graham, L. D.; Graff, T. G.

    2013-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) were recently completed on Mauna Kea Volcano, Hawaii. Scientific investigations, scientific input, and operational constraints were tested in the context of existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration [1]. Several investigations were conducted by the rover mounted instruments to determine key geophysical and geochemical properties of the site, as well as capture the geological context of the area and the samples investigated. The rover traverse and associated science investigations were conducted over a three day period on the southeast flank of the Mauna Kea Volcano, Hawaii. The test area was at an elevation of 11,500 feet and is known as "Apollo Valley" (Fig. 1). Here we report the integration and operation of the rover-mounted instruments, as well as the scientific investigations that were conducted.

  4. Mars Science Laboratory Entry Guidance Improvements for Mars 2018 (DRAFT)

    Science.gov (United States)

    Garcia-Llama, Eduardo; Winski, Richard G.; Shidner, Jeremy D.; Ivanov, Mark C.; Grover, Myron R.; Prakash, Ravi

    2011-01-01

    In 2011, the Mars Science Laboratory (MSL) will be launched in a mission to deliver the largest and most capable rover to date to the surface of Mars. A follow on MSL-derived mission, referred to as Mars 2018, is planned for 2018. Mars 2018 goals include performance enhancements of the Entry, Descent and Landing over that of its predecessor MSL mission of 2011. This paper will discuss the main elements of the modified 2018 EDL preliminary design that will increase performance on the entry phase of the mission. In particular, these elements will increase the parachute deploy altitude to allow for more time margin during the subsequent descent and landing phases and reduce the delivery ellipse size at parachute deploy through modifications in the entry reference trajectory design, guidance trigger logic design, and the effect of additional navigation hardware.

  5. Mechanical design of the Mars Pathfinder mission

    Science.gov (United States)

    Eisen, Howard Jay; Buck, Carl W.; Gillis-Smith, Greg R.; Umland, Jeffrey W.

    1997-01-01

    The Mars Pathfinder mission and the Sojourner rover is reported on, with emphasis on the various mission steps and the performance of the technologies involved. The mechanical design of mission hardware was critical to the success of the entry sequence and the landing operations. The various mechanisms employed are considered.

  6. Planning for the V&V of infused software technologies for the Mars Science Laboratory Mission

    Science.gov (United States)

    Feather, Martin S.; Fesq, Lorraine M.; Ingham, Michel D.; Klein, Suzanne L.; Nelson, Stacy D.

    2004-01-01

    NASA's Mars Science Laboratory (MSL) rover mission is planning to make use of advanced software technologies in order to support fulfillment of its ambitious science objectives. The mission plans to adopt the Mission Data System (MDS) as the mission software architecture, and plans to make significant use of on-board autonomous capabilities for the rover software.

  7. 2031, an edaphological Mars odyssey

    Science.gov (United States)

    Barrón, Vidal

    2016-04-01

    NASA is projecting to send humans to Mars in the 2030s. In the PICO session we will make a 4D experience, a journey in space and time. Wéll connect with a meeting in the future mission "Edaphos one" travelling to Mars in 2031. In that meeting, an international scientific team with one geophysicist, one mineralogist and two agronomist will review the state of the art of the geo-edaphological knowledge of the martian surface, based on the main Mars missions using orbiters (Mariner), landers (Viking) and rovers (Pathfinder, Spirit-Opportunity, Curiosity). A special attention will be devoted to the mineralogy of the iron oxides, as important aquamarkers. Finally, they discuss about the biological, physical and chemical limitations for plants growth on Mars. You can see the trailer of the presentation in this link: https://www.youtube.com/watch?v=yRS0tPNpvFU

  8. Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars

    Science.gov (United States)

    Schröder, Christian; Bland, Phil A.; Golombek, Matthew P.; Ashley, James W.; Warner, Nicholas H.; Grant, John A.

    2016-11-01

    Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremely arid and seemingly inhospitable. To evaluate exactly how dry today's environment is, it is important to understand the ongoing current weathering processes. Here we present chemical weathering rates determined for Mars. We use the oxidation of iron in stony meteorites investigated by the Mars Exploration Rover Opportunity at Meridiani Planum. Their maximum exposure age is constrained by the formation of Victoria crater and their minimum age by erosion of the meteorites. The chemical weathering rates thus derived are ~1 to 4 orders of magnitude slower than that of similar meteorites found in Antarctica where the slowest rates are observed on Earth.

  9. Automation Rover for Extreme Environments

    Science.gov (United States)

    Sauder, Jonathan; Hilgemann, Evan; Johnson, Michael; Parness, Aaron; Hall, Jeffrey; Kawata, Jessie; Stack, Kathryn

    2017-01-01

    Almost 2,300 years ago the ancient Greeks built the Antikythera automaton. This purely mechanical computer accurately predicted past and future astronomical events long before electronics existed1. Automata have been credibly used for hundreds of years as computers, art pieces, and clocks. However, in the past several decades automata have become less popular as the capabilities of electronics increased, leaving them an unexplored solution for robotic spacecraft. The Automaton Rover for Extreme Environments (AREE) proposes an exciting paradigm shift from electronics to a fully mechanical system, enabling longitudinal exploration of the most extreme environments within the solar system.

  10. Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond

    National Research Council Canada - National Science Library

    Vasavada, A. R; Grotzinger, J. P; Arvidson, R. E; Calef, F. J; Crisp, J. A; Gupta, S; Hurowitz, J; Mangold, N; Maurice, S; Schmidt, M. E; Wiens, R. C; Williams, R. M. E; Yingst, R. A

    2014-01-01

    The Mars Science Laboratory mission reached Bradbury Landing in August 2012. In its first 500 sols, the rover Curiosity was commissioned and began its investigation of the habitability of past and present environments within Gale Crater...

  11. A Miniature Compressor for In Situ Resource Utilization on Mars Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A key objective for NASA's next rover mission to Mars is the demonstration of oxygen production from atmospheric carbon dioxide. Such a technology demonstration may...

  12. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory.

    Science.gov (United States)

    Zeitlin, C; Hassler, D M; Cucinotta, F A; Ehresmann, B; Wimmer-Schweingruber, R F; Brinza, D E; Kang, S; Weigle, G; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Köhler, J; Martin, C; Posner, A; Rafkin, S; Reitz, G

    2013-05-31

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert.

  13. The Qingdao Twin Registry

    DEFF Research Database (Denmark)

    Duan, Haiping; Ning, Feng; Zhang, Dongfeng;

    2013-01-01

    In 1998, the Qingdao Twin Registry was initiated as the main part of the Chinese National Twin Registry. By 2005, a total of 10,655 twin pairs had been recruited. Since then new twin cohorts have been sampled, with one longitudinal cohort of adolescent twins selected to explore determinants...... of metabolic disorders and health behaviors during puberty and young adulthood. Adult twins have been sampled for studying heritability of multiple phenotypes associated with metabolic disorders. In addition, an elderly twin cohort has been recruited with a focus on genetic studies of aging-related phenotypes...

  14. Twin Jet

    Science.gov (United States)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  15. A system architecture for a planetary rover

    Science.gov (United States)

    Smith, D. B.; Matijevic, J. R.

    1989-01-01

    Each planetary mission requires a complex space vehicle which integrates several functions to accomplish the mission and science objectives. A Mars Rover is one of these vehicles, and extends the normal spacecraft functionality with two additional functions: surface mobility and sample acquisition. All functions are assembled into a hierarchical and structured format to understand the complexities of interactions between functions during different mission times. It can graphically show data flow between functions, and most importantly, the necessary control flow to avoid unambiguous results. Diagrams are presented organizing the functions into a structured, block format where each block represents a major function at the system level. As such, there are six blocks representing telecomm, power, thermal, science, mobility and sampling under a supervisory block called Data Management/Executive. Each block is a simple collection of state machines arranged into a hierarchical order very close to the NASREM model for Telerobotics. Each layer within a block represents a level of control for a set of state machines that do the three primary interface functions: command, telemetry, and fault protection. This latter function is expanded to include automatic reactions to the environment as well as internal faults. Lastly, diagrams are presented that trace the system operations involved in moving from site to site after site selection. The diagrams clearly illustrate both the data and control flows. They also illustrate inter-block data transfers and a hierarchical approach to fault protection. This systems architecture can be used to determine functional requirements, interface specifications and be used as a mechanism for grouping subsystems (i.e., collecting groups of machines, or blocks consistent with good and testable implementations).

  16. Abundance and isotopic composition of gases in the martian atmosphere from the Curiosity rover

    NARCIS (Netherlands)

    Mahaffy, P.R.; Webster, C.R.; Atreya, S.K.; Franz, H.; Wong, M.; Conrad, P.G.; Harpold, D.; Jones, J.J.; Leshin, L.A.; Manning, H.; Owen, T.; Pepin, R.O.; Squyres, S.; Trainer, M.; MSL Science Team, the|info:eu-repo/dai/nl/292012217

    2013-01-01

    Volume mixing and isotope ratios secured with repeated atmospheric measurements taken with the Sample Analysis at Mars instrument suite on the Curiosity rover are: carbon dioxide (CO2), 0.960(±0.007); argon-40 (40Ar), 0.0193(±0.0001); nitrogen (N2), 0.0189(±0.0003); oxygen, 1.45(±0.09) × 10−3;

  17. Abundance and isotopic composition of gases in the martian atmosphere from the Curiosity rover

    NARCIS (Netherlands)

    Mahaffy, P.R.; Webster, C.R.; Atreya, S.K.; Franz, H.; Wong, M.; Conrad, P.G.; Harpold, D.; Jones, J.J.; Leshin, L.A.; Manning, H.; Owen, T.; Pepin, R.O.; Squyres, S.; Trainer, M.; MSL Science Team, the

    2013-01-01

    Volume mixing and isotope ratios secured with repeated atmospheric measurements taken with the Sample Analysis at Mars instrument suite on the Curiosity rover are: carbon dioxide (CO2), 0.960(±0.007); argon-40 (40Ar), 0.0193(±0.0001); nitrogen (N2), 0.0189(±0.0003); oxygen, 1.45(±0.09) × 10−3; carbo

  18. The ExoMars 2016 Mission arriving at Mars

    Science.gov (United States)

    Svedhem, H.; Vago, J. L.

    2016-12-01

    The ExoMars 2016 mission was launched on a Proton rocket from Baikonur, Kazakhstan, on 14 March 2016 and is scheduled to arrive at Mars on 19 October 2016. ExoMars is a joint programme of the European Space Agency (ESA) and Roscosmos, Russia. It consists of the ExoMars 2016 mission with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, EDM, named Schiaparelli, and the ExoMars 2020 mission, which carries a lander and a rover. The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector to search for subsurface hydrogen (as proxy for water ice and hydrated minerals). The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The EDM is carried to Mars by the TGO and is separated three days before arrival at Mars. In addition to demonstrating the landing capability two scientific investigations are included with the EDM. The AMELIA investigation aims at characterising the Martian atmosphere during the entry and descent using technical and engineering sensors of the EDM, and the DREAMS suite of sensors that will characterise the environment of the landing site for a few days after the landing. ESA provides the TGO spacecraft and the Schiaparelli Lander demonstrator, ESA member states provide two of the TGO instruments and Roscosmos provides the launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission at the surface of Mars, the TGO will handle all communications between the Earth and the Rover. The communication between TGO and the rover/lander is done through a UHF communications system, a contribution from NASA. This presentation will cover a description of the 2016 mission, including the spacecraft

  19. Deformation twinning in monazite

    Energy Technology Data Exchange (ETDEWEB)

    Hay, R.S.; Marshall, D.B

    2003-10-20

    Polycrystalline monazite (LaPO{sub 4}) was deformed at room temperature by a spherical indenter. Deformation twins were identified by TEM in 70 grains. Five twin planes were found: (100) was by far the most common; (001) and (120) were less common; (122-bar)was rare, and kinks in (120) twins were identified as irrational '(483)' twin planes. The twinning modes on these planes were inferred from the expression of twinning shear at free surfaces, predictions of classical deformation twinning theory, and various considerations of twin morphology and crystal structure. Atomic shuffle calculations that allow formation of either a glide plane or a mirror plane at the twin interface were used to analyze twin modes. The inferred twin modes all have small atomic shuffles. For (001) twins, the smallest shuffles were obtained with a glide plane at the interface, with displacement vector R=((1)/(2))[010]. The results do not uniquely define a twin mode on (100), leaving open the possibility of more than one mode operating on this plane. Factors that may determine the operative deformation twinning modes are discussed. Crystal structure considerations suggest that the relative abundance of twinning modes may correlate with low shear modulus on the twin plane in the direction of twinning shear, and with a possible low-energy interface structure consisting of a layer of xenotime of one half-unit-cell thickness that could form at (100) and (001) twins. The three most common twins have low strains to low {sigma} coincidence site lattices (CSLs)

  20. Thermal and Electrical Analysis of Mars Rover RTGs

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred; Or, Chuen T; Skrabek, Emanuel A

    2012-01-19

    The RTG designs described in the preceding paper in these proceedings were analyzed for their thermal and electrical performance. Each analysis consisted of coupled thermal, thermoelectric, and electrical analyses, using Fairchild-generated specialized computer codes. These were supplemented with preliminary structural and mass analyses. For each design, various cases representing different operating conditions (water-cooled/radiation-cooled, BOM/EOM, summer/winter, day/night) and different thermoelectric performance assumptions (from conservative to optimistic) were analyzed; and for every case, the heat flow rates, temperatures and electrical performance of each layer of thermoelectric elements and of the overall RTG were determined. The analyses were performed in great detail, to obtain accurate answers permitting meaningful comparisons between different designs. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments.

  1. Performance Characterization of a Rover Navigation Algorithm Using Large-Scale Simulation

    Directory of Open Access Journals (Sweden)

    Richard Madison

    2007-01-01

    Full Text Available Autonomous rover navigation is a critical technology for robotic exploration of Mars. Simulation allows more extensive testing of such technologies than would be possible with hardware test beds alone. A large number of simulations, running in parallel, can test an algorithm under many different operating conditions to quickly identify the operational envelope of the technology and identify failure modes that were not discovered in more limited testing. GESTALT is the autonomous navigation algorithm developed for NASA's Mars rovers. ROAMS is a rover simulator developed to support the Mars program. We have integrated GESTALT into ROAMS to test closed-loop, autonomous navigation in simulation. We have developed a prototype capability to run many copies of ROAMS in parallel on a supercomputer, varying input parameters to rapidly explore GESTALT's performance across a parameter space. Using these tools, we have demonstrated that large scale simulation can identify performance limits and unexpected behaviors in an algorithm. Such parallel simulation was able to test approximately 500 parameter combinations in the time required for a single test on a hardware test bed.

  2. The MARS2013 Mars analog mission.

    Science.gov (United States)

    Groemer, Gernot; Soucek, Alexander; Frischauf, Norbert; Stumptner, Willibald; Ragonig, Christoph; Sams, Sebastian; Bartenstein, Thomas; Häuplik-Meusburger, Sandra; Petrova, Polina; Evetts, Simon; Sivenesan, Chan; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Stadler, Andrea; Stummer, Florian; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations.

  3. Mars Cameras Make Panoramic Photography a Snap

    Science.gov (United States)

    2008-01-01

    If you wish to explore a Martian landscape without leaving your armchair, a few simple clicks around the NASA Web site will lead you to panoramic photographs taken from the Mars Exploration Rovers, Spirit and Opportunity. Many of the technologies that enable this spectacular Mars photography have also inspired advancements in photography here on Earth, including the panoramic camera (Pancam) and its housing assembly, designed by the Jet Propulsion Laboratory and Cornell University for the Mars missions. Mounted atop each rover, the Pancam mast assembly (PMA) can tilt a full 180 degrees and swivel 360 degrees, allowing for a complete, highly detailed view of the Martian landscape. The rover Pancams take small, 1 megapixel (1 million pixel) digital photographs, which are stitched together into large panoramas that sometimes measure 4 by 24 megapixels. The Pancam software performs some image correction and stitching after the photographs are transmitted back to Earth. Different lens filters and a spectrometer also assist scientists in their analyses of infrared radiation from the objects in the photographs. These photographs from Mars spurred developers to begin thinking in terms of larger and higher quality images: super-sized digital pictures, or gigapixels, which are images composed of 1 billion or more pixels. Gigapixel images are more than 200 times the size captured by today s standard 4 megapixel digital camera. Although originally created for the Mars missions, the detail provided by these large photographs allows for many purposes, not all of which are limited to extraterrestrial photography.

  4. The Norwegian Twin Registry.

    Science.gov (United States)

    Nilsen, Thomas S; Brandt, Ingunn; Magnus, Per; Harris, Jennifer R

    2012-12-01

    Norway has a long-standing tradition in twin research, but the data collected in several population-based twin studies were not coordinated centrally or easily accessible to the scientific community. In 2009, the Norwegian Twin Registry was established at the Norwegian Institute of Public Health (NIPH) in Oslo with the purpose of creating a single research resource for Norwegian twin data. As of today, the Norwegian Twin Registry contains 47,989 twins covering birth years 1895-1960 and 1967-1979; 31,440 of these twins consented to participate in health-related research. In addition, DNA from approximately 4,800 of the twins is banked at the NIPH biobank and new studies are continually adding new data to the registry. The value of the Norwegian twin data is greatly enhanced by the linkage opportunities offered by Norway's many nationwide registries, spanning a broad array of medical, demographic, and socioeconomic information.

