WorldWideScience

Sample records for twin gas jet-assisted

  1. ON THE OBSERVATION AND SIMULATION OF SOLAR CORONAL TWIN JETS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiajia; Wang, Yuming; Zhang, Quanhao [CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, NO. 96, Jinzhai Road, Hefei, Anhui 230026 (China); Fang, Fang [Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, 1234 Innovation Drive, Boulder, CO 80303 (United States); McIntosh, Scott W.; Fan, Yuhong [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)

    2016-02-01

    We present the first observation, analysis, and modeling of solar coronal twin jets, which occurred after a preceding jet. Detailed analysis on the kinetics of the preceding jet reveals its blowout-jet nature, which resembles the one studied in Liu et al. However, the erupting process and kinetics of the twin jets appear to be different from the preceding one. Lacking detailed information on the magnetic fields in the twin jet region, we instead use a numerical simulation using a three-dimensional (3D) MHD model as described in Fang et al., and find that in the simulation a pair of twin jets form due to reconnection between the ambient open fields and a highly twisted sigmoidal magnetic flux, which is the outcome of the further evolution of the magnetic fields following the preceding blowout jet. Based on the similarity between the synthesized and observed emission, we propose this mechanism as a possible explanation for the observed twin jets. Combining our observation and simulation, we suggest that with continuous energy transport from the subsurface convection zone into the corona, solar coronal twin jets could be generated in the same fashion addressed above.

  2. On the Observation and Simulation of Solar Coronal Twin Jets

    Science.gov (United States)

    Liu, Jiajia; Fang, Fang; Wang, Yuming; McIntosh, Scott W.; Fan, Yuhong; Zhang, Quanhao

    2016-02-01

    We present the first observation, analysis, and modeling of solar coronal twin jets, which occurred after a preceding jet. Detailed analysis on the kinetics of the preceding jet reveals its blowout-jet nature, which resembles the one studied in Liu et al. However, the erupting process and kinetics of the twin jets appear to be different from the preceding one. Lacking detailed information on the magnetic fields in the twin jet region, we instead use a numerical simulation using a three-dimensional (3D) MHD model as described in Fang et al., and find that in the simulation a pair of twin jets form due to reconnection between the ambient open fields and a highly twisted sigmoidal magnetic flux, which is the outcome of the further evolution of the magnetic fields following the preceding blowout jet. Based on the similarity between the synthesized and observed emission, we propose this mechanism as a possible explanation for the observed twin jets. Combining our observation and simulation, we suggest that with continuous energy transport from the subsurface convection zone into the corona, solar coronal twin jets could be generated in the same fashion addressed above.

  3. Study on the effect of distance between the two nozzle holes on interaction of high pressure combustion-gas jets with liquid

    International Nuclear Information System (INIS)

    Xue, Xiaochun; Yu, Yonggang; Zhang, Qi

    2014-01-01

    Highlights: • We design a five-stage cylindrical stepped-wall chamber to study twin combustion-gas jets. • We observe mixing processes of twin combustion-gases and liquid by high speed photographic system. • We discuss the influence of multiple parameters on expansion shape of the Taylor cavities. • The three-dimensional mathematics model is established to simulate the energy release process. • We obtain distribution characteristics of parameters under different nozzle distances. - Abstract: The combustion-gas generator and cylindrical stepped-wall observation chambers with five stages are designed to study the expansion characteristic of twin combustion-gas jets in liquid working medium under high temperature and high pressure. The expansion processes of Taylor cavities formed by combustion-gas jets and the mixing characteristics of gas–liquid are studied by means of high-speed digital camera system. The effects of the distance between the two nozzle holes, injection pressure and nozzle diameter on jet expansion processes are discussed. The experimental results indicate that, the velocity differences exist on the gas–liquid interface during expansion processes of twin combustion-gas jets, and the effect of Taylor–Helmholtz instability is intense, so interfaces between gas and liquid show turbulent folds and randomness. The strong turbulent mixing of gas and liquid leads to release of combustion-gas energy with the temperature decreasing. Moreover, the mixing effectiveness is obviously enhanced on the corners of each step of the cylindrical stepped-wall structure, forming radial expansion phenomenon. The reasonable matching of multi-parameter can restrain the jet instability and make the combustion-gas energy orderly release. Based on the experiments, the three-dimensional unsteady mathematical model of interaction of twin combustion-gas jets and liquid working medium is established to obtain the density, pressure, velocity and temperature

  4. Development of pulsating twin jets mechanism for mixing flow heat transfer analysis.

    Science.gov (United States)

    Gitan, Ali Ahmed; Zulkifli, Rozli; Abdullah, Shahrir; Sopian, Kamaruzzaman

    2014-01-01

    Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency.

  5. Do assisted-reproduction twin pregnancies require additional antenatal care?

    Science.gov (United States)

    Jauniaux, E; Ben-Ami, I; Maymon, R

    2013-02-01

    Iatrogenic twinning has become the main side-effect assisted reproduction treatment. We have evaluated the evidence for additional care that assisted-reproduction twins may require compared with spontaneous twins. Misacarriages are increased in women with tubal problems and after specific treatments. Assisted-reproduction twin pregnancies complicated by a vanishing twin after 8 weeks have an increased risk of preterm delivery and of low and very low birthweight compared with singleton assisted-reproduction pregnancies. Monozygotic twin pregnancies occur at a higher rate after assisted reproduction treatment and are associated with a higher risk of perinatal complications. The incidence of placenta praevia and vasa praevia is increased in assisted-reproduction twin pregnancies. Large cohort studies do not indicate a higher rate of fetal congenital malformations in assisted-reproduction twins. Overall, assisted-reproduction twins in healthy women assisted-reproduction twins is only increased in women with a pre-existing medical condition such as hypertensive disorders and diabetes and most of these risks can be avoided with single-embryo transfer. Following the birth of the first IVF baby, rumours started to spread in both the medical literature and the media about the long-term health effects for children born following assisted reproduction treatment. However, after more than 30 years, the most common complications associated with IVF treatment remain indirect and technical such as the failure of treatment and ovarian hyperstimulation. Iatrogenic twinning has become the main side-effect of assisted reproduction treatment and the increasing number of twin pregnancies, in particular in older women, has generated numerous debates on the need for additional healthcare provision. In this review, we have evaluated the evidence for additional care that assisted-conception twin pregnancies may require compared with spontaneous twin pregnancies. Twin pregnancies are

  6. Atopic diseases in twins born after assisted reproduction

    DEFF Research Database (Denmark)

    Jäderberg, Ida; Thomsen, Simon F; Kyvik, Kirsten Ohm

    2012-01-01

    Jäderberg I, Thomsen SF, Kyvik KO, Skytthe A, Backer V. Atopic diseases in twins born after assisted reproduction. Paediatric and Perinatal Epidemiology 2012; 26: 140-145. We examined the risk of atopic diseases in twins born after assisted reproduction. Data on atopic diseases and assisted...... reproduction in 9694 twin pairs, 3-20 years of age, from the Danish Twin Registry were collected via multidisciplinary questionnaires. The risk of atopic diseases in twins born after assisted reproduction was compared with the risk in twins born after spontaneous conception using logistic regression...... and variance components analysis. Children born after assisted reproduction did not have a different risk of atopic outcomes (adjusted odds ratios [95% confidence intervals] for asthma: 0.95 [0.85, 1.07], P = 0.403; hay fever: 1.01 [0.86, 1.18], P = 0.918; and atopic dermatitis: 1.02 [0.81, 1.11], P = 0...

  7. Atopic diseases in twins born after assisted reproduction.

    Science.gov (United States)

    Jäderberg, Ida; Thomsen, Simon F; Kyvik, Kirsten O; Skytthe, Axel; Backer, Vibeke

    2012-03-01

    We examined the risk of atopic diseases in twins born after assisted reproduction. Data on atopic diseases and assisted reproduction in 9694 twin pairs, 3-20 years of age, from the Danish Twin Registry were collected via multidisciplinary questionnaires. The risk of atopic diseases in twins born after assisted reproduction was compared with the risk in twins born after spontaneous conception using logistic regression and variance components analysis. Children born after assisted reproduction did not have a different risk of atopic outcomes (adjusted odds ratios [95% confidence intervals] for asthma: 0.95 [0.85, 1.07], P = 0.403; hay fever: 1.01 [0.86, 1.18], P = 0.918; and atopic dermatitis: 1.02 [0.81, 1.11], P = 0.773 respectively) compared with children born after spontaneous conception. Assisted reproduction did not modify the heritability of atopic diseases. This study does not support an association between assisted reproduction and development of atopic diseases. This result must be confirmed in subsequent studies, preferably of singleton populations. © 2011 Blackwell Publishing Ltd.

  8. Down syndrome screening in assisted conception twins: an iatrogenic medical challenge.

    Science.gov (United States)

    Ben-Ami, Ido; Maymon, Ron; Svirsky, Ran; Cuckle, Howard; Jauniaux, Eric

    2013-11-01

    The objective of this study was to provide a critical analysis of the impact of assisted conception on prenatal screening for Down syndrome (DS) in twin pregnancies and the value of various screening modalities for early detection of anomalies. The literature was searched using PubMed and the Cochrane Library focusing on prenatal screening and antenatal care of assisted-conception twin pregnancies. Serum screening alone is of limited value in detecting aneuploid twins, because the unaffected cotwin can "mask" the abnormal serum results of an affected one. In addition, this test can designate the pregnancy as at high risk but not identify the affected fetus. Nuchal translucency (NT) screening is the best available modality and a highly effective screening method for twin pregnancies. Among twins, NT alone has a 69% DS detection rate, first-trimester combined NT and serum biochemistry has a 72% DS detection rate, and an integrated screen will have an 80% DS detection rate at a 5% FPR. The data in the literature concerning the effect of assisted conception on maternal serum screening markers in twin pregnancies are scarce. Down syndrome screening in assisted-conception twins presents clinical and technical challenges. Therefore, assisted-conception twins need close monitoring from conception to delivery, by a practitioner familiar with the available screening modalities and their relative accuracy.

  9. Risk of Monozygotic Twins After Assisted Reproduction: A Population-Based Approach.

    Science.gov (United States)

    Parazzini, Fabio; Cipriani, Sonia; Bianchi, Stefano; Bulfoni, Camilla; Bortolus, Renata; Somigliana, Edgardo

    2016-02-01

    Recent studies have suggested that ovarian stimulation and assisted reproductive techniques (ART) may increase the frequency of monozygotic twins. In this article, we present the analysis of the estimated frequency of twin deliveries following in vitro fertilization (IVF) in Lombardy during the period 2010-2014 for a total of 450,949 pregnancies. This is a population-based study using data from the regional data base of Lombardy, a northern Italian region with a population of about 10 million inhabitants. During the considered period, a total of 461,424 single or multiple births were registered in Lombardy. After exclusion of triplets or more pregnancies, the total number of twin deliveries, in separate strata of like and unlike sex pregnancies twin deliveries, were obtained and the rate of twin deliveries was computed according to spontaneous and non-spontaneous conception and type of ART. Further, estimates of dizygotic or monozygotic twin births were calculated using Weinberg's methods. The frequency of twins deliveries was 1.24/100 deliveries after natural conception and 20.05 after assisted conception. The estimated rates of monozygotic twins was 0.45 and 0.72/100 (95% CI: 0.58-0.91) deliveries after natural and assisted conception, respectively. This difference was statistically significant (p assisted than after natural conception.

  10. Perinatal outcome of monochorionic and dichorionic twins after spontaneous and assisted conception: a retrospective cohort study.

    Science.gov (United States)

    Hack, Karien E A; Vereycken, Marijn E M S; Torrance, Helen L; Koopman-Esseboom, Corine; Derks, Jan B

    2018-06-01

    The aim of this study was to compare pregnancy outcomes in twin pregnancies after assisted conception and spontaneous conception, according to chorionicity. Retrospective cohort study of 1305 twin pregnancies between 1995 and 2015. All spontaneous (n = 731) and assisted conception conceived (n = 574) twin pregnancies with antenatal care and delivery in University Medical Center Utrecht, the Netherlands, a tertiary obstetric care center were studied according to chorionicity. Maternal age and incidence of nulliparity were higher among the assisted conception twins. Hypertensive disorders also appeared to be more frequent in assisted conception pregnancies, which could largely be explained by the higher proportion of elderly nulliparous women in this group. Spontaneously conceived twins were born earlier than twins after assisted conception, with subsequent lower birthweights and more admissions to a neonatal intensive care unit with increased neonatal morbidity. Monochorionic twins had worse pregnancy outcomes compared with dichorionic twins, irrespective of mode of conception; monochorionic twins conceived by assisted reproduction had more neonatal morbidity (mainly respiratory distress syndrome and necrotizing enterocolitis) and late neonatal deaths compared with spontaneously conceived monochorionic twins. Spontaneously conceived twins have worse pregnancy outcome compared with twins after assisted conception, probably due to a lower incidence of monochorionicity in the assisted conception group. The already increased perinatal risks in monochorionic twins are even higher in monochorionic twins conceived after infertility treatments compared with spontaneously conceived monochorionic twins, which warrants extra attention to these high-risk pregnancies. © 2018 The Authors. Acta Obstetricia et Gynecologica Scandinavica published by John Wiley & Sons Ltd on behalf of Nordic Federation of Societies of Obstetrics and Gynecology (NFOG).

  11. Experimental and Numerical Study of Twin Underexpanded Impinging Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru Yaga; Minoru Okano; Masumi Tamashiro; Kenyu Oyakawa

    2003-01-01

    In this paper, the dual underexpanded impinging jets are experimentally and numerically studied. The experiments were performed by measuring the unsteady and averaged wall static pressures and by visualizing density fields using schlieren method. Numerical calculations were also conducted by solving unsteady three dimensional compressible Navier-Stokes equations with Baldwin-Lomax turbulence model. The main parameters for the dual jets are the non-dimensional distance between the two nozzle centers H/D covering 1.5, 2.0, the nozzle to plate separation L/D 2.0, 3.0,4.0 and 5.0 and the pressure ratio defined by Po/Pb 1.0~6.0, where D is the diameter of each nozzle exit, Po the stagnation pressure and Pb the back pressure. It is found that the agreement between the experiments and the calculations is good. The fountain flow at the middle of the two jets is observed both in the experiments and the calculation. According to FFT analysis of the experiments for the twin jets,relatively low frequency (up to 5 kHz) is dominant for H/D =1.5, L/D =2.0 and pressure ratio Po/Pb =3.0 and 5.0,which is confirmed by the experiments.

  12. Gas Mixtures for Welding with Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-04-01

    Full Text Available Welding with micro-jet cooling after was tested only for MIG and MAG processes. For micro-jet gases was tested only argon, helium and nitrogen. A paper presents a piece of information about gas mixtures for micro-jet cooling after in welding. There are put down information about gas mixtures that could be chosen both for MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gas mixtures on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of various gas mixtures selection for micro-jet cooling.

  13. Gas-Jet Meniscus Control in Ribbon Growth

    Science.gov (United States)

    Zoutendyk, J. A.; Vonroos, O.

    1983-01-01

    Gas jet used to control shape of meniscus and thus to regulate ribbon thickness in vertical silicon-ribbon growth. Gas jet also cools ribbon, increasing maximum possible pull speed for silicon, contact angle of 11 degrees plus or minus 1 degree required for constant thickness ribbon growth. Cooling effect of gas jet increases maximum possible pull speed.

  14. Gas Mixtures for Welding with Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.

    2015-01-01

    Welding with micro-jet cooling after was tested only for MIG and MAG processes. For micro-jet gases was tested only argon, helium and nitrogen. A paper presents a piece of information about gas mixtures for micro-jet cooling after in welding. There are put down information about gas mixtures that could be chosen both for MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gas mixtures on metallographic structure of steel welds. Mechani...

  15. Twin-assisted growth of nominally stable substrates underneath dewetted Au nanoparticles

    International Nuclear Information System (INIS)

    Liu, Fang; Xie, Dong Yue; Majdi, Tahereh; Zhu, Guo-zhen

    2016-01-01

    By applying a simple and inexpensive thermal treatment, we synthesized supported gold-oxide nanostructures, which have potential applications to plasmonic devices and biosensors. The regrowth of nominally stable substrates under gold nanoparticles is associated with the appearance of preferential orientations of dewetted nanoparticles and the formation of atomically sharp interfacial monolayers. Steps present at the interfacial monolayer usually occur at defects including the intersection points of twin planes at the interface. They were related to the nucleation and immigration of the interfacial monolayers, prompting the substrate regrowth. Accordingly, we proposed the twin-assisted growth mechanism, which provides insight on the synthesis of gold-oxide nanostructures. - Highlights: • The twin-assisted growth mechanism is proposed for the abnormal regrowth of substrate underneath Au nanoparticles. • The substrate regrowth is related to the steps and ledges that are present at the Au–MgAl_2O_4 interfacial monolayers. • Interfacial steps are detected at defects such as the intersecting points of twin planes at the interface.

  16. Twin-assisted growth of nominally stable substrates underneath dewetted Au nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang; Xie, Dong Yue [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240 (China); Majdi, Tahereh [Department of Engineering Physics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L7 (Canada); Zhu, Guo-zhen, E-mail: zhugz@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240 (China)

    2016-03-15

    By applying a simple and inexpensive thermal treatment, we synthesized supported gold-oxide nanostructures, which have potential applications to plasmonic devices and biosensors. The regrowth of nominally stable substrates under gold nanoparticles is associated with the appearance of preferential orientations of dewetted nanoparticles and the formation of atomically sharp interfacial monolayers. Steps present at the interfacial monolayer usually occur at defects including the intersection points of twin planes at the interface. They were related to the nucleation and immigration of the interfacial monolayers, prompting the substrate regrowth. Accordingly, we proposed the twin-assisted growth mechanism, which provides insight on the synthesis of gold-oxide nanostructures. - Highlights: • The twin-assisted growth mechanism is proposed for the abnormal regrowth of substrate underneath Au nanoparticles. • The substrate regrowth is related to the steps and ledges that are present at the Au–MgAl{sub 2}O{sub 4} interfacial monolayers. • Interfacial steps are detected at defects such as the intersecting points of twin planes at the interface.

  17. Distortion of liquid film discharging from twin-fluid atomizer

    Science.gov (United States)

    Mehring, C.; Sirignano, W. A.

    2001-11-01

    The nonlinear distortion and disintegration of a thin liquid film exiting from a two-dimensional twin-fluid atomizer is analyzed numerically. Pulsed gas jets impacting on both sides of the discharging liquid film at the atomizer exit generate dilational and/or sinuous deformations of the film. Both liquid phase and gas phase are inviscid and incompressible. For the liquid phase the so-called long-wavelength approximation is employed yielding a system of unsteady one-dimensional equations for the planar film. Solution of Laplace's equation for the velocity potential yields the gas-phase velocity field on both sides of the liquid stream. Coupling between both phases is described through kinematic and dynamic boundary conditions at the phase interfaces, and includes the solution of the unsteady Bernoulli equation to determine the gas-phase pressure along the interfaces. Both gas- and liquid-phase equations are solved simultaneously. Solution of Laplace's equation for the gas streams is obtained by means of a boundary-element method. Numerical solutions for the liquid phase use the Lax-Wendroff method with Richtmyer splitting. Sheet distortion resulting from the stagnation pressure of the impacting gas jets and subsequent disturbance amplification due to Kelvin-Helmholtz effects are studied for various combinations of gas-pulse timing, gas-jet impact angles, gas-to-liquid-density ratio, liquid-phase Weber number and gas-jet-to-liquid-jet-momentum ratio. Dilational and sinuous oscillations of the liquid are examined and film pinch-off is predicted.

  18. Laser cutting technology using water jet waveguide

    International Nuclear Information System (INIS)

    Akiba, Miyuki; Shiihara, Katsunori; Chida, Itaru

    2013-01-01

    Laser with water jet is examined to cut in-vessel structure. However, it is necessary to increase the break-up length of water jet to cut a thick plate. Therefore, the effects of the water jet parameter (water pressure, assist gas, laser power) on break-up length were investigated. It was found from observation results of water jet that the longest break-up length is about 135mm under condition of water pressure 40 MPa, laser power 30W and helium assist gas 1L/min. (author)

  19. Vorticity and circulation aspects of twin jets in cross-flow for an oblique nozzle arrangement

    Czech Academy of Sciences Publication Activity Database

    Kolář, Václav; Savory, E.; Takao, H.; Todoroki, T.; Okamoto, S.; Toy, N.

    2006-01-01

    Roč. 220, č. 4 (2006), s. 247-252 ISSN 0954-4100 R&D Projects: GA AV ČR IAA2060302 Institutional research plan: CEZ:AV0Z20600510 Keywords : twin jets in cross-flow * vorticity * circulation Subject RIV: BK - Fluid Dynamics Impact factor: 0.143, year: 2006

  20. Non-dimensionalization and mixing quantification of laminar twin semi-confined jets

    International Nuclear Information System (INIS)

    Rafferty, Ian; Kaminski, Deborah

    2014-01-01

    Highlights: • Modeled twin semi-confined 2D sudden expansion flows varying inlet size and spacing. • Reviewed previous methods for non-dimensionalizing flows. • Found new non-dimensionalizations for Reynolds number and recirculation heights. • Show new method to quantify and visualize mixing. • Found that spacing inlets furthest from one another had the most efficient mixing. - Abstract: Two-dimensional laminar simulations of two parallel jets issuing into a semi-confined space were conducted. Critical Reynolds numbers were noted when the flows transitioned from a steady state symmetrical flow to the formation of secondary downstream recirculations and ultimately to transient flow. To better understand the characteristics of the flow, simulations were run at a fixed jet spacing with altered inlet sizes. It was found that using a momentum based Reynolds number instead of the standard volumetric flow method allowed better prediction of secondary downstream recirculations. However, when comparing simulations run with the same geometric setup, but with two different inlet velocity profiles, the Reynolds number based on flow rate is more consistent than the momentum based Reynolds number. A modified Reynolds number is proposed and tested across four jet spacings to determine the robustness of the new non-dimensionalization. Furthermore, a new method of quantifying and visualizing mixing is used to maximize mixing under varying jet spacings. It was seen that the majority of mixing occurred in the space between the two jets. Placing the jets along the walls of the confined space allowed for the most efficient mixing

  1. Gas jet disruption mitigation studies on Alcator C-Mod

    International Nuclear Information System (INIS)

    Granetz, R.; Whyte, D.G.; Izzo, V.A.; Biewer, T.; Reinke, M.L.; Terry, J.; Bader, A.; Bakhtiari, M.; Jernigan, T.; Wurden, G.

    2006-01-01

    Damaging effects of disruptions are a major concern for Alcator C-Mod, ITER and future tokamak reactors. High-pressure noble gas jet injection is a mitigation technique which potentially satisfies the operational requirements of fast response time and reliability, while still being benign to subsequent discharges. Disruption mitigation experiments using an optimized gas jet injection system are being carried out on Alcator C-Mod to study the physics of gas jet penetration into high pressure plasmas, as well as the ability of the gas jet impurities to convert plasma energy into radiation on timescales consistent with C-Mod's fast quench times, and to reduce halo currents given C-Mod's high-current density. The dependence of impurity penetration and effectiveness on noble gas species (He, Ne, Ar, Kr) is also being studied. It is found that the high-pressure neutral gas jet does not penetrate deeply into the C-Mod plasma, and yet prompt core thermal quenches are observed on all gas jet shots. 3D MHD modelling of the disruption physics with NIMROD shows that edge cooling of the plasma triggers fast growing tearing modes which rapidly produce a stochastic region in the core of the plasma and loss of thermal energy. This may explain the apparent effectiveness of the gas jet in C-Mod despite its limited penetration. The higher-Z gases (Ne, Ar, Kr) also proved effective at reducing halo currents and decreasing thermal deposition to the divertor surfaces. In addition, noble gas jet injection proved to be benign for plasma operation with C-Mod's metal (Mo) wall, actually improving the reliability of the startup in the following discharge

  2. Formation of soap bubbles by gas jet

    Science.gov (United States)

    Zhou, Maolei; Li, Min; Chen, Zhiyuan; Han, Jifeng; Liu, Dong

    2017-12-01

    Soap bubbles can be easily generated by various methods, while their formation process is complicated and still worth studying. A model about the bubble formation process was proposed in the study by Salkin et al. [Phys. Rev. Lett. 116, 077801 (2016)] recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after a detailed study of these experiments, we found that the bubbles could be generated in two velocity ranges which corresponded to the laminar and turbulent gas jet, respectively, and the predicted threshold was only effective for turbulent gas flow. The study revealed that the bubble formation was greatly influenced by the aerodynamics of the gas jet blowing to the film, and these results will help to further understand the formation mechanism of the soap bubble as well as the interaction between the gas jet and the thin liquid film.

  3. Vortex dynamics of in-line twin synthetic jets in a laminar boundary layer

    Science.gov (United States)

    Wen, Xin; Tang, Hui; Duan, Fei

    2015-08-01

    An experimental investigation is conducted on the vortices induced by twin synthetic jets (SJs) in line with a laminar boundary layer flow over a flat plate. The twin SJs operating at four different phase differences, i.e., Δϕ = 0°, 90°, 180°, and 270°, are visualized using a stereoscopic color dye visualization system and measured using a two-dimensional particle image velocimetry (PIV) system. It is found that depending on the phase difference of twin SJs, three types of vortex structures are produced. At Δϕ = 90°, the two hairpin vortices interact in a very constructive way in terms of the vortex size, strength, and celerity, forming one combined vortex. At Δϕ = 270°, the two individual hairpin vortices do not have much interaction, forming two completely separated hairpin vortices that behave like doubling the frequency of the single SJ case. At Δϕ = 0° and 180°, the two hairpin vortices produced by the twin SJ actuators are close enough, with the head of one hairpin vortex coupled with the legs of the other, forming partially interacting vortex structures. Quantitative analysis of the twin SJs is conducted, including the time histories of vortex circulation in the mid-span plane as well as a selected spanwise-wall-normal plane, and the influence of the twin SJs on the boundary layer flow filed. In addition, dynamic mode decomposition analysis of the PIV data is conducted to extract representative coherent structures. Through this study, a better understanding in the vortex dynamics associated with the interaction of in-line twin SJs in laminar boundary layers is achieved, which provides useful information for future SJ-array applications.

  4. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target

    International Nuclear Information System (INIS)

    Chipps, K.A.; Greife, U.; Bardayan, D.W.; Blackmon, J.C.; Kontos, A.; Linhardt, L.E.; Matos, M.; Pain, S.D.; Pittman, S.T.; Sachs, A.; Schatz, H.; Schmitt, K.T.; Smith, M.S.; Thompson, P.

    2014-01-01

    New radioactive ion beam (RIB) facilities will push further away from stability and enable the next generation of nuclear physics experiments. Of great importance to the future of RIB physics are scattering, transfer, and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure. Targets must also accommodate the use of large area silicon detector arrays, high-efficiency gamma arrays, and heavy ion detector systems to efficiently measure the reaction products. To address these issues, the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration has designed, built, and characterized a supersonic gas jet target, capable of providing gas areal densities on par with commonly used solid targets within a region of a few millimeters diameter. Densities of over 5×10 18 atoms/cm 2 of helium have been achieved, making the JENSA gas jet target the most dense helium jet achieved so far

  5. Structure of strongly underexpanded gas jets submerged in liquids – Application to the wastage of tubes by aggressive jets

    Energy Technology Data Exchange (ETDEWEB)

    Roger, Francis, E-mail: roger@ensma.fr [Institut PPRIME, Département Fluides, Thermique, Combustion CNRS ENSMA Université de Poitiers UPR 3346, ENSMA BP 109, 86960 Futuroscope Cedex (France); Carreau, Jean-Louis; Gbahoué, Laurent; Hobbes, Philippe [Institut PPRIME, Département Fluides, Thermique, Combustion CNRS ENSMA Université de Poitiers UPR 3346, ENSMA BP 109, 86960 Futuroscope Cedex (France); Allou, Alexandre; Beauchamp, François [CEA, DEN, Cadarache, DTN/STPA/LTRS, 13108 Saint-Paul lez, Durance Cedex (France)

    2014-07-01

    Highlights: • Underexpanded gas jets submerged in liquids behave similarly to homogeneous gas jets. • The counter rotating vortex pairs of jet produce discrete imprints on the targets. • The shape of hollows made on the targets is explained by the jet structure. • The erosion–corrosion phenomenon well explains the wastage of exchange tubes. - Abstract: Strongly underexpanded gas jets submerged in a liquid at rest behave similarly to underexpanded homogeneous gas jets. The existence of the Taylor-Görtler vortices around the inner zone of the gas jets is demonstrated in free gas jets submerged in water by means of optical probe. In the near field, the same phenomenon produces discrete imprints, approximately distributed in a circle, when underexpanded nitrogen jet submerged in liquid sodium hydroxide and underexpanded water vapour jet submerged in liquid sodium impact onto AU{sub 4}G-T{sub 4} and Incoloy 800{sup ®} alloy targets respectively. For a jet-target couple, the volume of the hollow is satisfactorily related to the strain energy density of the material and the kinetic energy of the gas jet. However, the comparison between volumes of hollows produced by both jets also indicates strong corrosive action of the medium on targets. This allows better understanding of the mechanism of wastage of tubes employed in steam generators integrated in liquid metal fast breeder reactors.

  6. Characteristics of compressed natural gas jet and jet-wall impingement using the Schlieren imaging technique

    International Nuclear Information System (INIS)

    Ismael, M A; Heikal, M R; Baharom, M B

    2013-01-01

    An experimental study was performed to investigate the compressed natural gas jet characteristics and jet-wall impingement using the Schlieren imaging technique and image processing. An injector driver was used to drive the natural gas injector and synchronized with camera triggering. A constant-volume optical chamber was designed to facilitate maximum optical access for the study of the jet macroscopic characteristics and jet-wall impingement at different injection pressures and injectors-wall distances. Measurement of the jet tip penetration and cone angle at different conditions are presented in this paper together with temporal presentation of the jet radial travel along the wall.

  7. Simulation Of Gas Focused Liquid Jets

    OpenAIRE

    Zahoor, Rizwan

    2018-01-01

    The main aim of dissertation is to develop an experimentally verified computational fluid dynamic (CFD) model of micron-sized liquid jet, produced by an injection molded Gas Dynamic Virtual Nozzle (GDVN). In these nozzles, liquid jets are efficiently orientedly transporting mass and momentum. They are produced by intelligently projecting hydrodynamic focusing effect from a high-speed stream of a co-flowing lower density and lower viscosity gas on a stream of liquid from a feeding capillary. L...

  8. Jet pump assisted artery

    Science.gov (United States)

    1975-01-01

    A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

  9. Exploratory investigation of the HIPPO gas-jet target fluid dynamic properties

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, Zach, E-mail: zmeisel@nd.edu [Department of Physics, Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Shi, Ke; Jemcov, Aleksandar [Hessert Laboratory for Aerospace Research, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States); Couder, Manoel [Department of Physics, Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2016-08-21

    In order to optimize the performance of gas-jet targets for future nuclear reaction measurements, a detailed understanding of the dependence of the gas-jet properties on experiment design parameters is required. Common methods of gas-jet characterization rely on measuring the effective thickness using nuclear elastic scattering and energy loss techniques; however, these tests are time intensive and limit the range of design modifications which can be explored to improve the properties of the jet as a nuclear reaction target. Thus, a more rapid jet-characterization method is desired. We performed the first steps towards characterizing the gas-jet density distribution of the HIPPO gas-jet target at the University of Notre Dame's Nuclear Science Laboratory by reproducing results from {sup 20}Ne(α,α){sup 20}Ne elastic scattering measurements with computational fluid dynamics (CFD) simulations performed with the state-of-the-art CFD software ANSYS Fluent. We find a strong sensitivity to experimental design parameters of the gas-jet target, such as the jet nozzle geometry and ambient pressure of the target chamber. We argue that improved predictive power will require moving to three-dimensional simulations and additional benchmarking with experimental data.

  10. Assessment of unsteady-RANS approach against steady-RANS approach for predicting twin impinging jets in a cross-flow

    Directory of Open Access Journals (Sweden)

    Zhiyin Yang

    2014-12-01

    Full Text Available A complex flow field is created when a vertical/short take-off and landing aircraft is operating near ground. One major concern for this kind of aircraft in ground effect is the possibility of ingestion of hot gases from the jet engine exhausts back into the engine, known as hot gas ingestion, which can increase the intake air temperature and also reduce the oxygen content in the intake air, potentially leading to compressor stall, low combustion efficiency and causing a dramatic loss of lift. This flow field can be represented by the configuration of twin impinging jets in a cross-flow. Accurate prediction of this complicated flow field under the Reynolds averaged Navier–Stokes (RANS approach (current practise in industry is a great challenge as previous studies suggest that some important flow features cannot be captured by the Steady-RANS (SRANS approach even with a second-order Reynolds stress model (RSM. This paper presents a numerical study of this flow using the Unsteady-RANS (URANS approach with a RSM and the results clearly indicate that the URANS approach is superior than the SRANS approach but still the predictions of Reynolds stress are not accurate enough.

  11. Oliver Sacks: Our Correspondence About Twins/Twin Research: Vanishing Twins Syndrome; Discordant Sex in MZ Twins; Pregnancy Outcomes in IVF and ICSI Conceived Twins/Print and Media: Superfetated Twins; Twins Discordant for Smoking; Twins in Fashion; Yale University Twin Hockey Players; Conjoined Twin-Visiting Professor.

    Science.gov (United States)

    Segal, Nancy L

    2017-08-01

    The late neurologist and author, Oliver Sacks, published an insightful 1986 review of Marjorie Wallace's book, The Silent Twins, in the New York Times. Taking exception to his assertion about Sir Francis Galton, I wrote a letter to the Times' editor. The letter was unpublished, but it brought a wonderful response from Sacks himself that is reproduced and examined. Next, brief reviews of twin research concerning the vanishing twin syndrome (VTS), discordant sex in a monozygotic (MZ) twin pair, and multiple pregnancy outcomes from assisted reproductive technology (ART) are presented. This section is followed by popular coverage of superfetated twins, smoking-discordant co-twins, twins in fashion, Yale University twin hockey players, and a visiting professor who was a conjoined twin.

  12. Modeling Coma Gas Jets in Comet Hale-Bopp

    Science.gov (United States)

    Lederer, S. M.; Campins, H.

    2001-01-01

    We present an analysis of OH, CN, and C2 jets observed in Comet Hale-Bopp. The relative contributions from and composition of the coma gas sources, and the parameters describing the active areas responsible for the gas jets will be discussed. Additional information is contained in the original extended abstract.

  13. Natural gas jet flames. Topical report, January 1994-August 1995

    Energy Technology Data Exchange (ETDEWEB)

    Atallah, S.; Saxena, S.K.

    1995-08-15

    Several incidents have been reported where high pressure natural gas transmission pipelines were ruptured and the escaping gas jet ignited. It was desired to estimate the length of the ensuing jet flame. Data on large scale jet fires were collected from accidents investigated by the National Transportation Safety Board, large-scale experiments on natural gas and LPG and from observations made during the Kuwaiti oil well fires. Analytical models which predict the size of jet flames were assembled and each model was evaluated against these data. A theoretical model developed by Kalghatgi at Shell, which most closely predicted the collected data, was selected and programmed for use on a PC. In addition, a simple empirical correlation similar to API`s flare correlation was developed by the authors for application to natural gas jet flames.

  14. Real-Time Tomography of Gas-Jets with a Wollaston Interferometer

    Directory of Open Access Journals (Sweden)

    Andreas Adelmann

    2018-03-01

    Full Text Available A tomographic gas-density diagnostic using a Single-Beam Wollaston Interferometer able to characterize non-symmetric density distributions in gas jets is presented. A real-time tomographic algorithm is able to reconstruct three-dimensional density distributions. A Maximum Likelihood-Expectation Maximization algorithm, an iterative method with good convergence properties compared to simple back projection, is used. With the use of graphical processing units, real-time computation and high resolution are achieved. Two different gas jets are characterized: a kHz, piezo-driven jet for lower densities and a solenoid valve-based jet producing higher densities. While the first jet is used for free electron laser photon beam characterization, the second jet is used in laser wake field acceleration experiments. In this latter application, well-tailored and non-symmetric density distributions produced by a supersonic shock front generated by a razor blade inserted laterally to the gas flow, which breaks cylindrical symmetry, need to be characterized.

  15. Gas jet studies towards an optimization of the IGISOL LIST method

    CERN Document Server

    Reponen, M; Kurpeta, J; Sonnenschein, V; Pohjalainen, I; Aysto, J; Kessler, T; Piszczek, S; Karvonen, P; Marsh, B

    2011-01-01

    Gas jets emitted from an ion guide have been studied as a function of nozzle type and gas cell-to-background pressure ratio in order to obtain a low divergent, uniform jet over a distance of several cm. The jet has been probed by imaging the light emitted from excited argon or helium gas atoms. For a simple exit hole or converging-diverging nozzle, the jet diameter was found to be insensitive to the nozzle shape and inlet pressure. Sonic jets with a FWHM below 6 mm were achieved with a background pressure larger than 1 mbar in the expansion chamber. The measurements are supported by the detection of radioactive (219)Rn recoils from an alpha recoil source mounted within the gas cell. A Laval nozzle produced a well-collimated supersonic jet at low background pressures with a FWHM of similar to 6 mm over a distance of 14 cm. Direct Pitot probe measurements, on-axis, revealed a non-uniform pressure distribution in the gas jet of the Laval nozzle, supporting the visual observations. All measurements are motivated ...

  16. DSMC simulation of feed jet flow in gas centrifuge

    International Nuclear Information System (INIS)

    Jiang Dongjun; Zeng Shi

    2011-01-01

    Feed jet flow acts an important role for the counter-current in gas centrifuge. Direct simulation Monte-Carlo (DSMC) method was adopted to simulate the structure of the radial feed jet model. By setting the proper boundary conditions and the collision model of molecules, the flow distributions of the 2D radial feed jet were acquired under different feed conditions, including the wave structure of feed jet and the profile of the flow parameters. The analyses of the calculation results note the following flow phenomena: Near the radial outflow boundary, the obvious peaks of the flow parameters exist; higher speed of feed gas brings stronger influence on the flow field of the centrifuge; including the density, pressure and velocity of the gas, the distribution of the temperature is affected by the feed jet, at the outflow boundary, temperature to double times of the average value. (authors)

  17. High resolution 3D gas-jet characterization

    International Nuclear Information System (INIS)

    Landgraf, Bjoern; Kaluza, Malte C.; Spielmann, Christian; Schnell, Michael; Saevert, Alexander

    2011-01-01

    We present a tomographic characterization of gas jets employed for high-intensity laser-plasma interaction experiments where the shape can be non-symmetrically. With a Mach-Zehnder interferometer we measured the phase shift for different directions through the neutral density distribution of the gas jet. From the recorded interferograms it is possible to retrieve 3-dimensional neutral density distributions by tomographic reconstruction based on the filtered back projections. We report on criteria for the smallest number of recorded interferograms as well as a comparison with the widely used phase retrieval based on an Abel inversion. As an example for the performance of our approach, we present the characterization of nozzles with rectangular openings or gas jets with shock waves. With our setup we obtained a spatial resolution of less than 60 μm for an Argon density as low as 2 x 10 17 cm -3 .

  18. Jet formation in shock-heavy gas bubble interaction

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang Zhai; Ting Si; Li-Yong Zou; Xi-Sheng Luo

    2013-01-01

    The influences of the acoustic impedance and shock strength on the jet formation in shock-heavy gas bubble interaction are numerically studied in this work.The process of a shock interacting with a krypton or a SF6 bubble is studied by the numerical method VAS2D.As a validation,the experiments of a SF6 bubble accelerated by a planar shock were performed.The results indicate that,due to the mismatch of acoustic impedance,the way of jet formation in heavy gas bubble with different species is diversified under the same initial condition.With respect to the same bubble,the manner of jet formation is also distinctly different under different shock strengths.The disparities of the acoustic impedance result in different effects of shock focusing in the bubble,and different behaviors of shock wave inside and outside the bubble.The analyses of the wave pattern and the pressure variation indicate that the jet formation is closely associated with the pressure perturbation.Moreover,the analysis of the vorticity deposition,and comparisons of circulation and baroclinic torque show that the baroclinic vorticity also contributes to the jet formation.It is concluded that the pressure perturbation and baroclinic vorticity deposition are the two dominant factors for the jet formation in shock-heavy gas bubble interaction.

  19. The gas introduction system of JET

    International Nuclear Information System (INIS)

    Boschi, A.; Dietz, K.J.; Rebut, P.H.

    1984-01-01

    The Gas Introduction System of JET is designed to handle, measure, transfer and inject into the machine, at given rates and times, the quantities of gases required to feel the plasma discharges. The System is composed by a Gas Handling Unit for the gas preparation, and four identical Gas Introduction Modules which are positioned symmetrically at the machine. The lay-out and design of the different components is described and operational experience is presented. (author)

  20. Assisted Reproduction versus Spontaneous Conception: A Comparison of the Developmental Outcomes in Twins

    Science.gov (United States)

    Kelly-Vance, Lisa; Anthis, Kristine S.; Needelman, Howard

    2004-01-01

    The use of assisted reproductive technology is increasing rapidly. Research, although sparse, has resulted in inconsistent findings as to the developmental prognosis for infants conceived by assisted reproductive techniques such as in vitro fertilization and the use of fertility drugs. In the present study, the authors compared twins who were…

  1. Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications.

    Science.gov (United States)

    Stephan, Karl D; McLean, Robert J C; DeLeon, Gian; Melnikov, Vadim

    2016-11-14

    We investigate the effect of feed-gas humidity on the oxidative properties of an atmospheric-pressure plasma jet using nitrogen gas. Plasma jets operating at atmospheric pressure are finding uses in medical and biological settings for sterilization and other applications involving oxidative stress applied to organisms. Most jets use noble gases, but some researchers use less expensive nitrogen gas. The feed-gas water content (humidity) has been found to influence the performance of noble-gas plasma jets, but has not yet been systematically investigated for jets using nitrogen gas. Low-humidity and high-humidity feed gases were used in a nitrogen plasma jet, and the oxidation effect of the jet was measured quantitatively using a chemical dosimeter known as FBX (ferrous sulfate-benzoic acid-xylenol orange). The plasma jet using high humidity was found to have about ten times the oxidation effect of the low-humidity jet, as measured by comparison with the addition of measured amounts of hydrogen peroxide to the FBX dosimeter. Atmospheric-pressure plasma jets using nitrogen as a feed gas have a greater oxidizing effect with a high level of humidity added to the feed gas.

  2. Study on the wiping gas jet in continuous galvanizing line

    Science.gov (United States)

    Kweon, Yong-Hun; Kim, Heuy-Dong

    2011-09-01

    In the continuous hot-dip galvanizing process, the gas-jet wiping is used to control the coating thickness of moving steel strip. The high speed gas-jet discharged from the nozzle slot impinges on the strip, and at this moment, wipes the liquid coating layer dragged by a moving strip. The coating thickness is generally influenced on the flow characteristics of wiping gas-jet such as the impinging pressure distribution, pressure gradient and shear stress distribution on the surface of strip. The flow characteristics of wiping gas-jet mentioned above depends upon considerably both the process operating conditions such as the nozzle pressure, nozzle-to-strip distance and line speed, and the geometry of gas-jet wiping apparatus such as the height of nozzle slot. In the present study, the effect of the geometry of nozzle on the coating thickness is investigated with the help of a computational fluid dynamics method. The height of nozzle slot is varied in the range of 0.6mm to 1.7mm. A finite volume method (FVM) is employed to solve two-dimensional, steady, compressible Navier-Stokes equations. Based upon the results obtained, the effect of the height of nozzle slot in the gas-jet wiping process is discussed in detail. The computational results show that for a given standoff distance between the nozzle to the strip, the effective height of nozzle slot exists in achieving thinner coating thickness.

  3. Electrospinning jet behaviors under the constraints of a sheath gas

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2016-11-01

    Full Text Available Increasing the ejection efficiency and uniformity of nanofibers is the key to applications of electrospinning technology. In this work, a novel electrospinning spinneret with a sheath gas passageway is designed. The frictional resistance that stems from the sheath gas provides additional stretching and restriction forces on the jet. The sheath gas also reduces interference and enhances the stability of the charged jet. A bead-on-strain simulation model is built up to determine the constraint effects of the sheath gas. Simulation results show that the sheath gas decreases the motion area and increases the stretching ratio of the liquid jet. The stretching force from the sheath gas decreases the diameter and increases the uniformity of the nanofiber. As the gas pressure increases from 0 kPa to 50 kPa, the critical voltage of the jet ejection decreases from 8.4 kV to 2.5 kV, the diameter of the nanofiber deposition zone decreases from 40 cm to 10 cm, and the diameter of the nanofibers decreases from 557.97 nm to 277.73 nm. The uniformity of nanofibers can be improved significantly using a sheath gas. The sheath gas contributes to the rapid deposition of a uniform nanofibrous membrane and the industrial applications of electrospinning.

  4. The gas introduction system of JET

    International Nuclear Information System (INIS)

    Boschi, A.; Dietz, K.J.; Rebut, P.H.

    1985-01-01

    The Gas Introduction System of JET is designed to handle, measure, transfer and inject into the machine, at given rates and times, the quantitites of gases required to feed the plasma discharges. The System is composed by a Gas Handling Unit for the gas preparation, and four identical Gas Introduction Modules which are positioned symmetrically at the machine. In this paper the lay-out and design of the different components is described and operational experience is presented

  5. Computer simulations of a single-laser double-gas-jet wakefield accelerator concept

    Directory of Open Access Journals (Sweden)

    R. G. Hemker

    2002-04-01

    Full Text Available We report in this paper on full scale 2D particle-in-cell simulations investigating laser wakefield acceleration. First we describe our findings of electron beam generation by a laser propagating through a single gas jet. Using realistic parameters which are relevant for the experimental setup in our laboratory we find that the electron beam resulting after the propagation of a 0.8 μm, 50 fs laser through a 1.5 mm gas jet has properties that would make it useful for further acceleration. Our simulations show that the electron beam is generated when the laser exits the gas jet, and the properties of the generated beam, especially its energy, depend only weakly on most properties of the gas jet. We therefore propose to use the first gas jet as a plasma cathode and then use a second gas jet placed immediately behind the first to provide additional acceleration. Our simulations of this proposed setup indicate the feasibility of this idea and also suggest ways to optimize the quality of the resulting beam.

  6. Experimental Investigation of A Twin Shaft Micro Gas-Turbine System

    International Nuclear Information System (INIS)

    Sadig, Hussain; Sulaiman, Shaharin Anwar; Ibrahim, Idris

    2013-01-01

    Due to the fast depletion of fossil fuels and its negative impact on the environment, more attention has been concentrated to find new resources, policies and technologies, which meet the global needs with regard to fuel sustainability and emissions. In this paper, as a step to study the effect of burning low calorific value fuels on gas-turbine performance; a 50 kW slightly pressurized non-premixed tubular combustor along with turbocharger based twin shaft micro gas-turbine was designed and fabricated. A series of tests were conducted to characterize the system using LPG fuel. The tests include the analysis of the temperature profile, pressure and combustor efficiency as well as air fuel ratio and speed of the second turbine. The tests showed a stable operation with acceptable efficiency, air fuel ratio, and temperature gradient for the single and twin shaft turbines.

  7. Stochastic model of the near-to-injector spray formation assisted by a high-speed coaxial gas jet

    Energy Technology Data Exchange (ETDEWEB)

    Gorokhovski, M [Laboratoire de Mecanique des Fluides et d' Acoustique, CNRS-Ecole Centrale de Lyon-INSA Lyon-Universite Claude Bernard Lyon 1, 36 Avenue Guy de Collongue, 69131 Ecully Cedex (France); Jouanguy, J [Laboratoire de Mecanique de Lille, Ecole Centrale de Lille, Blvd Paul Langevin, 59655 Villeneuve d' Ascq Cedex (France); Chtab-Desportes, A [CD-adapco, 31 rue Delizy 93698 Pantin Cedex (France)], E-mail: mikhael.gorokhovski@ec-lyon.fr

    2009-06-01

    The stochastic model of spray formation in the vicinity of the air-blast atomizer has been described and assessed by comparison with measurements. In this model, the 3D configuration of a continuous liquid core is simulated by spatial trajectories of specifically introduced stochastic particles. The stochastic process is based on the assumption that due to a high Weber number, the exiting continuous liquid jet is depleted in the framework of statistical universalities of a cascade fragmentation under scaling symmetry. The parameters of the stochastic process have been determined according to observations from Lasheras's, Hopfinger's and Villermaux's scientific groups. The spray formation model, based on the computation of spatial distribution of the probability of finding the non-fragmented liquid jet in the near-to-injector region, is combined with the large-eddy simulation (LES) in the coaxial gas jet. Comparison with measurements reported in the literature for different values of the gas-to-liquid dynamic pressure ratio showed that the model predicts correctly the distribution of liquid in the close-to-injector region, the mean length of the liquid core, the spray angle and the typical size of droplets in the far field of spray.

  8. Multi-Frequency VLBA Polarimetry and the Twin-Jet Quasar 0850+581

    Directory of Open Access Journals (Sweden)

    Evgeniya Kravchenko

    2017-11-01

    Full Text Available We present the first multi-frequency VLBA study of the quasar 0850+581 which appears to have a two-sided relativistic jet. Apparent velocity in the approaching jet changes from 3.4c to 7c with the separation from the core. The jet-to-counter-jet ratio of about 5 and apparent superluminal velocities suggest that the observing angle of the inner jet is ≤ 17 ∘ . It is likely that this orientation significantly changes downstream due to an interaction of the jet with the surrounding medium; signs of this are seen in polarization. A dense inhomogeneous Faraday screen is detected in the innermost regions of this quasar. We suggest that there is a presence of ionized gas in its nucleus, which might be responsible for the free-free absorption of the synchrotron emission in the jet and counter-jet at frequencies below 8.4 GHz. The experiment makes use of slowly varying instrumental polarisation factors (polarization leakage or D-terms in time. We report application of the “D-term connection” technique for the calibration of an absolute orientation of electric vector position angle (EVPA observed by VLBA at 4.6, 5.0, 8.1, 8.4, 15.4, 22.3, and 43.3 GHz bands during the 2007–2011.

  9. Flow structure of conical distributed multiple gas jets injected into a water chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiajun; Yu, Yonggang [Nanjing University of Science and Technology, Nanjing (China)

    2017-04-15

    Based on an underwater gun firing project, a mock bullet with several holes on the head was designed and experimented to observe the combustion gas injected into a cylindrical water chamber through this mock bullet. The combustion gas jets contain one vertical central jet and 4 to 8 slant lateral jets. A high speed camera system was used to record the expansion of gas jets in the experimental study. In numerical simulations, the Euler two-fluid model and volume of fluid method were adopted to describe the gas-liquid flow. The results show the backflow zone in lateral jet is the main factor influencing the gas-liquid turbulent mixing in downstream. On cross sections, the gas volume fraction increased with time but the growth rate decreased. With a change of nozzle structure, the gas fraction was more affected than the shock structure.

  10. Thin film deposition using rarefied gas jet

    Science.gov (United States)

    Pradhan, Sahadev, , Dr.

    2017-06-01

    The rarefied gas jet of aluminium is studied at Mach number Ma = (Uj /√{ kbTj / mg }) in the range .01 PVD) process for the development of the highly oriented pure metallic aluminum thin film with uniform thickness and strong adhesion on the surface of the substrate in the form of ionic plasma, so that the substrate can be protected from corrosion and oxidation and thereby enhance the lifetime and safety, and to introduce the desired surface properties for a given application. Here, H is the characteristic dimension, U_j and T_j are the jet velocity and temperature, n_d is the number density of the jet, m and d are the molecular mass and diameter, and kbis the Boltzmann constant. An important finding is that the capture width (cross-section of the gas jet deposited on the substrate) is symmetric around the centerline of the substrate, and decreases with increased Mach number due to an increase in the momentum of the gas molecules. DSMC simulation results reveals that at low Knudsen number ((Kn=0.01); shorter mean free paths), the atoms experience more collisions, which direct them toward the substrate. However, the atoms also move with lower momentum at low Mach number, which allows scattering collisions to rapidly direct the atoms to the substrate.

  11. Fetal cardiac remodeling in twin pregnancy conceived by assisted reproductive technology.

    Science.gov (United States)

    Valenzuela-Alcaraz, B; Cruz-Lemini, M; Rodríguez-López, M; Goncé, A; García-Otero, L; Ayuso, H; Sitges, M; Bijnens, B; Balasch, J; Gratacós, E; Crispi, F

    2018-01-01

    Recent data suggest that singleton fetuses conceived by assisted reproductive technology (ART) present cardiovascular remodeling that may persist postnatally. Twin pregnancies are more frequent in the ART population and are associated with increased adverse perinatal outcomes, such as hypertensive disorders, gestational diabetes and preterm birth. However, it is unknown whether cardiac remodeling is also present in twin pregnancies conceived by ART. Our aim was to assess the presence of fetal cardiac remodeling and dysfunction in twin pregnancies conceived by ART as compared with those conceived spontaneously (SC). This was a prospective cohort study including 50 dichorionic twin fetuses conceived by ART and 50 SC twin fetuses. The study protocol included collection of baseline/perinatal data and a fetal ultrasound examination at 28-30 weeks' gestation, including assessment of estimated fetal weight, fetoplacental Doppler and fetal echocardiography. Measurements of atrial area, atrial/heart ratio, ventricular sphericity index, free wall thickness, mitral and tricuspid annular plane systolic excursions, and systolic and early diastolic peak velocities were assessed. Multilevel analyses were used to compare perinatal and ultrasonographic parameters. Comparisons of echocardiographic variables were adjusted for parental age, paternal body mass index and incidence of pre-eclampsia. Compared with SC twins, ART twin fetuses showed significant cardiac changes, predominantly affecting the right heart, such as dilated atria (right atrial/heart area: 15.7 ± 3.1 vs 18.4 ± 3.2, P fetal cardiac programing in ART. These results open opportunities for early detection and intervention in infants conceived by ART. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.

  12. Study of two-phase underexpanded jets by gas jet

    International Nuclear Information System (INIS)

    Uchida, Mitsunori; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    When a heat exchange in a Fast Breeder Reactor cracks, a sodium-water reaction occurs. When a tube cracks, highly pressurized water or steam escapes into the surrounding liquid sodium and a sodium-water reaction occurs forming the disodium oxide. The disodium oxide caught in the steam jet strikes other tubes in the reactor. The struck disodium oxide can then cause these tubes to crack. The release of steam into the liquid sodium media is a two-phase flow involving underexpansion. In this paper qualitative measurement of the underexpanded gas jet which injected into water was carried our for the purpose of analyzing the behavior of the two-phase flow. (author)

  13. Observed Mother- and Father-Child Interaction Differences in Families with Medically Assisted Reproduction-Conceived Twins and Singletons.

    Science.gov (United States)

    Anderson, Kayla N; Rueter, Martha A; Connor, Jennifer J; Koh, Bibiana D

    2017-12-01

    Increased medically assisted reproduction (MAR) use to treat infertility has resulted in a growing twin birth rate. Little is known about parent-child relationships for twin relative to singleton children in middle childhood. This study fills this gap by examining parent-child relationships in 57 families with eighty 6- to 12-year-old MAR twin and singleton children using observational data (warm and supportive communication, control, and hostility). Nested ANCOVAs indicate that while mothers exhibit similar interactional behaviors toward twins and singletons, fathers have less optimum behaviors toward twins relative to singletons. Twins displayed less engaged behavior with mothers and fathers relative to singletons. Given the vitality of parent-child relationships for family and child adjustment, future studies should examine determinants and outcomes of twin-singleton relationship differences to bolster twins' and their families' functioning. © 2016 Family Process Institute.

  14. Monochorionic twin pregnancies

    NARCIS (Netherlands)

    Hack, K.E.A.

    2008-01-01

    Following widespread application of assisted reproductive technology modalities and the increased age of motherhood, the incidence of twin gestations has increased markedly. Twins are either monozygotic or dizygotic. Dizygotic (i.e. fraternal) twins result from the fertilization of two different

  15. Development of a jet-assisted polycrystalline diamond drill bit

    Energy Technology Data Exchange (ETDEWEB)

    Pixton, D.S.; Hall, D.R.; Summers, D.A.; Gertsch, R.E.

    1997-12-31

    A preliminary investigation has been conducted to evaluate the technical feasibility and potential economic benefits of a new type of drill bit. This bit transmits both rotary and percussive drilling forces to the rock face, and augments this cutting action with high-pressure mud jets. Both the percussive drilling forces and the mud jets are generated down-hole by a mud-actuated hammer. Initial laboratory studies show that rate of penetration increases on the order of a factor of two over unaugmented rotary and/or percussive drilling rates are possible with jet-assistance.

  16. Spray and Combustion Characteristics of a Novel Multi-circular Jet Plate in Air-assisted Atomizer

    Directory of Open Access Journals (Sweden)

    Hisham Amirnordin Shahrin

    2017-01-01

    Full Text Available Atomization of liquid fuel in air-assisted atomizer is highly dependent on air mixing, which can be enhanced using turbulent generators, such as multi-circular jet (MCJ plates and swirler. This study aims to determine the effects of novel MCJ plates on the spray and combustion characteristics of an air-assisted atomizer by evaluating spray and flame parameters, such as penetration length, cone angle, and cone area. MCJ 30 and MCJ 45, with inclined jets at 30° and 45°, respectively, were used in the experiment. A swirler was also used for comparison. The spray and flame images were recorded at different equivalence ratios through direct photography and analyzed using image J software. Flame temperature was determined using a thermal infrared camera, and burning chamber and flue gas temperatures were measured using thermocouples. The spray and flame characteristics of MCJ 30 exhibited performance comparable with those of the MCJ 45 and swirler. The integration of turbulence and swirling motion concept into the novel MCJ plates can enhance the mixing formation and thus improve the performance of burner combustion.

  17. Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan

    Science.gov (United States)

    McKee, Kathleen; Fee, David; Yokoo, Akihiko; Matoza, Robin S.; Kim, Keehoon

    2017-06-01

    The gas-thrust region of a large volcanic eruption column is predominately a momentum-driven, fluid flow process that perturbs the atmosphere and produces sound akin to noise from jet and rocket engines, termed ;jet noise;. We aim to enhance understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We characterize the acoustic signature of 2.5-meter wide vigorously jetting fumarole at Aso Volcano, Japan using a 5-element infrasound array located on the nearby crater. The fumarole opened on 13 July 2015 on the southwest flank of the partially collapsed pyroclastic cone within Aso Volcano's Naka-dake crater and had persistent gas jetting, which produced significant audible jet noise. The array was 220 m from the fumarole and 57.6° from the vertical jet axis, a recording angle not typically feasible in volcanic environments. Array processing is performed to distinguish fumarolic jet noise from wind. Highly correlated periods are characterized by sustained, low-amplitude signal with a 7-10 Hz spectral peak. Finite difference time domain method numerical modeling suggests the influence of topography near the vent and along the propagation path significantly affects the spectral content, complicating comparisons with laboratory jet noise. The fumarolic jet has a low estimated Mach number (0.3 to 0.4) and measured temperature of 260 °C. The Strouhal number for infrasound from volcanic jet flows and geysers is not known; thus we assume a peak Strouhal number of 0.19 based on pure-air laboratory jet experiments. This assumption leads to an estimated exit velocity of the fumarole of 79 to 132 m/s. Using published gas composition data from 2003 to 2009, the fumarolic vent area estimated from thermal infrared images, and estimated jet velocity, we estimate total volatile flux at 160-270 kg/s (14,000-23,000 t/d).

  18. High incidence of monozygotic twinning after assisted reproduction is related to genetic information, but not to assisted reproduction technology itself

    Czech Academy of Sciences Publication Activity Database

    Sobek Jr., A.; Zbořilová, B.; Procházka, M.; Šilhánová, E.; Koutná, O.; Klásková, E.; Tkadlec, Emil; Sobek, A.

    2015-01-01

    Roč. 103, č. 3 (2015), s. 756-760 ISSN 0015-0282 Institutional support: RVO:68081766 Keywords : monozygotic twins * genetics * assisted reproduction techniques * infertility Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.426, year: 2015

  19. Noninvasive prenatal testing (NIPT) in twin pregnancies with treatment of assisted reproductive techniques (ART) in a single center

    DEFF Research Database (Denmark)

    Tan, YueQiu; Gao, Ya; Lin, Ge

    2016-01-01

    Objective: The objective of the study is to report the performance of noninvasive prenatal testing (NIPT) in twin pregnancies after the treatment of assisted reproductive technology (ART). Method: In two years period, 565 pregnant women with ART twin pregnancies were prospectively tested by NIPT...

  20. Impact of the temperature gradient between twin inclined jets and an oncoming crossflow on their resulting heat transfer

    International Nuclear Information System (INIS)

    Radhouane, Amina; Mahjoub, Nejla; Mhiri, Hatem; Le Palec, George; Bournot, Philippe

    2009-01-01

    This paper deals with the interaction of twin inclined jets in crossflow. The consideration of this particular configuration is of great interest due to its wide presence in various domains and applications and to its dependence in many parameters. These parameters may be geometric like the jets height, the jet nozzles separating distance, the jet nozzles, exit section, etc... It may also be based upon one of the reigning features like the velocity ratio, the temperature gradient, etc...The gradient between the jets and the crossflow temperatures is precisely the parameter we intend to handle in the present work due to its great relevance in several environmental concerns and in technical constraints as well. The evaluation of this parameter will be carried out numerically on the temperature distribution itself. This evaluation is likely to give a thorough idea about the cooling/heating process resulted from the jets interaction with the oncoming crossflow. Such an understanding is likely to give viable solutions to problems raised by this configuration like the acid rain engendered by too hot fumes or the deterioration of the combustors walls by too high temperature jets, etc...The numerically simulated model is based on the resolution of the Navier-Stokes equations by means of the finite volume method and the RSM second order turbulent model and is validated by confrontation to experimental data depicted on the same geometric replica

  1. Gas jet disruption mitigation studies on Alcator C-Mod and DIII-D

    International Nuclear Information System (INIS)

    Granetz, R.S.; Hollmann, E.M.; Whyte, D.G.; Izzo, V.A.; Antar, G.Y.; Bader, A.; Bakhtiari, M.; Biewer, T.; Boedo, J.A.; Evans, T.E.; Hutchinson, I.H.; Jernigan, T.C.; Gray, D.S.; Groth, M.; Humphreys, D.A.; Lasnier, C.J.; Moyer, R.A.; Parks, P.B.; Reinke, M.L.; Rudakov, D.L.; Strait, E.J.; Terry, J.L.; Wesley, J.; West, W.P.; Wurden, G.; Yu, J.