  5. Supporting lander and rover operation: a novel super-resolution restoration technique

    Science.gov (United States)

    Tao, Yu; Muller, Jan-Peter

    2015-04-01

    Higher resolution imaging data is always desirable to critical rover engineering operations, such as landing site selection, path planning, and optical localisation. For current Mars missions, 25cm HiRISE images have been widely used by the MER & MSL engineering team for rover path planning and location registration/adjustment. However, 25cm is not high enough resolution to be able to view individual rocks (≤2m in size) or visualise the types of sedimentary features that rover onboard cameras might observe. Nevertheless, due to various physical constraints (e.g. telescope size and mass) from the imaging instruments themselves, one needs to be able to tradeoff spatial resolution and bandwidth. This means that future imaging systems are likely to be limited to resolve features larger than 25cm. We have developed a novel super-resolution algorithm/pipeline to be able to restore higher resolution image from the non-redundant sub-pixel information contained in multiple lower resolution raw images [Tao & Muller 2015]. We will demonstrate with experiments performed using 5-10 overlapped 25cm HiRISE images for MER-A, MER-B & MSL to resolve 5-10cm super resolution images that can be directly compared to rover imagery at a range of 5 metres from the rover cameras but in our case can be used to visualise features many kilometres away from the actual rover traverse. We will demonstrate how these super-resolution images together with image understanding software can be used to quantify rock size-frequency distributions as well as measure sedimentary rock layers for several critical sites for comparison with rover orthorectified image mosaic to demonstrate optimality of using our super-resolution resolved image to better support future lander and rover operation in future. We present the potential of super-resolution for virtual exploration to the ˜400 HiRISE areas which have been viewed 5 or more times and the potential application of this technique to all of the ESA ExoMars

  6. Mineralogy by X-ray Diffraction on Mars: The Chemin Instrument on Mars Science Laboratory

    Science.gov (United States)

    Vaniman, D. T.; Bristow, T. F.; Bish, D. L.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Rampe, E. B.; Chipera, S. J.; Treiman, A. H.; Morrison, S. M.; Achilles, C. N.; Downs, R. T.; Farmer, J. D.; Crisp, J. A.; Morookian, J. M.; Des Marais, D. J.; Grotzinger, J. P.; Sarrazin, P.; Yen, A. S.

    2014-01-01

    To obtain detailed mineralogy information, the Mars Science Laboratory rover Curiosity carries CheMin, the first X-ray diffraction (XRD) instrument used on a planet other than Earth. CheMin has provided the first in situ XRD analyses of full phase assemblages on another planet.

  7. Lunar exploration rover program developments

    Energy Technology Data Exchange (ETDEWEB)

    Klarer, P.R.

    1993-09-01

    The Robotic All Terrain Lunar Exploration Rover (RATLER) design concept began at Sandia National Laboratories in late 1991 with a series of small, proof-of-principle, working scale models. The models proved the viability of the concept for high mobility through mechanical simplicity, and eventually received internal funding at Sandia National Laboratories for full scale, proof-of-concept prototype development. Whereas the proof-of-principle models demonstrated the mechanical design`s capabilities for mobility, the full scale proof-of-concept design currently under development is intended to support field operations for experiments in telerobotics, autonomous robotic operations, telerobotic field geology, and advanced man-machine interface concepts. The development program`s current status is described, including an outline of the program`s work over the past year, recent accomplishments, and plans for follow-on development work.

  8. Lunar and Planetary Science XXXV: Meteorites to and from the Moon and Mars: My Planet or Yours?

    Science.gov (United States)

    2004-01-01

    The titles in this section include: 1) Meteorites from Mars - Constraints from Numerical Modeling; 2) Iron Oxidation Products in Martian Ordinary Chondrite Finds as Possible Indicators of Liquid Water Exposure at Mars Exploration Rover Landings Sites; 3) Meteorites on Mars; 4) Sulfide Stability of Planetary Basalts; 5) Exposure and Terrestrial Histories of New Lunar and Martian Meteorites.

  9. Terrain modelling and motion planning for an autonomous exploration rover

    Science.gov (United States)

    Richard, F.; Benoliel, S.; Faugeras, O.; Grandjean, P.; Hayard, M.; Simeon, T.

    1994-01-01

    To assess the feasibility of planetary exploration missions using rovers, the French national agency CNES, with a consortium of European laboratories and industrial concerns, has initiated the Eureka project, 'Illustration of an Autonomous Robot for the Exploration of Space' (IARES). IARES is a demonstrator composed of a rover and a ground station, linked by telemetry and telecommand. It is aimed at verifying, on earth, robotic concepts developed by the RISP group of French laboratories (LAAS, INRIA, CERT, LETI) to perform scientific missions such as autonomous terrain sample collecting over large areas. To cope with the actual needs of planet exploration, IARES suitability is assessed through constraints on limited bandwidth, time delay and on-board resources. This autonomy relies heavily on robust onboard trajectory generation capabilities. This paper presents the main functions of the IARES navigation sub-system and shows how they are combined to allow movement in Mars-like environments. Section 2 gives an overall description of the IARES system. Section 3 details the functions of the Navigation sub-system, and finally, section 4 illustrates with a simple example the use of these functions.

  10. Rover's Wheel Churns Up Bright Martian Soil (False Color)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. The image is presented here in false color that is used to bring out subtle differences in color.

  11. Rover's Wheel Churns Up Bright Martian Soil (Vertical)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. The image is presented here as a vertical projection, as if looking straight down, and in false color, which brings out subtle color differences.

  12. Rover's Wheel Churns Up Bright Martian Soil (Stereo)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Multiple images taken with Spirit's panoramic camera are combined here into a stereo view that appears three-dimensional when seen through red-blue glasses, with the red lens on the left.

  13. Preliminary Assessment of the Mars Science Laboratory Entry, Descent, and Landing Simulation

    Science.gov (United States)

    Way, David W.

    2013-01-01

    On August 5, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed inside Gale Crater. This landing was only the seventh successful landing and fourth rover to be delivered to Mars. Weighing nearly one metric ton, Curiosity is the largest and most complex rover ever sent to investigate another planet. Safely landing such a large payload required an innovative Entry, Descent, and Landing system, which included the first guided entry at Mars, the largest supersonic parachute ever flown at Mars, and a novel and untested Sky Crane landing system. A complete, end-to-end, six degree-of-freedom, multibody computer simulation of the Mars Science Laboratory Entry, Descent, and Landing sequence was developed at the NASA Langley Research Center. In-flight data gathered during the successful landing is compared to pre-flight statistical distributions, predicted by the simulation. These comparisons provide insight into both the accuracy of the simulation and the overall performance of the vehicle.

  14. Assessment of the Mars Science Laboratory Entry, Descent, and Landing Simulation

    Science.gov (United States)

    Way, David W.; Davis, J. L.; Shidner, Jeremy D.

    2013-01-01

    On August 5, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed inside Gale Crater. This landing was only the seventh successful landing and fourth rover to be delivered to Mars. Weighing nearly one metric ton, Curiosity is the largest and most complex rover ever sent to investigate another planet. Safely landing such a large payload required an innovative Entry, Descent, and Landing system, which included the first guided entry at Mars, the largest supersonic parachute ever flown at Mars, and a novel and untested Sky Crane landing system. A complete, end-to-end, six degree-of-freedom, multi-body computer simulation of the Mars Science Laboratory Entry, Descent, and Landing sequence was developed at the NASA Langley Research Center. In-flight data gathered during the successful landing is compared to pre-flight statistical distributions, predicted by the simulation. These comparisons provide insight into both the accuracy of the simulation and the overall performance of the vehicle.

  15. The Danish Twin Register

    DEFF Research Database (Denmark)

    Kyvik, K O; Christensen, Kaare; Skytthe, A;

    1996-01-01

    BACKGROUND: Population based twin registers represent a valuable tool for genetic epidemiological research, since twin studies aim at separating the effect of genes and environment for complex traits. The Danish Twin Register's history, size, ascertainment and completeness of data, as well as data...... accessibility and availability are described. RESULTS: The Danish Twin Register comprises 14,051 twin pairs born 1870-1930, representing all twins surviving to age six years, and 20,888 twin pairs born 1953-1982, representing 75% of those born 1953-1967 and 95% of those born 1968-1982. The birth cohorts 1931......-1952 og 1983-1993 are being ascertained at the moment. The register is available for research given certain conditions are fulfilled. CONCLUSION: This register will in a few years be the most comprehensive twin register in the world. It is a very valuable Danish research resource....

  16. The Danish Twin Register

    DEFF Research Database (Denmark)

    Kyvik, K O; Christensen, Kaare; Skytthe, A

    1996-01-01

    BACKGROUND: Population based twin registers represent a valuable tool for genetic epidemiological research, since twin studies aim at separating the effect of genes and environment for complex traits. The Danish Twin Register's history, size, ascertainment and completeness of data, as well as data...... accessibility and availability are described. RESULTS: The Danish Twin Register comprises 14,051 twin pairs born 1870-1930, representing all twins surviving to age six years, and 20,888 twin pairs born 1953-1982, representing 75% of those born 1953-1967 and 95% of those born 1968-1982. The birth cohorts 1931......-1952 og 1983-1993 are being ascertained at the moment. The register is available for research given certain conditions are fulfilled. CONCLUSION: This register will in a few years be the most comprehensive twin register in the world. It is a very valuable Danish research resource....

  17. Monochorionic twin pregnancies

    NARCIS (Netherlands)

    Hack, K.E.A.

    2008-01-01

    Following widespread application of assisted reproductive technology modalities and the increased age of motherhood, the incidence of twin gestations has increased markedly. Twins are either monozygotic or dizygotic. Dizygotic (i.e. fraternal) twins result from the fertilization of two different egg

  18. Beam-powered lunar rover design

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, J.E.; Coomes, E.P.; Antoniak, Z.I.; Bamberger, J.A.; Bates, J.M.; Chiu, M.A.; Dodge, R.E.; Wise, J.A.

    1992-03-01

    Manned exploration of our nearest neighbors in the solar systems is the primary goal of the Space Exploration Initiative (SEI). An integral part of any manned lunar or planetary outpost will be a system for manned excursions over the surface of the planet. This report presents a preliminary design for a lunar rover capable of supporting four astronauts on long-duration excursions across the lunar landscape. The distinguishing feature of this rover design is that power is provided to rover via a laser beam from an independent orbiting power satellite. This system design provides very high power availability with minimal mass on the rover vehicle. With this abundance of power, and with a relatively small power-system mass contained in the rover, the vehicle can perform an impressive suite of mission-related activity. The rover might be used as the first outpost for the lunar surface (i.e., a mobile base). A mobile base has the advantage of providing extensive mission activities without the expense of establishing a fixed base. This concept has been referred to as ``Rove First.`` A manned over, powered through a laser beam, has been designed for travel on the lunar surface for round-trip distances in the range of 1000 km, although the actual distance traveled is not crucial since the propulsion system does not rely on energy storage. The life support system can support a 4-person crew for up to 30 days, and ample power is available for mission-related activities. The 8000-kg rover has 30 kW of continuous power available via a laser transmitter located at the Earth-moon L1 libration point, about 50,000 km above the surface of the moon. This rover, which is designed to operate in either day or night conditions, has the flexibility to perform a variety of power-intensive missions. 24 refs.

  19. Beam-powered lunar rover design

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, J.E.; Coomes, E.P.; Antoniak, Z.I.; Bamberger, J.A.; Bates, J.M.; Chiu, M.A.; Dodge, R.E.; Wise, J.A.

    1992-03-01

    Manned exploration of our nearest neighbors in the solar systems is the primary goal of the Space Exploration Initiative (SEI). An integral part of any manned lunar or planetary outpost will be a system for manned excursions over the surface of the planet. This report presents a preliminary design for a lunar rover capable of supporting four astronauts on long-duration excursions across the lunar landscape. The distinguishing feature of this rover design is that power is provided to rover via a laser beam from an independent orbiting power satellite. This system design provides very high power availability with minimal mass on the rover vehicle. With this abundance of power, and with a relatively small power-system mass contained in the rover, the vehicle can perform an impressive suite of mission-related activity. The rover might be used as the first outpost for the lunar surface (i.e., a mobile base). A mobile base has the advantage of providing extensive mission activities without the expense of establishing a fixed base. This concept has been referred to as Rove First.'' A manned over, powered through a laser beam, has been designed for travel on the lunar surface for round-trip distances in the range of 1000 km, although the actual distance traveled is not crucial since the propulsion system does not rely on energy storage. The life support system can support a 4-person crew for up to 30 days, and ample power is available for mission-related activities. The 8000-kg rover has 30 kW of continuous power available via a laser transmitter located at the Earth-moon L1 libration point, about 50,000 km above the surface of the moon. This rover, which is designed to operate in either day or night conditions, has the flexibility to perform a variety of power-intensive missions. 24 refs.

  20. Urey: Mars Organic and Oxidant Detector

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Annotated Version Some key components of a NASA-funded instrument being developed for the payload of the European Space Agency's ExoMars mission stand out in this illustration of the instrument. The instrument is the Urey: Mars Organic and Oxidant Detector. It can check for the faintest traces of life's molecular building blocks. If those are present, it can assess whether they were produced by anything alive. It can also evaluate harsh environmental conditions that could be erasing those molecular clues. ExoMars is planned as a rover to be launched in 2013 and search on Mars for signs of life. Samples of Martian soil collected by a drill on the rover will be delivered to the Urey instrument. The instrument component called the sub-critical water extractor adds water and heats the sample, getting different types of organic compounds to dissolve into the water at different temperatures. The Mars organic detector uses a fluorescent reagent and laser to detect organic chemicals. The micro-capillary electrophoresis component separates different types of organic chemicals from each others for identifying which ones are present in the sample. The Mars oxidant instrument, part of which is on a separately mounted deck unit not pictured, assesses how readily organic material would be broken down by the radiation, atmosphere and soil chemistry of the site.

  1. Urey: Mars Organic and Oxidant Detector

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Annotated Version Some key components of a NASA-funded instrument being developed for the payload of the European Space Agency's ExoMars mission stand out in this illustration of the instrument. The instrument is the Urey: Mars Organic and Oxidant Detector. It can check for the faintest traces of life's molecular building blocks. If those are present, it can assess whether they were produced by anything alive. It can also evaluate harsh environmental conditions that could be erasing those molecular clues. ExoMars is planned as a rover to be launched in 2013 and search on Mars for signs of life. Samples of Martian soil collected by a drill on the rover will be delivered to the Urey instrument. The instrument component called the sub-critical water extractor adds water and heats the sample, getting different types of organic compounds to dissolve into the water at different temperatures. The Mars organic detector uses a fluorescent reagent and laser to detect organic chemicals. The micro-capillary electrophoresis component separates different types of organic chemicals from each others for identifying which ones are present in the sample. The Mars oxidant instrument, part of which is on a separately mounted deck unit not pictured, assesses how readily organic material would be broken down by the radiation, atmosphere and soil chemistry of the site.

  2. Wide Range Vacuum Pumps for the SAM Instrument on the MSL Curiosity Rover

    Science.gov (United States)

    Sorensen, Paul; Kline-Schoder, Robert; Farley, Rodger

    2014-01-01

    Creare Incorporated and NASA Goddard Space Flight Center developed and space qualified two wide range pumps (WRPs) that were included in the Sample Analysis at Mars (SAM) instrument. This instrument was subsequently integrated into the Mars Science Laboratory (MSL) "Curiosity Rover," launched aboard an Atlas V rocket in 2011, and landed on August 6, 2012, in the Gale Crater on Mars. The pumps have now operated for more than 18 months in the Gale Crater and have been evacuating the key components of the SAM instrument: a quadrupole mass spectrometer, a tunable laser spectrometer, and six gas chromatograph columns. In this paper, we describe the main design challenges and the ways in which they were solved. This includes the custom design of a miniaturized, high-speed motor to drive the turbo drag pump rotor, analysis of rotor dynamics for super critical operation, and bearing/lubricant design/selection.

  3. Volcanic rocks and the geologic history of Mars

    Science.gov (United States)

    Salpas, P. A.

    1988-01-01

    A number of questions exist regarding the geology of Mars which can be addressed by the proposed Mars rover-sample return mission. The use of a rover during the proposed mission greatly enhances the ability to investigate multiple aspects of Martian geology and geological history. Attempting to address all of the important questions may dilute the amount of information that can be obtained regarding each question and may result in no satisfactory answers. Prioritization is essential to a successful mission. The task of setting priorities is simplified somewhat when it is considered that answers to some of these questions do not require taking samples, and that for some questions, sample location is not as important as for others. The surface of Mars presents two distinct terrains, both of which have the potential to contain valuable information regarding the composition of Mars.

  4. MOBILITY EVALUATION AND INNOVATION OF WHEELED SPACE ROVER

    Institute of Scientific and Technical Information of China (English)

    SHANG Jianzhong; LUO Zirong; LI Shengyi; TANG Li

    2006-01-01

    The mission and function requirements of lunar rover are analyzed, based on virtual prototype technology, the mobility evaluation theory and method for wheeled space rover are proposed,which provide a new way to study the innovative design of lunar rover. Based on the above theoretical system, an innovative lunar rover suspension system, which adopts a two-crank-slider mechanism, is proposed, and its dynamics model is created. Adopting virtual prototype technology, the ground adaptability, over-obstacle ability and driving placidity of the rover are evaluated in the virtual prototype software ADAMS. The analysis results show that the rover provides a high degree of mobility.

  5. Acid Sulfate Alteration in Gusev Crater, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    The Mars Exploration Rover (MER) Spirit landed on the Gusev Crater plains west of the Columbia Hills in January, 2004, during the Martian summer (sol 0; sol = 1 Martian day = 24 hr 40 min). Spirit explored the Columbia Hills of Gusev Crater in the vicinity of Home Plate at the onset on its second winter (sol approximately 900) until the onset of its fourth winter (sol approximately 2170). At that time, Spirit became mired in a deposit of fined-grained and sulfate-rich soil with dust-covered solar panels and unfavorable pointing of the solar arrays toward the sun. Spirit has not communicated with the Earth since sol 2210 (January, 2011). Like its twin rover Opportunity, which landed on the opposite side of Mars at Meridiani Planum, Spirit has an Alpha Particle X-Ray Spectrometer (APXS) instrument for chemical analyses and a Moessbauer spectrometer (MB) for measurement of iron redox state, mineralogical speciation, and quantitative distribution among oxidation (Fe(3+)/sigma Fe) and coordination (octahedral versus tetrahedral) states and mineralogical speciation (e.g., olivine, pyroxene, ilmenite, carbonate, and sulfate). The concentration of SO3 in Gusev rocks and soils varies from approximately 1 to approximately 34 wt%. Because the APXS instrument does not detect low atomic number elements (e.g., H and C), major-element oxide concentrations are normalized to sum to 100 wt%, i.e., contributions of H2O, CO2, NO2, etc. to the bulk composition care not considered. The majority of Gusev samples have approximately 6 plus or minus 5 wt% SO3, but there is a group of samples with high SO3 concentrations (approximately 30 wt%) and high total iron concentrations (approximately 20 wt%). There is also a group with low total Fe and SO3 concentrations that is also characterized by high SiO2 concentrations (greater than 70 wt%). The trend labeled "Basaltic Soil" is interpreted as mixtures in variable proportions between unaltered igneous material and oxidized and SO3-rich basaltic

  6. Constructing an Educational Mars Simulation

    Science.gov (United States)

    Henke, Stephen A.

    2004-01-01

    January 14th 2004, President George Bush announces his plans to catalyst the space program into a new era of space exploration and discovery. His vision encompasses a robotics program to explore our solar system, a return to the moon, the human exploration of Mars, and to promote international prosperity towards our endeavors. We at NASA now have the task of constructing this vision in a very real timeframe. I have been chosen to begin phase 1 of making this vision a reality. I will be working on creating an Educational Mars Simulation of human exploration of Mars to stimulate interest and involvement with the project from investors and the community. GRC s Computer Services Division (CSD) in collaboration with the Office of Education Programs will be designing models, constructing terrain, and programming this simulation to create a realistic portrayal of human exploration on mars. With recent and past technological breakthroughs in computing, my primary goal can be accomplished with only the aid of 3-4 software packages. Lightwave 3D is the modeling package we have selected to use for the creation of our digital objects. This includes a Mars pressurized rover, rover cockpit, landscape/terrain, and habitat. Once we have the models completed they need textured so Photoshop and Macromedia Fireworks are handy for bringing these objects to life. Before directly importing all of this data into a simulation environment, it is necessary to first render a stunning animation of the desired final product. This animation with represent what we hope to capture out of the simulation and it will include all of the accessories like ray-tracing, fog effects, shadows, anti-aliasing, particle effects, volumetric lighting, and lens flares. Adobe Premier will more than likely be used for video editing and adding ambient noises and music. Lastly, V-Tree is the real-time 3D graphics engine which will facilitate our realistic simulation. Additional information is included in the

  7. A Rover Operations Protocol for Maintaining Compliance with Planetary Protection Requirements

    Science.gov (United States)

    Jones, Melissa; Vasavada, Ashwin

    2016-07-01

    The Mars Science Laboratory (MSL) mission, with its Curiosity rover, arrived at Gale Crater in August 2012 with the scientific objective of assessing the past and present habitability of the landing site area. It is not a life detection mission, but one that uses geological, geochemical, and environmental measurements to understand whether past and present conditions could have supported life. The MSL mission is designated Planetary Protection Category IVa, with specific restrictions on the landing site and surface operations. In particular, the mission is prohibited from introducing any hardware into a Mars Special Region, as defined by COSPAR policy and in NASA document NPR 8020.12D. Fluid-formed features such as recurring slope lineae are included in this prohibition. Finally, any evidence suggesting the presence of Special Regions or flowing liquid at the actual MSL landing site shall be communicated to the NASA Planetary Protection Officer immediately, and physical contact by the rover with such features shall be entirely avoided. The MSL Project has recently developed and instituted a protocol in daily rover operations to ensure ongoing compliance with its planetary protection categorization. A particular challenge comes from the fact that the characteristics of potential Special Regions may not be obvious in the rover downlink data (e.g., landscape images, chemical measurements, or meteorology), or easily distinguishable from characteristics of other processes that do not imply Special Regions. For this reason, the first step in the process would be for the lead scientist for that day of operations (a role that rotates through senior scientists on the mission) to scrutinize all the targets that may receive interaction by rover hardware, such as targets for arm contact, or paths for wheel contact. Based on the expertise of the lead scientist, and definitions of Mars Special Regions, if any features of concern are identified, the other scientists on duty that

  8. Malaysian Twin Registry.

    Science.gov (United States)

    Jahanfar, Shayesteh; Jaffar, Sharifah Halimah

    2013-02-01

    The National Malaysian Twin Registry was established in Royal College of Medicine, Perak, University Kuala Lumpur (UniKL) in June 2008 through a grant provided by UniKL. The general objective is to facilitate scientific research involving participation of twins and their family members in order to answer questions of health and wellbeing relevant to Malaysians. Recruitment is done via mass media, poster, and pamphlets. We now have 266 adult and 204 children twins registered. Several research projects including reproductive health study of twins and the role of co-bedding on growth and development of children are carried out. Registry holds annual activities for twins and seeks to provide health-related information for twins. We seek international collaboration.

  9. Human Mars Ascent Configuration and Design Sensitivities

    Science.gov (United States)

    Polsgrove, Tara P.; Gernhardt, Mike; Collins, Tim; Martin, John

    2017-01-01

    Human missions to Mars may utilize several small cabins where crew members could live for days up to a couple of weeks. At the end of a Mars surface mission the Mars Ascent Vehicle (MAV) crew cabin would carry the crew to their destination in orbit in a matter of hours or days. Other small cabins in support of a Mars mission would include pressurized rovers that allow crew members to travel great distances from their primary habitat on Mars while unconstrained by time limits of typical EVAs. An orbital crew taxi could allow for exploration of the moons of Mars with minimum impact to the primary Earth-Mars transportation systems. A common crew cabin design that can perform in each of these applications is desired and could reduce the overall mission cost. However, for the MAV, the crew cabin size and mass can have a large impact on vehicle design and performance. The total ascent vehicle mass drives performance requirements for the Mars descent systems and the Earth to Mars transportation elements. Minimizing MAV mass is a priority and minimizing the crew cabin size and mass is one way to do that. This paper explores the benefits and impacts of using a common crew cabin design for the MAV. Results of a MAV configuration trade study will be presented along with mass and performance estimates for the selected design.

  10. Geoscience in Support of a Mars Methane Analogue Mission

    Science.gov (United States)

    Boivin, Alexandre

    The Mars Methane Analogue Mission, funded by the Canadian Space Agency through its Analogue Missions program, simulates a Mars rover mission whose purpose is to detect, analyse, and determine the source of methane emissions on the planet's surface. As part of this project, both an electromagnetic induction sounder (EMIS) and a high-resolution triangulation-based 3D laser scanner were tested in the field to demonstrate the benefit of including these instruments on future rover missions. EMIS data was inverted in order to derive information on the conductivity and magnetic susceptibility of the near subsurface. 3D laser scanner data was processed with fracture detection as a goal in order to simplify the search for areas of potential methane seepage. Both instruments were found to be very valuable for future rover missions of this type.

  11. Perinatal hepatic infarction in twin-twin transfusion.

    LENUS (Irish Health Repository)

    O'Sullivan, M J

    2012-02-03

    We report a case of a twin pregnancy which was complicated by a twin-twin transfusion in which the recipient twin was noted to have an intra-abdominal echogenic mass. This twin died at two days of age of hepatic infarction. The donor twin was healthy at birth, at thirty weeks\\' gestation, and did not have any subsequent problems. Fetal intra-abdominal echogenicity may be a marker of hepatic infarction.

  12. Ongoing Mars Missions: Extended Mission Plans

    Science.gov (United States)

    Zurek, Richard; Diniega, Serina; Crisp, Joy; Fraeman, Abigail; Golombek, Matt; Jakosky, Bruce; Plaut, Jeff; Senske, David A.; Tamppari, Leslie; Thompson, Thomas W.; Vasavada, Ashwin R.

    2016-10-01

    Many key scientific discoveries in planetary science have been made during extended missions. This is certainly true for the Mars missions both in orbit and on the planet's surface. Every two years, ongoing NASA planetary missions propose investigations for the next two years. This year, as part of the 2016 Planetary Sciences Division (PSD) Mission Senior Review, the Mars Odyssey (ODY) orbiter project submitted a proposal for its 7th extended mission, the Mars Exploration Rover (MER-B) Opportunity submitted for its 10th, the Mars Reconnaissance Orbiter (MRO) for its 4th, and the Mars Science Laboratory (MSL) Curiosity rover and the Mars Atmosphere and Volatile Evolution (MVN) orbiter for their 2nd extended missions, respectively. Continued US participation in the ongoing Mars Express Mission (MEX) was also proposed. These missions arrived at Mars in 2001, 2004, 2006, 2012, 2014, and 2003, respectively. Highlights of proposed activities include systematic observations of the surface and atmosphere in twilight (early morning and late evening), building on a 13-year record of global mapping (ODY); exploration of a crater rim gully and interior of Endeavour Crater, while continuing to test what can and cannot be seen from orbit (MER-B); refocused observations of ancient aqueous deposits and polar cap interiors, while adding a 6th Mars year of change detection in the atmosphere and the surface (MRO); exploration and sampling by a rover of mineralogically diverse strata of Mt. Sharp and of atmospheric methane in Gale Crater (MSL); and further characterization of atmospheric escape under different solar conditions (MVN). As proposed, these activities follow up on previous discoveries (e.g., recurring slope lineae, habitable environments), while expanding spatial and temporal coverage to guide new detailed observations. An independent review panel evaluated these proposals, met with project representatives in May, and made recommendations to NASA in June 2016. In this

  13. Detection of Novel Features and Collection of Opportunistic Science Data with an Onboard Autonomous Rover Science System

    Science.gov (United States)

    Castano, R.; Estlin, T.; Gaines, D.; Bornstein, B.; Anderson, R. C.; Bue, B.; Judd, M.

    2007-12-01

    The Onboard Autonomous Science Investigation System (OASIS) evaluates science data gathered by a planetary rover. This analysis is used to prioritize the data for transmission, so that the data with the highest science value is transmitted to Earth. In addition, the onboard analysis results are used to identify science opportunities. A planning and scheduling component of the system enables the rover to take advantage of identified science opportunities. We present new system capabilities with an emphasis on the identification of novel geologic features during a traverse. The ability to detect novel features enables the rover to identify rocks that exhibit distinct properties from those in the vicinity, e.g. unusual albedo or orientation. This capability has been integrated into the full system and validated in field testing. In addition, the system has been integrated with the Visual Target Tracking (VTT) capability recently uploaded to the Mars Exploration Rovers. VTT enables the system to robustly track a specified target, typically a rock. By integrating this with the autonomous science system, the rover can approach targets identified onboard, and then acquire targeted measurements both from additional viewing angles as well as from positions in close proximity to the target.

  14. The Brazilian Twin Registry.

    Science.gov (United States)

    Ferreira, Paulo H; Oliveira, Vinicius C; Junqueira, Daniela R; Cisneros, Lígia C; Ferreira, Lucas C; Murphy, Kate; Ordoñana, Juan R; Hopper, John L; Teixeira-Salmela, Luci F

    2016-12-01

    The Brazilian Twin Registry (BTR) was established in 2013 and has impelled twin research in South America. The main aim of the initiative was to create a resource that would be accessible to the Brazilian scientific community as well as international researchers interested in the investigation of the contribution of genetic and environmental factors in the development of common diseases, phenotypes, and human behavior traits. The BTR is a joint effort between academic and governmental institutions from Brazil and Australia. The collaboration includes the Federal University of Minas Gerais (UFMG) in Brazil, the University of Sydney and University of Melbourne in Australia, the Australian Twin Registry, as well as the research foundations CNPq and CAPES in Brazil. The BTR is a member of the International Network of Twin Registries. Recruitment strategies used to register twins have been through participation in a longitudinal study investigating genetic and environmental factors for low back pain occurrence, and from a variety of sources including media campaigns and social networking. Currently, 291 twins are registered in the BTR, with data on demographics, zygosity, anthropometrics, and health history having been collected from 151 twins using a standardized self-reported questionnaire. Future BTR plans include the registration of thousands of Brazilian twins identified from different sources and collaborate nationally and internationally with other research groups interested on twin studies.

  15. Delivery in Twin Gestation

    Directory of Open Access Journals (Sweden)

    Mark T. Peters

    1995-01-01

    Full Text Available Objective: The objective of this study was to determine whether prophylactic treatment with oral broad-spectrum antimicrobial therapy improves pregnancy outcomes in twin gestations.

  16. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars

    NARCIS (Netherlands)

    Vaniman, D.T.; Bish, D.L.; Ming, D.W.; Bristow, T.F.; Morris, R.V.; Blake, D.F.; Chipera, S.J.; Morrison, S.M.; Treiman, A.H.; Rampe, E.B.; Rice, M.; Achilles, C.N.; Grotzinger, J.P.; McLennan, S.M.; Williams, J.; Bell III, J.F.; Newsom, H.E.; Downs, R.T.; Maurice, S.; Sarrazin, P.; Yen, A.S.; Morookian, J.M.; Farmer, J.D.; Stack, K.; Milliken, R.E.; Ehlmann, B.L.; Sumner, D.Y.; Berger, G.; Crisp, J.A.; Hurowitz, J.A.; Anderson, R.; Des Marais, D.J.; Stolper, E.M.; Edgett, K.S.; Gupta, S.; Spanovich, N.; MSL Science Team, the

    2014-01-01

    Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John

  17. A One-Stop Web Application for the Mars Team

    Science.gov (United States)

    Laufenberg, Lawrence

    2004-01-01

    THe Mars Exploration Rover Collaborative Information Portal (MERCIP) provides a window to all mission events. It supports mission updates, data sharing, and collaboration. The report also discusses: Technology spotlight. Integrating data multiple sources. Securing access for multiple clients. A new information infrastructure.

  18. Sample Analysis at Mars Organic Contaminants Library (SAM-OCL)

    Science.gov (United States)

    Garcia-Sanchez, Raul; Misra, Prabhakar; Canham, John; Mahaffy, Paul

    2013-04-01

    The Sample Analysis at Mars Organic Contaminants Library (SAM-OCL) was developed as one of several components for the Mars rover mission's Contamination Control Protocol. The purpose of SAM-OCL is to determine the Gas Chromatography-Mass Spectroscopy (GCMS) signals of different materials composing the Mars Science Laboratory rover. In turn, this allows us to determine which GCMS signals originate from terrestrial contamination or rover material outgassing. The GCMS spectral library has several supplemental components, of which its descriptor spreadsheets are the most important, aimed to make SAM-OCL easily and readily accessible to users in and out of the Mars rover mission. One spreadsheet describes the contaminants that can be found in each file, while the other describes the information regarding each file. The library, along with its supplemental materials, is useful from an organizational and practical sense. Through them we are able to organize large volumes of GCMS data while breaking down the components that each material sample is made off. This allows us easy and fast access to information that will be critical when doing analysis in the data that the SAM instrumentation will obtain.

  19. Autonomous Vision-Based Tethered-Assisted Rover Docking

    Science.gov (United States)

    Tsai, Dorian; Nesnas, Issa A.D.; Zarzhitsky, Dimitri

    2013-01-01

    Many intriguing science discoveries on planetary surfaces, such as the seasonal flows on crater walls and skylight entrances to lava tubes, are at sites that are currently inaccessible to state-of-the-art rovers. The in situ exploration of such sites is likely to require a tethered platform both for mechanical support and for providing power and communication. Mother/daughter architectures have been investigated where a mother deploys a tethered daughter into extreme terrains. Deploying and retracting a tethered daughter requires undocking and re-docking of the daughter to the mother, with the latter being the challenging part. In this paper, we describe a vision-based tether-assisted algorithm for the autonomous re-docking of a daughter to its mother following an extreme terrain excursion. The algorithm uses fiducials mounted on the mother to improve the reliability and accuracy of estimating the pose of the mother relative to the daughter. The tether that is anchored by the mother helps the docking process and increases the system's tolerance to pose uncertainties by mechanically aligning the mating parts in the final docking phase. A preliminary version of the algorithm was developed and field-tested on the Axel rover in the JPL Mars Yard. The algorithm achieved an 80% success rate in 40 experiments in both firm and loose soils and starting from up to 6 m away at up to 40 deg radial angle and 20 deg relative heading. The algorithm does not rely on an initial estimate of the relative pose. The preliminary results are promising and help retire the risk associated with the autonomous docking process enabling consideration in future martian and lunar missions.