    2007-01-01

    High-pressure noble gas jet injection is a mitigation technique which potentially satisfies the requirements of fast response time and reliability, without degrading subsequent discharges. Previously reported gas jet experiments on DIII-D showed good success at reducing deleterious disruption effects. In this paper, results of recent gas jet disruption mitigation experiments on Alcator C-Mod and DIII-D are reported. Jointly, these experiments have greatly improved the understanding of gas jet dynamics and the processes involved in mitigating disruption effects. In both machines, the sequence of events following gas injection is observed to be quite similar: the jet neutrals stop near the plasma edge, the edge temperature collapses and large MHD modes are quickly destabilized, mixing the hot plasma core with the edge impurity ions and radiating away the plasma thermal energy. High radiated power fractions are achieved, thus reducing the conducted heat loads to the chamber walls and divertor. A significant (2 x or more) reduction in halo current is also observed. Runaway electron generation is small or absent. These similar results in two quite different tokamaks are encouraging for the applicability of this disruption mitigation technique to ITER

  2. Stopped-flow technique for transit time measurement in a gas jet

    International Nuclear Information System (INIS)

    Rengan, K.; Lin, J.; Lim, T.; Meyer, R.A.; Harrell, J.

    1985-01-01

    A 'stopped-flow' technique for the measurement of transit time of reaction products in a gas jet is described. The method involved establishing the gas flow through the jet system when the reactor is operating steadily and allowing the pressure to reach equilibrium values. The gas flow is stopped by means of electrically operated valves. The transit-time measurement is achieved by opening the valves and initiating the multiscanning of total activity simultaneously. The value obtained agrees well with the transit time measured by pulsing the reactor. The 'stopped-flow' technique allows on-line measurement of transit time in any gas jet system where the physical transportation time is the major component of the transit time. This technique is especially useful for systems installed in reactors which do not have pulsing capability. (orig.)

  3. Laser interferometry of radiation driven gas jets

    Science.gov (United States)

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.

    2017-06-01

    In a series of experiments performed at the 1MA Zebra pulsed power accelerator of the Nevada Terawatt Facility nitrogen gas jets were driven with the broadband x-ray flux produced during the collapse of a wire-array z-pinch implosion. The wire arrays were comprised of 4 and 8, 10μm-thick gold wires and 17μm-thick nickel wires, 2cm and 3cm tall, and 0.3cm in diameter. They radiated 12kJ to 16kJ of x-ray energy, most of it in soft x-ray photons of less than 1keV of energy, in a time interval of 30ns. This x-ray flux was used to drive a nitrogen gas jet located at 0.8cm from the axis of the z-pinch radiation source and produced with a supersonic nozzle. The x-ray flux ionizes the nitrogen gas thus turning it into a photoionized plasma. We used laser interferometry to probe the ionization of the plasma. To this end, a Mach-Zehnder interferometer at the wavelength of 266 nm was set up to extract the atom number density profile of the gas jet just before the Zebra shot, and air-wedge interferometers at 266 and 532 nm were used to determine the electron number density of the plasma right during the Zebra shot. The ratio of electron to atom number densities gives the distribution of average ionization state of the plasma. A python code was developed to perform the image data processing, extract phase shift spatial maps, and obtain the atom and electron number densities via Abel inversion. Preliminary results from the experiment are promising and do show that a plasma has been created in the gas jet driven by the x-ray flux, thus demonstrating the feasibility of a new experimental platform to study photoionized plasmas in the laboratory. These plasmas are found in astrophysical scenarios including x-ray binaries, active galactic nuclei, and the accretion disks surrounding black holes1. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.1R. C. Mancini et al, Phys. Plasmas 16, 041001 (2009)

  4. IC ENGINE SUPERCHARGING AND EXHAUST GAS RECIRCULATION USING JET COMPRESSOR

    Directory of Open Access Journals (Sweden)

    Adhimoulame Kalaisselvane

    2010-01-01

    Full Text Available Supercharging is a process which is used to improve the performance of an engine by increasing the specific power output whereas exhaust gas recirculation reduces the NOx produced by engine because of supercharging. In a conventional engine, supercharger functions as a compressor for the forced induction of the charge taking mechanical power from the engine crankshaft. In this study, supercharging is achieved using a jet compressor. In the jet compressor, the exhaust gas is used as the motive stream and the atmospheric air as the propelled stream. When high pressure motive stream from the engine exhaust is expanded in the nozzle, a low pressure is created at the nozzle exit. Due to this low pressure, atmospheric air is sucked into the expansion chamber of the compressor, where it is mixed and pressurized with the motive stream. The pressure of the mixed stream is further increased in the diverging section of the jet compressor. A percentage volume of the pressurized air mixture is then inducted back into the engine as supercharged air and the balance is let out as exhaust. This process not only saves the mechanical power required for supercharging but also dilutes the constituents of the engine exhaust gas thereby reducing the emission and the noise level generated from the engine exhaust. The geometrical design parameters of the jet compressor were obtained by solving the governing equations using the method of constant rate of momentum change. Using the theoretical design parameters of the jet compressor, a computational fluid dinamics analysis using FLUENT software was made to evaluate the performance of the jet compressor for the application of supercharging an IC engine. This evaluation turned out to be an efficient diagnostic tool for determining performance optimization and design of the jet compressor. A jet compressor was also fabricated for the application of supercharging and its performance was studied.

  5. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    Science.gov (United States)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  6. LPWA using supersonic gas jet with tailored density profile

    Science.gov (United States)

    Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras

    2016-10-01

    Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.

  7. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    Science.gov (United States)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  8. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

    International Nuclear Information System (INIS)

    Kelly, Seán; Golda, Judith; Schulz-von der Gathen, Volker; Turner, Miles M

    2015-01-01

    Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach  ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration. (paper)

  9. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

    Science.gov (United States)

    Kelly, Seán; Golda, Judith; Turner, Miles M.; Schulz-von der Gathen, Volker

    2015-11-01

    Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach  ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration.

  10. Cryogenic target formation using cold gas jets

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1980-01-01

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets, are described. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member

  11. Study of mechanoactivation of tungsten-molybdenum containing raw material in gas-jet mill

    International Nuclear Information System (INIS)

    Agnokov, T.Sh.; Gorobets, L.Zh.; Martynenko, V.P.; Fedorov, Yu.P.; Krakhmaleva, M.T.; Sokolova, L.A.

    1988-01-01

    Investigation is aimed at intensifying autoclave-soda leaching of tungsten-molybdenum-containing raw material. Connection of reactivity and physicochemical properties of crushed tungsten-molybdenum-containing products under different gas-jet crushing parameters is investigated. Optimal technological indices of hydrometallurgical reprocessing of tungsten-molybdenum-containing raw materials and products processed by gas-jet technique are given. The results obtained point out to perspectiveness of applying gas-jet technique of thermomechanical processing for intensifying and increasing the quality of tungsten- and molybdenum-containing raw materials and products of hydrometallurgical production

  12. Simulations of overall flow in gas centrifuge considering feed jet

    International Nuclear Information System (INIS)

    He Liang; Jiang Dongjun; Ying Chuntong

    2010-01-01

    A coupled method for the numerical solution of the flow in rapidly rotating gas centrifuge was presented. An iteration process of DSMC and CFD was performed to analyze the overall flow in radial direction, in which DSMC was adopted to simulate the rarefied region, and CFD was adopted to the counter-current of gas centrifuge to discrete the model equations. It was applied to simulate the 2D symmetrical flow model considering the rarefied region with the feed jet flow. A series of illustrative numerical examples were given. The flow structures of the feed jet in the rarefied gas flow region were shown. The results suggest that DSMC CFD coupled method is competent to the simulations of overall flow in a gas centrifuge. (authors)

  13. Development of a gas-jet-coupled multitarget system for multitracer production

    International Nuclear Information System (INIS)

    Haba, H.; Kaji, D.; Kanayama, Y.; Igarashi, K.; Enomoto, S.

    2005-01-01

    de021741792A new multitracer production system, which consists of a gas-jet-coupled multitarget system for short-lived radioactive tracers and a gas- and water-cooled target system for intense beam irradiations, has been installed on a beam line of the K540-MeV RIKEN Ring Cyclotron. The performance of the gas-jet system was investigated with 50 radionuclides of 18 elements produced in the 135 MeV nucl. -1 - 14 N induced reaction on nat Cu. The gas-jet efficiencies of the nuclides varying from 61 Cu to 24 Na, except for the chlorine isotopes, show a smooth variation as a function of the mass difference between a product and a target. The multitracers on the nat Ag and 197 Au targets were also produced by the 135 MeV nucl. -1 - 14 N beam with the intensity of 0.7 pμA, which was more than seven times the limit of the previous system. (orig.)

  14. Impingement jet cooling in gas turbines

    CERN Document Server

    Amano, R S

    2014-01-01

    Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Impingement jet cooling is one of the most effective in terms of cooling, manufacturability and cost. This is the first to book to focus on impingement cooling alone.

  15. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    International Nuclear Information System (INIS)

    Pinchuk, M; Kurakina, N; Spodobin, V; Stepanova, O

    2017-01-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow. (paper)

  16. A time-dependent dusty gas dynamic model of axisymmetric cometary jets

    International Nuclear Information System (INIS)

    Korosmezey, A.; Gombosi, T.I.

    1990-01-01

    The present time-dependent, axisymmetric dusty gas dynamical model of inner cometary atmospheres solves the coupled and time-dependent equations of continuity, momentum, and energy for a gas-dust mixture between the surface of the nucleus and 100 km, using an axisymmetric 40 x 40 grid structure. A novel numerical method employing a second-order accurate Godunov-type scheme with dimensional splitting is used to solve the time-dependent pde system. It is established that a subsolar dust spike not predicted by previous calculations is generated by narrow axisymmetric jets, together with a jet cone whose opening angle depends on the jet length. 28 refs

  17. Formation of soap bubbles by gas jet

    OpenAIRE

    Zhou, M. L.; Li, M.; Chen, Z. Y.; Han, J. F.; Liu, D.

    2017-01-01

    Soap bubbles can be easily generated by varies methods, while their formation process is complicated and still worth study. A model about the bubble formation process was proposed in Phys. Rev. Lett. 116, 077801 recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after repeating these experiments, we found the bubbles could be generated in two velocities ranges which corresponded to laminar and turbulent gas jet respective...

  18. Interferometric analysis of laboratory photoionized plasmas utilizing supersonic gas jet targets.

    Science.gov (United States)

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.

    2018-06-01

    Photoionized plasmas are an important component of active galactic nuclei, x-ray binary systems and other astrophysical objects. Laboratory produced photoionized plasmas have mainly been studied at large scale facilities, due to the need for high intensity broadband x-ray flux. Using supersonic gas jets as targets has allowed university scale pulsed power generators to begin similar research. The two main advantages of this approach with supersonic gas jets include: possibility of a closer location to the x-ray source and no attenuation related to material used for containment and or tamping. Due to these factors, this experimental platform creates a laboratory environment that more closely resembles astrophysical environments. This system was developed at the Nevada Terawatt Facility using the 1 MA pulsed power generator Zebra. Neon, argon, and nitrogen supersonic gas jets are produced approximately 7-8mm from the z-pinch axis. The high intensity broadband x-ray flux produced by the collapse of the z-pinch wire array implosion irradiates the gas jet. Cylindrical wire arrays are made with 4 and 8 gold 10µm thick wire. The z-pinch radiates approximately 12-16kj of x-ray energy, with x-ray photons under 1Kev in energy. The photoionized plasma is measured via x-ray absorption spectroscopy and interferometry. A Mach-Zehnder interferometer is used to the measure neutral density of the jet prior to the zebra shot at a wavelength of 266 nm. A dual channel air-wedge shearing interferometer is used to measure electron density of the ionized gas jet during the shot, at wavelengths of 532nm and 266nm. Using a newly developed interferometric analysis tool, average ionization state maps of the plasma can be calculated. Interferometry for nitrogen and argon show an average ionization state in the range of 3-8. Preliminary x-ray absorption spectroscopy collected show neon absorption lines. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.

  19. Analysis on discharge process of a plasma-jet triggered gas spark switch

    Science.gov (United States)

    Weihao, TIE; Cui, MENG; Yuting, ZHANG; Zirang, YAN; Qiaogen, ZHANG

    2018-01-01

    The plasma-jet triggered gas switch (PJTGS) could operate at a low working coefficient with a low jitter. We observed and analyzed the discharge process of the PJTGS at the lowest working coefficient of 47% with the trigger voltage of 40 kV and the pulse energy of 2 J to evaluate the effect of the plasma jet. The temporal and spatial evolution and the optical emission spectrum of the plasma jet were captured. And the spraying delay time and outlet velocity under different gas pressures were investigated. In addition, the particle in cell with Monte Carlo collision was employed to obtain the particle distribution of the plasma jet varying with time. The results show that, the plasma jet generated by spark discharge is sprayed into a spark gap within tens of nanoseconds, and its outlet velocity could reach 104 m s-1. The plasma jet plays a non-penetrating inducing role in the triggered discharge process of the PJTGS. On the one hand, the plasma jet provides the initial electrons needed by the discharge; on the other hand, a large number of electrons focusing on the head of the plasma jet distort the electric field between the head of the plasma jet and the opposite electrode. Therefore, a fast discharge originated from the plasma jet is induced and quickly bridges two electrodes.

  20. Gas jet structure influence on high harmonic generation

    OpenAIRE

    Grant-Jacob, James; Mills, Benjamin; Butcher, Thomas J.; Chapman, Richard T.; Brocklesby, William S.; Frey, Jeremy G.

    2011-01-01

    Gas jets used as sources for high harmonic generation (HHG) have a complex three-dimensional density and velocity profile. This paper describes how the profile influences the generation of extreme-UV light. As the position of the laser focus is varied along the jet flow axis, we show that the intensity of the output radiation varies by approximately three times, with the highest flux being observed when the laser is focused into the Mach disc. The work demonstrated here will aid in the optimi...

  1. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye

    2013-01-01

    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  2. Experimental Investigation on the Material Removal of the Ultrasonic Vibration Assisted Abrasive Water Jet Machining Ceramics

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-01-01

    Full Text Available The ultrasonic vibration activated in the abrasive water jet nozzle is used to enhance the capability of the abrasive water jet machinery. The experiment devices of the ultrasonic vibration assisted abrasive water jet are established; they are composed of the ultrasonic vibration producing device, the abrasive supplying device, the abrasive water jet nozzle, the water jet intensifier pump, and so on. And the effect of process parameters such as the vibration amplitude, the system working pressure, the stand-off, and the abrasive diameter on the ceramics material removal is studied. The experimental result indicates that the depth and the volume removal are increased when the ultrasonic vibration is added on abrasive water jet. With the increase of vibration amplitude, the depth and the volume of material removal are also increased. The other parameters of the ultrasonic vibration assisted abrasive water jet also have an important role in the improvement of ceramic material erosion efficiency.

  3. Cervical conization doubles the risk of preterm and very preterm birth in assisted reproductive technology twin pregnancies

    DEFF Research Database (Denmark)

    Pinborg, A; Ortoft, G; Loft, A

    2015-01-01

    for the height of the cervical cone or the severity of the cervical intraepithelial neoplasia (CIN) or the time window between diagnosis of CIN and ART treatment. The finding on an increased risk of VPTB in ART twin pregnancies after dysplasia without conization may be random as we found no other increased risk......STUDY QUESTION: Does cervical conization add an additional risk of preterm birth (PTB) in assisted reproduction technology (ART) singleton and twin pregnancies? SUMMARY ANSWER: Cervical conization doubles the risk of preterm and very PTB in ART twin pregnancies. WHAT IS KNOWN ALREADY: ART...... and cervical conization are both risk factors for PTB. STUDY DESIGN, SIZE, DURATION: In this national population-based controlled cohort study, we included all ART singletons and twin deliveries from 1995 to 2009 in Denmark by cross-linkage of maternal and child data from the National IVF register...

  4. hydrodynamic behavior of particles in a Jet flow of a gas fluidized bed

    International Nuclear Information System (INIS)

    Mirmomen, L.; Alavi, M.

    2005-01-01

    Numerous investigations have been devoted towards understanding the hydrodynamics of gas jets in fluidized beds. However, most of them address the problem from macroscopic point of view, which does not reveal the true behavior in the jet region at the single particle level. The present work aims to understand the jet behavior from a more fundamental level, i.e. the individual particle level. A thin rectangular gas fluidized bed, constructed from acrylic glass, with a vertical jet nozzle located at the center of the distributor was used in the work. A high speed camera with a speed up to 10,000 frames per second was used to observe the jet behavior . Analysis of large quantity of images allowed determination of solids flux, solids Velocity and solids concentration in the jet region . The model present in this work has shown better agreement with the experimental data in compare with the previous models presented in the literature

  5. Basic studies of a gas-jet-coupled ion source for on-line isotope separation

    International Nuclear Information System (INIS)

    Anderl, R.A.; Novick, V.J.; Greenwood, R.C.

    1980-01-01

    A hollow-cathode ion source was used in a gas-jet-coupled configuration to produce ion beams of fission products transported to it from a 252 Cf fission source. Solid aerosols of NaCl and Ag were used effectively as activity carriers in the gas-jet system. Flat-plate skimmers provided an effective coupling of the ion source to the gas jet. Ge(Li) spectrometric measurements of the activity deposited on an ion-beam collector relative to that deposited on a pre-skimmer collector were used to obtain separation efficiencies ranging from 0.1% to > 1% for Sr, Y, Tc, Te, Cs, Ba, Ce, Pr, Nd and Sm. The use of CCl 4 as a support gas resulted in a significant enhancement of the alkaline-earth and rare-earth separation efficiencies

  6. Reactive species output of a plasma jet with a shielding gas device—combination of FTIR absorption spectroscopy and gas phase modelling

    International Nuclear Information System (INIS)

    Schmidt-Bleker, A; Winter, J; Iseni, S; Dünnbier, M; Reuter, S; Weltmann, K-D

    2014-01-01

    In this work, a simple modelling approach combined with absorption spectroscopy of long living species generated by a cold atmospheric plasma jet yields insight into relevant gas phase chemistry. The reactive species output of the plasma jet is controlled using a shielding gas device. The shielding gas is varied using mixtures of oxygen and nitrogen at various humidity levels. Through the combination of Fourier transform infrared (FTIR) spectroscopy, computational fluid dynamics (CFD) simulations and zero dimensional kinetic modelling of the gas phase chemistry, insight into the underlying reaction mechanisms is gained. While the FTIR measurements yield absolute densities of ozone and nitrogen dioxide in the far field of the jet, the kinetic simulations give additional information on reaction pathways. The simulation is fitted to the experimentally obtained data, using the CFD simulations of the experimental setup to estimate the correct evaluation time for the kinetic simulation. It is shown that the ozone production of the plasma jet continuously rises with the oxygen content in the shielding gas, while it significantly drops as humidity is increased. The production of nitrogen dioxide reaches its maximum at about 30% oxygen content in the shielding gas. The underlying mechanisms are discussed based on the simulation results. (paper)

  7. Real-time sensing and gas jet mitigation of VDEs on Alcator C-Mod

    Science.gov (United States)

    Granetz, R. S.; Wolfe, S. M.; Izzo, V. A.; Reinke, M. L.; Terry, J. L.; Hughes, J. W.; Zhurovich, K.; Whyte, D. G.; Bakhtiari, M.; Wurden, G.

    2006-10-01

    Experiments have been carried out in Alcator C-Mod to test the effectiveness of gas jet disruption mitigation of VDEs with real-time detection and triggering by the C-Mod digital plasma control system (DPCS). The DPCS continuously computes the error in the plasma vertical position from the magnetics diagnostics. When this error exceeds an adjustable preset value, the DPCS triggers the gas jet valve (with a negligible latency time). The high-pressure gas (argon) only takes a few milliseconds to enter the vacuum chamber and begin affecting the plasma, but this is comparable to the VDE timescale on C-Mod. Nevertheless, gas jet injection reduced the halo current, increased the radiated power fraction, and reduced the heating of the divertor compared to unmitigated disruptions, but not quite as well as in earlier mitigation experiments with vertically stable plasmas. Presumably a faster overall response time would be beneficial, and several ways to achieve this will also be discussed.

  8. Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

    International Nuclear Information System (INIS)

    Raeder, S.; Bastin, B.; Block, M.; Creemers, P.; Delahaye, P.; Ferrer, R.; Fléchard, X.; Franchoo, S.; Ghys, L.; Gaffney, L.P.; Granados, C.; Heinke, R.; Hijazi, L.

    2016-01-01

    To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility that are needed for the first on-line studies of in-gas-jet laser spectroscopy. Different geometries for the gas outlet and extraction ion guides have been tested for their performance regarding the acceptance of laser ionized species as well as for their differential pumping capacities. The specifications and performance of the temporarily installed high repetition rate laser system, including a narrow bandwidth injection-locked Ti:sapphire laser, are discussed and first preliminary results on neutron-deficient actinium isotopes are presented indicating the high capability of this novel technique.

  9. Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, S., E-mail: s.raeder@gsi.de [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Bastin, B. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Block, M. [Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Institut für Kernchemie, Johannes Gutenberg Universität, 55128 Mainz (Germany); Creemers, P. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Delahaye, P. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Ferrer, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Fléchard, X. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Franchoo, S. [Institute de Physique Nucléaire (IPN) d’Orsay, 91406 Orsay, Cedex (France); Ghys, L. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); SCK-CEN, Belgian Nuclear Research Center, Boeretang 200, 2400 Mol (Belgium); Gaffney, L.P.; Granados, C. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Heinke, R. [Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz (Germany); Hijazi, L. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); and others

    2016-06-01

    To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility that are needed for the first on-line studies of in-gas-jet laser spectroscopy. Different geometries for the gas outlet and extraction ion guides have been tested for their performance regarding the acceptance of laser ionized species as well as for their differential pumping capacities. The specifications and performance of the temporarily installed high repetition rate laser system, including a narrow bandwidth injection-locked Ti:sapphire laser, are discussed and first preliminary results on neutron-deficient actinium isotopes are presented indicating the high capability of this novel technique.

  10. Investigation of the on-axis atom number density in the supersonic gas jet under high gas backing pressure by simulation

    Directory of Open Access Journals (Sweden)

    Guanglong Chen

    2015-10-01

    Full Text Available The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized deq in scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.

  11. Mean streamwise velocity measurements in a triple jet of equilateral triangular configuration

    Energy Technology Data Exchange (ETDEWEB)

    Moustafa, G.H. (Menoufia Univ. (Egypt). Coll. of Engineering); Sundararajan, T. (IIT Kanpur (India). Dept. of Mechanical Engineering); Rathakrishnan, E. (IIT Kanpur (India). Dept. of Aerospace Engineering)

    1993-09-01

    Multijet flows arise in several applications such as jet engine/rocket combustors, the thrust augmenting ejectors for VTOL/STOL aircraft, and industrial gas burners. In order to achieve proper combustion, thrust development, and reduction in the noise level, it is often desirable to control the inter-mixing between the jets and also the entrainment of the surrounding atmosphere. This, in turn, requires a detailed study of the behavior of high speed jets in multijet configuration. The situation of interest here is an array of three axisymmetric nozzles set in a common end wall with equal spacing in a triangular configuration. The reason why this particular configuration has been chosen is that it promotes bending of the jet axes toward each other, thus leading to greater mixing. In the present study, experiments have been conducted to investigate the effect of stagnation pressure ratio and nozzle spacing upon the mean flow characteristic of compressible jets in triangular configuration. The individual flow features of the vertex jet and the base twin jet are analyzed and their contributions to the axis switching as well as the overall triple jet behavior are highlighted.

  12. 2SD numerical study of feed-jet flow in gas centrifuge

    International Nuclear Information System (INIS)

    Jiang Dongjun; Zeng Shi

    2008-01-01

    Computational Fluid Dynamics (CFD) method was adopted to simulate the 2D symmetrical feed-jet flow-field in Iguacu gas centrifuge, in order to study the influence of feed-jet to counter-current. The data acquired from calculation were used to modify the feed boundary condition in counter-current calculation, and the stream lines distribution was got considering the effect o f the feed-jet. Finite volume method and 2-order implicit scheme were adopted to solve Navier-Stokes (N-S) equations in cylinder coordinates to simulate the feed-jet flow. Finite difference method was used to solve centrifuge fluid dynamics equations. The result s indicate that the feed-jet flow affects the countercurrent observably, the results of feed-jet flow simulation can be used to modify the conditions to calculate the counter-current in the real centrifuge. (authors)

  13. Note: Design and investigation of a multichannel plasma-jet triggered gas switch.

    Science.gov (United States)

    Tie, Weihao; Liu, Xuandong; Zhang, Qiaogen; Liu, Shanhong

    2014-07-01

    We described the fabrication and testing of a multichannel plasma-jet triggered gas switch (MPJTGS). A novel six-channel annular micro-plasma-gun was embedded in the trigger electrode to generate multichannel plasma jets as a nanosecond trigger pulse arrived. The gas breakdown in multiple sites of the spark gap was induced and fixed around jet orifices by the plasma jets. We tested the multichannel discharge characteristics of the MPJTGS in two working modes with charge voltage of 50 kV, trigger voltage of +40 kV (25 ns rise time), and trigger energy of 240 J, 32 J, and 2 J, respectively, at different working coefficients. Results show that the average number of discharge channels increased as the trigger energy increased, and decreased as the working coefficient decreased. At a working coefficient of 87.1% and trigger energy of 240 J, the average number of discharge channels in Mode II could reach 4.1.

  14. Life cycle greenhouse gas analysis of biojet fuels with a technical investigation into their impact on jet engine performance

    International Nuclear Information System (INIS)

    Lokesh, Kadambari; Sethi, Vishal; Nikolaidis, Theoklis; Goodger, Eric; Nalianda, Devaiah

    2015-01-01

    Biojet fuels have been claimed to be one of the most promising and strategic solutions to mitigate aviation emissions. This study examines the environmental competence of Bio-Synthetic Paraffinic Kerosene (Bio-SPKs) against conventional Jet-A, through development of a life cycle GHG model (ALCEmB – Assessment of Life Cycle Emissions of Biofuels) from “cradle-grave” perspective. This model precisely calculates the life cycle emissions of the advanced biofuels through a multi-disciplinary study entailing hydrocarbon chemistry, thermodynamic behaviour and fuel combustion from engine/aircraft performance, into the life cycle studies, unlike earlier studies. The aim of this study is predict the “cradle-grave” carbon intensity of Camelina SPK, Microalgae SPK and Jatropha SPK through careful estimation and inclusion of combustion based emissions, which contribute ≈70% of overall life cycle emissions (LCE). Numerical modelling and non-linear/dynamic simulation of a twin-shaft turbofan, with an appropriate airframe, was conducted to analyse the impact of alternative fuels on engine/aircraft performance. ALCEmB revealed that Camelina SPK, Microalgae SPK and Jatropha SPK delivered 70%, 58% and 64% LCE savings relative to the reference fuel, Jet-A1. The net energy ratio analysis indicates that current technology for the biofuel processing is energy efficient and technically feasible. An elaborate gas property analysis infers that the Bio-SPKs exhibit improved thermodynamic behaviour in an operational gas turbine engine. This thermodynamic effect has a positive impact on aircraft-level fuel consumption and emissions characteristics demonstrating fuel savings in the range of 3–3.8% and emission savings of 5.8–6.3% (CO 2 ) and 7.1–8.3% (LTO NOx), relative to that of Jet-A. - Highlights: • Bio-SPKs were determined to deliver “Cradle-Grave” GHG savings of 58–70%. • Bio-SPKs exhibited improved thermodynamic behaviour at integrated system level assessment

  15. Numerical Simulation and Industrial Experimental Research on the Coherent Jet with "CH4 + N2" Mixed Fuel Gas

    Science.gov (United States)

    Hu, Shaoyan; Zhu, Rong; Dong, Kai; Liu, Runzao

    2018-06-01

    Coherent jet technology is widely used in the electric arc furnace (EAF) steelmaking process to deliver more energy and momentum into the molten steel bath. Meanwhile, the characteristics of a coherent jet using pure CH4 as the fuel gas have been well investigated in previous studies. To reduce the consumption of CH4, coherent jet technology using "CH4 + N2" mixed fuel gas instead of pure CH4 was proposed and studied in detail by numerical simulation in the present work. The Eddy Dissipation Concept model, which has detailed chemical kinetic mechanisms, was adopted to model the fuel gas combustion reactions. Experimental measurements were carried out to validate the accuracy of the computational model. The present study shows that the jet characteristics of the main oxygen improve along with the increase of the CH4 ratio in fuel gas and with the increase of the flow rate of fuel gas. When the CH4 ratio in the fuel gas is 25 pct, the fuel gas flow rate only has a limited influence on the jet characteristics, unlike the rest of the fuel gas compositions, because a high N2 proportion deteriorates the combustion performance and leads to severe incomplete combustion. Moreover, a false potential core phenomenon was observed and explained in the present study. Based on the average values, the jet length of a coherent jet with 75 pct CH4 can achieve 89.8 pct of that with 100 pct CH4. Finally, an industrial experiment was carried out on a commercial 100t EAF using coherent jet with 75 pct CH4, showing that the average CH4 consumption was reduced from 3.84 to 3.05 Nm3 t-1 under the premise of no obvious changes in the other production indexes.

  16. Twin boundary-assisted lithium-ion transport

    KAUST Repository

    Nie, Anmin

    2015-01-14

    With the increased need for high-rate Li-ion batteries, it has become apparent that new electrode materials with enhanced Li-ion transport should be designed. Interfaces, such as twin boundaries (TBs), offer new opportunities to navigate the ionic transport within nanoscale materials. Here, we demonstrate the effects of TBs on the Li-ion transport properties in single crystalline SnO2 nanowires. It is shown that the TB-assisted lithiation pathways are remarkably different from the previously reported lithiation behavior in SnO2 nanowires without TBs. Our in situ transmission electron microscopy study combined with direct atomic-scale imaging of the initial lithiation stage of the TB-SnO2 nanowires prove that the lithium ions prefer to intercalate in the vicinity of the (101¯) TB, which acts as conduit for lithium-ion diffusion inside the nanowires. The density functional theory modeling shows that it is energetically preferred for lithium ions to accumulate near the TB compared to perfect neighboring lattice area. These findings may lead to the design of new electrode materials that incorporate TBs as efficient lithium pathways, and eventually, the development of next generation rechargeable batteries that surpass the rate performance of the current commercial Li-ion batteries.

  17. Bubbles, jets, and clouds in active galactic nuclei

    International Nuclear Information System (INIS)

    Smith, M.D.; Smarr, L.; Norman, M.L.; Wilson, J.R.

    1983-01-01

    The Blandford and Reese 1974 fluid twin-exhaust model for jet formation is thoroughly investigated. We perform detailed analytic calculations of all aspects of the cavity-nozzle structures for the nonrelativistic case: the preshock flow, the central shock, cavity flow, and the nozzle. Our analytic results are in excellent agreement with recent sophisticated numerical calculations. We find that for a given central confining gas cloud, only a finite range of jet powers is possible. The sound speed ratio between cavity and cloud must be less than 30. Central masses of approx.10 9 M/sub sun/ within 1 pc are necessary for high-powered (10 46 ergs s -1 ) extragalactic jets. For a fixed confining cloud sound speed C 0 , there are three regimes determined by the central engine's luminosity. For low luminosity, a stream of bubbles emerges; for a middle range of luminosities, a jet forms; for too high a luminosity, large clouds are emitted. In the jet regime we find that L/sub j/approx.C 0 5 . The critical dependence of jet power on confining cloud sound speed enables a schematic picture for active galactic nuclei to be proposed. Seyfert galaxies and quasars are placed in the bubble regime. Variable compact radio sources reach the cloud regime. Evolutionary paths are suggested and may provide an indirect test for this picture

  18. The JET gas baking plant for DT operation and analysis of tritium permeation and baking gas activation in DTE1

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, R.J.H.; Andrew, P.; Bryan, S.; Hemmrich, J.L. [JET Joint Undertaking, Abingdon, Oxon (United Kingdom)

    1998-07-01

    The JET gas baking plant allows the vacuum vessel to be heated for conditioning and plasma operations. The vessel was maintained at 320 deg. C for the JET DT experiments (DTE 1). The design of the plant is outlined with particular reference to the features to provide compatibility with tritium operations. The experience of baking gas activation and tritium permeation into the plant are given, Developmentsto reduce the tritium permeation out of the vessel are considered. (authors)

  19. Twins conceived using assisted reproduction: parent mental health, family relationships and child adjustment at middle childhood.

    Science.gov (United States)

    Anderson, Kayla N; Koh, Bibiana D; Connor, Jennifer J; Koerner, Ascan F; Damario, Mark; Rueter, Martha A

    2014-10-10

    Compared with singletons, what is the parent mental health, parent-child and couple relationship satisfaction, and child adjustment of 6- to 12-year-old assisted reproduction technology (ART) twins and their families? There are no differences between 6- and 12-year-old ART twin and singleton families in parent mental health or family relationships; however, twins had significantly fewer behavior and attention problems than singletons in middle childhood. When ART twins are younger than 5 years old, parents have more mental health difficulties and poorer parent-child relationship quality, and no differences have been found in ART twin and singletons' psychosocial adjustment. However, studies have only examined the implications of ART twin status in families with infant and toddler aged children. A cross-sectional study of 300 6-12-year-old ART children (n = 124 twins and n = 176 singletons) from 206 families at a reproductive endocrinology clinic in the USA. Patients from one clinic with a child born between 1998 and 2004 were invited to participate in an online survey (82% recruitment rate). Participants provided information on each 6- to 12-year-old ART child in the family, and responded to questions on parent mental health, family relationships and child adjustment. There were no differences in parent mental health or family relationships in families with 6- to 12-year-old ART twins versus singletons. However, twins (M = 2.40, SE = 0.35) had significantly fewer behavior problems than singletons (M = 3.47, SE = 0.36; F(1, 201) = 4.54, b = 1.08, P difficulties and lower parent-child relationship quality than singleton families. This study indicates the negative effects of twin status may have ameliorated by middle childhood, and twins may even have more optimum psychosocial adjustment than singletons in this developmental period. This research is based on a collaborative research effort supported by University of Minnesota Agriculture Experiment Station Project

  20. Attachment, proliferation and differentiation of BMSCs on gas-jet/electrospun nHAP/PHB fibrous scaffolds

    International Nuclear Information System (INIS)

    Guan Donghua; Chen Zhiqing; Huang Chunpeng; Lin Yinghe

    2008-01-01

    In this study, poly(3-hydroxybutyrate) (PHB)-based scaffolds containing nanosized hydroxyapatite (nHAP) were manufactured by gas-jet/electrospinning. The morphologies of the scaffolds were characterized. The effect of the scaffolds on attachment, proliferation and differentiation of the bone marrow stroma cells (BMSCs) were accessed by using scanning electron microscopy (SEM), methylthiazol tetrazolium (MTT) assay and alkaline phosphatase (ALP) activity. The results show that the gas-jet/electrospun scaffolds possess an extracellular matrix-like topography. In vitro studies describe that the scaffolds have positive effects on attachment, proliferation and differentiation of BMSCs in vitro. It can be concluded that the scaffolds combing the unique structural features generated by gas-jet/electrospinning with functional factors, have the potential to be used in bone tissue engineering

  1. 3D printing of gas jet nozzles for laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Ta Phuoc, K.; Malka, V. [LOA, ENSTA ParisTech, CNRS, École Polytechnique, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex (France)

    2016-07-15

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the SALLE JAUNE terawatt laser at Laboratoire d’Optique Appliquée.

  2. The vanishing twin: a major determinant of infant outcome in IVF singleton births

    DEFF Research Database (Denmark)

    Pinborg, Anja; Lidegaard, Ojvind; Andersen, Anders Nyboe

    2006-01-01

    This article attempts to assess the frequency of vanishing twins in assisted reproductive and spontaneously conceived pregnancies, including in-vitro fertilization (IVF), and its impact on the live-born surviving twin.......This article attempts to assess the frequency of vanishing twins in assisted reproductive and spontaneously conceived pregnancies, including in-vitro fertilization (IVF), and its impact on the live-born surviving twin....

  3. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek; Park, Daegeun; Cha, Min; Park, Jeong; Chung, Suk-Ho

    2016-01-01

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames

  4. Twin boundary-assisted lithium-ion transport

    KAUST Repository

    Nie, Anmin; Gan, Liyong; Cheng, Yingchun; Li, Qianqian; Yuan, Yifei; Mashayek, Farzad; Wang, Hongtao; Klie, Robert F.; Schwingenschlö gl, Udo; Shahbazian-Yassar, Reza

    2015-01-01

    With the increased need for high-rate Li-ion batteries, it has become apparent that new electrode materials with enhanced Li-ion transport should be designed. Interfaces, such as twin boundaries (TBs), offer new opportunities to navigate the ionic

  5. Assisting Gas Optimization in CO2 Laser Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    1996-01-01

    High quality laser welding is achieved under the condition of optimizing all process parameters. Assisting gas plays an important role for sound welds. In the conventional welding process assisting gas is used as a shielding gas to prevent that the weld seam oxidates. In the laser welding process...... assisting gas is also needed to control the laser induced plasma.Assisting gas is one of the most important parameters in the laser welding process. It is responsible for obtaining a quality weld which is characterized by deep penetration, no interior imperfections, i.e. porosity, no crack, homogeneous seam...... surface, etc. In this work a specially designed flexible off-axis nozzle capable of adjusting the angle of the nozzle, the diameter of the nozzle, and the distance between the nozzle end and the welding zone is tested. In addition to the nozzle parameters three gases, Nitrogen, Argon, and Helium...

  6. Low-Boom and Low-Drag Optimization of the Twin Engine Version of Silent Supersonic Business Jet

    Science.gov (United States)

    Sato, Koma; Kumano, Takayasu; Yonezawa, Masahito; Yamashita, Hiroshi; Jeong, Shinkyu; Obayashi, Shigeru

    Multi-Objective Optimization has been applied to a design problem of the twin engine concept for Silent Supersonic Business Jet (SSBJ). This problem aims to find main wing, body, tail wing and engine nacelle configurations, which can minimize both sonic boom and drag in a supersonic cruising flight. The multi-objective genetic algorithm (MOGA) coupled with the Kriging model has been used to globally and effectively search for optimal design candidates in the multi-objective problem. The drag and the sonic boom have been evaluated by the computational fluid dynamics (CFD) simulation and the waveform parameter method. As a result, the present optimization has successfully obtained low-boom and low-drag design candidates, which are better than the baseline design by more than 40% regarding each performance. Moreover, the structure of design space has been visualized by the self-organizing map (SOM).

  7. Reactive pulsed laser deposition with gas jet

    International Nuclear Information System (INIS)

    Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.

    2001-01-01

    Different metal (Sn, Al, steel, Cu, W) thin films were synthesized by reactive pulsed laser deposition on steel, copper and glass wafers. In our work pulsed Nd:glass (10 J, 800μs) laser system was used. Jet of gas was created by electromagnetic valve perpendicularly to the laser beam. Nitrogen, oxygen and argon were used. We used several to tens laser shots to obtain visible with the naked eye layers. Thin layers were observed under an optical microscope. (author)

  8. Investigations on the applicability of pure gases in the transport of nuclear reaction products in a gas jet, and the use of this gas jet for radiochemical separation processes

    International Nuclear Information System (INIS)

    Aumann, D.C.; Presuhn, R.; Weismann, D.

    1975-01-01

    Earlier investigations on the effectivity of the transport of nuclear reaction products in a gas jet were continued where the transporting properties of ethylene and CO 2 in particular were examined in detail. By means of selected measurements, it is shown what influence the temperature of the gas bottle and that of the pressure releaser has on the transport yield. It is attempted from the results to explain the formation of aerosols in pure gases. The fission fragments of the spontaneous fission of Cf-252 are gamma-spectrometrically measured to determine the yields, or the total yield is determined by simple activity measurements. The determination of the isomeric ratio of Cs 138 m/g is described as an example of the possible application of a gas jet. Furthermore, an experiment for the search of super-heavy elements is suggested. (RB/LH) [de

  9. Investigations on the applicability of pure gases in the transport of nuclear reaction products in a gas jet, and the use of this gas jet for radiochemical separation processes

    International Nuclear Information System (INIS)

    Aumann, D.C.; Presuhn, R.; Weismann, D.

    1975-01-01

    Earlier investigations on the effectivity of the transport of nuclear reaction products in a gas jet were continued, the transporting properties of ethylene and CO 2 being particularly examined in detail. By means of selected measurements, it is shown what influence the temperature of the gas bottle and that of the pressure releaser has on the transport yield. It is attempted from the results to explain the formation of aerosols in pure gases. The fission fragments of the spontaneous fission of Cf-252 are gamma-spectrometrically measured to determine the yields, or the total yield is determined by simple activity measurements. The determination of the isomeric ratio of Cs 138 m/g is described as an example of the possible application of a gas jet. Furthermore, an experiment for the search of super-heavy elements is suggested. (RB/LH) [de

  10. Velocity slip of gas mixtures in free jet expansions

    International Nuclear Information System (INIS)

    Cattolica, R.J.; Talbot, L.; Coe, D.

    1976-11-01

    Velocity slip in gas mixtures of argon and helium in axisymmetric free jet expansions has been measured using a grating monochromator together with a computer-controlled Fabry-Perot interferometer to observe the fluorescence excited by an electron beam. The Doppler shift between the fluorescence observed parallel and perpendicular to the centerline of the free jet was used to measure the mean velocity of a particular species along the jet centerline, employing the 4880 A line for argon and the 5016 A line for helium. By alternately tracking the parallel and perpendicular fluorescence, the Doppler shift due to the mean velocity was measured directly with an accuracy of 1 percent. Flow field surveys have been made in the initial acceleration region where the flow becomes hypersonic and in the far field region. The differences between argon and helium mean velocities (velocity slip) are in good agreement with molecular beam data and show a correlation with an inverse Knudsen number

  11. Shock-wave proton acceleration from a hydrogen gas jet

    Science.gov (United States)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

    2013-04-01

    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  12. Performance of Twin-Fluid Atomizers for Atomization of Viscous Solutions

    Directory of Open Access Journals (Sweden)

    Mlkvik Marek

    2015-01-01

    Full Text Available Presented paper deals with a comparison of two internally mixing twin fluid atomizers. The well - known Y- jet atomizer and so called outside-in-liquid effervescent atomizer (OUIL were investigated. The working regimes were defined by the pressure drop (Δp and the gas to the liquid ratio (GLR. The internal and the external two-phase flows of both atomizers were studied. The influence of the mixing mechanism on the internal flow was evaluated by the gas to the liquid momentum ratio (Φ. In advance, the stability of the separated flow (liquid film was examined in term of the critical wavelength of the surface disturbances (λc. The external flow was observed by the high – speed camera. The influence of the basic forces on the deformation of the liquid was determined by a dimensionless criterion w·μ / σ. The values of Φ 3, where the liquid momentum overcomes the gas momentum. The values of w·μ / σ> 20 for both atomizers indicates the dominant influence of the viscosity and the drag force on the breakup process.

  13. Supersonic induction plasma jet modeling

    International Nuclear Information System (INIS)

    Selezneva, S.E.; Boulos, M.I.

    2001-01-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders

  14. STAR FORMATION SUPPRESSION DUE TO JET FEEDBACK IN RADIO GALAXIES WITH SHOCKED WARM MOLECULAR GAS

    International Nuclear Information System (INIS)

    Lanz, Lauranne; Ogle, Patrick M.; Appleton, Philip N.; Alatalo, Katherine

    2016-01-01

    We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early-type galaxies with normal gas-to-dust ratios, covering a range of optical and infrared colors. We find that the star formation rate (SFR) is suppressed by a factor of ∼3–6, depending on how molecular gas mass is estimated. We suggest that this suppression is due to the shocks driven by the radio jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H 2 line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H 2 emission, suggesting that while injected turbulence likely impacts star formation, the process is not purely parameterized by the amount of mechanical energy dissipated into the ISM. Radio galaxies with shocked warm molecular gas cover a wide range in SFR–stellar mass space, indicating that these galaxies are in a variety of evolutionary states, from actively star-forming and gas-rich to quiescent and gas-poor. SFR suppression appears to have the largest impact on the evolution of galaxies that are moderately gas-rich.

  15. Noble gas enrichment studies at JET

    International Nuclear Information System (INIS)

    Groth, M.; Andrew, P.; Fundamenski, W.; Guo, H.Y.; Hillis, D.L.; Hogan, J.T.; Horton, L.D.; Matthews, G.F.; Meigs, A.G.; Morgan, P.M.; Stamp, M.F.; Hellermann, M. von

    2001-01-01

    Adequate helium exhaust has been achieved in reactor-relevant ELMy H-mode plasmas in JET performed in the MKII AP and MKII GB divertor geometry. The divertor-characteristic quantities of noble gas compression and enrichment have been experimentally inferred from Charge Exchange Recombination Spectroscopy measurements in the core plasma, and from spectroscopic analysis of a Penning gauge discharge in the exhaust gas. The retention of helium was found to be satisfactory for a next-step device, with enrichment factors exceeding 0.1. The helium enrichment decreases with increasing core plasma density, while the neon enrichment has the opposite behaviour. Analytic and numerical analyses of these plasmas using the divertor impurity code package DIVIMP/NIMBUS support the explanation that the enrichment of noble gases depends significantly on the penetration depth of the impurity neutrals with respect to the fuel atoms. Changes of the divertor plasma configuration and divertor geometry have no effect on the enrichment

  16. Shock wave calibration of under-expanded natural gas fuel jets

    Science.gov (United States)

    White, T. R.; Milton, B. E.

    2008-10-01

    Natural gas, a fuel abundant in nature, cannot be used by itself in conventional diesel engines because of its low cetane number. However, it can be used as the primary fuel with ignition by a pilot diesel spray. This is called dual-fuelling. The gas may be introduced either into the inlet manifold or, preferably, directly into the cylinder where it is injected as a short duration, intermittent, sonic jet. For accurate delivery in the latter case, a constant flow-rate from the injector is required into the constantly varying pressure in the cylinder. Thus, a sonic (choked) jet is required which is generally highly under-expanded. Immediately at the nozzle exit, a shock structure develops which can provide essential information about the downstream flow. This shock structure, generally referred to as a “barrel” shock, provides a key to understanding the full injection process. It is examined both experimentally and numerically in this paper.

  17. Maintenance of the JET active gas handling system

    International Nuclear Information System (INIS)

    Brennan, P.D.; Bell, A.C.; Brown, K.; Cole, C.; Cooper, B.; Gibbons, C.; Harris, M.; Jones, G.; Knipe, S.; Lewis, J.; Manning, C.; Miller, A.; Perevezentsev, A.; Skinner, N.; Stagg, R.; Stead, M.; Thomas, R.; Yorkshades, J.

    2003-01-01

    The JET active gas handling system (AGHS) has been in operation in conjunction with the JET machine since Spring 1997. The tritium levels within the vessel have remained sufficiently high, 6.2 g at the end of the DTE1 experiment and currently 1.5 g, such that the AGHS has been required to operate continuously to detritiate gases liberated during D-D operations and to maintain discharges to the environment to ALARP. Maintaining the system to ensure continued operation has been a key factor in guaranteeing the continued availability of the essential sub-systems. The operational history of the JET AGHS has been previously documented in a number of papers [R. Laesser, et al. Proc. of the 19th SOFT Conf. 1 (1996) 227; R. Laesser, et al., Fusion Eng. Des. 46 (1999) 307; P.D. Brennan, et al., 18th Symp. on Fusion Eng., 1999]. Operational downtime is minimised through well-engineered sub-systems that use high integrity components. Outage, contamination and operator dosage are minimised through pre-planned and prepared maintenance operations. The reliability of sub-system critical condition fault detection is demonstrated through routine testing of hard-wired alarms and interlocks

  18. Measurement Of Ultrafast Ionisation From Intense Laser Interactions With Gas-Jets

    International Nuclear Information System (INIS)

    Gizzi, Leonida A.; Galimberti, Marco; Giulietti, Antonio; Giulietti, Danilo; Koester, Petra; Labate, Luca; Tomassini, Paolo; Martin, Philippe; Ceccotti, Tiberio; De Oliveira, Pascal; Monot, Pascal

    2006-01-01

    Interaction of an intense, ultrashort laser pulse with a gas-jet target is investigated through femtosecond optical interferometry to study the dynamics of ionization of the gas. Experimental results are presented in which the propagation of the pulse in the gas and the consequent plasma formation is followed step by step with high temporal and spatial resolution. We demonstrate that, combining the phase shift with the measurable depletion of fringe visibility associated with the transient change of refractive index in the ionizing region and taking into account probe travel time can provide direct information on gas ionization dynamics

  19. Electric field measurements in a kHz-driven He jet - The influence of the gas flow speed

    NARCIS (Netherlands)

    Sobota, A.; Guaitella, O.; Sretenović, G.B.; Krstić, I.B.; Kovačević, V.V.; Obrusník, A.; Nguyen, Y.N.; Zajíčková, L.; Obradović, B.M.; Kuraica, M.M.

    2016-01-01

    This report focuses on the dependence of electric field strength in the effluent of a vertically downwards-operated plasma jet freely expanding into room air as a function of the gas flow speed. A 30 kHz AC-driven He jet was used in a coaxial geometry, with an amplitude of 2 kV and gas flow between

  20. Video-assisted thoracoscopic PlasmaJet ablation for malignant pleural mesothelioma.

    Science.gov (United States)

    Perikleous, Periklis; Asadi, Nizar; Anikin, Vladimir

    2018-01-01

    The role of surgery in malignant pleural mesothelioma (MPM) remains debatable; nonetheless the relative advantages of different surgical approaches are frequently reassessed and reconsidered. While extensive operations and longer recovery periods can be justified for a group of carefully selected patients, many will present at an advanced stage of their disease or with associated co-morbidities which will exclude them from selection criteria for radical treatment. For these patients, minimally invasive video-assisted procedures may be considered, for purposes of cytoreduction and/or symptomatic relief. Even though there is currently not enough clinical evidence to suggest an improvement in overall survival with limited debulking procedures, it has been suggested that they can improve quality of life over drainage and pleurodesis alone. We consider video-assisted PlasmaJet ablation to potentially have a role in mesothelioma surgery, as it may be used for effective cytoreduction while minimising the risk for complications often associated with extensive pleurectomy procedures, and we report on the use of the PlasmaJet Surgical System in our centre for surgical management of a patient with MPM. After demonstrating safety and absence of major adverse events with this approach, we feel justified in offering the procedure to more of our patients as we aim to collect additional data.

  1. Mucosal deformation from an impinging transonic gas jet and the ballistic impact of microparticles

    International Nuclear Information System (INIS)

    Hardy, M P; Kendall, M A F

    2005-01-01

    By means of a transonic gas jet, gene guns ballistically deliver microparticle formulations of drugs and vaccines to the outer layers of the skin or mucosal tissue to induce unique physiological responses for the treatment of a range of conditions. Reported high-speed imaging experiments show that the mucosa deforms significantly while subjected to an impinging gas jet from a biolistic device. In this paper, the effect of this tissue surface deformation on microparticle impact conditions is simulated with computational fluid dynamics (CFD) calculations. The microparticles are idealized as spheres of diameters 26.1, 39 and 99 μm and a density of 1050 kg m -3 . Deforming surface calculations of particle impact conditions are compared directly with an immobile surface case. The relative velocity and obliquity of the deforming surface decrease the normal component of particle impact velocity by up to 30% at the outer edge of the impinging gas jet. This is qualitatively consistent with reported particle penetration profiles in the tissue. It is recommended that these effects be considered in biolistic studies requiring quantified particle impact conditions

  2. Perinatal complications and neonatal outcomes of twin pregnancies conceived by assisted reproductive techniques and those conceived spontaneously: A retrospective analysis of 811 cases

    Directory of Open Access Journals (Sweden)

    Jin YU

    2017-11-01

    Full Text Available Objective To investigate the general situations of gravida, pregnancy complications, childbirth and neonatal outcomes of twin pregnancies conceived by assisted reproductive techniques (ART and those conceived spontaneously. Methods A retrospective analysis was carried out on the basic information, perinatal complications, delivery information and neonatal outcomes of twin pregnancies received by ART (ART group, n=518 and those conceived spontaneously (SC group, n=293. Results Gravida age was older in ART group than in SC group (P0.05. Conclusion Twin pregnancy conceived by ART may lead to higher incidences of gestational diabetes mellitus and abnormal placenta and more postpartum hemorrhage, but no significant difference existed in the neonatal outcomes between twin pregnancies conceived by ART and those conceived spontaneously. DOI: 10.11855/j.issn.0577-7402.2017.11.12

  3. The self limiting effect of hydrogen cluster in gas jet under liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Han Jifeng; Yang Chaowen; Miao Jingwei; Fu Pengtao; Luo Xiaobing; Shi Miangong

    2010-01-01

    The generation of hydrogen clusters in gas jet is tested using the Rayleigh scattering method under liquid nitrogen temperature of 79 K. The self limiting effect of hydrogen cluster is studied and it is found that the cluster formation is greatly affected by the number of expanded molecules. The well designed liquid nitrogen cold trap ensured that the hydrogen cluster would keep maximum size for maximum 15 ms during one gas jet. The scattered light intensity exhibits a power scaling on the backing pressure ranging from 5 to 48 bar with the power value of 4.1.

  4. Effect of Shrouding Gas Temperature on Characteristics of a Supersonic Jet Flow Field with a Shrouding Laval Nozzle Structure

    Science.gov (United States)

    Liu, Fuhai; Sun, Dongbai; Zhu, Rong; Li, Yilin

    2018-05-01

    Coherent jet technology was been widely used in the electric arc furnace steelmaking process to protect the kinetic energy of supersonic oxygen jets and achieve a better mixing effect. For this technology, the total temperature distribution of the shrouding jet has a great impact on the velocity of the main oxygen jet. In this article, a supersonic shrouding nozzle using a preheating shrouding jet is proposed to increase the shrouding jet velocity. Both numerical simulation and experimental studies were carried out to analyze its effect on the axial velocity, total temperature and turbulence kinetic energy profiles of the main oxygen jet. Based on these results, it was found that a significant amount of kinetic energy was removed from the main oxygen jet when it passed though the shock wave using a high-temperature shrouding jet, which made the average axial velocity of the coherent jet lower than for a conventional jet in the potential core region. However, the supersonic shrouding nozzle and preheating technology employed for this nozzle design significantly improved the shrouding gas velocity, forming a low-density gas zone at the exit of the main oxygen jet and prolonging the velocity potential core length.

  5. Conjoined twins detected in the first trimester: A review

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2011-12-01

    Full Text Available Conjoined twinning occurs in 1 in 100 sets of monozygotic twins, 1 in 50,000 gestations or 1 in 250,000 live births. With the advent of ultrasound technology, prenatal diagnosis of conjoined twins is possible. This article provides a comprehensive review of conjoined twins detected in the first trimester including fetal gender, maternal age, parity, types of fusion, related ultrasound abnormalities, perinatal outcome and association with assisted reproduction.

  6. CFD Study of Gas Dispersion and Jet Fires in Complex Geometries

    DEFF Research Database (Denmark)

    Osenbroch, Jørgen

    (Hall 1997, McQuaid & Roebuck 1985) and (Sklavonuos & Rigas 2004). The Composite Radiosity Gap radiation model has been implemented in EXSIM. The predicted heat fluxes obtained from horizontally released natural gas jet fires have been compared to experimental findings reported by Johnson et al. (1994...

  7. X-ray burst studies with the JENSA gas jet target

    Directory of Open Access Journals (Sweden)

    Schmidt Konrad

    2017-01-01

    Full Text Available When a neutron star accretes hydrogen and helium from the outer layers of its companion star, thermonuclear burning enables the αp-process as a break out mechanism from the hot CNO cycle. Model calculations predict (α, p reaction rates significantly affect both the light curves and elemental abundances in the burst ashes. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA gas jet target enables the direct measurement of previously inaccessible (α,p reactions with radioactive beams provided by the rare isotope re-accelerator ReA3 at the National Superconducting Cyclotron Laboratory (NSCL, USA. JENSA is going to be the main target for the Recoil Separator for Capture Reactions (SECAR at the Facility for Rare Isotope Beams (FRIB. Commissioning of JENSA and first experiments at Oak Ridge National Laboratory (ORNL showed a highly localized, pure gas target with a density of ∼1019 atoms per square centimeter. Preliminary results are presented from the first direct cross section measurement of the 34Ar(α, p37 K reaction at NSCL.

  8. Musical Interests and Talent: Twin Jazz Musicians and Twin Studies/Twin Research: Loss of a Preterm Multiple; Conjoined Twin Conception; Depression in Fathers of Twins; Twin-to-Twin Transfusion Syndrome/Twin News: High-Achieving Twins; Twin Children of a Tennis Star; Conjoined Twin Separation; Twin Delivery to a Giant Panda.

    Science.gov (United States)

    Segal, Nancy L

    2017-12-01

    Findings from twin studies of musical interests and talent are reviewed as a backdrop to the lives and careers of twin jazz musicians, Peter and Will Anderson. The Anderson twins exemplify many aspects of twin research, namely their matched musical abilities, shared musical interests, and common career. This overview is followed by reviews of studies and case reports of bereavement in families who have lost a preterm multiple birth infant, the conception of conjoined twins following in vitro fertilization (IVF), depression in fathers of twins, and twin-to-twin transfusion incidence in monochorionic-diamniotic IVF twin pairs. Twins highlighted in the media include high-achieving identical female twins with nearly identical academic standing, tennis star Roger Federer's two sets of identical twin children, surgical separation of craniopagus conjoined twins, and the rare delivery of twins to a 23-year-old giant panda.

  9. High incidence of monozygotic twinning after assisted reproduction is related to genetic information, but not to assisted reproduction technology itself.

    Science.gov (United States)

    Sobek, Aleš; Zbořilová, Blažena; Procházka, Martin; Šilhánová, Eva; Koutná, Olga; Klásková, Eva; Tkadlec, Emil; Sobek, Aleš

    2015-03-01

    To study the incidence of monozygotic twinning (MZT) in patients using in vitro fertilization, relative to their age, genetic background, ovarian function, and assisted reproductive techniques used. Analysis of a collected database. Infertility treatment center. A total of 1,876 patients receiving infertility treatment between 2000 and 2012. Pregnancies with monozygotic twins (A: 23) were compared with deliveries of dizygotic twins (B: 423), singleton pregnancies (C: 880), and aborted pregnancies (D: 389). None. A genetic survey on multiple pregnancies in the extended family. Measures were micromanipulation technique, the length of embryo cultivation, type of cultivation media, basal follicle-stimulating hormone level, estradiol level on the day of human chorionic gonadotropin administration, number of oocytes, total consumption of gonadotropins, and consumption of gonadotropins needed for recovery of 1 oocyte. No differences were found between the incidence of MZT in cycles that did vs. did not use micromanipulation techniques. In addition, the length of embryo cultivation or type of cultivation media used did not affect the results. Estradiol levels and implantation rates were significantly higher in group A. The incidence of MZT in families in group A was significantly higher than that in groups B and C. We propose that the high incidence of MZT in infertility-clinic patients is conditioned by hereditary factors, and good ovarian function only facilitates the expression. The resulting recommendation is that young women with a positive family history and good ovarian function undergo elective single-embryo transfer, and proper counseling is advisable. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. New supersonic gas jet target for low energy nuclear reaction studies

    Science.gov (United States)

    Favela, F.; Acosta, L.; Andrade, E.; Araujo, V.; Huerta, A.; de Lucio, O. G.; Murillo, G.; Ortiz, M. E.; Policroniades, R.; Santa Rita, P.; Varela, A.; Chávez, E.

    2015-12-01

    A windowless supersonic gas jet target (SUGAR) has been put in operation recently in Mexico. It is the first target of its kind in the country and the region. New research opportunities become available with this facility through the study of the direct beam-gas interaction: nuclear physics and astrophysics, atomic physics, interaction of radiation with matter and other interdisciplinary applications. A general description of the apparatus and its commissioning is given here. Air, nitrogen and argon jets were produced. Proton and deuteron beams were used to measure key parameters of the system to compare with theoretical estimates. In addition, as a first study case, we present data from the 14N (d ,α )12C reaction, at center of mass energies between 1.9 and 3.0 MeV with an E-Δ E telescope detector at 35°. Excitation functions for several excited states were constructed and an 16O resonance at 22.72 MeV was confirmed.

  11. Compressive Strength Properties of Natural Gas Hydrate Pellet by Continuous Extrusion from a Twin-Roll System

    Directory of Open Access Journals (Sweden)

    Yun-Hoo Lee

    2013-01-01

    Full Text Available This study investigates the compressive strength of natural gas hydrate (NGH pellet strip extruded from die holes of a twin-roll press for continuous pelletizing (TPCP. The lab-scale TPCP was newly developed, where NGH powder was continuously fed and extruded into strip-type pellet between twin rolls. The system was specifically designed for future expansion towards mass production of solid form NGH. It is shown that the compressive strength of NGH pellet strip heavily depends on parameters in the extrusion process, such as feeding pressure, pressure ratio, and rotational speed. The mechanism of TPCP, along with the compressive strength and density of pellets, is discussed in terms of its feasibility for producing NGH pellets in the future.

  12. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek

    2016-10-13

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  13. CAUSE AND EFFECT OF FEEDBACK: MULTIPHASE GAS IN CLUSTER CORES HEATED BY AGN JETS

    International Nuclear Information System (INIS)

    Gaspari, M.; Ruszkowski, M.; Sharma, P.