  20. Lunar rovers and local positioning system

    Science.gov (United States)

    Avery, James; Su, Renjeng

    1991-11-01

    Telerobotic rovers equipped with adequate actuators and sensors are clearly necessary for extraterrestrial construction. They will be employed as substitutes for humans, to perform jobs like surveying, sensing, signaling, manipulating, and the handling of small materials. Important design criteria for these rovers include versatility and robustness. They must be easily programmed and reprogrammed to perform a wide variety of different functions, and they must be robust so that construction work will not be jeopardized by parts failures. The key qualities and functions necessary for these rovers to achieve the required versatility and robustness are modularity, redundancy, and coordination. Three robotic rovers are being built by CSC as a test bed to implement the concepts of modularity and coordination. The specific goal of the design and construction of these robots is to demonstrate the software modularity and multirobot control algorithms required for the physical manipulation of constructible elements. Each rover consists of a transporter platform, bus manager, simple manipulator, and positioning receivers. These robots will be controlled from a central control console via a radio-frequency local area network (LAN). To date, one prototype transporter platform frame was built with batteries, motors, a prototype single-motor controller, and two prototype internal LAN boards. Software modules were developed in C language for monitor functions, i/o, and parallel port usage in each computer board. Also completed are the fabrication of half of the required number of computer boards, the procurement of 19.2 Kbaud RF modems for inter-robot communications, and the simulation of processing requirements for positioning receivers. In addition to the robotic platform, the fabrication of a local positioning system based on infrared signals is nearly completed. This positioning system will make the rovers into a moving reference system capable of performing site surveys. In

  1. Curiosity's Mars Hand Lens Imager (MAHLI) Investigation

    Science.gov (United States)

    Edgett, Kenneth S.; Yingst, R. Aileen; Ravine, Michael A.; Caplinger, Michael A.; Maki, Justin N.; Ghaemi, F. Tony; Schaffner, Jacob A.; Bell, James F.; Edwards, Laurence J.; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sullivan, Robert J.; Sumner, Dawn Y.; Thomas, Peter C.; Jensen, Elsa H.; Simmonds, John J.; Sengstacken, Aaron J.; Willson, Reg G.; Goetz, Walter

    2012-09-01

    The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) investigation will use a 2-megapixel color camera with a focusable macro lens aboard the rover, Curiosity, to investigate the stratigraphy and grain-scale texture, structure, mineralogy, and morphology of geologic materials in northwestern Gale crater. Of particular interest is the stratigraphic record of a ˜5 km thick layered rock sequence exposed on the slopes of Aeolis Mons (also known as Mount Sharp). The instrument consists of three parts, a camera head mounted on the turret at the end of a robotic arm, an electronics and data storage assembly located inside the rover body, and a calibration target mounted on the robotic arm shoulder azimuth actuator housing. MAHLI can acquire in-focus images at working distances from ˜2.1 cm to infinity. At the minimum working distance, image pixel scale is ˜14 μm per pixel and very coarse silt grains can be resolved. At the working distance of the Mars Exploration Rover Microscopic Imager cameras aboard Spirit and Opportunity, MAHLI's resolution is comparable at ˜30 μm per pixel. Onboard capabilities include autofocus, auto-exposure, sub-framing, video imaging, Bayer pattern color interpolation, lossy and lossless compression, focus merging of up to 8 focus stack images, white light and longwave ultraviolet (365 nm) illumination of nearby subjects, and 8 gigabytes of non-volatile memory data storage.

  2. Curiosity's Mars Hand Lens Imager (MAHLI) Investigation

    Science.gov (United States)

    Edgett, Kenneth S.; Yingst, R. Aileen; Ravine, Michael A.; Caplinger, Michael A.; Maki, Justin N.; Ghaemi, F. Tony; Schaffner, Jacob A.; Bell, James F.; Edwards, Laurence J.; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sullivan, Robert J.; Sumner, Dawn Y.; Thomas, Peter C.; Jensen, Elsa H.; Simmonds, John J.; Sengstacken, Aaron J.; Wilson, Reg G.; Goetz, Walter

    2012-01-01

    The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) investigation will use a 2-megapixel color camera with a focusable macro lens aboard the rover, Curiosity, to investigate the stratigraphy and grain-scale texture, structure, mineralogy, and morphology of geologic materials in northwestern Gale crater. Of particular interest is the stratigraphic record of a ?5 km thick layered rock sequence exposed on the slopes of Aeolis Mons (also known as Mount Sharp). The instrument consists of three parts, a camera head mounted on the turret at the end of a robotic arm, an electronics and data storage assembly located inside the rover body, and a calibration target mounted on the robotic arm shoulder azimuth actuator housing. MAHLI can acquire in-focus images at working distances from ?2.1 cm to infinity. At the minimum working distance, image pixel scale is ?14 μm per pixel and very coarse silt grains can be resolved. At the working distance of the Mars Exploration Rover Microscopic Imager cameras aboard Spirit and Opportunity, MAHLI?s resolution is comparable at ?30 μm per pixel. Onboard capabilities include autofocus, auto-exposure, sub-framing, video imaging, Bayer pattern color interpolation, lossy and lossless compression, focus merging of up to 8 focus stack images, white light and longwave ultraviolet (365 nm) illumination of nearby subjects, and 8 gigabytes of non-volatile memory data storage.

  3. Fluvial processes on Mars: Erosion and sedimentation

    Science.gov (United States)

    Squyres, Steven W.

    1988-01-01

    One of the most important discoveries of the Mariner 9 and Viking missions to Mars was evidence of change of the Martian surface by the action of liquid water. From the standpoint of a Mars Rover/Sample Return Mission, fluvial activity on Mars is important in two ways: (1) channel formation has deeply eroded the Martian crust, providing access to relatively undisturbed subsurface units; and (2) much of the material eroded from channels may have been deposited in standing bodies of liquid water. The most striking fluvial erosion features on Mars are the outflow channels. A second type of channel apparently caused by flow of liquid water is the valley systems. These are similar to terrestial drainage systems. The sedimentary deposits of outflow channels are often difficult to identfy. No obvious deposits such as deltaic accumulations are visible in Viking images. Another set of deposits that may be water lain and that date approx. from the epoch of outflow channels are the layered deposits in the Valles Marineris. From the standpoint of a Mars Rover/Sample Return mission, the problem with all of these water-lain sediments is their age, or rather the lack of it.

  4. Mars Organic Molecule Analyzer (MOMA) mass spectrometer for ExoMars 2018 and beyond

    Science.gov (United States)

    Brinckerhoff, W. B.; Pinnick, V. T.; van Amerom, F. H. W.; Danell, R. M.; Arevalo, R. D.; Atanassova, M. S.; Li, Xiang; Mahaffy, P. R.; Cotter, R. J.; Goesmann, F.; Steininger, H.

    The 2018 joint ESA-Roscosmos ExoMars rover mission will seek the signs of past or present life in the near-surface environment of Mars. The rover will obtain samples from as deep as two meters beneath the surface and deliver them to an onboard analytical laboratory for detailed examination. The Mars Organic Molecule Analyzer (MOMA) investigation forms a core part of the sample analysis capability of ExoMars. Its top objective is to address the main “ life signs” goal of the mission through detailed chemical analysis of the acquired samples. MOMA characterizes organic compounds in the samples with a novel dual ion source ion trap mass spectrometer (ITMS). The ITMS supports both pyrolysis-gas chromatography (pyr-GC) and Mars ambient laser desorption/ionization (LDI) analyses in an extremely compact package. Combined with the unprecedented depth sampling capability of ExoMars, MOMA affords a broad and powerful search for organics over a range of preservational environments, volatility, and molecular weight.

  5. Russian contribution to the ExoMars project

    Science.gov (United States)

    Zelenyi, L.; Korablev, O.; Rodionov, D.; Khartov, V.; Martynov, M.; Lukyanchikov, A.

    2014-04-01

    The ExoMars ESA-led mission is dedicated to study of Mars and in particular its habitability. It consists of two launches, one planned in 2016 to deliver to Mars a telecommunication and science orbiter Trace Gas Orbiter (TGO) and a demonstrator of entry into the atmosphere and landing on the Mars surface, Entry, Descent and Landing Demonstrator Module (EDM). In 2018 a rover with drilling capability will be delivered to the surface of Mars. Since 2012 this mission, previously planned in cooperation with NASA is being developed in cooperation with Roscosmos. Both launches are planned with Proton-Breeze. In 2016 Russia contributes a significant part of the TGO science payload. In 2018 the landing will be provided by a joint effort capitalizing on the EDM technology. Russia contributes few science instruments for the rover, and leads the development of a long-living geophysical platform on the surface of Mars. Russian science instruments for TGO, the Atmospheric Chemistry Suite (ACS) and the Fine Resolution Epithermal Neutrons Detector (FREND) constituent a half of its scientific payload, European instrument being NOMAD for mapping and detection of trace species, and CASSIS camera for high-resolution mapping of target areas. The ACS package consists of three spectrometers covering spectral range from 0.7 to 17 μm with spectral resolving power reaching 50000. It is dedicated to studies of the composition of the Martian atmosphere and the Martian climate. FREND is a neutron detector with a collimation module, which significantly narrows the field of view of the instrument, allowing to create higher resolution maps of hydrogen-abundant regions on Mars. The spatial resolution of FREND will be ~40 km from the 400- km TGO orbit that is ~10 times better than HEND on Mars-Odyssey. Additionally, FREND includes a dosimeter module for monitoring radiation levels in orbit around Mars. In the 2018 mission, Russia takes the major responsibility of the descent module. The primary

  6. Magnetically Attached Multifunction Maintenance Rover

    Science.gov (United States)

    Bar-Cohen, Yoseph; Joffe, Benjamin

    2005-01-01

    A versatile mobile telerobot, denoted the magnetically attached multifunction maintenance rover (MAGMER), has been proposed for use in the inspection and maintenance of the surfaces of ships, tanks containing petrochemicals, and other large ferromagnetic structures. As its name suggests, this robot would utilize magnetic attraction to adhere to a structure. As it moved along the surface of the structure, the MAGMER would perform tasks that could include close-up visual inspection by use of video cameras, various sensors, and/or removal of paint by water-jet blasting, laser heating, or induction heating. The water-jet nozzles would be mounted coaxially within compressed-air-powered venturi nozzles that would collect the paint debris dislodged by the jets. The MAGMER would be deployed, powered, and controlled from a truck, to which it would be connected by hoses for water, compressed air, and collection of debris and by cables for electric power and communication (see Figure 1). The operation of the MAGMER on a typical large structure would necessitate the use of long cables and hoses, which can be heavy. To reduce the load of the hoses and cables on the MAGMER and thereby ensure its ability to adhere to vertical and overhanging surfaces, the hoses and cables would be paid out through telescopic booms that would be parts of a MAGMER support system. The MAGMER would move by use of four motorized, steerable wheels, each of which would be mounted in an assembly that would include permanent magnets and four pole pieces (see Figure 2). The wheels would protrude from between the pole pieces by only about 3 mm, so that the gap between the pole pieces and the ferromagnetic surface would be just large enough to permit motion along the surface but not so large as to reduce the magnetic attraction excessively. In addition to the wheel assemblies, the MAGMER would include magnetic adherence enhancement fixtures, which would comprise arrays of permanent magnets and pole pieces

  7. Ultraviolet Testing of Space Suit Materials for Mars

    Science.gov (United States)

    Larson, Kristine; Fries, Marc

    2017-01-01

    Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.

  8. Twin anemia polycythemia sequence

    NARCIS (Netherlands)

    Slaghekke, Femke

    2014-01-01

    In this thesis we describe that Twin Anemia Polycythemia Sequence (TAPS) is a form of chronic feto-fetal transfusion in monochorionic (identical) twins based on a small amount of blood transfusion through very small anastomoses. For the antenatal diagnosis of TAPS, Middle Cerebral Artery – Peak Syst

  9. The Danish Twin Registry

    DEFF Research Database (Denmark)

    Skytthe, Axel; Ohm Kyvik, Kirsten; Vilstrup Holm, Niels

    2011-01-01

    Introduction: The Danish Twin Registry is a unique source for studies of genetic, familial and environmental factors on life events, health conditions and diseases. Content: More than 85,000 twin pairs born 1870-2008 in Denmark. Validity and coverage: Four main ascertainment methods have been emp...

  10. Twin anemia polycythemia sequence

    NARCIS (Netherlands)

    Slaghekke, Femke

    2014-01-01

    In this thesis we describe that Twin Anemia Polycythemia Sequence (TAPS) is a form of chronic feto-fetal transfusion in monochorionic (identical) twins based on a small amount of blood transfusion through very small anastomoses. For the antenatal diagnosis of TAPS, Middle Cerebral Artery – Peak

  11. Rim Structure, Stratigraphy, and Aqueous Alteration Exposures Along Opportunity Rover's Traverse of the Noachian Endeavour Crater

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Golombek, M.; Grant, J. A.; Jolliff, B. L.; Mittlefehldt, D. W.

    2017-01-01

    The Mars Exploration Rover Opportunity has traversed 10.2 kilometers along segments of the west rim of the 22-kilometer-diameter Noachian Endeavour impact crater as of sol 4608 (01/09/17). The stratigraphy, attitude of units, lithology, and degradation state of bedrock outcrops exposed on the crater rim have been examined in situ and placed in geologic context. Structures within the rim and differences in physical properties of the identified lithologies have played important roles in localizing outcrops bearing evidence of aqueous alteration.

  12. Integrated Results from Analysis of the Rocknest Aeolian Deposit by the Curiosity Rover

    Science.gov (United States)

    Leshin, L. A.; Grotzinger, J. P.; Blake, D. F.; Edgett, K. S.; Gellert, R.; Mahaffy, P. R.; Malin, M. C.; Wiens, R. C.; Treiman, A. H.; Ming, D. W.; Eigenbrode, J.

    2013-01-01

    The Mars Science Laboratory Curiosity rover spent 45 sols (from sol 56-101) at an area called Rocknest (Fig. 1), characterizing local geology and ingesting its aeolian fines into the analytical instruments CheMin and SAM for mineralogical and chemical analysis. Many abstracts at this meeting present the contextual information and detailed data on these first solid samples analyzed in detail by Curiosity at Rocknest. Here, we present an integrated view of the results from Rocknest - the general agreement from discussions among the entire MSL Science Team.

  13. Mathematics and Mars Exploration

    Science.gov (United States)

    Velasco, M. P.; Usero, D.; Jiménez, S.; Aguirre, C.; Vázquez, L.

    2015-01-01

    In this study we consider modelization associated with study of solar radiation at the surface of Mars and the Martian atmosphere. In particular, we present elements concerning retrieval of the solar irradiance spectrum on the surface of Mars from data collected by arrays of photodiodes, such as those onboard the "Curiosity" MSL-rover and other missions currently under design. By using these techniques we are able to provide an approximate description of the expected measures. In this work we have also developed a new method of tomography-based signal analysis for detection of events in the Martian atmosphere boundary layer, such as dust devils. In general, this method enables detection of events that occur briefly in time and are localized in space. This tomographic method allows us to identify the presence of more dust devils than detected previously using the same data. Finally we show new scenarios of modelization through fractional differential equations associated with diffusion processes and nonlocal problems. Such approaches could be used to model complex Martian dynamics.

  14. A Mars Exploration Discovery Program

    Science.gov (United States)

    Hansen, C. J.; Paige, D. A.

    2000-07-01

    The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.

  15. Position and orientation measurement during Lunar Rover movement test

    Science.gov (United States)

    Yang, Zaihua; Tang, Laiying; Yi, Wangmin; Wan, Bile; Liu, Tao

    2015-02-01

    During the development of the Lunar Rover, a posture tracking measurement scheme was designed to verify its movement control ability and path planning performance. The principle is based on the indoor GPS measurement system. Four iGPS transmitters were set around the test site. By tracking the positions of four receivers that were installed on the rover, the position and orientation of the rover can be acquired in real time. The rotation matrix and translation vector from the Lunar Rover coordinate system to the test site coordinate system were calculated by using the software. The measurement precision reached 0.25mm in the range of 30m2. The real time position and posture datum of the rover was overlaid onto 3-D terrain map of the test site. The trajectory of the rover was displayed, and the time-displacement curve, time-velocity curve, time-acceleration curve were analyzed. The rover's performances were verified.

  16. Neonatal status of twins

    Directory of Open Access Journals (Sweden)

    Božinović Dragica

    2012-01-01

    Full Text Available Multiple pregnancy is a pregnancy where more than one fetus develops simultaneously in the womb, as a result of the ovulation and fertilization of more than one egg. It is relatively rare in humans and represents the rest of the phylogenetic stages. The most common are twins and they indicate the development of two fetuses in the womb. The frequency of twin pregnancies is about 1%. Multiple pregnancies belong to a group of high-risk pregnancies because of the many complications that occur during the pregnancy: higher number of premature deliveries, bleeding, early neonatal complications and higher perinatal morbidity and mortality. Such pregnancies and infants require greater supervision and monitoring. The aim of this study was to determine the percentage of baby twins born at the maternity ward of the General Hospital in Prokuplje and their morbidity and mortality. Data on the total number of deliveries, number of twins, parity and maternal age, gestational age, body weight of twins, method of delivery, Apgar score and perinatal mortality were collected and statistically analyzed by means of retrospective analysis of operative birth and neonatal protocol for 6 years (2005 of 2010. Out of 4527 mothers who gave birth 43 were pairs of twins, or 0.95% of women gave birth to twins. These babies are more likely born by Caesarean section, but delivered with slightly lower birth weight.

  17. Reflectance conversion methods for the VIS/NIR imaging spectrometer aboard the Chang'E-3 lunar rover: based on ground validation experiment data

    Institute of Scientific and Technical Information of China (English)

    Bin Liu; Jian-Zhong Liu; Guang-Liang Zhang; Zong-Cheng Ling; Jiang Zhang; Zhi-Ping He; Ben-Yong Yang

    2013-01-01

    The second phase of the Chang'E Program (also named Chang'E-3) has the goal to land and perform in-situ detection on the lunar surface.A VIS/NIR imaging spectrometer (VNIS) will be carried on the Chang'E-3 lunar rover to detect the distribution of lunar minerals and resources.VNIS is the first mission in history to perform in-situ spectral measurement on the surface of the Moon,the reflectance data of which are fundamental for interpretation of lunar composition,whose quality would greatly affect the accuracy of lunar element and mineral determination.Until now,in-situ detection by imaging spectrometers was only performed by rovers on Mars.We firstly review reflectance conversion methods for rovers on Mars (Viking landers,Pathfinder and Mars Exploration rovers,etc).Secondly,we discuss whether these conversion methods used on Mars can be applied to lunar in-situ detection.We also applied data from a laboratory bidirectional reflectance distribution function (BRDF) using simulated lunar soil to test the availability of this method.Finally,we modify reflectance conversion methods used on Mars by considering differences between environments on the Moon and Mars and apply the methods to experimental data obtained from the ground validation of VNIS.These results were obtained by comparing reflectance data from the VNIS measured in the laboratory with those from a standard spectrometer obtained at the same time and under the same observing conditions.The shape and amplitude of the spectrum fits well,and the spectral uncertainty parameters for most samples are within 8%,except for the ilmenite sample which has a low albedo.In conclusion,our reflectance conversion method is suitable for lunar in-situ detection.

  18. Rover Low Gain Antenna Qualification for Deep Space Thermal Environments

    Science.gov (United States)

    Ramesham, Rajeshuni; Amaro, Luis R.; Brown, Paula R.; Usiskin, Robert; Prater, Jack L.

    2013-01-01

    A method to qualify the Rover Low Gain Antenna (RLGA) for use during the Mars Science Laboratory (MSL) mission has been devised. The RLGA antenna must survive all ground operations, plus the nominal 670 Martian sol mission that includes the summer and winter seasons of the Mars thermal environment. This qualification effort was performed to verify that the RLGA design, its bonding, and packaging processes are adequate. The qualification test was designed to demonstrate a survival life of three times more than all expected ground testing, plus a nominal 670 Martian sol missions. Baseline RF tests and a visual inspection were performed on the RLGA hardware before the start of the qualification test. Functional intermittent RF tests were performed during thermal chamber breaks over the course of the complete qualification test. For the return loss measurements, the RLGA antenna was moved to a test area. A vector network analyzer was calibrated over the operational frequency range of the antenna. For the RLGA, a simple return loss measurement was performed. A total of 2,010 (3 670 or 3 times mission thermal cycles) thermal cycles was performed. Visual inspection of the RLGA hardware did not show any anomalies due to the thermal cycling. The return loss measurement results of the RLGA antenna after the PQV (Package Qualification and Verification) test did not show any anomalies. The antenna pattern data taken before and after the PQV test at the uplink and downlink frequencies were unchanged. Therefore, the developed design of RLGA is qualified for a long-duration MSL mission.

  19. SUSY Meets Her Twin

    CERN Document Server

    Katz, Andrey; Pokorski, Stefan; Redigolo, Diego; Ziegler, Robert

    2016-01-01

    We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.

  20. SUSY Meets Her Twin

    CERN Document Server

    Katz, Andrey; Pokorski, Stefan; Redigolo, Diego; Ziegler, Robert

    2017-01-01

    We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.

  1. SUSY Meets Her Twin

    CERN Document Server

    Katz, Andrey; Pokorski, Stefan; Redigolo, Diego; Ziegler, Robert

    2017-01-31

    We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.

  2. A Mars Riometer

    Science.gov (United States)

    Fry, C. D.; Rosenberg, T. J.; Lutz, L.; Detrick, D. L.; Weatherwax, A. T.; Knouse, E.; Breden, H.; Giganti, J.

    1998-09-01

    The Planetary Surface Instruments Workshop (Meyer et al., LPI Tech. Rpt. 95-05, 1995) identified surface-based radio science instruments as key tools for observing Mars' middle atmosphere, its ionosphere and solar-wind interaction. For example, Mars has a substantial daytime ionosphere, and some important features of the Martian ionosphere can only be observed from below. One instrument, the Relative Ionospheric Opacity Meter (Riometer), is expected to work well on Mars (Detrick et al., PSS, 45, p. 289, 1997). In the past, the size, power requirements and complexity of these instruments have argued against including them on a lander or rover mission, in spite of the potentially rich science return. We describe the development of a miniature radio receiver designed to operate as a Riometer. The development of this receiver was funded by NASA as an enabling technology for future planetary radio science missions. Our receiver includes features that are desirable for extended autonomous operation: low power consumption, wide dynamic range and linearity, computer command and data interface, and the ability to be remotely reconfigured. The receiver design provides significant improvements over previous implementations used in terrestrial riometry. The high degree of system linearity, combined with a digital feedback loop (including a low-duty calibration cycle), allows a longer measurement time. We were able to significantly miniaturize the receiver by using modern, low-power electronic components that have come on the market. We also implemented several of the subsystems in a field-programmable gate array, including the receiver detector, the control logic, and the data acquisition and processing blocks. Considerable efforts were made to eliminate or minimize RF noise and spurious emissions generated by the receiver's digital circuitry. Results of laboratory and field tests are presented and discussed.

  3. PRoViScout: a planetary scouting rover demonstrator

    Science.gov (United States)

    Paar, Gerhard; Woods, Mark; Gimkiewicz, Christiane; Labrosse, Frédéric; Medina, Alberto; Tyler, Laurence; Barnes, David P.; Fritz, Gerald; Kapellos, Konstantinos

    2012-01-01

    Mobile systems exploring Planetary surfaces in future will require more autonomy than today. The EU FP7-SPACE Project ProViScout (2010-2012) establishes the building blocks of such autonomous exploration systems in terms of robotics vision by a decision-based combination of navigation and scientific target selection, and integrates them into a framework ready for and exposed to field demonstration. The PRoViScout on-board system consists of mission management components such as an Executive, a Mars Mission On-Board Planner and Scheduler, a Science Assessment Module, and Navigation & Vision Processing modules. The platform hardware consists of the rover with the sensors and pointing devices. We report on the major building blocks and their functions & interfaces, emphasizing on the computer vision parts such as image acquisition (using a novel zoomed 3D-Time-of-Flight & RGB camera), mapping from 3D-TOF data, panoramic image & stereo reconstruction, hazard and slope maps, visual odometry and the recognition of potential scientifically interesting targets.

  4. ESA ExoMars: Pre-launch PanCam Geometric Modeling and Accuracy Assessment

    Science.gov (United States)

    Li, D.; Li, R.; Yilmaz, A.

    2014-08-01

    ExoMars is the flagship mission of the European Space Agency (ESA) Aurora Programme. The mobile scientific platform, or rover, will carry a drill and a suite of instruments dedicated to exobiology and geochemistry research. As the ExoMars rover is designed to travel kilometres over the Martian surface, high-precision rover localization and topographic mapping will be critical for traverse path planning and safe planetary surface operations. For such purposes, the ExoMars rover Panoramic Camera system (PanCam) will acquire images that are processed into an imagery network providing vision information for photogrammetric algorithms to localize the rover and generate 3-D mapping products. Since the design of the ExoMars PanCam will influence localization and mapping accuracy, quantitative error analysis of the PanCam design will improve scientists' awareness of the achievable level of accuracy, and enable the PanCam design team to optimize its design to achieve the highest possible level of localization and mapping accuracy. Based on photogrammetric principles and uncertainty propagation theory, we have developed a method to theoretically analyze how mapping and localization accuracy would be affected by various factors, such as length of stereo hard-baseline, focal length, and pixel size, etc.

  5. Twin-twin Transfusion Syndrome with a Single Ectopic Kidney in a Twin Donor. Case Presentation

    Directory of Open Access Journals (Sweden)

    Gerardo Rogelio Robaina Castellanos

    2016-10-01

    Full Text Available Twin-twin Transfusion Syndrome presents more frequently in diamniotic monochromic twins. In advanced stages and without prenatal intervention, is associated to high rates of peri natal mortality and neurological sequel in the survivors. It is presented a case of a pair of twins with severe depression at birth in which it was diagnosed a Twin-twin Transfusion Syndrome, later confirmed with the presence of anemia in the donor twin and polycythemia in the receptor twin. Both twins had an unfavourable evolution with an early neonatal death. Necropsy findings were comparable with secondary damage to the syndrome, with the particularity that both had evidences of pulmonary infection and a renal malformation in the donor twin which is not included in the proper malformations of this syndrome. The objective of this work is to point out the essential elements for the diagnosis and antenatal treatment for this disease through the peculiarities of the presented case.

  6. Spatial Coverage Planning for a Planetary Rover

    Science.gov (United States)

    Gaines, Daniel M.; Estlin, Tara; Chouinard, Caroline

    2008-01-01

    We are developing onboard planning and execution technologies to support the exploration and characterization of geological features by autonomous rovers. In order to generate high quality mission plans, an autonomous rover must reason about the relative importance of the observations it can perform. In this paper we look at the scientific criteria of selecting observations that improve the quality of the area covered by samples. Our approach makes use of a priori information, if available, and allows scientists to mark sub-regions of the area with relative priorities for exploration. We use an efficient algorithm for prioritizing observations based on spatial coverage that allows the system to update observation rankings as new information is gained during execution.

  7. Fullerton Virtual Twin Study.

    Science.gov (United States)

    Segal, Nancy L

    2006-12-01

    Virtual twins (VTs; same-age unrelated siblings reared together from early infancy) have been studied at California State University (CSU), Fullerton since 1991. The current sample includes over 130 pairs. Past and current research have research have focused on siblings' similarities and differences in general intelligence and body size. Future research in these areas will continue as new pairs continue to be identified. These studies will be supplemented by analyses of personality, social relations and adjustment using monozygotic (MZ) twins, dizygotic (DZ) twins, full siblings and friends, as well as new VTs, who have participated in Twins, Adoptees, Peers and Siblings (TAPS), a collaborative project conducted between CSU Fullerton and the University of San Francisco, from 2002 to 2006.

  8. Young and Rover on the Descartes

    Science.gov (United States)

    1972-01-01

    Astronaut John W. Young, Commander of the Apollo 16 mission, replaces tools in the hand tool carrier at the aft end of the 'Rover' Lunar Roving Vehicle (LRV) during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., Lunar Module pilot. Smokey Mountain, with the large Ravine crater on its flank, is in the left background. This view is looking Northeast.

  9. The ExoMars Science Data Archive: Status and Plans

    Science.gov (United States)

    Heather, David; Barbarisi, Isa; Brumfitt, Jon; Lim, Tanya; Metcalfe, Leo; Villacorta, Antonio

    2017-04-01

    The ExoMars program is a co-operation between ESA and Roscosmos comprising two missions: the first, launched on 14 March 2016, included the Trace Gas Orbiter and Schiaparelli lander; the second, due for launch in 2020, will be a Rover and Surface Platform (RSP). The archiving and management of the science data to be returned from ExoMars will require a significant development effort for the new Planetary Science Archive (PSA). These are the first data in the PSA to be formatted according to the new PDS4 Standards, and there are also significant differences in the way in which a scientist will want to query, retrieve, and use data from a suite of rover instruments as opposed to remote sensing instrumentation from an orbiter. NASA has a strong user community interaction for their rovers, and a similar approach to their 'Analysts Notebook' will be needed for the future PSA. In addition to the archiving interface itself, there are differences with the overall archiving process being followed for ExoMars compared to previous ESA planetary missions. The first level of data processing for the 2016 mission, from telemetry to raw, is completed by ESA at ESAC in Madrid, where the archive itself resides. Data continuously flow direct to the PSA, where after the given proprietary period, they will be released to the community via the user interfaces. For the rover mission, the data pipelines are being developed by European industry, in close collaboration with ESA PSA experts and with the instrument teams. The first level of data processing will be carried out for all instruments at ALTEC in Turin where the pipelines are developed, and from where the rover operations will also be run. This presentation will focus on the challenges involved in archiving the data from the ExoMars Program, and will outline the plans and current status of the system being developed to respond to the needs of the missions.

  10. Earth-Mars similarity criteria for exploring martian vehicles

    Science.gov (United States)

    Savu, G.

    2003-11-01

    In order to select the most efficient kind of a martian exploring vehicle, the similarity criteria are deduced from the equilibrium movement in the terrestrial and martian conditions. Different invariants have been obtained for the existing (entry capsules, parachutes and rovers) and potential martian exploring vehicles (lighter-than-air vehicle, airplane, helicopter and Mars Jumper). These similarity criteria, as non dimensional numbers, allow to quickly compare if such a kind of vehicles can operate in the martian environment, the movement performances, the necessary geometrical dimensions and the power consumption. Following this way of study it was concluded what vehicle is most suitable for the near soil Mars exploration. "Mars Rover" has less power consumption on Mars, but due to the rugged terrain the performances are weak. A vacuumed rigid airship is possible to fly with high performances and endurance on Mars, versus the impossibility of such a machine on the Earth. Due to very low density and the low Reynolds numbers in the Mars atmosphere, the power consumption for the martian airplane or helicopter, is substantial higher. The most efficient vehicle for the Mars exploration it seems to be a machine using the in-situ non-chemical propellants: the 95% CO2 atmosphere and the weak solar radiation. A small compressor, electrically driven by photovoltaics, compresses the gas in a storage tank, in time. If the gas is expanded through a nozzle, sufficient lift and control forces are obtained for a VTOL flight of kilometers over the martian soil, in comparison with tens of meters of the actual Mars rovers.

  11. The ExoMars 2016 Mission

    Science.gov (United States)

    Svedhem, Håkan; Vago, Jorge; de Groot, Rolf; McCoy, Don

    2016-04-01

    ExoMars is a joint programme of the European Space Agency (ESA) and Roscosmos, Russia. It consists of the ExoMars 2016 mission with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, EDM, named Schiaparelli, and the ExoMars 2018 mission, which carries a lander and a rover. The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector to search for subsurface hydrogen (as proxy for water ice and hydrated minerals). The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The EDM is carried to Mars by the TGO and is separated three days before arrival at Mars. In addition to demonstrating the landing capability two scientific investigations are included with the EDM. The AMELIA investigation aims at characterising the Martian atmosphere during the entry and descent using technical and engineering sensors of the EDM, and the DREAMS suite of sensors that will characterise the environment of the landing site for a few days after the landing. ESA provides the TGO spacecraft and the Schiaparelli Lander demonstrator, ESA member states provide two of the TGO instruments and Roscosmos provides the launcher and the other two TGO instruments. After the arrival of the ExoMars 2018 mission at the surface of Mars, the TGO will handle all communications between the Earth and the Rover. The communication between TGO and the rover/lander is done through a UHF communications system, a contribution from NASA. The 2016 mission will be launched by a Russian Proton rocket from Baikonur in March 2016 (launch window 14-25 March) and will arrive at Mars on 19 October. This presentation will cover a description of the 2016 mission, including the spacecraft

  12. Craniofacial anomalies in twins.

    Science.gov (United States)

    Keusch, C F; Mulliken, J B; Kaplan, L C

    1991-01-01

    Studies of twins provide insight into the relative contribution of genetic and environmental factors in the causality of structural anomalies. Thirty-five affected twin pairs were identified from a group of 1114 patients with congenital craniofacial deformities evaluated from 1972 to 1989. Forty-three of these 70 twins exhibited one or more craniofacial anomalies; these were analyzed for dysmorphic characteristics, zygosity, concordance, and family history. The anomalies were categorized into two groups: malformations and deformations. The malformations (n = 36) included hemifacial microsomia (n = 10), cleft lip and palate (n = 8), cleft palate (n = 4), rare facial cleft (n = 2), craniosynostosis (n = 2), Binder syndrome (n = 2), Treacher Collins syndrome (n = 2), craniopagus (n = 2), CHARGE association (n = 1), frontonasal dysplasia (n = 2), and constricted ears (n = 1). The deformations (n = 7) included plagiocephaly (n = 5), hemifacial hypoplasia (n = 1), and micrognathia (n = 1). Twenty-one monozygotic and 14 dizygotic twin pairs were identified. The concordance rate was 33 percent for monozygotic twins and 7 percent for dizygotic twins.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Mars bevares

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Hendricks, Elbert

    2009-01-01

    2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen......2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen...

  14. Applications of Surface Penetrating Radar for Mars Exploration

    Science.gov (United States)

    Li, H.; Li, C.; Ran, S.; Feng, J.; Zuo, W.

    2015-12-01

    Surface Penetrating Radar (SPR) is a geophysical method that uses electromagnetic field probe the interior structure and lithological variations of a lossy dielectric materials, it performs quite well in dry, icy and shallow-soil environments. The first radar sounding of the subsurface of planet was carried out by Apollo Lunar Sounder Experiment (ALSE) of the Apollo 17 in 1972. ALSE provided very precise information about the moon's topography and revealed structures beneath the surface in both Mare Crisium and Mare Serenitatis. Russian Mars'92 was the first Mars exploration mission that tried to use SPR to explore martian surface, subsurface and ionosphere. Although Mars'96 launch failed in 1996, Russia(Mars'98, cancelled in 1998; Phobos-Grunt, launch failed in 2011), ESA(Mars Express, succeeded in 2003; Netlander, cancelled in 2003; ExoMars 2018) and NASA(MRO, succeeded in 2005; MARS 2020) have been making great effects to send SPR to Mars, trying to search for the existence of groundwater and life in the past 20 years. So far, no Ground Penetrating Radar(GPR) has yet provided in situ observations on the surface of Mars. In December 2013, China's CE-3 lunar rover (Yuto) equipped with a GPR made the first direct measurement of the structure and depth of the lunar soil, and investigation of the lunar crust structure along the rover path. China's Mars Exploration Program also plans to carry the orbiting radar sounder and rover GPR to characterize the nature of subsurface water or ices and the layered structure of shallow subsurface of Mars. SPR can provide diversity of applications for Mars exploration , that are: to map the distribution of solid and liquid water in the upper portions of the Mars' crust; to characterize the subsurface geologic environment; to investigate the planet's subsurface to better understand the evolution and habitability of Mars; to perform the martain ionosphere sounding. Based on SPR's history and achievements, combined with the

  15. Twin delivery: how should the second twin be delivered?

    Science.gov (United States)

    Olofsson, P; Rydhström, H

    1985-11-01

    In a series of 803 pairs of twins born between 1973 and 1982, 0.33% of second twins were delivered by cesarean section after vaginal delivery of the first twin. During the last year the frequency has increased to 7%, calling attention to the problem of declining obstetric skills and experience. This has caused us to update the routines of intrapartum management of twin gestations. In the present program only commonly available obstetric techniques are used. The potentially hazardous twin delivery is excluded from a trial of vaginal delivery. Hopefully, the program will help other obstetricians to decide in favor of vaginal delivery in selected twin gestations.

  16. Mars for Earthlings: an analog approach to Mars in undergraduate education.

    Science.gov (United States)

    Chan, Marjorie; Kahmann-Robinson, Julia

    2014-01-01

    Mars for Earthlings (MFE) is a terrestrial Earth analog pedagogical approach to teaching undergraduate geology, planetary science, and astrobiology. MFE utilizes Earth analogs to teach Mars planetary concepts, with a foundational backbone in Earth science principles. The field of planetary science is rapidly changing with new technologies and higher-resolution data sets. Thus, it is increasingly important to understand geological concepts and processes for interpreting Mars data. MFE curriculum is topically driven to facilitate easy integration of content into new or existing courses. The Earth-Mars systems approach explores planetary origins, Mars missions, rocks and minerals, active driving forces/tectonics, surface sculpting processes, astrobiology, future explorations, and hot topics in an inquiry-driven environment. Curriculum leverages heavily upon multimedia resources, software programs such as Google Mars and JMARS, as well as NASA mission data such as THEMIS, HiRISE, CRISM, and rover images. Two years of MFE class evaluation data suggest that science literacy and general interest in Mars geology and astrobiology topics increased after participation in the MFE curriculum. Students also used newly developed skills to create a Mars mission team presentation. The MFE curriculum, learning modules, and resources are available online at http://serc.carleton.edu/marsforearthlings/index.html.