    2012-01-01

    Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI /t ff ) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments 'rain' down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI /t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI /t ff ∼< 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

  14. [Microbial Processes and Genesis of Methane Gas Jets in the Coastal Areas of the Crimea Peninsula].

    Science.gov (United States)

    Malakhova, T V; Kanapatskii, T A; Egorov, V N; Malakhova, L V; Artemov, Yu G; Evtushenko, D B; Gulin, S B; Pimenov, N V

    2015-01-01

    Hydroasoustic techniques were used for detection and mapping of gas jet areas in the coastal regions of the Crimean peninsula. Gas seep areas in the bays Laspi, Khersones, and Kazach'ya were chosen for detailed microbiological investigation. The first type of gas jets, observed in the Laspi Bay, was probably associated with discarge of deep thermogenic methane along the faults. Methane isotopic composition was char- acterized by Δ13C of -35.3 degrees. While elevated rates of aerobic methane oxidation were revealed in the sandy sediments adjacent to the methane release site, no evidence of bacterial mats was found. The second type of gas emission, observed in the Khersones Bay, was accompanied by formation of bacterial biofilms of the "Thiodendron" microbial community type, predominated by filamentous, spirochete-like organisms, in the areas of gas seepage. The isotopic composition of methane was there considerably lower (-60.4 degrees), indicating a considerable contribution of modern microbial methane to the gas bubbles discharged in this bay. Activity of the third type of gas emission, the seeps of the Kazach'ya Bay, probably depended directly on modern microbial processes of organic matter degradation in the upper sediment layers. The rates of sulfate reduction and methanogenesis were 260 and 34 μmol dm(-3) day(-1), respectively. Our results indicate different mechanisms responsible for formation of methane jets in the Laspi Bay and in the coastal areas of the Heracles Peninsula, where the bays Kazach'ya and Khersones are located.

  15. Direct injection of high pressure gas : scaling properties of pulsed turbulent jets

    NARCIS (Netherlands)

    Baert, R.S.G.; Klaassen, A.; Doosje, E.

    2010-01-01

    Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection

  16. Search for EC-decayed neutron-deficient actinide isotopes using gas-jet coupled JAERI-ISOL

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Kazuaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    To study the nuclear properties of unknown neutron deficient actinide isotopes which decay mainly via orbital electron capture (EC), we have developed a composite system consisting of a gas-jet transport apparatus and a thermal ion-source at the JAERI-ISOL. With this system, search for {sup 236}Am produced in the {sup 235}U({sup 6}Li, 5n) reaction has been performed. Pu KX-rays associated with the EC decay of {sup 236}Am are observed at the mass-236 fraction. The half-life of {sup 236}Am is evaluated to be 4.4min. The outline of the gas-jet coupled JAERI-ISOL system and typical performance are given. (author)

  17. Laser assisted tunneling in a Tonks–Girardeau gas

    International Nuclear Information System (INIS)

    Lelas, Karlo; Drpić, Nikola; Dubček, Tena; Buljan, Hrvoje; Jukić, Dario; Pezer, Robert

    2016-01-01

    We investigate the applicability of laser assisted tunneling in a strongly interacting one-dimensional (1D) Bose gas (the Tonks–Girardeau gas) in optical lattices. We find that the stroboscopic dynamics of the Tonks–Girardeau gas in a continuous Wannier–Stark-ladder potential, supplemented with laser assisted tunneling, effectively realizes the ground state of 1D hard-core bosons in a discrete lattice with nontrivial hopping phases. We compare observables that are affected by the interactions, such as the momentum distribution, natural orbitals and their occupancies, in the time-dependent continuous system, to those of the ground state of the discrete system. Stroboscopically, we find an excellent agreement, indicating that laser assisted tunneling is a viable technique for realizing novel ground states and phases with hard-core 1D Bose gases. (paper)

  18. Prevention of preterm delivery in twin pregnancy

    DEFF Research Database (Denmark)

    Rode, Line; Tabor, Ann

    2014-01-01

    The incidence of twin gestation has increased markedly over the past decades, mostly because of increased use of assisted reproductive technologies. Twin pregnancies are at increased risk of preterm delivery (i.e. birth before 37 weeks of gestation). Multiple gestations therefore account for 2...... sequelae such as abnormal neurophysiological development in early childhood and underachievement in school. Several treatment modalities have been proposed in singleton high-risk pregnancies. The mechanism of initiating labour may, however, be different in singleton and twin gestations. Therefore......, it is mandatory to evaluate the proposed treatments in randomised trials of multiple gestations. In this chapter, we describe the results of trials to prevent preterm delivery in twin pregnancies....

  19. Controlling the Effluent Chemistry of a CAP jet for Biomedical Applications: FTIR Diagnostics and Gas Phase Modeling

    Science.gov (United States)

    Schmidt-Bleker, Ansgar; Winter, Joern; Iseni, Sylvain; Duennbier, Mario; Barton, Annemarie; Bundscherer, Lena; Wende, Kristian; Masur, Kai; Weltmann, Klaus-Dieter; Reuter, Stephan

    2013-09-01

    The use of cold atmospheric pressure plasma (CAP) jets with shielding gas devices has proven to be a valuable tool for biomedical applications of plasmas. In order to understand which active components generated by the plasma source trigger desired biological effects, a deeper insight into the species output of CAP jets is necessary. In this work we investigate the effect of different shielding gas compositions using a CAP jet (kinpen) operated with argon. As shielding gas various mixtures of N2 and O2 are used with relative humidity ranging from 0 to 100%. For all conditions the densities of O3, NO2, HNO3, N2O5 and N2O in the far-field of the jet are determined using Fourier-Transformed Infrared Spectroscopy (FTIR). A kinetic model for the neutral species humid air chemistry is fitted to the experimental data. The model yields insight into the processes in the CAP jets effluent. It is used to extrapolate the measured data to 2D density maps for each species depending on the O2/(O2 + N2) ratio and the relative humidity. The 2D maps serve as a basis for the design of further biological and physical experiments. The authors gratefully acknowledge the funding by the German Ministry of Education and Research (BMBF, grant number 03Z2DN11/12).

  20. Forage pétrolier assisté par jet Jet-Assisted Oil Drilling

    Directory of Open Access Journals (Sweden)

    Bardin C.

    2006-11-01

    Full Text Available La destruction des roches par jet est une technique qui présente un réel intérêt dans le domaine du forage pétrolier comme en témoignent les études déjà réalisées sur le sujet depuis une vingtaine d'années. Des essais sur chantier ont fait apparaître des améliorations substantielles en vitesse d'avancement grâce aux outils combinés mécaniques et jets haute pression. Cet article explique, après une courte bibliographie sur le sujet, les motivations d'une nouvelle étude menée par l'institut Français du Pétrole (IFP au sein de l'Association de Recherche sur les Techniques d'Exploitation du Pétrole (ARTEP. L'objectif de cette étude est d'utiliser le pouvoir destructeur de la cavitation dans le cas des forages profonds en utilisant les capacités de pompage actuellement disponibles sur chantier. Cet objectif nécessite le développement d'une technique capable de créer une cavitation érosive à sigma = 2. 5 ; sigma étant défini par le rapport de la pression à l'aval du dispositif cavitant sur la chute de pression dans ce même dispositif. L'érosion de cavitation étant très dépendante des conditions de pression et de température, il a été nécessaire de concevoir des moyens d'essai permettant de simuler les conditions de fond de forage dans le cas de forage par grande profondeur. Le banc d'essai (70 MPa, 120 °C est présenté dans ce papier, ainsi que quelques essais relatifs à la destruction des roches par jet. The destruction of rocks by jetting is an important technique in the field of cil drilling, as shown by research done on this subject for some 20 years now. Fields tests have revealed substantial improvements in rates of penetration with the use of combined mechanical and high-pressure jet bits. After a brief bibliography on the subject, this paper explains the motives for a new research project being car-ried out by Institut Français du Pétrole (IFP within the ARTEP association (Association de Recherche

  1. Stabilization of electrohydrodynamic jets by gas discharges and applications to printing

    Science.gov (United States)

    Korkut, Sibel

    From integrated circuits to DNA hybridization micro arrays, many areas of research require flexible and reliable, high resolution surface patterning tools. A new surface patterning technique, electrohydrodynamic printing (EHDP) [1] provides high resolution and speed at the same time, which was not attainable with the existing direct surface patterning techniques. Stability of electrohydrodynamic (EHD) jets determines the accuracy of deployment in EHD printing [1-3]; therefore, understanding non-axisymmetric instability of the jet, which is caused by the surface charges, is crucial to successful operation. In this thesis, fast imaging and image analysis techniques are used to determine non-axisymmetric disturbance growth rates experimentally. Comparison of experimental instability growth rates with the theoretical estimations based on total current reveals a big discrepancy. It is also found that instability growth rates decrease and stability of EHD filaments is enhanced either by decreasing the electrode separation or by changing the surrounding gas. After considering all possible mechanisms, it is concluded that the main reason for stabilization is the increased ionization of the surrounding gas. Gas ionization results in partial neutralization of surface charges on the filament by the oppositely charged ions in the gas phase and stabilizes the jet. A new current balance including the charge transfer through the gas is developed to estimate the charge density left on the filament. Experimental and theoretical instability growth rates agree much better when the estimated charge density is used for the instability growth rate calculations. The second part of the thesis focuses on pattern formation on the surfaces. The final pattern produced with a colloidal suspension by EHDP depends on not only the stability of the jet but also the dynamics of the suspension and the stability of printed lines after the deployment. Rivulet instability, which causes deployed

  2. Ink jet assisted metallization for low cost flat plate solar cells

    Science.gov (United States)

    Teng, K. F.; Vest, R. W.

    1987-01-01

    Computer-controlled ink-jet-assisted metallization of the front surface of solar cells with metalorganic silver inks offers a maskless alternative method to conventional photolithography and screen printing. This method can provide low cost, fine resolution, reduced process complexity, avoidance of degradation of the p-n junction by firing at lower temperature, and uniform line film on rough surface of solar cells. The metallization process involves belt furnace firing and thermal spiking. With multilayer ink jet printing and firing, solar cells of about 5-6 percent efficiency without antireflection (AR) coating can be produced. With a titanium thin-film underlayer as an adhesion promoter, solar cells of average efficiency 8.08 percent without AR coating can be obtained. This efficiency value is approximately equal to that of thin-film solar cells of the same lot. Problems with regard to lower inorganic content of the inks and contact resistance are noted.

  3. Supercritical fluid chromatography hyphenated with twin comprehensive two-dimensional gas chromatography for ultimate analysis of middle distillates.

    Science.gov (United States)

    Adam, Frédérick; Thiébaut, Didier; Bertoncini, Fabrice; Courtiade, Marion; Hennion, Marie-Claire

    2010-02-19

    This paper reports the conditions of online hyphenation of supercritical fluid chromatography (SFC) with twin comprehensive two-dimensional gas chromatography (twin-GCxGC) for detailed characterization of middle distillates; this is essential for a better understanding of reactions involved in refining processes. In this configuration, saturated and unsaturated compounds that have been fractionated by SFC are transferred on two different GC x GC columns sets (twin-GCxGC) placed in the same GC oven. Cryogenic focusing is used for transfer of fractions into the first dimension columns before simultaneous GCxGC analysis of both saturated and unsaturated fractions. The benefits of SFC-twin-GC x GC are demonstrated for the extended alkane, iso-alkane, alkene, naphthenes and aromatics analysis (so-called PIONA analysis) of diesel samples which can be achieved in one single injection. For that purpose, saturated and unsaturated compounds have been separated by SFC using a silver loaded silica column prior to GC x GC analysis. Alkenes and naphthenes are quantitatively recovered in the unsaturated and saturated fractions, respectively, allowing their identification in various diesel samples. Thus, resolution between each class of compounds is significantly improved compared to a single GCxGC run, and for the first time, an extended PIONA analysis of diesel samples is presented. Copyright 2009 Elsevier B.V. All rights reserved.

  4. A Study of Vertical Gas Jets in a Bubbling Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Ceccio, Steven [Univ. of Michigan, Ann Arbor, MI (United States); Curtis, Jennifer [Univ. of Florida, Gainesville, FL (United States)

    2011-04-15

    A detailed experimental study of a vertical gas jet impinging a fluidized bed of particles has been conducted with the help of Laser Doppler Velocimetry measurements. Mean and fluctuating velocity profiles of the two phases have been presented and analyzed for different fluidization states of the emulsion. The results of this work would be greatly helpful in understanding the complex two-phase mixing phenomenon that occurs in bubbling beds, such as in coal and biomass gasification, and also in building more fundamental gas-solid Eulerian/Lagrangian models which can be incorporated into existing CFD codes. Relevant simulations to supplement the experimental findings have also been conducted using the Department of Energy's open source code MFIX. The goal of these simulations was two-fold. One was to check the two-dimensional nature of the experimental results. The other was an attempt to improve the existing dense phase Eulerian framework through validation with the experimental results. In particular the sensitivity of existing frictional models in predicting the flow was investigated. The simulation results provide insight on wall-bounded turbulent jets and the effect frictional models have on gas-solid bubbling flows. Additionally, some empirical minimum fluidization correlations were validated for non-spherical particles with the idea of extending the present study to non-spherical particles which are more common in industries.

  5. High-brightness high-order harmonic generation at 13 nm with a long gas jet

    International Nuclear Information System (INIS)

    Kim, Hyung Taek; Kim, I Jong; Lee, Dong Gun; Park, Jong Ju; Hong, Kyung Han; Nam, Chang Hee

    2002-01-01

    The generation of high-order harmonics is well-known method producing coherent extreme-ultraviolet radiation with pulse duration in the femtosecond regime. High-order harmonics have attracted much attention due to their unique features such as coherence, ultrashort pulse duration, and table-top scale system. Due to these unique properties, high-order harmonics have many applications of atomic and molecular spectroscopy, plasma diagnostics and solid-state physics. Bright generation of high-order harmonics is important for actual applications. Especially, the generation of strong well-collimated harmonics at 13 nm can be useful for the metrology of EUV lithography optics because of the high reflectivity of Mo-Si mirrors at this wavelength. The generation of bright high-order harmonics is rather difficult in the wavelength region below 15nm. Though argon and xenon gases have large conversion efficiency, harmonic generation from these gases is restricted to wavelengths over 20 nm due to low ionization potential. Hence, we choose neon for the harmonic generation around 13 nm; it has larger conversion efficiency than helium and higher ionization potential than argon. In this experiment, we have observed enhanced harmonic generation efficiency and low beam divergence of high-order harmonics from a elongated neon gas jet by the enhancement of laser propagation in an elongated gas jet. A uniform plasma column was produced when the gas jet was exposed to converging laser pulses.

  6. Detection of chromosomal abnormalities, congenital abnormalities and transfusion syndrome in twins

    DEFF Research Database (Denmark)

    Sperling, L.; Kiil, C.; Larsen, Lene Unmack

    2007-01-01

    OBJECTIVE: To evaluate the outcome of screening for structural malformations in twins and the outcome of screening for twin-twin transfusion syndrome (TTTS) among monochorionic twins through a number of ultrasound scans from 12 weeks' gestation. METHODS: Enrolled into this prospective multicenter...... by assisted reproduction. The incidence of TTTS was 23% from 12 weeks until delivery, and all those monochorionic twin pregnancies that miscarried had signs of TTTS. CONCLUSION: Twin pregnancies have an increased risk of congenital malformations and one out of four monochorionic pregnancies develops TTTS....... Ultrasound screening to assess chorionicity and follow-up of monochorionic pregnancies to detect signs of TTTS, as well as malformation screening, are therefore essential in the antenatal care of twin pregnancies....

  7. The effect of a 'vanishing twin' on biochemical and ultrasound first trimester screening markers for Down's syndrome in pregnancies conceived by assisted reproductive technology

    DEFF Research Database (Denmark)

    Gjerris, A C; Loft, A; Pinborg, Anja

    2008-01-01

    BACKGROUND: Previous studies have found that 1 in 10 in vitro fertilization (IVF) singletons originates from a twin gestation. First trimester Down's syndrome screening markers are altered in assisted reproductive techniques (ART) pregnancies compared with spontaneously conceived pregnancies...

  8. Reared-Apart Chinese Twins: Chance Discovery/Twin-Based Research: Twin Study of Media Use; Twin Relations Over the Life Span; Breast-Feeding Opposite-Sex Twins/Print and Online Media: Twins in Fashion; Second Twin Pair Born to Tennis Star; Twin Primes; Twin Pandas.

    Science.gov (United States)

    Segal, Nancy L

    2017-04-01

    A January 2017 reunion of 10-year-old reared-apart Chinese twin girls was captured live on ABC's morning talk show Good Morning America, and rebroadcast on their evening news program Nightline. The twins' similarities and differences, and their participation in ongoing research will be described. This story is followed by reviews of twin research concerning genetic and environmental influences on media use, twin relations across the lifespan and the breast-feeding of opposite-sex twins. Popular interest items include twins in fashion, the second twin pair born to an internationally renowned tennis star, twin primes and twin pandas.

  9. System and method for crystalline sheet growth using a cold block and gas jet

    Science.gov (United States)

    Kellerman, Peter L.; Mackintosh, Brian; Carlson, Frederick M.; Morrell, David; Moradian, Ala; Desai, Nandish; Sun, Dawei; Sinclair, Frank

    2018-05-01

    A crystallizer for growing a crystalline sheet from a melt may include a cold block having a cold block surface that faces an exposed surface of the melt, the cold block configured to generate a cold block temperature at the cold block surface that is lower than a melt temperature of the melt at the exposed surface. The system may also include a nozzle disposed within the cold block and configured to deliver a gas jet to the exposed surface, wherein the gas jet and the cold block are interoperative to generate a process zone that removes heat from the exposed surface at a first heat removal rate that is greater than a second heat removal rate from the exposed surface in outer regions outside of the process zone.

  10. Potential of human twin embryos generated by embryo splitting in assisted reproduction and research.

    Science.gov (United States)

    Noli, Laila; Ogilvie, Caroline; Khalaf, Yacoub; Ilic, Dusko

    2017-03-01

    Embryo splitting or twinning has been widely used in veterinary medicine over 20 years to generate monozygotic twins with desirable genetic characteristics. The first human embryo splitting, reported in 1993, triggered fierce ethical debate on human embryo cloning. Since Dolly the sheep was born in 1997, the international community has acknowledged the complexity of the moral arguments related to this research and has expressed concerns about the potential for reproductive cloning in humans. A number of countries have formulated bans either through laws, decrees or official statements. However, in general, these laws specifically define cloning as an embryo that is generated via nuclear transfer (NT) and do not mention embryo splitting. Only the UK includes under cloning both embryo splitting and NT in the same legislation. On the contrary, the Ethics Committee of the American Society for Reproductive Medicine does not have a major ethical objection to transferring two or more artificially created embryos with the same genome with the aim of producing a single pregnancy, stating that 'since embryo splitting has the potential to improve the efficacy of IVF treatments for infertility, research to investigate the technique is ethically acceptable'. Embryo splitting has been introduced successfully to the veterinary medicine several decades ago and today is a part of standard practice. We present here an overview of embryo splitting experiments in humans and non-human primates and discuss the potential of this technology in assisted reproduction and research. A comprehensive literature search was carried out using PUBMED and Google Scholar databases to identify studies on embryo splitting in humans and non-human primates. 'Embryo splitting' and 'embryo twinning' were used as the keywords, alone or in combination with other search phrases relevant to the topics of biology of preimplantation embryos. A very limited number of studies have been conducted in humans and non

  11. On the Gas Dynamics of Inert-Gas-Assisted Laser Cutting of Steel Plate

    Science.gov (United States)

    Brandt, A. D.; Settles, G. S.; Scroggs, S. D.

    1996-11-01

    Laser beam cutting of sheet metal requires an assist gas to blow away the molten material. Since the assist-gas dynamics influences the quality and speed of the cut, the orientation of the gas nozzle with respect to the kerf is also expected to be important. A 1 kW cw CO2 laser with nitrogen assist gas was used to cut mild steel sheet of 1 to 4 mm thickness, using a sonic coaxial nozzle as a baseline. Off-axis nozzles were oriented from 20 deg to 60 deg from normal with exit Mach numbers from 1 to 2.4. Results showed maximum cutting speed at a 40 deg nozzle orientation. Shadowgrams of a geometrically-similar model kerf then revealed a separated shock wave-boundary layer interaction within the kerf for the (untilted) coaxial nozzle case. This was alleviated, resulting in a uniform supersonic flow throughout the kerf and consequent higher cutting speeds, by tilting the nozzle between 20 deg and 45 deg from the normal. This result did not depend upon the exit Mach number of the nozzle. (Research supported by NSF Grant DMI-9400119.)

  12. The 16th International Twin Congress: Highlights from Madrid/Twin Research: Twin Study of Partner Aggression; ABO Incompatibility in Dizygotic Twins; Growth Discordance in a Monoamniotic Twin Pair; Quick Note on Twin Implantation/In the Media: Long-Lost Twins Found; NASA Twin Experiment; Twin Brothers and the Las Vegas Attack; Retired Twin Airline Pilots; Twin Film Clips.

    Science.gov (United States)

    Segal, Nancy L

    2018-02-01

    Highlights from the 16th International Twin Congress, held in Madrid, Spain from November 16-18, 2017, are presented. The Twin Congress, formerly held every three years, now takes place biennially with a single-day meeting organized during the off years. This meeting is the largest gathering of scientific twin researchers, medical personnel, and representatives of multiple birth organizations in the world. This overview is followed by reviews of recent twin research and commentary concerning partner aggression, ABO incompatibility in dizygotic twins, growth discordance in a monoamniotic twin pair and twin implantation. The article closes with summaries of timely topics in the media, namely a father's finding of his long-lost twin children, early results from the NASA twin experiment, twin brothers at the center of the October 2017 Las Vegas attack, retired twin airline pilots, and clips from recent films with twin-based themes.

  13. Brazilian Twin Registry: A Bright Future for Twin Studies/Twin Research: Twin Study of Alcohol Consumption and Mortality; Oxygen Uptake in Adolescent Twins/In the News: Superfecundated Twins In Vietnam; Adolescent Twin Relations; Twin and Triplet Co-Workers; A Special Twin Ultrasound; Monozygotic Twins With Different Skin Color; Identical Twin Returns from Space.

    Science.gov (United States)

    Segal, Nancy L

    2016-06-01

    The establishment of the Brazilian Twin Registry for the study of genetic, social, and cultural influences on behavior is one of eleven newly funded projects in the Department of Psychology at the University of São Paulo. These 11 interrelated projects form the core of the university's Center for Applied Research on Well-Being and Human Behavior. An overview of the planned twin research and activities to date is presented. Next, two recent twin studies are reviewed, one on the relationship between alcohol consumption and mortality, and the other on factors affecting maximal oxygen uptake. Twins cited in the media include the first identified superfecundated twins in Vietnam, adolescent twin relations, twins and triplets who work together, monozygotic twins with different skin tones and a co-twin control study that addresses the effects of space travel.

  14. Heat transfer characteristics around a single heated rod immersed in sodium pool with gas jet injection

    International Nuclear Information System (INIS)

    Hideto Niikura; Kazuo Soga; Ken-ichiro Sugiyama; Akira Yamaguchi

    2005-01-01

    In a steam generator using liquid sodium, water intensely reacts with sodium when it leaks out from a heat transfer tube. It is important to evaluate the influence of sodium-water reaction to surrounding tubes and the shell. Hence, it has been desired to develop the simulation code for the evaluation of sodium-water reaction. From this viewpoint, the Japan Nuclear Cycle is now developing the SERAPHIM code. We reported a preliminary study to establish an experimental method for a single heated rod immersed in sodium pool with steam jet impingement planned in the near future as well as to obtain a preliminary data to verify the adequacy of SERAPHIM code. We first measured local and mean heat transfer coefficients around a horizontal single heated rod immersed in a water pool and a sodium pool with a limited volume in the experimental apparatus. It was confirmed that the mean heat transfer coefficients fairly agreed with the existing data for natural convection in water and sodium. Secondary we measured local and mean heat transfer coefficients around a horizontal single heated rod with Ar gas jet impingement immersed in the limited water pool and in the limited sodium pool. It was clearly observed that the local heat transfer coefficients in the sodium pool keep almost the same values in every angle regardless of increase in Ar gas jet velocity varied from about 8.7m/s to about 78m/s. On the other hand, it was confirmed in the water pool that local heat transfer coefficients on the forward stagnation side exposed in the Ar gas jet impingement increase with increasing the jet velocity while the local heat transfer coefficients on the opposite surface keep almost same values regardless of increase in the velocity. (authors)

  15. Worldwide Life Cycle Analysis (LCA) of Greenhouse Gas (GHG) Emissions from Petroleum Jet Fuel

    Science.gov (United States)

    2017-11-09

    The main objective of this project was to calculate greenhouse gas emissions estimates for petroleum jet fuels for the recent past and for future scenarios in the coming decades. Results were reported globally and broken out by world regions, and the...

  16. Long distance coupling of lower hybrid waves in JET using gas feed

    International Nuclear Information System (INIS)

    Goniche, M.; Dobbing, J.; Ekedahl, A.

    1997-12-01

    Coupling experiments, using a gas feed near the Lower Hybrid Current Drive (LHCD) launcher, have been carried out in JET. An improvement in coupling for a given plasma - launcher distance can be obtained when the gas flow is large enough (> 2.5 x 10 21 el./s). During these experiments, modification of the wall recycling was observed and the relation with the observed improvement in coupling is presented. For high gas flow (> 5 x 10 21 el./s), a significant reduction in the suprathermal electron population, as determined by non-thermal electron cyclotron emission and hard X-ray emission, is observed. Visible light imaging of a sector of the divertor indicates that some power might be coupled to the scrape-off layer when the injected gas flux is too high. At low gas flow, the coupling can be improved without affecting the LH power absorption in the plasma core. (author)

  17. Development of gas-jet transport systems for fission products and coupling these with methods for continuous separation of short-lived product nuclides

    International Nuclear Information System (INIS)

    Stender, E.

    1979-01-01

    The development of gas-jet transport systems for fission products as well as the coupling of these with continuous separation methods from aqueous solutions (SISAK) and with a mass separator for on-line separation of neutron-rich nuclides are described in this work. Nuclides from the fission of 235 U or other fission materials can be transported using gas-jet systems with thermal neutrons over larger distances (100 m and over). Aerosols (clusters) of either organic (e.g. ethylene) or inorganic nature (e.g. potassium chloride) serve as carrier for the nuclides. The clusters are passed through 1 mm capillaries with a transport gas (nitrogen, helium etc.) under laminar flow conditions. The diameter of the cluster fluctuates between 10 -7 and 10 -6 m. The time required from the production of a nuclide to its detection at the end of a 8 m long capillary tube is 0.8 s for the ethylene/nitrogen and potassium chloride/helium gas-jet systems. By coupling various gas-jet systems with the continuous extraction technique SISAK working with H centrifuges, the elements lanthanum, cerium, praseodymium, zirconium, niobium and technetium can be separated out of the complex fission product mixtures. The on-line technetium chemistry was used with neutron-rich 106 Tc (36 s), 107 Tc (21 s) and 108 Tc (5 s) for γγ(t) measurements. The coupling of a potassium chloride/helium gas jet with a mass separator equiped with a plasma ion source is described. The dependence of the transmission rate of various test parameters is investigated to optimize the system. (orig.) [de

  18. THE 2008 OUTBURST IN THE YOUNG STELLAR SYSTEM Z CMa: THE FIRST DETECTION OF TWIN JETS

    International Nuclear Information System (INIS)

    Whelan, E. T.; Dougados, C.; Bonnefoy, M.; Bouvier, J.; Chauvin, G.; Garcia, P. J. V.; Malbet, F.; Perrin, M. D.; Bains, I.; Redman, M. P.; Ray, T. P.; Bouy, H.; Benisty, M.; Grankvin, K.

    2010-01-01

    The Z CMa binary is understood to undergo both FU Orionis (FUOR) and EX Orionis (EXOR) type outbursts. While the SE component has been spectroscopically classified as an FUOR, the NW component, a Herbig Be star, is the source of the EXOR outbursts. The system has been identified as the source of a large outflow; however, previous studies have failed to identify the driver. Here, we present adaptive optics assisted [Fe II] spectro-images which reveal for the first time the presence of two small-scale jets. Observations made using OSIRIS at the Keck Observatory show the Herbig Be star to be the source of the parsec-scale outflow, which within 2'' of the source shows signs of wiggling and the FUOR to be driving a ∼0.''4 jet. The wiggling of the Herbig Be star's jet is evidence for an additional companion which could in fact be generating the EXOR outbursts, the last of which began in 2008. Indeed, the dynamical scale of the wiggling corresponds to a timescale of 4-8 years which is in agreement with the timescale of these outbursts. The spectro-images also show a bow-shock-shaped feature and possible associated knots. The origin of this structure is as of yet unclear. Finally, interesting low velocity structure is also observed. One possibility is that it originates in a wide-angle outflow launched from a circumbinary disk.

  19. In-flight imaging of transverse gas jets injected into transonic and supersonic crossflows: Design and development. M.S. Thesis, Mar. 1993

    Science.gov (United States)

    Wang, Kon-Sheng Charles

    1994-01-01

    The design and development of an airborne flight-test experiment to study nonreacting gas jets injected transversely into transonic and supersonic crossflows is presented. Free-stream/crossflow Mach numbers range from 0.8 to 2.0. Planar laser-induced fluorescence (PLIF) of an iodine-seeded nitrogen jet is used to visualize the jet flow. Time-dependent images are obtained with a high-speed intensified video camera synchronized to the laser pulse rate. The entire experimental assembly is configured compactly inside a unique flight-test-fixture (FTF) mounted under the fuselage of the F-104G research aircraft, which serves as a 'flying wind tunnel' at NASA Dryden Flight Research Center. The aircraft is flown at predetermined speeds and altitudes to permit a perfectly expanded (or slightly underexpanded) gas jet to form just outside the FTF at each free-stream Mach number. Recorded gas jet images are then digitized to allow analysis of jet trajectory, spreading, and mixing characteristics. Comparisons will be made with analytical and numerical predictions. This study shows the viability of applying highly sophisticated groundbased flow diagnostic techniques to flight-test vehicle platforms that can achieve a wide range of thermo/fluid dynamic conditions. Realistic flow environments, high enthalpies, unconstrained flowfields, and moderate operating costs are also realized, in contrast to traditional wind-tunnel testing.

  20. PIV Measurements in Weakly Buoyant Gas Jet Flames

    Science.gov (United States)

    Sunderland, Peter B.; Greenbberg, Paul S.; Urban, David L.; Wernet, Mark P.; Yanis, William

    2001-01-01

    Despite numerous experimental investigations, the characterization of microgravity laminar jet diffusion flames remains incomplete. Measurements to date have included shapes, temperatures, soot properties, radiative emissions and compositions, but full-field quantitative measurements of velocity are lacking. Since the differences between normal-gravity and microgravity diffusion flames are fundamentally influenced by changes in velocities, it is imperative that the associated velocity fields be measured in microgravity flames. Velocity measurements in nonbuoyant flames will be helpful both in validating numerical models and in interpreting past microgravity combustion experiments. Pointwise velocity techniques are inadequate for full-field velocity measurements in microgravity facilities. In contrast, Particle Image Velocimetry (PIV) can capture the entire flow field in less than 1% of the time required with Laser Doppler Velocimetry (LDV). Although PIV is a mature diagnostic for normal-gravity flames , restrictions on size, power and data storage complicate these measurements in microgravity. Results from the application of PIV to gas jet flames in normal gravity are presented here. Ethane flames burning at 13, 25 and 50 kPa are considered. These results are presented in more detail in Wernet et al. (2000). The PIV system developed for these measurements recently has been adapted for on-rig use in the NASA Glenn 2.2-second drop tower.

  1. AGN Feedback Compared: Jets versus Radiation

    Science.gov (United States)

    Cielo, Salvatore; Bieri, Rebekka; Volonteri, Marta; Wagner, Alexander Y.; Dubois, Yohan

    2018-03-01

    Feedback by Active Galactic Nuclei is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGN of 1043 and 1046 erg/s, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarifies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20% in 20 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.01 - 0.1 M⊙/yr, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGN modulate their own duty cycle in a feedback/feeding cycle.

  2. Loop system for creating jet fuel vapor standards used in the calibration of infrared spectrophotometers and gas chromatographs.

    Science.gov (United States)

    Reboulet, James; Cunningham, Robert; Gunasekar, Palur G; Chapman, Gail D; Stevens, Sean C

    2009-02-01

    A whole body inhalation study of mixed jet fuel vapor and its aerosol necessitated the development of a method for preparing vapor only standards from the neat fuel. Jet fuel is a complex mixture of components which partitions between aerosol and vapor when aspirated based on relative volatility of the individual compounds. A method was desired which could separate the vapor portion from the aerosol component to prepare standards for the calibration of infrared spectrophotometers and a head space gas chromatography system. A re-circulating loop system was developed which provided vapor only standards whose composition matched those seen in an exposure system. Comparisons of nominal concentrations in the exposure system to those determined by infrared spectrophotometry were in 92-95% agreement. Comparison of jet fuel vapor concentrations determined by infrared spectrophotometry compared to head space gas chromatography yielded a 93% overall agreement in trial runs. These levels of agreement show the loop system to be a viable method for creating jet fuel vapor standards for calibrating instruments.

  3. Numerical modeling of turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbo-fan jet engines

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lixing; Zhang, Jian [Qinghua Univ., Beijing (China)

    1990-11-01

    Two-dimensional turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbofan jet engines are simulated here by a k-epsilon turbulence model and a particle trajectory model. Comparison of predicted gas velocity and temperature distributions with experimental results for the cases without liquid spray shows good agreement. Gas-droplet two-phase flow predictions give plausible droplet trajectories, fuel-vapor concentration distribution, gas-phase velocity and temperature field in the presence of liquid droplets. One run of computation with this method is made for a particular afterburner. The results indicate that the location of the atomizers is not favorable to flame stabilization and combustion efficiency. The proposed numerical modeling can also be adopted for optimization design and performance evaluation of afterburner combustors of turbofan jet engines. 7 refs.

  4. Twin-twin transfusion syndrome - diagnosis and prognosis

    Directory of Open Access Journals (Sweden)

    Hajrić-Egić Amira

    2003-01-01

    Full Text Available Twin-twin transfusion syndrome is a serious complication of monozygotic, monochorionic, diamniotic twins resulting from transplacental vascular communications. In this syndrome blood is thought to be shunted from one twin - donor,who develops anaemia,growth retardation and oligoamnios, to the other twin - recipient,who becomes plethoric,macrosomic and develops polyhydroamnios. The incidence of twin-twin transfusion syndrome ranges from 5-15% of all twin pregnancies. If this condition develops in the second trimester, it is usually associated with spontaneous abortion and death of one or both fetuses before viability. Developing the syndrome in the third trimester has better perinatal outcome. Mortality rates ranging from 56%-100%, depending on gestational age and severity of the syndrome. The ultrasound criterias for diagnosis, in this study,were the presence of twins of the same sex with discordant growth, with oligohydroamnios in one twin sac and polyhydroamnios in the other one, one placenta and thin membrane between twins. The present study shows clinical course of 14 cases and value of Doppler ultrasound to analyze the usefulness of umbilical artery blood flow velocimetry for predicting the risk of twin-twin transfusion syndrome. 14 twin pregnancies with twin-twin transfusion syndrome were diagnosed during the last four years period and prospectivelly followed. 9 cases were diagnosed before the completion od 28 weeks of gestation.The mean gestational age was 21,6_+4,2 weeks at diagnosis and 23,2+_3,6 weeks at delivery. 5 cases were diagnosed after 28 weeks of gestation. The mean gestational age in this group was 29,6+_2,1 weeks at diagnosis and 33+_3,3 weeks at delivery. The survival rate in this study was 29%(8/28.9 cases ended in spontaneous abortion between 18th and 27th weeks of pregnancy (table 1 and 5 in premature labor (table 2.There were 7 intrauterine death (5 at admission and 2 few days after admission and 13 neonatal deaths

  5. Upgrades for TwinSol facility

    Energy Technology Data Exchange (ETDEWEB)

    O’Malley, P.D.; Bardayan, D.W.; Kolata, J.J.; Hall, M.R.; Hall, O.; Allen, J. [Physics Department, University of Notre Dame, Notre Dame, IN 46556 (United States); Becchetti, F.D. [Physics Department, U. Michigan, Ann Arbor MI 48109 (United States)

    2016-06-01

    TwinSol, a pair of coupled, superconducting solenoids, was one of the first devices capable of producing beams of radioactive nuclei at energies near the Coulomb barrier. A primary beam from University of Notre Dame (UND) tandem accelerator is used to bombard a primary target producing a secondary beam in flight. TwinSol is used to gather, separate, and focus the recoils. Since it was commissioned at the UND in 1997, at least 58 publications have reported data from its use and there have been hundreds of collaborators from many different countries that use this device. Currently, plans are in place at the UND to provide several upgrades to TwinSol, including a multi-cell gas production target and the possible addition of a third solenoid. Upgrades currently in progress will be discussed along with future plans.

  6. The USC Adult Twin Cohorts: International Twin Study and California Twin Program.

    Science.gov (United States)

    Cozen, Wendy; Hwang, Amie E; Cockburn, Myles G; Hamilton, Ann S; Zadnick, John; Mack, Thomas M

    2013-02-01

    The study of twin subjects permits the documentation of crude heritability and may promote the identification of specific causal alleles. We believe that at the current time, the chief research advantage of twins as subjects, especially monozygotic twins, is that the commonality of their genetic and cultural identity simplifies the interpretation of biological associations. In order to study genetic and environmental determinants of cancer and chronic diseases, we developed two twin registries, maintained at the University of Southern California: The International Twin Study (ITS) and the California Twin Program (CTP). The ITS is a volunteer registry of twins with cancer and chronic disease consisting of 17,245 twin pairs affected by cancer and chronic disease, respectively, ascertained by advertising in periodicals from 1980-1991. The CTP is a population-based registry of California-born twin pairs ascertained by linking the California birth records to the State Department of Motor Vehicles. Over 51,000 individual California twins representing 36,965 pairs completed and returned 16-page questionnaires. Cancer diagnoses in the California twins are updated by regular linkage to the California Cancer Registry. Over 5,000 cancer patients are represented in the CTP. Twins from both registries have participated extensively in studies of breast cancer, melanoma, lymphoma, multiple sclerosis, systemic lupus erythematosus, diabetes mellitus type 1, mammographic density, smoking, and other traits and conditions.

  7. Gas stratification break-up by a vertical jet: Simulations using the GOTHIC code

    International Nuclear Information System (INIS)

    Andreani, Michele; Kapulla, Ralf; Zboray, Robert

    2012-01-01

    Highlights: ► Simulations of experiments addressing helium stratification break-up with GOTHIC are presented. ► In the tests, the initial helium-rich layer in a large vessel is eroded by a vertical jet. ► A 3-D coarse mesh and various finer 2-D meshes have been used for the simulations. ► In general, the 3-D calculations predict too slow mixing in the vessel. ► A reasonable agreement between calculated and measured gas concentrations requires a fine mesh. - Abstract: The capability assessment of three-dimensional computational tools to predict the erosion and the break-up of stratified conditions that can build-up in a containment through the release of hydrogen during an early phase of a hypothetical severe accident is the focus of intense research worldwide. In conjunction with the OECD SETH-2 project, the GOTHIC code is assessed against experiments in which mass and/or heat sources or sinks cause mixing. This paper reports on simulation results of selected experiments where the initial helium stratification in a vessel is eroded by a vertical jet originating from an injection below the initial density interface. A 3-D coarse mesh, as well as various finer 2-D meshes, is used to simulate the evolution of the helium distribution generated by jets having different initial momentum. In general, the 3-D calculations predict too slow mixing in the vessel and a reasonable agreement between calculated and measured gas concentrations can only be achieved with a sufficiently fine mesh. These results can be explained by comparing the calculated velocity field with that measured using the PIV technique, which also provides valuable insight into the mechanisms of the interaction between the jet and the density interface.

  8. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    Science.gov (United States)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  9. Gas assisted Mechanical Expression of oilseeds

    NARCIS (Netherlands)

    Willems, P.

    2007-01-01

    It is the objective of this thesis to show the general applicability of the Gas Assisted Mechanical Expression (GAME) process for recovery of oil from oilseeds with high yields. In this process, the oilseeds are saturated with supercritical CO2 before mechanical pressing. The CO2 displaces part of

  10. [About twins: Epidemiological, genetic, and obstetrical aspects, specific risks, and outcome].

    Science.gov (United States)

    Tauzin, M; Felix, A; Michot, C; Dedieu, C; Aoust, L; Fortas, F; Guillier, C; Ngo, J; Wachter, P-Y; Petermann, L; Kermorvant-Duchemin, E

    2017-12-01

    The incidence of twin pregnancies has increased steadily for the last 40 years due to assisted reproductive technology and increased maternal childbearing age. Multiple pregnancies, especially monochorionic twin pregnancies, carry a high risk for the mother and the fetuses and require close follow-up. Twins are exposed to a higher risk of perinatal anoxia, in utero fetal demise, preterm birth, congenital malformations, fetal growth restriction, and vascular complications. Compared to singletons, twins are at higher risk of perinatal mortality and impaired neurodevelopmental outcome, justifying a thorough follow-up by pediatricians, including assessment and management of familial and psychosocial impact. This paper discusses the epidemiological, obstetrical, and genetic issues raised by twin pregnancies and reviews the data on the perinatal and neurological long-term outcomes of twins, as well as the psychosocial impact of multiple births on twins and their families. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Perinatal hepatic infarction in twin-twin transfusion.

    LENUS (Irish Health Repository)

    O'Sullivan, M J

    2012-02-03

    We report a case of a twin pregnancy which was complicated by a twin-twin transfusion in which the recipient twin was noted to have an intra-abdominal echogenic mass. This twin died at two days of age of hepatic infarction. The donor twin was healthy at birth, at thirty weeks\\' gestation, and did not have any subsequent problems. Fetal intra-abdominal echogenicity may be a marker of hepatic infarction.

  12. Mixing characterization of highly underexpanded fluid jets with real gas expansion

    Science.gov (United States)

    Förster, Felix J.; Baab, Steffen; Steinhausen, Christoph; Lamanna, Grazia; Ewart, Paul; Weigand, Bernhard

    2018-03-01

    We report a comprehensive speed of sound database for multi-component mixing of underexpanded fuel jets with real gas expansion. The paper presents several reference test cases with well-defined experimental conditions providing quantitative data for validation of computational simulations. Two injectant fluids, fundamentally different with respect to their critical properties, are brought to supercritical state and discharged into cold nitrogen at different pressures. The database features a wide range of nozzle pressure ratios covering the regimes that are generally classified as highly and extremely highly underexpanded jets. Further variation is introduced by investigating different injection temperatures. Measurements are obtained along the centerline at different axial positions. In addition, an adiabatic mixing model based on non-ideal thermodynamic mixture properties is used to extract mixture compositions from the experimental speed of sound data. The concentration data obtained are complemented by existing experimental data and represented by an empirical fit.

  13. AGN feedback compared: jets versus radiation

    Science.gov (United States)

    Cielo, Salvatore; Bieri, Rebekka; Volonteri, Marta; Wagner, Alexander Y.; Dubois, Yohan

    2018-06-01

    Feedback by active galactic nuclei (AGNs) is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM (interstellar medium) interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGNs of 1043 and 1046 erg s-1, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarefies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20 {per cent} in 20 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.01-0.1 M⊙ yr-1, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGNs modulate their own duty cycle in a feedback/feeding cycle.

  14. Quartz crystal micro–balance gas sensor with ink–jet printed nano–diamond sensitive layer

    Czech Academy of Sciences Publication Activity Database

    Kulha, Pavel; Kroutil, J.; Laposa, A.; Procházka, Václav; Husák, M.

    2016-01-01

    Roč. 67, č. 1 (2016), s. 61-64 ISSN 1335-3632 Institutional support: RVO:68378271 Keywords : gas sensor * QCM * nanodiamond * ink-jet printing Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.483, year: 2016

  15. Current-Voltage Characteristics of DC Discharge in Micro Gas Jet Injected into Vacuum Environment

    International Nuclear Information System (INIS)

    Matra, K; Furuta, H; Hatta, A

    2013-01-01

    A current-voltage characteristic of direct current (DC) gas discharge operated in a micro gas jet injected into a secondary electron microscope (SEM) chamber is presented. Ar gas was injected through a 30 μm orifice gas nozzle (OGN) and was evacuated by an additional pump to keep the high vacuum environment. Gas discharges were ignited between the OGN as anode and a counter electrode of Si wafer. The discharge was self-pulsating in most of the cases while it was stable at lower pressure, larger gap length, and larger time averaged current. The self-pulsating discharge was oscillated by the RC circuit consisting of a stray capacitor and a large ballast resistor. The real time plots of voltage and current during the pulsating was investigated using a discharge model.

  16. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets

    Science.gov (United States)

    Gaspari, M.; Ruszkowski, M.; Sharma, P.

    2012-02-01

    Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI/t ff) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments "rain" down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI/t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI/t ff fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

  17. Moeller polarimeter for VEPP-3 storage ring based on internal polarized gas jet target

    International Nuclear Information System (INIS)

    Dyug, M.V.; Grigoriev, A.V.; Kiselev, V.A.; Lazarenko, B.A.; Levichev, E.B.; Mikaiylov, A.I.; Mishnev, S.I.; Nikitin, S.A.; Nikolenko, D.M.; Rachek, I.A.; Shestakov, Yu.V.; Toporkov, D.K.; Zevakov, S.A.; Zhilich, V.N.

    2005-01-01

    A new method to determine the polarization of an electron beam circulating in a storage ring by a non-destructive way, based on measuring the asymmetry in scattering of beam electrons on electrons of the internal polarized gas jet target, has been developed and tested at the VEPP-3 storage ring

  18. Yoruba customs and beliefs pertaining to twins.

    Science.gov (United States)

    Leroy, Fernand; Olaleye-Oruene, Taiwo; Koeppen-Schomerus, Gesina; Bryan, Elizabeth

    2002-04-01

    The Yoruba are an important ethnic group mainly occupying Southwestern Nigeria. Mainly for genetic reasons, this very large tribe happens to present the highest dizygotic twinning rate in the world (4.4 % of all maternities). The high perinatal mortality rate associated with such pregnancies has contributed to the integration of a special twin belief system within the African traditional religion of this tribe. The latter is based on the concept of a supreme deity called Olodumare or Olorun, assisted by a series of secondary gods (Orisha) while Yoruba religion also involves immortality and reincarnation of the soul based on the animistic cult of ancestors. Twins are therefore given special names and believed to detain special preternatural powers. In keeping with their refined artistic tradition, the Yoruba have produced numerous wooden statuettes called Ibejis that represent the souls of deceased newborn twins and are involved in elaborate rituals. Among Yoruba traditional beliefs and lore some twin-related themes are represented which are also found in other parts of the world. Basic features of the original Yoruba beliefs have found their way into the religious traditions of descendants of African slaves imported in the West Indies and in South America.

  19. Diagnostics of an AC driven atmospheric pressure non-thermal plasma jet and its use for radially directed jet array

    Science.gov (United States)

    Zhu, W.; Wang, R.

    2017-08-01

    An alternating current atmospheric pressure plasma jet is generated with noble gas or noble gas/oxygen admixture as working gas. A "core plasma filament" is observed at the center of the dielectric tube and extends to the plasma jet at higher peak-to-peak voltages. This type of plasma jet is believed to be of the same nature with the reported plasma bullet driven by pulsed DC power sources. Double current probes are used to assess the speed of the plasma bullet and show that the speed is around 104-105 m/s. The time dependence of the downstream bullet speed is attributed to the gas heating and in turn the increase of the reduced electric field E/N. Optical emission spectra show the dependence of helium and oxygen emission intensities on the concentration of oxygen additive in the carrier gas, with peak values found at 0.5% O2. Multiple radial jets are realized on dielectric tubes of different sizes. As a case study, one of these multi-jet devices is used to treat B. aureus on the inner surface of a plastic beaker and is shown to be more effective than a single jet.

  20. Large-volume excitation of air, argon, nitrogen and combustible mixtures by thermal jets produced by nanosecond spark discharges

    Science.gov (United States)

    Stepanyan, Sergey; Hayashi, Jun; Salmon, Arthur; Stancu, Gabi D.; Laux, Christophe O.

    2017-04-01

    This work presents experimental observations of strong expanding thermal jets following the application of nanosecond spark discharges. These jets propagate in a toroidal shape perpendicular to the interelectrode axis, with high velocities of up to 30 m s-1 and over distances of the order of a cm. Their propagation length is much larger than the thermal expansion region produced by the conventional millisecond sparks used in car engine ignition, thus greatly improving the volumetric excitation of gas mixtures. The shape and velocity of the jets is found to be fairly insensitive to the shape of the electrodes. In addition, their spatial extent is found to increase with the number of nanosecond sparks and with the discharge voltage, and to decrease slightly with the pressure between 1 and 7 atm at constant applied voltage. Finally, this thermal jet phenomenon is observed in experiments conducted with many types of gas mixtures, including air, nitrogen, argon, and combustible CH4/air mixtures. This makes nanosecond repetitively pulsed discharges particularly attractive for aerodynamic flow control or plasma-assisted combustion because of their ability to excite large volumes of gas, typically about 100 times the volume of the discharge.

  1. Solvent jet desorption capillary photoionization-mass spectrometry.

    Science.gov (United States)

    Haapala, Markus; Teppo, Jaakko; Ollikainen, Elisa; Kiiski, Iiro; Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2015-03-17

    A new ambient mass spectrometry method, solvent jet desorption capillary photoionization (DCPI), is described. The method uses a solvent jet generated by a coaxial nebulizer operated at ambient conditions with nitrogen as nebulizer gas. The solvent jet is directed onto a sample surface, from which analytes are extracted into the solvent and ejected from the surface in secondary droplets formed in collisions between the jet and the sample surface. The secondary droplets are directed into the heated capillary photoionization (CPI) device, where the droplets are vaporized and the gaseous analytes are ionized by 10 eV photons generated by a vacuum ultraviolet (VUV) krypton discharge lamp. As the CPI device is directly connected to the extended capillary inlet of the MS, high ion transfer efficiency to the vacuum of MS is achieved. The solvent jet DCPI provides several advantages: high sensitivity for nonpolar and polar compounds with limit of detection down to low fmol levels, capability of analyzing small and large molecules, and good spatial resolution (250 μm). Two ionization mechanisms are involved in DCPI: atmospheric pressure photoionization, capable of ionizing polar and nonpolar compounds, and solvent assisted inlet ionization capable of ionizing larger molecules like peptides. The feasibility of DCPI was successfully tested in the analysis of polar and nonpolar compounds in sage leaves and chili pepper.

  2. Overview of the performance of the JET active gas handling system during and after DTE1

    International Nuclear Information System (INIS)

    Laesser, R.; Atkins, G.; Bell, A.

    1999-02-01

    The JET Active Gas Handling System (AGHS) was designed, built and commissioned to handle safely radioactive tritium gas mixtures, to supply tritium (T 2 ) and deuterium (D 2 ) to the JET torus, to process the exhaust gases with the main purpose to enrich and re-use T 2 and D 2 , to detritiate tritiated impurities and to keep discharges far below the approved daily release limits. In addition, the AGHS had to supply the necessary ventilation air streams during maintenance or repair inside or outside of the AGHS building. During the first Deuterium-Tritium Experiment (DTE1) at JET in 1997 the AGHS fulfilled all these tasks in an excellent manner. No unauthorised or unplanned tritium releases occurred and no operational delays were caused by the AGHS. In fact, this was the first true demonstration that quantities of tritium in the tens of grams range can be processed and recycled safely and efficiently in a large fusion device. At the start of DTE1 20 g of tritium were available on the JET site. About 100 g of tritium were supplied from the AGHS to the users which necessitated the recycling of tritium at least five times. Approximately 220 tritium plasma shots were performed during DTE1. Large amounts of tritium were temporarily trapped in the torus. This overview presents the performance of the whole AGHS during DTE1 as well as general aspects such as the preparation for DTE1; the quantities of gases supplied from the AGHS to the users and pumped back to the AGHS; tritium accountancy; interlock systems; failure of equipment; and gives detailed information of the gas processing in each subsystem of the AGHS. As a consequence of the performance of the AGHS during DTE1 we can state confidently that the AGHS is ready for further Deuterium-Tritium Experiments. (author)

  3. Free jet as an object of nonequilibrium processes investigation

    International Nuclear Information System (INIS)

    Rebrov, A.K.

    1985-01-01

    The investigation of energy exchange in jets is of particular interest not only because of statement of physical problems on the dynamics of relaxation processes; technological application of expansion of a uniform gas and heterogeneous media into vacuum are variable. They are such as jet vacuum pumps, gas fans, gaseous accelerators of heavy molecules and clusters, gas dynamical sources of various vehicles, jet technological devices, gas dynamical lasers, etc. The improvement of these techniques will require the development of analytical and numerical methods for jets with a minimum limitation of physical content

  4. GlidArc-assisted production of synthesis gas from LPG (Propane)

    International Nuclear Information System (INIS)

    Czernichowski, A.; Czernichowski, P.; Czernichowski, M.

    2003-01-01

    Small and medium size reformers that run on widely available Liquefied Petroleum Gas (LPG, containing mostly the propane) can provide Synthesis Gas (or Hydrogen extracted from it) to some Fuel Cell powered cars, boats, homes, farms etc. reducing therefore costs of the pure Hydrogen distribution. We contribute to such idea realization through our simply, plasma-assisted reformer avoiding a need of poison resistant catalysts or prior LPG desulfurizer. In fact, any level of sulphur in LPG is accepted for our non-catalytic reformer based on high-voltage discharges (called GlidArc). The discharges catalytically assist the exothermic partial oxidation process. Electric power assistance is less than 2% of the Lower Heating Value (LHV) of produced SynGas. Recycling such a small portion of the energy is therefore an acceptable compromise. The unique oxidant source is air. This contribution presents our expanded tests with commercial LPG in a 1-L reactor working at atmospheric pressure. At a 0.1 kW electric power assistance we produce a Nitrogen-diluted SynGas containing up to 45% of H 2 +CO at the output flow rate corresponding up to 2.7 m 3 (n)/h of pure H 2 +CO mixture that is equivalent to LHV output power of 8.6 kW. The LPG is totally reformed at more than 70% energetic efficiency and at the total absence of soot. (author)

  5. Emergency Flight Control of a Twin-Jet Commercial Aircraft using Manual Throttle Manipulation

    Science.gov (United States)

    Cole, Jennifer H.; Cogan, Bruce R.; Fullerton, C. Gordon; Burken, John J.; Venti, Michael W.; Burcham, Frank W.

    2007-01-01

    The Department of Homeland Security (DHS) created the PCAR (Propulsion-Controlled Aircraft Recovery) project in 2005 to mitigate the ManPADS (man-portable air defense systems) threat to the commercial aircraft fleet with near-term, low-cost proven technology. Such an attack could potentially cause a major FCS (flight control system) malfunction or other critical system failure onboard the aircraft, despite the extreme reliability of current systems. For the situations in which nominal flight controls are lost or degraded, engine thrust may be the only remaining means for emergency flight control [ref 1]. A computer-controlled thrust system, known as propulsion-controlled aircraft (PCA), was developed in the mid 1990s with NASA, McDonnell Douglas and Honeywell. PCA's major accomplishment was a demonstration of an automatic landing capability using only engine thrust [ref 11. Despite these promising results, no production aircraft have been equipped with a PCA system, due primarily to the modifications required for implementation. A minimally invasive option is TOC (throttles-only control), which uses the same control principles as PCA, but requires absolutely no hardware, software or other aircraft modifications. TOC is pure piloting technique, and has historically been utilized several times by flight crews, both military and civilian, in emergency situations stemming from a loss of conventional control. Since the 1990s, engineers at NASA Dryden Flight Research Center (DFRC) have studied TOC, in both simulation and flight, for emergency flight control with test pilots in numerous configurations. In general, it was shown that TOC was effective on certain aircraft for making a survivable landing. DHS sponsored both NASA Dryden Flight Research Center (Edwards, CA) and United Airlines (Denver, Colorado) to conduct a flight and simulation study of the TOC characteristics of a twin-jet commercial transport, and assess the ability of a crew to control an aircraft down to

  6. Production of simplex RNS and ROS by nanosecond pulse N2/O2 plasma jets with homogeneous shielding gas for inducing myeloma cell apoptosis

    Science.gov (United States)

    Liu, Zhijie; Xu, Dehui; Liu, Dingxin; Cui, Qingjie; Cai, Haifeng; Li, Qiaosong; Chen, Hailan; Kong, Michael G.

    2017-05-01

    In this paper, atmospheric pressure N2/O2 plasma jets with homogeneous shielding gas excited by nanosecond pulse are obtained to generate simplex reactive nitrogen species (RNS) and reactive oxygen species (ROS), respectively, for the purpose of studying the simplex RNS and ROS to induce the myeloma cell apoptosis with the same discharge power. The results reveal that the cell death rate by the N2 plasma jet with N2 shielding gas is about two times that of the O2 plasma jet with O2 shielding gas for the equivalent treatment time. By diagnosing the reactive species of ONOO-, H2O2, OH and \\text{O}2- in medium, our findings suggest the cell death rate after plasma jets treatment has a positive correlation with the concentration of ONOO-. Therefore, the ONOO- in medium is thought to play an important role in the process of inducing myeloma cell apoptosis.

  7. Non-Boussinesq turbulent buoyant jet of a low-density gas leaks into high-density ambient

    KAUST Repository

    El-Amin, Mohamed

    2010-12-01

    In this article, we study the problem of low-density gas jet injected into high-density ambient numerically which is important in applications such as fuel injection and leaks. It is assumed that the local rate of entrainment is consisted of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The integral models of the mass, momentum and concentration fluxes are obtained and transformed to a set of ordinary differential equations using some similarity transformations. The resulting system is solved to determine the centerline quantities which are used to get the mean axial velocity, mean concentration and mean density of the jet. Therefore, the centerline and mean quantities are used together with the governing equation to determine some important turbulent quantities such as, cross-stream velocity, Reynolds stress, velocity- concentration correlation, turbulent eddy viscosity and turbulent eddy diffusivity. Throughout this paper the developed model is verified by comparing the present results with experimental results and jet/plume theory from the literature. © 2010 Elsevier Inc. All rights reserved.

  8. Non-Boussinesq turbulent buoyant jet of a low-density gas leaks into high-density ambient

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu; Kanayama, Hiroshi

    2010-01-01

    In this article, we study the problem of low-density gas jet injected into high-density ambient numerically which is important in applications such as fuel injection and leaks. It is assumed that the local rate of entrainment is consisted of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The integral models of the mass, momentum and concentration fluxes are obtained and transformed to a set of ordinary differential equations using some similarity transformations. The resulting system is solved to determine the centerline quantities which are used to get the mean axial velocity, mean concentration and mean density of the jet. Therefore, the centerline and mean quantities are used together with the governing equation to determine some important turbulent quantities such as, cross-stream velocity, Reynolds stress, velocity- concentration correlation, turbulent eddy viscosity and turbulent eddy diffusivity. Throughout this paper the developed model is verified by comparing the present results with experimental results and jet/plume theory from the literature. © 2010 Elsevier Inc. All rights reserved.

  9. Liquid assisted plasma enhanced chemical vapour deposition with a non-thermal plasma jet at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Schäfer, J.; Fricke, K.; Mika, Filip; Pokorná, Zuzana; Zajíčková, L.; Foest, R.

    2017-01-01

    Roč. 630, MAY 30 (2017), s. 71-78 ISSN 0040-6090 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : plasma jet * liquid assisted plasma enhanced chemical * vapour deposition * silicon oxide Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Coating and films Impact factor: 1.879, year: 2016

  10. The machinability of nickel-based alloys in high-pressure jet assisted (HPJA turning

    Directory of Open Access Journals (Sweden)

    D. Kramar

    2013-10-01

    Full Text Available Due to their mechanical, thermal and chemical properties, nickel-based alloys are generally included among materials that are hard to machine. An experimental study has been performed to investigate the capabilities of conventional and high-pressure jet assisted (HPJA turning of hard-to-machine materials, namely Inconel 718. The capabilities of different hard turning procedures are compared by means of chip breakability. The obtained results show that HPJA method offers a significant increase in chip breakability, under the same cutting conditions (cutting speed, feed rate, depth of cut.

  11. Plasma and neutral gas jet interactions in the exhaust of a magnetic confinement system

    International Nuclear Information System (INIS)

    Krueger, W.A.

    1990-06-01

    A general purpose 2-1/2 dimensional, multifluid, time dependent computer code has been developed. This flexible tool models the dynamic behavior of plasma/neutral gas interactions in the presence of a magnetic field. The simulation has been used to examine the formation of smoke ring structure in the plasma rocket exhaust by injection of an axial jet of neutral gas. Specifically, the code was applied to the special case of attempting to couple the neutral gas momentum to the plasma in such a manner that plasma smoke rings would form, disconnecting the plasma from the magnetic field. For this scenario several cases where run scanning a wide range of neutral gas input parameters. In all the cases it was found that after an initial transient phase, the plasma eroded the neutral gas and after that followed the original magnetic field. From these findings it is concluded that smoke rings do not form with axial injection of neutral gas. Several suggestions for alternative injection schemes are presented

  12. 'Biracial'-Looking Twins: A New Twin Type?/Twin Research: Twins with Cystic Teratomas; Sleep Quality and Body Mass Index; Previable Membrane Rupture/Print and Online Reports: Twins Born to a Sister Surrogate; NASA Twin Study; African-Cosmopolitan Twin Fashion Inspirations; Triplet Hockey Stars.