  17. In-motion initial alignment and positioning with INS/CNS/ODO integrated navigation system for lunar rovers

    Science.gov (United States)

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming

    2017-06-01

    Many countries have been paying great attention to space exploration, especially about the Moon and the Mars. Autonomous and high-accuracy navigation systems are needed for probers and rovers to accomplish missions. Inertial navigation system (INS)/celestial navigation system (CNS) based navigation system has been used widely on the lunar rovers. Initialization is a particularly important step for navigation. This paper presents an in-motion alignment and positioning method for lunar rovers by INS/CNS/odometer integrated navigation. The method can estimate not only the position and attitude errors, but also the biases of the accelerometers and gyros using the standard Kalman filter. The differences between the platform star azimuth, elevation angles and the computed star azimuth, elevation angles, and the difference between the velocity measured by odometer and the velocity measured by inertial sensors are taken as measurements. The semi-physical experiments are implemented to demonstrate that the position error can reduce to 10 m and attitude error is within 2″ during 5 min. The experiment results prove that it is an effective and attractive initialization approach for lunar rovers.

  18. Curiosity: the Mars Science Laboratory Project

    Science.gov (United States)

    Cook, Richard A.

    2012-01-01

    The Curiosity rover landed successfully in Gale Crater, Mars on August 5, 2012. This event was a dramatic high point in the decade long effort to design, build, test and fly the most sophisticated scientific vehicle ever sent to Mars. The real achievements of the mission have only just begun, however, as Curiosity is now searching for signs that Mars once possessed habitable environments. The Mars Science Laboratory Project has been one of the most ambitious and challenging planetary projects that NASA has undertaken. It started in the successful aftermath of the 2003 Mars Exploration Rover project and was designed to take significant steps forward in both engineering and scientific capabilities. This included a new landing system capable of emplacing a large mobile vehicle over a wide range of potential landing sites, advanced sample acquisition and handling capabilities that can retrieve samples from both rocks and soil, and a high reliability avionics suite that is designed to permit long duration surface operations. It also includes a set of ten sophisticated scientific instruments that will investigate both the geological context of the landing site plus analyze samples to understand the chemical & organic composition of rocks & soil found there. The Gale Crater site has been specifically selected as a promising location where ancient habitable environments may have existed and for which evidence may be preserved. Curiosity will spend a minimum of one Mars year (about two Earth years) looking for this evidence. This paper will report on the progress of the mission over the first few months of surface operations, plus look retrospectively at lessons learned during both the development and cruise operations phase of the mission..

  19. Mars Science Laboratory Mission and Science Investigation

    Science.gov (United States)

    Grotzinger, John P.; Crisp, Joy; Vasavada, Ashwin R.; Anderson, Robert C.; Baker, Charles J.; Barry, Robert; Blake, David F.; Conrad, Pamela; Edgett, Kenneth S.; Ferdowski, Bobak; Gellert, Ralf; Gilbert, John B.; Golombek, Matt; Gómez-Elvira, Javier; Hassler, Donald M.; Jandura, Louise; Litvak, Maxim; Mahaffy, Paul; Maki, Justin; Meyer, Michael; Malin, Michael C.; Mitrofanov, Igor; Simmonds, John J.; Vaniman, David; Welch, Richard V.; Wiens, Roger C.

    2012-09-01

    Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (˜23 months), and drive capability of at least 20 km. Curiosity's science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity's field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate

  20. MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION

    Directory of Open Access Journals (Sweden)

    J. Dong

    2017-07-01

    Full Text Available An orbiter and a descent module will be delivered to Mars in the Chinese first Mars exploration mission. The descent module is composed of a landing platform and a rover. The module will be released into the atmosphere by the orbiter and make a controlled landing on Martian surface. After landing, the rover will egress from the platform to start its science mission. The rover payloads mainly include the subsurface radar, terrain camera, multispectral camera, magnetometer, anemometer to achieve the scientific investigation of the terrain, soil characteristics, material composition, magnetic field, atmosphere, etc. The landing process is divided into three phases (entry phase, parachute descent phase and powered descent phase, which are full of risks. There exit lots of indefinite parameters and design constrain to affect the selection of the landing sites and phase switch (mortaring the parachute, separating the heat shield and cutting off the parachute. A number of new technologies (disk-gap-band parachute, guidance and navigation, etc. need to be developed. Mars and Earth have gravity and atmosphere conditions that are significantly different from one another. Meaningful environmental conditions cannot be recreated terrestrially on earth. A full-scale flight validation on earth is difficult. Therefore the end-to-end simulation and some critical subsystem test must be considered instead. The challenges above and the corresponding design solutions are introduced in this paper, which can provide reference for the Mars exploration mission.

  1. Slope activity in Gale crater, Mars

    Science.gov (United States)

    Dundas, Colin M.; McEwen, Alfred S.

    2015-01-01

    High-resolution repeat imaging of Aeolis Mons, the central mound in Gale crater, reveals active slope processes within tens of kilometers of the Curiosity rover. At one location near the base of northeastern Aeolis Mons, dozens of transient narrow lineae were observed, resembling features (Recurring Slope Lineae) that are potentially due to liquid water. However, the lineae faded and have not recurred in subsequent Mars years. Other small-scale slope activity is common, but has different spatial and temporal characteristics. We have not identified confirmed RSL, which Rummel et al. (Rummel, J.D. et al. [2014]. Astrobiology 14, 887–968) recommended be treated as potential special regions for planetary protection. Repeat images acquired as Curiosity approaches the base of Aeolis Mons could detect changes due to active slope processes, which could enable the rover to examine recently exposed material.

  2. 3D-Aided-Analysis Tool for Lunar Rover

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; LI Guo-peng; REN Xin; LIU Jian-jun; GAO Xing-ye; ZOU Xiao-duan

    2013-01-01

    3D-Aided-Analysis Tool (3DAAT) which is a virtual reality system is built up in this paper. 3DAAT is integrated with kinematics and dynamics model of rover as well as real lunar surface terrain mode. Methods of modeling which are proposed in this paper include constructing lunar surface, constructing 3D model of lander and rover, building up kinematic model of rover body. Photogrammetry technique and the remote sensing information are used to generate the terrain model of lunar surface. According to the implementation result, 3DAAT is an effective assist system for making exploration plan and analyzing the status of rover.

  3. Redox stratification of an ancient lake in Gale crater, Mars

    Science.gov (United States)

    Hurowitz, J. A.; Grotzinger, J. P.; Fischer, W. W.; McLennan, S. M.; Milliken, R. E.; Stein, N.; Vasavada, A. R.; Blake, D. F.; Dehouck, E.; Eigenbrode, J. L.; Fairén, A. G.; Frydenvang, J.; Gellert, R.; Grant, J. A.; Gupta, S.; Herkenhoff, K. E.; Ming, D. W.; Rampe, E. B.; Schmidt, M. E.; Siebach, K. L.; Stack-Morgan, K.; Sumner, D. Y.; Wiens, R. C.

    2017-06-01

    In 2012, NASA's Curiosity rover landed on Mars to assess its potential as a habitat for past life and investigate the paleoclimate record preserved by sedimentary rocks inside the ~150-kilometer-diameter Gale impact crater. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment fed by rivers draining into the crater. We synthesize geochemical and mineralogical data from lake-bed mudstones collected during the first 1300 martian solar days of rover operations in Gale. We present evidence for lake redox stratification, established by depth-dependent variations in atmospheric oxidant and dissolved-solute concentrations. Paleoclimate proxy data indicate that a transition from colder to warmer climate conditions is preserved in the stratigraphy. Finally, a late phase of geochemical modification by saline fluids is recognized.

  4. You are here: Earth as seen from Mars

    Science.gov (United States)

    2004-01-01

    This is the first image ever taken of Earth from the surface of a planet beyond the Moon. It was taken by the Mars Exploration Rover Spirit one hour before sunrise on the 63rd martian day, or sol, of its mission. The image is a mosaic of images taken by the rover's navigation camera showing a broad view of the sky, and an image taken by the rover's panoramic camera of Earth. The contrast in the panoramic camera image was increased two times to make Earth easier to see. The inset shows a combination of four panoramic camera images zoomed in on Earth. The arrow points to Earth. Earth was too faint to be detected in images taken with the panoramic camera's color filters.

  5. The Texas Twin Project.

    Science.gov (United States)

    Harden, K Paige; Tucker-Drob, Elliot M; Tackett, Jennifer L

    2013-02-01

    Socioeconomic position, racial/ethnic minority status, and other characteristics of the macro-environment may be important moderators of genetic influence on a wide array of psychosocial outcomes. Designed to maximize representation of low socioeconomic status families and racial/ethnic minorities, the Texas Twin Project is an ongoing study of school-age twins (preschool through 12th grade) enrolled in public schools in the Austin, Texas and Houston, Texas metropolitan areas. School rosters are used to identify twin families from a target population with sizable populations of African American (18%), Hispanic/Latino (48%), and non-Hispanic White (27%) children and adolescents, over half of whom meet US guidelines for classification as economically disadvantaged. Initial efforts have focused on a large-scale, family-based survey study involving both parent and child reports of personality, psychopathology, physical health, academic interests, parent-child relationships, and aspects of the home environment. In addition, the Texas Twin Project is the basis for an in-laboratory study of adolescent decision-making, delinquency, and substance use. Future directions include geographic expansion of the sample to the entire state of Texas (with a population of over 25 million) and genotyping of participating twins.

  6. Planetary protection and Mars: requirements and constraints on the 2016 and 2018 missions, and beyond

    Science.gov (United States)

    Rummel, J.; Kminek, G.; Conley, C.

    2011-10-01

    The suite of missions being planned currently by NASA and ESA as a partnership under the name "ExoMars" include an orbiter and an entry, descent, and landing demonstrator module (EDM) for the 2016 "ExoMars Trace Gas Orbiter" mission (ExoMars TGO), as well as a highly capable rover to be launched in 2018 to address the original ExoMars objectives (including the Pasteur payload). This 2018 ExoMars rover is expected to begin a series of missions leading to the first sample return mission from Mars, also conducted jointly between NASA, ESA, and their partners (JMSR). Each of these missions and mission components has a role in enabling future Mars exploration, including the search for life or life-related compounds on Mars, and each of them has the potential to carry confounding biological and organic materials into sensitive environments on Mars. Accordingly, this suite of missions will be subjected to joint planetary protection requirements applied by both ESA and NASA to their respective components, according to the COSPAR-delineated planetary protection policy to protect Mars from contamination, and eventually to provide for the protection of the Earth from potential life returned in a martian sample. This paper will discuss the challenges ahead for mission designers and the mission science teams, and will outline some of the potential pitfalls involved with different mission options.

  7. Hypoalbuminemia in Donors with Twin-Twin Transfusion Syndrome

    NARCIS (Netherlands)

    Verbeek, L.; Middeldorp, J. M.; Hulzebos, C. V.; Oepkes, D.; Walther, F. J.; Lopriore, E.

    2013-01-01

    Objective: To estimate the differences in albumin levels between donors and recipients with twin-twin transfusion syndrome (TTTS). Methods: We performed a matched case-control study including twin pairs with TTTS treated conservatively (conservative group) or with fetoscopic laser surgery (laser gro

  8. Mars and How to Observe It

    CERN Document Server

    Grego, Peter

    2012-01-01

    Mars has long been a favorite subject for astronomers, both amateur and professional. Known as the Red Planet because of its distinct color, it shines brightly in the skies when it is closest to the Earth every two years. Exciting to view through a telescope, this most Earth-like of planets transforms into a real world showing phases, brilliant polar ice caps, seasonal changes in its dusty desert markings, and atmospheric phenomena. Mars and How to Observe It takes readers on a planet-wide tour of the Red Planet and explains how a variety of dynamic forces has shaped it through the ages. This book explains how amateur astronomers can view Mars successfully to create accurate observational drawings and secure high-resolution CCD images of the planet. Peter Grego is an accomplished author, an experienced amateur astronomer who has been actively observing Mars for over 30 years. Using the latest imagery and data from Mars probes and rovers, Mars and How to Observe It presents an up-to-date guide on our current u...

  9. Dialysis for twins

    DEFF Research Database (Denmark)

    Gramkow, Ann-Maria; Aarup, Michael; Andersen, L. L. T.

    2014-01-01

    A 32-year-old woman with known stage-4 chronic kidney disease due to lupus nephritis presented with twin pregnancy after in vitro fertilization at a gestational age of 24 weeks + 3 days because of imminent preterm labour. Repeated ultrasound evaluations confirmed intrauterine growth restriction...... in both twins and polyhydramnios as the cause of imminent preterm labour. After initiation of haemodialysis treatment, ultrasound evaluation showed a significant decrease in amniotic fluids, and also reduction in blood urea nitrogen and in clinical complaints could be observed. At a gestational age of 28...... weeks + 4 days, delivery was performed by Caesarean section. This case study shows that effective treatment of elevated uraemic toxins significantly reduced the morbidity risks of the twins....

  10. The Danish Twin Registry

    DEFF Research Database (Denmark)

    Skytthe, Axel; Christiansen, Lene; Kyvik, Kirsten Ohm;

    2013-01-01

    decade of combining questionnaire and survey data with national demographic, social, and health registers in Statistics Denmark. Second, we describe our most recent data collection effort, which was conducted during the period 2008-2011 and included both in-person assessments of 14,000+ twins born 1931......Over the last 60 years, the resources and the research in the Danish Twin Registry (DTR) have periodically been summarized. Here, we give a short overview of the DTR and a more comprehensive description of new developments in the twenty-first century. First, we outline our experience over the last......-1969 and sampling of biological material, hereby expanding and consolidating the DTR biobank. Third, two examples of intensively studied twin cohorts are given. The new developments in the DTR in the last decade have facilitated the ongoing research and laid the groundwork for new research directions....

  11. Maternal nutrition in twin pregnancy.

    Science.gov (United States)

    Campbell, D M; MacGillivray, I; Tuttle, S

    1982-01-01

    Energy and protein intake as measured by 24-hour urinary nitrogen values are similar in twin and singleton pregnancies. The relationship between urinary nitrogen and nitrogen intake is equally significant in twin and singleton pregnancies. Dietary zinc, copper, and iron are not different in women with twins, nor are the levels of these elements in plasma. These observations are surprising in view of the extra fetal demands on the mother and the different adaptation of twin pregnancies.

  12. Improvement of the lunar rover with two parallel wheels

    Science.gov (United States)

    Bi, Z. F.; Deng, Z. Q.; Tao, J. G.

    With raising the new upsurge for lunar exploration the lunar rover with two parallel wheels is proposed for lunar exploration The lunar rover is driven by the offset of the driving weight and it is selected as the subsystem of the lunar rover group system The communication among the lunar rover group is simulated with blue-tooth technology In the group system the characteristic and the stability are the key problems for application The lunar rover has simple structure and it is controlled easily and also it has more performance such as motion flexibility antidumping combinability The lunar rover is composed of two wheels and a case platform Each wheel is controlled independently On the top of the case platform CCD is used for navigation In the front and the back of the case platform there are docking mechanism for combination The precise speed and position of the lunar rover is controlled by PMAC With PC 104 the actual load such as the information of sensors and real-time communication via blue-tooth is processed The good stability of the lunar rover is favorable for vision navigation and combination of several rovers Focused on the stability the lunar rover with changeable radius is proposed Screw pair is used in the lunar rover system for adjusting the driving radius Through adjusting the driving radius the tilt angle of the case platform can be variant value under the same driving moment and also the tilt angle can keep equal under the variant driving moment For testing the feasibility of the scheme based on the

  13. ExoMars Lander Radioscience LaRa, a Space Geodesy Experiment to Mars.

    Science.gov (United States)

    Dehant, Veronique; Le Maistre, Sebastien; Yseboodt, Marie; Peters, Marie-Julie; Karatekin, Ozgur; Van Hove, Bart; Rivoldini, Attilio; Baland, Rose-Marie; Van Hoolst, Tim

    2017-04-01

    The LaRa (Lander Radioscience) experiment is designed to obtain coherent two-way Doppler measurements from the radio link between the ExoMars lander and Earth over at least one Martian year. The instrument life time is thus almost twice the one Earth year of nominal mission duration. The Doppler measurements will be used to observe the orientation and rotation of Mars in space (precession, nutations, and length-of-day variations), as well as polar motion. The ultimate objective is to obtain information / constraints on the Martian interior, and on the sublimation / condensation cycle of atmospheric CO2. Rotational variations will allow us to constrain the moment of inertia of the entire planet, including its mantle and core, the moment of inertia of the core, and seasonal mass transfer between the atmosphere and the ice caps. The LaRa experiment will be combined with other ExoMars experiments, in order to retrieve a maximum amount of information on the interior of Mars. Specifically, combining LaRa's Doppler measurements with similar data from the Viking landers, Mars Pathfinder, Mars Exploration Rovers landers, and the forthcoming InSight-RISE lander missions, will allow us to improve our knowledge on the interior of Mars with unprecedented accuracy, hereby providing crucial information on the formation and evolution of the red planet.

  14. Relativistic twins or sextuplets?

    CERN Document Server

    Sheldon, E S

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.