    Science.gov (United States)

    Segal, Nancy L

    2017-06-01

    Dizygotic (DZ) co-twins born to mothers and fathers from different racial or ethnic backgrounds often resemble one parent much more than the other. As such, these pairs comprise a unique subset of twins for investigating how others' responses to their different looks may affect their personalities and self-esteem. This article describes some of these twin pairs and some challenges of raising them, and suggests ways they may be used in research. Next, recent twin research on cystic teratomas, relations between sleep quality and body mass index, and previable membrane rupture is described. The final section concerns twins, twin studies, and related events in the media, namely: twins born to a sister surrogate, the NASA twin investigation, inspiring African-Cosmopolitan twins in fashion, and triplet Hockey Stars.

  13. Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow

    Science.gov (United States)

    Li, Peibo; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo

    2017-05-01

    The gas-liquid interaction process of a liquid jet in supersonic crossflow with a Mach number of 1.94 was investigated numerically using the Eulerian-Lagrangian method. The KH (Kelvin-Helmholtz) breakup model was used to calculate the droplet stripping process, and the secondary breakup process was simulated by the competition of RT (Rayleigh-Taylor) breakup model and TAB (Taylor Analogy Breakup) model. A correction of drag coefficient was proposed by considering the compressible effects and the deformation of droplets. The location and velocity models of child droplets after breakup were improved according to droplet deformation. It was found that the calculated spray features, including spray penetration, droplet size distribution and droplet velocity profile agree reasonably well with the experiment. Numerical results revealed that the streamlines of air flow could intersect with the trajectory of droplets and are deflected towards the near-wall region after they enter into spray zone around the central plane. The analysis of gas-liquid relative velocity and droplet deformation suggested that the breakup of droplets mainly occurs around the front region of the spray where gathered a large number of droplets with different sizes. The liquid trailing phenomenon of jet spray which has been discovered by the previous experiment was successfully captured, and a reasonable explanation was given based on the analysis of gas-liquid interaction process.

  14. Remembering Irving I. Gottesman: Twin Research Colleague and Friend Extraordinaire/Research Studies: Face-Lift Technique Comparison in Identical Twins; Raising Preterm Twins; Fetal Behavior in Dichorionic Twin Pregnancies; Co-Bedding and Stress Reduction in Twins/Public Interest: Identical Co-Twins' Same Day Delivery; Teaching Twins in Bosnia; Twin Auctioneers; Sister, the Play.

    Science.gov (United States)

    Segal, Nancy L

    2016-12-01

    Dr Irving I. Gottesman, a colleague, friend, and long-time member of the International Society of Twin Studies passed away on June 29, 2016. His contributions to twin research and some personal reflections are presented to honor both the man and the memory. This tribute is followed by short reviews of twin research concerning differences between cosmetic surgical techniques, the rearing of preterm twins, behavioral observations of dichorionic fetal twins, and the outcomes of co-bedding twins with reference to stress reduction. Interesting and informative articles in the media describe identical co-twins who delivered infants on the same day, educational policies regarding twins in Bosnia and the United Kingdom, unusual practices of twin auctioneers, and a theatrical production, Sister, featuring identical twins in the leading roles.

  15. Jet and electromagnetic tomography (JET) of extreme phases of matter in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Ulrich [The Ohio State Univ., Columbus, OH (United States)

    2015-08-31

    The Ohio State University (OSU) group contributed to the deliverables of the JET Collaboration three major products: 1. The code package iEBE-VISHNU for modeling the dynamical evolution of the soft medium created in relativistic heavy-ion collisions, from its creation all the way to final freeze-out using a hybrid approach that interfaces a free-streaming partonic pre-equilbrium stage with a (2+1)-dimensional viscous relativistic fluid dynamical stage for the quark-gluon plasma (QGP) phase and the microscopic hadron cascade UrQMD for the hadronic rescattering and freeze-out stage. Except for UrQMD, all dynamical evolution components and interfaces were developed at OSU and tested and implemented in collaboration with the Duke University group. 2. An electromagnetic radiation module for the calculation of thermal photon emission from the QGP and hadron resonance gas stages of a heavy-ion collision, with emission rates that have been corrected for viscous effects in the expanding medium consistent with the bulk evolution. The electromagnetic radiation module was developed under OSU leadership in collaboration with the McGill group and has been integrated in the iEBE-VISHNU code package. 3. An interface between the Monte Carlo jet shower evolution and hadronization codes developed by the Wayne State University (WSU), McGill and Texas A&M groups and the iEBE-VISHNU bulk evolution code, for performing jet quenching and jet shape modification studies in a realistically modeled evolving medium that was tuned to measured soft hadron data. Building on work performed at OSU for the theoretical framework used to describe the interaction of jets with the medium, initial work on the jet shower Monte Carlo was started at OSU and moved to WSU when OSU Visiting Assistant Professor Abhijit Majumder accepted a tenure track faculty position at WSU in September 2011. The jet-hydro interface was developed at OSU and WSU and tested and implemented in collaboration with the McGill, Texas

  16. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Songkil; Henry, Mathias [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Fedorov, Andrei G., E-mail: agf@gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-12-07

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 μm inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits of focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon “halo” deposition due to secondary electrons from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations.

  17. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    International Nuclear Information System (INIS)

    Kim, Songkil; Henry, Mathias; Fedorov, Andrei G.

    2015-01-01

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 μm inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits of focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon “halo” deposition due to secondary electrons from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations

  18. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    Science.gov (United States)

    Kim, Songkil; Henry, Mathias; Fedorov, Andrei G.

    2015-12-01

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 μm inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits of focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon "halo" deposition due to secondary electrons from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations.

  19. [Adult twins].

    Science.gov (United States)

    Charlemaine, Christiane

    2006-12-31

    This paper explores the deep roots of closeness that twins share in their youngest age and their effect on their destiny at the adult age. Psychologists believe the bond between twins begins in utero and develops throughout the twins' lives. The four patterns of twinship described show that the twin bond is determined by the quality of parenting that twins receive in their infancy and early childhood. Common problems of adult twins bring about difficulties to adapt in a non-twin world. The nature versus nurture controversy has taken on new life focusing on inter-twin differences and the importance of parent-child interaction as fundamental to the growth and development of personality.

  20. The jet membrane-experiment: downstream sampling

    International Nuclear Information System (INIS)

    Campargue, R.

    1976-01-01

    The invasion separation effect of the free jet structure was found in 1966 at Saclay. In the Downstream Sampling Configuration patended by Campargue (1967), the light fraction is withdrawn from the supersonic central core, by skimming the separating free jet. From experimental and theoretical results obtained for gas and isotopic mixtures, the following points linked to operation and equipment costs, are considered: system description; influence of mass ratio, expansion ratio, nature of separating gas, ratio of upflow to separating jet flow, rarefaction. Fron an uninteresting aspect of Jet Membrane (elimination of background penetration), a new principle has been discovered to produce nozzle beams which may be of great interest for other separation processes involving free jets and/or molecular beams [fr

  1. Free molecule flow analysis of the interaction of skimming hardware components and background gas with free jets

    International Nuclear Information System (INIS)

    Raghuraman, P.; Bossel, U.

    1974-01-01

    Under conditions typical for the extraction of nozzle beams from free jets the rarefied flow pattern in the expansion chamber containing skimming hardware components and background gas is studied using a free molecule solution to the Boltzmann equation

  2. Bremsstrahlung γ-ray generation by electrons from gas jets irradiated by laser pulses for radiographic testing

    International Nuclear Information System (INIS)

    Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi

    2012-01-01

    Electron generation from a gas jet irradiated by low energy femtosecond laser pulses is studied experimentally as a promising source of radiation for radioisotope-free γ-ray imaging systems. The calculated yield of γ-rays in the 0.5-2 MeV range, produced by low-average-power lasers and gas targets, exceeds the yields from solid tape targets up to 60 times. In addition, an effect of quasi-mono energetic electrons on γ-ray imaging is also discussed.

  3. Performance of a high repetition pulse rate laser system for in-gas-jet laser ionization studies with the Leuven laser ion source LISOL

    International Nuclear Information System (INIS)

    Ferrer, R.; Sonnenschein, V.T.; Bastin, B.; Franchoo, S.; Huyse, M.; Kudryavtsev, Yu.; Kron, T.; Lecesne, N.; Moore, I.D.; Osmond, B.; Pauwels, D.; Radulov, D.; Raeder, S.; Rens, L.

    2012-01-01

    The laser ionization efficiency of the Leuven gas cell-based laser ion source was investigated under on- and off-line conditions using two distinctly different laser setups: a low-repetition rate dye laser system and a high-repetition rate Ti:sapphire laser system. A systematic study of the ion signal dependence on repetition rate and laser pulse energy was performed in off-line tests using stable cobalt and copper isotopes. These studies also included in-gas-jet laser spectroscopy measurements on the hyperfine structure of 63 Cu. A final run under on-line conditions in which the radioactive isotope 59 Cu (T 1/2 = 81.5 s) was produced, showed a comparable yield of the two laser systems for in-gas-cell ionization. However, a significantly improved time overlap by using the high-repetition rate laser system for in-gas-jet ionization was demonstrated by an increase of the overall duty cycle, and at the same time, pointed to the need for a better shaped atomic jet to reach higher ionization efficiencies.

  4. Comparison of twin-fluid atomizers using a phase Doppler analyser

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, Matouš, E-mail: y116215@stud.fme.vutbr.cz, E-mail: y145527@stud.fme.vutbr.cz, E-mail: jedelsky@fme.vutbr.cz, E-mail: jicha@fme.vutbr.cz; Malý, Milan, E-mail: y116215@stud.fme.vutbr.cz, E-mail: y145527@stud.fme.vutbr.cz, E-mail: jedelsky@fme.vutbr.cz, E-mail: jicha@fme.vutbr.cz; Jedelský, Jan, E-mail: y116215@stud.fme.vutbr.cz, E-mail: y145527@stud.fme.vutbr.cz, E-mail: jedelsky@fme.vutbr.cz, E-mail: jicha@fme.vutbr.cz; Jícha, Miroslav, E-mail: y116215@stud.fme.vutbr.cz, E-mail: y145527@stud.fme.vutbr.cz, E-mail: jedelsky@fme.vutbr.cz, E-mail: jicha@fme.vutbr.cz [Brno University of technology, Technická 2896/2, 616 69 Brno (Czech Republic)

    2014-08-06

    The quality of atomization is crucial in combustion processes, especially in cases of highly viscous fuels. Twin-fluid atomizers have been developed for atomizing heavy and waste fuels and they have undergone significant development in the last decades. Nevertheless, in order to design an atomizer for a given industrial application, a comparison of different atomizers at similar operating conditions is required. This paper focuses on the description and comparison of two internally mixed twin-fluid atomizers at the same operating regime. The Y-jet and the Inverse-effervescent atomizers were examined. The phase-Doppler analyzer was used to measure the velocity and size of droplets in a radial profile in the spray. Data were sorted out into classes with respect to the droplet size and the motion analysis was done for both atomizers.

  5. The Fourth International Network of Twin Registries: Overview from Osaka/Research Reviews: Familial Fraternal Twinning; Twin Study of Masculine Faces; Physical Aggression and Epigenetics; Prenatal Education for Parents of Twins/Current Events: 2016 Guinness Book of World Records; Oldest Living Male Twins; Twins Reunited at Sixty-Nine; Panda Twins; Twins.com.

    Science.gov (United States)

    Segal, Nancy L

    2015-12-01

    The 4th International Network of Twin Registries (INTR) Consortium Meeting took place in Osaka, Japan, September 28-29, 2015. The venue was the Osaka Medical Center for Medical Innovation and Translational Research. An overview of presentations and other activities is provided. Next, 1930s research on familial fraternal twinning, preference for masculine faces, physical aggression and epigenetics, and a prenatal education program for parents of multiples are described. Current twin-related events include the 2016 Guinness Book of World Records (GWR), the oldest living male twins, newly reunited twins, the birth of panda twins and a controversial twin-based website.

  6. The Placenta in Twin-to-Twin Transfusion Syndrome and Twin Anemia Polycythemia Sequence.

    Science.gov (United States)

    Couck, Isabel; Lewi, Liesbeth

    2016-06-01

    Twin-to-twin transfusion syndrome (TTTS) and twin anemia polycythemia sequence (TAPS) are complications unique to monochorionic twin pregnancies and their shared circulation. Both are the result of the transfusion imbalance in the intertwin circulation. TTTS is characterized by an amniotic fluid discordance, whereas in TAPS, there is a severe discordance in hemoglobin levels. The article gives an overview of the typical features of TTTS and TAPS placentas.

  7. Analysis of a gas stratification break-up by a vertical jet using the GOTHIC code

    International Nuclear Information System (INIS)

    Fernández-Cosials, Mikel Kevin; Jimenez, Gonzalo; Lopez-Alonso, Emma

    2016-01-01

    Highlights: • Study of a light gas distribution with the GOTHIC code based on the OECD/NEA IBE-3. • Sensitivity analysis on turbulence model, discretization scheme and heat transfer. • The jet erosion phenomena is captured properly with a relatively coarse mesh. • Development of a tool to evaluate the influence of each parameter on the simulation. • Several recommendation on modeling a stratification break-up are included. - Abstract: During a severe accident in light water reactor (LWR), hydrogen concentration can overpass the flammability limits locally, so the correct simulation of its behavior during a release is critical. The capability assessment of computational fluid dynamics tools to calculate the hydrogen distribution under different conditions has been the focus of intense research worldwide. In this context, the OECD/NEA conducted an international benchmark exercise (IBE-3), which was focused on the break-up of a stratified layer of a light gas by a vertical jet. The participants performed their simulations before the experiment data was released. When the data was released, it was noticed that a combination of several parameters like the mesh, turbulence model or solver controls were responsible for the broad differences between the participants’ results. To obtain information about how each parameter affects the simulation, a post-test sensitivity analysis has been done by the UPM. In this paper, the IBE-3 experiment simulation with GOTHIC 8.0 is presented along with extensive sensitivity analyses of the relevant parameters. The first objective of the work is to test the capability of GOTHIC 8.0 to simulate properly a gas stratification break-up by a vertical jet with a relatively coarse mesh. The second objective of the paper is to relate each sensitivity parameter with each other and with the experiment through the Parameter Influence Chart, a helpful tool specially designed for this purpose.

  8. Analysis of a gas stratification break-up by a vertical jet using the GOTHIC code

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Cosials, Mikel Kevin; Jimenez, Gonzalo, E-mail: gonzalo.jimenez@upm.es; Lopez-Alonso, Emma

    2016-02-15

    Highlights: • Study of a light gas distribution with the GOTHIC code based on the OECD/NEA IBE-3. • Sensitivity analysis on turbulence model, discretization scheme and heat transfer. • The jet erosion phenomena is captured properly with a relatively coarse mesh. • Development of a tool to evaluate the influence of each parameter on the simulation. • Several recommendation on modeling a stratification break-up are included. - Abstract: During a severe accident in light water reactor (LWR), hydrogen concentration can overpass the flammability limits locally, so the correct simulation of its behavior during a release is critical. The capability assessment of computational fluid dynamics tools to calculate the hydrogen distribution under different conditions has been the focus of intense research worldwide. In this context, the OECD/NEA conducted an international benchmark exercise (IBE-3), which was focused on the break-up of a stratified layer of a light gas by a vertical jet. The participants performed their simulations before the experiment data was released. When the data was released, it was noticed that a combination of several parameters like the mesh, turbulence model or solver controls were responsible for the broad differences between the participants’ results. To obtain information about how each parameter affects the simulation, a post-test sensitivity analysis has been done by the UPM. In this paper, the IBE-3 experiment simulation with GOTHIC 8.0 is presented along with extensive sensitivity analyses of the relevant parameters. The first objective of the work is to test the capability of GOTHIC 8.0 to simulate properly a gas stratification break-up by a vertical jet with a relatively coarse mesh. The second objective of the paper is to relate each sensitivity parameter with each other and with the experiment through the Parameter Influence Chart, a helpful tool specially designed for this purpose.

  9. Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading

    Science.gov (United States)

    Wang, Kun; Chen, Jun; Zhang, Xueyang; Zhu, Wenjun

    2017-09-01

    Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ɛ phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be ⟨"separators="|11 1 ¯ ⟩ B C C||⟨"separators="|1 ¯2 1 ¯ 0 ⟩ H C P and ⟨"separators="|1 1 ¯ 0 ⟩ B C C||⟨"separators="|0001 ⟩ H C P for both cases. The twin boundary corresponds to {"separators="|10 1 ¯ 0 } H C P after the phase transition. It is amazing that the reverse transition seems to be able to "memorize" and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.

  10. Rupture of a high pressure gas or steam pipe in a tunnel: a preliminary investigation of the jet thrust exerted on a tunnel barrier

    International Nuclear Information System (INIS)

    Baum, M.R.

    1988-04-01

    On power plant, if a high pressure pipe containing high temperature gas or steam were to rupture, sensitive equipment necessary for safety shutdown of the plant could possibly be incapacitated if exposed to the subsequent high temperature environment. In many plant configurations the high pressure pipework is contained in tunnels where it is possible to construct barriers which isolate one section of the plant from another, thereby restricting the spread of the high temperature fluid/air mixture. This paper describes a preliminary experimental investigation of the magnitude of the thrust likely to be exerted on such barriers by a gas jet issuing from the failed pipe. Measurements of the thrust exerted on a flat plate by normal impingement of a highly underexpanded gas jet are in agreement with a semi-quantitative analysis assuming conservation of the axial momentum of the jet. (author)

  11. Antenatal management of twin-twin transfusion syndrome and twin anemia-polycythemia sequence.

    Science.gov (United States)

    Slaghekke, Femke; Zhao, Depeng P; Middeldorp, Johanna M; Klumper, Frans J; Haak, Monique C; Oepkes, Dick; Lopriore, Enrico

    2016-08-01

    Twin-twin transfusion syndrome (TTTS) and twin anemia polycythemia sequence (TAPS) are severe complications in monochorionic twin pregnancies associated with high mortality and morbidity risk if left untreated. Both diseases result from imbalanced inter-twin blood transfusion through placental vascular anastomoses. This review focuses on the differences in antenatal management between TTTS and TAPS. Expert commentary: The optimal management for TTTS is fetoscopic laser coagulation of the vascular anastomoses, preferably using the Solomon technique in which the whole vascular equator is coagulated. The Solomon technique is associated with a reduction of residual anastomosis and a reduction in post-operative complications. The optimal management for TAPS is not clear and includes expectant management, intra-uterine transfusion with or without partial exchange transfusion and fetoscopic laser surgery.

  12. Upgrading the JET pellet injector with a two-stage light gas gun prototype and future planning

    International Nuclear Information System (INIS)

    Kupschus, P.; Sonnenberg, K.; Bailey, W.; Gadeberg, M.; Hardaker, J.; Hedley, L.; Helm, J.; Flory, D.; McCarthy, P.; Nowak, A.; Twynam, P.; Szabo, T.; Watson, M.

    1989-01-01

    For about two years the Joint European TORUS (JET) has been using a multi-pellet injector jointly built by JET and the Oak Ridge National Laboratory (ORNL). This was and is jointly operated by a JET - US Pellet Team within the Pellet Agreement between JET and the US Department of Energy (US DOE) under the wider umbrella of the EURATOM - US DOE Agreement on collaborative Fusion Research. This injector is composed of the ORNL Launcher, employing three independently firing repetitive (up to 5 s -1 ) pneumatic guns for pellet speeds of up to 1.5 kms -1 , and a JET launcher-torus interface (Pellet Interface) which provides all required services to the launcher and its immediate control system. In particular, it provides the differential pumping to match the high pressures of the gun system to the vacuum pressure and flow requirements of the plasma boundary. The Pellet Interface, in its design from its conception about four years ago, was intended to be equipped with a JET built pellet launcher system employing also high-speed guns at a later date once the ORNL Launcher will have been removed as it is not compatible with the JET requirements for the Active Phase (tritium and remote handling compatibility). As a first step - to learn about the possible plasma physics benefits as well as to gain technical experience concerning the application of advanced gun technology, a JET two-stage light gas gun prototype has been developed and is now being installed in parallel with the ORNL Launcher. This paper reports on the JET pellet injector development program, its motivation and its results to date. It describes briefly the presently operated pellet injector, continues to outline the design of the prototype in more detail and finally sketches the plans for the near future. 8 refs., 11 figs., 1 tab

  13. The jet membrane experiment: downstream sampling

    International Nuclear Information System (INIS)

    Campargue, R.

    1976-01-01

    This review lecture is devoted to an invasion separation effect through a free jet structure, found in 1966 at Saclay and used as the basis for an initial French patent on the separation of gas molecules of different masses. It operates by the differential penetration of a gas or isotopic mixture into the structure of a free jet

  14. A Possible Twin: The 1960s Twin Study Revisited/Twin Research: Twin-to-Twin Heart Transplantation; Distinguishing Monozygotic Twins; Twin Conceptions via Oocyte Donation; Factors Affecting Craniofacial Traits/In the Media: Triplet Delivery in the UK; Conjoined Twins and the Concept of Self; Colombian Twin Trainers; Skin Grafting to Save an Identical Co-Twin; Lack of Physical Flaws in Dolly the Cloned Sheep; Possible Conjoined Twins of Opposite-Sex; Passing of the Remaining Twin From the World's Longest Separated Pair.

    Science.gov (United States)

    Segal, Nancy L

    2018-04-01

    This article begins with the story of a 51-year-old Los Angeles, California man, Justin Goldberg, whose daughter caught a glimpse of his striking look-alike at a popular market. Many people have so-called doppelgängers, but this occurrence is especially intriguing - the individual in question, born in New York City in the mid-1960s to an unwed mother, was an adoptee placed by the Louise Wise Adoption Agency. This agency, under the guidance of a prominent psychiatrist, decided to place twins in separate homes. Some of these twin children were part of a controversial child development study that was hidden from them and their parents. Next, recent and current twin research on heart transplantation, distinguishing monozygotic co-twins, twin conceptions via oocyte donation and factors affecting craniofacial traits are summarized. The article concludes with highlights on twins in the media, specifically, a triplet delivery in the United Kingdom, self-concept and consciousness in conjoined twins, Colombian twin trainers, skin grafting to save an identical co-twin, lack of physical flaws in Dolly the cloned sheep, possible opposite-sex conjoined twins, and the passing of the remaining twin from the world's longest separated pair.

  15. Sheet production apparatus for removing a crystalline sheet from the surface of a melt using gas jets located above and below the crystalline sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kellerman, Peter L.; Thronson, Gregory D.

    2017-06-14

    In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.

  16. Numerical simulation of sand jet in water

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, A.H.; Zhu, D.; Rajaratnam, N. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2008-07-01

    A numerical simulation of sand jet in water was presented. The study involved a two-phase flow using two-phase turbulent jets. A literature review was also presented, including an experiment on particle laden air jet using laser doppler velocimetry (LDV); experiments on the effect of particle size and concentration on solid-gas jets; an experimental study of solid-liquid jets using particle image velocimetry (PIV) technique where mean velocity and fluctuations were measured; and an experimental study on solid-liquid jets using the laser doppler anemometry (LDA) technique measuring both water axial and radial velocities. Other literature review results included a photographic study of sand jets in water; a comparison of many two-phase turbulent flow; and direct numerical simulation and large-eddy simulation to study the effect of particle in gas jet flow. The mathematical model and experimental setup were also included in the presentation along with simulation results for sand jets, concentration, and kinetic energy. The presentation concluded with some proposed future studies including numerical simulation of slurry jets in water and numerical simulation of slurry jets in MFT. tabs., figs.

  17. Impact of non-binder ingredients and molecular weight of polymer binders on heat assisted twin screw dry granulation.

    Science.gov (United States)

    Liu, Y; Thompson, M R; O'Donnell, K P

    2018-01-30

    Two grades of commercial AFFINISOL™ HPMC HME were used as polymer binders to explore the influence of polymer viscosity and concentration on a novel heat assisted dry granulation process with a twin screw extruder. Contributions of other non-binder ingredients in the formulations were also studied for lactose, microcrystalline cellulose and an active pharmaceutical ingredient of caffeine. As sensitive indicators of processing conditions that expose the drug to high internally generated heat, dehydration of α-lactose monohydrate and polymorphic transformation of caffeine were monitored by differential scanning calorimetry (DSC) and powder X-ray diffraction (XRD). Additionally, any decomposition of caffeine was determined by high-performance liquid chromatography (HPLC). Granular samples were characterized by particle size, circularity, fracture strength and their temperature on the exit of extruder. Higher screw speed and lower feed rate were found to help particles agglomerate by allowing feed particles a greater opportunity to increase in temperature. Lower binder molecular weight and higher binder concentration enable granules to build stronger strength and thereby lead to higher particle size. This new twin screw dry granulation was demonstrated as offering advantages over conventional hot melt granulation by minimizing thermal degradation of the tested ingredients. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Domain-adaptive finite difference methods for collapsing annular liquid jets

    Science.gov (United States)

    Ramos, J. I.

    1993-01-01

    A domain-adaptive technique which maps a time-dependent, curvilinear geometry into a unit square is used to determine the steady state mass absorption rate and the collapse of annular liquid jets. A method of lines is used to solve the one-dimensional fluid dynamics equations written in weak conservation-law form, and upwind differences are employed to evaluate the axial convective fluxes. The unknown, time-dependent, axial location of the downstream boundary is determined from the solution of an ordinary differential equation which is nonlinearly coupled to the fluid dynamics and gas concentration equations. The equation for the gas concentration in the annular liquid jet is written in strong conservation-law form and solved by means of a method of lines at high Peclet numbers and a line Gauss-Seidel method at low Peclet numbers. The effects of the number of grid points along and across the annular jet, time step, and discretization of the radial convective fluxes on both the steady state mass absorption rate and the jet's collapse rate have been analyzed on staggered and non-staggered grids. The steady state mass absorption rate and the collapse of annular liquid jets are determined as a function of the Froude, Peclet and Weber numbers, annular jet's thickness-to-radius ratio at the nozzle exit, initial pressure difference across the annular jet, nozzle exit angle, temperature of the gas enclosed by the annular jet, pressure of the gas surrounding the jet, solubilities at the inner and outer interfaces of the annular jet, and gas concentration at the nozzle exit. It is shown that the steady state mass absorption rate is proportional to the inverse square root of the Peclet number except for low values of this parameter, and that the possible mathematical incompatibilities in the concentration field at the nozzle exit exert a great influence on the steady state mass absorption rate and on the jet collapse. It is also shown that the steady state mass absorption

  19. Steady-state and dynamic analysis of a jet engine, gas lubricated shaft seal

    Science.gov (United States)

    Shapiro, W.; Colsher, R.

    1974-01-01

    Dynamic response of a gas-lubricated, jet-engine main shaft seal was analytically established as a function of collar misalignment and secondary seal friction. Response was obtained by a forward integration-in-time (time-transient) scheme, which traces a time history of seal motions in all its degrees of freedom. Results were summarized in the form of a seal tracking map which indicated regions of acceptable collar misalignments and secondary seal friction. Methodology, results and interpretations are comprehensively described.

  20. Galaxies with jet streams

    International Nuclear Information System (INIS)

    Breuer, R.

    1981-01-01

    Describes recent research work on supersonic gas flow. Notable examples have been observed in cosmic radio sources, where jet streams of galactic dimensions sometimes occur, apparently as the result of interaction between neighbouring galaxies. The current theory of jet behaviour has been convincingly demonstrated using computer simulation. The surprisingly long-term stability is related to the supersonic velocity, and is analagous to the way in which an Appollo spacecraft re-entering the atmosphere supersonically is protected by the gas from the burning shield. (G.F.F.)

  1. Highlights from the 15th International Congress of Twin Studies/Twin Research: Differentiating MZ Co-twins Via SNPs; Mistaken Infant Twin-Singleton Hospital Registration; Narcolepsy With Cataplexy; Hearing Loss and Language Learning/Media Mentions: Broadway Musical Recalls Conjoined Hilton Twins; High Fashion Pair; Twins Turn 102; Insights From a Conjoined Twin Survivor.

    Science.gov (United States)

    Segal, Nancy L

    2015-02-01

    Highlights from the 15th International Congress of Twin Studies are presented. The congress was held November 16-19, 2014 in Budapest, Hungary. This report is followed by summaries of research addressing the differentiation of MZ co-twins by single nucleotide polymorphisms (SNPs), an unusual error in infant twin-singleton hospital registration, twins with childhood-onset narcolepsy with cataplexy, and the parenting effects of hearing loss in one co-twin. Media interest in twins covers a new Broadway musical based on the conjoined twins Violet and Daisy Hilton, male twins becoming famous in fashion, twins who turned 102 and unique insights from a conjoined twin survivor. This article is dedicated to the memory of Elizabeth (Liz) Hamel, DZA twin who met her co-twin for the first time at age seventy-eight years. Liz and her co-twin, Ann Hunt, are listed in the 2015 Guinness Book of Records as the longest separated twins in the world.

  2. Bibliography of Books and Published Reports on Gas Turbines, Jet Propulsion, and Rocket Power Plants, January 1950 through December 1953

    Science.gov (United States)

    1953-12-01

    75. Aeronautics In 1950. Engineer 191,67 and 100. Critical review of gas turbine progress in 1950. Engineer 191, 50. Gas turbines in 1950. Engineer 191...1952) ; Trans. ASME 75,121. A critical review of gas turbine progress, 1952. Engineer 195, 124. Aeronautics in 1952. Engineer 195, 24, 55 and 91...Physical fundamentals of jet propulsion. Forsch. Gebiete Ingenieurw. B19, Forschungaheft 437, p 5. 0. Santangelo, Metodo di calcolo delle

  3. Isothermal and Reactive Turbulent Jets in Cross-Flow

    Science.gov (United States)

    Gutmark, Ephraim; Bush, Scott; Ibrahim, Irene

    2004-11-01

    Jets in cross flow have numerous applications including vertical/short takeoff/landing (V/STOL) aircraft, cooling jets for gas turbine blades and combustion air supply inlets in gas turbine engine. The properties exhibited by these jets are dictated by complex three dimensional turbulence structures which form due to the interaction of the jet with the freestream. The isothermal tests are conducted in a wind tunnel measuring the characteristics of air jets injected perpendicular into an otherwise undisturbed air stream. Different nozzle exit geometries of the air jets were tested including circular, triangular and elongated configurations. Jets are injected in single and paired combinations with other jets to measure the effect of mutual interaction on the parameters mentioned. Quantitative velocity fields are obtained using PIV. The data obtained allows the extraction of flow parameters such as jet structure, penetration and mixing. The reacting tests include separate and combined jets of fuel/air mixture utilized to explore the stabilization of combustion at various operating conditions. Different geometrical configurations of transverse jets are tested to determine the shape and combination of jets that will optimize the jets ability to successfully stabilize a flame.

  4. Experimental Study of the Twin Turbulent Water Jets Using Laser Doppler Anemometry for Validating Numerical Models

    International Nuclear Information System (INIS)

    Wang Huhu; Lee Saya; Hassan, Yassin A.; Ruggles, Arthur E.

    2014-01-01

    The design of next generation (Gen. IV) high-temperature nuclear reactors including gas-cooled and sodium-cooled ones involves massive numerical works especially the Computational Fluid Dynamics (CFD) simulations. The high cost of large-scale experiments and the inherent uncertainties existing in the turbulent models and wall functions of any CFD codes solving Reynolds-averaged Navier-Stokes (RANS) equations necessitate the high-spacial experimental data sets for benchmarking the simulation results. In Gen. IV conceptual reactors, the high- temperature flows mix in the upper plenum before entering the secondary cooling system. The mixing condition should be accurately estimated and fully understood as it is related to the thermal stresses induced in the upper plenum and the magnitudes of output power oscillations due to any changes of primary coolant temperature. The purpose of this study is to use Laser Doppler Anemometry (LDA) technique to measure the flow field of two submerged parallel jets issuing from two rectangular channels. The LDA data sets can be used to validate the corresponding simulation results. The jets studied in this work were at room temperature. The turbulent characteristics including the distributions of mean velocities, turbulence intensities, Reynolds stresses were studied. Uncertainty analysis was also performed to study the errors involved in this experiment. The experimental results in this work are valid for benchmarking any steady-state numerical simulations using turbulence models to solve RANS equations. (author)

  5. Molecular dynamics simulation of albite twinning and pericline twinning in low albite

    International Nuclear Information System (INIS)

    Li, Bin; Knowles, Kevin M

    2013-01-01

    Two twinning laws, the albite law and the pericline law, are the predominant growth twinning modes in triclinic plagioclase feldspars such as low albite, NaAlSi 3 O 8 , in which the aluminum and silicon atoms are in an ordered arrangement on the tetrahedral sites of the aluminosilicate framework. In the terminology used formally to describe deformation twinning in a triclinic lattice, these twin laws can be described as Type I and Type II twin laws, respectively, with the pericline twin law being conjugate to the albite twin law. In this study, twin boundaries have been constructed for low albite according to these two twinning laws and studied by molecular dynamics simulation. The results show that suitably constructed twin boundary models are quite stable for both albite twinning and pericline twinning during molecular dynamics simulation. The calculated twin boundary energy of an albite twin is significantly lower than that of a pericline twin, in accord with the experimental observation that albite twinning is the more commonly observed mode seen in plagioclase feldspars. The results of the molecular dynamics simulations also agree with conclusions from the prior work of Starkey that glide twinning in low albite is not favoured energetically. (paper)

  6. The influence of process parameters on Gas Assisted Mechanical Expression (GAME) of cocoa nibs

    NARCIS (Netherlands)

    Venter, M.J.; Hink, R.; Kuipers, N.J.M.; de Haan, A.B.

    2007-01-01

    It is known that increased cocoa butter yields can be achieved with Gas Assisted Mechanical Expression (GAME) of cocoa nibs when compared to conventional expression of cocoa nibs [Venter, M.J., Willems, P., Kuipers, N.J.M. & de Haan, A.B. (2006). Gas Assisted Mechanical Expression of cocoa butter

  7. The influence of process parameters on gas assisted mechanical expression (GAME) of cocoa nibs

    NARCIS (Netherlands)

    Venter, M.J.; Hink, R.; Kuipers, N.J.M.; Haan, de A.B.

    2007-01-01

    It is known that increased cocoa butter yields can be achieved with Gas Assisted Mechanical Expression (GAME) of cocoa nibs when compared to conventional expression of cocoa nibs [Venter, M.J., Willems, P., Kuipers, N.J.M. & de Haan, A.B. (2006). Gas Assisted Mechanical Expression of cocoa butter

  8. Art for twins: Yorùbá artists and their statues/twin research studies: twins' education and conceptions; diurnal preference; inherited eye diseases; ultrasound counseling when twins are conjoined/popular twin reports: twin sisters (the film); rare pregnancy; diet test; French twins reared apart and reunited.

    Science.gov (United States)

    Segal, Nancy L

    2014-06-01

    The Yorùbá of Nigeria are well known for their high twinning rate and the statues they create to commemorate deceased twins. An impressive collection of this artwork was displayed at the University of California's Fowler Museum in Los Angeles between October 13, 2013 and March 2, 2014. An overview of this exhibit is provided. Next, twin research on maternal education and conception, diurnal preference, inherited eye diseases, and ultrasound counseling for couples with conjoined twins are briefly summarized. This article concludes with a discussion of media-based items related to twins. The topics include an award-winning twin film, a rare pregnancy, a diet test, and the separation and chance reunion of monozygotic female twins.

  9. Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge

    International Nuclear Information System (INIS)

    Du, Changhe; Li, Liang; Wu, Xin; Feng, Zhenping

    2016-01-01

    Highlights: • We establish a suitable vortex chamber model for gas turbine blade leading edge. • Mechanism of vortex cooling is further discussed and presented. • Influences of jet nozzle geometry on vortex cooling characteristics are researched. • This paper focuses on assessment of flow field and thermal performance for different jet nozzle aspect ratio and area. - Abstract: In this paper, 3D viscous steady Reynolds Averaged Navier–Stokes (RANS) equations are utilized to investigate the influence of jet nozzle geometry on flow and thermal behavior of vortex cooling for gas turbine blades. Comparison between calculation with different turbulence models and the experimental data is conducted, and results show that the standard k-ω model provides the best accuracy. The grid independence analysis is performed to obtain the proper mesh number. First, the mechanism of vortex cooling is further discussed, and the pronounced impact of kinetic turbulence intensity, thin thermal boundary layer, violent radial convection and complex vortices on enhanced heat transfer performance is confirmed. Then, seven jet nozzle aspect ratios and seven jet nozzle to chamber cross section area ratios are selected to research the flow field and thermal characteristics of vortex cooling focusing on the streamline, static pressure ratio, total pressure loss ratio and Nusselt number. It is presented that the jet nozzle aspect ratio and jet nozzle to chamber cross section area ratio both impose a significant effect on the flow and thermal parameters. The averaged Nusselt number decreases at first and then increases with the increasing jet nozzle aspect ratio, reaching highest when aspect ratio equals to 1. The effect of area ratio on averaged Nusselt number is complex. Finally, the heat transfer results in this study are compared with other previous works. Results indicate that good agreement with previous data is achieved, and the enhanced thermal behavior may be acquired by

  10. Twin-Wire Pulsed Tandem Gas Metal Arc Welding of API X80 Steel Linepipe

    Directory of Open Access Journals (Sweden)

    Wenhao Wu

    2018-01-01

    Full Text Available Twin-Wire Pulsed Tandem Gas Metal Arc Welding process with high welding production efficiency was used to join the girth weld seam of API X80 steel linepipe of 18.4 mm wall thickness and 1422 mm diameter. The macrostructure, microstructure, hardness, and electrochemical corrosion behavior of welded joints were studied. Effects of temperature and Cl− concentration on the corrosion behavior of base metal and weld metal were investigated. Results show that the welded joint has good morphology, mechanical properties, and corrosion resistance. The corrosion resistance of both the base metal and the weld metal decreases with increasing temperature or Cl− concentration. In the solution with high Cl− concentration, the base metal and weld metal are more susceptible to pitting. The corrosion resistance of the weld metal is slightly lower than that of the base metal.

  11. The preparation of ZnO based gas-sensing thin films by ink-jet printing method

    International Nuclear Information System (INIS)

    Shen Wenfeng; Zhao Yan; Zhang Caibei

    2005-01-01

    An ink-jet printing technique was applied to prepare ZnO based gas-sensing thin films. ZnO inks with appropriate viscosity and surface tension were prepared by sol-gel techniques, and printed onto substrates using a commercial printer. After the drying and heating treatment processes, continuous ZnO films were formed and studied by scanning electron microscopy, X-ray diffraction and by a home-made gas sensitivity measuring system. It was found that the morphology and electrical properties of the films changed significantly with the thickness of the films, which can be adjusted simply by printing on the film with increasing frequency. Highest resistance and sensitivity to acetone vapor were obtained when the film was prepared by printing only once on it. Different dopants with certain concentrations could be added into the films by printing with different dopant inks and printing frequency. All Pd, Ag, and ZrO 2 dopants increased both the resistivity and the sensitivity of the films (180 ppm acetone). This work showed that the ink-jet printing technique was a convenient and low cost method to prepare films with controlled film thickness and dopant concentration

  12. Twinning rate in a sample from a Brazilian hospital with a high standard of reproductive care

    Directory of Open Access Journals (Sweden)

    Gloria Maria Duccini Dal Colletto

    Full Text Available CONTEXT: Epidemiological studies on twin births have been motivated mostly by the positive correlation between twinning rate and human fertility, prematurity, low birth weight, increased risk of infant death and long term risk for morbidity. OBJECTIVE: This paper intends to estimate the incidence of multiple births in a private hospital in Brazil with a high standard of reproductive care, and to evaluate the effects of maternal age, gestation order and assisted fertilization on twinning rate. DESIGN: Retrospective analysis. SETTING: First-class tertiary private hospital, São Paulo, Brazil. PARTICIPANTS: The multiple birth rate was investigated among 7,997 deliveries from 1995 to 1998, including 7,786 singletons, 193 twins, 17 triplets and one quadruplet. RESULTS: The rates per 1,000 dizygotic and monozygotic pairs and for triplets were estimated as 19.51, 4.50 and 2.13, respectively. The dizygotic and triplet rates were the highest observed in Brazil up to the present day. The twinning rate among primigravidae older than 30 years was very high (45.02 per 1,000 and was due to a disproportionately high frequency of dizygotic pairs. The triplet rate was also very high among the mothers of this age group (5.71 per 1,000. These facts are strong indicators that these women were the ones most frequently submitted to assisted reproductive techniques. The mean maternal age of the studied population was about six years higher than that estimated for mothers in the general population of southeastern Brazil. Primigravidae aged under 30 years as well as multigravidae showed similar twinning rates, which were almost 20 per 1,000. Among the deliveries of multigravidae older than 30 years, an unusually high frequency of monozygotic twins was observed (7.04 per 1,000, probably as a consequence of the residual effect of long-term use of oral contraceptives. CONCLUSIONS: The dizygotic twinning rate increased from 13.51 to 28.98 per 1,000 over the four years

  13. Turbulent spark-jet ignition in SI gas fuelled engine

    Directory of Open Access Journals (Sweden)

    Pielecha Ireneusz

    2017-01-01

    Full Text Available The article contains a thermodynamic analysis of a new combustion system that allows the combustion of stratified gas mixtures with mean air excess coefficient in the range 1.4-1.8. Spark ignition was used in the pre-chamber that has been mounted in the engine cylinder head and contained a rich mixture out of which a turbulent flow of ignited mixture is ejected. It allows spark-jet ignition and the turbulent combustion of the lean mixture in the main combustion chamber. This resulted in a two-stage combustion system for lean mixtures. The experimental study has been conducted using a single-cylinder test engine with a geometric compression ratio ε = 15.5 adapted for natural gas supply. The tests were performed at engine speed n = 2000 rpm under stationary engine load when the engine operating parameters and toxic compounds emissions have been recorded. Analysis of the results allowed to conclude that the evaluated combustion system offers large flexibility in the initiation of charge ignition through an appropriate control of the fuel quantities supplied into the pre-chamber and into the main combustion chamber. The research concluded with determining the charge ignition criterion for a suitably divided total fuel dose fed to the cylinder.

  14. Impact of chorionicity on first-trimester nuchal translucency screening in ART twin pregnancies.

    Science.gov (United States)

    Flöck, A; Reinsberg, J; Berg, C; Gembruch, U; Geipel, A

    2013-08-01

    Nuchal translucency (NT) measurement in assisted reproduction treatment (ART) twins is less extensively investigated. Therefore, the present study compared NT measurements of spontaneously conceived twins with ART twins in dichorionic (DC) and monochorionic (MC) pregnancies. Retrospective analysis of 706 unaffected twins between 11 + 0 and 13 + 6 weeks conceived either spontaneously (n = 362) or with ART (n = 344). The group with spontaneous conception included 234 DC (64.6%) and 128 MC (35.4%) pregnancies. In the ART group, 326 were DC (94.7%) and 18 were MC (5.3%). NT values were transformed into multiples of median (MoM). In the DC group, no significant differences between ART and spontaneously conceived twins (NT MoM 1.06 ± 0.28 vs 1.03 ± 0.29; p > 0.05) were observed. NT MoM of MC ART twins was higher compared with spontaneous MC twins (1.23 ± 0.82 vs 0.99 ± 0.27; p = 0.011). Although the incidence of twin-to-twin transfusion syndrome (TTTS) was higher among ART twins (11.1% vs 4.7%), inter-twin NT difference was similar between pregnancies with TTTS (0.42 ± 0.21) or without (0.40 ± 0.71). Measurement of NT thickness in DC ART twins achieves comparable results with twins conceived spontaneously. Conclusions in MC twins are limited; however, higher NT MoM was not related to TTTS or selective intrauterine growth restriction. © 2013 John Wiley & Sons, Ltd.

  15. Therapeutic modalities of twin to twin transfusion syndrome

    Directory of Open Access Journals (Sweden)

    Šulović N.

    2015-01-01

    Full Text Available Twin to twin transfusion syndrome (TTTTS accounts for approximately 10% of monochorionic twin pregnancies and, if left untreated, is associated with high morbidity and mortality rate. A net transfusion of blood flow from one fetus (donor twin to the other (recipient twin via placental vascular anastomoses has been supposed as the major etiology of TTTTS. The donor twin becomes hypovolemic and oliguria, oligohydramnios, and a variable degree of growth restriction develop, whereas the recipient twin manifests polyuria, polyhydramnios, and hydrops in response to hypervolemia. TTTTS can be treated by either serial amniocentesis or selective fetoscopic laser coagulation of the communicating vessels. The rationale for removal of large volumes of amniotic fluid is to prevent preterm delivery secondary to polyhydramnios and to improve fetal circulation by reducing pressure on the chorionic plate. On the other hand, the goal of laser therapy is to occlude vascular anastomoses, thereby interrupting intertwin blood exchange. Although laser treatment is associated with increased survival rate and reduced neurologic complications, compared with amnioreduction, it requires highly specialized centers, whereas serial amniocentesis has the advantage of being performed worldwide. Therefore, the optimal treatment for pregnancies complicated with TTTTS is still controversial.

  16. The effect of chorionicity and twin-to-twin delivery time interval on short-term outcome of the second twin

    DEFF Research Database (Denmark)

    Hjortø, Sofie; Nickelsen, Carsten; Petersen, Janne

    2013-01-01

    Abstract Objectives: To investigate the effect of chorionicity and twin-to-twin delivery time interval on short-term outcome in the second twin. Additionally, to investigate predictors of adverse outcome in both twins. Methods: Data included vaginally delivered twins (≥ 36 weeks) from Copenhagen ...

  17. Twin-Telescope Wettzell (TTW)

    Science.gov (United States)

    Hase, H.; Dassing, R.; Kronschnabl, G.; Schlüter, W.; Schwarz, W.; Lauber, P.; Kilger, R.

    2007-07-01

    Following the recommendations made by the VLBI2010 vision report of the IVS, a proposal has been made to construct a Twin Telescope for the Fundamental Station Wettzell in order to meet the future requirements of the next VLBI generation. The Twin Telescope consists of two identical radiotelescopes. It is a project of the Federal Agency for Cartography and Geodesy (BKG). This article summarizes the project and some design ideas for the Twin-Telescope. %ZALMA (2005). Technical Specification for Design, Manufacturing, Transport and Integration on Site of the ALMA ANTENNAS, Doc. ALMA-34.00.00.00.006-BSPE. Behrend, D. (2006). VLBI2010 Antenna Specs, Data sheet. DeBoer, D. (2001). The ATA Offset Gregorian Antenna, ATA Memo #16, February 10. Imbriale, W.A. (2006). Design of a Wideband Radio Telescope, Jet Propulsion Laboratory and S. Weinreb and H. Mandi, California Institute of Technology. Kilger, R. (2007). TWIN-Design studies, Presentation for the IVS board members (internal document),Wettzell. Kronschnabl, G. (2006). Subject: Memo from Bill Petrachenko, E-mail to the Twin-Working Group (in German), July. Lindgren, ETS-Lindgren (2005). The Model 3164-05 Open Boundary Quadridge Horn, Data Sheet. Niell, A., A. Whitney, W. Petrachenko, W. Schlüter, N. Vandenberg, H.Hase, Y. Koyama, C. Ma, H. Schuh, G. Tucari (2006). in: IVS Annual Report 2005, pg. 13-40, NASA/TP-2006-214136, April. Olsson, R., Kildal, P.-S., and Weinreb, S. (2006). IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, February. Petrachenko, B. (2006). The Case For and Against Multiple Antennas at a Site, IVS Memorandum, 2006-019v01. Petrachenko, B. (2006). IVS Memorandum, 2006-016v01. RFSpin (2004). Double Ridged Waveguide Horn-Model DRH20, Antenna Specifications, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Crossed Log- Periodic Antennas HL024A1/S1, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Log-Periodic Antennas HL050/HL050S1, Data Sheet. Rogers, A.E.E. (2006). Simulations of broadband

  18. Velocity slip and translational nonequilibrium of ternary gas mixtures in free jet expansions

    International Nuclear Information System (INIS)

    Cattolica, R.J.; Gallagher, R.J.; Anderson, J.B.; Talbot, L.

    1977-05-01

    An aerodynamic isotope separation technique based on the velocity slip between gases in a rarefied flow has been proposed. To evaluate the efficiency of this separation technique, the velocity and translational temperature of the individual species in binary and ternary gas mixtures of argon and neon in helium have been studied in a low density hypersonic free jet. The velocity and temperature of the gas were determined from the Doppler shift and broadening of the fluorescence excited by an electron beam. Velocity slip and translational nonequilibrium were observed over a range of source pressures. A separation factor based on the velocity slip and temperatures was also determined. A comparison of the velocity slip, temperatures, and separation factor with the results of a Monte Carlo simulation of the flow field is presented

  19. Characteristics of a gas-jet transport system for an on-line isotope separator

    International Nuclear Information System (INIS)

    Kawade, K.; Yamamoto, H.; Amano, H.; Hanada, M.; Katoh, T.; Okano, K.; Kawase, Y.; Fujiwara, I.

    1982-01-01

    Basic characteristics of a gas-jet transport system for an on-line isotope separator have been investigated using a 252 Cf source and a 235 U fission source. The transport efficiency of fission products through a capillary has been measured to be about 60% for the 235 U fission source. The sweep-out time of fission products through a target chamber and the transit time through a capillary have been measured for He, N 2 and CO 2 gases at several pressures. The measured sweep-out times have been almost equal to the exchange over time of the gas. The transit times have been found to be reasonably predicted by calculations. The transport system has been incorporated into the KUR-ISOL and is used for the study of short-lived nuclei. (orig.)

  20. Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels with Film Coolant Extraction

    Directory of Open Access Journals (Sweden)

    James A. Parsons

    2001-01-01

    Full Text Available The effect of channel rotation on jet impingement cooling by arrays of circular jets in twin channels was studied. Impinging jet flows were in the direction of rotation in one channel and opposite to the direction of rotation in the other channel. The jets impinged normally on the smooth, heated target wall in each channel. The spent air exited the channels through extraction holes in each target wall, which eliminates cross flow on other jets. Jet rotation numbers and jet Reynolds numbers varied from 0.0 to 0.0028 and 5000 to 10,000, respectively. For the target walls with jet flow in the direction of rotation (or opposite to the direction of rotation, as rotation number increases heat transfer decreases up to 25% (or 15% as compared to corresponding results for non-rotating conditions. This is due to the changes in flow distribution and rotation induced Coriolis and centrifugal forces.

  1. Measurement and correlation of optical and TEM twins in Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7-δ/

    International Nuclear Information System (INIS)

    Chumbley, L.S.; Verhoeven, J.D.; Kim, M.R.; Cornelius, A.L.; Kramer, M.J.

    1989-01-01

    The spacing of the twins present in Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7-δ/ has been investigated using optical and Transmission Electron Microscopy (TEM). Studies have reported that the value of the average twin spacing obtained by optical measurements is much larger than that measured in thin foils prepared for TEM observation, and controversy exists as to the exact nature of the optical twins. Experiments have been conducted which show that the twins observed optically correspond to those seen using TEM and are not produced by an optical interference effect. Using electron channeling, equations have been formulated which allow optical determination of the true spacing of twins present in a selected grain as well as the orientation of that grain. The average twin spacing measured in TEM has been found to vary with sample preparation method, being smaller for crushed chip samples than for bulk samples prepared by ion milling or jet-polishing. A variation of the twin spacing with grain size has also been noted

  2. Jet target intense neutron source

    International Nuclear Information System (INIS)

    Meier, K.L.

    1977-01-01

    A jet target Intense Neutron Source (INS) is being built by the Los Alamos Scientific Laboratory with DOE/MFE funding in order to perform radiation damage experiments on materials to be used in fusion power reactors. The jet target can be either a supersonic or a subsonic jet. Each type has its particular advantages and disadvantages, and either of the jets can be placed inside the spherical blanket converter which will be used to simulate a fusion reactor neutron environment. Preliminary mock-up experiments with a 16-mA, 115 keV, H + ion beam on a nitrogen gas supersonic jet show no serious problems in the beam formation, transport, or jet interaction

  3. The Mochi LabJet Experiment for Measurements of Canonical Helicity Injection in a Laboratory Astrophysical Jet

    Science.gov (United States)

    You, Setthivoine; von der Linden, Jens; Sander Lavine, Eric; Carroll, Evan Grant; Card, Alexander; Quinley, Morgan; Azuara-Rosales, Manuel

    2018-06-01

    The Mochi device is a new pulsed power plasma experiment designed to produce long, collimated, stable, magnetized plasma jets when set up in the LabJet configuration. The LabJet configuration aims to simulate an astrophysical jet in the laboratory by mimicking an accretion disk threaded by a poloidal magnetic field with concentric planar electrodes in front of a solenoidal coil. The unique setup consists of three electrodes, each with azimuthally symmetric gas slits. Two of the electrodes are biased independently with respect to the third electrode to control the radial electric field profile across the poloidal bias magnetic field. This design approximates a shear azimuthal rotation profile in an accretion disk. The azimuthally symmetric gas slits provide a continuously symmetric mass source at the footpoint of the plasma jet, so any azimuthal rotation of the plasma jet is not hindered by a discrete number of gas holes. The initial set of diagnostics consists of current Rogowski coils, voltage probes, magnetic field probe arrays, an interferometer and ion Doppler spectroscopy, supplemented by a fast ion gauge and a retarding grid energy analyzer. The measured parameters of the first plasmas are ∼1022 m‑3, ∼0.4 T, and 5–25 eV, with velocities of ∼20–80 km s‑1. The combination of a controllable electric field profile, a flared poloidal magnetic field, and azimuthally symmetric mass sources in the experiment successfully produces short-lived (∼10 μs, ≳5 Alfvén times) collimated magnetic jets with a ∼10:1 aspect ratio and long-lived (∼100 μs, ≳40 Alfvén times) flow-stabilized, collimated, magnetic jets with a ∼30:1 aspect ratio.

  4. Twin Research and the Arts: Interconnections / Twin Research: Twin Studies of Sexual Orientation; A Historical Biological Twin Gem; GWAS Approach to Who Has Twins / Newsworthy: Twins on College Campuses; 'Brainprint': Personal Identification by Brain Waves.

    Science.gov (United States)

    Segal, Nancy L

    2016-08-01

    The interrelatedness between twin research and the arts is explored via a new play about a famous case. In the 1960s, identical twin David Bruce Reimer was accidentally castrated as an infant during circumcision to correct a urinary problem. The decision to raise him as a girl, and the consequences of that decision, are explored in the new theatrical production of Boy. Other examples of the arts mirroring science, and vice versa, are described. Next, brief reviews and summaries of twin research on sexual orientation, 1860s' knowledge of placental arrangements and twinning mechanisms, and genes underlying multiple birth conception and fertility related measures are provided. This article concludes with a look at twins on college campuses and the identification of individuals by their brain waves. A correction and clarification regarding my article on the Brazilian Twin Registry in the last issue of THG (Segal, 2016) is also provided.

  5. Micro-jet Cooling by Compressed Air after MAG Welding

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2016-06-01

    Full Text Available The material selected for this investigation was low alloy steel weld metal deposit (WMD after MAG welding with micro-jet cooling. The present investigation was aimed as the following tasks: analyze impact toughness of WMD in terms of micro-jet cooling parameters. Weld metal deposit (WMD was first time carried out for MAG welding with micro-jet cooling of compressed air and gas mixture of argon and air. Until that moment only argon, helium and nitrogen and its gas mixture were tested for micro-jet cooling.

  6. Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms

    International Nuclear Information System (INIS)

    Zhang Shiqiang; Van Gessel, Bram; Hofmann, Sven; Van Veldhuizen, Eddie; Bruggeman, Peter; Van Gaens, Wouter; Bogaerts, Annemie

    2013-01-01

    In this work, a time modulated RF driven DBD-like atmospheric pressure plasma jet in Ar + 2%O 2 , operating at a time averaged power of 6.5 W is investigated. Spatially resolved ozone densities and gas temperatures are obtained by UV absorption and Rayleigh scattering, respectively. Significant gas heating in the core of the plasma up to 700 K is found and at the position of this increased gas temperature a depletion of the ozone density is found. The production and destruction reactions of O 3 in the jet effluent as a function of the distance from the nozzle are obtained from a zero-dimensional chemical kinetics model in plug flow mode which considers relevant air chemistry due to air entrainment in the jet fluent. A comparison of the measurements and the models show that the depletion of O 3 in the core of the plasma is mainly caused by an enhanced destruction of O 3 due to a large atomic oxygen density. (paper)

  7. Regimes of spray formation in gas-centered swirl coaxial atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, D.; Kulkarni, V. [Indian Institute of Science, Department of Aerospace Engineering, Bangalore (India)

    2011-09-15

    Spray formation in ambient atmosphere from gas-centered swirl coaxial atomizers is described by carrying out experiments in a spray test facility. The atomizer discharges a circular air jet and an axisymmetric swirling water sheet from its coaxially arranged inner and outer orifices. A high-speed digital imaging system along with a backlight illumination arrangement is employed to record the details of liquid sheet breakup and spray development. Spray regimes exhibiting different sheet breakup mechanisms are identified and their characteristic features presented. The identified spray regimes are wave-assisted sheet breakup, perforated sheet breakup, segmented sheet breakup, and pulsation spray regime. In the regime of wave-assisted sheet breakup, the sheet breakup shows features similar to the breakup of two-dimensional planar air-blasted liquid sheets. At high air-to-liquid momentum ratios, the interaction process between the axisymmetric swirling liquid sheet and the circular air jet develops spray processes which are more specific to the atomizer studied here. The spray exhibits a periodic ejection of liquid masses whose features are dominantly controlled by the central air jet. (orig.)

  8. Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys

    International Nuclear Information System (INIS)

    Wu, Wei; Gao, Yanfei; Li, Nan; Parish, Chad M.; Liu, Wenjun; Liaw, Peter K.; An, Ke

    2016-01-01

    Deformation twinning plays a critical role on improving metals or alloys ductility, especially for hexagonal close-packed materials with low symmetry crystal structure. A rolled Mg alloy was selected as a model system to investigate the extension twinning behaviors and characteristics of parent-twin interactions by nondestructive in situ 3D synchrotron X-ray microbeam diffraction. Besides twinning-detwinning process, the “twinning-like” lattice reorientation process was captured within an individual grain inside a bulk material during the strain reversal. The distributions of parent, twin, and reorientated grains and sub-micron level strain variation across the twin boundary are revealed. A theoretical calculation of the lattice strain confirms that the internal strain distribution in parent and twinned grains correlates with the experimental setup, grain orientation of parent, twin, and surrounding grains, as well as the strain path changes. The study suggests a novel deformation mechanism within the hexagonal close-packed structure that cannot be determined from surface-based characterization methods.

  9. GlidArc-assisted production of synthesis gas from various carbonaceous feedstocks

    International Nuclear Information System (INIS)

    Czernichowski, A.; Czernichowski, P.; Czernichowski, M.

    2003-01-01

    Pure Hydrogen or its mixture with Carbon Monoxide (called Synthesis Gas) will be massively extracted from various fossil or renewable feedstocks. Such matters contain contaminants (principally Sulphur) that make conventional catalytic reforming technologies very difficult to run without a prior deep cleaning of the feeds in order to avoid the reformer's catalyst poisoning. We propose a non-catalytic process in which almost any carbonaceous feed is converted into the Synthesis Gas in a presence of high-voltage discharges (called GlidArc) that assist the exothermic Partial Oxidation POX). The unique oxidant is air. This contribution presents some of our tests with natural gas, cyclohexane, heptane, toluene, various gasolines, and various diesel oils (including logistic ones). In two separate contributions to this Conference we present our more expanded studies on the GlidArc-assisted POX reforming of commercial propane and rapeseed oil (canola). Our reactors (1- or 2-Liter scale) work at atmospheric pressure and need less than 0.5 kW electric power (rather about 0.1 kW) to produce up to 9 m 3 (n)/h of Nitrogen-diluted SynGas containing up to 27% of H 2 and up to 23% of CO. Such assisting power represents roughly less than 5% (rather around 2%) with respect to the Lower Heating Value of produced Synthesis Gas (up to 11 kW). Recycling such relatively small portion of the power is an acceptable compromise. All tested feeds are totally reformed. No soot is observed at a sufficient O/C ratio. (author)

  10. Stellar signatures of AGN-jet-triggered star formation

    International Nuclear Information System (INIS)

    Dugan, Zachary; Silk, Joseph; Bryan, Sarah; Gaibler, Volker; Haas, Marcel

    2014-01-01

    To investigate feedback between relativistic jets emanating from active galactic nuclei and the stellar population of the host galaxy, we analyze the long-term evolution of the orbits of the stars formed in the galaxy-scale simulations by Gaibler et al. of jets in massive, gas-rich galaxies at z ∼ 2-3. We find strong, jet-induced differences in the resulting stellar populations of galaxies that host relativistic jets and galaxies that do not, including correlations in stellar locations, velocities, and ages. Jets are found to generate distributions of increased radial and vertical velocities that persist long enough to effectively augment the stellar structure of the host. The jets cause the formation of bow shocks that move out through the disk, generating rings of star formation within the disk. The bow shock often accelerates pockets of gas in which stars form, yielding populations of stars with significant radial and vertical velocities, some of which have large enough velocities to escape the galaxy. These stellar population signatures can serve to identify past jet activity as well as jet-induced star formation.

  11. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.

    Science.gov (United States)

    Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick

    2016-01-01

    Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.

  12. Jet Mass Reconstruction with the ATLAS Detector in Run 2

    CERN Document Server

    Jansky, Roland; The ATLAS collaboration

    2016-01-01

    The details of the ATLAS jet mass reconstruction and calibration are presented. In particular, the jet mass scale is calibrated using Monte Carlo simulation for large-radius groomed jets. Corresponding uncertainties are presented. An alternative jet mass definition that incorporates tracking information called the track-assisted jet mass is introduced and its performance is compared to the traditional calorimeter-only jet mass definition. An outlook on future improvments is also given.

  13. Numerical Investigation of Jet Impingement Heat Transfer on a Flat plate

    Directory of Open Access Journals (Sweden)

    Asem Nabadavis

    2016-12-01

    Full Text Available The numerical investigation emphasizes on studying the heat transfer characteristics when a high velocity air jet impinges upon a flat plate having constant heat flux. Numerical analysis has been conducted by solving conservation equations of momentum, mass and energy with two equations based k- ε turbulence model to determine the wall temperature and Nu of the plate considering the flow to be incompressible. It was found from the investigation that the heat transfer rate increases with the increase of Reynolds number of the jet (Rej. It was also found that there is an optimum value for jet distance to nozzle diameter ratio (H/d for maximum heat transfer when all the other parameters were kept fixed. Similar results as above were found when two jets of air were used instead of one jet keeping the mass flow rate constant. For a two jets case it was also found that heat transfer rate over the surface increases when the jets are inclined outward compared to vertical and inward jets and also there exists an optimum angle of jet for maximum heat transfer. Further investigation was carried out for different jetto-jet separation distance for a twin jet impingement model where it was noted that heat transfer is more distributed in case of larger values of L and the rate of heat transfer increases as the separation between the jet increases till a certain point after which the rate of heat transfer decreases.

  14. Reproduction performance of cows with single, twin and triplet calves

    Directory of Open Access Journals (Sweden)

    Anna Sawa

    2012-01-01

    Full Text Available The aim of this study was to analyse data on 74,081 calvings, subsequent lactation performance and culling of 23,588 Black-and-White cows improved with Holstein-Friesians. The animals represented the active population in Pomerania and Kujavia, first calved in 2000 and 2001, and were culled before the end of 2008. Frequency of calvings, which averaged 1.5% for twin births and just 0.02% for triplet births, increased with age of cow and also with increasing milk yield in the preceding lactation. Performance results showed that mothers of twins were superior to mothers of single calves in terms of milk yield (1.3 kg milk/day milking. Despite the greater perinatal mortality of twins and triplets, multiple pregnancies gave rise to a greater number of calves compared to single pregnancies. However, multiple pregnancies were accompanied by adverse effects such as increased proportion of complications requiring human assistance, mechanical assistance and veterinary intervention (1.2 × more. Fertility of the cows deteriorated after multiple pregnancies, with particularly unfavourable indicators of fertility found for triplet births, decreased chance of survival to the next calving, and increased culling rates in cows, especially due to udder diseases, infertility, reproductive diseases, old age, metabolic and gastrointestinal diseases, and locomotor system diseases. It was found that the increasing milk yield was paralleled by the increasing proportion of multiple pregnancies. This has highlighted the need for early and reliable diagnosis and management of twin pregnancies, which is supposed to facilitate parturition and ensure survival of calves.

  15. Use of atosiban in a twin pregnancy with extremely preterm premature rupture in the membrane of one twin: a case report and literature review.

    Science.gov (United States)

    Wu, Ming-Yih; Chen, Shee-Uan; Lee, Chien-Nan; Ho, Hong-Nerng; Yang, Yu-Shih

    2010-12-01

    Pregnancies with extremely preterm premature rupture of membranes (EPPROM), especially before 20 weeks of gestation, are usually considered to be a termination of pregnancy. By improvement of obstetric and neonatal care, we can prolong the pregnancy across the threshold of survival by aggressive tocolysis. Using intrauterine insemination, a 32-year-old woman became pregnant with twins (first pregnancy). Threatened abortion occured since 9 weeks of gestation and EPPROM of the upper twin was noted at 18 weeks. Massive vaginal bleeding and vigorous uterine contractions occurred at 22 weeks. Poor control of preterm labor occurred using ritodrine and MgSO(4). Atosiban was applied to calm uterine activities. After discontinuation of atosiban at 30 weeks, the uterine contractions became severe again and an emergency cesarean section was performed to deliver two live, premature babies weighing 1,518 g and 830 g, respectively. Twin A was healthy, weighing 2,030 g at 35 days after birth and subsequently discharged. The smaller twin B was dependent on continuous positive airway pressure and died of pulmonary infection 120 days after birth. Comparing to other tocolytic agents, Atosiban has few side effects and assisted in prolonging a pregnancy involving twins that experienced EPPROM. Copyright © 2010 Taiwan Association of Obstetric & Gynecology. Published by Elsevier B.V. All rights reserved.

  16. Simulations of stress-induced twinning and de-twinning: A phase field model

    International Nuclear Information System (INIS)

    Hu Shenyang; Henager, Chuck H.; Chen Longqing

    2010-01-01

    Twinning in certain metals or under certain conditions is a major plastic deformation mode. Here we present a phase field model to describe twin formation and evolution in a polycrystalline fcc metal under loading and unloading. The model assumes that twin nucleation, growth and de-twinning is a process of partial dislocation nucleation and slip on successive habit planes. Stacking fault energies, energy pathways (γ surfaces), critical shear stresses for the formation of stacking faults and dislocation core energies are used to construct the thermodynamic model. The simulation results demonstrate that the model is able to predict the nucleation of twins and partial dislocations, as well as the morphology of the twin nuclei, and to reasonably describe twin growth and interaction. The twin microstructures at grain boundaries are in agreement with experimental observation. It was found that de-twinning occurs during unloading in the simulations, however, a strong dependence of twin structure evolution on loading history was observed.

  17. Overexpanded viscous supersonic jet interacting with a unilateral barrier

    Science.gov (United States)

    Dobrynin, B. M.; Maslennikov, V. G.; Sakharov, V. A.; Serova, E. V.

    1986-07-01

    The interaction of a two-dimensional supersonic jet with a unilateral barrier parallel to the flow symmetry plane was studied to account for effects due to gas viscosity and backgound-gas ejection from the region into which the jet expands. In the present experiments, the incident shock wave was reflected at the end of a shock tube equipped with a nozzle. The jet emerged into a pressure chamber 6 cu m in volume and the environmental pressure ratio of the flow in the quasi-stationary phase remained constant. The light source was an OGM-20 laser operating in the giant-pulse mode. Due to background-gas ejection, the gas density in the vicinity of the barrier is much less than on the unconfined side of the jet. The resulting flow is characterized by two distinct environmental pressure ratios: the flow is underexpanded near the barrier, while on the other side it is overexpanded.

  18. Spectroscopic analysis of the density and temperature gradients in the laser-heated gas jet

    International Nuclear Information System (INIS)

    Matthews, D.L.; Lee, R.W.; Auerbach, J.M.

    1981-01-01

    We have performed an analysis of the x-ray spectra produced by a 1.0TW, lambda/sub L/-0.53μm laser-irradiated gas jet. Plasmas produced by ionization of neon, argon and N 2 + SF 6 gases were included in those measurements. Plasma electron density and temperature gradients were obtained by comparison of measured spectra with those produced by computer modeling. Density gradients were also obtained using laser interferometry. The limitations of this technique for plasma diagnosis will be discussed

  19. Twins and Kindergarten Separation: Divergent Beliefs of Principals, Teachers, Parents, and Twins

    Science.gov (United States)

    Gordon, Lynn Melby

    2015-01-01

    Should principals enforce mandatory separation of twins in kindergarten? Do school separation beliefs of principals differ from those of teachers, parents of twins, and twins themselves? This survey questioned 131 elementary principals, 54 kindergarten teachers, 201 parents of twins, and 112 twins. A majority of principals (71%) believed that…

  20. Experimental investigation of a pilot-scale jet bubbling reactor for wet flue gas desulphurisation

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Kiil, Søren; Johnsson, Jan Erik

    2003-01-01

    In the present work, an experimental parameter study was conducted in a pilot-scale jet bubbling reactor for wet flue gas desulphurisation (FGD). The pilot plant is downscaled from a limestone-based, gypsum producing full-scale wet FGD plant. Important process parameters, such as slurry pH, inlet...... flue gas concentration of SO2, reactor temperature, and slurry concentration of Cl- have been varied. The degree of desulphurisation, residual limestone content of the gypsum, liquid phase concentrations, and solids content of the slurry were measured during the experimental series. The SO2 removal...... efficiency increased from 66.1% to 71.5% when the reactor slurry pH was changed from 3.5 to 5.5. Addition of Cl(in the form of CaCl2 . 2H(2)O) to the slurry (25 g Cl-/l) increased the degree of desulphurisation to above 99%, due to the onset of extensive foaming, which substantially increased the gas...

  1. Twin-twin transfusion syndrome: etiology, severity and rational management

    NARCIS (Netherlands)

    van Gemert, M. J.; Umur, A.; Tijssen, J. G.; Ross, M. G.

    2001-01-01

    The twin-twin transfusion syndrome is a serious complication of monochorionic twin pregnancies. Partly as a result of an inadequate understanding of the pathophysiology of the syndrome, there is a lack of consensus in clinical management. We sought to review the available information on the etiology

  2. Single-jet gas cooling of in-beam foils or specimens: Prediction of the convective heat-transfer coefficient

    Science.gov (United States)

    Steyn, Gideon; Vermeulen, Christiaan

    2018-05-01

    An experiment was designed to study the effect of the jet direction on convective heat-transfer coefficients in single-jet gas cooling of a small heated surface, such as typically induced by an accelerated ion beam on a thin foil or specimen. The hot spot was provided using a small electrically heated plate. Heat-transfer calculations were performed using simple empirical methods based on dimensional analysis as well as by means of an advanced computational fluid dynamics (CFD) code. The results provide an explanation for the observed turbulent cooling of a double-foil, Havar beam window with fast-flowing helium, located on a target station for radionuclide production with a 66 MeV proton beam at a cyclotron facility.

  3. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    Science.gov (United States)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2018-06-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  4. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    Science.gov (United States)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2017-12-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  5. Present status of rarefied gas dynamics approach to the structure of a laser-induced evaporating jet

    International Nuclear Information System (INIS)

    Cercignani, C.

    1980-01-01

    With reference to the relation between the state of the surface and the measurements downstream in the dynamic laser pulse technique, the problems arising in connection with the study of the structure of a jet evaporating into a vacuum are investigated. Particular attention is paid to the following aspects gas surface interaction, internal degrees of freedom, presence of more than one species, chemical reactions

  6. The mobility of growth twins synthesized by sputtering: Tailoring the twin thickness

    International Nuclear Information System (INIS)

    Velasco, Leonardo; Hodge, Andrea M.

    2016-01-01

    The current work presents a protean twin thickness contour zone map that illustrates how the nucleation and the mobility of twin boundaries affects the twin thickness of sputtered films. The twin thickness contour zone map can be used as a versatile guide to synthesize fully nanotwinned films with tailored twin thicknesses in materials with a wide range of stacking fault energies. The nucleation and mobility of twin boundaries was studied in four Cu alloys of different compositions (Cu-6wt.%Al, Cu-4wt.%Al, Cu-2wt.%Al, and Cu-10wt.%Ni), having stacking fault energies ranging from 6 mJ/m 2 to 60 mJ/m 2 . The films were synthesized by magnetron sputtering and characterized by transmission electron microscopy, where the twin thickness varied from 2 nm to 35 nm. Our experimental results show that it is possible to control the twin thickness. Three main mechanisms are explained to describe twin nucleation and twin boundary mobility, which are correlated to the interplay of specific sputtering conditions and the deposition temperature.

  7. Monozygotic twinning after in vitro fertilization/intracytoplasmic sperm injection treatment is not related to advanced maternal age, intracytoplasmic sperm injection, assisted hatching, or blastocyst transfer

    Directory of Open Access Journals (Sweden)

    Dennis Wu

    2014-09-01

    Conclusion: Until definite conclusions are drawn from larger trials, patients receiving IVF should not be overly concerned about the increase in MZT risk when proceeding to various assisted reproductive procedures (i.e., ICSI, AH, and blastocyst transfer. However, there is some evidence that the incidence of monochorionic–monoamniotic twins may be significantly increased after IVF/ICSI cycles. Patients should be informed about the possible obstetric complications regarding this rare type of MZT.

  8. The placental factor in spontaneous preterm birth in twin vs. singleton pregnancies.

    Science.gov (United States)

    Weiner, Eran; Dekalo, Ann; Feldstein, Ohad; Barber, Elad; Schreiber, Letizia; Bar, Jacob; Kovo, Michal

    2017-07-01

    The association between infection and inflammatory response in singleton preterm birth (PTB) is well established, yet, less is known about PTB in twins. We aimed to compare the placental component and pregnancy outcome in pregnancies complicated with PTB of singletons vs. twin deliveries. We hypothesized that due to different underlying mechanisms, placental inflammatory lesions will be more prevalent in placentas derived from singleton pregnancies than twins. Labor characteristics, neonatal outcome and placental histopathology reports of spontaneous PTB at 24-33 6 / 7 weeks, from 1/2008-12/2015, were reviewed. were compared between dichorionic-diamniotic twin deliveries (twins group) and singleton deliveries (singleton group) matched for gestational age. Excluded from the study medically indicated deliveries, due to preeclampsia or fetal growth restriction, and monochorionic twins. Placental lesions were classified to maternal vascular supply lesions, fetal vascular supply lesions, and maternal (MIR) and fetal (FIR) inflammatory responses. Composite neonatal outcome was defined as one or more of early complications: respiratory distress, necrotizing enterocolitis, sepsis, blood transfusion, ventilation, seizures, intra-ventricular hemorrhage, hypoglycemia, phototherapy, or death. The twins group (n=72) was characterized by higher maternal BMI (p=0.009), and higher rates of assisted reproductive techniques (56.2% vs. 17.8%, pPTBs are characterized by higher rate of inflammatory and malperfusion lesions. The lack of these findings in twins PTBs suggests different factors that participate in the development of preterm birth in twins, such as over-distension of the uterus and up regulation of oxytocin receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Solar-assisted gas-energy water-heating feasibility for apartments

    Science.gov (United States)

    Davis, E. S.

    1975-01-01

    Studies of residential energy use, solar-energy technology for buildings, and the requirements for implementing technology in the housing industry led to a project to develop a solar water heater for apartments. A design study for a specific apartment was used to establish a solar water-heater cost model which is based on plumbing contractor bids and manufacturer estimates. The cost model was used to size the system to minimize the annualized cost of hot water. The annualized cost of solar-assisted gas-energy water heating is found to be less expensive than electric water heating but more expensive than gas water heating. The feasibility of a natural gas utility supplying the auxiliary fuel is evaluated. It is estimated that gas-utilizing companies will find it profitable to offer solar water heating as part of a total energy service option or on a lease basis when the price of new base-load supplies of natural gas reaches $2.50-$3.00 per million Btu.

  10. Monozygotic Triplets and Dizygotic Twins following Transfer of Three Poor-Quality Cleavage Stage Embryos

    Directory of Open Access Journals (Sweden)

    Reshef Tal

    2012-01-01

    Full Text Available Background. Assisted reproductive technology has been linked to the increased incidence of monozygotic twinning. It is of clinical importance due to the increased risk of complications in multiple pregnancies in general and in monozygotic twins in particular. Case. A 29-year-old female, nulligravida underwent her first IVF cycle. Three poor-quality cleavage stage embryos were transferred resulting in monochorionic triamniotic triplets and dichorionic diamniotic twins. Selective embryo reduction was performed at 12 weeks leaving dichorionic twins. The patient underwent emergency cesarean section due to preterm labor and nonreassuring fetal heart tracing at 30 weeks of gestation. Conclusion. Our case emphasizes that even embryos with significant morphological abnormalities should be considered viable and the possibility of simultaneous spontaneous embryo splitting must be factored into determining number of embryos to transfer.

  11. Electron collection enhancement arising from neutral gas jets on a charged vehicle in the ionosphere

    International Nuclear Information System (INIS)

    Gilchrist, B.E.; Banks, P.M.; Neubert, T.; Williamson, P.R.; Myers, N.B.; Raitt, W.J.; Sasaki, Susumu

    1990-01-01

    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated rocket payload in the ionosphere have been made during the cooperative high altitude rocket gun experiment (CHARGE) 2 using an electrically tethered mother/daughter payload system. The current collection enhancement was observed on a platform (daughter payload) located 100 to 400 m away from the main payload firing an energetic electron beam (mother payload). The authors interpret these results in terms of an electrical discharge forming in close proximity to the daughter vehicle during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. The results are also compared with recent laboratory observations of hollow cathode plasma contactors operating in the ignited mode

  12. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    International Nuclear Information System (INIS)

    Frid, W.

    1987-01-01

    This report provides results from analytical and experimental investigations on the behavior of a gas supersaturated molten jet expelled from a pressurized vessel. Aero-hydrodynamic stability of liquid jets in gas, stream degassing of molten metals and gas bubble nucleation in molten metals are relevant problems which are addressed in this work. Models are developed for jet expansion, primary breakup of the jet and secondary fragmentation of melt droplets resulting from violent effervescence of dissolved gas. The jet expansion model is based on a general relation for bubble growth which includes both inertia-controlled and diffusion-controlled growth phases. The jet expansion model is able to predict the jet void fraction, jet radius as a function of axial distance from the pressure vessel, bubble size and bubble pressure. The number density of gas bubbles in the melt, which is a basic parameter in the model, was determined experimentally and is about 10 8 per m 3 of liquid. The primary breakup of the jet produces a spray of droplets, about 2-3 mm in diameter. Parametric calculations for a TMLB' reactor accident sequence show that the corium jet is disrupted within a few initial jet diameters from the reactor vessel and that the radius of corium spray at the level of the reactor cavity floor is in the range of 0.8 to 2.6 m. (orig./HP)

  13. Probing jets from young embedded sources

    Science.gov (United States)

    Nisini, Brunella

    2017-08-01

    Jets are intimately related to the process of star formation and disc accretion. Our present knowledge of this key ingredient in protostars mostly relies on observations of optical jets from T Tauri stars, where the original circumstellar envelope has been already cleared out. However, to understand how jets are originally formed and how their properties evolve with time, detailed observations of young accreting protostars, i.e. the class 0/I sources, are mandatory. The study of class0/I jets will be revolutionised by JWST, able to penetrate protostars dusty envelopes with unprecedented sensitivity and resolution. However, complementary information on parameters inferred from lines in different excitation regimes, for at least a representative sample of a few bright sources, is essential for a correct interpretation of the JWST results. Here we propose to observe four prototype bright jets from class0/I sources with the WFC3 in narrow band filters in order to acquire high angular resolution images in the [OI]6300A, [FeII]1.25 and [FeII]1.64um lines. These images will be used to: 1) provide accurate extinction maps of the jets that will be an important archival reference for any future observation on these jets. 2) measure key parameters as the mass flux, the iron abundance and the jet collimation on the hot gas component of the jets. These information will provide an invaluable reference frame for a comparison with similar parameters measured by JWST in a different gas regime. In addition, these observations will allow us to confront the properties of class 0/I jets with those of the more evolved T Tauri stars.

  14. Structure of pulsed plasma jets

    International Nuclear Information System (INIS)

    Cavolowsky, J.A.

    1987-01-01

    A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and enhancing combustion. Having shown the ability to ignite lean fuel mixtures, it now offers the potential for real-time control of combustion processes. This study explored the fluid-mechanical and chemical properties of such jets. The fluid-mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. It revealed that plasma jets behave either totally subsonic or embody a supersonic core. The turbulent, thermal evolution of the jet was explored using high-speed-laser schlieren cinematography. By examining plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. These records revealed the production of thermal stratifications in the cavity that could account for the plasma particles in the jet core. After the electrical discharges ceased, the turbulent jet behaved as a self-similar plume. Molecular-beam mass spectrometry was used to determine temperature and species concentration in the jet. Both non-combustible and combustible jets were studied

  15. The Qingdao Twin Registry

    DEFF Research Database (Denmark)

    Duan, Haiping; Ning, Feng; Zhang, Dongfeng

    2013-01-01

    In 1998, the Qingdao Twin Registry was initiated as the main part of the Chinese National Twin Registry. By 2005, a total of 10,655 twin pairs had been recruited. Since then new twin cohorts have been sampled, with one longitudinal cohort of adolescent twins selected to explore determinants of me...

  16. Twins and non-twin siblings: different estimates of shared environmental influence in early childhood.

    Science.gov (United States)

    Koeppen-Schomerus, Gesina; Spinath, Frank M; Plomin, Robert

    2003-04-01

    Twin studies typically indicate shared environmental influence for cognitive abilities, especially in early childhood. However, across studies, DZ twin correlations tend to be greater than non-twin sibling correlations, suggesting that twin estimates of shared environment are to some extent specific to twins. We tested this hypothesis in a sample of more than 1800 MZ and 1800 same-sex DZ pairs from the Twins Early Development Study (TEDS), a study of twins born in England and Wales in 1994 and 1995. For this analysis, we obtained comparable data from more than 130 same-sex younger siblings of the twins. Twins and their younger siblings were assessed for language, cognitive abilities and behavior problems by their parents at 2 and 3 years of age. For language and cognitive measures at both 2 and 3 years, but not for behavior problems, estimates of shared environment were more than twice as large for twins as compared to non-twin siblings. We conclude that about half of twin study estimates of shared environment for cognitive abilities in early childhood are specific to twins. Although many possibilities exist for explaining the special shared environment effect for twins, we suggest that cognitive-relevant experiences that are not shared by siblings are shared by twins because they are exactly the same age.

  17. Evaluation of the plasma hydrogen isotope content by residual gas analysis at JET and AUG

    Science.gov (United States)

    Drenik, A.; Alegre, D.; Brezinsek, S.; De Castro, A.; Kruezi, U.; Oberkofler, M.; Panjan, M.; Primc, G.; Reichbauer, T.; Resnik, M.; Rohde, V.; Seibt, M.; Schneider, P. A.; Wauters, T.; Zaplotnik, R.; ASDEX-Upgrade, the; EUROfusion MST1 Teams; contributors, JET

    2017-12-01

    The isotope content of the plasma reflects on the dynamics of isotope changeover experiments, efficiency of wall conditioning and the performance of a fusion device in the active phase of operation. The assessment of the isotope ratio of hydrogen and methane molecules is used as a novel method of assessing the plasma isotope ratios at JET and ASDEX-Upgrade (AUG). The isotope ratios of both molecules in general shows similar trends as the isotope ratio detected by other diagnostics. At JET, the absolute values of RGA signals are in relatively good agreement with each other and with spectroscopy data, while at AUG the deviation from neutral particle analyser data are larger, and the results show a consistent spatial distribution of the isotope ratio. It is further shown that the isotope ratio of the hydrogen molecule can be used to study the degree of dissociation of the injected gas during changeover experiments.

  18. A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI

    Science.gov (United States)

    Tiedemann, D.; Stiebing, K. E.; Winters, D. F. A.; Quint, W.; Varentsov, V.; Warczak, A.; Malarz, A.; Stöhlker, Th.

    2014-11-01

    A pulsed supersonic gas jet target for experiments at the HITRAP facility at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt has been designed and built as a multi-purpose installation for key experiments on fundamental atomic physics in strong fields. This setup is currently installed at the Institut für Kernphysik of Goethe-University, Frankfurt am Main (IKF), in order to explore its operation prior to its installation at the HITRAP facility. Design and performance of the target are described. The measured target densities of 5.9×1012 atoms/cm3 for helium and 8.1×1012 atoms/cm³ for argon at the stagnation pressure of 30 bar match the required values. The target-beam diameter of 0.9 mm and the pulsed operation mode (jet built-up-time ≤15 ms) are well suited for the use at HITRAP.

  19. Effect of co-twin gender on neurodevelopmental symptoms: a twin register study.

    Science.gov (United States)

    Eriksson, Jonna Maria; Lundström, Sebastian; Lichtenstein, Paul; Bejerot, Susanne; Eriksson, Elias

    2016-01-01

    Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are neurodevelopmental disorders thought to have both genetic and environmental causes. It has been hypothesized that exposure to elevated levels of prenatal testosterone is associated with elevated traits of ASD and ADHD. Assuming that testosterone levels from a dizygotic male twin fetus may lead to enhanced testosterone exposure of its co-twins, we aimed to test the prenatal testosterone hypothesis by comparing same-sex with opposite-sex dizygotic twins with respect to neurodevelopmental symptoms. Neuropsychiatric traits were assessed in a population-based twin cohort from the Child and Adolescent Twin Study in Sweden (CATSS). Parental interviews were conducted for 16,312 dizygotic twins, 9 and 12 years old, with the Autism-Tics, ADHD, and other Comorbidities inventory (A-TAC). Girls with a female co-twin had an increased risk of reaching the cut-off score for ADHD compared with girls with a male co-twin. Both boys and girls with a female co-twin displayed a larger number of traits related to attention deficit and repetitive and stereotyped behaviors than those with a male twin. In girls, this also extended to social interaction and the combined measures for ASD and ADHD, however, with small effect sizes. Our results are reverse to what would have been expected from the prenatal testosterone hypothesis but consistent with a previous study of ASD and ADHD traits in dizygotic twins. The seemingly protective effect for girls of having a twin brother may be an effect of parent report bias, but may also be an unexpected effect of sharing the intrauterine environment with a male co-twin.

  20. Experimental study of elliptical jet from sub to supercritical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in [Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India)

    2014-04-15

    The jet mixing at supercritical conditions involves fluid dynamics as well as thermodynamic phenomena. All the jet mixing studies at critical conditions to the present date have focused only on axisymmetric jets. When the liquid jet is injected into supercritical environment, the thermodynamic transition could be well understood by considering one of the important fluid properties such as surface tension since it decides the existence of distinct boundary between the liquid and gaseous phase. It is well known that an elliptical liquid jet undergoes axis-switching phenomena under atmospheric conditions due to the presence of surface tension. The experimental investigations were carried out with low speed elliptical jet under supercritical condition. Investigation of the binary component system with fluoroketone jet and N{sub 2} gas as environment shows that the surface tension force dominates for a large downstream distance, indicating delayed thermodynamic transition. The increase in pressure to critical state at supercritical temperature is found to expedite the thermodynamic transition. The ligament like structures has been observed rather than droplets for supercritical pressures. However, for the single component system with fluoroketone jet and fluoroketone environment shows that the jet disintegrates into droplets as it is subjected to the chamber conditions even for the subcritical pressures and no axis switching phenomenon is observed. For a single component system, as the pressure is increased to critical state, the liquid jet exhibits gas-gas like mixing behavior and that too without exhibiting axis-switching behavior.

  1. Smashing a Jet into a Cloud to Form Stars

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    What happens when the highly energetic jet from the center of an active galaxy rams into surrounding clouds of gas and dust? A new study explores whether this might be a way to form stars.The authors simulations at an intermediate (top) and final (bottom) stage show the compression in the gas cloud as a jet (red) enters from the left. Undisturbed cloud material is shown in blue, whereas green corresponds to cold, compressed gas actively forming stars. [Fragile et al. 2017]Impacts of FeedbackCorrelation between properties of supermassive black holes and their host galaxies suggest that there is some means of communication between them. For this reason, we suspect that feedback from an active galactic nucleus (AGN) in the form of jets, for instance controls the size of the galaxy by influencing star formation. But how does this process work?AGN feedback can be either negative or positive. In negative feedback, the gas necessary for forming stars is heated or dispersed by the jet, curbing or halting star formation. In positive feedback, jets propagate through the surrounding gas with energies high enough to create compression in the gas, but not so high that they heat it. The increased density can cause the gas to collapse, thereby triggering star formation.In a recent study, a team of scientists led by Chris Fragile (College of Charleston) modeled what happens when an enormous AGN jet slams into a dwarf-galaxy-sized, inactive cloud of gas. In particular, the team explored the possibility of star-forming positive feedback with the goal of reproducing recent observations of something called Minkowskis Object, a stellar nursery located at the endpoint of a radio jet emitted from the active galaxy NGC 541.The star formation rate in the simulated cloud increases dramatically as a result of the jets impact, reaching the rate currently observed for Minkowskis Objects within 20 million years. [Fragile et al. 2017]Triggering Stellar BirthFragile and collaborators used a

  2. Formation of a vortex flow at the laser cutting of sheet metal with low pressure of assisting gas

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, O B; Yudin, P V; Zaitsev, A V [Khristianovich' s Institute of Theoretical and Applied Mechanics, Russian Academy of Sciences, Siberian Branch, Novosibirsk (Russian Federation)], E-mail: kovalev@itam.nsc.ru

    2008-08-07

    Specific features of subsonic jet gas flows in narrow channels geometrically similar to the laser cut are studied experimentally and theoretically. Such flows are visualized by a technique based on prior application of a viscous liquid film onto the side walls of the channel made of transparent glass. The gas flow inside the channel induces a liquid flow on the glass wall in the form of extremely small filaments, which coincide with the streamlines of the gas flow. Filming of these filaments by a CCD camera allows one to capture the specific features of these gas-dynamic flows. Mathematical modelling of the dynamics of a viscous compressible heat-conducting gas was performed by solving full three-dimensional Navier-Stokes equations. Numerical calculations and experiments reveal vortex structures in the flow at the entrance and exit of the channel, which may directly affect the surface quality in real gas-laser cutting of metals. The largest vortex, which arises at the channel exit, collects and accumulates the liquid flowing down the channel walls. Jet flows are generated by sonic nozzles with conical or cylindrical exit sections or by a double coaxial nozzle. The double nozzle includes the central conical nozzle and the side concentric nozzle, which allows additional side injection of the gas to be organized. The study with the double nozzle shows that the vortices disappear as the pressure in the external nozzle is increased, and a stable vortex-free attached gas flow is formed.

  3. Micro-jet Cooling by Compressed Air after MAG Welding

    OpenAIRE

    Węgrzyn T.; Piwnik J.; Tarasiuk W.; Stanik Z.; Gabrylewski M.

    2016-01-01

    The material selected for this investigation was low alloy steel weld metal deposit (WMD) after MAG welding with micro-jet cooling. The present investigation was aimed as the following tasks: analyze impact toughness of WMD in terms of micro-jet cooling parameters. Weld metal deposit (WMD) was first time carried out for MAG welding with micro-jet cooling of compressed air and gas mixture of argon and air. Until that moment only argon, helium and nitrogen and its gas mixture were tested for mi...

  4. Attractiveness Differences Between Twins Predicts Evaluations of Self and Co-Twin

    Science.gov (United States)

    Principe, Connor P.; Rosen, Lisa H.; Taylor-Partridge, Teresa; Langlois, Judith H.

    2012-01-01

    One of the most consistent findings in psychology shows that people prefer and make positive attributions about attractive compared with unattractive people. The goal of the current study was to determine the power of attractiveness effects by testing whether these social judgments are made where attractiveness differences are smallest: between twins. Differences in facial attractiveness predicted twins’ evaluations of self and their co-twin (n = 158; 54 male). In twin pairs, the more attractive twin judged their less attractive sibling as less physically attractive, athletic, socially competent, and emotionally stable. The less attractive twin did the reverse. Given that even negligible differences in facial attractiveness predicted self and co-twin attitudes, these results provide the strongest test yet of appearance-based stereotypes. PMID:23467329

  5. Cryogenically assisted abrasive jet micromachining of polymers

    International Nuclear Information System (INIS)

    Getu, H; Papini, M; Spelt, J K

    2008-01-01

    The abrasive jet micromachining (AJM) of elastomers and polymers such as polydimethylsiloxane (PDMS), acrylonitrile butadiene styrene (ABS) and polytetrafluoroethylene (PTFE) for use in micro-fluidic devices was found to be very slow or impossible at room temperature. To enhance the material removal rate in such materials, a stream of liquid nitrogen (LN 2 ) was injected into the abrasive jet, cooling the target to cryogenic temperatures. Erosion rate measurements on the three polymeric materials (PDMS, ABS and PTFE) with and without the use of LN 2 were compared along with the profiles of micromachined channels and holes. It was found that the use of LN 2 cooling caused brittle erosion in PDMS, allowing it to be micromachined successfully. An erosion rate increase was also observed in PTFE and ABS at high and intermediate impact angles. The use of LN 2 also was found to reduce particle embedding

  6. Silicon etching of difluoromethane atmospheric pressure plasma jet combined with its spectroscopic analysis

    Science.gov (United States)

    Sung, Yu-Ching; Wei, Ta-Chin; Liu, You-Chia; Huang, Chun

    2018-06-01

    A capacitivly coupled radio-frequency double-pipe atmospheric-pressure plasma jet is used for etching. An argon carrier gas is supplied to the plasma discharge jet; and CH2F2 etch gas is inserted into the plasma discharge jet, near the silicon substrate. Silicon etchings rate can be efficiently-controlled by adjusting the feeding etching gas composition and plasma jet operating parameters. The features of silicon etched by the plasma discharge jet are discussed in order to spatially spreading plasma species. Electronic excitation temperature and electron density are detected by increasing plasma power. The etched silicon profile exhibited an anisotropic shape and the etching rate was maximum at the total gas flow rate of 4500 sccm and CH2F2 concentration of 11.1%. An etching rate of 17 µm/min was obtained at a plasma power of 100 W.

  7. Influence of Xe and Kr impurities on x-ray yield from debris-free plasma x-ray sources with an Ar supersonic gas jet irradiated by femtosecond near-infrared-wavelength laser pulses

    Science.gov (United States)

    Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Petrov, G. M.; Safronova, A. S.; Petkov, E. E.; Moschella, J. J.; Shrestha, I.; Cline, W.; Wiewior, P.; Chalyy, O.

    2016-11-01

    Many aspects of physical phenomena occurring when an intense laser pulse with subpicosecond duration and an intensity of 1018-1019W /cm2 heats an underdense plasma in a supersonic clustered gas jet are studied to determine the relative contribution of thermal and nonthermal processes to soft- and hard-x-ray emission from debris-free plasmas. Experiments were performed at the University of Nevada, Reno (UNR) Leopard laser operated with a 15-J, 350-fs pulse and different pulse contrasts (107 or 105). The supersonic linear (elongated) nozzle generated Xe cluster-monomer gas jets as well as jets with Kr-Ar or Xe-Kr-Ar mixtures with densities of 1018-1019cm-3 . Prior to laser heating experiments, all jets were probed with optical interferometry and Rayleigh scattering to measure jet density and cluster distribution parameters. The supersonic linear jet provides the capability to study the anisotropy of x-ray yield from laser plasma and also laser beam self-focusing in plasma, which leads to efficient x-ray generation. Plasma diagnostics included x-ray diodes, pinhole cameras, and spectrometers. Jet signatures of x-ray emission from pure Xe gas, as well as from a mixture with Ar and Kr, was found to be very different. The most intense x-ray emission in the 1-9 KeV spectral region was observed from gas mixtures rather than pure Xe. Also, this x-ray emission was strongly anisotropic with respect to the direction of laser beam polarization. Non-local thermodynamic equilibrium (Non-LTE) models have been implemented to analyze the x-ray spectra to determine the plasma temperature and election density. Evidence of electron beam generation in the supersonic jet plasma was found. The influence of the subpicosecond laser pulse contrast (a ratio between the laser peak intensity and pedestal pulse intensity) on the jets' x-ray emission characteristics is discussed. Surprisingly, it was found that the x-ray yield was not sensitive to the prepulse contrast ratio.

  8. Can prematurity risk in twin pregnancies after in vitro fertilization be predicted? A retrospective study

    Directory of Open Access Journals (Sweden)

    Barad David

    2009-01-01

    Full Text Available Abstract Background Assisted reproduction (ART contributes to world-wide increases of twin pregnancies, in turn raising prematurity risks. Whether characteristics of ART cycles, resulting in twin gestations, can predict prematurity risks was the subject of this study. Methods One-hundred-and-six women, ages 20 to 39 years, with consecutive dichorionic-diamniotic (DC/DA twin gestations were retrospectively investigated. All pregnancies investigated followed fresh ART cycles, with use of autologous gamets, and were delivered at a university-based high-risk, maternal-fetal medicine unit. Only premature deliveries (i.e., <37.0 weeks gestational age, with viable neonate(s of ≥ 500 grams, were considered for analysis. Results After 1.8 +/- 1.2 ART cycles, 11.0 +/- 5.4 oocytes were retrieved and 2.4 +/- 0.9 embryos transferred in 106 women aged 31.6 +/- 4.2 years. Indications for ART treatment were male factor in 51.9%, female infertility in 27.4% and combined infertility in 20.8%. Though maternal age significantly influenced prematurity risk (p < 0.05, paternal age, maternal body mass index, indications for fertility treatment, number of previous ART attempts, oocytes retrieved or embryos transferred, as well as stimulation protocols and previous ART pregnancies, were not associated with gestational duration in twin pregnancies. Summary Except for female age, baseline and ART cycle characteristics do not allow for prediction of prematurity risk in dichorionic twin gestations after assisted reproduction.

  9. Possibilities of Application of High Pressure Jet Assisted Machining in Hard Turning with Carbide Tools

    Directory of Open Access Journals (Sweden)

    G. Globočki Lakić

    2017-06-01

    Full Text Available High Pressure Jet Assisted Machining (HPJAM in turning is a hybrid machining method in which a high pressure jet of cooling and lubrication fluid, under high pressure (50 MPa, leads to the zone between the cutting tool edge and workpiece. An experimental study was performed to investigate the capabilities of conventional and high pressure cooling (HPC in the turning of hard-to-machine materials: hard-chromed and surface hardened steel Ck45 (58 HRc and hardened bearing steel 100Cr6 (62 HRc. Machining experiments were performed using coated carbide tools and highly cutting speed. Experimental measurements were performed for different input process parameters. The cooling capabilities are compared by monitoring of tool wear, tool life, cooling efficiency, and surface roughness. Connection between the tool wear and surface roughness is established. Experimental research show that the hard turning with carbide cutting tools and HP supply CLF provides numerous advantages from the techno-economic aspect: greater productivity, reduce of temperature in the cutting zone, improved control chip formation, extended tool life, low intensity of tool wear, surface roughness in acceptable limits, significant reduce of production costs related to the CLF.

  10. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

    Energy Technology Data Exchange (ETDEWEB)

    Gaeggeler, H W [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs.

  11. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

    International Nuclear Information System (INIS)

    Gaeggeler, H.W.

    1996-01-01

    Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs

  12. The electron beam diagnostic of the clustered supersonic nitrogen jets

    Science.gov (United States)

    Avtaeva, S. V.; Yakovleva, T. S.; Kalyada, V. V.; Zarvin, A. E.

    2017-11-01

    Axial and radial distributions of the rotational temperature and density of N2 molecules in supersonic nitrogen jets formed with conic nozzles (critical diameters dcr of 0.17 and 0.21 mm) were studied using the electron beam fluorescence technique at stagnation pressures P0 of 0.1-0.6 MPa. A rotational temperature Tr , equaling a gas temperature Tg owing to fast RT relaxation, was obtained using the rotational line relative intensity distribution in (0-1) vibrational band of the N2 first negative system. Gas density profiles in the jets were obtained using the integral intensity of the band. It is found, Tr at the nozzle outlet is of the order of a few tens of Kelvin and at further expansion Tr drops up to 15-20K at distance of (100-200) dcr . The gas temperature and density distributions in the studied supersonic nitrogen jets are not similar to the isentropic distributions. It is shown that the lower is the stagnation pressure the faster the gas density and temperature decrease with distance from the nozzle. Increase in P0 leads to elevating Tg in the jets. A reason for this effect may be cluster formation in the jets. Estimations of cluster mean sizes in the jets using Hagena’s parameter show presence of large clusters (M≥200) at P0 = 0.4-0.6 MPa.

  13. Cold plasma decontamination using flexible jet arrays

    Science.gov (United States)

    Konesky, Gregory

    2010-04-01

    Arrays of atmospheric discharge cold plasma jets have been used to decontaminate surfaces of a wide range of microorganisms quickly, yet not damage that surface. Its effectiveness in decomposing simulated chemical warfare agents has also been demonstrated, and may also find use in assisting in the cleanup of radiological weapons. Large area jet arrays, with short dwell times, are necessary for practical applications. Realistic situations will also require jet arrays that are flexible to adapt to contoured or irregular surfaces. Various large area jet array prototypes, both planar and flexible, are described, as is the application to atmospheric decontamination.

  14. Jet supercooling and molecular jet spectroscopy

    International Nuclear Information System (INIS)

    Wharton, L.; Levy, D.

    1979-01-01

    The marriage of the laser and the seeded supersonic jet has generated a family of new optical spectroscopic results. We shall discuss the essential features of the technique and some results. The results will include structural and dynamical views of NO 2 , NaAr, and I 2 -noble gas complexes. The extension of the method to heavier systems is illustrated with free base phthalocyanine

  15. Characterization of high-pressure, underexpanded hydrogen-jet flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W.; Houf, W.G.; Williams, T.C. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Bourne, B.; Colton, J. [SRI International, 333 Ravenwood Ave., Menlo Park, CA 94025 (United States)

    2007-08-15

    Measurements were performed to characterize the dimensional and radiative properties of large-scale, vertical hydrogen-jet flames. This data is relevant to the safety scenario of a sudden leak in a high-pressure hydrogen containment vessel and will provide a technological basis for determining hazardous length scales associated with unintended hydrogen releases at storage and distribution centers. Jet flames originating from high-pressure sources up to 413 bar (6000 psi) were studied to verify the application of correlations and scaling laws based on lower-pressure subsonic and choked-flow jet flames. These higher pressures are expected to be typical of the pressure ranges in future hydrogen storage vessels. At these pressures the flows exiting the jet nozzle are categorized as underexpanded jets in which the flow is choked at the jet exit. Additionally, the gas behavior departs from that of an ideal-gas and alternate formulations for non-ideal gas must be introduced. Visible flame emission was recorded on video to evaluate flame length and structure. Radiometer measurements allowed determination of the radiant heat flux characteristics. The flame length results show that lower-pressure engineering correlations, based on the Froude number and a non-dimensional flame length, also apply to releases up to 413 bar (6000 psi). Similarly, radiative heat flux characteristics of these high-pressure jet flames obey scaling laws developed for low-pressure, smaller-scale flames and a wide variety of fuels. The results verify that such correlations can be used to a priori predict dimensional characteristics and radiative heat flux from a wide variety of hydrogen-jet flames resulting from accidental releases. (author)

  16. Estimating twin concordance for bivariate competing risks twin data

    DEFF Research Database (Denmark)

    Scheike, Thomas; Holst, Klaus K.; Hjelmborg, Jacob B.

    2014-01-01

    For twin time-to-event data, we consider different concordance probabilities, such as the casewise concordance that are routinely computed as a measure of the lifetime dependence/correlation for specific diseases. The concordance probability here is the probability that both twins have experience...... events with the competing risk death. We thus aim to quantify the degree of dependence through the casewise concordance function and show a significant genetic component...... the event of interest. Under the assumption that both twins are censored at the same time, we show how to estimate this probability in the presence of right censoring, and as a consequence, we can then estimate the casewise twin concordance. In addition, we can model the magnitude of within pair dependence...... over time, and covariates may be further influential on the marginal risk and dependence structure. We establish the estimators large sample properties and suggest various tests, for example, for inferring familial influence. The method is demonstrated and motivated by specific twin data on cancer...

  17. Reduction of multifetal gestation to twins: is it always possible to attain natural outcomes?

    Directory of Open Access Journals (Sweden)

    Tuncay Yuce

    2016-09-01

    Material and Methods: Women with multifetal gestation whose pregnancies were reduced to twins were compared with spontaneous twins and assisted reproduction twins. The main outcome measures were the duration of pregnancy, premature labor and delivery rates, complication rates during pregnancy, birth weight, APGAR scores, neonatal intensive care unite admission rates, and delivery routes. Results: 380 twin deliveries followed up at our institution between years 2007-2014 were enrolled. All data concerning perinatal outcomes were compared among three groups. twins conceived spontaneously (group 3, n=165 and via IVF (group 1, n=117 along with IVF conceived high order pregnancies wherein embryo reduction was implemented (group 2, n=49. The duration of pregnancy, the rate of premature and the rate of overall pregnancy associated complications were all favorable in group 1 rather than group 2. As well, the mean birth weight and APGAR scores at 1st and 5th minutes were all found to be lower in group 2 than in group 1. Conclusion: The results emphasize embryo reduction should be acknowledged as a salvage procedure due to high risk of complications in embryo reduced high-order pregnancies. Embryo reduction yields results comparable to twins conceived via IVF yields poorer results compared to spontaneously conceived twins. [Cukurova Med J 2016; 41(3.000: 485-490

  18. Modeling acardiac twin pregnancies

    NARCIS (Netherlands)

    de Groot, Rosa; van den Wijngaard, Jeroen P. H. M.; Umur, Asli; Beek, Johan F.; Nikkels, Peter G. J.; van Gemert, Martin J. C.

    2007-01-01

    Acardiac twin pregnancies are a rare but severe complication of monochorionic twinning, where the acardiac twin lacks cardiac function but nevertheless grows during pregnancy because it is perfused by the pump twin through a set of placental arterioarterial and venovenous anastomoses. Because the

  19. Millstone 3 condensate dissolved gas monitoring

    International Nuclear Information System (INIS)

    Burns, T.F.; Grondahl, E.E.; Snyder, D.T.

    1988-01-01

    Condensate dissolved oxygen problems at Millstone Point Unit 3 (MP3) were investigated using the Dissolved Gas Monitoring System developed by Radiological and Chemical Technology, Inc. under EPRI sponsorship. Argon was injected into the turbine exhaust basket tips to perform a dissolved gas transport analysis and determine steam jet air ejector gas removal efficiency. The operating configuration of the steam jet air ejector system was varied to determine the effect on gas removal efficiency. Following circulating water chlorination, the gas removal efficiency was determined to evaluate the effect of condenser tube fouling on steam jet air ejector performance

  20. Investigation on convective mixing of triple-jet. Evaluation of turbulent quantities using particle image velocimetry and direct numerical simulation

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Igarashi, Minoru; Kamide, Hideki

    2002-01-01

    We performed a water experiment on parallel triple-jet and a calculation using a direct numerical simulation (DNS) for a quantification of thermal striping. The local temperatures and velocities were measured by using thermocouples and the particle image velocimetry (PIV), respectively. The calculation was carried out using the quasi-DNS code, DINUS-3, which was based on the finite difference method. The oscillation of the jets obtained from the flow visualization was related to the movements of the twin vortices between the jets by using the PIV. The experimental temperatures/velocities results were close to the numerical results. The heat transportation among the jets was evaluated by using the turbulent heat fluxes obtained from the quasi-DNS. (author)

  1. Effect of gas injection during LH wave coupling at ITER-relevant plasma-wall distances in JET

    International Nuclear Information System (INIS)

    Ekedahl, A; Goniche, M; Basiuk, V; Delpech, L; Imbeaux, F; Joffrin, E; Loarer, T; Rantamaeki, K; Mailloux, J; Alper, B; Baranov, Y; Beaumont, P; Corrigan, G; Erents, K; Hawkes, N; McDonald, D; Petrzilka, V; Granucci, G; Hobirk, J; Kirov, K

    2009-01-01

    Good coupling of lower hybrid (LH) waves has been demonstrated in different H-mode scenarios in JET, at high triangularity (δ ∼ 0.4) and at large distance between the last closed flux surface and the LH launcher (up to 15 cm). Local gas injection of D 2 in the region magnetically connected to the LH launcher is used for increasing the local density in the scrape-off layer (SOL). Reciprocating Langmuir probe measurements magnetically connected to the LH launcher indicate that the electron density profile flattens in the far SOL during gas injection and LH power application. Some degradation in normalized H-mode confinement, as given by the H98(y,2)-factor, could be observed at high gas injection rates in these scenarios, but this was rather due to total gas injection and not specifically to the local gas puffing used for LH coupling. Furthermore, experiments carried out in L-mode plasmas in order to evaluate the effect on the LH current drive efficiency, when using local gas injection to improve the coupling, indicate only a small degradation (ΔI LH /I LH ∼ 15%). This effect is largely compensated by the improvement in coupling and thus increase in coupled power when using gas puffing.

  2. Jet array impingement flow distributions and heat transfer characteristics. Effects of initial crossflow and nonuniform array geometry. [gas turbine engine component cooling

    Science.gov (United States)

    Florschuetz, L. W.; Metzger, D. E.; Su, C. C.; Isoda, Y.; Tseng, H. H.

    1982-01-01

    Two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate are considered. The jet flow, after impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer surface. The configurations considered are intended to model those of interest in current and contemplated gas turbine airfoil midchord cooling applications. The effects of an initial crossflow which approaches the array through an upstream extension of the channel are considered. Flow distributions as well as heat transfer coefficients and adiabatic wall temperatures resolved to one streamwise hole spacing were measured as a function of the initial crossflow rate and temperature relative to the jet flow rate and temperature. Both Nusselt number profiles and dimensionless adiabatic wall temperature (effectiveness) profiles are presented and discussed. Special test results which show a significant reduction of jet orifice discharge coefficients owing to the effect of a confined crossflow are also presented, along with a flow distribution model which incorporates those effects. A nonuniform array flow distribution model is developed and validated.

  3. Methodology and results of risk assessment of interconnections within the JET active gas handling system

    International Nuclear Information System (INIS)

    Ballantyne, P.R.; Bell, A.C.; Konstantellos, A.; Hemmerich, J.L.

    1992-01-01

    The Joint European Torus (JET) Active Gas Handling System (AGHS) is a complex interconnection of numerous subsystems. While individual subsystems were assessed for their risk of operation, an assessment of the effects of inadvertent interconnections was needed. A systematic method to document the assessment was devised to ease the assessment of complex plant and was applied to the AGHS. The methodology, application to AGHS, the four critical issues and required plant modifications as a result of this assessment are briefly discussed in this paper

  4. Gas-assisted injection moulding: adding two components and moveable inserts

    NARCIS (Netherlands)

    Neerincx, P.E.; Meijer, H.E.H.

    2009-01-01

    Gas assisted injection moulding (GAIM) is a technique that is successfully used for compensating shrinkage during injection moulding of thick walled but still accurate products with low levels of internal stresses and frozen-in orientation. In this study the authors apply GAIM in moulding 28 mm

  5. Personality and birth order in monozygotic twins adopted apart: a test of Sulloway's theory; Research Reviews: twin births and cancer risk in mothers, male sexual dysfunction, twin study of ultimatum game behavior; Human Interest: 'The Land of Twins', twin-like reunion-I, twin-like reunion-II.

    Science.gov (United States)

    Segal, Nancy L

    2008-02-01

    A brief overview of Sulloway's (1996) theory of birth order and personality is presented. A reared apart twin approach for testing his personality findings regarding openness to experience and conscientiousness in first borns and later borns is described. This is followed by summaries of three recent twin studies. The topics include cancer risk in mother of twins, sexual dysfunction in males and responder behavior during ultimatum games. This article concludes with a discussion of twinning rates and rituals among the Yoruba of western Nigeria, and descriptions of two unusual reunions between siblings and twins.

  6. IVF twins: buy one get one free?

    Science.gov (United States)

    Ismail, Laura; Mittal, Monica; Kalu, Emmanuel

    2012-10-01

    There has been an overall increase in the incidence of multiple pregnancies and assisted reproduction technology is largely responsible for this rise. Although twins may appeal to couples undergoing in vitro fertilisation (IVF), they have been associated with serious health consequences to the babies, their mothers and the family unit, as well as having massive financial implications for the National Health Service. Transfer of more than one embryo during IVF is mainly responsible for IVF twins, and elective transfer of a single embryo at a time with cryopreservation of surplus embryos for later transfer has been shown to be an effective strategy to minimise the risk of twins without compromising IVF success rates. Factors that will impact on the success of the policy of elective single embryo transfer (eSET) include improvement in embryo selection for transfer, better cryopreservation techniques and adequate state funding for IVF. However, in implementing the policy of eSET it is important that each case is assessed on an individual basis since in some situations (e.g. in older women) the transfer of two embryos may be more cost effective. Adequate and continuous education of all stakeholders is essential if the policy of eSET is to be successful in the UK.

  7. Pellet injectors for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Lang, R.S.; Schilling, H.B.; Ulrich, M.

    1981-09-01

    Pellet injection for the purpose of refuelling and diagnostic of fusion experiments is considered for the parameters of JET. The feasibility of injectors for single pellets and for quasistationary refuelling is discussed. Model calculations on pellet ablation with JET parameters show the required pellet velocity ( 3 ). For single pellet injection a light gas gun, for refuelling a centrifuge accelerator is proposed. For the latter the mechanical stress problems are discussed. Control and data acquisition systems are outlined. (orig.)

  8. How to identify twins at low risk of spontaneous preterm delivery

    DEFF Research Database (Denmark)

    Sperling, L; Kiil, C; Larsen, Lene Unmack

    2005-01-01

    delivery at different cut-off levels of cervical length were determined. RESULTS: Eighty-nine percent of the twins had dichorionic placentation and 58% were conceived after assisted reproduction. The rate of spontaneous preterm delivery was 2.3% (1.5% for dichorionic (DC) and 9.1% for (MC) monochorionic...

  9. Transverse jets and their control

    Energy Technology Data Exchange (ETDEWEB)

    Karagozian, Ann R. [Department of Mechanical and Aerospace Engineering, University of California, 48-121 Engineering IV, Los Angeles, CA 90095 (United States)

    2010-10-15

    The jet in crossflow or transverse jet has been studied extensively because of its relevance to a wide variety of flows in technological systems, including fuel or dilution air injection in gas turbine engines, thrust vector control for high speed airbreathing and rocket vehicles, and exhaust plumes from power plants. These widespread applications have led over the past 50+ years to experimental, theoretical, and numerical examinations of this fundamental flowfield, with and without a combustion reaction, and with single or multi-phase flow. The complexities in this flowfield, whether the jet is introduced flush with respect to the injection wall or from an elevated pipe or nozzle, present challenges in accurately interrogating, analyzing, and simulating important jet features. This review article provides a background on these studies and applications as well as detailed features of the transverse jet, and mechanisms for its control via active means. Promising future directions for the understanding, interrogation, simulation, and control of transverse jet flows are also identified and discussed. (author)

  10. Low Alloy Steel Structures After Welding with Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2017-03-01

    Full Text Available The paper focuses on low alloy steel after innovate welding method with micro-jet cooling. Weld metal deposit (WMD was carried out for welding and for MIG and MAG welding with micro-jet cooling. This method is very promising mainly due to the high amount of AF (acicular ferrite and low amount of MAC (self-tempered martensite, retained austenite, carbide phases in WMD. That structure corresponds with very good mechanical properties, ie. high impact toughness of welds at low temperature. Micro-jet cooling after welding can find serious application in automotive industry very soon. Until that moment only argon, helium and nitrogen were tested as micro-jet gases. In that paper first time various gas mixtures (gas mixtures Ar-CO2 were tested for micro-jet cooling after welding.

  11. A numerical model for buoyant oil jets and smoke plumes

    International Nuclear Information System (INIS)

    Zheng, L.; Yapa, P. D.

    1997-01-01

    Development of a 3-D numerical model to simulate the behaviour of buoyant oil jets from underwater accidents and smoke plumes from oil burning was described. These jets/plumes can be oil-in-water, oil/gas mixture in water, gas in water, or gas in air. The ambient can have a 3-D flow structure, and spatially/temporally varying flow conditions. The model is based on the Lagrangian integral technique. The model formulation of oil jet includes the diffusion and dissolution of oil from the jet to the ambient environment. It is suitable to simulate well blowout accidents that can occur in deep waters, including that of the North Sea. The model has been thoroughly tested against a variety of data, including data from both laboratory and field experiments. In all cases the simulation data compared very well with experimental data. 26 refs., 10 figs

  12. Battery-Powered RF Pre-Ionization System for the Caltech Magnetohydrodynamically-Driven Jet Experiment: RF Discharge Properties and MHD-Driven Jet Dynamics

    Science.gov (United States)

    Chaplin, Vernon H.

    This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel

  13. The nature of pseudo-twinning modes on the basis of a twin classification scheme

    International Nuclear Information System (INIS)

    Singh, Jung B.; Sundararaman, M.; Krishnan, M.

    2011-01-01

    Pseudo-twins can form in ordered structures under high stress conditions. These twins are defined by lattice sites that are at twin positions but are incorrectly occupied by different species of atoms. The present note discusses if it is possible to further classify pseudo-twins into different modes based on the nature of associated twinning elements.

  14. The promising gas-dynamic schemes of vacuum deposition from the supersonic gas mixture flows

    International Nuclear Information System (INIS)

    Maltsev, R V; Rebrov, A K

    2008-01-01

    Gas jet deposition (GJD) becomes promising method of thin film and nanoparticle deposition. This paper is focused on elaboration of new methods of GJD based on different gas dynamic schemes of flow formation and interaction with substrate. Using direct statistical simulation method, the analysis was performed for: a) interaction of the jet from the sonic nozzle with a substrate; b) fan flow in the result of interaction of two opposite jets; c) convergent flow from the ring nozzle, directional to the axis; d) interaction of the jet after convergent flow with the substrate; e) fan flow in the result of interaction of two opposite jets after convergent expansion

  15. [Investigation on the gas temperature of a plasma jet at atmospheric pressure by emission spectrum].

    Science.gov (United States)

    Li, Xue-chen; Yuan, Ning; Jia, Peng-ying; Niu, Dong-ying

    2010-11-01

    A plasma jet of a dielectric barrier discharge in coaxial electrode was used to produce plasma plume in atmospheric pressure argon. Spatially and temporally resolved measurement was carried out by photomultiplier tubes. The light emission signals both from the dielectric barrier discharge and from the plasma plume were analyzed. Furthermore, emission spectrum from the plasma plume was collected by high-resolution optical spectrometer. The emission spectra of OH (A 2sigma + --> X2 II, 307.7-308.9 nm) and the first negative band of N2+ (B2 sigma u+ --> X2 IIg+, 390-391.6 nm) were used to estimate the rotational temperature of the plasma plume by fitting the experimental spectra to the simulated spectra. The rotational temperature obtained is about 443 K by fitting the emission spectrum from the OH, and that from the first negative band of N2+ is about 450 K. The rotational temperatures obtained by the two method are consistent within 5% error band. The gas temperature of the plasma plume at atmospheric pressure was obtained because rotational temperature equals to gas temperature approximately in gas discharge at atmospheric pressure. Results show that gas temperature increases with increasing the applied voltage.

  16. Jet mass reconstruction with the ATLAS Detector in early Run 2 data

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    This note presents the details of the ATLAS jet mass reconstruction for groomed large-radius jets. The jet mass scale calibrations are determined from Monte Carlo simulation. An alternative jet mass definition that incorporates tracking information called the track-assisted jet mass is introduced and its performance is compared to the traditional calorimeter-based jet mass definition. Events enriched in boosted $W$, $Z$ boson and top quark jets are used to directly compare the jet mass scale and jet mass resolution between data and simulation. This in-situ technique is also extended to constrain the jet energy scale and resolution.

  17. Jet Joint Undertaking. Vol. 2

    International Nuclear Information System (INIS)

    1989-06-01

    The scientific, technical, experimental and theoretical investigations related to JET tokamak are presented. The JET Joint Undertaking, Volume 2, includes papers presented at: the 15th European Conference on controlled fusion and plasma heating, the 15th Symposium on fusion technology, the 12th IAEA Conference on plasma physics and controlled nuclear fusion research, the 8th Topical Meeting on technology of fusion. Moreover, the following topics, concerning JET, are discussed: experience with wall materials, plasma performance, high power ion cyclotron resonance heating, plasma boundary, results and prospects for fusion, preparation for D-T operation, active gas handling system and remote handling equipment

  18. The effect of ethanol gas impurity on the discharge mode and discharge products of argon plasma jet at atmospheric pressure

    Science.gov (United States)

    Xia, Wenjie; Liu, Dingxin; Xu, Han; Wang, Xiaohua; Liu, Zhijie; Rong, Mingzhe; Kong, Michael G.

    2018-05-01

    Argon is a widely used working gas of plasmas, which is much cheaper than helium but on the other hand much more difficult to generate diffuse discharge at atmospheric pressure. In order to meet the application requirements, plenty of researches have been reported to facilitate the diffuse discharge happening for argon plasmas, and in this paper an approach of using ethanol gas (EtOH) impurity is investigated. The discharge characteristics of Ar + EtOH plasma jet are studied as a function of the applied voltage and the concentration of EtOH, from which the concentration of EtOH between ∼200 and ∼3300 parts per million (ppm) is determined necessary for the generation of diffuse discharge. Compared with the helium plasma jet in literature, it is deduced that the diffuse discharge is probably caused by the Penning ionization happening between the metastable argon and EtOH. The discharge products of Ar + EtOH (672 ppm) plasma jet are measured and the corresponding chemistry pathways are analyzed. About 20% of EtOH is decomposed via complex chemical reactions to form more than a dozen of neutral species, such as CH3CHO, CH3COOH, CO, H2O, and C n H2n+2 (n ≥ 3), and various kinds of ionic species, including C+, CH+, ArH+, {{{{O}}}2}-, CH3CH2O‑, etc.

  19. Twin-to-twin transfusion syndrome : from placental anastomoses to long-term outcome

    NARCIS (Netherlands)

    Lopriore, Enrico

    2006-01-01

    Twin-to-twin transfusion syndrome (TTTS) is a severe complication of monochorionic twin pregnancies associated with high perinatal mortality and morbidity rates. Placental vascular anastomoses, almost invariably present in monochorionic placentas, are the essential anatomical substrate for the

  20. Is that me or my twin? Lack of self-face recognition advantage in identical twins.

    Directory of Open Access Journals (Sweden)

    Matteo Martini

    Full Text Available Despite the increasing interest in twin studies and the stunning amount of research on face recognition, the ability of adult identical twins to discriminate their own faces from those of their co-twins has been scarcely investigated. One's own face is the most distinctive feature of the bodily self, and people typically show a clear advantage in recognizing their own face even more than other very familiar identities. Given the very high level of resemblance of their faces, monozygotic twins represent a unique model for exploring self-face processing. Herein we examined the ability of monozygotic twins to distinguish their own face from the face of their co-twin and of a highly familiar individual. Results show that twins equally recognize their own face and their twin's face. This lack of self-face advantage was negatively predicted by how much they felt physically similar to their co-twin and by their anxious or avoidant attachment style. We speculate that in monozygotic twins, the visual representation of the self-face overlaps with that of the co-twin. Thus, to distinguish the self from the co-twin, monozygotic twins have to rely much more than control participants on the multisensory integration processes upon which the sense of bodily self is based. Moreover, in keeping with the notion that attachment style influences perception of self and significant others, we propose that the observed self/co-twin confusion may depend upon insecure attachment.

  1. Twin RSA

    OpenAIRE

    Lenstra, Arjen K.; Weger, De; Benjamin, M. M.

    2005-01-01

    We introduce Twin RSA, pairs of RSA moduli (n, n+ 2), and formulate several questions related to it. Our main questions are: is Twin RSA secure, and what is it good for? © Springer-Verlag Berlin Heidelberg 2005.

  2. A metric study of insole foot impressions in footwear of identical twins.

    Science.gov (United States)

    Nirenberg, Michael S; Krishan, Kewal; Kanchan, Tanuj

    2017-11-01

    Foot impressions are of utmost importance in crime scene investigations. Foot impressions are available in the form of barefoot prints, sock-clad footprints, and as impressions within footwear. Sometimes suspects leave their footwear at the crime scene, and the insole of this footwear may contain the foot impression of the suspect which may be important evidence linking him or her to the crime. The task of identification based on the analysis of footprints can be challenging when the footprints belonging to one of the identical twin is available for examination. The present study is based on the quantitative measures of the foot impressions in the footwear of adult identical twins. The study was conducted on four sets of female monozygotic twins from the United States of America. A total of 17 length and breadth measurements were taken on each foot impression. A combination of Reel Method and Extended Gunn Method was utilized to produce the measurements. The measurements of the foot impressions were compared among the twins on the right and the left side. Differences were found in the various footprint measurements among the twins. The study's sample size was not large enough to apply robust statistical tests, but the study is significant in that it presents the first detailed comparative analysis of a large number of measurements of insole foot impressions of adult twins. The observations derived from the study are likely to assist forensic investigations in cases involving the foot impressions of the twins. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  3. On the structure of pulsed plasma jets

    Science.gov (United States)

    Cavolowsky, John Arthur

    A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and inhancing combustion. Having shown the ability to ignite lean fuel mixtures, is now offers the potential for real-time control of combustion processes. The fluid mechanical and chemical properties of such jets are explored. The fluid mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. The turbulent, thermal evolution of the jet was explored using high speed laser schlieren cinematography. By examine plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. Molecular beam mass spectroscopy was used to determine temperature and species concentration in the jet. Both noncombustible and combustible jets were studied. Species measurements in combustible jets revealed significant concentrations of radicals and products of complete as well as incomplete combustion.

  4. A patterned ZnO nanorod array/gas sensor fabricated by mechanoelectrospinning-assisted selective growth.

    Science.gov (United States)

    Wang, Xiaomei; Sun, Fazhe; Huang, Yongan; Duan, Yongqing; Yin, Zhouping

    2015-02-21

    Micropatterned ZnO nanorod arrays were fabricated by the mechanoelectrospinning-assisted direct-writing process and the hydrothermal growth process, and utilized as gas sensors that exhibited excellent Ohmic behavior and sensitivity response to oxidizing gas NO2 at low concentrations (1-100 ppm).

  5. Sports pairs: insights on athletic talent; research reviews: twins with leukemia; parents and twins.

    Science.gov (United States)

    Segal, Nancy L

    2007-06-01

    Twin research exploring genetic and environmental influences on athletic interests and talents is reviewed. Illustrative examples of twin athletes representing a variety of sports activities are presented. This is followed by an overview of twin studies offering critical insights into the onset and progress of leukemia. In the last section, timely events involving twins and parents of twins will be described--each case provides a new look at an old question.

  6. Liquid jets for experiments on complex fluids

    International Nuclear Information System (INIS)

    Steinke, Ingo

    2015-02-01

    The ability of modern storage rings and free-electron lasers to produce intense X-ray beams that can be focused down to μm and nm sizes offers the possibility to study soft condensed matter systems on small length and short time scales. Gas dynamic virtual nozzles (GDVN) offer the unique possibility to investigate complex fluids spatially confined in a μm sized liquid jet with high flow rates, high pressures and shear stress distributions. In this thesis two different applications of liquid jet injection systems have been studied. The influence of the shear flow present in a liquid jet on colloidal dispersions was investigated via small angle X-ray scattering and a coherent wide angle X-ray scattering experiment on a liquid water jet was performed. For these purposes, liquid jet setups that are capable for X-ray scattering experiments have been developed and the manufacturing of gas dynamic virtual nozzles was realized. The flow properties of a liquid jet and their influences on the liquid were studied with two different colloidal dispersions at beamline P10 at the storage ring PETRA III. The results show that high shear flows present in a liquid jet lead to compressions and expansions of the particle structure and to particle alignments. The shear rate in the used liquid jet could be estimated to γ ≥ 5.4 . 10 4 Hz. The feasibility of rheology studies with a liquid jet injection system and the combined advantages is discussed. The coherent X-ray scattering experiment on a water jet was performed at the XCS instrument at the free-electron laser LCLS. First coherent single shot diffraction patterns from water were taken to investigate the feasibility of measuring speckle patterns from water.

  7. Pulsed X-ray radiography of a gas jet target for laser-matter interaction experiments with the use of a CCD detector

    International Nuclear Information System (INIS)

    Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; MikoIajczyk, J.; Szczurek, A.; Szczurek, M.; Foeldes, I.B.; Toth, Zs.

    2005-01-01

    Characterization of gas jet targets has been carried out using pulsed X-ray radiography. A laser-plasma X-ray source was applied for backlighting of the targets to obtain X-ray shadowgraphs registered with a CCD detector. From the shadowgraphs, characteristics of the targets were determined

  8. The Brazilian Twin Registry.

    Science.gov (United States)

    Ferreira, Paulo H; Oliveira, Vinicius C; Junqueira, Daniela R; Cisneros, Lígia C; Ferreira, Lucas C; Murphy, Kate; Ordoñana, Juan R; Hopper, John L; Teixeira-Salmela, Luci F

    2016-12-01

    The Brazilian Twin Registry (BTR) was established in 2013 and has impelled twin research in South America. The main aim of the initiative was to create a resource that would be accessible to the Brazilian scientific community as well as international researchers interested in the investigation of the contribution of genetic and environmental factors in the development of common diseases, phenotypes, and human behavior traits. The BTR is a joint effort between academic and governmental institutions from Brazil and Australia. The collaboration includes the Federal University of Minas Gerais (UFMG) in Brazil, the University of Sydney and University of Melbourne in Australia, the Australian Twin Registry, as well as the research foundations CNPq and CAPES in Brazil. The BTR is a member of the International Network of Twin Registries. Recruitment strategies used to register twins have been through participation in a longitudinal study investigating genetic and environmental factors for low back pain occurrence, and from a variety of sources including media campaigns and social networking. Currently, 291 twins are registered in the BTR, with data on demographics, zygosity, anthropometrics, and health history having been collected from 151 twins using a standardized self-reported questionnaire. Future BTR plans include the registration of thousands of Brazilian twins identified from different sources and collaborate nationally and internationally with other research groups interested on twin studies.

  9. Multiple births associated with assisted human reproduction in Canada.

    Science.gov (United States)

    Cook, Jocelynn L; Geran, Leslie; Rotermann, Michelle

    2011-06-01

    Assisted human reproduction has been associated with increased rates of multiple births. Data suggest that twins and higher order multiple pregnancies are at risk for pre- and postnatal health complications that contribute to stress on both the family and the Canadian health care system. No published Canadian data estimate the contribution of assisted human reproduction to multiple birth rates. This study was designed to determine the contributions of age and assisted human reproduction to multiple birth rates in Canada. We performed analyses of existing Canadian databases, using a mathematical model from the Centers for Disease Control and Prevention. More specifically, data from the Canadian Vital Statistics: Births and Stillbirths database were combined with data from the Canadian Assisted Reproductive Technologies Register collected by the Canadian Fertility and Andrology Society. Datasets were standardized to age distributions of mothers in 1978. RESULTS suggest that in vitro fertilization, ovulation induction, and age each contribute more to the rates of triplets than to twins. As expected, the contribution of natural factors was higher to twins than to triplets. These are the first Canadian data analyzed to separate and measure the contributions of age and assisted reproductive technologies to multiple birth rates. Our findings are important for guiding physician and patient education and informing the development of treatment protocols that will result in lower-risk pregnancies and improved long-term health for women and their offspring.

  10. Twin Loss: Implications for Counselors Working with Surviving Twins.(practice & Theory)

    Science.gov (United States)

    Withrow, Rebecca; Schwiebert, Valerie L.

    2005-01-01

    Multiple births are becoming increasingly prevalent due to the use of fertility drugs and women choosing to wait until later life to conceive. With the growth in the twin population, little research has been done to investigate the effects on the grief process when 1 twin dies. Counselors must understand the unique experience of twins to formulate…

  11. Beliefs and practices concerning twins, hermaphrodites, and albinos among the Bamana and Maninka of Mali.

    Science.gov (United States)

    Imperato, Gavin H; Imperato, Pascal James

    2006-06-01

    The Bamana and Maninka of Mali greatly value twins, and have elaborated a range of cultural beliefs and practices to assure their survival. Rates of twinning among these two ethnic groups average from 15.2/1000 to 17.9/1000 births compared to 10.5/1000 births (without assisted reproduction) in the United States and Great Britain. Twins (flaniw) are regarded as extraordinary beings with unusual powers, and as a gift from the supreme deity. A small altar (sinzin) is maintained in the home of twins, and periodic sacrifices of chicken blood, kola nuts, millet paste and millet beer regularly made to assure their protection. Albinos (yéfeguéw) and true and pseudo-hermaphrodites (tyéténousotéw) are also considered twin beings. However, they are believed to be the result of aberrant parental social behavior. The Bamana and Maninka believe that all four groups (twins, albinos, hermaphrodites, and pseudo-harmaphrodites) are closely linked to Faro, an androgynous supernatural being who provides equilibrium in the world. Faro is the original albino and hermaphrodite who gave birth to the first pair of twins after self-impregnation. Whenever a twin dies, a small wooden statue is sculpted called a flanitokélé (twin that remains). This commemorative figure is kept close to the surviving twin, reflecting a belief in the inseparability of twins. Eventually, the surviving twin takes responsibility for the figure. When a surviving twin marries, another figure is often sculpted in the opposite sex from the deceased twin, and placed with the original sculpture. Such commemorative sculptures are not created upon the death of those who are albinos, hermaphrodites, or pseudo-hermaphrodites. In recent years, transformational belief patterns have evolved as increasing numbers of Bamana and Maninka embrace Islam. Traditional beliefs are often given Islamic myths of origin. However, even in this Islamic context, many practices that assure twin survival are maintained.

  12. Deuterium to helium plasma-wall change-over experiments in the JET MkII-gas box divertor

    International Nuclear Information System (INIS)

    Hillis, D.L.; Loarer, T.; Bucalossi, J.; Pospieszczyk, A.; Fundamenski, W.; Matthews, G.; Meigs, A.; Morgan, P.; Phillips, V.; Pitts, R.; Stamp, M.; Hellermann, M. von

    2003-01-01

    The deuterium and helium dynamics in the plasma and subdivertor regions of JET are compared during a sequence of similar ohmic and ICRH pulses where 100% He gas is injected into the JET vacuum vessel, whose graphite walls were previously saturated with deuterium. After the first six He fueled change-over discharges, only He plasma operation was performed. Following this investigation, the situation is reversed and the change-over from an initially saturated He wall is investigated when only D 2 plasma fuelling is used. The He concentration is measured in the subdivertor with a species selective Penning gauge. Comparison of the time dependence of the divertor concentrations with those at the edge and strike point shows significant differences during the first six discharges. This difference along with a global He particle balance is used to assess the status of the wall saturation over the initial 6-7 He change-over discharges

  13. Production and correlation of reactive oxygen and nitrogen species in gas- and liquid-phase generated by helium plasma jets under different pulse widths

    Science.gov (United States)

    Liu, Zhijie; Zhou, Chunxi; Liu, Dingxin; Xu, Dehui; Xia, Wenjie; Cui, Qingjie; Wang, Bingchuan; Kong, Michael G.

    2018-01-01

    In this paper, we present the effects of the pulse width (PW) on the plasma jet's discharge characteristics, particularly focusing on the production and correlation of the reactive oxygen and nitrogen species (RONS) in gas- and liquid-phase. It is found that the length of plasma jet plume first increases before the PW of 10 μs, then gradually decreases and finally almost remains unchanged beyond 150 μs. The plasma bullet disappears after the falling edge of the voltage pulse at low PW, while it terminates far ahead of the falling edge of voltage pulse at high PW. This is mainly attributed to accumulation of space charges that lead to weakening of the reduced electric field with an increase of PW from low to high. More important, it is found that the excited reactive species, the positive and negative ions from plasma jet, and the concentrations of NO2- and NO3- in deionized water exposed to plasma jet also display the first increasing and then decreasing change trend with increase of PW, while the concentration of H2O2 in water almost displays the linearly increasing trend. This mainly results from the formation of the H3O+ and HO2-, as well as their ion water clusters that can produce more OH radicals to be converted into H2O2, while the NO2- and NO3- in gas phase can transport into water and exist most stably in water. The water cluster formation at gas-liquid interface is an important key process that can affect the chemical nature and dose of aqueous RONS in water; this is beneficial for understanding how the RONS are formed in liquid-phase.

  14. Modeling Jet Interaction of a Round Jet with a Subsonic Carrying Flow

    Directory of Open Access Journals (Sweden)

    Yu. P. Korobkova

    2017-01-01

    Full Text Available The paper analyzes numerical simulation of the round jet with a subsonic carrying flow. Performs calculations for different tilt angles of the jet ωj blowing and constructs the fields of velocities and pressures of the flow, jet trajectory, as well as calculates the pressure coefficients on the plate surface.To solve this problem, the CAD Solidworks Flow Simulation software was used. This package contains the solution of the Nowier-Stokes equation, which is necessary for modeling this problem.To test operation capability of the closing condition (k-th model of turbulence and proper choice of the boundaries of the computational domain, was solved a test problem forThe solution analysis has shown that the k-th model of turbulence was capable, and has a good agreement with other authors' experiment results [4]. Based on the selected conditions, further calculations were carried out for different tilt angles of jet blowing.In the course of research activities, it was revealed that the tilt angle of the jet blowing has a strong impact on redistribution of velocity and pressure in the area of the jet interaction, which allows the efficient use of such jets to control aerodynamic characteristics of the aircraft with the same power consumption for blowing out the gas. The solution of this problem is very relevant in wide application in aviation and rocket and space technology.

  15. Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways.

    Science.gov (United States)

    Han, Jeongwoo; Tao, Ling; Wang, Michael

    2017-01-01

    To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. This study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2 options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2 , and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2 e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol

  16. Study on dynamics of the influence exerted by plasma on gas flow field in non-thermal atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Qaisrani, M. Hasnain; Xian, Yubin, E-mail: yubin.xian@hotmail.com; Li, Congyun; Pei, Xuekai; Ghasemi, Maede; Lu, Xinpei [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2016-06-15

    In this paper, first, steady state of the plasma jet at different operating conditions is investigated through Schlieren photography with and without applying shielding gas. Second, the dynamic process for the plasma impacting on the gas flow field is studied. When the discharge is ignited, reduction in laminar flow occurs. However, when the gas flow rate is too low or too high, this phenomenon is not obvious. What is more, both frequency and voltage have significant impact on the effect of plasma on the gas flow, but the former is more significant. Shielding gas provides a curtain for plasma to propagate further. High speed camera along with Schlieren photography is utilized to study the impact of plasma on the gas flow when plasma is switched on and off. The transition of the gas flow from laminar to turbulent or vice versa happens right after the turbulent front. It is concluded that appearance and propagation of turbulence front is responsible for the transition of the flow state.

  17. Needle twins and right-angled twins in minerals: comparison between experiment and theory

    Science.gov (United States)

    Salje, E.K.H.; Buckley, A.; Van Tendeloo, G.; Ishibashi, Y.; Nord, G.L.

    1998-01-01

    Transformation twinning in minerals forms isolated twin walls, intesecting walls with corner junctions, and wedge-shaped twins as elements of hierarchical patterns. When cut perpendicular to the twin walls, the twins have characteristic shapes, right-angled and needle-shaped wall traces, which can be observed by transmission electron microscopy or by optical microscopy. Theoretical geometries of wall shapes recently derived for strain-related systems should hold for most displacive and order-disorder type phase transitions: 1) right-angled twins show curved junctions; 2) needle-shaped twins contain flat wall segments near the needle tip if the elastic behaviour of the mineral is dominated by its anisotroyp; 3) additional bending forces and pinning effects lead to curved walls near the junction that make the needle tip appear more blunt. Bent right-angled twins were analyzed in Gd2(MoO4)3. Linear needle tips were found in WO3, [N(CH3)4]2.ZnBr4 CrAl, BiVO4, GdBa2Cu3O7, and PbZrO. Parabolic tips occur in K2Ba(NO2)4, and GeTe whereas exponential curvatures appear in BaTiO3, KSCN, Pb3(PO4)2, CaTiO3, alkali feldspars, YBa2Cu3O7, and MnAl. The size and shape of the twin microstructure relates to its formation during the phase transition and the subsequent annealing history. The mobility of the twin walls after formation depends not only on the thermal activation but also on the structure of the wall, which may be pinned to impurities on a favorable structural site. Depinnign energies are often large compared with thermal energies for diffusion. This leads to kinetic time scales for twin coarsening that are comparable to geological time scales. Therefore, transformation twins that exhibit needle domains not only indicate that the mineral underwent a structural phase transition but also contain information about its subsequent geological history.

  18. Effects of gas flow on oxidation reaction in liquid induced by He/O{sub 2} plasma-jet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Atsushi; Uchida, Giichiro, E-mail: uchida@jwri.osaka-u.ac.jp; Takenaka, Kosuke; Setsuhara, Yuichi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Kawasaki, Toshiyuki [Department of Mechanical and Electrical Engineering, Nippon Bunri University, Oita, Oita 870-0397 (Japan); Koga, Kazunori; Sarinont, Thapanut; Amano, Takaaki; Shiratani, Masaharu [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Fukuoka 819-0395 (Japan)

    2015-07-28

    We present here analysis of oxidation reaction in liquid by a plasma-jet irradiation under various gas flow patterns such as laminar and turbulence flows. To estimate the total amount of oxidation reaction induced by reactive oxygen species (ROS) in liquid, we employ a KI-starch solution system, where the absorbance of the KI-starch solution near 600 nm behaves linear to the total amount of oxidation reaction in liquid. The laminar flow with higher gas velocity induces an increase in the ROS distribution area on the liquid surface, which results in a large amount of oxidation reaction in liquid. However, a much faster gas flow conversely results in a reduction in the total amount of oxidation reaction in liquid under the following two conditions: first condition is that the turbulence flow is triggered in a gas flow channel at a high Reynolds number of gas flow, which leads to a marked change of the spatial distribution of the ROS concentration in gas phase. Second condition is that the dimpled liquid surface is formed by strong gas flow, which prevents the ROS from being transported in radial direction along the liquid surface.

  19. Jet Impingement Heat Transfer at High Reynolds Numbers and Large Density Variations

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary...... layer was 3.3 due to a substantial temperature difference of 1600K between jet and wall. Results are presented which indicate very high heat flux levels and it is demonstrated that the jet inlet turbulence intensity significantly influences the heat transfer results, especially in the stagnation region....... The results also show a noticeable difference in the heat transfer predictions when applying different turbulence models. Furthermore calculations were performed to study the effect of applying temperature dependent thermophysical properties versus constant properties and the effect of calculating the gas...

  20. Atomization of liquids in a Pease-Anthony Venturi scrubber. Part I. Jet dynamics.

    Science.gov (United States)

    Gonçalves, J A S; Costa, M A M; Henrique, P R; Coury, J R

    2003-02-28

    Jet dynamics, in particular jet penetration, is an important design parameter affecting the collection efficiency of Venturi scrubbers. A mathematical description of the trajectory, break-up and penetration of liquid jets initially transversal to a subsonic gas stream is presented. Experimental data obtained from a laboratory scale Venturi scrubber, operated with liquid injected into the throat through a single orifice, jet velocities between 6.07 and 15.9 m/s, and throat gas velocities between 58.3 and 74.9 m/s, is presented and used to validate the model.

  1. Chemical reactions of fission products with ethylene using the gas jet technique

    International Nuclear Information System (INIS)

    Contis, E.T.; Rengan, Krish; Griffin, Henry C.

    1994-01-01

    An understanding of the nature of the chemical reactions taking place between fission products and their carrier gases, and the designing of a fast separation procedure were the purposes of this investigation. Chemical reactions of short-lived (less than one minute half-life) fission products with carrier gases lead to various chemical species which can be separated in the gas phase. The Gas Jet Facility at the Ford Nuclear Reactor was used to study the yields of volatile selenium and bromine fission products of 235 U using a semi-automatic batch solvent extraction technique. Heptane and water were used as organic and inorganic solvents. A carrier gas mixture of ethylene to pre-purified nitrogen (1 : 3) was used to sweep the fission products from the target to the chemistry area for analysis. The results indicated that the volatile selenium products generated by the interaction of selenium fission fragments with ethylene were predominantly organic in nature (84%), possibly organoselenides. The selenium values were used to resolve the fractions of the bromine nuclides, which come from two major sources, viz., directly from fission and from the beta-decay of selenium. The data showed that the fractions of independent bromine fission products in the organic phase were much lower compared to selenium; the bromine values range from 10 to 22% and varied with mass number. Results indicated that the bromine products were inorganic in nature, as possibly hydrogen chloride. ((orig.))

  2. EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets

    Science.gov (United States)

    Kong, M. G.; Ganguly, B. N.; Hicks, R. F.

    2012-06-01

    Plasma plumes, or plasma jets, belong to a large family of gas discharges whereby the discharge plasma is extended beyond the plasma generation region into the surrounding ambience, either by a field (e.g. electromagnetic, convective gas flow, or shock wave) or a gradient of a directionless physical quantity (e.g. particle density, pressure, or temperature). This physical extension of a plasma plume gives rise to a strong interaction with its surrounding environment, and the interaction alters the properties of both the plasma and the environment, often in a nonlinear and dynamic fashion. The plasma is therefore not confined by defined physical walls, thus extending opportunities for material treatment applications as well as bringing in new challenges in science and technology associated with complex open-boundary problems. Some of the most common examples may be found in dense plasmas with very high dissipation of externally supplied energy (e.g. in electrical, optical or thermal forms) and often in or close to thermal equilibrium. For these dense plasmas, their characteristics are determined predominantly by strong physical forces of different fields, such as electrical, magnetic, thermal, shock wave, and their nonlinear interactions [1]. Common to these dense plasma plumes are significant macroscopic plasma movement and considerable decomposition of solid materials (e.g. vaporization). Their applications are numerous and include detection of elemental traces, synthesis of high-temperature materials and welding, laser--plasma interactions, and relativistic jets in particle accelerators and in space [2]-[4]. Scientific challenges in the understanding of plasma jets are exciting and multidisciplinary, involving interweaving transitions of all four states of matter, and their technological applications are wide-ranging and growing rapidly. Using the Web of Science database, a search for journal papers on non-fusion plasma jets reveals that a long initial phase up

  3. APPLICATION OF JET REMPI AND LIBS TO AIR TOXIC MONITORING

    Science.gov (United States)

    The paper discusses three advanced, laser-based monitoring techniques that the EPA is assisting in developing for real time measurement of toxic aerosol compounds. One of the three techniques is jet resonance enhanced multiphoton ionization (Jet REMPI) coupled with a time-of-flig...

  4. High-intensity, thin-target He-jet production source

    International Nuclear Information System (INIS)

    Bai, Y.; Vieira, D.J.; Wouters, J.M.; Butler, G.W.; Rosenauer, Dk; Loebner, K.E.G.; Lind, V.G.; Phillips, D.R.

    1996-01-01

    A thin-target He-jet system suited to the production and rapid transport of non-volatile radioactive species has been successfully operated with proton beam intensities of up to 700 μA. The system consists of a water-cooled, thin-target chamber, capillary gas transport system, moving tape/Ge detection system, and an aerosol generator/gas recirculator. The yields for a wide variety of uranium fission and deep spallation products have been measured and robust operation of the system demonstrated for several weeks. He-jet transport and collection efficiencies ranged between 15 and 25% with collection rates of 10 7 to 10 8 atoms/sec/isotope. The high-intensity, thin-target He-jet approach represents a robust production source for nonvolatile radioactive heavy ion beams

  5. Rarefied gas dynamics - Vol. 2

    International Nuclear Information System (INIS)

    Belotserkovskii, O.M.; Kogan, M.N.; Kutateladze, S.S.; Rebrov, A.K.

    1985-01-01

    Volume 2 presents information on the following topics: analytical formulae for cross sections and rate constants of elementary processes in gases; effects of initial molecular states in high-energy scattering of molecular beams; cesium vapor jet target produced with a supersonic nozzle; electron beam diagnostics of high temperature rarefied gas flows; free jet as an object of nonequilibrium processes investigation; free jet expansion with a strong condensation effect; rotational relaxation in high temperature jets of nitrogen; laser induced fluorescence study of free jet expansions; homogeneous condensation of nitrogen in transonic flow; the microscopic theory of clustering and nucleation; diagnostics of clusters in molecular beams; experimental studies of water-aerosol explosive vaporization; laser probing of cluster formations and dissociation in molecular beams; free molecule drag on helium clusters; kinetic model of gas suspension; molecular diffusion through a fine-pored filter versus resonate IR-radiation intensity; and rarefied gas dynamics as related to controlled thermonuclear fusion

  6. A Study of CO2 Absorption Using Jet Bubble Column

    Directory of Open Access Journals (Sweden)

    Setiadi Setiadi

    2010-10-01

    Full Text Available The phenomenon of plunging jet gas-liquid contact occurs quite often in nature, it's momentum carries small air bubbles with it into the reactor medium. The momentum of the liquid stream can be sufficient to carry small bubbles completely to the bottom of the vessel. A stream of liquid falling toward a level surface of that liquid will pull the surrounding air along with it. It will indent the surface of the liquid to form a trumpet-like shape. If the velocity of the stream is high enough, air bubbles will be pulled down, i.e. entrained into the liquid. This happens for two main reasons: air that is trapped between the edge of the falling stream and the trumpet-shaped surface profile and is carried below the surface. This study investigates the potential of a vertical liquid plunging jet for a pollutant contained gas absorption technique. The absorber consists of liquid jet and gas bubble dispersed phase. The effects of operating variables such as liquid flowrate, nozzle diameter, separator pressure, etc. on gas entrainment and holdup were investigated. The mass transfer of the system is governed by the hydrodynamics of the system. Therefore a clear and precise understanding of the above is necessary : to characterize liquid and gas flow within the system, 2. Variation in velocity of the jet with the use of different nozzle diameters and flow rates, 3. Relationship between the liquid and entrained airflow rate, 4. Gas entrainment rate and gas void fraction.

  7. Quantitative study of the ionization-induced refraction of picosecond laser pulses in gas-jet targets

    International Nuclear Information System (INIS)

    Mackinnon, A.J.; Borghesi, M.; Iwase, A.; Jones, M.W.; Pert, G.J.; Rae, S.; Burnett, K.; Willi, O.

    1996-01-01

    A quantitative study of refractive whole beam defocusing and small scale breakup induced by optical ionization of subpicosecond and picosecond, 0.25 and 1 μm, laser pulses in gas-jet targets at densities above 1x10 19 cm -3 has been carried out. A significant reduction of the incident laser intensity was observed due to refraction from ionization-induced density gradients. The level of refraction measured with optical probing correlated well with the fraction of energy transmitted through the plasma. The numerical and analytical models were found to agree well with experimental observations. copyright 1996 The American Physical Society

  8. System and process for polarity swing assisted regeneration of gas selective capture liquids

    Science.gov (United States)

    Heldebrant, David J.; Tegrotenhuis, Ward E.; Freeman, Charles J.; Elliott, Michael L.; Koech, Phillip K.; Humble, Paul H.; Zheng, Feng; Zhang, Jian

    2017-07-18

    A polarity swing-assisted regeneration (PSAR) process is disclosed for improving the efficiency of releasing gases chemically bound to switchable ionic liquids. Regeneration of the SWIL involves addition of a quantity of non-polar organic compound as an anti-solvent to destabilize the SWIL, which aids in release of the chemically bound gas. The PSAR decreases gas loading of a SWIL at a given temperature and increases the rate of gas release compared to heating in the absence of anti-solvent.

  9. Control of ROS and RNS productions in liquid in atmospheric pressure plasma-jet system

    Science.gov (United States)

    Uchida, Giichiro; Ito, Taiki; Takenaka, Kosuke; Ikeda, Junichiro; Setsuhara, Yuichi

    2016-09-01

    Non-thermal plasma jets are of current interest in biomedical applications such as wound disinfection and even treatment of cancer tumors. Beneficial therapeutic effects in medical applications are attributed to excited species of oxygen and nitrogen from air. However, to control the production of these species in the plasma jet is difficult because their production is strongly dependent on concentration of nitrogen and oxygen from ambient air into the plasma jet. In this study, we analyze the discharge characteristics and the ROS and RNS productions in liquid in low- and high-frequency plasma-jet systems. Our experiments demonstrated the marked effects of surrounding gas near the plasma jet on ROS and RNS productions in liquid. By controlling the surround gas, the O2 and N2 main plasma jets are selectively produced even in open air. We also show that the concentration ratio of NO2- to H2O2 in liquid is precisely tuned from 0 to 0.18 in deionized water by changing N2 gas ratio (N2 / (N2 +O2)) in the main discharge gas, where high NO2- ratio is obtained at N2 gas ratio at N2 / (N2 +O2) = 0 . 8 . The low-frequency plasma jet with controlled surrounding gas is an effective plasma source for ROS and RNS productions in liquid, and can be a useful tool for biomedical applications. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  10. Ventricular strain changes in monochorionic twins with and without twin-to-twin transfusion syndrome.

    Science.gov (United States)

    Taylor-Clarke, Marisa C; Matsui, Hikoro; Roughton, Michael; Wimalasundera, Ruwan C; Gardiner, Helena M

    2013-06-01

    The objective of the study was to investigate whether vector velocity imaging (VVI), a non-Doppler speckle tracking ultrasound technology, is feasible in twin pregnancies and can aid management of twin-twin transfusion syndrome (TTTS). Twenty-seven women pregnant with monochorionic diamniotic twins affected by TTTS and 28 monochorionic pregnancies that did not develop TTTS were included in a prospective case-control study at a fetal medicine center. Fetal echocardiograms were recorded with dummy electrocardiography to retain original frame rates when exported for offline speckle tracking analysis using Syngo-VVI software (Siemens Corp, Munich, Germany). Right and left ventricular (LV) free wall Lagrangian strain was measured from the original coordinates. Within-twin pair ventricular strain differences including relationship to Quintero staging and response to laser therapy for TTTS were analyzed by Wilcoxon signed-rank test. The VVI strain measurements could be analyzed in 182 of 200 TTTS and 96 of 112 non-TTTS control ventricles. Within-pair strain was concordant in non-TTTS controls. Recipient LV strain was reduced at all Quintero stages compared with donors (P < .01). Recipient right ventricular strain was reduced only in stages 3 and 4 (P < .01). Strain improved at a median of 2 weeks following successful laser therapy. Intertwin differences in strain were independent of weight discordance. Recipient LV strain is reduced in stages 1 and 2 TTTS. Within-pair strain discordance may distinguish early TTTS from growth discordance and guide timing of and management following treatment. Copyright © 2013 Mosby, Inc. All rights reserved.

  11. The influence of assist gas on magnetic properties of electrotechnical steel sheets cut with laser

    International Nuclear Information System (INIS)

    Gaworska-Koniarek, Dominika; Szubzda, Bronislaw; Wilczynski, Wieslaw; Drosik, Jerzy; Karas, Kazimierz

    2011-01-01

    The paper presents the influence of assist gas (air and nitrogen) during laser cutting on magnetization, magnetic permeability and loss characteristics of non-oriented electrical steels. The research was made on an non-oriented M330-50A grade electrical steels by means of single sheet tester. In order to enhance the effect of cutting and the same degradation zone on magnetic properties, strips with different width were achieved. Measurements results indicate that application of air as assist gas has more destructive effect on magnetic properties of electrical steels than nitrogen one.

  12. The influence of assist gas on magnetic properties of electrotechnical steel sheets cut with laser

    Science.gov (United States)

    Gaworska-Koniarek, Dominika; Szubzda, Bronisław; Wilczyński, Wiesław; Drosik, Jerzy; Karaś, Kazimierz

    2011-07-01

    The paper presents the influence of assist gas (air and nitrogen) during laser cutting on magnetization, magnetic permeability and loss characteristics of non-oriented electrical steels. The research was made on an non-oriented M330-50A grade electrical steels by means of single sheet tester. In order to enhance the effect of cutting and the same degradation zone on magnetic properties, strips with different width were achieved. Measurements results indicate that application of air as assist gas has more destructive effect on magnetic properties of electrical steels than nitrogen one.

  13. Twin pregnancy

    DEFF Research Database (Denmark)

    Sperling, Lene; Tabor, A

    2001-01-01

    Determination of chorionicity is one of the most important issues in the management of twin pregnancy. Modern ultrasound equipment has made it possible to accurately assess placentation already in the first trimester with the lambda sign. With regard to prenatal diagnosis, it is important to know...... for clinicians caring for twin pregnancies....

  14. Mathematical modeling of the working cycle of oil injected rotary twin screw compressor

    Energy Technology Data Exchange (ETDEWEB)

    Seshaiah, N. [Cryogenics and Gas dynamics Laboratory, Department of Mechanical Engineering, National Institute of Technology, Sector-2, NIT Campus, Rourkela 769008, Orissa (India)]. E-mail: seshuet@yahoo.com; Ghosh, Subrata Kr. [Cryogenics and Gas dynamics Laboratory, Department of Mechanical Engineering, National Institute of Technology, Sector-2, NIT Campus, Rourkela 769008, Orissa (India); Sahoo, R.K. [Cryogenics and Gas dynamics Laboratory, Department of Mechanical Engineering, National Institute of Technology, Sector-2, NIT Campus, Rourkela 769008, Orissa (India); Sarangi, Sunil Kr. [Cryogenics and Gas dynamics Laboratory, Department of Mechanical Engineering, National Institute of Technology, Sector-2, NIT Campus, Rourkela 769008, Orissa (India)

    2007-01-15

    Oil injected twin-screw air and gas compressors are widely used for medium pressure applications in many industries. Low cost air compressors can be adopted for compression of helium and special gases, leading to significant cost saving. Mathematical analysis of oil injected twin-screw compressor is carried out on the basis of the laws of perfect gas and standard thermodynamic relations. Heat transfer coefficient required for computer simulation is experimentally obtained and used in performance prediction, when the working medium being air or helium. A mathematical model has been developed for calculating the compressor performance and for validating the results with experimental data. The flow coefficients required for numerical simulation to calculate leakage flow rates are obtained from efficiency verses clearance curves. Effect of some of the compressor operating and design parameters on power and volumetric efficiencies have been analyzed and presented.

  15. Mathematical modeling of the working cycle of oil injected rotary twin screw compressor

    International Nuclear Information System (INIS)

    Seshaiah, N.; Ghosh, Subrata Kr.; Sahoo, R.K.; Sarangi, Sunil Kr.

    2007-01-01

    Oil injected twin-screw air and gas compressors are widely used for medium pressure applications in many industries. Low cost air compressors can be adopted for compression of helium and special gases, leading to significant cost saving. Mathematical analysis of oil injected twin-screw compressor is carried out on the basis of the laws of perfect gas and standard thermodynamic relations. Heat transfer coefficient required for computer simulation is experimentally obtained and used in performance prediction, when the working medium being air or helium. A mathematical model has been developed for calculating the compressor performance and for validating the results with experimental data. The flow coefficients required for numerical simulation to calculate leakage flow rates are obtained from efficiency verses clearance curves. Effect of some of the compressor operating and design parameters on power and volumetric efficiencies have been analyzed and presented

  16. Theoretical study on device efficiency of pulsed liquid jet pump

    International Nuclear Information System (INIS)

    Gao Chuanchang; Lu Hongqi; Wang Shicheng; Cheng Mingchuan

    2001-01-01

    The influence of the main factors on device efficiency of pulsed liquid jet pump with gas-liquid piston is analysed, the theoretical equation and its time-averaged solution of pulsed liquid jet pump device efficiency are derived. The theoretical and experimental results show that the efficiency of transmission of energy and mass to use pulsed jet is greatly raised, compared with steady jet, in the same device of liquid jet pump. The calculating results of time-averaged efficiency of pulsed liquid jet pump are approximately in agreement with the experimental results in our and foreign countries

  17. Marital status and twins' health and behavior: an analysis of middle-aged Danish twins

    DEFF Research Database (Denmark)

    Osler, Merete; McGue, Matt; Lund, Rikke

    2008-01-01

    mass index (BMI), depression symptoms, self-rated health, cognitive function, physical activity, smoking, and alcohol intake. RESULTS: Among all 2350 individual twins, men who were divorced/widowed or never married had higher depression scores, lower cognitive test scores, lower physical activity....../widowed twin had higher average depression scores and was more likely to be a smoker. Never married twins had lower physical activity scores and never married male twins had higher BMI and higher depression scores than their married co-twin. CONCLUSION: This study suggests that the relationships of adult...... divorce with depression and smoking in Danish twins are due to the stressful effects of marital dissolution, but that marital differences in other health and behavioral outcomes are most consistent with selection effects related to genetic or rearing environmental factors....

  18. Ab initio study of gas phase and water-assisted tautomerization of ...

    Indian Academy of Sciences (India)

    WINTEC

    Water-assisted tautomerization in maleimide and formamide showed that difference in energy barrier reduces to 2⋅83 kcal/mol from 10⋅41 kcal/mol (in gas phase) at B3LYP level, which resulted that maleimide readily undergoes tautomerization in water molecule. Keywords. Ab Initio calculations; maleimide; formamide; ...

  19. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

    Science.gov (United States)

    Marchionna, N. R.

    1974-01-01

    An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

  20. Register-based research on twins

    DEFF Research Database (Denmark)

    Christensen, Kaare; Ohm Kyvik, Kirsten; Holm, Niels V

    2011-01-01

    Introduction: The Danish Twin Registry (DTR) has for more than 50 years been based on surveys and clinical investigations and over the two last decades also on register linkage. Currently these two approaches are merged within Statistics Denmark. Research topics: Here we report on three major...... groups of register-based research in the DTR that used the uniqueness of twinning. First, we focus on the ''long-term prognosis'' of being a twin compared with being a singleton and show that Danish twins have health trajectories in adulthood similar to singletons, which is a result of interest for twins...... illustrate how the co-twin control method in a register setting can be used to control for the effect of rearing environment and genetic factors in studies of the association between exposures and health. CONCLUSION: The spectrum of register-based twin studies is very wide and have changed in accordance...

  1. Birth size and gestational age in opposite-sex twins as compared to same-sex twins

    DEFF Research Database (Denmark)

    Jelenkovic, Aline; Sund, Reijo; Yokoyama, Yoshie

    2018-01-01

    It is well established that boys are born heavier and longer than girls, but it remains unclear whether birth size in twins is affected by the sex of their co-twin. We conducted an individual-based pooled analysis of 21 twin cohorts in 15 countries derived from the COllaborative project of Develo......It is well established that boys are born heavier and longer than girls, but it remains unclear whether birth size in twins is affected by the sex of their co-twin. We conducted an individual-based pooled analysis of 21 twin cohorts in 15 countries derived from the COllaborative project....... In girls, birth size was not associated (5 g birth weight; 95% CI -8 to -18 and -0.089 cm birth length; 95% CI -0.202 to 0.025) with the sex of the co-twin. Gestational age was slightly shorter in boy-boy pairs than in boy-girl and girl-girl pairs. When birth size was standardized by gestational age......, the magnitude of the associations was attenuated in boys, particularly for birth weight. In conclusion, boys with a co-twin sister are heavier and longer at birth than those with a co-twin brother. However, these differences are modest and partly explained by a longer gestation in the presence of a co...

  2. Cold and hot model investigation of flow and mixing in a multi-jet flare

    Energy Technology Data Exchange (ETDEWEB)

    Pagot, P.R. [Petrobras Petroleo Brasileiro S.A., Rio de Janeiro (Brazil); Sobiesiak, A. [Windsor Univ., ON (Canada); Grandmaison, E.W. [Queen' s Univ., Kingston, ON (Canada). Centre for Advanced Gas Combustion Technology

    2003-07-01

    The oil and gas industry commonly disposes of hydrocarbon wastes by flaring. This study simulated several features of industrial offshore flares in a multi-jet burner. Cold and hot flow experiments were performed. Twenty-four nozzles mounted on radial arms originating from a central fuel plenum were used in the burner design. In an effort to improve the mixing and radiation characteristics of this type of burner, an examination of the effect of various mixing-altering devices on the nozzle exit ports was performed. Flow visualization studies of the cold and hot flow systems were presented, along with details concerning temperature, gas composition and radiation levels from the burner models. The complex flow pattern resulting when multiple jets are injected into a cross flow stream were demonstrated with the flow visualization studies from the cold model. The trajectory followed by the leading edge jet for the reference case and the ring attachments was higher but similar to the simple round jet in a cross flow. The precessing jets and the cone attachments were more strongly deflected by the cross flow with a higher degree of mixing between the jets in the nozzle region. For different firing rates, flow visualization, gas temperature, gas composition and radiative heat flux measurements were performed in the hot model studies. Flame trajectories, projected side view areas and volumes increased with firing rates for all nozzle configurations and the ring attachment flare had the smallest flame volume. The gas temperatures reached maximum values at close to 30 per cent of the flame length and the lowest gas temperature was observed for the flare model with precessing jets. For the reference case nozzle, nitrogen oxide (NOx) concentrations were in the 30 to 45 parts per million (ppm) range. The precessing jet model yielded NOx concentrations in the 22 to 24 ppm range, the lowest obtained. There was a linear dependence between the radiative heat flux from the flames

  3. Fetal growth disorders in twin gestations.

    LENUS (Irish Health Repository)

    Breathnach, Fionnuala M

    2012-06-01

    Twin growth is frequently mismatched. This review serves to explore the pathophysiologic mechanisms that underlie growth aberrations in twin gestations, the prenatal recognition of abnormal twin growth, and the critical importance of stratifying management of abnormal twin growth by chorionicity. Although poor in utero growth of both twins may reflect maternal factors resulting in global uteroplacental dysfunction, discordant twin growth may be attributed to differences in genetic potential between co-twins, placental dysfunction confined to one placenta only, or one placental territory within a shared placenta. In addition, twin-twin transfusion syndrome represents a distinct entity of which discordant growth is a common feature. Discordant growth is recognized as an independent risk factor for adverse perinatal outcome. Intertwin birth weight disparity of 18% or more should be considered to represent a discordance threshold, which serves as an independent risk factor for adverse perinatal outcome. At this cutoff, perinatal morbidity is found to increase both for the larger and the smaller twin within a discordant pair. There remains uncertainty surrounding the sonographic parameters that are most predictive of discordance. Although heightening of fetal surveillance in the face of discordant twin growth follows the principles applied to singleton gestations complicated by fetal growth restriction, the timing of intervention is largely influenced by chorionicity.

  4. Evaluation of twin-head electrospray nanoparticle disperser for nanotoxicity study

    Science.gov (United States)

    Liu, Qiaoling; Budiman, Thomas; Chen, Da-Ren

    2014-08-01

    With the rapid development of nanotechnology, nanoparticles with various sizes and compositions have been synthesized and proposed for industrial applications. At the same time, the health effects and environmental impacts of nanoparticles become an emerging concern to be addressed. Both in vitro and in vivo studies are of importance to better understand the toxicity of nanoparticles. It is thus essential to have a nanoparticle disperser capable of dispersing individual nanoparticles for these studies. A twin-head electrospray (THES) nanoparticle disperser for animal inhalation exposure studies has recently become commercially available from TSE Systems Inc. Different from the cone-jet electrospray method used in the majority of literature, this particular disperser operates at the multi-jet mode. In this study, we reported our finding on the performance evaluation of the THES disperser with respect to its mass throughput and quality of size distribution of aerosol produced. Three different nanomaterials (TiO2, ZnO, and NiO) were used in this study. It is found that the maximal mass throughput of the studied disperser was achieved by keeping the distance between two opposite spray capillary tips at 3.0 cm, operating the primary carrier-to-capillary sheath flow rates at the ratio of 4:3, and feeding spray suspensions at a flow rate of 20 µl/min. Under the above settings and operations, the highest mass concentration for nano-ZnO was measured at 14.56 mg/m3. Nanoparticle streams with higher concentrations can be further produced by lowering the total carrier gas flow rate and spraying suspensions of higher nanomaterial concentrations. Our study also found that the particle mass throughput of the studied disperser had a good linear relationship with the mass concentration of spray suspension. In addition, the spatial uniformity of nano aerosol distribution in a TSE head-nose-only exposure chamber was investigated. An acceptable nano aerosol uniformity result was

  5. Greenland plateau jets

    Directory of Open Access Journals (Sweden)

    George William Kent Moore

    2013-08-01

    Full Text Available The high ice-covered topography of Greenland represents a significant barrier to atmospheric flow and, as a direct and indirect result, it plays a crucial role in the coupled climate system. The wind field over Greenland is important in diagnosing regional weather and climate, thereby providing information on the mass balance of the ice sheet as well as assisting in the interpretation of ice core data. Here, we identify a number of hitherto unrecognised features of the three-dimensional wind field over Greenland; including a 2500-km-long jet along the central ice sheet's western margin that extends from the surface into the middle-troposphere, as well as a similar but smaller scale and less intense feature along its eastern margin. We refer to these features as Greenland Plateau Jets. The jets are coupled to the downslope katabatic flow and we argue that they are maintained by the zonal temperature gradients associated with the strong temperature inversion over the central ice sheet. Their importance for Greenland's regional climate is discussed.

  6. Neonatal status of twins

    Directory of Open Access Journals (Sweden)

    Božinović Dragica

    2012-01-01

    Full Text Available Multiple pregnancy is a pregnancy where more than one fetus develops simultaneously in the womb, as a result of the ovulation and fertilization of more than one egg. It is relatively rare in humans and represents the rest of the phylogenetic stages. The most common are twins and they indicate the development of two fetuses in the womb. The frequency of twin pregnancies is about 1%. Multiple pregnancies belong to a group of high-risk pregnancies because of the many complications that occur during the pregnancy: higher number of premature deliveries, bleeding, early neonatal complications and higher perinatal morbidity and mortality. Such pregnancies and infants require greater supervision and monitoring. The aim of this study was to determine the percentage of baby twins born at the maternity ward of the General Hospital in Prokuplje and their morbidity and mortality. Data on the total number of deliveries, number of twins, parity and maternal age, gestational age, body weight of twins, method of delivery, Apgar score and perinatal mortality were collected and statistically analyzed by means of retrospective analysis of operative birth and neonatal protocol for 6 years (2005 of 2010. Out of 4527 mothers who gave birth 43 were pairs of twins, or 0.95% of women gave birth to twins. These babies are more likely born by Caesarean section, but delivered with slightly lower birth weight.

  7. Cohort Profile : The National Academy of Sciences-National Research Council Twin Registry (NAS-NRC Twin Registry)

    NARCIS (Netherlands)

    Gatz, Margaret; Harris, Jennifer R.; Kaprio, Jaakko; McGue, Matt; Smith, Nicholas L.; Snieder, Harold; Spiro, Avron; Butler, David A.

    The National Academy of Sciences-National Research Council Twin Registry (NAS-NRC Twin Registry) is a comprehensive registry of White male twin pairs born in the USA between 1917 and 1927, both of the twins having served in the military. The purpose was medical research and ultimately improved

  8. Assisted reproductive technology and major birth defects in Western Australia.

    Science.gov (United States)

    Hansen, Michele; Kurinczuk, Jennifer J; de Klerk, Nicholas; Burton, Peter; Bower, Carol

    2012-10-01

    To estimate the prevalence of major birth defects diagnosed by 6 years of age in all births and terminations of pregnancy for fetal anomaly conceived by assisted reproductive technology (when this included intracytoplasmic sperm injection and in vitro fertilization [IVF]) and the remainder of nonassisted reproductive technology-conceived children born in Western Australia from 1994 to 2002. This retrospective cohort study used data linkage between three population-based registers (Reproductive Technology Register, Western Australian Register of Developmental Anomalies, and Midwives' Notification of Birth System) to identify all assisted reproductive technology (n=2,911) and nonassisted reproductive technology (n=210,997) births with and without birth defects diagnosed by age 6 and all terminations of pregnancy for fetal anomaly. A major birth defect was diagnosed in 8.7% of assisted reproductive technology and 5.4% of nonassisted reproductive technology singletons (odds ratio [OR] 1.53, 95% confidence interval [CI] 1.30-1.79), as well as 7.1% of assisted reproductive technology twins and 5.9% of nonassisted reproductive technology twins of unlike sex (OR 1.08, 95% CI 0.77-1.51). The prevalence of birth defects in assisted reproductive technology singletons and twins decreased markedly over the study period. This change was evident across all three clinics contributing data over the whole study and was particularly marked for children conceived as a result of IVF. There has been a decrease in the prevalence of birth defects over time in children born as a result of assisted reproductive technology in Western Australia; however, the prevalence of major birth defects in assisted reproductive technology singletons remains increased compared with nonassisted reproductive technology singletons. II.

  9. Monozygotic twins with discordant intestinal rotation

    International Nuclear Information System (INIS)

    Smith, Vance L.; Nwomeh, Benedict C.; Long, Frederick

    2006-01-01

    Previous case reports have suggested a strong concordance of intestinal malrotation among identical twins. This has led to the recommendation that the asymptomatic twin undergo screening when malrotation is discovered in the identical sibling. We present a case of monozygotic twins in which one twin presented with intestinal malrotation with midgut volvulus while the other twin was found to have normal gastrointestinal anatomy. (orig.)

  10. Monozygotic twins with discordant intestinal rotation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Vance L.; Nwomeh, Benedict C. [Ohio State University College of Medicine and Public Health, Department of Pediatric Surgery, Columbus Children' s Hospital, Columbus, OH (United States); Long, Frederick [Ohio State University College of Medicine and Public Health, Department of Radiology, Columbus Children' s Hospital, Columbus, OH (United States)

    2006-04-15

    Previous case reports have suggested a strong concordance of intestinal malrotation among identical twins. This has led to the recommendation that the asymptomatic twin undergo screening when malrotation is discovered in the identical sibling. We present a case of monozygotic twins in which one twin presented with intestinal malrotation with midgut volvulus while the other twin was found to have normal gastrointestinal anatomy. (orig.)

  11. Experimental study of a separated jets burner: application to the natural gas-pure oxygen combustion; Etude experimentale du comportement de bruleurs a jets separes: application a la combustion gaz naturel-oxygene pur

    Energy Technology Data Exchange (ETDEWEB)

    Salentey, L.

    2002-04-15

    The evolution of pollution standards and the optimisation of furnaces performances require a development of new burner generation and also the improvement of combustion techniques. Actually, the use of oxy-combustion in separated jets burners offers interesting prospects for NO{sub x} emission reduction and on the modularity of flames properties (lift off, flame front topology, flame length). The complex geometry of those burners leads to several problems like the three-dimensional character of the flow, which may sometimes disturb the flame stability as flames are lifted above the burner. This experimental study deals with a simplified version of that kind of burner constituted with a central natural gas jet surrounded by two oxygen jets. Primary, the study of non-reactive jet was planned in order to understand dynamic and mixture phenomena involved between jets and to provide a database useful for the computer code validation. The reactive flow developed in a furnace, which simulates the real conditions, had been characterised. The studies of the dynamic field using Laser Doppler Velocimetry (LDV) and of the turbulent mixture by conditional Laser tomography were supplemented in combustion by the visualisation of the spontaneous emission of radical OH, in the initial and final zone of the oxy-flames, like by the measurement of pollutants like NO{sub x} and soot. The measurements carried out while varying speeds of injection as well as the gap between the jets made possible the highlight of the influence of these parameters upon the stabilisation of the oxy-flames as well as the modification of the topology and the characteristics of the flows. The comparison of the measurements made in non-reactive and reactive flow shows the influence of oxy-combustion on the dynamic and scalar development of the flow for this type of burners. (author)

  12. A Computational Discriminability Analysis on Twin Fingerprints

    Science.gov (United States)

    Liu, Yu; Srihari, Sargur N.

    Sharing similar genetic traits makes the investigation of twins an important study in forensics and biometrics. Fingerprints are one of the most commonly found types of forensic evidence. The similarity between twins’ prints is critical establish to the reliability of fingerprint identification. We present a quantitative analysis of the discriminability of twin fingerprints on a new data set (227 pairs of identical twins and fraternal twins) recently collected from a twin population using both level 1 and level 2 features. Although the patterns of minutiae among twins are more similar than in the general population, the similarity of fingerprints of twins is significantly different from that between genuine prints of the same finger. Twins fingerprints are discriminable with a 1.5%~1.7% higher EER than non-twins. And identical twins can be distinguished by examine fingerprint with a slightly higher error rate than fraternal twins.

  13. The influence of surface-active agents in gas mixture on the intensity of jet condensation

    Science.gov (United States)

    Yezhov, YV; Okhotin, VS

    2017-11-01

    The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and

  14. The utility of twins in developmental cognitive neuroscience research: How twins strengthen the ABCD research design.

    Science.gov (United States)

    Iacono, William G; Heath, Andrew C; Hewitt, John K; Neale, Michael C; Banich, Marie T; Luciana, Monica M; Madden, Pamela A; Barch, Deanna M; Bjork, James M

    2018-08-01

    The ABCD twin study will elucidate the genetic and environmental contributions to a wide range of mental and physical health outcomes in children, including substance use, brain and behavioral development, and their interrelationship. Comparisons within and between monozygotic and dizygotic twin pairs, further powered by multiple assessments, provide information about genetic and environmental contributions to developmental associations, and enable stronger tests of causal hypotheses, than do comparisons involving unrelated children. Thus a sub-study of 800 pairs of same-sex twins was embedded within the overall Adolescent Brain and Cognitive Development (ABCD) design. The ABCD Twin Hub comprises four leading centers for twin research in Minnesota, Colorado, Virginia, and Missouri. Each site is enrolling 200 twin pairs, as well as singletons. The twins are recruited from registries of all twin births in each State during 2006-2008. Singletons at each site are recruited following the same school-based procedures as the rest of the ABCD study. This paper describes the background and rationale for the ABCD twin study, the ascertainment of twin pairs and implementation strategy at each site, and the details of the proposed analytic strategies to quantify genetic and environmental influences and test hypotheses critical to the aims of the ABCD study. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Conjoined (Siamese) Twins in Zambia

    African Journals Online (AJOL)

    year-old Zambian multiparous mother gave birth to a set of twins with two heads ... (symmetric or mirror image) but one twin attached with an incomplete foetus is known as hetropagtrs. (asymmetrical). Thoracopagus twins (joined at the chest).

  16. Ferrobielastic twinning in irradiated quartz

    International Nuclear Information System (INIS)

    Shiau, S.M.

    1986-01-01

    Cultured quartz is usually free from electrical twinning; however, it may occur if the seed crystal is twinned or if undue applied forces are exerted on the crystal. Ferrobielastic twinning was studied optically (photoelastic effect) and electrically (piezoelectric effect). At room temperature, twins were perceptible at stresses of about 2.l5 x 10 8 N/m 2 , and crystals switched from their original states to the alternative twin states at stresses about 5.0 x 10 8 N/m 2 (called coercive stress). The decrease in coercive stress with increasing temperature was observed, and these coercive stresses become very low as temperatures reach to 300 0 C. The effects of irradiation on the twinning in quartz were also studied. The presence of defects produced by irradiation was utilized to pin the domain wall motion. Both neutrons and gamma rays were employed. The stress required to nucleate an appreciable volume of twins is about twice as high for irradiated crystals than for those unirradiated. This result demonstrated that the irradiated crystals can tolerate higher stresses. However, the coercive stress for complete switch-over was not much different for irradiated and unirradiated crystals. It appears that the defects caused by irradiation eliminate the initial twinning events but do not affect switch-over

  17. Voice similarity in identical twins.

    Science.gov (United States)

    Van Gysel, W D; Vercammen, J; Debruyne, F

    2001-01-01

    If people are asked to discriminate visually the two individuals of a monozygotic twin (MT), they mostly get into trouble. Does this problem also exist when listening to twin voices? Twenty female and 10 male MT voices were randomly assembled with one "strange" voice to get voice trios. The listeners (10 female students in Speech and Language Pathology) were asked to label the twins (voices 1-2, 1-3 or 2-3) in two conditions: two standard sentences read aloud and a 2.5-second midsection of a sustained /a/. The proportion correctly labelled twins was for female voices 82% and 63% and for male voices 74% and 52% for the sentences and the sustained /a/ respectively, both being significantly greater than chance (33%). The acoustic analysis revealed a high intra-twin correlation for the speaking fundamental frequency (SFF) of the sentences and the fundamental frequency (F0) of the sustained /a/. So the voice pitch could have been a useful characteristic in the perceptual identification of the twins. We conclude that there is a greater perceptual resemblance between the voices of identical twins than between voices without genetic relationship. The identification however is not perfect. The voice pitch possibly contributes to the correct twin identifications.

  18. Simulation of a gas jet entering the secondary side of a steam generator during a SGTR sequence: Validation of a FLUENT 6.2 Model

    Energy Technology Data Exchange (ETDEWEB)

    Lopez del Pra, C. Lopez, E-mail: Claudia.lopez@ciemat.e [Unit of Nuclear Safety Research, CIEMAT, Madrid (Spain); Velasco, F.J.S.; Herranz, L.E. [Unit of Nuclear Safety Research, CIEMAT, Madrid (Spain)

    2010-09-15

    This paper summarizes the major insights gained as a result of gas jets entering a tube bundle from either a guillotine or a fish-mouth breach of a steam generator tube. This scenario is highly relevant in nuclear safety since it determines the potential retention of radioactive particles during risk-dominant sequences, the so-called Steam Generator Tube Rupture (SGTR) sequences. The scenario has been modeled with the FLUENT 6.2 code and its predictions have been proven to be grid independent and consistent with the experimental data available. The topology of the jets and the influence of the inlet mass flow rate (from 75 to 250 kg/h) have been studied in terms of velocity profiles. The results show that the breach shape heavily determines the jet topology. Both jets initially describe a quasi-parabolic trajectory, which is affected by the presence of the tubes. A guillotine breach generates a jet with azimuthal symmetry, which vanishes for the fish-mouth breach configuration. In this case, jet expands azimuthally in a pseudo-triangular way with a small angle. This fact diminishes the momentum loss across the bundle, so that for the same inlet mass flow rate the fish-mouth jet penetration is higher than the guillotine one. The normalized maximum radial and axial velocities of the jet from the guillotine breach are found to be self-similar with respect to inlet mass flow rate along the tube row position and axial distance to the breach, respectively. However, in absolute terms higher penetrations are found at higher mass flow rates.

  19. Growth curves for twins in Slovenia.

    Science.gov (United States)

    Bricelj, Katja; Blickstein, Isaac; Bržan-Šimenc, Gabrijela; Janša, Vid; Lučovnik, Miha; Verdenik, Ivan; Trojner-Bregar, Andreja; Tul, Nataša

    2017-02-01

    Abnormalities of fetal growth are more common in twins. We introduce the growth curves for monitoring fetal growth in twin pregnancies in Slovenia. Slovenian National Perinatal Information System for the period between 2002 and 2010 was used to calculate birth weight percentiles for all live born twins for each week from 22nd to 40th week. The calculated percentiles of birth weight for all live-born twins in Slovenia served as the basis for drawing 'growth' curves. The calculated growth curves for twins will help accurately diagnose small or large twin fetuses for their gestational age in the native central European population.

  20. Deformation twinning: Influence of strain rate

    Energy Technology Data Exchange (ETDEWEB)

    Gray, G.T. III

    1993-11-01

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shock wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.

  1. Fingerprint recognition with identical twin fingerprints.

    Science.gov (United States)

    Tao, Xunqiang; Chen, Xinjian; Yang, Xin; Tian, Jie

    2012-01-01

    Fingerprint recognition with identical twins is a challenging task due to the closest genetics-based relationship existing in the identical twins. Several pioneers have analyzed the similarity between twins' fingerprints. In this work we continue to investigate the topic of the similarity of identical twin fingerprints. Our study was tested based on a large identical twin fingerprint database that contains 83 twin pairs, 4 fingers per individual and six impressions per finger: 3984 (83*2*4*6) images. Compared to the previous work, our contributions are summarized as follows: (1) Two state-of-the-art fingerprint identification methods: P071 and VeriFinger 6.1 were used, rather than one fingerprint identification method in previous studies. (2) Six impressions per finger were captured, rather than just one impression, which makes the genuine distribution of matching scores more realistic. (3) A larger sample (83 pairs) was collected. (4) A novel statistical analysis, which aims at showing the probability distribution of the fingerprint types for the corresponding fingers of identical twins which have same fingerprint type, has been conducted. (5) A novel analysis, which aims at showing which finger from identical twins has higher probability of having same fingerprint type, has been conducted. Our results showed that: (a) A state-of-the-art automatic fingerprint verification system can distinguish identical twins without drastic degradation in performance. (b) The chance that the fingerprints have the same type from identical twins is 0.7440, comparing to 0.3215 from non-identical twins. (c) For the corresponding fingers of identical twins which have same fingerprint type, the probability distribution of five major fingerprint types is similar to the probability distribution for all the fingers' fingerprint type. (d) For each of four fingers of identical twins, the probability of having same fingerprint type is similar.

  2. Fingerprint recognition with identical twin fingerprints.

    Directory of Open Access Journals (Sweden)

    Xunqiang Tao

    Full Text Available Fingerprint recognition with identical twins is a challenging task due to the closest genetics-based relationship existing in the identical twins. Several pioneers have analyzed the similarity between twins' fingerprints. In this work we continue to investigate the topic of the similarity of identical twin fingerprints. Our study was tested based on a large identical twin fingerprint database that contains 83 twin pairs, 4 fingers per individual and six impressions per finger: 3984 (83*2*4*6 images. Compared to the previous work, our contributions are summarized as follows: (1 Two state-of-the-art fingerprint identification methods: P071 and VeriFinger 6.1 were used, rather than one fingerprint identification method in previous studies. (2 Six impressions per finger were captured, rather than just one impression, which makes the genuine distribution of matching scores more realistic. (3 A larger sample (83 pairs was collected. (4 A novel statistical analysis, which aims at showing the probability distribution of the fingerprint types for the corresponding fingers of identical twins which have same fingerprint type, has been conducted. (5 A novel analysis, which aims at showing which finger from identical twins has higher probability of having same fingerprint type, has been conducted. Our results showed that: (a A state-of-the-art automatic fingerprint verification system can distinguish identical twins without drastic degradation in performance. (b The chance that the fingerprints have the same type from identical twins is 0.7440, comparing to 0.3215 from non-identical twins. (c For the corresponding fingers of identical twins which have same fingerprint type, the probability distribution of five major fingerprint types is similar to the probability distribution for all the fingers' fingerprint type. (d For each of four fingers of identical twins, the probability of having same fingerprint type is similar.

  3. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    Science.gov (United States)

    Rao, Dandina N [Baton Rouge, LA

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  4. The classical twin study and beyond

    NARCIS (Netherlands)

    Boomsma, D.I.; Busjahn, A.; Peltonen, L.

    2002-01-01

    Twin studies have been a valuable source of information about the genetic basis of complex traits. To maximize the potential of twin studies, large, worldwide registers of data on twins and their relatives have been established. Here, we provide an overview of the current resources for twin

  5. A new Disruption Mitigation System for deuterium–tritium operation at JET

    Energy Technology Data Exchange (ETDEWEB)

    Kruezi, Uron, E-mail: uron.kruezi@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Jachmich, Stefan [Laboratory for Plasma Physic, ERM/KMS, B-1000 Brussels (Belgium); Koslowski, Hans Rudolf [Forschungszentrum Jülich GmbH, IEK-4, 52425 Jülich (Germany); Lehnen, Michael [ITER Organization, Route de Vinon-sur-Verdon, CS90046, 13067 St. Paul Lez Durance Cedex (France); Brezinsek, Sebastijan [Forschungszentrum Jülich GmbH, IEK-4, 52425 Jülich (Germany); Matthews, Guy [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2015-10-15

    Highlights: • A Disruption Mitigation System based on massive gas injections has been designed. • The DMS has been installed at the JET-tokamak for routine machine protection. • The DMS is capable of a throughput of up to 4.6 kPa m{sup 3}. • The new DMS is compatible with the deuterium–tritium operation at JET. - Abstract: Disruptions, the fast accidental losses of plasma current and stored energy in tokamaks, represent a significant risk to the mechanical structure as well as the plasma facing components of reactor-scale fusion facilities like ITER. At JET, the tokamak experiment closest to ITER in terms of operating parameters and size, massive gas injection has been established as a disruption mitigation method. As a “last resort” measure it reduces thermal and electromagnetic loads during disruptions which can potentially have a serious impact on the beryllium and tungsten plasma-facing materials of the main chamber and divertor. For the planned deuterium–tritium experiments, a new Disruption Mitigation System (DMS) has been designed and installed and is presented in this article. The new DMS at JET consists of an all metal gate valve compatible with gas injections, a fast high pressure eddy current driven valve, a high voltage power supply and a gas handling system providing six supply lines for pure and mixed noble and flammable gases (Ar, Ne, Kr, D{sub 2}, etc.). The valve throughput varies with the injection pressure and gas type (efficiency – injected/charged gas 50–97%); the maximum injected amount of gas is approximately 4.6 kPa m{sup 3} (at maximum system pressure of 5.0 MPa).

  6. A new Disruption Mitigation System for deuterium–tritium operation at JET

    International Nuclear Information System (INIS)

    Kruezi, Uron; Jachmich, Stefan; Koslowski, Hans Rudolf; Lehnen, Michael; Brezinsek, Sebastijan; Matthews, Guy

    2015-01-01

    Highlights: • A Disruption Mitigation System based on massive gas injections has been designed. • The DMS has been installed at the JET-tokamak for routine machine protection. • The DMS is capable of a throughput of up to 4.6 kPa m"3. • The new DMS is compatible with the deuterium–tritium operation at JET. - Abstract: Disruptions, the fast accidental losses of plasma current and stored energy in tokamaks, represent a significant risk to the mechanical structure as well as the plasma facing components of reactor-scale fusion facilities like ITER. At JET, the tokamak experiment closest to ITER in terms of operating parameters and size, massive gas injection has been established as a disruption mitigation method. As a “last resort” measure it reduces thermal and electromagnetic loads during disruptions which can potentially have a serious impact on the beryllium and tungsten plasma-facing materials of the main chamber and divertor. For the planned deuterium–tritium experiments, a new Disruption Mitigation System (DMS) has been designed and installed and is presented in this article. The new DMS at JET consists of an all metal gate valve compatible with gas injections, a fast high pressure eddy current driven valve, a high voltage power supply and a gas handling system providing six supply lines for pure and mixed noble and flammable gases (Ar, Ne, Kr, D_2, etc.). The valve throughput varies with the injection pressure and gas type (efficiency – injected/charged gas 50–97%); the maximum injected amount of gas is approximately 4.6 kPa m"3 (at maximum system pressure of 5.0 MPa).

  7. A computational study of the supersonic coherent jet

    International Nuclear Information System (INIS)

    Jeong, Mi Seon; Kim, Heuy Dong

    2003-01-01

    In steel-making process of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. In this regard, gasdynamics mechanism about why the combustion phenomenon surrounding the supersonic jet causes the jet core length to be longer is not yet clarified. The present study investigates the major characteristics of the supersonic coherent jet, compared with the conventional supersonic jet. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jets

  8. Spatially resolved emission spectroscopic investigation of microwave-induced reactive low-power plasma jets

    International Nuclear Information System (INIS)

    Arnold, Thomas; Grabovski, Sergey; Schindler, Axel; Wagner, Hans-Erich

    2004-01-01

    A microwave-induced Ar/SF 6 plasma jet is characterized by means of optical emission spectroscopy. Rotational temperatures from unresolved N 2 bands and excitation temperatures from Fe lines as well as electron densities (H β Stark broadening) have been estimated along the plasma jet axis using a side-on configuration. The SF 6 gas flow rate and chamber pressure were varied from 10 to 250 sccm and 20 to 500 mbar, respectively. Three characteristic jet regions have been observed: the plasma ignition zone, followed by the gas mixing zone and a relaxing zone

  9. Experimental investigation of the mixing processes in a Jet-in-Crossflow arrangement; Experimentelle Untersuchung von Vermischungsvorgaengen in einer Jet-in-Crossflow-Anordnung

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, C.; Suntz, R.; Bockhorn, H. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Technische Chemie und Polymerchemie

    2008-07-15

    The Jet-in-Crossflow flow arrangement is a geometrically simple flow configuration in which an open jet is injected vertically into a constant crossflow and the two flows are thus mixed with one another. This flow arrangement is frequently encountered in industrial applications and also in nature. Examples can be found in industrial burners, RQL gas turbines, T-mixers, smoke plumes from stacks and volcanoes, and the jets emitted by aviation gas-turbines and by rockets. The subject of this publication is quantitative experimental determination of the Reynolds flows and stresses in a Jet-in-Crossflow arrangement. The variables stated reflect turbulence-induced elevated mass transfer in a turbulent vis-a-vis a laminar flow and are thus intimately linked to mixing processes. Their experimental determination is of great importance for the generation and validation of numerical turbulence models. Simultaneous use of two laser-diagnosis methods, 2D LIF (Two-dimensional Laser-induced Fluorescence) and PIV (Particle Image Velocimetry) makes it possible to establish 2D concentration and velocity fields simultaneously and determine the variables mentioned directly. (orig.)

  10. Exotic quarks in Twin Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hsin-Chia [Department of Physics, University of California, Davis,One Shields Avenue, Davis, CA 95616 (United States); Jung, Sunghoon [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); SLAC National Accelerator Laboratory,2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Salvioni, Ennio [Department of Physics, University of California, Davis,One Shields Avenue, Davis, CA 95616 (United States); Tsai, Yuhsin [Department of Physics, University of California, Davis,One Shields Avenue, Davis, CA 95616 (United States); Maryland Center for Fundamental Physics,Department of Physics, University of Maryland,College Park, MD 20742 (United States)

    2016-03-14

    The Twin Higgs model provides a natural theory for the electroweak symmetry breaking without the need of new particles carrying the standard model gauge charges below a few TeV. In the low energy theory, the only probe comes from the mixing of the Higgs fields in the standard model and twin sectors. However, an ultraviolet completion is required below ∼ 10 TeV to remove residual logarithmic divergences. In non-supersymmetric completions, new exotic fermions charged under both the standard model and twin gauge symmetries have to be present to accompany the top quark, thus providing a high energy probe of the model. Some of them carry standard model color, and may therefore be copiously produced at current or future hadron colliders. Once produced, these exotic quarks can decay into a top together with twin sector particles. If the twin sector particles escape the detection, we have the irreducible stop-like signals. On the other hand, some twin sector particles may decay back into the standard model particles with long lifetimes, giving spectacular displaced vertex signals in combination with the prompt top quarks. This happens in the Fraternal Twin Higgs scenario with typical parameters, and sometimes is even necessary for cosmological reasons. We study the potential displaced vertex signals from the decays of the twin bottomonia, twin glueballs, and twin leptons in the Fraternal Twin Higgs scenario. Depending on the details of the twin sector, the exotic quarks may be probed up to ∼ 2.5 TeV at the LHC and beyond 10 TeV at a future 100 TeV collider, providing a strong test of this class of ultraviolet completions.

  11. Vortex diode jet

    Science.gov (United States)

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  12. Study on surface modification of polymer films by using atmospheric plasma jet source

    International Nuclear Information System (INIS)

    Takemura, Yuichiro; Hara, Tamio; Yamaguchi, Naohiro

    2008-01-01

    Reactive gas plasma treatments of poly(ethylene terephthalate) (PET) and polyimide (Kapton) have been performed using an atmospheric plasmas jet source. Characteristics of surface modification have been examined by changing the distance between the plasma jet source and the treated sample, and by changing the working gas spaces. Simultaneously, each plasma jet source has been investigated by space-resolving spectroscopy in the UV/visible region. Polymer surfaces have been analyzed by X-ray photoelectron spectroscopy (XPS). A marked improvement in the hydrophilicity of the polymer surfaces has been made by using N 2 or O 2 plasma jet source with a very short exposure time of about 0.01 s, whereas the less improvement has been obtained using on air plasma jet source because of NO x compound production. Changes in the chemical states of C of the polymer surfaces have been observed in XPS spectra after N 2 plasma jet spraying. (author)

  13. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Uwe, Greife [Colorado School of Mines, Golden, CO (United States)

    2014-08-12

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  14. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    International Nuclear Information System (INIS)

    Uwe, Greife

    2014-01-01

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  15. Twin Higgs Asymmetric Dark Matter.

    Science.gov (United States)

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.

  16. Jet observables without jet algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele; Chan, Tucker; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2014-04-02

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

  17. Gas retorts: gas manufacture, process for distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J

    1874-05-23

    In apparatus for distilling shale, coal, etc. for making oil and gas, tubular retorts are supported horizontally in a chamber by plates from a brick setting and are heated partly by jets of gas from a pipe supplied through a cock from a gas holder, and partly by the waste gases from a furnace, which heats gas retorts placed in a chamber, air being supplied beneath the grate by a fan.

  18. Technical and Scientific Aspects of the JET Trace-Tritium Experimental Campaign

    International Nuclear Information System (INIS)

    Jones, T.T.C.; Brennan, D; Pearce, R.J.H.; Stork, D.; Zastrow, K.-D.; Balshaw, N.; Bell, A.C.; Bertalot, L.; Boyer, H.; Butcher, P.R.; Challis, C.D.; Ciric, D.; Clarke, R.; Conroy, S.; Darke, A.C.; Davies, N.; Edlington, T.; Ericsson, G.; Gibbons, C.; Hackett, L.J.; Haupt, T.; Hitchin, M.; Kaye, A.S.; King, R.; Kiptily, V.G.; Knipe, S.; Lawrence, G.; Lobel, R.; Mason, A.; Morgan, P.D.; Patel, B.; Popovichev, S.; Stamp, M.; Surrey, E.; Terrington, A.; Worth, L.; Young, D.

    2005-01-01

    The JET Trace Tritium (TTE) programme marked the first use of tritium in experiments under the managerial control of UKAEA, which operates the JET Facility on behalf of EFDA. The introduction of tritium into the plasma by gas fuelling and neutral beam injection, even in trace quantities, required the mobilisation of gram-quantities of tritium gas from the Active Gas Handling System (AGHS) product storage units into the supply lines connected to the torus gas valve and the neutral beam injectors. All systems for DT gas handling, recovery and reprocessing were therefore recommissioned and operating procedures re-established, involving extensive operations staff training. The validation of Key Safety Related Equipment (KSRE) is described with reference to specific examples. The differences between requirements for TTE and full DT operations are shown to be relatively small. The scientific motivation for TTE, such as the possibility to obtain high-quality measurements in key areas such as fuel-ion transport and fast ion dynamics, is described, and the re-establishment and development of JET's 14MeV neutron diagnostic capability for TTE and future DT campaigns are outlined. Some scientific highlights from the TTE campaign are presented

  19. Attachment to the Romantic Partner and Sibling: Attachment Hierarchies of Twins and Non-Twin Siblings

    Directory of Open Access Journals (Sweden)

    Sascha Schwarz

    2015-12-01

    Full Text Available Previous studies have shown that romantic partners and siblings are important attachment figures. This study compares the attachment to the romantic partner with the attachment to the sibling as a function of the participant’s sibling type among monozygotic (MZ twins, dizygotic (DZ twins, and non-twin (NT siblings. The results show that MZ twins prefer their sibling to their romantic partner whereas DZ twins are equally attached to their sibling and romantic partner. In contrast, NT siblings are more attached to their romantic partner compared to their sibling. These results indicate that genetic relatedness has profound impact on a person’s attachment hierarchy and the relative rank of the romantic partner and the sibling.

  20. Searching for order in atmospheric pressure plasma jets

    Science.gov (United States)

    Schäfer, Jan; Sigeneger, Florian; Šperka, Jiří; Rodenburg, Cornelia; Foest, Rüdiger

    2018-01-01

    The self-organized discharge behaviour occurring in a non-thermal radio-frequency plasma jet in rare gases at atmospheric pressure was investigated. The frequency of the azimuthal rotation of filaments in the active plasma volume and their inclination were measured along with the gas temperature under varying discharge conditions. The gas flow and heating were described theoretically by a three-dimensional hydrodynamic model. The rotation frequencies obtained by both methods qualitatively agree. The results demonstrate that the plasma filaments forming an inclination angle α with the axial gas velocity u z are forced to a transversal movement with the velocity {u}φ =\\tan (α )\\cdot {u}z, which is oriented in the inclination direction. Variations of {u}φ in the model reveal that the observed dynamics minimizes the energy loss due to convective heat transfer by the gas flow. The control of the self-organization regime motivates the application of the plasma jet for precise and reproducible material processing.

  1. An overview of process instrumentation, protective safety interlocks and alarm system at the JET facilities active gas handling system

    International Nuclear Information System (INIS)

    Skinner, N.; Brennan, P.; Brown, K.; Gibbons, C.; Jones, G.; Knipe, S.; Manning, C.; Perevezentsev, A.; Stagg, R.; Thomas, R.; Yorkshades, J.

    2003-01-01

    The Joint European Torus (JET) Facilities Active Gas Handling System (AGHS) comprises ten interconnected processing sub-systems that supply, process and recover tritium from gases used in the JET Machine. Operations require a diverse range of process instrumentation to carry out a multiplicity of monitoring and control tasks and approximately 500 process variables are measured. The different types and application of process instruments are presented with specially adapted or custom-built versions highlighted. Forming part of the Safety Case for tritium operations, a dedicated hardwired interlock and alarm system provides an essential safety function. In the event of failure modes, each hardwired interlock will back-up software interlocks and shutdown areas of plant to a failsafe condition. Design of the interlock and alarm system is outlined and general methodology described. Practical experience gained during plant operations is summarised and the methods employed for routine functional testing of essential instrument systems explained

  2. Computational analysis of transient gas release from a high pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, G.; Oshkai, P.; Djilali, N. [Victoria Univ., BC (Canada). Inst. for Integrated Energy Systems; Penau, F. [CERAM Euro-American Inst. of Technology, Sophia Antipolis (France)

    2006-07-01

    Gas jets exiting from compressed vessels can undergo several regimes as the pressure in the vessel decreases, and a greater understanding of the characteristics of gas jets is needed to determine safety requirements in the transport, distribution, and use of hydrogen. This paper provided a study of the bow shock waves that typically occur during the initial stage of a gas jet incident. The transient behaviour of an initiated jet was investigated using unsteady, compressible flow simulations. The gas was considered to be ideal, and the domain was considered to be axisymmetric. Tank pressure for the analysis was set at a value of 100 atm. Jet structure was examined, as well as the shock structures and separation due to adverse pressure gradients at the nozzle. Shock structure displacement was also characterized.

  3. Gas manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Fell, J W

    1915-05-03

    Retorts for the distillation of shale or coal for the production of oil or illuminating-gas are heated by gas from a generator or a gas-holder, and a portion of the gas from the flue leading to the heating-flues is forced by a steam jet through a by-pass and is injected into the bottom of the retorts. If the gas to be admitted to the retort is cold, it is first heated.

  4. Neurodevelopmental outcome at 2 years in twin-twin transfusion syndrome survivors randomized for the Solomon trial.

    Science.gov (United States)

    van Klink, Jeanine M M; Slaghekke, Femke; Balestriero, Marina A; Scelsa, Barbara; Introvini, Paola; Rustico, Mariangela; Faiola, Stefano; Rijken, Monique; Koopman, Hendrik M; Middeldorp, Johanna M; Oepkes, Dick; Lopriore, Enrico

    2016-01-01

    The preferred treatment for twin-twin transfusion syndrome is fetoscopic laser coagulation of inter-twin vascular anastomoses on the monochorionic placenta. Severe postoperative complications can occur when inter-twin vascular anastomoses remain patent including twin-anemia polycythemia sequence or recurrent twin-twin transfusion syndrome. To minimize the occurrence of residual anastomoses, a modified laser surgery technique, the Solomon technique, was developed in which the entire vascular equator is coagulated. In the Solomon randomized controlled trial (NTR1245), the Solomon technique was associated with a significant reduction in twin-anemia polycythemia sequence and recurrence of twin-twin transfusion syndrome when compared with the standard laser surgery technique. Although a significant improvement in perinatal outcome was shown after the Solomon technique, the clinical importance should also be ascertained with long-term follow-up evaluation of the surviving children. The purpose of this study was to compare the long-term neurodevelopmental outcome in surviving children with twin-twin transfusion syndrome who were included in the Solomon randomized trial and treated with either the Solomon technique or standard laser surgery technique. Routine standardized follow-up evaluation in survivors, at least 2 years after the estimated date of delivery, was performed at 2 of the 5 centers that participated in the Solomon trial: Buzzi Hospital Milan (Italy) and Leiden University Medical Center (The Netherlands). The primary outcome of this follow-up study was survival without long-term neurodevelopmental impairment at age 2 years. Neurodevelopmental impairment was defined as cerebral palsy, cognitive and/or motor development score of neurodevelopmental impairment) was detected in 95 of 141 cases (67%) in the Solomon group and in 99 of 146 cases (68%) in the standard group (P = .92). Neurodevelopmental impairment in long-term survivors who were included for follow

  5. Hierarchical ZnO with twinned structure: Morphology evolution, formation mechanism and properties

    International Nuclear Information System (INIS)

    Shi, Ruixia; Song, Xueling; Li, Jia; Yang, Ping

    2015-01-01

    Various hierarchical ZnO architectures constructed by twinned structures have been synthesized via a trisodium citrate assisted hydrothermal method on a large scale. The probable formation mechanisms of hierarchical ZnO structures with twinned structure were proposed and discussed. The hierarchical ZnO with twinned structures are composed of two hemispheres with a center concave junction to join them together at their waists. The ZnO microspheres with rough surfaces were obtained when the concentration of trisodium citrate is 0.1 M. However, the football-like microspheres consisted of hexagonal nanosheets were formed when adding glycerol into the water, which should be attributed to the slower nucleation and growth rate of nanocrystals. The hamburger-like ZnO with different aspect ratio and nonuniform ZnO microspheres were generated due to the different quantity of initial nuclei and growth units when simply modulating the concentration of trisodium citrate. The surface area of football-like ZnO is about 3.51 times of microspheres composed of irregular particles. However their photocatalytic performances are similar under UV light irradiation, which indicates that pore sizes of the sample have more important influences on the photocatalytic activity. - Highlights: • Hierarchical ZnO constructed by twinned structures have been synthesized. • The formation mechanisms of ZnO with twinned structure were discussed. • Football-like microspheres were obtained due to the slower nucleation and growth. • Hamburger-like ZnO was formed due to the amount of initial nuclei and growth units. • Pore sizes have important effects on the photocatalytic activity of sample

  6. Hierarchical ZnO with twinned structure: Morphology evolution, formation mechanism and properties

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ruixia; Song, Xueling; Li, Jia; Yang, Ping, E-mail: mse_yangp@ujn.edu.cn

    2015-04-15

    Various hierarchical ZnO architectures constructed by twinned structures have been synthesized via a trisodium citrate assisted hydrothermal method on a large scale. The probable formation mechanisms of hierarchical ZnO structures with twinned structure were proposed and discussed. The hierarchical ZnO with twinned structures are composed of two hemispheres with a center concave junction to join them together at their waists. The ZnO microspheres with rough surfaces were obtained when the concentration of trisodium citrate is 0.1 M. However, the football-like microspheres consisted of hexagonal nanosheets were formed when adding glycerol into the water, which should be attributed to the slower nucleation and growth rate of nanocrystals. The hamburger-like ZnO with different aspect ratio and nonuniform ZnO microspheres were generated due to the different quantity of initial nuclei and growth units when simply modulating the concentration of trisodium citrate. The surface area of football-like ZnO is about 3.51 times of microspheres composed of irregular particles. However their photocatalytic performances are similar under UV light irradiation, which indicates that pore sizes of the sample have more important influences on the photocatalytic activity. - Highlights: • Hierarchical ZnO constructed by twinned structures have been synthesized. • The formation mechanisms of ZnO with twinned structure were discussed. • Football-like microspheres were obtained due to the slower nucleation and growth. • Hamburger-like ZnO was formed due to the amount of initial nuclei and growth units. • Pore sizes have important effects on the photocatalytic activity of sample.

  7. Low twinning rate and seasonal effects on twinning in a fertile population, the Hutterites

    Science.gov (United States)

    Nonaka, K.; Miura, T.; Peter, K.

    1993-09-01

    This paper analyzes from the mid 18th century to 1987 the birth records of the “Dariusleut,” one of the three subgroups of the Hutterite population. The aim of this study is to describe several aspects of the twinning rate in a fertile population. The overall rate of twinning was 0.90%:103 twins among all 11492 maternities. The rate peaked at the 7th birth order and at the maternal age of 40 years and over. Until the mid 19th century when the Hutterites lived in Russia, the twinning rate was higher (1.5%), and it decreased during the migration period in the second half of the 19th century (0.7%). After the group had settled in the USA and Canada, the population maintained a twinning rate of 1.0% until 1965. After 1965 the rate decreased to 0.7%, partly due to a decline in fertility among women aged 30 years and over. There was a significant seasonal variation: the twinning rate decreased to 0.5% in May July compared to 1.2% for the other three seasons during the years up to 1965 ( P<0.01), while more recent mothers did not show such a seasonal variation. The incidence of twin births in this population seems to have been influenced by environmental factors, which would change their effect seasonally and secularly.

  8. Effects of Turbulence Model on Prediction of Hot-Gas Lateral Jet Interaction in a Supersonic Crossflow

    Science.gov (United States)

    2015-07-01

    about the jet nozzle location (taken as the moment reference point [ MRP ]). Also listed are the resultant force center of pressure and the...turbulent intensity JI jet interaction jet force amplification factor jet moment amplification factor about MRP (0) jet... MRP induced by jet thrust force, N-m (0) moment about missile nose induced by jet thrust force, N-m moment about MRP induced by

  9. JET and COMPASS asymmetrical disruptions

    Czech Academy of Sciences Publication Activity Database

    Gerasimov, S.N.; Abreu, P.; Baruzzo, M.; Drozdov, V.; Dvornova, A.; Havlíček, Josef; Hender, T.C.; Hronová-Bilyková, Olena; Kruezi, U.; Li, X.; Markovič, Tomáš; Pánek, Radomír; Rubinacci, G.; Tsalas, M.; Ventre, S.; Villone, F.; Zakharov, L.E.

    2015-01-01

    Roč. 55, č. 11 (2015), s. 113006-113006 ISSN 0029-5515 R&D Projects: GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : tokamak * asymmetrical disruption * JET * COMPASS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015

  10. Numerical simulations of turbulent jet ignition and combustion

    Science.gov (United States)

    Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.

  11. Effect of habit modifiers on morphology and properties of nano-HNS explosive in prefilming twin-fluid Nozzle-assisted precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hao [School of Aerospace Science and Engineering, Beijing Institute of Technology (China); Wang, Jingyu; Xu, Wenzheng [Chemical Industry and Ecology Institute, North University of China, Taiyuan, Shanxi (China); Xie, Ruizheng [Research Institute of China Ordnance Industry, Xi' an, Shaanxi (China)

    2009-02-15

    In order to investigate the effect of crystal habit modifiers (CHM) on morphology, purity, thermal properties, and short duration shock pulses sensitivity of HNS, nanocrystalline HNS was recrystallized from ultra-pure water by the prefilming twin-fluid nozzle-assisted precipitation (PTFN-P) method with two different CHMs and without CHM. Sodium carboxymethyl cellulose (CMC-Na) and white dextrine (WD) were selected as CHMs. The particles were characterized using SEM, BET, HPLC, DSC, and electrically exploded metal-foil driven flyer plate. The morphology of HNS explosive without modifiers was demonstrated to be short plate-like. However, in the presence of CMC-Na and WD as modifiers, long plate-like and ellipsoid morphologies were observed, respectively. The nanocrystalline HNS prepared with CMC-Na was more receptive to high velocity flyer impact than samples produced under the other two conditions. Its sensitivity to short duration shock waves was elevated to twice the value of HNS obtained in the absence of modifiers. CMC-Na was found to be a better modifier. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  12. Characterization of a steam plasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    Ni Guohua; Zhao Peng; Cheng Cheng; Song Ye; Meng Yuedong; Toyoda, Hirotaka

    2012-01-01

    An atmospheric steam plasma jet generated by an original dc water plasma torch is investigated using electrical and spectroscopic techniques. Because it directly uses the water used for cooling electrodes as the plasma-forming gas, the water plasma torch has high thermal efficiency and a compact structure. The operational features of the water plasma torch and the generation of the steam plasma jet are analyzed based on the temporal evolution of voltage, current and steam pressure in the arc chamber. The influence of the output characteristics of the power source, the fluctuation of the arc and current intensity on the unsteadiness of the steam plasma jet is studied. The restrike mode is identified as the fluctuation characteristic of the steam arc, which contributes significantly to the instabilities of the steam plasma jet. In addition, the emission spectroscopic technique is employed to diagnose the steam plasma. The axial distributions of plasma parameters in the steam plasma jet, such as gas temperature, excitation temperature and electron number density, are determined by the diatomic molecule OH fitting method, Boltzmann slope method and H β Stark broadening, respectively. The steam plasma jet at atmospheric pressure is found to be close to the local thermodynamic equilibrium (LTE) state by comparing the measured electron density with the threshold value of electron density for the LTE state. Moreover, based on the assumption of LTE, the axial distributions of reactive species in the steam plasma jet are estimated, which indicates that the steam plasma has high chemical activity.

  13. Very forward jet, Mueller Navelet jets and jet gap jet measurements in CMS

    CERN Document Server

    Cerci, Salim

    2018-01-01

    The measurements of very forward jet, Mueller-Navelet jets and jet-gap-jet events are presented for different collision energies. The analyses are based on data collected with the CMS detector at the LHC. Jets are defined through the anti-$k_\\mathrm{t}$ clustering algorithm for different cone sizes. Jet production studies provide stringent tests of quantum chromodynamics (QCD) and contribute to tune Monte Carlo (MC) simulations and phenomenological models. The measurements are compared to predictions from various Monte Carlo event generators.

  14. A numerical study of a supercritical fluid jet

    International Nuclear Information System (INIS)

    Sierra-Pallares, J.; Garcia-Serna, J.; Cocero, M.J.; Parra-Santos, M.T.; Castro-Ruiz, F.

    2009-01-01

    This study affords the numerical solution of the mixing of a submerged turbulent jet under supercritical conditions and near-critical conditions. Turbulence plays a very important role in the behaviour of chemical engineering equipment. An accurate prediction of the turbulence at supercritical conditions with low computational cost is crucial in designing new processes such as reactions in supercritical media, high pressure separation processes, nanomaterials processing and heterogeneous catalysis. At high-pressure, the flow cannot be modelled accurately using the ideal-gas assumption. Therefore, the real gas models must be used in order to solve accurately the fluid flow and heat transfer problems where the working fluid behaviour deviate seriously from the ideal-gas assumption. The jet structure has three parts clearly distinguished: the injection, the transition and the fully developed jet. Once the flow is dominated by the turbulent eddies of the shear layer, the flow is fully developed and the radial profiles match a similarity profile. This work reports the state of the project that is not completed and is being processed now. This work is devoted to establish the distance downstream from the injector where the jet become self-preserving and the shape of the similarity profiles. This system is of interest in the design of supercritical reactor inlets, where two streams should be mixed in the shortest length, or mixing conditions strongly affect the behaviour of the processes. The numerical results have been validated with experimental measurements made in the jet mixing region. The radial profiles for average velocity, density and temperature are analyzed. The parameters of the profile that match better the numerical results are summarized in Table 1. The density requires a lower value of n than these for velocity and temperature, which reflect smoother profiles. These conclusions are in good agreement with the results from Oschwald and Schik. (author)

  15. 'Twin2twin' an innovative method of empowering midwives to strengthen their professional midwifery organisations.

    Science.gov (United States)

    Cadée, Franka; Perdok, Hilde; Sam, Betty; de Geus, Myrte; Kweekel, Liselotte

    2013-10-01

    midwives need professional support from a national midwifery organisation to be able to provide the services that are by regulatory mechanisms and accreditation expected of them. Not all midwives in the world are united in a professional organisation. The aim of this project was to strengthen the midwifery organisations of Sierra Leone and the Netherlands. During the process of the project it was realised that the development of a platform of exchange at organisational level would be enhanced by introducing personal exchange between individual midwives. In response to this new insight the original project plan was adjusted by incorporating the twin2twin method. twin2twin is a feminist methodology of mutual exchange between twenty pairs of midwives from different organisations (in this case Sierra Leone and the Netherlands). The method can be distinguished by 10 specific steps. It was developed, used and (re)evaluated through focus group discussions, storytelling and written evaluations. twinning of organisations was strengthened by adding a human component to the process. With the use of the 'twin2twin' method, midwives were encouraged to invested in a professional and personal bond with their 'twin sister'. This bond was independent and went beyond the relatively short four year project period. Through personal engagement and mutual exchange of knowledge and skills, midwives empowered each other to build and strengthen their midwifery organisations both in Sierra Leone and the Netherlands. (Empowerment refers to the expansion in people's ability to make strategic life choices in a context where this ability was previously denied to them (Narayan, 2005); organisational empowerment includes processes and structures that enhance members' skills and provides them with the mutual support necessary to effect community level change (Zimmerman, 1995).). despite challenges we are convinced that twin2twin can be of additional benefit for the success of other projects

  16. Mothers of IVF twins: the mediating role of employment and social coping resources in maternal stress.

    Science.gov (United States)

    Baor, Liora; Soskolne, Varda

    2012-01-01

    Twin pregnancies and births resulting from assisted reproductive technologies have been associated with adverse perinatal outcomes and maternal health complications leading to psychologically complex parenting. In the current study the authors assess the prevalence of clinical levels of maternal stress among mothers of twins resulting from in vitro fertilization and examine the association of social coping resources with three maternal stress sub-scales. During the years 2003-2005, 88 primiparous Israeli mothers of in vitro fertilization-conceived twins provided socio-demographic data during their third trimester of pregnancy, and at 6 months after birth provided data on delivery and medical condition of infants, coping resources (social support and marital quality), and a maternal stress scale. Forty-one percent of the mothers reached a clinically significant level of maternal stress. Social support and maternal employment were the most significant variables associated with experience of the stress in the early stages of adaptation to mothering in vitro fertilization twins. Primiparous mothers of in vitro fertilization twins are vulnerable to maternal stress in early stages of adaptation to the maternal role, some of whom reach clinical levels that may require professional interventions. Unemployed mothers with low social support were the most susceptible to the deleterious effects of in vitro fertilization treatment.

  17. Measurement of thermal plasma jet temperature and velocity by laser light lineshape analysis

    International Nuclear Information System (INIS)

    Snyder, S.C.; Reynolds, L.D.

    1991-01-01

    Two important parameters of thermal plasma jets are kinetic or gas temperatures and flow velocity. Gas temperatures have been traditionally measured using emission spectroscopy, but this method depends on either the generally unrealistic assumption of the existence of local thermodynamic equilibrium (LTE) within the plasma, or the use of various non-LTE or partial LTE models to relate the intensity of the emission lines to the gas temperature. Plasma jet velocities have been measured using laser Doppler velocimetry on particles injected into the plasma. However, this method is intrusive and it is not known how well the particle velocities represent the gas velocity. Recently, plasma jet velocities have been measured from the Doppler shift of laser light scattered by the plasma. In this case, the Doppler shift was determined from the difference in the transmission profile of a high resolution monochromator between red shifted and blue shifted scattered light. A direct approach to measuring localized temperatures and velocities is afforded by high resolution scattered light lineshape measurements. The linewidth of laser light scattered by atoms and ions can be related to the kinetic temperature without LTE assumptions, while a shift in the peak position relative to the incident laser lineshape yields the gas velocity. We report in this paper work underway to measure gas temperatures and velocities in an argon thermal plasma jet using high resolution lineshape analysis of scattered laser light

  18. The effect of CO{sub 2} dissolved in a diesel fuel on the jet flame characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Jin; Huang Zhen; Qiao Xinqi; Hou Yuchun [Shanghai Jiao Tong University, Shanghai (China). Research Institute of Internal Combustion Engine

    2008-03-15

    This paper is concerned with an experimental study of the jet diffusion flame characteristics of fuel containing CO{sub 2}. Using diesel fuel containing dissolved CO{sub 2} gas, experiments were performed under atmospheric conditions with a diesel hole-type nozzle of 0.19 mm orifice diameter at constant injection pressure. In this study, four different CO{sub 2} mass fraction in diesel fuel such as 3.13%, 7.18%, 12.33% and 17.82% were used to study the effect of CO{sub 2} concentration on the jet flame characteristics. Jet flame characteristics were measured by direct photography, meanwhile the image colorimetry is used to assess the qualitative features of jet flame temperature. Experimental results show that the CO{sub 2} gas dilution effect and the atomization effect have a great influence on the flame structure and average temperature. When the injection pressure of diesel fuel increased from 4 MPa to 6 MPa, the low temperature flame length increased from 18.4 cm to 21.7 cm and the full temperature flame length decreased from 147.6 cm to 134.7 cm. With the increase of CO{sub 2} gas dissolved in the diesel fuel, the jet flame full length decreased for the jet atomization being improved greatly meanwhile the low temperature flame length increased for the CO{sub 2} gas dilution effect; with the increase of CO{sub 2} gas dissolved in the diesel fuel, the average temperature of flame increases firstly and then falls. Experimental results validate that higher injection pressure will improve jet atomization and then increased the flame average temperature. 27 refs., 13 figs.

  19. Education in Twins and Their Parents Across Birth Cohorts Over 100 years: An Individual-Level Pooled Analysis of 42-Twin Cohorts.

    Science.gov (United States)

    Silventoinen, Karri; Jelenkovic, Aline; Latvala, Antti; Sund, Reijo; Yokoyama, Yoshie; Ullemar, Vilhelmina; Almqvist, Catarina; Derom, Catherine A; Vlietinck, Robert F; Loos, Ruth J F; Kandler, Christian; Honda, Chika; Inui, Fujio; Iwatani, Yoshinori; Watanabe, Mikio; Rebato, Esther; Stazi, Maria A; Fagnani, Corrado; Brescianini, Sonia; Hur, Yoon-Mi; Jeong, Hoe-Uk; Cutler, Tessa L; Hopper, John L; Busjahn, Andreas; Saudino, Kimberly J; Ji, Fuling; Ning, Feng; Pang, Zengchang; Rose, Richard J; Koskenvuo, Markku; Heikkilä, Kauko; Cozen, Wendy; Hwang, Amie E; Mack, Thomas M; Siribaddana, Sisira H; Hotopf, Matthew; Sumathipala, Athula; Rijsdijk, Fruhling; Sung, Joohon; Kim, Jina; Lee, Jooyeon; Lee, Sooji; Nelson, Tracy L; Whitfield, Keith E; Tan, Qihua; Zhang, Dongfeng; Llewellyn, Clare H; Fisher, Abigail; Burt, S Alexandra; Klump, Kelly L; Knafo-Noam, Ariel; Mankuta, David; Abramson, Lior; Medland, Sarah E; Martin, Nicholas G; Montgomery, Grant W; Magnusson, Patrik K E; Pedersen, Nancy L; Dahl Aslan, Anna K; Corley, Robin P; Huibregtse, Brooke M; Öncel, Sevgi Y; Aliev, Fazil; Krueger, Robert F; McGue, Matt; Pahlen, Shandell; Willemsen, Gonneke; Bartels, Meike; van Beijsterveldt, Catharina E M; Silberg, Judy L; Eaves, Lindon J; Maes, Hermine H; Harris, Jennifer R; Brandt, Ingunn; Nilsen, Thomas S; Rasmussen, Finn; Tynelius, Per; Baker, Laura A; Tuvblad, Catherine; Ordoñana, Juan R; Sánchez-Romera, Juan F; Colodro-Conde, Lucia; Gatz, Margaret; Butler, David A; Lichtenstein, Paul; Goldberg, Jack H; Harden, K Paige; Tucker-Drob, Elliot M; Duncan, Glen E; Buchwald, Dedra; Tarnoki, Adam D; Tarnoki, David L; Franz, Carol E; Kremen, William S; Lyons, Michael J; Maia, José A; Freitas, Duarte L; Turkheimer, Eric; Sørensen, Thorkild I A; Boomsma, Dorret I; Kaprio, Jaakko

    2017-10-01

    Whether monozygotic (MZ) and dizygotic (DZ) twins differ from each other in a variety of phenotypes is important for genetic twin modeling and for inferences made from twin studies in general. We analyzed whether there were differences in individual, maternal and paternal education between MZ and DZ twins in a large pooled dataset. Information was gathered on individual education for 218,362 adult twins from 27 twin cohorts (53% females; 39% MZ twins), and on maternal and paternal education for 147,315 and 143,056 twins respectively, from 28 twin cohorts (52% females; 38% MZ twins). Together, we had information on individual or parental education from 42 twin cohorts representing 19 countries. The original education classifications were transformed to education years and analyzed using linear regression models. Overall, MZ males had 0.26 (95% CI [0.21, 0.31]) years and MZ females 0.17 (95% CI [0.12, 0.21]) years longer education than DZ twins. The zygosity difference became smaller in more recent birth cohorts for both males and females. Parental education was somewhat longer for fathers of DZ twins in cohorts born in 1990-1999 (0.16 years, 95% CI [0.08, 0.25]) and 2000 or later (0.11 years, 95% CI [0.00, 0.22]), compared with fathers of MZ twins. The results show that the years of both individual and parental education are largely similar in MZ and DZ twins. We suggest that the socio-economic differences between MZ and DZ twins are so small that inferences based upon genetic modeling of twin data are not affected.

  20. Atmospheric Pressure Plasma Jet as a Dry Alternative to Inkjet Printing in Flexible Electronics

    Science.gov (United States)

    Gandhiraman, Ram Prasad; Lopez, Arlene; Koehne, Jessica; Meyyappan, M.

    2016-01-01

    We have developed an atmospheric pressure plasma jet printing system that works at room temperature to 50 deg C unlike conventional aerosol assisted techniques which require a high temperature sintering step to obtain desired thin films. Multiple jets can be configured to increase throughput or to deposit multiple materials, and the jet(s) can be moved across large areas using a x-y stage. The plasma jet has been used to deposit carbon nanotubes, graphene, silver nanowires, copper nanoparticles and other materials on substrates such as paper, cotton, plastic and thin metal foils.

  1. A tale of twin Higgs: natural twin two Higgs doublet models

    International Nuclear Information System (INIS)

    Yu, Jiang-Hao

    2016-01-01

    In original twin Higgs model, vacuum misalignment between electroweak and new physics scales is realized by adding explicit ℤ 2 breaking term. Introducing additional twin Higgs could accommodate spontaneous ℤ 2 breaking, which explains origin of this misalignment. We introduce a class of twin two Higgs doublet models with most general scalar potential, and discuss general conditions which trigger electroweak and ℤ 2 symmetry breaking. Various scenarios on realising the vacuum misalignment are systematically discussed in a natural composite two Higgs double model framework: explicit ℤ 2 breaking, radiative ℤ 2 breaking, tadpole-induced ℤ 2 breaking, and quartic-induced ℤ 2 breaking. We investigate the Higgs mass spectra and Higgs phenomenology in these scenarios.

  2. Using Twins to Better Understand Sibling Relationships.

    Science.gov (United States)

    Mark, Katharine M; Pike, Alison; Latham, Rachel M; Oliver, Bonamy R

    2017-03-01

    We compared the nature of the sibling relationship in dyads of varying genetic relatedness, employing a behavioural genetic design to estimate the contribution that genes and the environment have on this familial bond. Two samples were used-the Sisters and Brothers Study consisted of 173 families with two target non-twin children (mean ages = 7.42 and 5.22 years respectively); and the Twins, Family and Behaviour study included 234 families with two target twin children (mean age = 4.70 years). Mothers and fathers reported on their children's relationship with each other, via a postal questionnaire (the Sisters and Brothers Study) or a telephone interview (the Twins, Family and Behaviour study). Contrary to expectations, no mean level differences emerged when monozygotic twin pairs, dizygotic twin pairs, and non-twin pairs were compared on their sibling relationship quality. Behavioural genetic analyses also revealed that the sibling bond was modestly to moderately influenced by the genetic propensities of the children within the dyad, and moderately to substantially influenced by the shared environment common to both siblings. In addition, for sibling negativity, we found evidence of twin-specific environmental influence-dizygotic twins showed more reciprocity than did non-twins. Our findings have repercussions for the broader application of results from future twin-based investigations.

  3. Deformation and dewetting of thin liquid films induced by moving gas jets

    NARCIS (Netherlands)

    Berendsen, C.W.J.; Zeegers, J.C.H.; Darhuber, A.A.

    2013-01-01

    We study the deformation of thin liquid films subjected to impinging air-jets that are moving with respect to the substrate. The height profile and shape of the deformed liquid film is evaluated experimentally and numerically for different jet Reynolds numbers and translation speeds, for different

  4. Plasma jet source parameter optimisation and experiments on injection into Globus-M spherical tokamak

    International Nuclear Information System (INIS)

    Gusev, V.K.; Petrov, Yu.V.; Sakharov, N.V.; Semenov, A.A.; Voronin, A.V.

    2005-01-01

    Results of theoretical and experimental research on the plasma sources and injection of plasma and gas jet produced by the modified source into tokamak Globus-M are presented. An experimental test stand was developed for investigation of intense plasma jet generation. Optimisation of pulsed coaxial accelerator parameters by means of analytical calculations is performed with the aim of achieving the highest flow velocity at limited coaxial electrode length and discharge current. The optimal parameters of power supply to generate a plasma jet with minimal impurity contamination and maximum flow velocity were determined. A comparison of experimental and calculation results is made. Plasma jet parameters are measured, such as: impurity species content, pressure distribution across the jet, flow velocity, plasma density, etc. Experiments on the interaction of a higher kinetic energy plasma jet with the magnetic field and plasma of the Globus-M tokamak were performed. Experimental results on plasma and gas jet injection into different Globus-M discharge phases are presented and discussed. Results are presented on the investigation of plasma jet injection as the source for discharge breakdown, plasma current startup and initial density rise. (author)

  5. Incidence of spontaneous twin anemia-polycythemia sequence in monochorionic-diamniotic twin pregnancies: Single-center prospective study.

    Science.gov (United States)

    Yokouchi, Tae; Murakoshi, Takeshi; Mishima, Takashi; Yano, Hiroko; Ohashi, Madoka; Suzuki, Takashi; Shinno, Takashi; Matsushita, Mitsuru; Nakayama, Satoru; Torii, Yuichi

    2015-06-01

    The purpose of this study was to prospectively estimate the incidence of spontaneous twin anemia-polycythemia sequence (TAPS) in monochorionic-diamniotic twin pregnancies. We prospectively examined umbilical cord hemoglobin (Hb) and reticulocyte count of consecutive monochorionic-diamniotic twin pregnancies delivered at Seirei Hamamatsu General Hospital from December 2006 to September 2013. We excluded cases of twin-twin transfusion syndrome, intrauterine fetal demise, and missing data (Hb and reticulocyte count missing from the medical record). TAPS was diagnosed using the postnatal criteria of intertwin Hb difference >8.0 g/dL and reticulocyte count ratio >1.7. Acute feto-fetal hemorrhage was defined as Hb difference >7 g/dL and reticulocyte count ratio <1.7. A total of 185 monochorionic-diamniotic twin pregnancies were included in this study. Three fulfilled the diagnostic criteria for postnatal TAPS, and one fulfilled the diagnostic criteria for acute feto-fetal hemorrhage. The incidence of spontaneous TAPS in monochorionic-diamniotic twin pregnancies was 1.6% (3/185) at Seirei Hamamatsu General Hospital. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  6. The Effects of Gas Composition on the Atmospheric Pressure Plasma Jet Modification of Polyethylene Films

    International Nuclear Information System (INIS)

    Sun Jie; Qiu Yiping

    2015-01-01

    Polyethylene (PE) films are treated using an atmospheric pressure plasma jet (APPJ) with He or He/O 2 gas for different periods of time. The influence of gas type on the plasma-polymer interactions is studied. The surface contact angle of the PE film can be effectively lowered to 58° after 20 s of He/O 2 plasma treatment and then remains almost unchanged for longer treatment durations, while, for He plasma treatment, the film surface contact angle drops gradually to 47° when the time reaches 120 s. Atomic force microscopy (AFM) results show that the root mean square (RMS) roughness was significantly higher for the He/O 2 plasma treated samples than for the He plasma treated counterparts, and the surface topography of the He/O 2 plasma treated PE films displays evenly distributed dome-shaped small protuberances. Chemical composition analysis reveals that the He plasma treated samples have a higher oxygen content but a clearly lower percentage of −COO than the comparable He/O 2 treated samples, suggesting that differences exist in the mode of incorporating oxygen between the two gas condition plasma treatments. Electron spin resonance (ESR) results show that the free radical concentrations of the He plasma treated samples were clearly higher than those of the He/O 2 plasma treated ones with other conditions unchanged. (paper)

  7. SUSY meets her twin

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Andrey [Theory Division, CERN,CH-1211 Geneva 23 (Switzerland); Département de Physique Théorique and Center for Astroparticle Physics (CAP),Université de Genève,24 quai Ansermet, CH-1211 Genève 4 (Switzerland); Mariotti, Alberto [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel,and International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Pokorski, Stefan [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,ul. Pasteura 5, PL-02-093 Warsaw (Poland); Redigolo, Diego [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University,Tel-Aviv 69978 (Israel); Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel); Ziegler, Robert [Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology,Engesserstraße 7, D-76128 Karlsruhe (Germany)

    2017-01-31

    We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.

  8. From monster to twin reversed arterial perfusion: a history of acardiac twins.

    Science.gov (United States)

    Obladen, Michael

    2010-05-01

    A human being born without heart and head, i.e., the acardius/acranius malformation, has been described since antiquity. Superstition and fear made it a mystical disorder, a sign of God's wrath. The inquisition ruled that acranic infants should not be baptized and located the soul in the brain. Acardia was not associated with twin gestation until the reports of Mery in 1720 and Winslow in 1740. In 1850, Meckel identified the pathogenetic mechanism as reversed perfusion due to large arterio-arterial and veno-venous anastomoses; he believed the heart would fail to develop or arrest during development, and the acardiac fetus would be maintained by arterial perfusion from the pump twin. In 1859, Claudius articulated that after normal initial development, the heart degenerates when reversed flow in the aorta leads to thrombosis. Today, it is assumed that both mechanisms may exist. With the advent of prenatal ultrasound diagnosis and radiofrequency ablation of the acardiac twin's circulation, it became possible to save the pump twin.

  9. Monochorionic twin pregnancies: a systematic approach to ...

    African Journals Online (AJOL)

    Complications unique to these pregnancies include Twin-To-Twin Transfusion Syndrome (TTTS), Twin Polycythaemia Anaemia Sequence (TAPS), Selective Intrauterine Growth Restriction (sIUGR) and death of the co-twin. Adhering to a systematic and objective approach of management, can lead to early recognition and ...

  10. Water jet behavior in center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Y.; Abe, Y.

    2005-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. As previous studies of the steam injector, there are studies about formulation of operating characteristic of steam injector and analysis of jet structure in steam injector by Narabayashi etc. And as previous studies of the direct contact condensation, there is the study about the direct contact condensation in steam atmosphere. However the study about the turbulent heat transfer under the great shear stress is not enough investigated. Therefore it is necessary to examine in detail about the operating characteristic of the steam injector. The present paper reports the observation results of the water jet behavior in the super sonic steam injector by using the video camera and the high-speed video camera. And the measuring results of the temperature and the pressure distribution in the steam injector are reported. From observation results by video camera, it is cleared that the water jet is established at the center of the steam injector right after steam supplied and the operation of the steam injector depends on the throat diameter. And from observation results by high-speed video camera, it is supposed that the columned water jet surface is established in the mixing nozzle and the water jet surface movement exists. Furthermore and effect of the non-condensable gas on the steam injector is investigated by measuring the radial temperature distributions in the water jet. From measuring results, it is supposed the more the air included in the steam, the more the temperature fluctuation of both steam and discharge water

  11. An experimental and numerical study of confined non-reacting and reacting turbulent jets to facilitate homogeneous combustion in industrial furnaces

    Science.gov (United States)

    Lee, Insu

    Confined non-reacting turbulent jets are ideal for recirculating the hot flue gas back into the furnace from an external exhaust duct. Such jets are also used inside the furnace to internally entrain and recirculate the hot flue gas to preheat and dilute the reactants. Both internal and external implementation of confined turbulent jets increase the furnace thermal efficiency. For external implementation, depending on the circumstances, the exhaust gas flow may be co- or counter-flow relative to the jet flow. Inside the furnaces, fuel and air jets are injected separately. To create a condition which can facilitate near homogeneous combustion, these jets have to first mix with the burned gas inside the furnace and simultaneously being heated and diluted prior to combustion. Clearly, the combustion pattern and emissions from reacting confined turbulent jets are affected by jet interactions, mixing and entrainment of hot flue gas. In this work, the flow and mixing characteristics of a non-reacting and reacting confined turbulent jet are investigated experimentally and numerically. This work consists of two parts: (i) A study of flow and mixing characteristics of non-reacting confined turbulent jets with co- or counter-flowing exhaust/flue gas. Here the axial and radial distributions of temperature, velocity and NO concentration (used as a tracer gas) were measured. FLUENT was used to numerically simulate the experimental results. This work provides the basic understanding of the flow and mixing characteristics of confined turbulent jets and develops some design considerations for recirculating flue gas back into the furnace as expressed by the recirculation zone and the stagnation locations. (ii) Numerical calculations of near homogeneous combustion are performed for the existing furnace. The exact geometry of the furnace in the lab is used and the real dimensional boundary conditions are considered. The parameters such as air nozzle diameter (dair), fuel nozzle

  12. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated

  13. Asymmetric bubble collapse and jetting in generalized Newtonian fluids

    Science.gov (United States)

    Shukla, Ratnesh K.; Freund, Jonathan B.

    2017-11-01

    The jetting dynamics of a gas bubble near a rigid wall in a non-Newtonian fluid are investigated using an axisymmetric simulation model. The bubble gas is assumed to be homogeneous, with density and pressure related through a polytropic equation of state. An Eulerian numerical description, based on a sharp interface capturing method for the shear-free bubble-liquid interface and an incompressible Navier-Stokes flow solver for generalized fluids, is developed specifically for this problem. Detailed simulations for a range of rheological parameters in the Carreau model show both the stabilizing and destabilizing non-Newtonian effects on the jet formation and impact. In general, for fixed driving pressure ratio, stand-off distance and reference zero-shear-rate viscosity, shear-thinning and shear-thickening promote and suppress jet formation and impact, respectively. For a sufficiently large high-shear-rate limit viscosity, the jet impact is completely suppressed. Thresholds are also determined for the Carreau power-index and material time constant. The dependence of these threshold rheological parameters on the non-dimensional driving pressure ratio and wall stand-off distance is similarly established. Implications for tissue injury in therapeutic ultrasound will be discussed.

  14. A tale of twin Higgs: natural twin two Higgs doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiang-Hao [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts Amherst,710 North Pleasant St., Amherst, MA 01002 (United States)

    2016-12-28

    In original twin Higgs model, vacuum misalignment between electroweak and new physics scales is realized by adding explicit ℤ{sub 2} breaking term. Introducing additional twin Higgs could accommodate spontaneous ℤ{sub 2} breaking, which explains origin of this misalignment. We introduce a class of twin two Higgs doublet models with most general scalar potential, and discuss general conditions which trigger electroweak and ℤ{sub 2} symmetry breaking. Various scenarios on realising the vacuum misalignment are systematically discussed in a natural composite two Higgs double model framework: explicit ℤ{sub 2} breaking, radiative ℤ{sub 2} breaking, tadpole-induced ℤ{sub 2} breaking, and quartic-induced ℤ{sub 2} breaking. We investigate the Higgs mass spectra and Higgs phenomenology in these scenarios.

  15. Twinning-detwinning assisted reversible plasticity in thin magnesium wires prepared by one-step direct extrusion

    Czech Academy of Sciences Publication Activity Database

    Jäger, Aleš; Habr, Stanislav; Tesař, Karel

    2016-01-01

    Roč. 110, Nov (2016), 895-902 ISSN 0264-1275 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : magnesium * sutures * severe plastic deformation * miocroforming * bending * twinning-induced grain refinement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.364, year: 2016

  16. Characteristics of transitional and turbulent jet diffusion flames in microgravity

    Science.gov (United States)

    Bahadori, Yousef M.; Small, James F., Jr.; Hegde, Uday G.; Zhou, Liming; Stocker, Dennis P.

    1995-01-01

    This paper presents the ground-based results obtained to date in preparation of a proposed space experiment to study the role of large-scale structures in microgravity transitional and turbulent gas-jet diffusion flames by investigating the dynamics of vortex/flame interactions and their influence on flame characteristics. The overall objective is to gain an understanding of the fundamental characteristics of transitional and turbulent gas-jet diffusion flames. Understanding of the role of large-scale structures on the characteristics of microgravity transitional and turbulent flames will ultimately lead to improved understanding of normal-gravity turbulent combustion.

  17. Drilling Performance of Rock Drill by High-Pressure Water Jet under Different Configuration Modes

    Directory of Open Access Journals (Sweden)

    Songyong Liu

    2017-01-01

    Full Text Available In the rock drilling progress, the resistant force results in tools failure and the low drilling efficiency; thus, it is necessary to reduce the tools failure and enhance the drilling efficiency. In this paper, different configuration modes of drilling performance assisted with water jet are explored based on the mechanism and experiment analysis of rock drilling assisted with water jet. Moreover, the rotary sealing device with high pressure is designed to achieve the axial and rotation movement simultaneously as well as good sealing effect under high-pressure water jet. The results indicate that the NDB and NFB have better effects on drilling performance compared with that of NSB. Moreover, the high-pressure water jet is helpful not only to reduce the drill rod deflection, but also to reduce the probability of drill rod bending and improve the drill rod service life.

  18. Atmospheric Pressure Plasma Jet-Assisted Synthesis of Zeolite-Based Low-k Thin Films.

    Science.gov (United States)

    Huang, Kai-Yu; Chi, Heng-Yu; Kao, Peng-Kai; Huang, Fei-Hung; Jian, Qi-Ming; Cheng, I-Chun; Lee, Wen-Ya; Hsu, Cheng-Che; Kang, Dun-Yen

    2018-01-10

    Zeolites are ideal low-dielectric constant (low-k) materials. This paper reports on a novel plasma-assisted approach to the synthesis of low-k thin films comprising pure-silica zeolite MFI. The proposed method involves treating the aged solution using an atmospheric pressure plasma jet (APPJ). The high reactivity of the resulting nitrogen plasma helps to produce zeolite crystals with high crystallinity and uniform crystal size distribution. The APPJ treatment also remarkably reduces the time for hydrothermal reaction. The zeolite MFI suspensions synthesized with the APPJ treatment are used for the wet deposition to form thin films. The deposited zeolite thin films possessed dense morphology and high crystallinity, which overcome the trade-off between crystallinity and film quality. Zeolite thin films synthesized using the proposed APPJ treatment achieve low leakage current (on the order of 10 -8 A/cm 2 ) and high Young's modulus (12 GPa), outperforming the control sample synthesized without plasma treatment. The dielectric constant of our zeolite thin films was as low as 1.41. The overall performance of the low-k thin films synthesized with the APPJ treatment far exceed existing low-k films comprising pure-silica MFI.

  19. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

    Science.gov (United States)

    Tangri, V.; Harvey-Thompson, A. J.; Giuliani, J. L.; Thornhill, J. W.; Velikovich, A. L.; Apruzese, J. P.; Ouart, N. D.; Dasgupta, A.; Jones, B.; Jennings, C. A.

    2016-10-01

    Radiation-magnetohydrodynamic simulations using the non-local thermodynamic equilibrium Mach2-Tabular Collisional-Radiative Equilibrium code in (r, z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1. In each pair, one of the shots had a central jet. The experimental trends in the Ar K-shell yield and power are reproduced in the calculations. However, the K-shell yield and power are significantly lower than the other three shots for the case of a double-shell puff of 1:1 mass ratio and no central jet configuration. Further simulations of a hypothetical experiment with the same relative density profile of this configuration, but higher total mass, show that the coupled energy from the generator and the K-shell yield can be increased to levels achieved in the other three configurations, but not the K-shell power. Based on various measures of effective plasma radius, the compression in the 1:1 mass ratio and no central jet case is found to be less because the plasma inside the magnetic piston is hotter and of lower density. Because of the reduced density, and the reduced radiation cooling (which is proportional to the square of the density), the core plasma is hotter. Consequently, for the 1:1 outer-to-inner shell mass ratio, the load mass controls the yield and the center jet controls the power.

  20. Establishing a Twin Registry in Guinea-Bissau

    DEFF Research Database (Denmark)

    Bjerregaard-Andersen, Morten; Gomes, Margarida A; Joaquím, Luis C

    2013-01-01

    represent a powerful tool. Though twin studies have been carried out by the Bandim Health Project for more than 30 years, the renewed registry described here was officially established in 2009 and includes both a cohort of newborn twins and a cohort of young and adult twins. Currently more than 1,500 twins...

  1. Anorexia and bulimia nervosa in same-sex and opposite-sex twins: lack of association with twin type in a nationwide study of Finnish twins.

    Science.gov (United States)

    Raevuori, Anu; Kaprio, Jaakko; Hoek, Hans W; Sihvola, Elina; Rissanen, Aila; Keski-Rahkonen, Anna

    2008-12-01

    The authors tested the hypothesis that either prenatal feminization or masculinization hormone influences in utero or later socialization affects the risk for anorexia and bulimia nervosa and disordered eating in members of opposite-sex twin pairs. Finnish twins (N=2,426 women, N=1,962 men with known zygosity) from birth cohorts born 1974-1979 were assessed at age 22 to 28 years with a questionnaire for eating disorder symptoms. Based on the questionnaire screen, women (N=292), men (N=53), and their cotwins were interviewed to assess diagnoses of anorexia nervosa and bulimia nervosa (per DSM-IV and broad criteria). In women from opposite-sex twin pairs, the prevalence of DSM-IV or broad anorexia nervosa was not significantly different than that of women from monozygotic pairs or same-sex dizygotic pairs. Of the five male anorexia nervosa probands, only one was from an opposite-sex twin pair. Bulimia nervosa in men was too rare to be assessed by zygosity; the prevalence of DSM-IV or broad bulimia nervosa did not differ in women from opposite- versus same-sex twin pairs. In both sexes, the overall profile of indicators on eating disorders was rather similar between individuals from opposite- and same-sex pairs. The authors found little evidence that the risk for anorexia nervosa, bulimia nervosa, or disordered eating was associated with zygosity or sex composition of twin pairs, thus making it unlikely that in utero femininization or masculinization or socialization effects of growing up with an opposite-sex twin have a major influence on the later development of eating disorders.

  2. Heteropagus twinning on back -- a case report.

    Science.gov (United States)

    Debnath, Bidyut; Biswas, Sumitra Kumar

    2011-07-01

    Heteropagus twins, also called parasitic twins, are malformation of the foetus where the development of one twin is incomplete. They are attached most commonly to the lower chest and upper abdomen. We report a case of heteropagus twin, where the parasite possessed well-formed limb as well as blind ending intestine. It was attached to the back of the host by a broad pedicle. We take this opportunity to classify areas of confusion prevailing regarding twinning, foetus in foetu, teratoma and caudal duplication.

  3. Simplified theory of gas-jet pumps and experimental verification; Theorie simplifiee des trompes a gaz et verification experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Costes, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    With a view to using the gas-jet pump in the fuel-study loops of gas reactors, a theory is developed for an unidimensional mixer, applicable to the case of low compression ratios in the induced current. This theory makes it possible to optimize the diameter of the mixer if the pressure-drop coefficient {alpha} of the mixer is known with respect to the induced current. An experimental study has made it possible to define the geometry suitable for such pumps, and to provide a remarkably constant value of {alpha} for the economically advantageous designs; this makes it possible to define simply the geometry of the optimized pump as a function of the geometry of the circuit in use, and independently of the flow-rate conditions. (author) [French] Dans le but d'utiliser la pompe a jet (ou trompe) dans des boucles d'etude de combustible des piles a gaz, on etablit une theorie du melangeur unidimensionnel, applicable dans la cas des faibles rapports de compression dans le courant induit. Cette theorie permet l'optimisation du diametre de melangeur, moyennant la connaissance du coefficient {alpha} de pertes de charge de celui-ci, relativement au courant induit. Une recherche experimentale a permis de preciser la geometrie a adopter dans de telles pompes, et fourni pour {alpha} une valeur remarquablement constante dans les configurations economiquement interessantes, ce qui permet de definir simplement la geometrie de la pompe optimisee en fonction de la geometrie du circuit d'utilisation et independamment des conditions de debit. (auteur)

  4. Aircraft dual-shaft jet engine with indirect action fuel flow controller

    Science.gov (United States)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with an aircraft single-jet engine's control system, based on a fuel flow controller. Considering the engine as controlled object and its thrust the most important operation effect, from the multitude of engine's parameters only its rotational speed n is measurable and proportional to its thrust, so engine's speed has become the most important controlled parameter. Engine's control system is based on fuel injection Qi dosage, while the output is engine's speed n. Based on embedded system's main parts' mathematical models, the author has described the system by its block diagram with transfer functions; furthermore, some Simulink-Matlab simulations are performed, concerning embedded system quality (its output parameters time behavior) and, meanwhile, some conclusions concerning engine's parameters mutual influences are revealed. Quantitative determinations are based on author's previous research results and contributions, as well as on existing models (taken from technical literature). The method can be extended for any multi-spool engine, single- or twin-jet.

  5. Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.; Wang, Z.; Huang, Q.; Tan, X.; Lu, X. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Ostrikov, K. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia); School of Physics, University of Sydney, Sydney NSW 2006 (Australia); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2013-02-15

    Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.

  6. Time trends in the natural dizygotic twinning rate.

    Science.gov (United States)

    Derom, Catherine; Gielen, Marij; Peeters, Hilde; Frijns, Jean-Pierre; Zeegers, Maurice P A

    2011-08-01

    The natural dizygotic (DZ) twinning rate has been proposed as a reliable and useful measure of human fecundity, if adjusted for maternal age at twin birth. The aim of this study was to analyze age-adjusted trends in natural DZ twinning rates over the past 40 years using data from the 'East Flanders Prospective Twin Survey (EFPTS)'. This study involved 4835 naturally conceived twin pregnancies between 1969 and 2009 from the population-based Belgian 'EFPTS'. Age-adjusted trends in the incidence of natural DZ twin pregnancies were calculated using a generalized linear model with Poisson distribution. Both the natural DZ twinning rates and maternal age at twin birth increased in a linear fashion from 1969 to 2009. When age-adjusted, we found that the trend in the natural DZ twinning rate was stable during the whole time period. According to our population-based data and after age-adjustment, a stable natural DZ twinning rate could be observed over the last four decades. Under the assumption that the spontaneous DZ twinning rate is a sensor of fecundity, this indicates a stable 'high' fecundity for this population.

  7. Relationship between refractive error and ocular biometrics in twin children: the Guangzhou Twin Eye Study.

    Science.gov (United States)

    Wang, Decai; Liu, Bin; Huang, Shengsong; Huang, Wenyong; He, Mingguang

    2014-09-01

    A cross-sectional study was conducted to explore the relationship between refractive error and ocular biometrics in children from the Guangzhou twin eye study. Twin participants aged 7-15 years were selected from Guangzhou Twin Eye Study. Ocular examinations included visual acuity measurement, ocular motility evaluation, autorefraction under cycloplegia, and anterior segment, media, and fundus examination. Axial length (AL), anterior chamber depth (ACD), and corneal curvature radius were measured using partial coherence laser interferometry. A multivariate linear regression model was used for statistical analysis. Twin children from Guangzhou city showed a decreased spherical equivalent with age, whereas both AL and ACD were increased and corneal curvature radius remained unchanged. When adjusted by age and gender, the data from 77% of twins presenting with spherical equivalent changes indicated that these were caused by predictable variables (R2 = 0.77, P biometrics. Refractive status is largely determined by axial length as the major factor.

  8. Twins with omphalocele in Denmark (1970-1989)

    DEFF Research Database (Denmark)

    Bugge, Merete

    2010-01-01

    Seven pairs of twins, two monozygotic (MZ), two dizygotic (DZ), and three like-sex pairs of unknown zygosity are described. The twin pairs were all discordant for omphalocele except for one pair of conjoined twins. The 8 infants with omphalocele represent 3.1% of the 253 infants with omphalocele......, ascertained in an almost complete nationwide data set of live- and stillborn infants with abdominal wall defects in two decades in Denmark (1970-1989). The occurrence of twins with omphalocele was not significantly different from the occurrence of twins in the Danish population in the same period. To our...... knowledge this is the first report of the occurrence of twins with omphalocele in a systematic nationwide epidemiological study....

  9. Twin anemia polycythemia sequence

    NARCIS (Netherlands)

    Slaghekke, Femke

    2014-01-01

    In this thesis we describe that Twin Anemia Polycythemia Sequence (TAPS) is a form of chronic feto-fetal transfusion in monochorionic (identical) twins based on a small amount of blood transfusion through very small anastomoses. For the antenatal diagnosis of TAPS, Middle Cerebral Artery – Peak

  10. The Danish Twin Registry

    DEFF Research Database (Denmark)

    Skytthe, Axel; Ohm Kyvik, Kirsten; Vilstrup Holm, Niels

    2011-01-01

    Introduction: The Danish Twin Registry is a unique source for studies of genetic, familial and environmental factors on life events, health conditions and diseases. Content: More than 85,000 twin pairs born 1870-2008 in Denmark. Validity and coverage: Four main ascertainment methods have been emp...

  11. Nature versus nurture: identical twins and bariatric surgery.

    Science.gov (United States)

    Hagedorn, Judith C; Morton, John M

    2007-06-01

    Genetics and environment both play a role in weight maintenance. Twin studies may help clarify the influence of nature vs nurture in weight loss. We present the largest U.S. experience with monozygotic (MZ) twins undergoing bariatric surgery. We retrospectively reviewed the charts of four sets of MZ twins who underwent Roux-en-Y gastric bypass (RYGBP) surgery and laparoscopic adjustable gastric band (LAGB) placement at three different institutions. BMI and co-morbidities were examined pre- and postoperatively, and laboratory values were recorded. All four sets of twins are female, live together, and have similar professions. Twin cohort 1 had near identical weight loss patterns after open RYGBP surgery in 1996 (preop 146/142 kg; 2 years 82/82; and 10 years 108/107). Twin cohort 1 also both underwent cholecystectomies within the first year postoperatively. Twin cohort 2 underwent laparoscopic RYGBP surgery and also required cholecystectomies in the first postoperative year. Cohort 2 also experienced nearly identical weight loss at 1 year (36.7% vs 37.0% BMI loss). Twin cohort 3 underwent LAGB placement with two different surgeons with differing amounts of weight loss at 6 months (6.5% vs 15.7% BMI loss). Finally, twin cohort 4 underwent laparoscopic RYGBP with 2-year BMI loss of 39% vs 34%. In twin cohort 4, the twin who lost less weight lived apart from her twin and extended family, and her weight loss was less than the twin living with her family. Two sets of MZ twins had identical responses to bariatric surgery. The other two sets of identical twins had differential weight loss results, possibly due to differences in surgical approach and social support. While genetics do exert a strong influence on weight loss and maintenance, this case series demonstrates the potential effect of social support and postoperative management upon postoperative weight loss in the presence of identical genetics.

  12. Illustrations of the twin paradox

    International Nuclear Information System (INIS)

    Rebhan, E.

    1985-01-01

    In order to provide a more intuitive understanding of the twin paradox, several illustrations of this are presented. In one of these, each of the twins is equipped with a lamp whose monochromatic light can be observed by the other. In other illustrations the travelling twin uses an Einstein train instead of a space ship, all the cars of the train and all stations along the route of the train being equipped with clocks. (author)

  13. Twins in Ancient Greece: a synopsis.

    Science.gov (United States)

    Malamitsi-Puchner, Ariadne

    2016-01-01

    This brief outline associates twins with several aspects of life in Ancient Greece. In Greek mythology twins caused ambivalent reactions and were believed to have ambivalent feelings for each other. Very often, they were viewed as the representatives of the dualistic nature of the universe. Heteropaternal superfecundation, which dominates in ancient myths, explains on one hand, the god-like qualities and, on the other hand, the mortal nature of many twins. An assumption is presented that legends referring to twins might reflect the territorial expansions of Ancient Greeks in Northern Mediterranean, around the Black Sea, in Asia Minor, as well as North East Africa. In conclusion, in Greek antiquity, twins have been used as transitional figures between myth and reality.

  14. Comparative study of the influence of the gas injection system on the Nd:yttrium-aluminum-garnet laser cutting of advanced oxide ceramics

    International Nuclear Information System (INIS)

    Quintero, F.; Pou, J.; Lusquinos, F.; Boutinguiza, M.; Soto, R.; Perez-Amor, M.

    2003-01-01

    Cutting of advanced oxide ceramics is still a difficult task. In this work, the possibility to effectively cut them using a Nd:YAG laser guided by an optical fiber is demonstrated. The key points are the aerodynamic interactions of the assist gas jet in the fusion laser cutting of ceramics. A comprehensive study of the influence of these aerodynamic interactions on the laser cutting of advanced oxide ceramics has been carried out. The characteristics of the heat affected zone (HAZ) were studied related to the efficiency of the assist gas to eject the molten material. It has been demonstrated that the HAZ can be avoided with a suitable design of the gas injection system combined with an appropriate selection of the values of the processing parameters. With the aim of improving the efficiency of the assist gas injection system, a new cutting head with an off-axis supersonic nozzle was developed. Furthermore, a comparison between the utilization of a conventional coaxial conical nozzle to inject the assist gas and the new system is presented. The results obtained give clear proof that the use of the new gas injection system leads to a great improvement on the cut quality by means of a more efficient removing of the molten material out of the cutting front. This result is of special interest in the laser fusion cutting of thick ceramic plates at high processing rates

  15. Development of a He/CdI$_2$ gas-jet system coupled to a surface-ionization type ion-source in JAEA-ISOL: towards determination of the first ionization potential of Lr (Z = 103)

    CERN Document Server

    Sato, T K; Sato, N; Tsukada, K; Toyoshima, A; Ooe, K; Miyashita, S; Kaneya, Y; Osa, A; Schädel, M; Nagame, Y; Ichikawa, S; Stora, T; Kratz, J V

    2015-01-01

    We report on development of a gas-jet transport system coupled to a surface ionization ion-source in the JAEA-ISOL (Isotope Separator On-Line) system. As a new aerosol material for the gas-jet system, CdI2, which has a low boiling point of 713 °C, is exploited to prevent deposition of the aerosol material on the surface of the ion-source. An additional filament is newly installed in the previous ion-source to provide uniform heating of an ionizer. The present system is applied to the measurement of absolute efficiencies of various short-lived lanthanide isotopes produced in nuclear reactions.

  16. Twin birth order, birthweight and birthweight discordance: any relationship

    Directory of Open Access Journals (Sweden)

    Onyiriuka A.N.

    2010-12-01

    Full Text Available Background: It is widely believed that in twin pairs, at birth, the first-born weigh more than the second-born but this concept has been challenged. Objective: To assess the truthfulness of this common concept that first-born twins are usually heavier than their second-born siblings at birth. Methods: In a series of 104 sets of live-born twins, the birth weights of first-born twins were compared with those of their second-born siblings, after controlling for gender. Their intra-pair birthweight differences were determined and twin pairs whose birthweight difference was 15% or more were designated as discordant. Results: Twin I was heavier than Twin II in 61.5% of cases while Twin II was heavier than Twin I in 28.9% of cases. Twins I and II had equal birthweights in 9.6% of cases. Comparing the mean birthweight of the first-born-male twin with that of second-born- male twin, it was 2515+427g (95% Confidence Interval, CI=2402-2628 versus 2432 +435g (95% CI=2321-2543 p>0.05. The mean birthweight of first-born-female twin was 2326+445g (95% CI=2214-2439 while that of the second-born-female twin was 2325+501g (95% CI=2197-2453 p>0.05. When the birthweight difference exceeded 750g, the probability that Twin I will be heavier than Twin II was 83.3% (5 of 6. Conclusion: Although the first-born twin was more often heavier than their second-born siblings, either could weigh more or less at birth. The larger the birthweight difference between growth-discordant twin pair, the greater the probability that the heavier twin would be delivered first

  17. Jet operated heat pump

    International Nuclear Information System (INIS)

    Collard, T.H.

    1982-01-01

    A jet pump system is shown that utilizes waste heat to provide heating and/or cooling. Waste heat diverted through a boiler causes a refrigerant to evaporate and expand for supersonic discharge through a nozzle thereby creating a vacuum in an evaporator coil. The vacuum draws the refrigerant in a gaseous state into a condensing section of a jet pump along with refrigerant from a reservoir in a subcooled liquid form. This causes condensation of the gas in a condensation section of the jet pump, while moving at constant velocity. The change in momentum of the fluid overcomes the system high side pressure. Some of the condensate is cooled by a subcooler. Refrigerant in a subcooled liquid state from the subcooler is fed back into the evaporator and the condensing section with an adequate supply being insured by the reservoir. The motive portion of the condensate is returned to the boiler sans subcooling. By proper valving start-up is insured, as well as the ability to switch from heating to cooling

  18. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    International Nuclear Information System (INIS)

    Frid, W.

    1988-04-01

    Discharge of the molten core debris from a pressurized reactor vessel has been recognized as an important accident scenario for pressurized water reactors. Recent high-pressure melt streaming experiments conducted at Sandia National Laboratories, designed to study cavity and containment events related to melt ejection, have resulted in two important observations: (1) Expansion and breakup of the ejected molten jet. (2) Significant aerosol generation during the ejection process. The expansion and breakup of the jet in the experiments are attributed to rapid evolution of the pressurizing gas (nitrogen or hydrogen) dissolved in the melt. It has been concluded that aerosol particles may be formed by condensation of melt vapor and mechanical breakup of the melt and generation. It was also shown that the above stated phenomena are likely to occur in reactor accidents. This report provides results from analytical and experimental investigations on the behavior of a gas supersaturated molten jet expelled from a pressurized vessel. Aero-hydrodynamic stability of liquid jets in gas, stream degassing of molten metals, and gas bubble nucleation in molten metals are relevant problems that are addressed in this work

  19. Atmospheric-pressure plasma jet

    Science.gov (United States)

    Selwyn, Gary S.

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  20. Polydisperse effects in jet spray flames

    Science.gov (United States)

    Weinberg, Noam; Greenberg, J. Barry

    2018-01-01

    A laminar jet polydisperse spray diffusion flame is analysed mathematically for the first time using an extension of classical similarity solutions for gaseous jet flames. The analysis enables a comparison to be drawn between conditions for flame stability or flame blow-out for purely gaseous flames and for spray flames. It is found that, in contrast to the Schmidt number criteria relevant to gas flames, droplet size and initial spray polydispersity play a critical role in determining potential flame scenarios. Some qualitative agreement for lift-off height is found when comparing predictions of the theory and sparse independent experimental evidence from the literature.

  1. ISOTROPIC HEATING OF GALAXY CLUSTER CORES VIA RAPIDLY REORIENTING ACTIVE GALACTIC NUCLEUS JETS

    International Nuclear Information System (INIS)

    Babul, Arif; Sharma, Prateek; Reynolds, Christopher S.

    2013-01-01

    Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P jet = 10 44–45 erg s –1 , typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.

  2. Structural bifurcation of microwave helium jet discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    Takamura, Shuichi; Kitoh, Masakazu; Soga, Tadasuke

    2008-01-01

    Structural bifurcation of microwave-sustained jet discharge at atmospheric gas pressure was found to produce a stable helium plasma jet, which may open the possibility of a new type of high-flux test plasma beam for plasma-wall interactions in fusion devices. The fundamental discharge properties are presented including hysteresis characteristics, imaging of discharge emissive structure, and stable ignition parameter area. (author)

  3. Interaction of two plasma jets produced successively from Cu target

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Badziak, J.; Borodziuk, S.; Chodukowski, T.; Parys, P.; Ullschmied, Jiří; Krouský, Eduard; Mašek, Karel; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Pisarczyk, P.

    2010-01-01

    Roč. 28, č. 3 (2010), s. 497-504 ISSN 0263-0346 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100523 Keywords : Laser targets * laser produced-plasma jets * interaction of plasma jets * PALS laser Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.656, year: 2010

  4. Study of the interaction of a 10 TW femtosecond laser with a high-density long-scale pulsed gas jet

    International Nuclear Information System (INIS)

    Monot, P.; D'Oliveira, P.; Hulin, S.; Faenov, A.Ya.; Dobosz, S.; Auguste, T.; Pikuz, T.A.; Magunov, A.I.; Skobelev, I.Yu.; Rosmej, F.; Andreev, N.E.; Lefebvre, E.

    2001-01-01

    A study on the interaction of a 10 TW, 60 fs, Ti-Sapphire laser with a high-density long-scale pulsed nitrogen gas jet is reported. Experimental data on the laser propagation are analyzed with the help of a ray-tracing model. The plasma dynamics is investigated by means of time-resolved shadowgraphy and time-integrated high-resolution x-ray spectroscopy. Shadowgrams show that the plasma does not expand during the first 55 ps, while x-ray spectra exhibit an unusual continuum-like structure attributed to hollow atoms produced by charge exchange process between bare nuclei expelled from the plasma and molecules of the surrounding gas. The interpretation of the results is supported by particle-in-cell simulations. The question of x-ray lasing is also examined using a hydrodynamic code to simulate the long lasting regime of recombination

  5. Association between the birth of twins and parental divorce.

    Science.gov (United States)

    Jena, Anupam B; Goldman, Dana P; Joyce, Geoffrey

    2011-04-01

    Mothers of multiple births face higher rates of postpartum depression, yet evidence on the marital consequences of multiple births is limited. We examined the association between twin births and parental divorce. We used the 1980 U.S. Census to identify a large sample of mothers with and without twin births. The goal was to estimate multivariate logistic models of the association between birth of twins and divorce adjusting for race, age at marriage and first birth, and college education. We examined whether the association was affected by maternal education, age and sex composition of twins, and family size. Twins at first birth were associated with greater parental divorce compared with singletons (odds ratio, 1.08; 95% confidence interval, 1.01-1.16; absolute risk 13.7% with twins compared with 12.7%; P=.02). The association was statistically greater among mothers not attending college (14.9% with twins compared with 13.3%; P=.01) compared with those with some college (10.4% with twins compared with 10.5%; P=.34); those with children older than 8 years (15.6% with twins compared with 13.5%; P<.01) compared with younger children (10.6% with twins compared with 10.8%; P=.42); and those with at least one twin girl (13.8% with twins compared with 12.6%; P=.03) compared with twin boys (12.1% with twins compared with 12.5%, P=.38). Mothers with four or more children had a larger association between birth of twins and divorce (15.4% for mothers with twins at fourth birth compared with 11.3% for all other mothers with four or more children; P<.01) compared with mothers with twins at first birth (13.7% for twins at first birth compared with 12.7%; P=.02). Health consequences of twin births for children and mothers are well known. Twin births may be associated with longer-term parental divorce. Specific groups, namely mothers not completing college and mothers who already have more children, may be at higher risk. II.

  6. Diagnostics of plasma jet instabilities using fast shutter imaging

    Czech Academy of Sciences Publication Activity Database

    Chumak, Oleksiy; Hrabovský, Milan

    2006-01-01

    Roč. 56, suppl.B (2006), B767-B773 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /22nd./. Praha, 26.6.2006-29.6.2006] R&D Projects: GA ČR GA202/05/0669 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma jet * jet instabilities * plasma fluctuation * visualization Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  7. The Role of Grain Orientation and Grain Boundary Characteristics in the Mechanical Twinning Formation in a High Manganese Twinning-Induced Plasticity Steel

    Science.gov (United States)

    Shterner, Vadim; Timokhina, Ilana B.; Rollett, Anthony D.; Beladi, Hossein

    2018-04-01

    In the current study, the dependence of mechanical twinning on grain orientation and grain boundary characteristics was investigated using quasi in-situ tensile testing. The grains of three main orientations (i.e., , , and parallel to the tensile axis (TA)) and certain characteristics of grain boundaries (i.e., the misorientation angle and the inclination angle between the grain boundary plane normal and the TA) were examined. Among the different orientations, and were the most and the least favored orientations for the formation of mechanical twins, respectively. The orientation was intermediate for twinning. The annealing twin boundaries appeared to be the most favorable grain boundaries for the nucleation of mechanical twinning. No dependence was found for the inclination angle of annealing twin boundaries, but the orientation of grains on either side of the annealing twin boundary exhibited a pronounced effect on the propensity for mechanical twinning. Annealing twin boundaries adjacent to high Taylor factor grains exhibited a pronounced tendency for twinning regardless of their inclination angle. In general, grain orientation has a significant influence on twinning on a specific grain boundary.

  8. Air entrainment by plunging water jets

    NARCIS (Netherlands)

    Van de Sande, E.

    1974-01-01

    Gas entrainment caused by the impact of liquid jets upon liquid pool surfaces is a subject which has received too little attention. This well-known phenomenon,which occurs In nature and in numerous industrial operations, has only recently received interest from scientific workers. The influence on

  9. Enhancement of the SPARC90 code to pool scrubbing events under jet injection regime

    Energy Technology Data Exchange (ETDEWEB)

    Berna, C., E-mail: ceberes@iie.upv.es [Instituto de Ingeniería Energética, Universitat Politècnica de València (UPV), Camino de Vera 14, 46022 Valencia (Spain); Escrivá, A.; Muñoz-Cobo, J.L. [Instituto de Ingeniería Energética, Universitat Politècnica de València (UPV), Camino de Vera 14, 46022 Valencia (Spain); Herranz, L.E., E-mail: luisen.herranz@ciemat.es [Unit of Nuclear Safety Research Division of Nuclear Fission, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain)

    2016-04-15

    Highlights: • Review of the most recent literature concerning submerged jets. • Emphasize all variables and processes occurring along the jet region. • Highlight the gaps of knowledge still existing related to submerged jets. • Enhancement of SPARC90-Jet to estimate aerosol removal under jet injection regime. • Validation of the SPARC90-Jet results against pool scrubbing experimental data. - Abstract: Submerged gaseous jets may have an outstanding relevance in many industrial processes and may be of particular significance in severe nuclear accident scenarios, like in the Fukushima accident. Even though pool scrubbing has been traditionally associated with low injection velocities, there are a number of potential scenarios in which fission product trapping in aqueous ponds might also occur under jet injection regime (like SGTR meltdown sequences in PWRs and SBO ones in BWRs). The SPARC90 code was developed to determine the fission product trapping in pools during severe accidents. The code assumes that carrier gas arrives at the water ponds at low or moderate velocities and it forms a big bubble that eventually detaches from the injection pipe. However, particle laden gases may enter the water at very high velocities resulting in a submerged gas jet instead. This work presents the fundamentals, major hypotheses and changes introduced into the code in order to estimate particle removal during gas injection in pools under the jet regime (SPARC90-Jet). A simplified and reliable approach to submerged jet hydrodynamics has been implemented on the basis of updated equations for jet hydrodynamics and aerosol removal, so that gas–liquid and droplet-particles interactions are described. The code modifications have been validated as far as possible. However, no suitable hydrodynamic tests have been found in the literature, so that an indirect validation has been conducted through comparisons against data from pool scrubbing experiments. Besides, this validation

  10. Enhancement of the SPARC90 code to pool scrubbing events under jet injection regime

    International Nuclear Information System (INIS)

    Berna, C.; Escrivá, A.; Muñoz-Cobo, J.L.; Herranz, L.E.

    2016-01-01

    Highlights: • Review of the most recent literature concerning submerged jets. • Emphasize all variables and processes occurring along the jet region. • Highlight the gaps of knowledge still existing related to submerged jets. • Enhancement of SPARC90-Jet to estimate aerosol removal under jet injection regime. • Validation of the SPARC90-Jet results against pool scrubbing experimental data. - Abstract: Submerged gaseous jets may have an outstanding relevance in many industrial processes and may be of particular significance in severe nuclear accident scenarios, like in the Fukushima accident. Even though pool scrubbing has been traditionally associated with low injection velocities, there are a number of potential scenarios in which fission product trapping in aqueous ponds might also occur under jet injection regime (like SGTR meltdown sequences in PWRs and SBO ones in BWRs). The SPARC90 code was developed to determine the fission product trapping in pools during severe accidents. The code assumes that carrier gas arrives at the water ponds at low or moderate velocities and it forms a big bubble that eventually detaches from the injection pipe. However, particle laden gases may enter the water at very high velocities resulting in a submerged gas jet instead. This work presents the fundamentals, major hypotheses and changes introduced into the code in order to estimate particle removal during gas injection in pools under the jet regime (SPARC90-Jet). A simplified and reliable approach to submerged jet hydrodynamics has been implemented on the basis of updated equations for jet hydrodynamics and aerosol removal, so that gas–liquid and droplet-particles interactions are described. The code modifications have been validated as far as possible. However, no suitable hydrodynamic tests have been found in the literature, so that an indirect validation has been conducted through comparisons against data from pool scrubbing experiments. Besides, this validation

  11. Development of Criteria for Flashback Propensity in Jet Flames for High Hydrogen Content and Natural Gas Type Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kalantari, Alireza [Univ. of California, Irvine, CA (United States); Sullivan-Lewis, Elliot [Univ. of California, Irvine, CA (United States); McDonell, Vincent [Univ. of California, Irvine, CA (United States)

    2016-10-17

    Due to increasingly stringent air quality requirements stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when hydrogen is used as the fuel. In fact, flashback is a key operability issue associated with low emission combustion of high hydrogen content fuels. Flashback can cause serious damage to the premixer hardware. Hence, design tools to predict flashback propensity are of interest. Such a design tool has been developed based on the data gathered by experimental study to predict boundary layer flashback using non-dimensional parameters. The flashback propensity of a premixed jet flame has been studied experimentally. Boundary layer flashback has been investigated under turbulent flow conditions at elevated pressures and temperatures (i.e. 3 atm to 8 atm and 300 K to 500 K). The data presented in this study are for hydrogen fuel at various Reynolds numbers, which are representative of practical gas turbine premixer conditions and are significantly higher than results currently available in the literature. Three burner heads constructed of different materials (stainless steel, copper, and zirconia ceramic) were used to evaluate the effect of tip temperature, a parameter found previously to be an important factor in triggering flashback. This study characterizes flashback systematically by developing a comprehensive non-dimensional model which takes into account all effective parameters in boundary layer flashback propensity. The model was optimized for new data and captures the behavior of the new results well. Further, comparison of the model with the single existing study of high pressure jet flame flashback also indicates good agreement. The model developed using the high pressure test rig is able to predict flashback tendencies for a commercial gas turbine engine and can thus serve as a

  12. Analysis of the flow structure of a turbulent thermal plasma jet

    International Nuclear Information System (INIS)

    Spores, R.A.

    1989-01-01

    The goal of this research project is to attain a better understanding of the fluid mechanics associated with the high temperature jet of a thermal plasma torch. The analysis of a plasma, which has the ability to vaporize anything placed inside it without proper cooling, presents a unique research challenge. Several types of non-intrusive diagnostic techniques has been used to examine the jet from different perspectives. To actually map out the mean gas velocities and turbulence intensities throughout the jet, laser Doppler anemometry has been employed. The plasma gas and entrained air him been seeded separately in order to conditionally sample the two fluids and attain information about the gas mixing process. Both radial and axial turbulence levels have been measured in order to analyze the non-isotropic nature of the jet. A parabolic numerical code has been modified and compared with the obtained experimental results. A new diagnostic technique for plasma torches, which involves the spectral analysis of voltage, optical (temperature), and acoustical (pressure) fluctuations, has been implemented. The acoustical spectrum can provide information about the existence of coherent structures in the flow while the cross correlation of the acoustical signal with the voltage fluctuations can tell one to what extent perturbations of the internal arc affect the external flow. Since temperature is a scalar that is dependent on the flow field, observing temperature fluctuations can likewise help one to understand the mechanics of the flow. Flow visualization of the plasma jet using a high speed video camera has also been undertaken in order to better understand the entrainment process

  13. Study of laser-generated debris free x-ray sources produced in a high-density linear Ar, Kr, Xe, Kr/Ar and Xe/Kr/Ar mixtures gas jets by 2 ω, sub-ps LLNL Titan laser

    Science.gov (United States)

    Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Safronova, A. S.; Cooper, M. C.; Shrestha, I. K.; Petkov, E. E.; Stafford, A.; Moschella, J. J.; Schmidt-Petersen, M. T.; Butcher, C. J.; Kemp, G. E.; Andrews, S. D.; Fournier, K. B.

    2016-10-01

    The study of laser-generated debris-free x-ray sources in an underdense plasma produced in a high-density linear gas-puff jet was carried out at the LLNL Titan laser (2 ω, 45 J, sub-ps) with an intensity in the 10 um focal spot of 7 x 1019 W/cm2. A linear nozzle with a fast valve was used for the generation of a clusters/gas jet. X-ray diagnostics for the spectral region of 0.7 - 9 keV include: two spectrometers and pinhole cameras, and 3 groups of fast filtered detectors. Electron beams were measured with the EPPS magnetic spectrometer (>1 MeV) and Faraday cups (>72 keV). Spectralon/spectrometer devices were also used to measure absorption of laser radiation in the jets. New results were obtained on: anisotropic generation of x-rays (laser to x-ray conversion coefficient was >1%) and characteristics of laser-generated electron beams; evolution of x-ray generation with the location of the laser focus in a cluster-gas jet, and observations of a strong x-ray flash in some focusing regimes. Non-LTE kinetic modeling was used to estimate plasma parameters. UNR work supported by the DTRA Basic Research Award # HDTRA1-13-1-0033. Work at LLNL was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  14. Cryotrapping assisted mass spectrometry for the analysis of complex gas mixtures

    International Nuclear Information System (INIS)

    Ferreira, Jose A.; Tabares, Francisco L.

    2007-01-01

    A simple method is described for the unambiguous identification of the individual components in a gas mixture showing strong overlapping of their mass spectrometric cracking patterns. The method, herein referred to as cryotrapping assisted mass spectrometry, takes advantage of the different vapor pressure values of the individual components at low temperature (78 K for liquid nitrogen traps), and thus of the different depletion efficiencies and outgassing patterns during the fast cooling and slow warming up of the trap, respectively. Examples of the use of this technique for gas mixtures with application to plasma enhanced chemical vapor deposition of carbon and carbon-nitrogen hard films are shown. Detection of traces of specific C 3 hydrocarbons ( 2 containing deposition plasmas are addressed as representative examples of specific applications of the technique

  15. Ammonia chemistry in a flameless jet

    Energy Technology Data Exchange (ETDEWEB)

    Zieba, Mariusz; Schuster, Anja; Scheffknecht, Guenter [Institute of Process Engineering and Power Plant Technology, University of Stuttgart, Pfaffenwaldring 23, D-70569 Stuttgart (Germany); Brink, Anders; Hupa, Mikko [Process Chemistry Centre, Aabo Akademi University, Biskopsgatan 8, 20500 Aabo (Finland)

    2009-10-15

    In this paper, the nitrogen chemistry in an ammonia (NH{sub 3}) doped flameless jet is investigated using a kinetic reactor network model. The reactor network model is used to explain the main differences in ammonia chemistry for methane (CH{sub 4})-containing fuels and methane-free fuels. The chemical pathways of nitrogen oxides (NO{sub x}) formation and destruction are identified using rate-of-production analysis. The results show that in the case of natural gas, ammonia reacts relatively late at fuel lean condition leading to high NO{sub x} emissions. In the pre-ignition zone, the ammonia chemistry is blocked due to the absence of free radicals which are consumed by methane-methyl radical (CH{sub 3}) conversion. In the case of methane-free gas, the ammonia reacted very rapidly and complete decomposition was reached in the fuel rich region of the jet. In this case the necessary radicals for the ammonia conversion are generated from hydrogen (H{sub 2}) oxidation. (author)

  16. Production of bio-jet fuel from microalgae

    Science.gov (United States)

    Elmoraghy, Marian

    The increase in petroleum-based aviation fuel consumption, the decrease in petroleum resources, the fluctuation of the crude oil price, the increase in greenhouse gas emission and the need for energy security are motivating the development of an alternate jet fuel. Bio-jet fuel has to be a drop in fuel, technically and economically feasible, environmentally friendly, greener than jet fuel, produced locally and low gallon per Btu. Bic jet fuel has been produced by blending petro-based jet fuel with microalgae biodiesel (Fatty Acid Methyl Ester, or simply FAME). Indoor microalgae growth, lipids extraction and transetrification to biodiesel are energy and fresh water intensive and time consuming. In addition, the quality of the biodiesel product and the physical properties of the bio-jet fuel blends are unknown. This work addressed these challenges. Minimizing the energy requirements and making microalgae growth process greener were accomplished by replacing fluorescent lights with light emitting diodes (LEDs). Reducing fresh water footprint in algae growth was accomplished by waste water use. Microalgae biodiesel production time was reduced using the one-step (in-situ transestrification) process. Yields up to 56.82 mg FAME/g dry algae were obtained. Predicted physical properties of in-situ FAME satisfied European and American standards confirming its quality. Lipid triggering by nitrogen deprivation was accomplished in order to increase the FAME production. Bio-jet fuel freezing points and heating values were measured for different jet fuel to biodiesel blend ratios.

  17. Do MZ twins have discordant experiences of friendship? A qualitative hypothesis-generating MZ twin differences study

    Science.gov (United States)

    Moran, Nicola; Plomin, Robert

    2017-01-01

    Using a qualitative monozygotic (MZ) twin differences design we explored whether adolescent MZ twins report discordant peer relationships and, if so, whether they perceive them as causes, consequences or correlates of discordant behaviour. We gathered free-response questionnaire data from 497 families and conducted in-depth telephone interviews with 97 of them. Within this dataset n = 112 families (23% of the sample) described discordant peer relationships. Six categories of discordance were identified (peer victimisation, peer rejection, fewer friends, different friends, different attitudes to friendship and dependence on co-twin). Participants described peer relationship discordance arising as a result of chance occurrences, enhanced vulnerability in one twin or discordant behaviour. Consequences of discordant peer relationships were seen as discordance in self-confidence, future plans, social isolation, mental health and interests. In all cases the twin with worse peer experiences was seen as having a worse outcome. Specific hypotheses are presented. PMID:28727730

  18. Testicular cancer in twins: a meta-analysis.

    Science.gov (United States)

    Neale, R E; Carrière, P; Murphy, M F G; Baade, P D

    2008-01-15

    In a meta-analysis of testicular cancer in twins, twins had a 30% increased risk (estimate 1.31, 95% CI 1.1-1.6), providing indirect support for the hypothesis that in utero hormone variations influence risk of testicular cancer. The summary-estimate for dizygotic twins was 1.3 (1.0-1.7) and for monozygotic or same sex twins 1.4 (1.2-1.8).

  19. The Mid-Atlantic Twin Registry, revisited.

    Science.gov (United States)

    Lilley, Emily C H; Silberg, Judy L

    2013-02-01

    The Mid-Atlantic Twin Registry (MATR) is a population-based registry of more than 56,000 twins primarily born or living in Virginia, North Carolina, and South Carolina. The MATR employs several methods of ascertaining twins, and devotes considerable resources to tracking and maintaining communication with MATR participants. Researchers may utilize the MATR for administration of research services including study recruitment, collection of DNA, archival data set creation, as well as data collection through mailed, phone, or online surveys. In addition, the MATR houses the MATR Repository, with over 1,200 blood samples available for researchers interested in DNA genotyping. For over 35 years MATR twins have participated in research studies with investigators from diverse scientific disciplines and various institutions. These studies, which have resulted in numerous publications, have covered a range of topics, including the human microbiome, developmental psychopathology, depression, anxiety, substance use, epigenetics of aging, children of twins, pre-term birth, social attitudes, seizures, eating disorders, as well as sleep homeostasis. Researchers interested in utilizing twins are encouraged to contact the MATR to discuss potential research opportunities.

  20. Prosocial and self-interested intra-twin pair behavior in monozygotic and dizygotic twins in the early to middle childhood transition.

    Science.gov (United States)

    Yirmiya, Karen; Segal, Nancy L; Bloch, Guy; Knafo-Noam, Ariel

    2018-04-06

    Several related and complementary theoretical frameworks have been proposed to explain the existence of prosocial behavior, despite its potential fitness cost to the individual. These include kin selection theory, proposing that organisms have a propensity to help those to whom they are genetically related, and reciprocity, referring to the benefit of being prosocial, depending on past and future mutual interactions. A useful paradigm to examine prosociality is to compare mean levels of this behavior between monozygotic (MZ) and dizygotic (DZ) twins. Here, we examined the performance of 883 6.5-year-old twins (139 MZ and 302 DZ same-sex 6.5-year-old full twin pairs) in the Differential Productivity Task. In this task, the twins' behaviors were observed under two conditions: working for themselves vs. working for their co-twin. There were no significant differences between the performances of MZ and DZ twins in the prosocial condition of the task. Correlations within the twin dyads were significantly higher in MZ than DZ twins in the self-interested condition. However, similar MZ and DZ correlations were found in the prosocial condition, supporting the role of reciprocity in twins' prosociality towards each other. © 2018 John Wiley & Sons Ltd.

  1. Simulating the interaction of jets with the intracluster medium

    Science.gov (United States)

    Weinberger, Rainer; Ehlert, Kristian; Pfrommer, Christoph; Pakmor, Rüdiger; Springel, Volker

    2017-10-01

    Jets from supermassive black holes in the centres of galaxy clusters are a potential candidate for moderating gas cooling and subsequent star formation through depositing energy in the intracluster gas. In this work, we simulate the jet-intracluster medium interaction using the moving-mesh magnetohydrodynamics code arepo. Our model injects supersonic, low-density, collimated and magnetized outflows in cluster centres, which are then stopped by the surrounding gas, thermalize and inflate low-density cavities filled with cosmic rays. We perform high-resolution, non-radiative simulations of the lobe creation, expansion and disruption, and find that its dynamical evolution is in qualitative agreement with simulations of idealized low-density cavities that are dominated by a large-scale Rayleigh-Taylor instability. The buoyant rising of the lobe does not create energetically significant small-scale chaotic motion in a volume-filling fashion, but rather a systematic upward motion in the wake of the lobe and a corresponding back-flow antiparallel to it. We find that, overall, 50 per cent of the injected energy ends up in material that is not part of the lobe, and about 25 per cent remains in the inner 100 kpc. We conclude that jet-inflated, buoyantly rising cavities drive systematic gas motions that play an important role in heating the central regions, while mixing of lobe material is subdominant. Encouragingly, the main mechanisms responsible for this energy deposition can be modelled already at resolutions within reach in future, high-resolution cosmological simulations of galaxy clusters.

  2. Exploring Jets from a Supermassive Black Hole

    Science.gov (United States)

    Kohler, Susanna

    2018-06-01

    What are the feeding and burping habits of the supermassive black holes peppering the universe? In a new study, observations of one such monster reveal more about the behavior of its powerful jets.Beams from BehemothsAcross the universe, supermassive black holes of millions to billions of solar masses lie at the centers of galaxies, gobbling up surrounding material. But not all of the gas and dust that spirals in toward a black hole is ultimately swallowed! A large fraction of it can instead be flung out into space again, in the form of enormous, powerful jets that extend for thousands or even millions of light-years in opposite directions.M87, shown in this Hubble image, is a classic example of a nearby (55 million light-years distant) supermassive black hole with a visible, collimated jet. Its counter-jet isnt seen because relativistic effects make the receding jet appear less bright. [The Hubble Heritage Team (STScI/AURA) and NASA/ESA]What causes these outflows to be tightly beamed collimated in the form of jets, rather than sprayed out in all directions? Does the pressure of the ambient medium the surrounding gas and dust that the jet is injected into play an important role? In what regions do these jets accelerate and decelerate? There are many open questions that scientists hope to understand by studying some of the active black holes with jets that live closest to us.Eyes on a Nearby GiantIn a new study led by Satomi Nakahara (The Graduate University for Advanced Studies in Japan), a team of scientists has used multifrequency Very Long Baseline Array (VLBA) and Very Long Array (VLA) images to explore jets emitted from a galaxy just 100 million light-years away: NGC 4261.This galaxys (relatively) close distance as well as the fact that were viewing it largely from the side, so we can clearly see both of its polar jets allows us to observe in detail the structure and intensity of its jets as a function of their distance from the black hole. Nakahara and

  3. Double-charming Higgs boson identification using machine-learning assisted jet shapes

    Science.gov (United States)

    Lenz, Alexander; Spannowsky, Michael; Tetlalmatzi-Xolocotzi, Gilberto

    2018-01-01

    We study the possibility of identifying a boosted resonance that decays into a charm pair against different sources of background using QCD event shapes, which are promoted to jet shapes. Using a set of jet shapes as input to a boosted decision tree, we find that observables utilizing the simultaneous presence of two charm quarks can access complementary information compared to approaches relying on two independent charm tags. Focusing on Higgs associated production with subsequent H →c c ¯ decay and on a C P -odd scalar A with mA≤10 GeV we obtain the limits B r (H →c c ¯ )≤6.48 % and B r (H →A (→c c ¯ )Z )≤0.01 % at 95% C.L.

  4. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hai (University of Southern California, Los Angeles, CA); Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation

  5. Horizontal H 2-air turbulent buoyant jet resulting from hydrogen leakage

    KAUST Repository

    El-Amin, Mohamed

    2012-02-01

    The current article is devoted to introducing mathematical and physical analyses with numerical investigation of a buoyant jet resulting from hydrogen leakage in air from a horizontal round source. H 2-air jet is an example of the non-Boussinesq buoyant jet in which a low-density gas jet is injected/leak into a high-density ambient. The density of the mixture is a function of the concentration only, the binary gas mixture is assumed to be of a linear mixing type and the rate of entrainment is assumed to be a function of the plume centerline velocity and the ratio of the mean plume and ambient densities. On the other hand, the local rate of entrainment consists of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The top-hat profile assumption is used to obtain the mean centerline velocity, width, density and concentration of the H 2-air horizontal jet in addition to kinematic relations which govern the jet trajectories. A set of ordinary differential equations is obtained and solved numerically using Runge-Kutta method. In the second step, the mean axial velocity, mean concentration and mean density of the jet are obtained based on Gaussian model. Finally, several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), turbulent eddy viscosity and turbulent eddy diffusivity, are obtained by solving the governing partial differential equations. Additionally, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  6. Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jong-Kil; Yoon, Jun-Kyu [Gachon Univ., Sungnam (Korea, Republic of); Kim, Kwang-Chu [KEPCO-E& C, Kimchun (Korea, Republic of)

    2017-10-15

    A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general . In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.

  7. Numerical simulation of Hanford Tank 241-SY-101 jet initiated fluid dynamics

    International Nuclear Information System (INIS)

    Trent, D.S.; Michener, T.E.

    1994-01-01

    The episodic Gas Release Events (GREs) that have characterized the behavior of Hanford tank 241-SY-101 for the past several years are thought to result from the entrapment of gases generated in the settled solids, i.e., sludge, layer of the tank. Gases consisting of about 36% hydrogen by volume, which are generated by complicated and poorly understood radiological and chemical processes, are apparently trapped in the settled solids layer until their accumulation initiates a buoyant upset of this layer, abruptly releasing large quantities of gas. Once concept for preventing the gas accumulation is to mobilize the settled materials with jet mixing. It is suggested that continual agitation of the settled solids using a mixer pump would free the gas bubbles so that they could continually escape, thus mitigating the potential for accumulation of flammable concentrations of hydrogen in the tank dome space following a GRE. A pump test is planned to evaluate the effectiveness of the jet mixing mitigation concept. The pump will circulate liquid from the upper layer of the tank, discharging it through two horizontal jets located approximately 2 1/2 ft above the tank floor. To prepare for start-up of this pump test, technical, operation, and safety questions concerning an anticipated gas release were addressed by numerical simulation using the TEMPEST computer code. Simulations of the pump initiated gas release revealed that the amount of gas that could potentially be released to the tank dome space is very sensitive to the initial conditions assumed for the amount and distribution of gas in the sludge layer. Calculations revealed that within the assumptions regarding gas distribution and content, the pump might initiate a rollover--followed by a significant gas release--if the sludge layer contains more than about 13 to 14% gas distributed with constant volume fraction

  8. A magnetodynamic mechanism for the formation of astrophysical jets, 2

    International Nuclear Information System (INIS)

    Shibata, Kazunari; Uchida, Yutaka.

    1986-01-01

    We present a nonsteady magnetodynamic mechanism for the formation of astrophysical jets in a magnetized accretion disk system. The dynamical processes in the contraction of a rotating disk, which is penetrated by a magnetic field parallel to the rotation axis, are investigated by using axially symmetric 2.5-dimensional MHD numerical simulations. As the rotating disk contracts, it pulls the magnetic field towards the center as well as to the azimuthal direction, producing a helically twisted magnetic field, and as the magnetic twist is accumulated and begins to relax along the poloidal field, the gas in the surface layers of the disk is pushed out to the polar directions by the J x B force with the relaxing magnetic twist. It is shown that the accelerated gas is collimated by the magnetic field and forms a supersonic bipolar jet which has a hollow cylindrical shell structure with helical motion in it. A considerable fraction of the gravitational potential energy released in the contraction of the disk is transformed to the kinetic energy of the jet through the action of the magnetic field. Also, angular momentum is carried away from the disk by the magnetic torque especially in the phase of the jet formation, and this allows the disk to keep contracting towards the gravitating center and can continue the ejection of the jet. (author)

  9. Clinical Factors Associated With Presentation Change of the Second Twin After Vaginal Delivery of the First Twin.

    Science.gov (United States)

    Panelli, Danielle M; Easter, Sarah Rae; Bibbo, Carolina; Robinson, Julian N; Carusi, Daniela A

    2017-11-01

    To identify clinical factors associated with a change from vertex to nonvertex presentation in the second twin after vaginal birth of the first. We assembled a retrospective cohort of women with viable vertex-vertex twin pregnancies who delivered the presenting twin vaginally. Women whose second twin changed from vertex to nonvertex after vaginal birth of the first were classified as experiencing an intrapartum change in presentation. Characteristics associated with intrapartum presentation change in a univariate analysis with a P value ≤.10 were then evaluated in a multivariate logistic regression model. Four-hundred fifty women met inclusion criteria, of whom 55 (12%) had intrapartum presentation change of the second twin. Women experiencing intrapartum presentation change were more likely to be multiparous (69% compared with 47%, Ppresentation of the second twin between the most recent antepartum ultrasonogram and the ultrasonogram done on admission to labor and delivery (11% compared with 4%, P=.04). In an adjusted analysis, multiparity and gestational age less than 34 weeks were significantly associated with presentation change (adjusted odds ratio [OR] 2.9, 95% CI 1.5-5.6 and adjusted OR 2.6, 95% CI 1.1-5.9, respectively). Women with intrapartum presentation change were more likely to undergo cesarean delivery for their second twin (44% compared with 7%, Ppresentation. Twenty of the 24 (83%) cesarean deliveries performed in the intrapartum presentation change group were done for issues related to malpresentation. Multiparity and gestational age less than 34 weeks are associated with intrapartum presentation change of the second twin.

  10. Deformation twinning in irradiated ferritic/martensitic steels

    Science.gov (United States)

    Wang, K.; Dai, Y.; Spätig, P.

    2018-04-01

    Two different ferritic/martensitic steels were tensile tested to gain insight into the mechanisms of embrittlement induced by the combined effects of displacement damage and helium after proton/neutron irradiation in SINQ, the Swiss spallation neutron source. The irradiation conditions were in the range: 15.8-19.8 dpa (displacement per atom) with 1370-1750 appm He at 245-300 °C. All the samples fractured in brittle mode with intergranular or cleavage fracture surfaces when tested at room temperature (RT) or 300 °C. After tensile test, transmission electron microscopy (TEM) was employed to investigate the deformation microstructures. TEM-lamella samples were extracted directly below the intergranular fracture surfaces or cleavage surfaces by using the focused ion beam technique. Deformation twinning was observed in irradiated specimens at high irradiation dose. Only twins with {112} plane were observed in all of the samples. The average thickness of twins is about 40 nm. Twins initiated at the fracture surface, became gradually thinner with distance away from the fracture surface and finally stopped in the matrix. Novel features such as twin-precipitate interactions, twin-grain boundary and/or twin-lath boundary interactions were observed. Twinning bands were seen to be arrested by grain boundaries or large precipitates, but could penetrate martensitic lath boundaries. Unlike the case of defect free channels, small defect-clusters, dislocation loops and dense small helium bubbles were observed inside twins.

  11. High kinetic energy plasma jet generation and its injection into the Globus-M spherical tokamak

    International Nuclear Information System (INIS)

    Voronin, A.V.; Gusev, V.K.; Petrov, Yu.V.; Sakharov, N.V.; Abramova, K.B.; Sklyarova, E.M.; Tolstyakov, S.Yu.

    2005-01-01

    Progress in the theoretical and experimental development of the plasma jet source and injection of hydrogen plasma and neutral gas jets into the Globus-M spherical tokamak is discussed. An experimental test bed is described for investigation of intense plasma jets that are generated by a double-stage plasma gun consisting of an intense source for neutral gas production and a conventional pulsed coaxial accelerator. A procedure for optimizing the accelerator parameters so as to achieve the maximum possible flow velocity with a limited discharge current and a reasonable length of the coaxial electrodes is presented. The calculations are compared with experiment. Plasma jet parameters, among them pressure distribution across the jet, flow velocity, plasma density, etc, were measured. Plasma jets with densities of up to 10 22 m -3 , total numbers of accelerated particles (1-5) x 10 19 , and flow velocities of 50-100 km s -1 were successfully injected into the plasma column of the Globus-M tokamak. Interferometric and Thomson scattering measurements confirmed deep jet penetration and a fast density rise ( 19 to 1 x 10 19 ) did not result in plasma degradation

  12. Gas-phase spectroscopy of synephrine by laser desorption supersonic jet technique.

    Science.gov (United States)

    Ishiuchi, Shun-ichi; Asakawa, Toshiro; Mitsuda, Haruhiko; Miyazaki, Mitsuhiko; Chakraborty, Shamik; Fujii, Masaaki

    2011-09-22

    In our previous work, we found that synephrine has six conformers in the gas phase, while adrenaline, which is a catecholamine and has the same side chain as synephrine, has been reported to have only two conformers. To determine the conformational geometries of synephrine, we measured resonance enhanced multiphoton ionization, ultraviolet-ultraviolet hole burning, and infrared dip spectra by utilizing the laser desorption supersonic jet technique. By comparing the observed infrared spectra with theoretical ones, we assigned geometries except for the orientations of the phenolic OH group. Comparison between the determined structures of synephrine and those of 2-methylaminno-1-phenylethanol, which has the same side chain as synephrine but no phenol OH group, leads to the conclusion that the phenolic OH group in synephrine does not affect the conformational flexibility of the side chain. In the case of adrenaline, which is expected to have 12 conformers if there are no interactions between the catecholic OH groups and the side chain, some interactions possibly exist between them because only two conformations are observed. By estimation of the dipole-dipole interaction energy between partial dipole moments of the catecholic OH groups and the side chain, it was concluded that the dipole-dipole interaction stabilizes specific conformers which are actually observed. © 2011 American Chemical Society

  13. Feedback by AGN Jets and Wide-angle Winds on a Galactic Scale

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, Zachary; Silk, Joseph [The Johns Hopkins University Department of Physics and Astronomy, Bloomberg Center for Physics and Astronomy, Room 366, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Gaibler, Volker [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2017-07-20

    To investigate the differences in mechanical feedback from radio-loud and radio-quiet active galactic nuclei on the host galaxy, we perform 3D AMR hydrodynamic simulations of wide-angle, radio-quiet winds with different inclinations on a single, massive, gas-rich disk galaxy at a redshift of 2–3. We compare our results to hydrodynamic simulations of the same galaxy but with a jet. The jet has an inclination of 0° (perpendicular to the galactic plane), and the winds have inclinations of 0°, 45°, and 90°. We analyze the impact on the host’s gas, star formation, and circumgalactic medium. We find that jet feedback is energy-driven and wind feedback is momentum-driven. In all the simulations, the jet or wind creates a cavity mostly devoid of dense gas in the nuclear region where star formation is then quenched, but we find strong positive feedback in all the simulations at radii greater than 3 kpc. All four simulations have similar SFRs and stellar velocities with large radial and vertical components. However, the wind at an inclination of 90° creates the highest density regions through ram pressure and generates the highest rates of star formation due to its ongoing strong interaction with the dense gas of the galactic plane. With increased wind inclination, we find greater asymmetry in gas distribution and resulting star formation. Our model generates an expanding ring of triggered star formation with typical velocities of the order of 1/3 of the circular velocity, superimposed on the older stellar population. This should result in a potentially detectable blue asymmetry in stellar absorption features at kiloparsec scales.

  14. Formula for radial profiles of temperature in steam-liquid sodium reactive jets

    International Nuclear Information System (INIS)

    Hobbes, P.; Mora-Perez, J.L.; Carreau, J.L.; Gbahoue, L.; Roger, F.

    1987-01-01

    One of the important problems of the study of distribution of temperatures in the reactive steam-liquid sodium jet rests in the mathematical formulation of their radial effects. During the experiment, two forms have been brought to light: from a certain distance of the injector, the radial distribution of temperature can be represented, in a classical way, by an error function curve; close to the injector, the radial profile allows for a minimum located on the axis of the jet. An energy balance permits, by dividing the jet in three parts: a central nucleus composed of practically pure gas, a gas ring plus drops and a liquid peripheral area plus bubbles, to obtain a mathematical formulation of the profiles, close to the injection which accounts quite well for the experimental points and their form

  15. Roentgeno-cephalometric analysis on the twin

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hi Sup; Ahn, Hyung Kyu [College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1972-11-15

    The purpose of this investigation can be sought for studying varients between twin by the cephalometric roentgenog raphic technics. The author have applied Down's, Bjork and Sakamoto's technic and measured in various angulations and length of cephalometric points. The results are as follows; 1. No significantly different data were found between twin. 2. There was no differences between normality and twin.

  16. Implementation of a new Disruption Mitigation System into the control system of JET

    Energy Technology Data Exchange (ETDEWEB)

    Jachmich, Stefan, E-mail: s.jachmich@fz-juelich.de [Laboratory for Plasma Physics, Ecole Royale Militaire/Koninklijke Militaire School, B-1000 Brussels (Belgium); Kruezi, Uron; Card, Peter; Deakin, Kieron; Kinna, David [Culham Centre for Fusion Energy, Abingdon, Oxon OX14 3DB (United Kingdom); Koslowski, Hans Rudolf; Lambertz, Horst Toni [Forschungszentrum Jülich GmbH, IEK-4, 52425 Jülich (Germany); Lehnen, Michael [ITER Organization, Route de Vinon-sur-Verdon, CS90046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • A new Disruption Mitigation System based on Massive Gas Injection has been installed at JET. • The control of the attached gas handling system had to be integrated into the JET-operation. • An interlock system has been built to cope with the interaction of the DMS with other auxiliary systems. • The system has been commissioned and first example of DMS used to ameliorate a disruption are shown. - Abstract: A new Disruption Mitigation System (DMS) based on Massive Gas Injections (MGI) has been installed at the JET-tokamak. The key component of this system is a fast eddy current driven valve, which is capable of injecting up to 4.6 × 10{sup −3} MPa m{sup 3} in less than 5 ms. Along with this valve a new gas handling system has been installed, whose control had to be integrated into the JET-operation. The operation of the DMS requires interaction with several other systems. Although Massive Gas Injections are used to ameliorate potentially severe damage to the tokamak plant and plasma facing components caused by disruptions, they introduce a high risk for example to auxiliary heating systems or diagnostics, which could be damaged by high vacuum pressures. In addition to this, the presence of high pressure (of noble and flammable gases) in combination with high voltages represents a risk not only to the actual DMS plant itself (in case of a failure) but also to personnel in the vicinity. These varieties of risks have been addressed and are described in this article.

  17. Twin-twin transfusion syndrome: cerebral ischemia is not the only fetal MR imaging finding

    Energy Technology Data Exchange (ETDEWEB)

    Kline-Fath, Beth M. [University of Cincinnati Medical Center, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Cincinnati Children' s Hospital, Department of Radiology, Cincinnati, OH (United States); Calvo-Garcia, Maria A.; O' Hara, Sara M.; Racadio, Judy M. [University of Cincinnati Medical Center, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Crombleholme, Timothy M. [University of Cincinnati Medical Center, Department of Surgery, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States)

    2007-01-15

    Twin-twin transfusion syndrome (TTTS) is a complication of monochorionic/diamniotic twin pregnancies. An imbalance of blood flow occurs through placental anastomoses, causing potentially significant morbidity and mortality in both twins. Although the sonographic findings of TTTS are well documented, we believe that MR imaging is a valuable adjunct. We describe the fetal MR imaging findings associated with TTTS. From 2003 to 2005, 37 consecutive MR imaging studies were performed on multiple-gestation pregnancies. Of the 37, 25 were consistent with TTTS, correlated and confirmed by sonographic criteria. MR fetal abnormalities were documented. Cerebral ischemia, which could not be demonstrated by sonography, was delineated well by MR imaging. New findings noted on fetal MR imaging were enlargement of cerebral venous sinuses in both twins, dilatation of the renal collecting system in the recipient, lung lesions in the recipient and cerebral malformations in the donor. MR imaging is an important adjunct in TTTS imaging. Its benefit over sonography is its clear definition of cerebral pathology, which is important for intervention and counseling. The new findings, particularly in the urinary tract and cerebral venous sinuses, also help support the diagnosis of TTTS and might reveal additional consequences of the altered hemodynamics that occur in TTTS. (orig.)

  18. Twin-twin transfusion syndrome: cerebral ischemia is not the only fetal MR imaging finding

    International Nuclear Information System (INIS)

    Kline-Fath, Beth M.; Calvo-Garcia, Maria A.; O'Hara, Sara M.; Racadio, Judy M.; Crombleholme, Timothy M.

    2007-01-01

    Twin-twin transfusion syndrome (TTTS) is a complication of monochorionic/diamniotic twin pregnancies. An imbalance of blood flow occurs through placental anastomoses, causing potentially significant morbidity and mortality in both twins. Although the sonographic findings of TTTS are well documented, we believe that MR imaging is a valuable adjunct. We describe the fetal MR imaging findings associated with TTTS. From 2003 to 2005, 37 consecutive MR imaging studies were performed on multiple-gestation pregnancies. Of the 37, 25 were consistent with TTTS, correlated and confirmed by sonographic criteria. MR fetal abnormalities were documented. Cerebral ischemia, which could not be demonstrated by sonography, was delineated well by MR imaging. New findings noted on fetal MR imaging were enlargement of cerebral venous sinuses in both twins, dilatation of the renal collecting system in the recipient, lung lesions in the recipient and cerebral malformations in the donor. MR imaging is an important adjunct in TTTS imaging. Its benefit over sonography is its clear definition of cerebral pathology, which is important for intervention and counseling. The new findings, particularly in the urinary tract and cerebral venous sinuses, also help support the diagnosis of TTTS and might reveal additional consequences of the altered hemodynamics that occur in TTTS. (orig.)

  19. Non-random X chromosome inactivation in an affected twin in a monozygotic twin pair discordant for Wiedemann-Beckwith syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Oestavik, R.E.; Eiklid, K.; Oerstavik, K.H. [Ulleval Univ. Hospital, Oslo (Norway)] [and others

    1995-03-27

    Wiedemann-Beckwith syndrome (WBS) is a syndrome including exomphalos, macroglossia, and generalized overgrowth. The locus has been assigned to 11p15, and genomic imprinting may play a part in the expression of one or more genes involved. Most cases are sporadic. An excess of female monozygotic twins discordant for WBS have been reported, and it has been proposed that this excess could be related to the process of X chromosome inactivation. We have therefore studied X chromosome inactivation in 13-year-old monozygotic twin girls who were discordant for WBS. In addition, both twins had Tourette syndrome. The twins were monochorionic and therefore the result of a late twinning process. This has also been the case in previously reported discordant twin pairs with information on placentation. X chromosome inactivation was determined in DNA from peripheral blood cells by PCR analysis at the androgen receptor locus. The affected twin had a completely skewed X inactivation, where the paternal allele was on the active X chromosome in all cells. The unaffected twin had a moderately skewed X inactivation in the same direction, whereas the mother had a random pattern. Further studies are necessary to establish a possible association between the expression of WBS and X chromosome inactivation. 18 refs., 2 figs., 1 tab.

  20. Fuel spill identification by gas chromatography -- genetic algorithms/pattern recognition techniques

    International Nuclear Information System (INIS)

    Lavine, B.K.; Moores, A.J.; Faruque, A.

    1998-01-01

    Gas chromatography and pattern recognition methods were used to develop a potential method for typing jet fuels so a spill sample in the environment can be traced to its source. The test data consisted of 256 gas chromatograms of neat jet fuels. 31 fuels that have undergone weathering in a subsurface environment were correctly identified by type using discriminants developed from the gas chromatograms of the neat jet fuels. Coalescing poorly resolved peaks, which occurred during preprocessing, diminished the resolution and hence information content of the GC profiles. Nevertheless a genetic algorithm was able to extract enough information from these profiles to correctly classify the chromatograms of weathered fuels. This suggests that cheaper and simpler GC instruments ca be used to type jet fuels