  15. Imaging of conjoined twins

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kieran [Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom); Kiely, Edward M.; Spitz, Lewis [Great Ormond Street Hospital for Children, Department of Surgery, London (United Kingdom)

    2006-09-15

    The incidence of conjoined twins is estimated to be around 1 in 250,000 live births. There is a distinct female predominance. In this paper the imaging of conjoined twins both antenatally and postnatally is reviewed, in particular taking into consideration recent advances with multidetector CT. Accurate counselling of parents regarding the likely outcome of the pregnancy and the likelihood of successful separation is dependent on good prenatal imaging with ultrasound and MRI. Planning of postnatal surgical separation is aided by accurate preoperative imaging which, depending on the conjoined area, will encompass many imaging modalities, but often relies heavily on CT scanning. (orig.)

  16. The Twin Interdisciplinary Neuroticism Study

    NARCIS (Netherlands)

    Riese, Harriette; Rijsdijk, Fruehling V.; Snieder, Harold; Ormel, Johan

    The Twin Interdisciplinary Neuroticism Study (TWINS) is a three-wave study including >800 twin pairs from the northern part of the Netherlands. The aim of the study is to unravel why neuroticism reflects vulnerability to mental disorders. In this study, we focus on possible mechanisms underlying

  17. Assessment of Environments for Mars Science Laboratory Entry, Descent, and Surface Operations

    Science.gov (United States)

    Vasavada, Ashwin R.; Chen, Allen; Barnes, Jeffrey R.; Burkhart, P. Daniel; Cantor, Bruce A.; Dwyer-Cianciolo, Alicia M.; Fergason, Robin L.; Hinson, David P.; Justh, Hilary L.; Kass, David M.; Lewis, Stephen R.; Mischna, Michael A.; Murphy, James R.; Rafkin, Scot C. R.; Tyler, Daniel; Withers, Paul G.

    2012-09-01

    The Mars Science Laboratory mission aims to land a car-sized rover on Mars' surface and operate it for at least one Mars year in order to assess whether its field area was ever capable of supporting microbial life. Here we describe the approach used to identify, characterize, and assess environmental risks to the landing and rover surface operations. Novel entry, descent, and landing approaches will be used to accurately deliver the 900-kg rover, including the ability to sense and "fly out" deviations from a best-estimate atmospheric state. A joint engineering and science team developed methods to estimate the range of potential atmospheric states at the time of arrival and to quantitatively assess the spacecraft's performance and risk given its particular sensitivities to atmospheric conditions. Numerical models are used to calculate the atmospheric parameters, with observations used to define model cases, tune model parameters, and validate results. This joint program has resulted in a spacecraft capable of accessing, with minimal risk, the four finalist sites chosen for their scientific merit. The capability to operate the landed rover over the latitude range of candidate landing sites, and for all seasons, was verified against an analysis of surface environmental conditions described here. These results, from orbital and model data sets, also drive engineering simulations of the rover's thermal state that are used to plan surface operations.

  18. 78 FR 19742 - Centennial Challenges: 2014 Night Rover Challenge

    Science.gov (United States)

    2013-04-02

    ... SPACE ADMINISTRATION Centennial Challenges: 2014 Night Rover Challenge AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Centennial Challenges 2014 Night Rover Challenge. SUMMARY... scheduled and teams that wish to compete may register. Centennial Challenges is a program of prize...

  19. Exploring Mars

    Science.gov (United States)

    Breuil, Stéphanie

    2016-04-01

    Mars is our neighbour planet and has always fascinated humans as it has been seen as a potential abode for life. Knowledge about Mars is huge and was constructed step by step through numerous missions. It could be difficult to describe these missions, the associated technology, the results, the questions they raise, that's why an activity is proposed, that directly interests students. Their production is presented in the poster. Step 1: The main Mars feature and the first Mars explorations using telescope are presented to students. It should be really interesting to present "Mars Canals" from Percival Lowell as it should also warn students against flawed interpretation. Moreover, this study has raised the big question about extra-terrestrial life on Mars for the first time. Using Google Mars is then a good way to show the huge knowledge we have on the planet and to introduce modern missions. Step 2: Students have to choose and describe one of the Mars mission from ESA and NASA. They should work in pairs. Web sites from ESA and NASA are available and the teacher makes sure the main missions will be studied. Step 3: Students have to collect different pieces of information about the mission - When? Which technology? What were the main results? What type of questions does it raise? They prepare an oral presentation in the form they want (role play, academic presentation, using a poster, PowerPoint). They also have to produce playing cards about the mission that could be put on a timeline. Step 4: As a conclusion, the different cards concerning different missions are mixed. Groups of students receive cards and they have to put them on a timeline as fast as possible. It is also possible to play the game "timeline".

  20. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    Energy Technology Data Exchange (ETDEWEB)

    Sobrado, J. M., E-mail: sobradovj@inta.es; Martín-Soler, J. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Martín-Gago, J. A. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Instituto de Ciencias de Materiales de Madrid (ICMM–CSIC), Cantoblanco, 28049 Madrid (Spain)

    2015-10-15

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.

  1. Moon and Mars Analog Mission Activities for Mauna Kea 2012

    Science.gov (United States)

    Graham, Lee D.; Morris, Richard V.; Graff, Trevor G.; Yingst, R. Aileen; tenKate, I. L.; Glavin, Daniel P.; Hedlund, Magnus; Malespin, Charles A.; Mumm, Erik

    2012-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were recently completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Initial science operations were planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred as the analog mission progressed. We report here on the preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering and science trades discussions and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as "Apollo Valley".

  2. The Mars Science Laboratory Mars Hand Lens Imager (MSL MAHLI)

    Science.gov (United States)

    Minitti, Michelle E.; Edgett, Kenneth S.; Msl Mastcam/Mahli/Mardi Team

    2007-10-01

    The Mars Science Laboratory (MSL) rover mission, slated to begin Martian surface operations in 2010, seeks to explore the past and present habitability of a yet-to-be-selected site on Mars. Armed with a suite of instruments capable of spectral, chemical, mineralogical, organic and isotopic analyses, MSL will comprehensively study the Martian atmosphere and rocks and soils on the Martian surface. The Mars Hand Lens Imager (MAHLI), the "geologist's handlens" for MSL, supports habitability studies through aiding the selection of samples for in-depth analysis and placing such samples in a geologic and geomorphic context. More broadly, the goal of MAHLI is to examine the texture, morphology, structure, mineralogy, and stratigraphy of rocks, soils, frost and ice at the microscale. MAHLI will achieve this objective using capabilities new to Martian cameras including a CCD with a Bayer Pattern Filter coupled with a focusable lens. The Bayer Pattern Filter produces RGB color images akin to those taken by the standard commercial digital camera. Placement of MAHLI by the MSL Robotic Arm (RA) at a particular distance from the sample of interest and MAHLI's internal focus mechanism combine to achieve a desired image resolution. At its closest placement (22.5 mm), MAHLI has 9 µm/pixel resolution. In practice, RA placement may be sufficiently uncertain that 9 µm/pixel will not be achieved regularly; however, resolutions in the 12-15 µm/pixel range are expected for typical high resolution images. Depending on the target distance and its surface relief, the target may not be in focus over the entire image. For those cases, MAHLI acquires a series of images taken at a range of focus positions that bracket the location of best focus. MAHLI's onboard software is capable of merging this stack of images, into a single best-focus image. MAHLI can image in natural illumination but it also possesses four, white light emitting diodes (LED) for illumination of samples in shadow or at

  3. Identical Twins Raised Apart

    Science.gov (United States)

    Farnsworth, David L.

    2015-01-01

    This article describes a bivariate data set that is interesting to students. Indeed, this particular data set, which involves twins and IQ, has sparked more student interest than any other set that I have presented. Specific uses of the data set are presented.

  4. Sleep Terrors in Twins

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-12-01

    Full Text Available In an attempt to clarify the genetic and environmental causes of sleep terrors in childhood, reasearchers in Canada followed 390 pairs of monozygotic and dizygotic twins by assessing the frequency of sleep terrors at 18 and 30 months of age using a questionnaire administered to the biological mothers.

  5. Twin Hub Network (poster)

    NARCIS (Netherlands)

    Kreutzberger, E.D.; Konings, J.W.

    2014-01-01

    Twin hub network, a European Interreg IVB project, aims at making intermodal rail transport within, to and from North West Europe more competitive, in particular between seaports and inland terminals. Improving rail competitiveness enables to shift freight flows from road to rail, providing a more s

  6. Amelia in Twin Pregnancy

    Directory of Open Access Journals (Sweden)

    Davari Tanha Fatemeh

    2009-04-01

    Full Text Available Limb bud first appears during the third week of gestation with the upper limb buds appearing a few days before the lower limb buds. Complete absence of one or more limbs, called Amelia, occurs prior to the eighth week of gestation. We report a case of Amelia in a twin gestation.

  7. TWIN BLOCK (Studi Pustaka

    Directory of Open Access Journals (Sweden)

    Evie Lamtiur

    2015-08-01

    Full Text Available Young patients with class II skeletal malocclusion are often found. To avoid further discrepancy of this case, myofunctional therapy is one of the options. Functional appliance often used for such treatment. Functional appliance has been modified since activator was introduced by Andresen. With its bulky shape, activator makes difficulty for patient to speak and eat. Patient unable to wear it full time due to uncomfortness and negative facial appearance. In 1977, Clark developed twin block to overcome the weakness of previous appliances. A more simple design allows patient to be more comfortable and willing to wear it longer. Twin block is myofunctional appliance to reposition the mandible forward for skeletal class II correction with retruded mandible. This paper describes the design, clinical management effects of twin block treatment and brief case presentation using twin block appliance. Similar to the study reports found, this case revealed improvement of facial appearance, decrease overjet and overbite, improvement of molar relationship and good compliance of patient.

  8. Twin-twin transfusion syndrome - diagnosis and prognosis

    Directory of Open Access Journals (Sweden)

    Hajrić-Egić Amira

    2003-01-01

    Full Text Available Twin-twin transfusion syndrome is a serious complication of monozygotic, monochorionic, diamniotic twins resulting from transplacental vascular communications. In this syndrome blood is thought to be shunted from one twin - donor,who develops anaemia,growth retardation and oligoamnios, to the other twin - recipient,who becomes plethoric,macrosomic and develops polyhydroamnios. The incidence of twin-twin transfusion syndrome ranges from 5-15% of all twin pregnancies. If this condition develops in the second trimester, it is usually associated with spontaneous abortion and death of one or both fetuses before viability. Developing the syndrome in the third trimester has better perinatal outcome. Mortality rates ranging from 56%-100%, depending on gestational age and severity of the syndrome. The ultrasound criterias for diagnosis, in this study,were the presence of twins of the same sex with discordant growth, with oligohydroamnios in one twin sac and polyhydroamnios in the other one, one placenta and thin membrane between twins. The present study shows clinical course of 14 cases and value of Doppler ultrasound to analyze the usefulness of umbilical artery blood flow velocimetry for predicting the risk of twin-twin transfusion syndrome. 14 twin pregnancies with twin-twin transfusion syndrome were diagnosed during the last four years period and prospectivelly followed. 9 cases were diagnosed before the completion od 28 weeks of gestation.The mean gestational age was 21,6_+4,2 weeks at diagnosis and 23,2+_3,6 weeks at delivery. 5 cases were diagnosed after 28 weeks of gestation. The mean gestational age in this group was 29,6+_2,1 weeks at diagnosis and 33+_3,3 weeks at delivery. The survival rate in this study was 29%(8/28.9 cases ended in spontaneous abortion between 18th and 27th weeks of pregnancy (table 1 and 5 in premature labor (table 2.There were 7 intrauterine death (5 at admission and 2 few days after admission and 13 neonatal deaths

  9. Modeling of Sulfide Microenvironments on Mars

    Science.gov (United States)

    Schwenzer, S. P.; Bridges, J. C.; McAdam, A.; Steer, E. D.; Conrad, P. G.; Kelley, S. P.; Wiens, R. C.; Mangold, N.; Grotzinger, J.; Eigenbrode, J. L.; Franz, H. B.; Sutter, B.

    2016-01-01

    Yellowknife Bay (YKB; sol 124-198) is the second site that the Mars Science Laboratory Rover Curiosity investigated in detail on its mission in Gale Crater. YKB represents lake bed sediments from an overall neutral pH, low salinity environment, with a mineralogical composition which includes Ca-sulfates, Fe oxide/hydroxides, Fe-sulfides, amorphous material, and trioctahedral phyllosilicates. We investigate whether sulfide alteration could be associated with ancient habitable microenvironments in the Gale mudstones. Some textural evidence for such alteration may be pre-sent in the nodules present in the mudstone.

  10. Relay Telecommunications for the Coming Decade of Mars Exploration

    Science.gov (United States)

    Edwards, C.; DePaula, R.

    2010-01-01

    Over the past decade, an evolving network of relay-equipped orbiters has advanced our capabilities for Mars exploration. NASA's Mars Global Surveyor, 2001 Mars Odyssey, and Mars Reconnaissance Orbiter (MRO), as well as ESA's Mars Express Orbiter, have provided telecommunications relay services to the 2003 Mars Exploration Rovers, Spirit and Opportunity, and to the 2007 Phoenix Lander. Based on these successes, a roadmap for continued Mars relay services is in place for the coming decade. MRO and Odyssey will provide key relay support to the 2011 Mars Science Laboratory (MSL) mission, including capture of critical event telemetry during entry, descent, and landing, as well as support for command and telemetry during surface operations, utilizing new capabilities of the Electra relay payload on MRO and the Electra-Lite payload on MSL to allow significant increase in data return relative to earlier missions. Over the remainder of the decade a number of additional orbiter and lander missions are planned, representing new orbital relay service providers and new landed relay users. In this paper we will outline this Mars relay roadmap, quantifying relay performance over time, illustrating planned support scenarios, and identifying key challenges and technology infusion opportunities.

  11. Relay Telecommunications for the Coming Decade of Mars Exploration

    Science.gov (United States)

    Edwards, C.; DePaula, R.

    2010-01-01

    Over the past decade, an evolving network of relay-equipped orbiters has advanced our capabilities for Mars exploration. NASA's Mars Global Surveyor, 2001 Mars Odyssey, and Mars Reconnaissance Orbiter (MRO), as well as ESA's Mars Express Orbiter, have provided telecommunications relay services to the 2003 Mars Exploration Rovers, Spirit and Opportunity, and to the 2007 Phoenix Lander. Based on these successes, a roadmap for continued Mars relay services is in place for the coming decade. MRO and Odyssey will provide key relay support to the 2011 Mars Science Laboratory (MSL) mission, including capture of critical event telemetry during entry, descent, and landing, as well as support for command and telemetry during surface operations, utilizing new capabilities of the Electra relay payload on MRO and the Electra-Lite payload on MSL to allow significant increase in data return relative to earlier missions. Over the remainder of the decade a number of additional orbiter and lander missions are planned, representing new orbital relay service providers and new landed relay users. In this paper we will outline this Mars relay roadmap, quantifying relay performance over time, illustrating planned support scenarios, and identifying key challenges and technology infusion opportunities.

  12. Planetary rover robotics experiment in education: carbonate rock collecting experiment of the Husar-5 rover

    Science.gov (United States)

    Szalay, Kristóf; Lang, Ágota; Horváth, Tamás; Prajczer, Péter; Bérczi, Szaniszló

    2013-04-01

    Introduction: The new experiment for the Husar-5 educational space probe rover consists of steps of the technology of procedure of finding carbonate speci-mens among the rocks on the field. 3 main steps were robotized: 1) identification of carbonate by acid test, 2) measuring the gases liberated by acid, and 3) magnetic test. Construction of the experiment: The basis of the robotic realization of the experiment is a romote-controlled rover which can move on the field. Onto this rover the mechanism of the experiments were built from Technics LEGO elements and we used LEGO-motors for making move these experiments. The operation was coordinated by an NXT-brick which was suitable to programming. Fort he acetic-test the drops should be passed to the selected area. Passing a drop to a locality: From the small holder of the acid using densified gas we pump some drop onto the selected rock. We promote this process by pumpig the atmospheric gas into another small gas-container, so we have another higher pressure gas there. This is pumped into the acid-holder. The effect of the reaction is observed by a wireless onboard camera In the next step we can identify the the liberated gas by the gas sensor. Using it we can confirm the liberation of the CO2 gas without outer observer. The third step is the controll of the paramagnetic properties.. In measuring this feature a LEGO-compass is our instrumentation. We use a electric current gener-ated magnet. During the measurements both the coil and the gas-sensor should be positioned to be near to the surface. This means, that a lowering and an uplifting machinery should be constructed. Summary: The sequence of the measurement is the following. 1) the camera - after giving panorama images - turns toward the soil surface, 2) the dropping onto the rock surface 3) at the same time the gas-sensor starts to move down above the rock 4) the compass sensor also moves down on the arm which holds both the gas-sensor and the compass-sensor 5

  13. Virtual Astronaut for Scientific Visualization—A Prototype for Santa Maria Crater on Mars

    Directory of Open Access Journals (Sweden)

    Edward A. Guinness

    2012-12-01

    Full Text Available To support scientific visualization of multiple-mission data from Mars, the Virtual Astronaut (VA creates an interactive virtual 3D environment built on the Unity3D Game Engine. A prototype study was conducted based on orbital and Opportunity Rover data covering Santa Maria Crater in Meridiani Planum on Mars. The VA at Santa Maria provides dynamic visual representations of the imaging, compositional, and mineralogical information. The VA lets one navigate through the scene and provides geomorphic and geologic contexts for the rover operations. User interactions include in-situ observations visualization, feature measurement, and an animation control of rover drives. This paper covers our approach and implementation of the VA system. A brief summary of the prototype system functions and user feedback is also covered. Based on external review and comments by the science community, the prototype at Santa Maria has proven the VA to be an effective tool for virtual geovisual analysis.

  14. Mitral valve regurgitation in twins

    DEFF Research Database (Denmark)

    Bakkestrøm, Rine; Larsen, Lisbeth Aagaard; Møller, Jacob Eifer

    2016-01-01

    BACKGROUND: Smaller observational studies have suggested familial clustering of mitral regurgitation (MR). Using a large twin cohort, the aims were to assess MR concordance rates and assess mortality in MR twins and unaffected cotwins. METHODS: Through the Danish Twin Registry, twins...... with an International Classification of Diseases, Eighth Revision and Tenth Revision diagnosis code of MR born 1880-1989 were identified and proband-wise concordance rates were calculated. To assess whether having a cotwin with MR affected survival, 10 matched twins without MR (n = 5,575) were selected for each MR twin...... (n = 562), and all-cause mortality rates were assessed. RESULTS: Among the 87,432 twins alive January 1, 1977, or later, 494 (0.57%) MR individuals were identified. Six MR concordant pairs were found, of which 3 were monozygotic. Proband-wise concordance rate when accounting for right censoring...

  15. Lunar Rover Model - Reengineering of an Existing Mobile Platform towards the realization of a Rover Autonomy Testbed

    NARCIS (Netherlands)

    Gounaris, Alexandros Frantzis; Poulakis, Pantelis; Chautems, Christophe; Raffaela, Carloni; Stramigioli, Stefano

    2011-01-01

    The Automation & Robotics Section of the European Space Agency (ESA) is developing a platform for investigation of different levels of autonomy of planetary rovers. Within this scope a physical flight model is required and the Lunar Rover Model (LRM) is chosen. The LRM is a 4 wheel, medium-scale (12

  16. Lunar Rover Model - Reengineering of an Existing Mobile Platform towards the realization of a Rover Autonomy Testbed

    NARCIS (Netherlands)

    Gounaris, Alexandros Frantzis; Poulakis, Pantelis; Chautems, Christophe; Raffaela, Carloni; Stramigioli, Stefano

    2011-01-01

    The Automation & Robotics Section of the European Space Agency (ESA) is developing a platform for investigation of different levels of autonomy of planetary rovers. Within this scope a physical flight model is required and the Lunar Rover Model (LRM) is chosen. The LRM is a 4 wheel, medium-scale

  17. Organic Molecules in the Sheepbed Mudstone, Gale Crater, Mars

    Science.gov (United States)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; Franz, H. B.; Steele, A.

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally released from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. Here we report on various chlorinated hydrocarbons (chloromethanes, chlorobenzene and dichloroalkanes) detected at elevated levels above instrument background at the Cumberland (CB) drill site, and discuss their possible sources.

  18. Generation and Performance of Automated Jarosite Mineral Detectors for Vis/NIR Spectrometers at Mars

    Science.gov (United States)

    Gilmore, M. S.; Bornstein, B.; Merrill, M. D.; Castano, R.; Greenwood, J. P.

    2005-01-01

    Sulfate salt discoveries at the Eagle and Endurance craters in Meridiani Planum by the Mars Exploration Rover Opportunity have proven mineralogically the existence and involvement of water in Mars past. Visible and near infrared spectrometers like the Mars Express OMEGA, the Mars Reconnaissance Orbiter CRISM and the 2009 Mars Science Laboratory Rover cameras are powerful tools for the identification of water-bearing salts and other high priority minerals at Mars. The increasing spectral resolution and rover mission lifetimes represented by these missions currently necessitate data compression in order to ease downlink restrictions. On board data processing techniques can be used to guide the selection, measurement and return of scientifically important data from relevant targets, thus easing bandwidth stress and increasing scientific return. We have developed an automated support vector machine (SVM) detector operating in the visible/near-infrared (VisNIR, 300-2500 nm) spectral range trained to recognize the mineral jarosite (typically KFe3(SO4)2(OH)6), positively identified by the Mossbauer spectrometer at Meridiani Planum. Additional information is included in the original extended abstract.

  19. Brazilian Twin Registry: A Bright Future for Twin Studies/Twin Research: Twin Study of Alcohol Consumption and Mortality; Oxygen Uptake in Adolescent Twins/In the News: Superfecundated Twins In Vietnam; Adolescent Twin Relations; Twin and Triplet Co-Workers; A Special Twin Ultrasound; Monozygotic Twins With Different Skin Color; Identical Twin Returns from Space.

    Science.gov (United States)

    Segal, Nancy L

    2016-06-01

    The establishment of the Brazilian Twin Registry for the study of genetic, social, and cultural influences on behavior is one of eleven newly funded projects in the Department of Psychology at the University of São Paulo. These 11 interrelated projects form the core of the university's Center for Applied Research on Well-Being and Human Behavior. An overview of the planned twin research and activities to date is presented. Next, two recent twin studies are reviewed, one on the relationship between alcohol consumption and mortality, and the other on factors affecting maximal oxygen uptake. Twins cited in the media include the first identified superfecundated twins in Vietnam, adolescent twin relations, twins and triplets who work together, monozygotic twins with different skin tones and a co-twin control study that addresses the effects of space travel.

  20. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars

    NARCIS (Netherlands)

    Ming, D.W.; Archer Jr., P.D.; Glavin, D.P.; Eigenbrode, J.L.; Franz, H.B.; Sutter, B.; Brunner, A.E.; Stern, J.C.; Freissinet, C.; McAdam, A.C.; Mahaffy, P.R.; Cabane, M.; Coll, P.; Campbell, J.L.; Atreya, S.K.; Niles, P.B.; Bell III, J.F.; Bish, D.L.; Brinckerhoff, W.B.; Buch, A.; Conrad, P.G.; Des Marais, D.J.; Ehlmann, B.L.; Fairén, A.G.; Farley, K.; Flesch, G.J.; Francois, P.; Gellert, R.; Grant, J.A.; Grotzinger, J.P.; Gupta, S.; Herkenhoff, K.E.; Hurowitz, J.A.; Leshin, L.A.; Lewis, K.W.; McLennan, S.M.; Miller, K.E.; Moersch, J.; Morris, R.V.; Navarro-González, R.; Pavlov, A.A.; Perrett, G.M.; Pradler, I.; Squyres, S.W.; Summons, R.E.; Steele, A.; Stolper, E.M.; Sumner, D.Y.; Szopa, C.; Teinturier, S.; Trainer, M.G.; Treiman, A.H.; Vaniman, D.T.; Vasavada, A.R.; Webster, C.R.; Wray, J.J.; Yingst, R.A.; MSL Science Team, the

    2014-01-01

    H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amo

  1. Curiosity at Gale Crater, Mars: Characterization and analysis of the rocknest sand shadow

    NARCIS (Netherlands)

    Blake, D.F.; Morris, R.V.; Kocurek, G.; Morrison, S.M.; Downs, R.T.; Bish, D.; Ming, D.W.; Edgett, K.S.; Rubin, D.; Goetz, W.; Madsen, M.B.; Sullivan, R.; Gellert, R.; Campbell, I.; Treiman, A.H.; McLennan, S.M.; Yen, A.S.; Grotzinger, J.; Vaniman, D.T.; Chipera, S.J.; Achilles, C.N.; Rampe, E.B.; Sumner, D.; Meslin, P.-Y.; Maurice, S.; Forni, O.; Gasnault, O.; Fisk, M.; Schmidt, M.; Mahaffy, P.; Leshin, L.A.; Glavin, D.; Steele, A.; Freissinet, C.; Navarro-González, R.; Yingst, R.A.; Kah, L.C.; Bridges, N.; Lewis, K.W.; Bristow, T.F.; Farmer, J.D.; Crisp, J.A.; Stolper, E.M.; Des Marais, D.J.; Sarrazin, P.; MSL Science Team, the

    2013-01-01

    The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous com

  2. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars

    NARCIS (Netherlands)

    McLennan, S.M.; Anderson, R.B.; Bell III, J.F.; Bridges, J.C.; Calef III, F.; Campbell, J.L.; Clark, B.C.; Clegg, S.; Conrad, P.; Cousin, A.; Des Marais, D.J.; Dromart, G.; Dyar, M.D.; Edgar, L.A.; Ehlmann, B.L.; Fabre, C.; Forni, O.; Gasnault, O.; Gellert, R.; Gordon, S.; Grant, J.A.; Grotzinger, J.P.; Gupta, S.; Herkenhoff, K.E.; Hurowitz, J.A.; King, P.L.; Mouélic, S.L.; Leshin, L.A.; Léveillé, R.; Lewis, K.W.; Mangold, N.; Maurice, S.; Ming, D.W.; Morris, R.V.; Nachon, M.; Newsom, H.E.; Ollila, A.M.; Perrett, G.M.; Rice, M.S.; Schmidt, M.E.; Schwenzer, S.P.; Stack, K.; Stolper, E.M.; Sumner, D.Y.; Treiman, A.H.; VanBommel, S.; Vaniman, D.T.; Vasavada, A.; Wiens, R.C.; Yingst, R.A.; ten Kate, Inge Loes

    2014-01-01

    Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleocl

  3. Volcanic lake systems as terrestrial analogue for sulphate-rich terrains on Mars

    NARCIS (Netherlands)

    Rodríguez, A.

    2016-01-01

    Remote-sensing observations and rover missions have documented the abundant presence of sulphate-rich mineral associations on the surface of Mars. Together with widespread occurrences of silica and frequent enrichments of chlorine and bromine in soils and rocks, the sulphate associations are fingerp

  4. Curiosity at Gale Crater, Mars: Characterization and analysis of the rocknest sand shadow

    NARCIS (Netherlands)

    Blake, D.F.; Morris, R.V.; Kocurek, G.; Morrison, S.M.; Downs, R.T.; Bish, D.; Ming, D.W.; Edgett, K.S.; Rubin, D.; Goetz, W.; Madsen, M.B.; Sullivan, R.; Gellert, R.; Campbell, I.; Treiman, A.H.; McLennan, S.M.; Yen, A.S.; Grotzinger, J.; Vaniman, D.T.; Chipera, S.J.; Achilles, C.N.; Rampe, E.B.; Sumner, D.; Meslin, P.-Y.; Maurice, S.; Forni, O.; Gasnault, O.; Fisk, M.; Schmidt, M.; Mahaffy, P.; Leshin, L.A.; Glavin, D.; Steele, A.; Freissinet, C.; Navarro-González, R.; Yingst, R.A.; Kah, L.C.; Bridges, N.; Lewis, K.W.; Bristow, T.F.; Farmer, J.D.; Crisp, J.A.; Stolper, E.M.; Des Marais, D.J.; Sarrazin, P.; MSL Science Team, the|info:eu-repo/dai/nl/292012217

    2013-01-01

    The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous

  5. 2012 Moon Mars Analog Mission Activities on Mauna Kea, Hawai'i

    NARCIS (Netherlands)

    Graham, Lee; Graff, Trevor G.; Aileen Yingst, R.; Ten Kate, Inge L.; Russell, Patrick

    2015-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities des

  6. X-ray diffraction results from mars science laboratory: Mineralogy of rocknest at Gale crater

    NARCIS (Netherlands)

    Bish, D.L.; Blake, D.F.; Vaniman, D.T.; Chipera, S.J.; Morris, R.V.; Ming, D.W.; Treiman, A.H.; Sarrazin, P.; Morrison, S.M.; Downs, R.T.; Achilles, C.N.; Yen, A.S.; Bristow, T.F.; Crisp, J.A.; Morookian, J.M.; Farmer, J.D.; Rampe, E.B.; Stolper, E.M.; Spanovich, N.; MSL Science Team, the

    2013-01-01

    The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, and pigeonite, w

  7. "Bimodal" Nuclear Thermal Rocket (BNTR) Propulsion for Future Human Mars Exploration Missions

    Science.gov (United States)

    Borowski, Stanley K.

    2004-01-01

    The Nuclear Thermal Rocket (NTR) Propulsion program is discussed. The Rover/NERVA program from 1959-1972 is compared with the current program. A key technology description, bimodal vehicle design for Mars Cargo and the crew transfer vehicle with inflatable module and artificial gravity capability, including diagrams are included. The LOX-Augmented NTR concept/operational features and characteristics are discussed.

  8. 2012 Moon Mars Analog Mission Activities on Mauna Kea, Hawai'i

    NARCIS (Netherlands)

    Graham, Lee; Graff, Trevor G.; Aileen Yingst, R.; Ten Kate, Inge L.|info:eu-repo/dai/nl/292012217; Russell, Patrick

    2015-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities des

  9. Preparations for ExoMars: Learning Lessons from Curiosity

    Science.gov (United States)

    Edwards, Peter Henry; Hutchinson, Ian; Morgan, Sally; McHugh, Melissa; Malherbe, Cedric; Lerman, Hannah; INGLEY, Richard

    2016-10-01

    In 2020, the European Space Agency will launch its first Mars rover mission, ExoMars. The rover will use a drill to obtain samples from up to 2m below the Martian surface that will then be analysed using a variety of analytical instruments, including the Raman Laser Spectrometer (RLS), which will be the first Raman spectrometer to be used on a planetary mission.To prepare for ExoMars RLS operations, we report on a series of experiments that have been performed in order to investigate the response of a representative Raman instrument to a number of analogue samples (selected based on the types of material known to be important, following investigations performed by NASA's Mars Science Laboratory, MSL, on the Curiosity rover). Raman spectroscopy will provide molecular and mineralogical information about the samples obtained from the drill cores on ExoMars. MSL acquires similar information using the CheMin XRD instrument which analyses samples acquired from drill holes several centimetres deep. Like Raman spectroscopy, XRD also provides information on the mineralogical makeup of the analysed samples.The samples in our study were selected based on CheMin data obtained from drill sites at Yellowknife Bay, one of the first locations visited by Curiosity (supplemented with additional fine scale elemental information obtained with the ChemCam LIBS laser instrument). Once selected (or produced), the samples were characterised using standard laboratory XRD and XRF instruments (in order to compare with the data obtained by CheMin) and a standard, laboratory based LIBS system (in order to compare with the ChemCam data). This characterisation provides confirmation that the analogue samples are representative of the materials likely to be encountered on Mars by the ExoMars rover.A representative, miniaturised Raman spectrometer was used to analyse the samples, using acquisition strategies and operating modes similar to those expected for the ExoMars instrument. The type of

  10. MNSM - A Future Mars Network Science Mission

    Science.gov (United States)

    Chicarro, A. F.

    2012-04-01

    Following ESA' s successful Mars Express mission, European efforts in Mars Exploration are now taking place within the joint ESA-NASA Mars Exploration Programme, starting in 2016 with the Trace Gases Orbiter (TGO) focusing on atmospheric trace gases and in particular methane, and with the Entry and Descent Module (EDM). In 2018, a joint NASA-ESA rover will perform sample caching as well as geological, geochemical and exobiological measurements of the surface and the subsurface of Mars. A number of missions for 2020 and beyond are currently under study. Among those, a possible candidate is a Mars Network Science Mission (MNSM) of 3-6 surface stations, to investigate the interior of the planet, its rotational parameters and its atmospheric dynamics. These important science goals have not been fully addressed by Mars exploration so far and can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet such as a Mars Network mission. In addition, the geology, mineralogy and astrobiological significance of each landing site would be addressed, as three new locations on Mars would be reached. Such Mars Network Science Mission has been considered a significant priority by the planetary science community worldwide for the past two decades. In fact, a Mars Network mission concept has a long heritage, as it was studied a number of times by ESA, NASA and CNES (e.g., Marsnet, Intermarsnet, Netlander and MarsNEXT mission studies) since 1990. Study work has been renewed in ESA recently with MNSM Science and Engineering Teams being set up to update the scientific objectives of the mission and to evaluate its technical feasibility, respectively. The current mission baseline includes three ESA-led small landers with a robotic arm to be launched with a Soyuz rocket and direct communications to Earth (no need of a dedicated orbiter). However, a larger network could be put in place through international collaboration, as several

  11. Hydropic Placenta as a First Manifestation of Twin-Twin Transfusion in a Monochorionic Diamniotic Twin Pregnancy

    NARCIS (Netherlands)

    de Laat, Monique W. M.; Manten, Gwendoline T. R.; Nikkels, Peter G. J.; Stoutenbeek, Philip

    2009-01-01

    Monochorionic twin pregnancies are at a 10% to 1.5% risk of developing twin-twin transfusion syndrome (TTTS).(1) Monitoring such pregnancies is aimed at evaluating the fetal condition by measuring the amount of amniotic fluid, Doppler parameters, and fetal growth. Twin-twin transfusion syndrome may

  12. Hydropic Placenta as a First Manifestation of Twin-Twin Transfusion in a Monochorionic Diamniotic Twin Pregnancy

    NARCIS (Netherlands)

    de Laat, Monique W. M.; Manten, Gwendoline T. R.; Nikkels, Peter G. J.; Stoutenbeek, Philip

    Monochorionic twin pregnancies are at a 10% to 1.5% risk of developing twin-twin transfusion syndrome (TTTS).(1) Monitoring such pregnancies is aimed at evaluating the fetal condition by measuring the amount of amniotic fluid, Doppler parameters, and fetal growth. Twin-twin transfusion syndrome may

  13. Hydropic Placenta as a First Manifestation of Twin-Twin Transfusion in a Monochorionic Diamniotic Twin Pregnancy

    NARCIS (Netherlands)

    de Laat, Monique W. M.; Manten, Gwendoline T. R.; Nikkels, Peter G. J.; Stoutenbeek, Philip

    2009-01-01

    Monochorionic twin pregnancies are at a 10% to 1.5% risk of developing twin-twin transfusion syndrome (TTTS).(1) Monitoring such pregnancies is aimed at evaluating the fetal condition by measuring the amount of amniotic fluid, Doppler parameters, and fetal growth. Twin-twin transfusion syndrome may

  14. Large wind ripples on Mars: A record of atmospheric evolution.

    Science.gov (United States)

    Lapotre, M G A; Ewing, R C; Lamb, M P; Fischer, W W; Grotzinger, J P; Rubin, D M; Lewis, K W; Ballard, M J; Day, M; Gupta, S; Banham, S G; Bridges, N T; Des Marais, D J; Fraeman, A A; Grant, J A; Herkenhoff, K E; Ming, D W; Mischna, M A; Rice, M S; Sumner, D A; Vasavada, A R; Yingst, R A

    2016-07-01

    Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter- to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially