WorldWideScience

Sample records for twenty-one air-dried glazes

  1. Ceramic glaze analysis by simultaneous in-beam PGAA and XRFS

    International Nuclear Information System (INIS)

    Anderson, D.L.

    1995-01-01

    Twenty-one ready-to-use hobby glazes, of which 18 were labeled 'safe for food containers' (SFFC), were analyzed for Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Gd, Hf, K, Mn, Na, Pb, Si, Sm, Sr, Ti, Zn, and Zr by neutron capture prompt γ-ray activation analysis (PGAA). Simultaneously, Pb was also determined by X-ray fluorescence spectrometry (XRFS) using Pb K X-rays induced by the γ-ray component of the neutron beam. The XRFS limits of detection were 200-400 μg Pb x g -1 (dry weight), a factor of ∼100 better than those for PGAA. Pb concentrations (by dry weight: with weight losses ranging from 28 to 49% after air-drying) found were 0.16-27.2% in the SFFC glazes and 0.86-32% in the other glazes. The SFFC glazes contained from -1 , and Co, Cr and Cu (elements which may enhance Pb leaching from fired glazes) were found in concentrations up to 1.2, 2.7, and 5.6%, respectively. Method accuracy was demonstrated with the analysis of soil, fly ash, and glass standard reference materials. (author) 13 refs.; 2 figs.; 3 tabs

  2. Nondestructive determination of lead, cadmium, tin, antimony, and barium in ceramic glazes by radioisotope X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Anderson, D.L.; Cunningham, W.C.

    1996-01-01

    Quantitation capabilities of radioisotope X-ray fluorescence spectrometry (RXRFS) for determining lead, cadmium, tin, antimony, and barium in ceramic glazes were investigated. Twenty-one air-dried glazes and 85 fired glazes on test tiles were analyzed by using 109 Cd and 57 Co excitation sources. Accurate Pb determinations, with limits of detection (LODs) of about 0.3 mg/cm 2 for 5 min counting times, were achieved by using the 75 keV Κ α1 X-ray photopeak and a Pb foil calibration procedure. Cd, Sn, Sb, and Ba concentrations were determined with LODs from about 0.5 to 1.5 mg/cm 2 . For Pb and Ba, results obtained by using absorption corrections based only on element concentrations determined by RXRFS and an iterative approach led to analytical biases of ≤4% relative to results obtained by using corrections based on known total element compositions. Biases were more severe for Cd, Sn, and Sb because lower X-ray energies were involved and sensitivities varied as a function of matrix Pb content. Pb concentrations were above LODs (1.3-40 mg/cm 2 ) in 39 of 47 fired open-quotes food-safeclose quotes glazes and in 33 of the other 38 fired glazes (0.4-39 mg/cm 2 ). 15 refs., 9 figs., 9 tabs

  3. Mill Glaze: Myth or Reality?

    Science.gov (United States)

    Mark Knaebe

    2013-01-01

    Since the mid-1980s, a condition called “mill glaze” (also called planer’s glaze) has sometimes been blamed for the failure of a coating on smooth flat-grained siding and some other wood products. The exact cause of this problem has been a subject of controversy. Many people believe that the coating fails as a result of the planing and/or drying processes. They...

  4. Ancient Wall Tiles – The Importance of the Glaze/Ceramic Interface in Glaze Detachment

    Directory of Open Access Journals (Sweden)

    Marisa COSTA

    2014-04-01

    Full Text Available One of the most severe pathologies suffered by early industrially produced tiles in Portugal in late nineteenth century is glaze detachment in wall tiles placed in the lower part of the façade. It is known that salts crystallize provoking the glaze detachment, destroying the waterproofing and the beauty of the wall tile and this is one of the crucial factors towards this occurrence. The present work questions the importance of the thickness of glaze/ceramic body interface, in what concerns glaze detachment provoked by salt crystallization. SEM-EDS was used to perform all the observations that lead to the conclusion that the exuberance of the interface between glaze and ceramic body has no influence in the resistance of the glaze to salt crystallization though time, being the porous network more determinant. DOI: http://dx.doi.org/10.5755/j01.ms.20.1.3815

  5. Key design features of multi-vacuum glazing for windows: A review

    Directory of Open Access Journals (Sweden)

    Ali Hassan

    2017-01-01

    Full Text Available The use of vacuum glazed windows is increasing due to their application in mod-ern building design. Among various types of vacuum glazed windows reported in literature, thermal transmittance of single glass sheet (conventional window i. e 6 W/m2k is reduced by 66 and 77% using air filled double glazed and air filled triple glazed windows, respectively. Using low emittance coatings thermal transmittance of double glazed windows is reduced by 53%, however it offsets the visibility by reduc-ing light transmittance by 5%. Stresses due to temperature/pressure gradients if not eliminated may lead to reduction in service life of vacuum glazed windows. Vacuum created between the glass sheets is used to reduce conductive heat transfer. Degrada-tion in the vacuum is caused by number of factors such as, permeation of gaseous molecules through glass sheets, leakage through sealing, thermal/optical desorption, and photo-fragmentation of organic species have been critically reviewed and future trends are outlined.

  6. Effect of moisture and drying time on the bond strength of the one-step self-etching adhesive system

    Directory of Open Access Journals (Sweden)

    Yoon Lee

    2012-08-01

    Full Text Available Objectives To investigate the effect of dentin moisture degree and air-drying time on dentin-bond strength of two different one-step self-etching adhesive systems. Materials and Methods Twenty-four human third molars were used for microtensile bond strength testing of G-Bond and Clearfil S3 Bond. The dentin surface was either blot-dried or air-dried before applying these adhesive agents. After application of the adhesive agent, three different air drying times were evaluated: 1, 5, and 10 sec. Composite resin was build up to 4 mm thickness and light cured for 40 sec with 2 separate layers. Then the tooth was sectioned and trimmed to measure the microtensile bond strength using a universal testing machine. The measured bond strengths were analyzed with three-way ANOVA and regression analysis was done (p = 0.05. Results All three factors, materials, dentin wetness and air drying time, showed significant effect on the microtensile bond strength. Clearfil S3 Bond, dry dentin surface and 10 sec air drying time showed higher bond strength. Conclusions Within the limitation of this experiment, air drying time after the application of the one-step self-etching adhesive agent was the most significant factor affecting the bond strength, followed by the material difference and dentin moisture before applying the adhesive agent.

  7. Comfort Study of Office Buildings with Large Glazed Areas

    Directory of Open Access Journals (Sweden)

    Violeta Motuzienė

    2017-09-01

    Full Text Available In the buildings with large glazed areas the biggest problem is the space overheating during the warm season. This causes increased energy demand for cooling. The survey was carried out during the warm and cold seasons in two office buildings with large glazed areas. The methodology was prepared for evaluating indoor climate parameters using objective and subjective evaluation. The measurements have shown that there are problems with lighting in workplaces of both buildings during both the warm and cold seasons. The biggest problem is too dry air during the cold period, an acceptable temperature is also not always in the building No. 2. The survey has shown that some employees are dissatisfied with the indoor climate in the workplace, the bigger dissatisfaction is in building No. 2. Assessing according to the O. Fanger methodology was obtained that the number of PPD is in the normal range during the cold period, whereas close to the limit when the building can not be operated in the warm period.

  8. Determination of critical breakage conditions for double glazing in fire

    International Nuclear Information System (INIS)

    Wang, Yu; Li, Ke; Su, Yanfei; Lu, Wei; Wang, Qingsong; Sun, Jinhua; He, Linghui; Liew, K.M.

    2017-01-01

    Highlights: • Critical heat fluxes of exposed and ambient panes are 6 kW/m"2 and 25 kW/m"2. • Critical temperature difference of fire side pane is around 60 °C. • The ambient pane survives three times longer due to radiation filter and air gap. • Heat transfer in double glazing is revealed by a heat flux based theoretical model. - Abstract: Double glazing unit normally demonstrates better fire resistance than single glazing, but the knowledge on its thermal behavior and heat transfer mechanism during fire is limited. In this work, nine double glazing units were heated by a 500 × 500 mm"2 pool fire. The incident heat flux, temperature on four surfaces, breakage time and cracking behavior were obtained. The critical breakage conditions for interior and exterior panes were determined through gradually decreasing the glass-burner distance from 750 mm to 450 mm. It is established that in double glazing the pane at ambient side can withstand significantly more time than the pane exposed to fire. The critical temperature difference for interior pane is 60 °C; the critical temperature of exterior pane breakage is much higher due to no frame-covered area. In addition, the heat flux at the time of crack initiation is 6 kW/m"2 for the pane at fire side, while more than 25 kW/m"2 for ambient side pane. To reveal the heat transfer mechanism in glazing-air-glazing, theoretical and numerical investigations are also performed, which agrees well with the experimental results.

  9. Evacuated aerogel glazings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev

    2008-01-01

    This paper describes the main characteristics of monolithic silica aerogel and its application in evacuated superinsulating aerogel glazing including the evacuation and assembling process. Furthermore, the energetic benefit of aerogel glazing is quantified. In evacuated aerogel glazing the space ......) combined with a solar energy transmittance above 0.75.......This paper describes the main characteristics of monolithic silica aerogel and its application in evacuated superinsulating aerogel glazing including the evacuation and assembling process. Furthermore, the energetic benefit of aerogel glazing is quantified. In evacuated aerogel glazing the space...... between the glass panes is filled with monolithic silica aerogel evacuated to a rough vacuum of approximately 1-10 hPa. The aerogel glazing does not depend on use of low emissive coatings that have the drawback of absorbing a relatively large part of the solar radiation that otherwise could reduce...

  10. Analytical investigations of glazed Islamic pottery

    International Nuclear Information System (INIS)

    Pernicka, E.; Krejsa, P.

    1977-11-01

    The composition of the glazes of 14 fragments of medieval ceramics from Sistan in the south-west of Afghanistan has been determined quantitatively by means of electron probe microanalysis. The results were compared with materials and recipes, which are described in a Persian treatise on the manufacutre of glazed ceramic objects dated 1300 A.D. The mineral ''muzzarad'' which was used for the black underglaze painting, could be identified as chromite. The light blue colouring of the glaze was accomplished by admixtue of Cu, while Co was used for the dark blue painting. Most probably the Co pigment originated from Kashan in Persia. Only two glazes Pb was found, one of which contained also Sn. Based on the results of the quantitative analyses, a frit composition was calculated, which agrees with the medieval description of one identifies another so far unknown material mentioned in the treatise (qamsari) as dolomitic sandstone. (author)

  11. Climate and energy use in glazed spaces

    Energy Technology Data Exchange (ETDEWEB)

    Wall, M.

    1996-11-01

    One objective of the thesis has been to elucidate the relationship between building design and the climate, thermal comfort and energy requirements in different types of glazed spaces. Another object has been to study the effect of the glazed spaces on energy requirements in adjacent buildings. It has also been the object to develop a simple calculation method for the assessment of temperatures and energy requirements in glazed spaces. The research work has mainly comprised case studies of existing buildings with glazed spaces and energy balance calculations using both the developed steady-state method and a dynamic building energy simulation program. Parameters such as the geometry of the building, type of glazing, orientation, thermal inertia, airtightness, ventilation system and sunshades have been studied. These parameters are of different importance for each specific type of glazed space. In addition, the significance of each of these parameters varies for different types of glazed spaces. The developed calculation method estimates the minimum and mean temperature in glazed spaces and the energy requirements for heating and cooling. The effect of the glazed space on the energy requirement of the surrounding buildings can also be estimated. It is intended that the method should be applied during the preliminary design stage so that the effect which the design of the building will have on climate and energy requirement may be determined. The method may provide an insight into how glazed spaces behave with regard to climate and energy. 99 refs

  12. Measuring Air Temperature in Glazed Ventilated Facades in the Presence of Direct Solar Radiation

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Zanghirella, Fabio; Heiselberg, Per

    2007-01-01

    A distinctive element of buildings with a double glazed façade is naturally or mechanically driven flow in a ventilated cavity. Accurate air temperature measurements in the cavity are crucial to evaluate the dynamic performance of the façade, to predict and control its behavior as a significant...... part of the complete ventilation system. Assessment of necessary cooling/heating loads and of the whole building energy performance will then depend on the accuracy of measured air temperature. The presence of direct solar radiation is an essential element for the façade operation, but it can heavily...... affect measurements of air temperature and may lead to errors of high magnitude using bare thermocouples and even adopting shielding devices. Two different research groups, from Aalborg University and Politecnico di Torino, tested separately various techniques to shield thermocouples from direct...

  13. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  14. The glass-like glazed coating made of cathode-ray tube faceplates cullet

    Directory of Open Access Journals (Sweden)

    N.І. Zavgorodnya

    2016-05-01

    Full Text Available The tendency of the current time is to find ways of expedient municipal solid waste recycling as a secondary raw material with similar physicochemical and mechanical characteristics for the purpose of efficient use of resources and reduction of harmful impact on the environment. Due to the termination the production of monitors and television sets with cathode-ray tubes, a significant part of them is grow out of use in the form of dimensional waste. Kinescopes of these electric devices contain valuable components including the screen and conical glass and cathode-luminophors. Existing trends in the world of CRT faceplates cullet recycling argue for reasonability of recycling ways of this valuable secondary raw materials. Aim: The aim of researches is to determine the impact of the full replacement of quartz sand by faceplates cullet and using the zinc sulfide, reconstituted of used cathode-luminophors, as a secondary raw material in the production of glass-like glaze on the basic properties of color glaze. Materials and Methods: Cathode-ray tube faceplates are cut off during removal process, washed from dirt, dried, crushed by press, milled in a cheek grinder and finally crushed in a barrel mill. The slurried impurity (clay, dyes of desired color, including ZnS, water are added to this powder. The received mix is processed of wet grinding for slip production. Slip is surfaced on glass-ceramic tile, dried up, burned at maximum temperature of 900ºС. Results: Experimental research has shown that glass-forming, modifying and intermediate oxides of inorganic substances are added to the glaze with the CRT faceplates cullet. The Chasiv Yar clay belongs to the group with significant gas emission. The water vapor arising during the clay dehydration plays role of the "carrier" of heavy non-volatile components, considerably accelerates gas processes and increases activity of gas components. Zinc sulphide, dissolved in the silicate glaze melts when heated

  15. Low cost solar air heater

    International Nuclear Information System (INIS)

    Gill, R.S.; Singh, Sukhmeet; Singh, Parm Pal

    2012-01-01

    Highlights: ► Single glazed low cost solar air heater is more efficient during summer while double glazed is better in winter. ► For the same initial investment, low cost solar air heaters collect more energy than packed bed solar air heater. ► During off season low cost solar air heater can be stored inside as it is light in weight. - Abstract: Two low cost solar air heaters viz. single glazed and double glazed were designed, fabricated and tested. Thermocole, ultraviolet stabilised plastic sheet, etc. were used for fabrication to reduce the fabrication cost. These were tested simultaneously at no load and with load both in summer and winter seasons along with packed bed solar air heater using iron chips for absorption of radiation. The initial costs of single glazed and double glazed are 22.8% and 26.8% of the initial cost of packed bed solar air heater of the same aperture area. It was found that on a given day at no load, the maximum stagnation temperatures of single glazed and double glazed solar air heater were 43.5 °C and 62.5 °C respectively. The efficiencies of single glazed, double glazed and packed bed solar air heaters corresponding to flow rate of 0.02 m 3 /s-m 2 were 30.29%, 45.05% and 71.68% respectively in winter season. The collector efficiency factor, heat removal factor based on air outlet temperature and air inlet temperature for three solar air heaters were also determined.

  16. Potential application of glazed transpired collectors to space heating in cold climates

    International Nuclear Information System (INIS)

    Gao, Lixin; Bai, Hua; Mao, Shufeng

    2014-01-01

    Highlights: • A mathematical model for glazed transpired collectors (GTC) is developed. • Glazing results in optical loss, but it decreases convective heat loss effectively. • Thermal performance of GTC shows considerable improvement on flat-plate collectors. • GTC using recirculated air is applicable to space heating in cold climates. - Abstract: Although unglazed transpired collectors (UTC) succeed in industrial ventilation applications, solar fraction is very low when they are used in space heating in cold climates due to the lower exit air temperature. Considering the potential for glazed transpired collectors (GTC) using recirculated air for space heating applications in cold climates, a mathematical model is developed for predicting the thermal performance of GTC. Simulation results show that although glazing results in optical loss, it could decrease convective heat loss resulted from high crosswind velocities effectively. For a solar radiation of 400 W/m 2 , an ambient temperature of −10 °C, and a suction velocity of 0.01 m/s, the exit air temperature of GTC is higher than that of UTC for crosswind velocities exceeding 3.0 m/s. By comparison with a conventional flat-plate solar air collector operating under the same conditions, the thermal performance of GTC shows a significant improvement. For a five-storey hotel building located in the severe cold climate zone of China, case study shows that the annual solar fraction of the GTC-based solar air heating system is about 20%, which is two times higher than that of the flat-plate collector-based system and nearly nine times higher than that of the UTC-based system respectively. Hence, an enormous amount of energy will be saved with the application of GTC to space heating in cold climates

  17. Experimental Study of the Slit Spacing and Bed Height on the Thermal Performance of Slit-Glazed Solar Air Heater

    Directory of Open Access Journals (Sweden)

    Seyyed Mahdi Taheri Mousavi

    2017-01-01

    Full Text Available The thermal performances of three slit-glazed solar air heaters (SGSAHs were investigated experimentally. Three SGSAHs with different bed heights (7 cm, 5 cm, and 3 cm were fabricated with multiple glass panes used for glazing. The length, width, and thickness of each pane were 154 cm, 6 cm, and 0.4 cm, respectively. Ambient air was continuously withdrawn through the gaps between the glass panes by fans. The experiments were conducted for four different gap distances between the glass panes (0.5 mm, 1 mm, 2 mm, and 3 mm and the air mass flow rate was varied between 0.014 kg/s and 0.057 kg/s. The effects of air mass flux on the outlet temperature and thermal efficiency were studied. For the SGSAH with bed height of 7 cm and glass pane gap distance of 0.5 mm, the highest efficiency was obtained as 82% at a mass flow rate of 0.057 kg/s and the air temperature difference between the inlet and the outlet (∆T was maximum (27°C when the mass flow rate was least. The results demonstrate that for lower mass flow rates and larger gaps, the performance of SGSAH with a bed height of 3 cm was better compared to that of others. However, for higher mass flow rates, the SGSAH with 7 cm bed height performed better.

  18. Solar distillation between a simple and double-glazing

    Directory of Open Access Journals (Sweden)

    Abderrahmane KHECHEKHOUCHE

    2017-12-01

    Full Text Available The south-east region of Algeria suffers from a great socio-economic problem that affects a large population. Faced with the unavailability of drinking water, solar distillation; which appears to be a suitable and inexpensive solution; was adopted by local researchers. Improving the productivity of a solar greenhouse distiller is the subject of several researches in the world. As it is well known, distiller with simple glazing is wildly studied but unfortunately has feeble efficiency. Double glazing is a method that increases the efficiency of a flat solar collector. The idea is to use the same technique on a single-slope solar distiller (50 x 50 cm. Two glass plates separated by 1 cm between them air is trapped. Experience shows that this technique has a negative effect on the productivity of the distiller with a rate of 88.63%; it means 9 times. So double glazing is not recommended in the single slope solar distiller.

  19. Effect of hot-air drying on the physicochemical properties of kaffir lime leaves (Citrus hystrix)

    OpenAIRE

    Juhari, Nurul Hanisah Binti; Lasekan, Ola; Muhammad, Kharidah; Karim, Shahrim

    2013-01-01

    The effect of hot-air drying namely drying time (3-15 h), drying temperature (40-80°C) and loading capacity (0.5-2.0 kg/m2 ) on the physicochemical characteristics of kaffir lime leaves was optimized using Response Surface Methodology. Twenty treatments were assigned based on the second- order CCD including 6 center points, 6 axial points and 8 factorial points. The quality of dried kaffir lime leaves was evaluated by determining moisture content, water activity, texture (brittleness) and Hun...

  20. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  1. Carrageenan drying with dehumidified air: drying characteristics and product quality

    NARCIS (Netherlands)

    Djaeni, M.; Sasongko, S.B.; Prasetyaningrum, Aji A A.A.; Jin, X.; Boxtel, van A.J.B.

    2012-01-01

    Applying dehumidified air is considered as an option to retain quality in carrageenan drying. This work concerns the effects of operational temperature, air velocity, and carrageenan thickness on the progress of drying and product quality when using dehumidified air. Final product quality and

  2. LARGE SCALE GLAZED

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    OF SELECTED EXISTING BUILDINGS IN AND AROUND COPENHAGEN COVERED WITH MOSAIC TILES, UNGLAZED OR GLAZED CLAY TILES. ITS BUILDINGS WHICH HAVE QUALITIES THAT I WOULD LIKE APPLIED, PERHAPS TRANSFORMED OR MOST PREFERABLY, INTERPRETED ANEW, FOR THE LARGE GLAZED CONCRETE PANELS I AM DEVELOPING. KEYWORDS: COLOR, LIGHT...

  3. Air dehumidification and drying processes

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, R.

    1988-07-01

    Details are given on the physical principles of air dehumidification and drying as well as on appropriate systems available on the market. Reference is made to dehumidification through condensation (intermittent compressor or electric auxiliary heater defrosting, reversible-circuit hot gas bypass defrosting), air drying through sorption (sorbents, regeneration through heat inputs), the operation of absorptive dryers (schematic sketches), and the change of state of air (Mollier h,x-diagramm). Practical examples refer to the dehumidification of storage rooms, archives, and waterworks as well as to air drying in the pharmaceutical industry, the pastry and candy industry, the food industry, and the drying (preservation) of turbines and generators during long standstill periods. A diagramm shows that while adsorption processes are efficient at temperatures below 80/sup 0/C, low-temperature dehumidification is efficient at temperatures above. (HWJ).

  4. Effects of hot-air and hybrid hot air-microwave drying on drying kinetics and textural quality of nectarine slices

    Science.gov (United States)

    Miraei Ashtiani, Seyed-Hassan; Sturm, Barbara; Nasirahmadi, Abozar

    2018-04-01

    Drying and physicochemical characteristics of nectarine slices were investigated using hot-air and hybrid hot air-microwave drying methods under fixed air temperature and air speed (50 °C and 0.5 m/s, respectively). Microwave power levels for the combined hot air-microwave method were 80, 160, 240, and 320 W. Drying kinetics were analyzed and compared using six mathematical models. For both drying methods the model with the best fitness in explaining the drying behavior was the Midilli-Kucuk model. The coefficient of determination ( R 2), root mean square error (RMSE) and reduced chi square ( χ 2) for this model have been obtained greater than 0.999 and less than 0.006 and 0.0001 for hybrid hot air-microwave drying while those values for hot-air drying were more than 0.999 and less than 0.003 and 0.0001, respectively. Results showed that the hybrid method reduced the drying time considerably and produced products with higher quality. The range of effective moisture diffusivity ( D eff ) of hybrid and hot-air drying was between 8.15 × 10-8 and 2.83 × 10-7 m2/s and 1.27 × 10-8 m2/s, respectively. The total color difference (ΔE) has also been obtained from 36.68 to 44.27 for hybrid method; however this value for hot-air drying was found 49.64. Although reduced microwave power output led to a lower drying rate, it reduced changes in product parameters i.e. total color change, surface roughness, shrinkage and microstructural change and increased hardness and water uptake.

  5. Glazed Concrete

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Why glazed concrete? Concrete hardens and finds its strength at room temperature whereas clay products must first be fired before they achieve this strength. They are stronger and three times as durable as clay products, which is a weighty reason for choosing concrete.5 Another reason, which....... If this succeeds, it will be possible to manufacture thin, large-scale glazed concrete panels comparable in size to concrete sandwich construction and larger which, with or without back-casting, can work as load-bearing construction elements....

  6. Photoactive glazed polymer-cement composite

    Science.gov (United States)

    Baltes, Liana; Patachia, Silvia; Tierean, Mircea; Ekincioglu, Ozgur; Ozkul, Hulusi M.

    2018-04-01

    Macro defect free cements (MDF), a kind of polymer-cement composites, are characterized by remarkably high mechanical properties. Their flexural strengths are 20-30 times higher than those of conventional cement pastes, nearly equal to that of an ordinary steel. The main drawback of MDF cements is their sensitivity to water. This paper presents a method to both diminish the negative impact of water on MDF cements mechanical properties and to enlarge their application by conferring photoactivity. These tasks were solved by glazing MDF cement with an ecological glaze containing nano-particles of TiO2. Efficiency of photocatalytic activity of this material was tested against methylene blue aqueous solution (4.4 mg/L). Influence of the photocatalyst concentration in the glaze paste and of the contact time on the photocatalysis process (efficiency and kinetic) was studied. The best obtained photocatalysis yield was of 97.35%, after 8 h of exposure to 254 nm UV radiation when used an MDF glazed with 10% TiO2 in the enamel paste. Surface of glazed material was characterized by optic microscopy, scratch test, SEM, XRD, and EDS. All these properties were correlated with the aesthetic aspect of the glazed surface aiming to propose using of this material for sustainable construction development.

  7. Solar chimney integrated with passive evaporative cooler applied on glazing surfaces

    International Nuclear Information System (INIS)

    Al Touma, Albert; Ghali, Kamel; Ghaddar, Nesreen; Ismail, Nagham

    2016-01-01

    This study investigates the performance of a hybrid system applied on glazing surfaces for reducing the space cooling load and radiation asymmetry. The proposed system combines the principles of passive evaporative cooling with the natural buoyant flow in solar chimneys to entrain outdoor air and attenuate the window surface temperature. A predictive heat and mass transport model combining the evaporative cooler, glazing section, solar chimney and an office space is developed to study the system performance in harshly hot climates. The developed model was validated through experiments conducted in a twin climatic chamber for given ambient temperature, humidity, and solar radiation conditions. Good agreement was found between the measured and the predicted window temperatures and space loads at maximum discrepancy lower than 4.3%. The proposed system is applied to a typical office space to analyze its effectiveness in reducing the window temperature, the space load and radiation asymmetry, while maintaining the indoor comfort conditions. Results have shown that the system is reduced the space load by −19.8% and attenuated the radiation asymmetry significantly for office spaces having window-to-wall ratio of 40% in climate of Riyadh, KSA. The system performance diminished when applied in locations suffering from humid weather climates. - Highlights: • A passive evaporative-cooled solar chimney system is introduced to decrease window temperature. • A mathematical model is developed of the system to predict induce air flow and window surface temperature. • The model is validated with experiments in twin room climatic chamber and using artificial solar lamps. • The system reduces window maximum temperature by 5 °C in the hot dry climate of Riyadh, KSA. • It reduced the space load by 19.4% for office spaces at window-to-wall ratio of 40% in Riyadh, KSA.

  8. Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics

    Science.gov (United States)

    İlter, Işıl; Akyıl, Saniye; Devseren, Esra; Okut, Dilara; Koç, Mehmet; Kaymak Ertekin, Figen

    2018-02-01

    In this study, the effect of hot air and microwave drying on drying kinetics and some quality characteristics such as water activity, color, optic index and volatile oil of garlic puree was investigated. Optic index representing browning of the garlic puree increased excessively with an increase in microwave power and hot air drying temperature. However, volatile oil content of the dried samples was decreased by increasing of temperature and microwave power. By increasing drying temperature (50, 60 and 70 °C) and microwave power (180, 360 and 540 W), the drying time decreased from 8.5 h to 4 min. In order to determine the kinetic parameters, the experimental drying data were fitted to various semi-empirical models beside 2nd Fick's diffusion equation. Among them, the Page model gave a better fit for microwave-drying, while Logarithmic model gave a better fit for hot air drying. By increasing the microwave power and hot air drying temperature, the effective moisture diffusivity, De values ranged from 0.76×10-8 to 2.85×10-8 m2/s and from 2.21×10-10 to 3.07×10-10 m2/s, respectively. The activation energy was calculated as 20.90 kJ/mol for hot air drying and 21.96 W/g for microwave drying using an Arrhenius type equation.

  9. Development of ceramic glaze with photocatalytic activity

    International Nuclear Information System (INIS)

    Tezza, V.B.; Uggioni, E.; Carrera, A.A. Duran; Bernardin, A.M.

    2011-01-01

    Glazes were developed by adding anatase in commercial ceramic plates as an agent of photocatalysis. The glazes were coated on ceramic tiles, which were fired between 800 and 1000°C. The formulations were characterized (SEM, XRD), and the wettability was determined by measuring the water contact angle. The microstructural analysis (SEM) showed that the anatase particles can disperse properly in the glaze matrix. The X-ray diffraction shows that from 1000°C, the glaze becomes very reactive, and particles of anatase are transformed into titanite or rutile, depending on the glaze used. The determination of the contact angle shows the clear influence of the glaze type and sintering temperature on the wettability characteristics of the obtained layer. (author)

  10. Establishing the value of advanced glazings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E; Selkowitz, S.

    1999-01-01

    Numerous glazing technologies are under development worldwide to improve the performance of building facades. High-performance glazings can provide substantial energy and related environmental benefits, but often at greatly increased first cost when compared to conventional design solutions. To increase market viability, we discuss strategies to reduce the actual and owner-perceived costs associated with developing and producing advanced window systems, specifically switchable electrochromic glazings, and we also suggest marketing strategies designed to appeal to early adopter and mainstream purchasers. These strategies may be applicable to a broad range of advanced glazing materials.

  11. Solar Glazing Tips for School Construction

    Science.gov (United States)

    Smith, Jonathan

    2012-01-01

    Glazing can be optimized to enhance passive solar heating and daylight harvesting by exceeding the prescriptive limits of the energy code. This savings can be garnered without the high cost of external overhangs or expensive glazing products. The majority of savings from solar glazing are attributable to the increase in solar heating and…

  12. Numerical characterisation of one-step and three-step solar air heating collectors used for cocoa bean solar drying.

    Science.gov (United States)

    Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel; La Madrid, Raúl

    2017-12-01

    In the northern coastal and jungle areas of Peru, cocoa beans are dried using artisan methods, such as direct exposure to sunlight. This traditional process is time intensive, leading to a reduction in productivity and, therefore, delays in delivery times. The present study was intended to numerically characterise the thermal behaviour of three configurations of solar air heating collectors in order to determine which demonstrated the best thermal performance under several controlled operating conditions. For this purpose, a computational fluid dynamics model was developed to describe the simultaneous convective and radiative heat transfer phenomena under several operation conditions. The constructed computational fluid dynamics model was firstly validated through comparison with the data measurements of a one-step solar air heating collector. We then simulated two further three-step solar air heating collectors in order to identify which demonstrated the best thermal performance in terms of outlet air temperature and thermal efficiency. The numerical results show that under the same solar irradiation area of exposition and operating conditions, the three-step solar air heating collector with the collector plate mounted between the second and third channels was 67% more thermally efficient compared to the one-step solar air heating collector. This is because the air exposition with the surface of the collector plate for the three-step solar air heating collector former device was twice than the one-step solar air heating collector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Retrofit electrochromic glazing in a UK office

    Directory of Open Access Journals (Sweden)

    Ruth Kelly Waskett

    2014-12-01

    Full Text Available Electrochromic (EC glazing is now considered a viable alternative to fixed transmittance glazing. It has the potential to enable occupants to control daylight glare and solar heat gain without the use of blinds or external shading devices, giving users more access to daylight with all its inherent benefits. Furthermore, EC glazing can reduce energy consumption by decreasing cooling loads and electric lighting usage. Most research to date has studied the effects of EC glazing in scale models, computer simulations and full scale test rooms, and some of these studies have included human participants. However, there is a general lack of understanding regarding the performance and suitability of EC glazing in real-world working environments. A case study of the first UK retrofit application of EC glazing is being conducted in two adjacent offices in a university campus building. The offices are occupied by administration staff and have large southeastfacing windows. The existing double glazed units were replaced with commercially-available EC glazed units in 2012. Over a period of more than 18 months, the rooms were monitored intensively to record the effect of the EC glazing on both the physical room environment and the occupants themselves. A large amount of data from the monitoring programme is currently undergoing detailed analysis. Initial findings emerging from the installation and post-installation period are described in this paper.

  14. Development of windows based on highly insulating aerogel glazings

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Kristiansen, Finn Harken

    2004-01-01

    of buildings, the window area is the weakest part with respect to the heat loss, but at the same time, it also provides e.g. solar energy gain. Glazing prototypes have been made of aerogel tiles of about 55 cm sq. (elaborated within the projects). Those tiles are quickly evacuated and easily sealed between two...... glass panes and a specific rim seal. A heat treatment phase (after the supercritical CO2 drying) of the aerogel is currently being developed in order to improve its optical quality. This step increases the solar transmittance about 6 percent points. For glazing prototypes with an aerogel thickness...... of approx. 15 mm, a centre heat loss coefficient of below 0.7 W/m² K and a solar transmittance of 76% have been obtained. The research is funded in part by the European Commission within the frameworks of the Non-Nuclear Energy Programme – JOULE III and the Energy, Environment and Sustainable Development...

  15. Design of Solar Heat Sheet for Air Heaters

    Science.gov (United States)

    Priya, S. Shanmuga; Premalatha, M.; Thirunavukkarasu, I.

    2011-12-01

    The technique of harnessing solar energy for drying offers significant potential to dry agricultural products such as food grains, fruits, vegetables and medicinal plants, thereby eliminating many of the problems experienced with open-sun drying and industrial drying, besides saving huge quantities of fossil fuels. A great deal of experimental work over the last few decades has already demonstrated that agricultural products can be satisfactorily dehydrated using solar energy. Various designs of small scale solar dryers have been developed in the recent past, mainly for drying agricultural products. Major problems experienced with solar dryers are their non-reliability as their operation largely depends on local weather conditions. While back-up heaters and hybrid dryers partly solved this issue, difficulties in controlling the drying air temperature and flow rate remains a problem, and affects the quality of the dried product. This study is aimed at eliminating the fluctuations in the quality of hot air supplied by simple solar air heaters used for drying fruits, vegetables and other applications. It is an attempt to analyse the applicability of the combination of an glazed transpired solar collector (tank), thermal storage and a intake fan(suction fan) to achieve a steady supply of air at a different atmospheric temperature and flow rate for drying fruits and vegetables. Development of an efficient, low-cost and reliable air heating system for drying applications is done.

  16. Study on the energy performance of glazing surfaces

    Directory of Open Access Journals (Sweden)

    Ligia MOGA

    2014-12-01

    Full Text Available A proper thermal design of the building envelope represents an important factor for the energy economics. Glazing surfaces represent one of the important elements in the hygrothermal design activity of a building envelope. The window’s thermal performance has also a strong influence on the thermal performance of the opaque area of the wall. This fact imposed the research of the real interaction, of cooperation and of mutual influences of the characteristics between the two components of the wall of the building envelope, respectively the opaque and the glazing area. Optimal constructive details for the opaque and glazing area of the wall need to be properly designed in order to achieve the required thermal and energy performances imposed for new types of buildings, e.g. passive houses, zero energy buildings.

  17. Oil and the Translucent. Varnishing and glazing in practice, recipes and historiography, 1100-1600

    NARCIS (Netherlands)

    Bol, M.A.H.

    2012-01-01

    This dissertation studies for the first time the history of varnishing and glazing in relation to the use of drying oils in the workshop of the medieval painter until the late sixteenth century. Results from technical research and historical reconstructions will be combined with an analysis of

  18. Indoor Climate of Large Glazed Spaces

    DEFF Research Database (Denmark)

    Hendriksen, Ole Juhl; Madsen, Christina E.; Heiselberg, Per

    In recent years large glazed spaces has found increased use both in connection with renovation of buildings and as part of new buildings. One of the objectives is to add an architectural element, which combines indoor- and outdoor climate. In order to obtain a satisfying indoor climate it is crui...... it is cruicial at the design stage to be able to predict the performance regarding thermal comfort and energy consumption. This paper focus on the practical implementation of Computational Fluid Dynamics (CFD) and the relation to other simulation tools regarding indoor climate.......In recent years large glazed spaces has found increased use both in connection with renovation of buildings and as part of new buildings. One of the objectives is to add an architectural element, which combines indoor- and outdoor climate. In order to obtain a satisfying indoor climate...

  19. The influence of the thermo-phono-insulating glazing structure configuration of some PVC profile windows on the airborne sound insulation – case study

    Directory of Open Access Journals (Sweden)

    Marta Cristina ZAHARIA

    2012-12-01

    Full Text Available After conducting laboratory acoustic measurements of airborne sound insulation for several windows with the same type of PVC profiles, equipped with different types of phono- and thermal - insulating glazings, the influence of the window’s glazed part (glass structure configuration on airborne sound insulation was analyzed. The configuration of the structure’s glazed part requires its composition of glass sheets with different thicknesses or intermediate layers of air with different thicknesses. This configuration has an important influence on the acoustic response of windows, namely on the index of air noise sound insulation, Rw, and on the behavior of the entire measurement frequency range.

  20. Drying and decontamination of pistachios with sequential infrared drying, tempering and hot air drying

    Science.gov (United States)

    The pistachio industry is in need of improved drying technology as the current hot air drying has low energy efficiency and drying rate and high labor cost and also does not produce safe products against microbial contamination. In the current study, dehulled and water- sorted pistachios with a mois...

  1. THE EFFECT OF OPACIFIERS ON SURFACE ROUGHNESS OFCERAMIC GLAZES

    Directory of Open Access Journals (Sweden)

    R. Sarjahani

    2016-03-01

    Full Text Available Surface smoothness of ceramic glazes is always an important characteristic of ceramic glazes as a point of surface engineering studies. Surface roughness affects chemical resistivity, glossiness and stainabiliy of glazes. In fact, less surface roughness improves cleanability of the surface by the least usage amount of detergents. In this investigation, surface topography of two common opaque glazes, zirconia and titania-based, has been investigated. Crystallinity of the surface has been studied from SEM images, and comparison of EDS elemental results with phase analysis results of XRD. Surface roughness profile measured by Marsurf M300, shows that titania-based glaze is almost 24% percentage more smooth than zirconia based glaze. Surface smoothness is in relation with crystallinity of glaze surface, crystal type and crystal distribution in amorphous matrix phase

  2. Effect of air-drying time of single-application self-etch adhesives on dentin bond strength.

    Science.gov (United States)

    Chiba, Yasushi; Yamaguchi, Kanako; Miyazaki, Masashi; Tsubota, Keishi; Takamizawa, Toshiki; Moore, B Keith

    2006-01-01

    This study examined the effect of air-drying time of adhesives on the dentin bond strength of several single-application self-etch adhesive systems. The adhesive/resin composite combinations used were: Adper Prompt L-Pop/Filtek Z250 (AP), Clearfil Tri-S Bond/Clearfil AP-X (CT), Fluoro Bond Shake One/Beautifil (FB), G-Bond/Gradia Direct (GB) and One-Up Bond F Plus/Palfique Estelite (OF). Bovine mandibular incisors were mounted in self-curing resin and wet ground with #600 SiC to expose labial dentin. Adhesives were applied according to each manufacturer's instructions followed by air-drying time for 0 (without air-drying), 5 and 10 seconds. After light irradiation of the adhesives, the resin composites were condensed into a mold (phi4x2 mm) and polymerized. Ten samples per test group were stored in 37 degrees C distilled water for 24 hours; they were then shear tested at a crosshead speed of 1.0 mm/minute. One-way ANOVA followed by Tukey's HSD tests (alpha = 0.05) were done. FE-SEM observations of the resin/dentin interface were also conducted. Dentin bond strength varied with the different air drying times and ranged from 5.8 +/- 2.4 to 13.9 +/- 2.8 MPa for AP, 4.9 +/- 1.5 to 17.1 +/- 2.3 MPa for CT, 7.9 +/- 2.8 to 13.8 +/- 2.4 MPa for FB, 3.7 +/- 1.4 to 13.4 +/- 1.2 MPa for GB and 4.6 +/- 2.1 to 13.7 +/- 2.6 MPa for OF. With longer air drying of adhesives, no significant changes in bond strengths were found for the systems used except for OF. Significantly lower bond strengths were obtained for the 10-second air-drying group for OF. From FE-SEM observations, gaps between the cured adhesive and resin composites were observed for the specimens without the air drying of adhesives except for OF. The data suggests that, with four of the single-application self-etch adhesive systems, air drying is essential to obtain adequate dentin bond strengths, but increased drying time does not significantly influence bond strength. For the other system studied, the bond strength

  3. Accelerating oak air drying by presurfacing

    Science.gov (United States)

    W. T. Simpson; R. C. Baltes

    1972-01-01

    A comparison was made between the air-drying rates of rough and presurfaced northern red oak and white oak. In both species, the presurfaced material was about 1/8 inch thinner than the rough material and dried faster than the rough material. The reduction in drying time depends on the method of analyzing the drying curves, but is slightly less than 10 percent.

  4. Partial Rarefaction as Way to Reduce Distortion Curve of double-glazed unit

    Science.gov (United States)

    Plotnikov, Alexander

    2017-10-01

    Use of Insulated Glass Units (IGU) as glazing on building façades causes optical distortions of mirrored images of neighboring buildings in glazed surfaces. Optical distortions are caused by varying distances between glass panes in IGUs as a result of climate factors. This paper examines available engineering solutions that reduce such distortions: use of more rigid outer glasses, encasing the building in a shell of single glass panes, known as the ‘double façade’, and use of vacuum IGUs. A new way is proposed to reduce optical distortions by installing additional pointed or linear supports and creating pre-stress with partial rarefaction inside the IGU. Overpressure that can cause IGU expansion and glass deformation was calculated. In the urban environment of Moscow, reduction of air pressure with simultaneous increase of air pressure inside the IGU during summer heat waves can be as high as 5%, and this figure determines the level of rarefaction.

  5. Mathematical modeling of optical glazing performance

    NARCIS (Netherlands)

    Nijnatten, van P.A.; Wittwer, V.; Granqvist, C.G.; Lampert, C.M.

    1994-01-01

    Mathematical modelling can be a powerful tool in the design and optimalization of glazing. By calculation, the specifications of a glazing design and the optimal design parameters can be predicted without building costly prototypes first. Furthermore, properties which are difficult to measure, like

  6. Advanced connection systems for architectural glazing

    CERN Document Server

    Afghani Khoraskani, Roham

    2015-01-01

    This book presents the findings of a detailed study to explore the behavior of architectural glazing systems during and after an earthquake and to develop design proposals that will mitigate or even eliminate the damage inflicted on these systems. The seismic behavior of common types of architectural glazing systems are investigated and causes of damage to each system, identified. Furthermore, depending on the geometrical and structural characteristics, the ultimate horizontal load capacity of glass curtain wall systems is defined based on the stability of the glass components. Detailed attention is devoted to the incorporation of advanced connection devices between the structure of the building and the building envelope system in order to minimize the damage to glazed components. An innovative new connection device is introduced that results in a delicate and functional system easily incorporated into different architectural glazing systems, including those demanding maximum transparency.

  7. Orthodontic bracket bonding to glazed full-contour zirconia

    Directory of Open Access Journals (Sweden)

    Ji-Young Kwak

    2016-05-01

    Full Text Available Objectives This study evaluated the effects of different surface conditioning methods on the bond strength of orthodontic brackets to glazed full-zirconia surfaces. Materials and Methods Glazed zirconia (except for the control, Zirkonzahn Prettau disc surfaces were pre-treated: PO (control, polishing; BR, bur roughening; PP, cleaning with a prophy cup and pumice; HF, hydrofluoric acid etching; AA, air abrasion with aluminum oxide; CJ, CoJet-Sand. The surfaces were examined using profilometry, scanning electron microscopy, and electron dispersive spectroscopy. A zirconia primer (Z-Prime Plus, Z or a silane primer (Monobond-S, S was then applied to the surfaces, yielding 7 groups (PO-Z, BR-Z, PP-S, HF-S, AA-S, AA-Z, and CJ-S. Metal bracket-bonded specimens were stored in water for 24 hr at 37℃, and thermocycled for 1,000 cycles. Their bond strengths were measured using the wire loop method (n = 10. Results Except for BR, the surface pre-treatments failed to expose the zirconia substructure. A significant difference in bond strengths was found between AA-Z (4.60 ± 1.08 MPa and all other groups (13.38 ± 2.57 - 15.78 ± 2.39 MPa, p < 0.05. For AA-Z, most of the adhesive remained on the bracket. Conclusions For bracket bonding to glazed zirconia, a simple application of silane to the cleaned surface is recommended. A zirconia primer should be used only when the zirconia substructure is definitely exposed.

  8. PIXE analysis of Moroccan architectural glazed ceramics of 14th-18th centuries

    International Nuclear Information System (INIS)

    Zucchiatti, A.; Azzou, A.; El Amraoui, M.; Haddad, M.; Bejjit, L.; Ait Lyazidi, S.

    2009-01-01

    The PIXE analysis of glazes and ceramic bodies of a set of architectural glazed ceramics (mostly the zellige mosaics), sampled from seven Moroccan monuments from the 14th to the 18th century AD, has been performed. We have identified high lead glazes, opacified with tin-oxide, laid over a calciferous body to produce hard tiles easy to chisel as required by the zellige technique. The analysis has revealed significant differences between the monuments examined: in particular in the formulation of the base glass and in the use of stains to produce coloured glazes. We observed the peculiarity of materials used in Marrakech and we could distinguish, both in terms of glazes and ceramic bodies, the two almost contemporary Madersas dedicated to the sultan Bou Inan, one in Meknes the other in Fez. The PIXE measurements integrate a broad range of spectrometric investigations performed in the past few years. (author)

  9. Description of saturation curves and boiling process of dry air

    Directory of Open Access Journals (Sweden)

    Vestfálová Magda

    2018-01-01

    Full Text Available Air is a mixture of gases forming the gas wrap of Earth. It is formed by dry air, moisture and other pollutants. Dry air is a substance whose thermodynamic properties in gaseous state, as well as the thermodynamic properties of its main constituents in gaseous state, are generally known and described in detail in the literature. The liquid air is a bluish liquid and is industrially used to produce oxygen, nitrogen, argon and helium by distillation. The transition between the gaseous and liquid state (the condensation process, resp. boiling process, is usually displayed in the basic thermodynamic diagrams using the saturation curves. The saturation curves of all pure substances are of a similar shape. However, since the dry air is a mixture, the shapes of its saturation curves are modified relative to the shapes corresponding to the pure substances. This paper deals with the description of the dry air saturation curves as a mixture, i.e. with a description of the process of phase change of dry air (boiling process. The dry air saturation curves are constructed in the basic thermodynamic charts based on the values obtained from the literature. On the basis of diagrams, data appearing in various publications are interpreted and put into context with boiling process of dry air.

  10. Surface Abrasion of Glazed Ceramic Tiles

    Directory of Open Access Journals (Sweden)

    Esposito, L.

    2000-02-01

    Full Text Available The characteristics of the proper surface of glazed ceramic tiles have a considerable influence on their mechanical response to the various stresses coming from the environment. In this regard, one of the most important parameters to define the correct use of these products is the wear behaviour of the proper surface. Since the glaze layer is the physical interface between the environment and ceramic body, its characteristics also determine the service life of the tile. The objective of the research reported here was to assess the influence of hardness, fracture toughness and porosity of the glaze layer on the wear behaviour of the proper surface of glazed ceramic tiles. The results obtained show a clear relationship between the characteristics of the glaze layer and the material removal in the form of normalised weight loss, which can be considered a useful tool to predict the wear behaviour of these products.

    Las características de la propia superficie de los azulejos cerámicos esmaltados tiene una influencia considerable en la respuesta mecánica de éstos a las distintas tensiones provenientes del entorno. De acuerdo con esto, uno de los parámetros más importantes que definen la correcta utilización de estos productos es el comportamiento ante el desgaste de la propia superficie. Debido a que la capa de esmalte es la conexión física entre el entorno y el cuerpo cerámico, sus características también determinan vida útil del azulejo. El objetivo de la investigación de la que damos cuenta aquí fue calcular la influencia de la dureza, resistencia a la fractura y porosidad de la capa de esmalte en el comportamiento ante el desgaste de la propia superficie de los azulejos cerámicos esmaltados. Los resultados obtenidos muestran una clara relación entre las características de la capa de esmalte y la eliminación del material en forma de pérdida de peso normalizada, que puede ser considerada como una herramienta útil para

  11. Thermal Simulation of a Zero Energy Glazed Pavilion in Sofia, Bulgaria. New Strategies for Energy Management by Means of Water Flow Glazing

    Science.gov (United States)

    del Ama Gonzalo, Fernando; Hernandez Ramos, Juan A.; Moreno, Belen

    2017-10-01

    The building sector is primarily responsible for a major part of total energy consumption. The European Energy Performance of Buildings Directives (EPBD) emphasized the need to reduce the energy consumption in buildings, and put forward the rationale for developing Near to Zero Energy Buildings (NZEB). Passive and active strategies help architects to minimize the use of active HVAC systems, taking advantage of the available natural resources such as solar radiation, thermal variability and daylight. The building envelope plays a decisive role in passive and active design strategies. The ideal transparent façade would be one with optical properties, such as Solar Heat Gain Coefficient (SHGC) and Visible Transmittance (VT), that could readily adapt in response to changing climatic conditions or occupant preferences. The aim of this article consists of describing the system to maintain a small glazed pavilion located in Sofia (Bulgaria) at the desired interior temperature over a whole year. The system comprises i) the use of Water Flow Glazing facades (WFG) and Radiant Interior Walls (RIW), ii) the use of free cooling devices along with traditional heat pump connected to photo-voltaic panels and iii) the use of a new Energy Management System that collects data and acts accordingly by controlling all components. The effect of these strategies and the use of active systems, like Water Flow Glazing, are analysed by means of simulating the prototype over one year. Summer and Winter energy management strategies are discussed in order to change the SHGC value of the Water Flow Glazing and thus, reduce the required energy to maintain comfort conditions.

  12. Dry and mixed air cooling systems

    International Nuclear Information System (INIS)

    Gutner, Gidali.

    1975-01-01

    The various dry air cooling systems now in use or being developed are classified. The main dimensioning parameters are specified and the main systems already built are given with their characteristics. The available data allow dry air cooling to be situated against the other cooling modes and so specify the aim of the research or currently developed works. Some systems at development stages are briefly described. The interest in mixed cooling (assisted draft) and the principal available systems is analyzed. A program of research is outlined [fr

  13. Determination of the most economical drying schedule and air velocity in softwood drying

    Energy Technology Data Exchange (ETDEWEB)

    Salin, J.G.

    2001-12-01

    Simulation models for conventional softwood drying have been available and have also been used by kiln operators for many years. For instance models for Scots pine and Norway spruce, dried at temperatures below about 80 deg C, are in use in Sweden, Finland and Norway. These models predict drying rates as a function of climate (schedule) and air velocity. The models thus give a direct basis for calculation of instantaneous energy demand for moisture evaporation and ventilation. There is further a direct relationship between the air velocity in the space between the board layers in the kiln stack and the electrical power demand by the circulation fans. Finally, the smaller energy consumption associated with heat losses through kiln walls and the accumulated heat in timber etc. can be estimated with sufficient accuracy. Instantaneous energy costs can thus be calculated for each part of a drying schedule. Capital costs associated with kiln investment and maintenance, personnel, insurance etc can be accounted for as an hourly cost, which is basically independent of whether timber is dried fast or slowly. A slow drying process thus accumulates more capital costs per m 3 timber. In this way it is possible to calculate the total instantaneous drying cost (Euro/m{sup 3}/h or Euro/m3/MC%) and the overall total cost (Euro or Euro/m{sup 3}). Some results obtained with a simulation model equipped with such a cost calculation are presented in the paper. A rapidly increasing drying cost is seen when the final MC is lowered. By minimising the instantaneous cost, an optimal drying schedule can be determined for a given fixed air velocity. Finally an optimal air velocity - constant or varying - can be found in the same way.

  14. Zirconia-based colors for ceramic glazes

    International Nuclear Information System (INIS)

    Eppler, R.A.

    1977-01-01

    The history of color development for use in ceramic glazes is outlined. The most significant modern development is based on zirconia and zircon. These materials have gained increasing acceptance in the industry since their introduction in the late 1950's and early 1960's, due to their superior stability during firing of the glaze

  15. Complex multimaterial insulating frames for windows with evacuated glazing

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yueping; Eames, Philip C.; Hyde, Trevor J. [Centre for Sustainable Technologies, School of the Built Environment, University of Ulster, Newtownabbey, N. Ireland BT37 0QB (United Kingdom); Norton, Brian [Dublin Institute of Technology, Aungier Street, Dublin 2 (Ireland)

    2005-09-01

    The thermal performance of a complex multimaterial frame consisting of an exoskeleton framework and cavities filled with insulant materials enclosing an evacuated glazing was simulated using a two-dimensional finite element model and the results were validated experimentally using a guarded hot box calorimeter. The analysed 0.5m by 0.5m evacuated glazing consisted of two low-emittance film coated glass panes supported by an array of 0.32mm diameter pillars spaced 25mm apart, contiguously sealed by a 10mm wide metal edge seal. Thermal performance of windows employing evacuated glazing set in various complex multimaterial frames were analysed in detail. Very good agreement was found between simulations and experimental measurements of surface temperatures of the evacuated glazing window system. The heat loss from a window with an evacuated glazing and a complex multimaterial frame is about 80% of that for a window comprised of an evacuated glazing set in a single material solid frame. (author)

  16. Complex multimaterial insulating frames for windows with evacuated glazing

    Energy Technology Data Exchange (ETDEWEB)

    Yueping Fang; Eames, P.C.; Hyde, T.J. [University of Ulster, Newtonabbey (United Kingdom). Centre for Sustainable Technologies; Norton, B. [Dublin Institute of Technology, Dublin (Ireland)

    2005-09-01

    The thermal performance of a complex multimaterial frame consisting of an exoskeleton framework and cavities filled with insulant materials enclosing an evacuated glazing was simulated using a two-dimensional finite element model and the results were validated experimentally using a guarded hot box calorimeter. The analysed 0.5 m by 0.5 m evacuated glazing consisted of two low-emittance film coated glass panes supported by an array of 0.32 mm diameter pillars spaced 25 mm apart, contiguously sealed by a 10 mm wide metal edge seal. Thermal performance of windows employing evacuated glazing set in various complex multimaterial frames were analysed in detail. Very good agreement was found between simulations and experimental measurements of surface temperatures of the evacuated glazing window system. The heat loss from a window with an evacuated glazing and a complex multimaterial frame is about 80% of that for a window comprised of an evacuated glazing set in a single material solid frame. (author)

  17. Monolithic Silica aerogel in superinsulating glazings

    DEFF Research Database (Denmark)

    Duer, Karsten; Svendsen, Sv Aa Højgaard

    1988-01-01

    . This phenomenon is considered being the main obstacle to incorporate the material in clear glazings but a significant improvement of the optical quality of aerogel has been observed during the last five years. A number of prototypical evacuated 500x500x28 mm aerogel double glazed units employing a new edge seal...... competetion in heating dominated climates....

  18. Dry coolers and air-condensing units (Review)

    Science.gov (United States)

    Milman, O. O.; Anan'ev, P. A.

    2016-03-01

    The analysis of factors affecting the growth of shortage of freshwater is performed. The state and dynamics of the global market of dry coolers used at electric power plants are investigated. Substantial increase in number and maximum capacity of air-cooled condensers, which have been put into operation in the world in recent years, are noted. The key reasons facilitating the choice of developers of the dry coolers, in particular the independence of the location of thermal power plant from water sources, are enumerated. The main steam turbine heat removal schemes using air cooling are considered, their comparison of thermal efficiency is assessed, and the change of three important parameters, such as surface area of heat transfer, condensate pump flow, and pressure losses in the steam exhaust system, are estimated. It is shown that the most effective is the scheme of direct steam condensation in the heat-exchange tubes, but other schemes also have certain advantages. The air-cooling efficiency may be enhanced much more by using an air-cooling hybrid system: a combination of dry and wet cooling. The basic applied constructive solutions are shown: the arrangement of heat-exchange modules and the types of fans. The optimal mounting design of a fully shopassembled cooling system for heat-exchange modules is represented. Different types of heat-exchange tubes ribbing that take into account the operational features of cooling systems are shown. Heat transfer coefficients of the plants from different manufacturers are compared, and the main reasons for its decline are named. When using evaporative air cooling, it is possible to improve the efficiency of air-cooling units. The factors affecting the faultless performance of dry coolers (DC) and air-condensing units (ACU) and the ways of their elimination are described. A high velocity wind forcing reduces the efficiency of cooling systems and creates preconditions for the development of wind-driven devices. It is noted that

  19. Effect of different air-drying time on the microleakage of single-step self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Horieh Moosavi

    2013-05-01

    Full Text Available Objectives This study evaluated the effect of three different air-drying times on microleakage of three self-etch adhesive systems. Materials and Methods Class I cavities were prepared for 108 extracted sound human premolars. The teeth were divided into three main groups based on three different adhesives: Opti Bond All in One (OBAO, Clearfil S3 Bond (CSB, Bond Force (BF. Each main group divided into three subgroups regarding the air-drying time: without application of air stream, following the manufacturer's instruction, for 10 sec more than manufacturer's instruction. After completion of restorations, specimens were thermocycled and then connected to a fluid filtration system to evaluate microleakage. The data were statistically analyzed using two-way ANOVA and Tukey-test (α = 0.05. Results The microleakage of all adhesives decreased when the air-drying time increased from 0 sec to manufacturer's instruction (p < 0.001. The microleakage of BF reached its lowest values after increasing the drying time to 10 sec more than the manufacturer's instruction (p < 0.001. Microleakage of OBAO and CSB was significantly lower compared to BF in all three drying time (p < 0.001. Conclusions Increasing in air-drying time of adhesive layer in one-step self-etch adhesives caused reduction of microleakage, but the amount of this reduction may be dependent on the adhesive components of self-etch adhesives.

  20. Ultrasound-Assisted Hot Air Drying of Foods

    Science.gov (United States)

    Mulet, Antonio; Cárcel, Juan Andrés; García-Pérez, José Vicente; Riera, Enrique

    This chapter deals with the application of power ultrasound, also named high-intensity ultrasound, in the hot air drying of foods. The aim of ultrasound-assisted drying is to overcome some of the limitations of traditional convective drying systems, especially by increasing drying rate without reducing quality attributes. The effects of ultrasound on drying rate are responsible for some of the phenomena produced in the internal and/or external resistance to mass transfer.

  1. Drying kinetics and mathematical modeling of hot air drying of coconut coir pith.

    Science.gov (United States)

    Fernando, J A K M; Amarasinghe, A D U S

    2016-01-01

    Drying kinetics of coir pith was studied and the properties of compressed coir pith discs were analyzed. Coir pith particles were oven dried in the range of temperatures from 100 to 240 °C and the rehydration ability of compressed coir pith was evaluated by finding the volume expansion. The optimum drying temperature was found to be 140 °C. Hot air drying was carried out to examine the drying kinetics by allowing the coir pith particles to fluidize and circulate inside the drying chamber. Particle motion within the drying chamber closely resembled the particle motion in a flash dryer. The effective moisture diffusivity was found to increase from 1.18 × 10(-8) to 1.37 × 10(-8) m(2)/s with the increase of air velocity from 1.4 to 2.5 m/s respectively. Correlation analysis and residual plots were used to determine the adequacy of existing mathematical models for describing the drying behavior of coir pith. The empirical models, Wang and Singh model and Linear model, were found to be adequate for accurate prediction of drying behavior of coir pith. A new model was proposed by modifying the Wang and Singh model and considering the effect of air velocity. It gave the best correlation between observed and predicted moisture ratio with high value of coefficient of determination (R(2)) and lower values of root mean square error, reduced Chi square (χ(2)) and mean relative deviation (E%).

  2. Potential of roof-integrated solar collectors for preheating air at drying facilities in Northern Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Franz; Nagle, Marcus; Leis, Hermann; Mueller, Joachim [Institute of Agricultural Engineering 440e, University of Hohenheim, Garbenstrasse 9, 70599 Stuttgart (Germany); Janjai, Serm [Department of Physics, Silpakorn University, Nakhon Pathom (Thailand); Mahayothee, Busarakorn [Department of Food Technology, Silpakorn University, Nakhon Pathom (Thailand); Haewsungcharoen, Methinee [Department of Food Engineering, Chiang Mai University, Chiang Mai (Thailand)

    2009-07-15

    Longan is one of the most widely cropped fruits in Northern Thailand, where a significant amount of the annual harvest is commercially dried and exported as a commodity. Liquefied petroleum gas is generally used as the energy source for heating the drying air, but concern is growing as fuel prices are expected to increase for the foreseeable future. Meanwhile, with the ample solar radiation in Thailand, the roofs of drying facilities could be adapted to serve as solar collectors to preheat the drying air, thus reducing the energy requirement from fossil fuels. In this study, a simulation program for a flat-plate solar air heater was used to estimate the potential to preheat drying air given the conditions of several longan drying facilities. Results showed that solar collectors can replace up to 19.6% of the thermal energy demand during the drying season. Bigger collectors and smaller air channels result in more useful heat, but attention has to be paid to costs and pressure drop, respectively. Annual monetary savings can reach up to THB 56,000 ({approx}US$ 1800 at US$ 1 THB 31). (author)

  3. Highly Insulating and Light Transmitting Aerogel Glazing for Super Insulating Windows (HILIT+)

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Kristiansen, Finn Harken; Schultz, Jørgen Munthe

    2005-01-01

    to 1000 m²/g), the material is proposed to serve as substrate for catalytic materials. • The special pore structure of aerogel could be used for gas filters in the 20 to 100 nm region. • The sound velocity within aerogel is in the range of 100 to 300 m/s, which should be one of the lowest for an inorganic......-free nano-structured aerogel materials through a reasonably fast and reproducible process. The applicative part of this project aimed at elaborating, studying and optimising “state-of-the-art” (0.5 W/m2 K) aerogel glazings for windows. An important issue was the risk of outside condensation and rime and its....... No other known glazing exhibits such an excellent combination of solar transmittance and heat loss coefficient. The annual energy savings compared to triple low energy glazing is in the range of 10 – 20% depending on type of building. Beside the application in glazing production the HILIT+ aerogel material...

  4. Use of a new borate raw material for glaze formulation

    International Nuclear Information System (INIS)

    Gomez-Tena, M. P.; Moreno, A.; Bou, E.; Cook, S.; Galindo, M.

    2010-01-01

    The Rio Tinto Minerals company has developed a new borate (E-4972), which can be used in glaze formulation (patent WO 2007/148101). This new borate, synthesised by low-temperature calcination, fundamentally contributes five oxides: silicon oxide (SiO 2 ), aluminium oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), calcium oxide (CaO), and sodium oxide (Na 2 O), its content in B 2 O 3 being between 10 and 11% by weight. It is largely amorphous, and quartz is the major crystalline phase present. The characteristics of this new borate, such as its low solubility and ability readily to form glassy phase, enable it to be used as a raw material in glaze compositions. Its suitability for glaze formulation has been the result of several years research in collaboration with the Instituto de Tecnologia Ceramica. In this paper, the feasibility has been studied of fabricating ceramic glazes by using a new synthetic borate raw material that contributes boron to the glaze composition without this needing to be done in fritted form. It has been possible to obtain fired glazes with similar technical and aesthetics characteristics to those obtained from industrial glaze compositions that contain typical frits in their compositions, thus enabling glazes to be formulated by using the new synthetic boron raw material. The results obtained show that this new raw material (E-4972) is particularly appropriate for use in producing glazes with low gloss at high temperature. (Author) 15 refs.

  5. Study on 95 alumina ceramic metallizing and glazing technique

    International Nuclear Information System (INIS)

    Zhou Qun; Wang Wei

    2007-12-01

    Electric heater is a component of pressurizer in NPP. So the connector of heater must suit for special requirement with high reliability. It need join 95% alumina ceramic and special metal together. Traditional technique is to glazing ceramic at first, then sintering metal powder on ceramic. It result in melting glaze when metallizing at high temperature. The research on high temperature glaze hasn't got ideal result. In another way, the experiments prove low temperature metallizing couldn't get enough strength. Base on present conditions, a new technique is introduced. It is first metallizing then glazing. It can not only provide high strength with high temperature metallizing , but also avoid melting glaze at high temperature. Compared with other ways, the experiments prove it is feasible. The test data can satisfy requirement. This research has been put into production. (authors)

  6. Experimental investigation of flame impingement on vertical and inclined glazing facades

    Directory of Open Access Journals (Sweden)

    Quinn Michael

    2013-11-01

    Full Text Available Breakage and fallout of glazing systems create openings in an enclosure that affect the fire growth and the development of post flashover flames emerging outside of the openings. The behaviour of glazing is the result of its thermally induced stress response to the heat fluxes from the fire in an enclosure. In recent times building façade designs have evolved and now incorporate many different shapes, orientations and materials. The conventional single and double glazing panels have been surpassed by composite type glazing systems which include glazing and transparent resins. This paper presents experimental testing of these composite glazing panels subjected to localized fires, which have the same fire load. The effect of localized fire on the materials tested as seen in the final char patterns on both glazing systems is note-worthy. The paper also includes details of comparative calculations with EN 1991-1-2. Furthermore, results of detailed material analysis testing of the intermediate transparent resin within the glazing sandwich panels are included.

  7. Preparation of Natural Zeolite for Air Dehumidification in Food Drying

    Directory of Open Access Journals (Sweden)

    Mohamad Djaeni

    2015-03-01

    Full Text Available Drying with air dehumidification with solid adsorbent improves the quality of food product as well as energy efficiency. The natural zeolite is one of adsorbent having potential to adsorb the water.  Normally, the material was activated to open the pore, remove the organic impurities, and increase Si/Al rate. Hence, it can enhance the adsorbing capacity. This research studied the activation of natural zeolite mined from Klaten, Indonesia as air dehumidification for food drying. Two different methods were used involving activation by heat and NaOH introduction.  As indicators, the porosity and water loaded were evaluated. Results showed both methods improved the adsorbing capacity significantly. With NaOH, the adsorbing capacity was higher. The simple test in onion and corn drying showed the presence of activated natural zeolite can speed up water evaporation positively. This performance was also comparable with Zeolite 3A

  8. Optical And Environmental Properties Of NCAP Glazing Products

    Science.gov (United States)

    van Konynenburg, Peter; Wipfler, Richard T.; Smith, Jerry L.

    1989-07-01

    The first large area, commercially available, electrically-controllable glazing products sold under the tradename VARILITETM are based on a new liquid crystal film technology called NCAP. The glazing products can be switched in milliseconds between a highly translucent state (for privacy and glare control) to a transparent state (for high visibility) with the application of an AC voltage. The optical and environmental properties are demonstrated to meet the general requirements for architectural glazing use. The first qualified indoor product is described in detail.

  9. Triple vacuum glazing: Heat transfer and basic mechanical design constraints

    Energy Technology Data Exchange (ETDEWEB)

    Manz, H.; Brunner, S.; Wullschleger, L. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Laboratory for Applied Physics in Building, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2006-12-15

    Given the major role played by windows with regard to energy losses from buildings in cold climates, low thermal transmittance is an indispensable property of glazing in low-energy buildings. Evacuation offers the only means of achieving negligible gaseous conduction in glazing cavities. Application of low-emittance coatings to glass sheet surfaces inside the cavity reduces the radiative heat transfer. The feasibility of double vacuum glazing using arrays of support pillars between the glass sheets has been shown by other authors. This type of glazing is commercially manufactured today. Based on these achievements, our study set out to investigate heat transfer in triple vacuum glazing by means of (i) an analytical thermal network model and (ii) a numerical finite difference model. The study focused on the impact of the following parameters on thermal transmittance: emittances of glass sheet surfaces inside the cavity, support pillar radius, support pillar separation and thermal conductivity of support pillar material. The design procedure for triple vacuum glazing taking into account not only thermal but also mechanical stresses due to atmospheric pressure, i.e., to enable identification of favourable parameter sets, is presented. Our findings suggest that use of the triple vacuum glazing concept can significantly reduce the thermal transmittances achieved by the best insulation glazing units currently on the market. E.g., a centre-of-glazing thermal transmittance of less than 0.2Wm{sup -2}K{sup -1} is achievable using stainless steel support pillars, 6mm/4mm/6mm sheets of untempered soda-lime glass and four low-emittance coatings ({epsilon}=0.03). (author)

  10. Effect of window glazing on colour quality of transmitted daylight

    NARCIS (Netherlands)

    Dangol, R.; Kruisselbrink, T.W.; Rosemann, A.L.P.

    2017-01-01

    In this study, the colour quality of the daylight transmitted through different window glazing types is evaluated. The analysis considered four different types of window glazing: laminated, monolithic, coated and applied film glazing ranging in luminous transmittance from around 0.97 to <0.1. The

  11. Low-cost solar collectors using thin-film plastics absorbers and glazings

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, W.G.

    1980-01-01

    The design, fabrication, performance, cost, and marketing of flat plate solar collectors using plastic absorbers and glazings are described. Manufacturing cost breakdowns are given for single-glazed and double-glazed collectors. (WHK)

  12. Evaluation of food drying with air dehumidification system: a short review

    Science.gov (United States)

    Djaeni, M.; Utari, F. D.; Sasongko, S. B.; Kumoro, A. C.

    2018-01-01

    Energy efficient drying for food and agriculture products resulting high quality products has been an important issue. Currently, about 50% of total energy for postharvest treatment was used for drying. This paper presents the evaluation of new approach namely air dehumidification system with zeolite for food drying. Zeolite is a material having affinity to water in which reduced the moisture in air. With low moisture content and relative humidity, the air can improve driving force for drying even at low temperature. Thus, the energy efficiency can be potentially enhanced and the product quality can be well retained. For proving the hypothesis, the paddy and onion have been dried using dehumidified air. As performance indicators, the drying time, product quality, and heat efficiency were evaluated. Results indicated that the drying with zeolite improved the performances significantly. At operating temperature ranging 50 - 60°C, the efficiency of drying system can reach 75% with reasonable product quality.

  13. Phenome data - Air-drying stress - DGBY | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us DGBY Phenome data - Air-drying stress Data detail Data name Phenome data - Air-drying stress... DOI 10.18908/lsdba.nbdc00953-007 Description of data contents Yeasts used in bread making are exposed to air-dryin...g stress during dried yeast production processes. To clarify the genes required for air-drying tolera...tion of diploid Saccharomyces cerevisiae . The screening identified 278 gene deletions responsible for air-dryin...heir gene products. The results showed that the genes required for air-drying tol

  14. Evaluation of beetroot changes during drying with hot air by digital ...

    African Journals Online (AJOL)

    Foods drying are an important operation in processing and increasing foodstuffs shelf life and many factors effected on products efficiency and quality during drying. Deterioration of texture structure and products color changes depends on drying method and air temperature and air rate. Drying or removing maximum water ...

  15. Effect of different air-drying time on the microleakage of single-step self-etch adhesives

    OpenAIRE

    Moosavi, Horieh; Forghani, Maryam; Managhebi, Esmatsadat

    2013-01-01

    Objectives This study evaluated the effect of three different air-drying times on microleakage of three self-etch adhesive systems. Materials and Methods Class I cavities were prepared for 108 extracted sound human premolars. The teeth were divided into three main groups based on three different adhesives: Opti Bond All in One (OBAO), Clearfil S3 Bond (CSB), Bond Force (BF). Each main group divided into three subgroups regarding the air-drying time: without application of air stream...

  16. Thermal performance of a room with a double glazing window using glazing available in Mexican market

    International Nuclear Information System (INIS)

    Aguilar, J.O.; Xamán, J.; Olazo-Gómez, Y.; Hernández-López, I.; Becerra, G.; Jaramillo, O.A.

    2017-01-01

    Highlights: • Thermal evaluation of a Room coupled with different types of Double Glazing Window (DGW) is analyzed. • Four cases were simulated: Case 1: DGW (clear); Case 2: DGW (absorbent), Case 3: DGW (Low-e) and Case 4: DGW (reflective). • Case 4 presents the better energy saving of all cases analyzed, ∼73% lower than Case 1. • Cases 2 and 3 have a similar thermal behavior, almost 34% less than Case 1. • The global balance costs indicate that Case 4 is the better option for energy saving in warm climate. • Case 4 allows us to save up to $20.29 USD per kW h in a year in comparison to Case 1. - Abstract: A thermal evaluation of a four configurations of double glass window (DGW) coupling to a room is presented. The DGW consists of two vertical semitransparent walls separated by a 12 mm air gap. The effect of varying the ambient temperature and the incident solar radiation in the warm climate conditions in México is analyzed. Numerical simulations were conducted for four configurations; Case 1: clear glass + air gap + clear glass (Reference); Case 2: clear glass + air gap + absorbent glass; Case 3: clear glass + air gap + Low-e glass; and Case 4: clear glass + air gap + reflective glass. Optical transmittance and specular reflectance were measured individually and in one sample piece for each case. The results showed that Case 4 reduces the heat flux to the indoors by up to 73%, with respect to Case 1. Moreover, Cases 2 and 3 had a similar behavior, obtaining a reduction of indoor heat flow close to 33.5% with respect to Case 1. Case 4 is the best option for energy savings in a warm climate, where it is possible to save up to $20.29 USD per kW h per year, in comparison to Case 1. In addition, the payback period for Case 4 is 3.7 years. Therefore, the use of reflective double pane window is highly recommended in Mexican warm climates.

  17. Effect of Window Glazing on Colour Quality of Transmitted Daylight

    Directory of Open Access Journals (Sweden)

    Rajendra Dangol

    2017-12-01

    Full Text Available In this study, the colour quality of the daylight transmitted through different window glazing types is evaluated. The analysis considered four different types of window glazing: laminated, monolithic, coated and applied film glazing ranging in luminous transmittance from around 0.97 to <0.1. The spectral transmittance data of different window glazing types are taken from the International Glazing Data Base (IGDB, which is maintained by Lawrence Berkeley National Laboratories (LBNL. The study showed that the CIE CRI does not always seem to be the suitable method to predict the colour quality of daylight in building for particular situations. However, in the context of this study, the prediction of colour rendering properties of window glazing by other metrics such as Colour Quality Scale (version 9, Memory CRI, Ra,D65 (adjusted CRI metric with D65 as the reference illuminant performed better. For most of the daylit situations inside the building, the chromaticity difference criterion was not met. Judging the colour quality of such situations requires different method.

  18. Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates

    International Nuclear Information System (INIS)

    Favoino, Fabio; Fiorito, Francesco; Cannavale, Alessandro; Ranzi, Gianluca; Overend, Mauro

    2016-01-01

    Highlights: • The features and properties of photovoltachromic switchable glazing are presented. • The different possible control strategies for the switchable glazing are presented. • Thermal and daylight performance are co-simulated for rule-based and optimal control. • A novel building performance simulation framework is developed for this aim. • Switchable glazing performance is compared for different controls and climates. - Abstract: The development of adaptive building envelope technologies, and particularly of switchable glazing, can make significant contributions to decarbonisation targets. It is therefore essential to quantify their effect on building energy use and indoor environmental quality when integrated into buildings. The evaluation of their performance presents new challenges when compared to conventional “static” building envelope systems, as they require design and control aspects to be evaluated together, which are also mutually interrelated across thermal and visual physical domains. This paper addresses these challenges by presenting a novel simulation framework for the performance evaluation of responsive building envelope technologies and, particularly, of switchable glazing. This is achieved by integrating a building energy simulation tool and a lighting simulation one, in a control optimisation framework to simulate advanced control of adaptive building envelopes. The performance of a photovoltachromic glazing is evaluated according to building energy use, Useful Daylight Illuminance, glare risk and load profile matching indicators for a sun oriented office building in different temperate climates. The original architecture of photovoltachromic cell provides an automatic control of its transparency as a function of incoming solar irradiance. However, to fully explore the building integration potential of photovoltachromic technology, different control strategies are evaluated, from passive and simple rule based controls, to

  19. Dry-air drying at room temperature - a practical pre-treatment method of tree leaves for quantitative analyses of phenolics?

    Science.gov (United States)

    Tegelberg, Riitta; Virjamo, Virpi; Julkunen-Tiitto, Riitta

    2018-03-09

    In ecological experiments, storage of plant material is often needed between harvesting and laboratory analyses when the number of samples is too large for immediate, fresh analyses. Thus, accuracy and comparability of the results call for pre-treatment methods where the chemical composition remains unaltered and large number of samples can be treated efficiently. To study if a fast dry-air drying provides an efficient pre-treatment method for quantitative analyses of phenolics. Dry-air drying of mature leaves was done in a drying room equipped with dehumifier (10% relative humidity, room temperature) and results were compared to freeze-drying or freeze-drying after pre-freezing in liquid nitrogen. The quantities of methanol-soluble phenolics of Betula pendula Roth, Betula pubescens Ehrh., Salix myrsinifolia Salisb., Picea abies L. Karsten and Pinus sylvestris L. were analysed with HPLC and condensed tannins were analysed using the acid-butanol test. In deciduous tree leaves (Betula, Salix), the yield of most of the phenolic compounds was equal or higher in samples dried in dry-air room than the yield from freeze-dried samples. In Picea abies needles, however, dry-air drying caused severe reductions in picein, stilbenes, condensed tannin and (+)-catechin concentrations compared to freeze-drying. In Pinus sylvestris highest yields of neolignans but lowest yields of acetylated flavonoids were obtained from samples freeze-dried after pre-freezing. Results show that dry-air drying provides effective pre-treatment method for quantifying the soluble phenolics for deciduous tree leaves, but when analysing coniferous species, the different responses between structural classes of phenolics should be taken into account. Copyright © 2018 John Wiley & Sons, Ltd.

  20. [Adhesion of oral microorganisms on dental porcelain polished and glazed].

    Science.gov (United States)

    Wang, Yi-ning; Wen, Guo-jiang; Shi, Bin; Pan, Xin-hua

    2003-09-01

    This study compared the roughness of porcelain polished or glazed surfaces and the adhesion of oral streptococcus mutans to them in vitro. 30 porcelain samples were made. Porcelain samples in group A were polished with diamond paste. Porcelain samples were glazed in group B and were polished with Al2O3 (240#) bur in group C. Their roughness values were measured by profilometer. Standardized cell suspensions were incubated with test samples for one hour at 37 degrees C, then retained cells were counted by image analysis (percentage area of a microscopic field covered by cells). Roughness values of group A, B, C were respectively (0.1987 +/- 0.057) microm, (0.1990 +/- 0.091) microm, (0.4260 +/- 0.174) microm. There was no significantly difference between group A and group B. The roughness samples in group C were significantly rougher than that in the other groups. The amount of retained cells in group A, group B, group C was respectively (15.92 +/- 4.37)%, (16.39 +/- 6.31)% and (41.48 +/- 12.1)%. There was no significant difference between the cell adhesion on porcelain surface glazed and polished, but more bacteria adhered on the porcelain surface in group C. Porcelain surface polished treatment was clinically acceptable compared with its glazed. They all exhibited the least amount of bacteria adhesion. The more porcelain surface was rough, the more bacteria adhered on it.

  1. Portuguese tin-glazed earthenware from the 16th century: A spectroscopic characterization of pigments, glazes and pastes

    International Nuclear Information System (INIS)

    Vieira Ferreira, L.F.; Ferreira Machado, I.; Ferraria, A.M.; Casimiro, T.M.; Colomban, Ph.

    2013-01-01

    Sherds representative of the Portuguese faience production of the early-16th century from the “Mata da Machada” kiln and from an archaeological excavation on a small urban site in the city of Aveiro (from late 15th to early 16th century) were studied with the use of non-invasive spectroscopies, namely: ground state diffuse reflectance absorption (GSDR), micro-Raman, Fourier-transform infrared (FT-IR) and proton induced X-ray (PIXE). These results were compared with the ones obtained for two Spanish productions, from Valencia and Seville, both from same period (late 15th century and 16th century), since it is well know that Portugal imported significant quantities of those goods from Spain at that time. The obtained results evidence a clear similarity in the micro-Raman spectrum in the glaze and clays of Portuguese pottery produced at “Mata da Machada” and sherds found at the mediaeval house of Homem Cristo Filho (HCF) street at Aveiro. The blue pigment in the sample from the household of Aveiro is a cobalt oxide that exists in the silicate glassy matrix in small amounts, which did not allow the formation of detectable cobalt silicate microcrystals. White glaze from Mata da Machada and Aveiro evidence tin oxide micro-Raman signatures superimposed on the bending and stretching bands of SiO 2 . All these are quite different from the Spanish products under study (Seville and Valencia), pointing to an earlier production of tin glaze earthenware in Portugal than the mid 16th century, as commonly assumed.

  2. Portuguese tin-glazed earthenware from the 16th century: A spectroscopic characterization of pigments, glazes and pastes

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Ferreira, L.F., E-mail: LuisFilipeVF@ist.utl.pt [CQFM – Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ferreira Machado, I. [CQFM – Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Department of Technology and Design, School of Technology and Management, Polytechnic Institute of Portalegre, P-7300-110 Portalegre (Portugal); Ferraria, A.M. [CQFM – Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Casimiro, T.M. [Instituto de Arqueologia e Paleociências da Universidade Nova de Lisboa, Departamento de História, Avenida de Berna 26-C, 1069-061 Lisboa (Portugal); Colomban, Ph. [Laboratoire de Dynamique, Interaction et Réactivité, UMR7075 CNRS-Université Pierre et Marie-Curie, Paris 6, 4 Place Jussieu, C49 batF, 75252 Paris Cedex 05 (France)

    2013-11-15

    Sherds representative of the Portuguese faience production of the early-16th century from the “Mata da Machada” kiln and from an archaeological excavation on a small urban site in the city of Aveiro (from late 15th to early 16th century) were studied with the use of non-invasive spectroscopies, namely: ground state diffuse reflectance absorption (GSDR), micro-Raman, Fourier-transform infrared (FT-IR) and proton induced X-ray (PIXE). These results were compared with the ones obtained for two Spanish productions, from Valencia and Seville, both from same period (late 15th century and 16th century), since it is well know that Portugal imported significant quantities of those goods from Spain at that time. The obtained results evidence a clear similarity in the micro-Raman spectrum in the glaze and clays of Portuguese pottery produced at “Mata da Machada” and sherds found at the mediaeval house of Homem Cristo Filho (HCF) street at Aveiro. The blue pigment in the sample from the household of Aveiro is a cobalt oxide that exists in the silicate glassy matrix in small amounts, which did not allow the formation of detectable cobalt silicate microcrystals. White glaze from Mata da Machada and Aveiro evidence tin oxide micro-Raman signatures superimposed on the bending and stretching bands of SiO{sub 2}. All these are quite different from the Spanish products under study (Seville and Valencia), pointing to an earlier production of tin glaze earthenware in Portugal than the mid 16th century, as commonly assumed.

  3. Application of Natural Air Drying on Shelled Corn in Timor

    Science.gov (United States)

    Nino, J.; Nelwan, L. O.; Purwanto, Y. A.

    2018-05-01

    A study of the application of natural air drying on shelled corn in Timor using a bed- type dryer has been performed. The study aspects were limited to obtain the suitable air flow rate requirement and duration of the drying operation per day. For each aspect, the treatments were carried out simultaneously. The results showed that at the average ambient air temperature of 30.6°C and relative humidity (RH) of 73.0% the air flow rate of 0.83 L/s-kg provided the highest drying rate. Subsequently, by using the same air flow rate, three scheme of drying operations duration were used, i.e., 8 hours per day (08.00-16.00), 6 hours per day (09.00-15.00) and 4 hours per day (10.00-14.00). The average temperature and RH of ambient air condition at the second experiment were 30.3°C and 73.3% respectively. After 4 days of drying, the 8 hours per day (first scheme) treatment was able to dry the shelled corn from the initial moisture content of 27.24% w.b. to the final moisture content of 14.05% w.b. The specific energy consumption (SEC) of the first scheme was 1.75 MJ/kg. The final moisture content of the second and third schemes were 15.08 % w.b. and 18.45 % w.b. respectively with SEC of 1.41 MJ/kg and 1.21 MJ/kg respectively.

  4. Drying Characteristics and Water-soluble Polysaccharides Evaluation of Kidney Shape Ganoderma lucidum Drying in Air Circulation System

    Science.gov (United States)

    Prasetyo, D. J.; Jatmiko, T. H.; Poeloengasih, C. D.; Kismurtono, M.

    2017-12-01

    In this project, drying kinetic of kidney shape Ganoderma lucidum fruiting body in air circulation system was studied. The drying experiments were conducted at 40, 50 and 60°C with air flow rate of 1.3 ms-1. Samples were weighted periodically until no change in sample weight was recorded, and then the samples were analyzed for its moisture content. Four different thin-layer mathematical models (Newton, Page, Two-term, Midilli) were used and compare to evaluate the drying curves of kidney shape G. lucidum. The water-soluble polysaccharides were evaluated in order to find the best drying temperature condition. The results indicates that Midilli model was the fittest model to describe the characteristic of kidney shape G. lucidum in the air circulation drying system and temperature of 50°C was the best drying condition to get highest value of water-soluble polysaccharides.

  5. Glazed Tiles as Floor Finish in Nigeria

    Directory of Open Access Journals (Sweden)

    Toyin Emmanuel AKINDE

    2013-09-01

    Full Text Available Tile is no doubt rich in antiquity; its primordial  show, came as mosaic with primary prospect in sacred floor finish before its oblivion, courtesy of, later consciousness towards wall finish in banquets, kitchens, toilets, restaurants and even bars. Today, its renaissance as floor finish is apparent in private and public architectural structures with prevalence in residential, recreational, commercial, governmental and other spaces. In Nigeria, the use of glazed tiles as floor finish became apparent, supposedly in mid-twentieth century; and has since, witnessed ever increasing demands from all sundry; a development that is nascent and has necessitated its mass  production locally with pockets of firms in the country. The latter however, is a resultant response to taste cum glazed tiles affordability, whose divergent sophistication in design, colour, size and shape is believed preferred to terrazzo, carpet and floor flex tile. Accessible as glazed tile and production is, in recent times; its dearth of a holistic literature in Nigeria is obvious. In the light of the latter, this paper examine glazed tiles as floor finish in Nigeria, its advent, usage, production, challenge, benefit and prospect with the hope of opening further frontier in discipline specifics.

  6. Analytical investigations of glazed Islamic pottery

    International Nuclear Information System (INIS)

    Pernicka, E.; Krejsa, P.

    1978-08-01

    42 fragments of medieval glazed pottery from seven sites in Iran, Afghanistan and India were analyzed by instrumental neutron activation analysis (INAA). In addition a secondary clay standard and some samples were analyzed by X-ray fluorescence for their main components. The results of the trace analysis formed the basis for cluster analysis using the graphtheoretical method of the minimum spanning tree. The samples were partitioned into five clusters, which were compared with the provenance of their respective members. Preliminary results indicate that pottery from the north of Afganistan can be differentiated from the southern one, while the southern ware seems to be homogeneous over a large area from Herat to Ghazni. Some of the pottery samples from Sistan have a different composition, which is due to a different production technique. The mass probably consisted of a 4 : 1 mixture of quartz and clay or a 15 : 4 : 1 mixture of quartz, clay and frit for the glaze. A similar recipe is described by Abu'l-Quasim, a medieval Persian potter. (author)

  7. 24 CFR 3280.113 - Glass and glazed openings.

    Science.gov (United States)

    2010-04-01

    ... glazing material is considered to be any glazing material capable of passing the requirements of Safety... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Planning Considerations § 3280.113... shall meet the requirements of § 3280.403 the “Standard for Windows and Sliding Glass Doors Used in...

  8. A preliminary study on Fe valence of porcelain glaze by XAFS

    International Nuclear Information System (INIS)

    Zhang Maolin; Wang Changsui; Jin Pujun; Wei Shiqiang; Xu Wei; Chen Dongliang; Wu Ziyu

    2008-01-01

    Ru ware was a famous celadon in Song dynasty, whose structure analysis of glaze had always been a difficulty in scientifically analysis of ancient porcelains. The X-ray absorption fine structure spectrum (XAFS) of Fe element in glaze of Ru ware excavated in Qingliang temple was obtained. Fe valence state in porcelain glaze samples was stud/ed by Principle Component Analysis (PCA) along with linear combination fitting method. The main wavelength of the samples was also obtained by color/meter. The results show that the cyan glaze samples have great Fe 2+ /Fe 3+ , while the yellow glaze samples have small Fe 2+ /Fe 3+ . The work also showed that X-ray absorption fine structure spectrum was very suitable in nondestructive analysis of ancient ceramics. (authors)

  9. CHARACTERIZATION OF THE INTERACTION BETWEEN GLAZES AND CERAMIC BODIES

    Directory of Open Access Journals (Sweden)

    Maria Kavanova

    2017-07-01

    Full Text Available The paper presents the study of stress relations of ceramic body - glaze systems of model and real, both historical and contemporary ceramics. The systems were characterized in terms of chemical composition, linear thermal coefficients and degradation effects. The results show that calculation of stress relations between ceramic body and glaze is affected predominantly by the difference in values of thermal expansion coefficients. Calculated results provide relevant information about the accordance of the glaze - ceramic body and for the characterization of surface defects.

  10. Drier for air-drying coatings

    NARCIS (Netherlands)

    Micciche, F.; Oostveen, E.A.; Linde, van der R.; Haveren, van J.

    2003-01-01

    The invention pertains to a drier composition for air-drying alkyd-based coatings, inks, or floor coverings, comprising a combination of the following components: a) a transition metal salt with the formula: (Me )( X )m in which Me is the transition metal; X represents a coordinating ligand; and k-

  11. Calcium in ancient glazes and glasses: a XAFS study

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, J.P. [New University of Lisbon, CENIMAT, Materials Science Dept., Caparica (Portugal); Figueiredo, M.O. [New University of Lisbon, CENIMAT, Materials Science Dept., Caparica (Portugal); Crystallography and Mineralogy Centre, IICT, and INETI/IGM, Dept. Min. Resources, Alfragide (Portugal)

    2008-07-15

    Ceramic tiles used to manufacture artistic panels during the XVI to the XVIII centuries were decorated with high-lead soda-lime glazes, incorporating a diversity of chromophore cations, as ascertained by SRXRF (synchrotron radiation X-ray fluorescence). Previous X-ray absorption spectroscopy (XAS) studies have shown that sodium and lead are hosted by the glassy matrix in those glazes. However, the possible role of calcium as a modifier of the tetrahedral silica network is not fully clarified, despite being recognized that calcium cations alter some fundamental properties of glazes, namely transparency. An X-ray absorption fine structure (XAFS) study of glazes with varied colorings was therefore undertaken at Ca K- and L-edges. Well crystallized oxide minerals were used to model distinct coordination environments by oxygen atoms - close to octahedral geometry in calcite and dodecahedral in gypsum - while fluorite was chosen to mimic ideal cubic coordination. A first XAS approach suggested a minor variation in the energy separation between L{sub 2}-L{sub 3} absorption edges when comparing blue and yellow glazes, irrespective of the period of manufacture. A further study on the X-ray absorption near-edge structure (XANES) carried out at the K-edge corroborated this difference and, along with the theoretical spectra modeling performed with the FEFF code, allowed interpreting of the Ca 1s absorption spectra of glazes as arising from a non-regular high-coordination environment within the silica matrix. (orig.)

  12. Preliminary Design of KAIST Micro Modular Reactor with Dry Air Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seung Joon; Bae, Seong Jun; Kim, Seong Gu; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    KAIST research team recently proposed a Micro Modular Reactor (MMR) concept which integrates power conversion unit (PCU) with the reactor core in a single module. Using supercritical CO{sub 2} as a working fluid of cycle can achieve physically compact size due to small turbomachinery and heat exchangers. The objective of this project is to develop a concept that can operate at isolated area. The design focuses especially on the operation in the inland area where cooling water is insufficient. Thus, in this paper the potential for dry air cooling of the proposed reactor will be examined by sizing the cooling system with preliminary approach. The KAIST MMR is a recently proposed concept of futuristic SMR. The MMR size is being determined to be transportable with land transportation. Special attention is given to the MMR design on the dry cooling, which the cooling system does not depend on water. With appropriately designed air cooling heat exchanger, the MMR can operate autonomously. Two types of air cooling methods are suggested. One is using fan and the other is utilizing cooling tower for the air flow. With fan type air cooling method it consumes about 0.6% of generated electricity from the nuclear reactor. Cooling tower occupies an area of 227 m{sup 2} and 59.6 m in height. This design is just a preliminary estimation of the dry cooling method, and therefore more detailed and optimal design will be followed in the next phase.

  13. Evacuation and assembly of aerogel glazings

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev

    1999-01-01

    The application of monolithic silica aerogel as transparent insulation material for windows has been investigated for some years. It has been realised that a major problem of an industrial production of aerogel glazings will be the time for evacuation of the aerogel material. However, in a previous...... process, it can be considered as semi-online, and especially the capital cost is significantly lower for this method in comparison with a true online process. So hereby, a major obstacle is overcome with respect to a first industrial production of aerogel glazings.The apparatus has been constructed...

  14. Cold Vacuum Drying Instrument Air System Design Description. System 12

    International Nuclear Information System (INIS)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-01-01

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed and Instrument Air PandID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid PandID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility

  15. Cold Vacuum Drying Instrument Air System Design Description (SYS 12)

    Energy Technology Data Exchange (ETDEWEB)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-06-05

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed & Instrument Air P&ID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid P&ID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility.

  16. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  17. A new liquid-phase-separation glaze containing neodymium oxide

    International Nuclear Information System (INIS)

    Jing, S.; Xianque, C.; Luxing, K.; Pentecost, J.L.

    1986-01-01

    A color-changeable opaque glaze containing neodymium oxide was investigated. Results show that the glaze is a new example of the liquid-phase-separation type. The discrete phase droplets are from 50 to 500 nm in size. They are rich in Nd, Zn, Ca, and Mg and the continuous phase is rich in Si, Al, and K. The concentration of the discrete phase is approx. =45%. The large number of discrete droplets and the zinc oxide in the glaze increase its opacity to cover the selective light absorption and scattering of the neodymium ion and reduce the opalescence effect

  18. The provenance study of Chinese ancient architectonical colored glaze by INAA

    International Nuclear Information System (INIS)

    Cheng Lin; Feng Songlin; Li Rongwu; Lue Zhirong; Li Guoxia

    2008-01-01

    The colored glazes are very popular and famous in Chinese ancient architectures. In order to exactly locate the provenance of ancient architectonical colored glazes, 196 pieces of ancient colored glaze bodies and porcelain bodies fired in Xiyue Temple and Lidipo kiln are analyzed by INAA. The results of factor analysis and some archaeological questions are reported and discussed in this paper

  19. The provenance study of Chinese ancient architectonical colored glaze by INAA

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lin [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Radiation Center, Beijing Normal University, Beijing 100875 (China); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)], E-mail: chenglin@bnu.edu.cn; Feng Songlin [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Li Rongwu [Department of Physics, Beijing Normal University, Beijing 100049 (China); Lue Zhirong [Shan' xi Provincial Institute of Cultural Relics and Archaeology, Xi' an 710054 (China); Li Guoxia [Institute of Physical Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2008-12-15

    The colored glazes are very popular and famous in Chinese ancient architectures. In order to exactly locate the provenance of ancient architectonical colored glazes, 196 pieces of ancient colored glaze bodies and porcelain bodies fired in Xiyue Temple and Lidipo kiln are analyzed by INAA. The results of factor analysis and some archaeological questions are reported and discussed in this paper.

  20. Radioactivity Measurements on Glazed Ceramic Surfaces.

    Science.gov (United States)

    Hobbs, T G

    2000-01-01

    A variety of commonly available household and industrial ceramic items and some specialty glass materials were assayed by alpha pulse counting and ion chamber voltage measurements for radioactivity concentrations. Identification of radionuclides in some of the items was performed by gamma spectroscopy. The samples included tableware, construction tiles and decorative tiles, figurines, and other products with a clay based composition. The concentrations of radioactivity ranged from near background to about four orders of magnitude higher. Almost every nuclide identification test demonstrated some radioactivity content from one or more of the naturally occurring radionuclide series of thorium or uranium. The glazes seemed to contribute most of the activity, although a sample of unglazed pottery greenware showed some activity. Samples of glazing paints and samples of deliberately doped glass from the World War II era were included in the test, as was a section of foam filled poster board. A glass disc with known (232)Th radioactivity concentration was cast for use as a calibration source. The results from the two assay methods are compared, and a projection of sensitivity from larger electret ion chamber devices is presented.

  1. Coffee husk associated with firewood as fuel for indirect heating of drying air

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Edney Alves; Silva, Juarez de Sousa e; Silva, Jadir Nogueira da; Oliveira Filho, Delly [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola; Donzeles, Sergio Mauricio Lopes [Empresa de Pesquisa Agropecuaria de Minas Gerais (EPAMIG), Vicosa, MG (Brazil)

    2008-07-01

    The objective of this work was the performance analysis of a furnace, burning coffee husk associated with firewood to heat the drying air passing through a heat exchanger. For the analysis the temperature variation, the combustion quality, the heat losses and the furnace thermal efficiency were all monitored. Results showed that the furnace average efficiency was 58.3% and the heat losses in the exhaust were 24.3%. The presence of carbon monoxide in the exhaust gases (average 2982.8 ppm) had proven incomplete combustion, and suggesting that the combustion gases can not be used to directly drying of foods. Despite of indirect heating, the presented thermal efficiency indicates that the burning of coffee husks is one economic alternative for air heating in grain drying or in other agricultural processes. (author)

  2. Glass-ceramics frits for high mechanical resistance glazes

    International Nuclear Information System (INIS)

    Gajek, M.; Lis, J.; Partyka, J.; Wojczyk, M.

    2004-01-01

    The obtaining and application of glass-ceramics frits for glazes were discussed by many authors. This glazes are characterized by raised mechanical parameters and chemical resistance. Factors, that determines crystallization process are initial composition, heat treatment and nucleation agents. The kind of crystalline phases, crystal habit and the content of residual glass phase play the decisive role in the strengthening of the glaze. In this paper are shown results of investigation over controlled crystallization in the ternary systems; Li 2 O-Al 2 O 3 -SiO 2 , CaO-Al 2 O 3 -SiO 2 , ZnO-Al 2 O 3 -SiO 2 , MgO-Al 2 O 3 -SiO 2 , with or without nucleation agents. (author)

  3. New milarite/osumilite-type phase formed during ancient glazing of an Egyptian scarab

    Science.gov (United States)

    Artioli, G.; Angelini, I.; Nestola, F.

    2013-02-01

    A scarab found in grave 25 of the Monte Prama necropolis, near Cabras, Oristano, Sardinia, is of special importance for the archaeological interpretation and dating of this important archaeological site. The object has been misinterpreted in the past as composed by bone: recent archaeometric analyses showed that it is a glazed steatite of Egyptian origin and that the altered surface contains interesting phases crystallized during the high-temperature interaction of the Mg-rich talc core with the alkali-rich glass used for glazing. A novel single crystal X-ray diffraction analysis of one of the phases indicates that it is a new compound having the milarite-osumilite structure type, with a peculiar composition close to (Na1.52K0.12□0.36)(Mg3)(Mg1.72Cu0.16Fe0.12)(Si11.4Al0.6)O30, not reported for naturally occurring minerals. The structural and crystal chemical features of the compound, together with the known high-temperature stability of the series, allow a complete interpretation of the glazing process and conditions, based on direct application of the glaze on the steatite core with subsequent treatment at temperatures above 1000 °C.

  4. Chromogenic switchable glazing: Towards the development of the smart window

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, C.M.

    1995-06-01

    The science and technology of chromogenic materials for switchable glazings in building applications is discussed. These glazings can be used for dynamic control of solar and visible energy. Currently many researchers and engineers are involved with the development of products in this field. A summary of activities in Japan, Europe, Australia, USA and Canada is made. The activities of the International Energy Agency are included. Both non-electrically activated and electrically activated glazings are discussed. Technologies covered in the first category are photochromics, and thermochromics and thermotropics. A discussion of electrically activated chromogenic glazings includes dispersed liquid crystals, dispersed particles and electrochromics. A selection of device structures and performance characteristics are compared. A discussion of transparent conductors is presented. Technical issues concerning large-area development of smart windows are discussed.

  5. Development of vacuum glazing with advanced thermal properties - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Manz, H.

    2009-03-15

    Windows constitute a weak link in the building envelope and hence contribute significantly to the total heating energy demand in buildings. By evacuating the glazing cavity a vacuum glazing is created and heat transfer can be significantly reduced. This project was designed to build knowledge and technology necessary to fabricate vacuum glazing with advanced thermal properties. More specifically, various strategies for improvement of conventional technology were investigated. Of central importance was the development of a novel edge sealing approach which can in theory circumvent the main limitation of conventional glass soldering technology. This approach which is rapid, low temperature, low cost and completely vacuum compatible was filed for patenting in 2008. With regards to thermal insulation performance and glazing deflection, numerical studies were performed demonstrating the importance of nonlinear behavior with glazing size and the results published. A detailed service life prediction model was elaborated which defines a set of parameters necessary to keep the expected pressure increase below a threshold value of 0.1 Pa after 30 years. The model takes into account four possible sources of pressure increase and a getter material which acts as a sink. For the production of 0.5 m by 0.5 m glazing assembly prototypes, a high vacuum chamber was constructed and a first sealing prototype realized therein. The manufacture of improved prototypes and optimization of the anodic bonding edge sealing technology with emphasis on process relevant aspects is the goal of a follow-up project. (authors)

  6. Defining a procedure for predicting the duration of the approximately isothermal segments within the proposed drying regime as a function of the drying air parameters

    Science.gov (United States)

    Vasić, M.; Radojević, Z.

    2017-08-01

    One of the main disadvantages of the recently reported method, for setting up the drying regime based on the theory of moisture migration during drying, lies in a fact that it is based on a large number of isothermal experiments. In addition each isothermal experiment requires the use of different drying air parameters. The main goal of this paper was to find a way how to reduce the number of isothermal experiments without affecting the quality of the previously proposed calculation method. The first task was to define the lower and upper inputs as well as the output of the “black box” which will be used in the Box-Wilkinson’s orthogonal multi-factorial experimental design. Three inputs (drying air temperature, humidity and velocity) were used within the experimental design. The output parameter of the model represents the time interval between any two chosen characteristic points presented on the Deff - t. The second task was to calculate the output parameter for each planed experiments. The final output of the model is the equation which can predict the time interval between any two chosen characteristic points as a function of the drying air parameters. This equation is valid for any value of the drying air parameters which are within the defined area designated with lower and upper limiting values.

  7. Energy efficient glazed office buildings with double skin facades in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Bo; Blomsterberg, Aake (WSP Environmental (Sweden)). e-mail: bo.eriksson@wspgroup.se

    2009-07-01

    Many modern office buildings have highly glazed facades. Their energy efficiency and indoor climate are, however, being questioned. Therefore more and more of these buildings are being built with double skin facades, which can provide improvements: A project BESTFACADE, with participants from Austria, Germany, Greece, Portugal (France) and Sweden, was therefore funded by the European Commission (IEE) to actively promote well-performing concepts of double skin facades. Included were best practice guidelines, which included the determination of the energy use and thermal comfort by simulations for warm, mild and cold climates. The main conclusion is that the choice of glazing properties such as glazing area, U-value (thermal transmittance) of the glazing and its profiles, g-value (the total solar energy transmittance) of the glazing and type of solar shading are crucial for the energy and indoor climate performance of an office. The choice of control strategies for ventilation of the cavity and operation of solar shading are crucial. The above choices are very dependant on the climate. Choices which are optimal in a cold climate, will not work very well in a warm climate, and vice versa. From an energy and indoor climate point of view a highly glazed office with a double skin facade is often preferred to a single

  8. Effects of open-air sun drying and pre-treatment on drying characteristics of purslane ( Portulaca oleracea L.)

    Science.gov (United States)

    İsmail, Osman; Kantürk Figen, Aysel; Pişkin, Sabriye

    2015-06-01

    Effects of open-air sun drying and pre-treatment on drying characteristic of purslanes ( Portulaca oleracea L.) were investigated. Drying times were determined as 31, 24 and 9 h for natural, salted and blanched, respectively. The higher "L" value and lower "-a/b" ratio values were obtained in natural dried purslane. The Aghbashlo et al. model gave a better fit to drying data.

  9. [Environmental lead poisoning from lead-glazed earthenware used for storing drinks].

    Science.gov (United States)

    Sabouraud, S; Coppéré, B; Rousseau, C; Testud, F; Pulce, C; Tholly, F; Blanc, M; Culoma, F; Facchin, A; Ninet, J; Chambon, P; Medina, B; Descotes, J

    2009-12-01

    Current unusual environmental sources of lead exposure mainly include traditional medicines, either ayurvedic remedies or others, traditional cosmetics (kohl, surma), and the use of traditional earthenware, for storage or cooking. We report two cases of lead poisoning in adults initially identified by paroxysmal abdominal pain or anemia. In both cases, the environmental investigation evidenced one main source of lead exposure, namely a lead-glazed earthenware jug in which a drink was stored, "kefir" in the first case, and "kombucha" tea in the second one. It is recommended to search for lead intoxication in patients with unexplained anemia. Environmental sources of lead can be multiple. Their relative importance has to be ranked during the environmental investigation and among these, lead-glazed earthenware must be considered as a source of high lead exposure when drinks are stored inside and thus can soak.

  10. Mathematical modeling of hot air/electrohydrodynamic (EHD) drying kinetics of mushroom slices

    International Nuclear Information System (INIS)

    Taghian Dinani, Somayeh; Hamdami, Nasser; Shahedi, Mohammad; Havet, Michel

    2014-01-01

    Highlights: • Hot air/EHD drying behavior of thin layer mushroom slices was evaluated. • A new empirical model was proposed for drying kinetics modeling of mushroom slices. • The new model presents excellent predictions for hot air/EHD drying of mushroom. - Abstract: Researches about mathematical modeling of electrohydrodynamic (EHD) drying are rare. In this study, hot air combined with electrohydrodynamic (EHD) drying behavior of thin layer mushroom slices was evaluated in a laboratory scale dryer at voltages of 17, 19, and 21 kV and electrode gaps of 5, 6, and 7 cm. The drying curves were fitted to ten different mathematical models (Newton, Page, Modified Page, Henderson and Pabis, Logarithmic, Two-term exponential, Midilli and Kucuk, Wang and Singh, Weibull and Parabolic models) and a proposed new empirical model to select a suitable drying equation for drying mushroom slices in a hot air combined with EHD dryer. Coefficients of the models were determined by non-linear regression analysis and the models were compared based on their coefficient of determination (R 2 ), sum of square errors (SSE) and root mean square error (RMSE) between experimental and predicted moisture ratios. According to the results, the proposed model that contains only three parameters provided the best fit with the experimental data. It was closely followed by the Midilli and Kucuk model that contains four parameters. Therefore, the proposed model can present comfortable usage and excellent predictions for the moisture content changes of mushroom slices in the hot air combined with EHD drying system

  11. Microscopic observation of laser glazed yttria-stabilized zirconia coatings

    Science.gov (United States)

    Morks, M. F.; Berndt, C. C.; Durandet, Y.; Brandt, M.; Wang, J.

    2010-08-01

    Thermal barrier coatings (TBCs) are frequently used as insulation system for hot components in gas-turbine, combustors and power plant industries. The corrosive gases which come from combustion of low grade fuels can penetrate into the TBCs and reach the metallic components and bond coat and cause hot corrosion and erosion damage. Glazing the top coat by laser beam is advanced approach to seal TBCs surface. The laser beam has the advantage of forming a dense thin layer composed of micrograins. Plasma-sprayed yttria-stabilized zirconia (YSZ) coating was glazed with Nd-YAG laser at different operating conditions. The surface morphologies, before and after laser treatment, were investigated by scanning electron microscopy. Laser beam assisted the densification of the surface by remelting a thin layer of the exposed surface. The laser glazing converted the rough surface of TBCs into smooth micron-size grains with size of 2-9 μm and narrow grain boundaries. The glazed surfaces showed higher Vickers hardness compared to as-sprayed coatings. The results revealed that the hardness increases as the grain size decreases.

  12. Influence of drying conditions on the effective diffusivity and activation energy during convective air and vacuum drying of pumpkin

    Directory of Open Access Journals (Sweden)

    Liliana SEREMET (CECLU

    2015-12-01

    Full Text Available The main purpose of the work is to investigate the efficiency of convective air and vacuum processing on pumpkin drying kinetics. The pumpkin samples were of two different geometrical shapes (cylinder and cube and were dried in a laboratory scale hot air dryer using some specific parameters (constant air velocity of 1.0 m/s, three different temperatures 50, 60 and 70ºC suited to relative humidity (RH values of 9.8, 6.5, and 5.4% respectively. The vacuum drying was led at constant pressures of 5 kPa and accordance temperatures of 50, 60 and 70ºC. Moisture transfer from pumpkin slices was described by applying Fick’s diffusion model. Temperature dependence of the effective diffusivity was described by the Arrhenius-type equation. Cylindrical samples have a slightly better behaviour compared to cubic samples, due to the disposition of the tissues, and the mass and thermic transfer possibilities. Analysing the results of both drying methods, it was deduced that the most efficient method is convective air drying at 70ºC.

  13. Twenty-One at TREC-8: using Language Technology for Information Retrieval

    NARCIS (Netherlands)

    Kraaij, Wessel; Pohlmann, Renée; Hiemstra, Djoerd; Voorhees, E.M; Harman, D.K.

    2000-01-01

    This paper describes the official runs of the Twenty-One group for TREC-8. The Twenty-One group participated in the Ad-hoc, CLIR, Adaptive Filtering and SDR tracks. The main focus of our experiments is the development and evaluation of retrieval methods that are motivated by natural language

  14. The Effect of Temperature and Air Velocity on Drying Kinetics of Pistachio Nuts during Roasting by using Hot Air Flow

    Directory of Open Access Journals (Sweden)

    A Dini

    2017-10-01

    Full Text Available Introduction Pistachio nut is one of the most delicious and nutritious nuts in the world and it is being used as a saltedand roasted product or as an ingredient in snacks, ice cream, desserts, etc. The purpose of roasting is to promote flavour and texture changes in nuts that ultimately increase the overall palatability of the product.Roasting involves a number of physico-chemical changes, including heat exchange, chemical reactions and drying. Knowledge of desorption kinetics is essential to predict the behavior of the material during roasting process and to design roaster equipment.The main aim of this research was to evaluate suitable models for predicting moisture ratio, the effect of air temperature and velocity on the drying kinetics of pistachio nuts and obtain the effective diffusivity coefficient and activation energy in the drying process during the roasting of pistachio nuts. Materials and Methods Dried Ahmadaghaei pistachio nuts were supplied from Kashefan Kavir company (Doraj co. in Rafsanjan. Pistachio nuts were soaked in 17% salt solution for 8 minute and roasting was investigated at air temperatures of 120,130, 145, 160 and 170 °C and air velocities of 0.6, 0.88, 1.3, 1.72 and 2 ms-1. Five semi-theoretical and two empirical kinetic models were fitted to drying experimental data using nonlinear regression analysis techniques in the Curve Expert 2.2 computer program. Results and Discussion Tow-way ANOVA indicated that temperature and hot air velocity significantly affected the drying process during roasting of shelled pistachio nuts. The higher roasting temperatures and air velocities resulted in the higher drying rates. During first 10 min of roasting at constant air velocity of 1.3 ms-1, 64.5%, 70.3%, 77.1%, 83.5%, 89.7% of the moisture were removed at roasting air temperatures of 120 °C, 130 °C, 145 °C, 160 °C, 170 °C, respectively. The high regression coefficients (R2>0.996 and low reduced chi-square (χ2, mean relative

  15. Twenty-One at TREC-7: ad-hoc and cross-language track

    NARCIS (Netherlands)

    Hiemstra, Djoerd; Kraaij, Wessel; Voorhees, E.M; Harman, D.K.

    1999-01-01

    This paper describes the official runs of the Twenty-One group for TREC-7. The Twenty-One group participated in the ad-hoc and the cross-language track and made the following accomplishments: We developed a new weighting algorithm, which outperforms the popular Cornell version of BM25 on the ad-hoc

  16. Gothic green glazed tile from Malbork Castle: Multi-analytical study

    Czech Academy of Sciences Publication Activity Database

    Svorová Pawełkowicz, S.; Rohanová, D.; Svora, Petr

    2017-01-01

    Roč. 5, č. 1 (2017), č. článku 27. ISSN 2050-7445 Institutional support: RVO:61388980 Keywords : Antimony-doped tin oxide (ATO) * Green glazed tile * Malbork Castle * Medieval technology * Opacifiers * Silica-lead glaze Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry

  17. Highly Insulating and Light Transmitting Aerogel Glazing for Super Insulating Windows (HILIT+)

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev

    2005-01-01

    batch. Furthermore the production time has been reduced to 1/3 of the initial production time through detailed theoretical and experimental analyses of especially the supercritical washing step included in the drying phase. At the same time the production plant have been modified to recycle most...... insulation purposes. The edge seal solution shows only a very limited thermal bridge effect. The final glazing has a total solar energy transmittance above 85% and a U-value of 0.7 W/m2 K for about 14 mm aerogel thickness, which for a 20 mm thickness corresponds to a U-value of approximately 0.5 W/m2K...

  18. Comparative Study of Single-glazed and Double-glazed Windows in Terms of Energy Efficiency and Economic Expenses

    Directory of Open Access Journals (Sweden)

    Samaneh Forughian

    2017-06-01

    Full Text Available Saving fossil fuels and the use of clean sources of energy lead to reduce in building operating costs, protect the environment and people's health. Windows are the most vulnerable part of building where energy loss occurs. Double-glazed windows are very effective in keeping inside temperature isolated from outside; thereby, saving electrical and thermal energy. The current study estimates the numerical changes in cooling and heating load in case of replacement double-glazed window with single-glazed window and calculates saving level for this replacement. In this context, this paper presents a model of real samples taken in Mashhad climate. To ensure the accuracy of the simulation results, real results were compared with electricity and gas bills. To calculate energy related parameters such as cooling load, heating load, the consumption of gas and electricity, the energy simulation software (Design Builder was used. The research method was a quantitative analysis based on energy consumption modeling, associated with building windows which comes in four sections. The field study was also used to compare with real electricity and gas bills. As the first stage, samples of the plan were identified, based on the observation of climate models and library studies. Then, simulation parameters such as window materials and internal and external walls were considered. The simulation was performed based software’s parameters and model limitations were determined based on thermal, lighting, climatic and architectural parameters. Finally, the experimental and practical data were used to determine the validity of the model under Mashhad climate conditions. Overall, the results indicated that double-glazed windows could save 50% of entire building loads, 0.2% on power consumption, 16.2% on gas and 12.4% on overall households’ energy consumption.

  19. Analytical analysis of solar thermal collector with glass and Fresnel lens glazing

    Science.gov (United States)

    Zulkifle, Idris; Ruslan, Mohd Hafidz Hj; Othman, Mohd Yusof Hj; Ibarahim, Zahari

    2018-04-01

    Solar thermal collector is a system that converts solar radiation to heat. The heat will raise the temperature higher than the ambient temperature. Absorber and glazing are two important components in order to increase the temperature of the collector. The thermal absorber will release heat by convection and as radiation to the surrounding. These losses will be reduced by glazing. Other than that, glazing is beneficial for protecting the collector from dust and water. This study discusses about modelling of solar thermal collector effects of different mass flow rates with different glazing for V-groove flat plate solar collectors. The glazing used was the glass and linear Fresnel lens. Concentration ratio in this modelling was 1.3 for 0.1m solar collector thickness. Results show that solar collectors with linear Fresnel lens has the highest efficiency value of 71.18% compared to solar collectors with glass which has efficiency 54.10% with same operation conditions.

  20. Porcelain tiles by the dry route

    International Nuclear Information System (INIS)

    Melchiades, F. G.; Daros, M. T.; Boschi, A. O.

    2010-01-01

    In Brazil, the second largest tile producer of the world, at present, 70% of the tiles are produced by the dry route. One of the main reasons that lead to this development is the fact that the dry route uses approximately 30% less thermal energy them the traditional wet route. The increasing world concern with the environment and the recognition of the central role played by the water also has pointed towards privileging dry processes. In this context the objective of the present work is to study the feasibility of producing high quality porcelain tiles by the dry route. A brief comparison of the dry and wet route, in standard conditions industrially used today to produce tiles that are not porcelain tiles, shows that there are two major differences: the particle sizes obtained by the wet route are usually considerably finer and the capability of mixing the different minerals, the intimacy of the mixture, is also usually better in the wet route. The present work studied the relative importance of these differences and looked for raw materials and operational conditions that would result in better performance and glazed porcelain tiles of good quality. (Author) 7 refs.

  1. 77 FR 37477 - Federal Motor Vehicle Safety Standards; Glazing Materials

    Science.gov (United States)

    2012-06-21

    ... items of glazing are also defined according to their construction characteristics. For example, item 1... a boil and a bake test to determine whether safety glazing can withstand exposure to high... (150[emsp14][deg]F) water for three minutes and then placed in boiling water for three hours. The bake...

  2. Cleanability evaluation of ceramic glazes with nanometer far-infrared materials using contact angle measurement.

    Science.gov (United States)

    Wang, Lijuan; Liang, Jinsheng; Di, Xingfu; Tang, Qingguo

    2014-05-01

    The cleanability of easy-to-clean ceramic glazes doped with nanometer far-infrared materials was compared with that of some high-quality household ceramic glazes from the market. The cleanability was evaluated by the contact angle measurement using a sessile drop method with a Dataphysics OCA-30 contact angle analyzer. The results showed that the difference of contact angles of water on the glazes before soiling and after cleaning could be used as a parameter for evaluating the cleanability of the glazes. The relationship between cleanability and surface properties, such as surface free energy and surface topography, was investigated. The surface free energy of the samples and their components were calculated using van Oss acid-base approach. By measuring advancing and receding contact angles, the contact angle hysteresis of the ceramic glazes due to the surface topography was investigated. It was shown that the cleanability of ceramic glazes containing nanometer far-infrared materials (NFIM) is better than that of household ceramic glazes from market, due to a higher ratio of electron-acceptor parameter to electron-donor parameter, which led to the effect of water hydration as well as better hydrophilic property and increased smoothness. The contact angle measurement not only accurately evaluates the cleanability of the ceramic glazes, but also has a contribution to the study of cleanability theory. Moreover, this method is simple, convenient and less sample-consumption.

  3. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    Science.gov (United States)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  4. Water loss at normal enamel histological points during air drying at room temperature.

    Science.gov (United States)

    De Medeiros, R C G; De Lima, T A S; Gouveia, C R; De Sousa, F B

    2013-06-01

    This in vitro study aimed to quantify water loss at histological points in ground sections of normal enamel during air drying at room temperature (25°C) and relative humidity of 50%. From each of 10 ground sections of erupted permanent human normal enamel, three histological points (n = 30) located at 100, 300 and 500 μm from enamel surface and along a transversal following prisms paths were characterized regarding the mineral, organic and water volumes. Water loss during air drying was from 0 to 48 h. Drying occurred with both falling and constant-drying rates, and drying stabilization times (Teq ) ranged from 0.5 to 11 h with a mean 0.26 (±0.12)% weight loss. In some samples (n = 5; 15 points), Teq increased as a function of the distance from the enamel surface, and drying occurred at an apparent diffusion rate of 3.47 × 10⁻⁸ cm² s⁻¹. Our data provide evidence of air drying resulting in air replacing enamel's loosely bound water in prisms sheaths following a unidirectional water diffusion rate of 3.47 × 10⁻⁸ cm² s⁻¹ (from the original enamel surface inward), not necessarily resulting in water evaporating directly into air, with important implications for transport processes and optical and mechanical properties. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  5. Effect of microwave and air drying of parboiled rice on stabilization of rice bran oil

    Directory of Open Access Journals (Sweden)

    Rizk, Laila F.

    1995-06-01

    Full Text Available Two rice varieties, Giza 175 (short grain and Giza 181 (long grain were partDoiled by soaking the grains at room temperature for 20 hours and steaming for 15 min then dried either at room temperature or by microwave. The results indicated that air and microwave drying significantly increased oil extraction in both rice bran varieties. Parboiling followed by air or microwave drying produced a slight change on protein, fiber and ash content of rice bran and reduced the development of free fatty acids (F.F.A. In oil bran. Microwave samples have less F.F.A. content than the corresponding samples air dried. Oils from the cold stored rice bran presented lower F.F.A. than the corresponding oil bran stored at room temperature. The ratio between total unsaturated fatty acids and total saturated ones (Tu/Ts decreased after air and microwave drying. Results also show that air drying increased the ratio of total hydrocarbons and total sterols (Tu/Ts in both varieties while microwave decreased it.

    Dos variedades de arroz, Giza 175 (grano corto y Giza 181 (grano largo se precocieron mediante la puesta en remojo de los granos a temperatura ambiente durante 20 horas y cocimiento al vapor durante 15 minutos, luego se secaron a temperatura ambiente o por microondas. Los resultados indicaron que el secado al aire y en microondas aumentó significativamente la extracción del aceite en ambas variedades de salvado de arroz. El precocido seguido del secado al aire o en microondas produjo un cambio pequeño en el contenido en proteína, fibra y ceniza y redujo el desarrollo de ácidos grasos libres (F.F.A. en el aceite de salvado. Las muestras secadas en microondas tuvieron un menor contenido en F.F.A. que las muestras correspondientes al secado en aire. Aceites de salvado de arroz almacenado en frió presentaron menor F.F.A. que los almacenados a temperatura ambiente. La relación entre ácidos grasos insaturados totales y los saturados totales (Tu/Ts disminuy

  6. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.

    Science.gov (United States)

    Sasano, Yu; Takahashi, Shunsuke; Shima, Jun; Takagi, Hiroshi

    2010-03-31

    During bread-making processes, yeast cells are exposed to multiple stresses. Air-drying stress is one of the most harmful stresses by generation of reactive oxygen species (ROS). Previously, we discovered that the novel N-acetyltransferase Mpr1/2 confers oxidative stress tolerance by reducing intracellular ROS level in Saccharomyces cerevisiae Sigma1278b strain. In this study, we revealed that Japanese industrial baker's yeast possesses one MPR gene. The nucleotide sequence of the MPR gene in industrial baker's yeast was identical to the MPR2 gene in Sigma1278b strain. Gene disruption analysis showed that the MPR2 gene in industrial baker's yeast is involved in air-drying stress tolerance by reducing the intracellular oxidation levels. We also found that expression of the Lys63Arg and Phe65Leu variants with enhanced enzymatic activity and stability, respectively, increased the fermentation ability of bread dough after exposure to air-drying stress compared with the wild-type Mpr1. In addition, our recent study showed that industrial baker's yeast cells accumulating proline exhibited enhanced freeze tolerance in bread dough. Proline accumulation also enhanced the fermentation ability after air-drying stress treatment in industrial baker's yeast. Hence, the antioxidant enzyme Mpr1/2 could be promising for breeding novel yeast strains that are tolerant to air-drying stress. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Changes in duration of dry and wet spells associated with air temperatures in Russia

    Science.gov (United States)

    Ye, Hengchun

    2018-03-01

    This study uses daily precipitation records from 517 Russian stations (1966-2010) to examine the relationships between continuous dry and wet day duration and surface air temperature for all four seasons. The study found that both mean and extreme durations of dry periods increase with air temperature at about 7.0% (0.24 day/°C) and 7.7% (0.86 day/°C) respectively, while those of wet periods decrease at about 1.3% (-0.02 day/°C) and 2.2% (-0.10 day/°C) respectively averaged over the entire study region during summer. An increase in the duration of dry periods with higher air temperature is also found in other seasons at locations with a mean seasonal air temperature of about -5 °C or higher. Opposite relationships of shorter durations of dry periods and longer wet periods associated with higher air temperature are observed over the northern part of the study region in winter. The changes in durations of both dry and wet periods have significant correlations with the changes in total dry and wet days but are about 2.5 times higher for dry periods and 0.5 times lower for wet periods. The study also found that locations with longer durations of dry periods experience faster rates of increase in air temperature, suggesting the likelihood of exacerbating drought severity in drier and/or warmer locations for all seasons.

  8. Performance Recovery of Natural Draft Dry Cooling Systems by Combined Air Leading Strategies

    Directory of Open Access Journals (Sweden)

    Weijia Wang

    2017-12-01

    Full Text Available The cooling efficiency of natural draft dry cooling system (NDDCS are vulnerable to ambient winds, so the implementation of measures against the wind effects is of great importance. This work presents the combined air leading strategies to recover the flow and heat transfer performances of NDDCS. Following the energy balance among the exhaust steam, circulating water, and cooling air, numerical models of natural draft dry cooling systems with the combined air leading strategies are developed. The cooling air streamlines, volume effectiveness, thermal efficiency and outlet water temperature for each cooling delta of the large-scale heat exchanger are obtained. The overall volume effectiveness, average outlet water temperature of NDDCS and steam turbine back pressure are calculated. The results show that with the air leading strategies inside or outside the dry-cooling tower, the thermo-flow performances of natural draft dry cooling system are improved under all wind conditions. The combined inner and outer air leading strategies are superior to other single strategy in the performance recovery, thus can be recommended for NDDCS in power generating units.

  9. Aroma changes in fresh bell peppers (Capsicum annuum) after hot-air drying.

    NARCIS (Netherlands)

    Luning, P.A.; Yuksel, D.; Vuurst de Vries, van R.; Roozen, J.P.

    1995-01-01

    The aroma of fresh and hot-air dried bell peppers (Capsicum annuum) was evaluated by sensory and instrumental methods. Hot-air drying decreased levels of the odor compounds (Z)-3-hexenal, 2-heptanone, (Z)-2-hexenal, (E)-2-hexenal, hexanol, (Z)-3-hexanol, (E)-2-hexenol, and linalool, which have

  10. Topographic characterization of glazed surfaces

    International Nuclear Information System (INIS)

    Froeberg, Linda; Hupa, Leena

    2008-01-01

    Detailed characterization of surface microstructure, i.e. phase composition and surface geometry, has become an important criterion of glazed ceramics. Topographic characterization is an important parameter in, e.g. estimating the influence of additional films on the average roughness of a surface. Also, the microscaled and nanoscaled roughnesses correlate with the cleanability and the self-cleaning properties of the surfaces. In this work the surface geometry of several matte glazes were described by topography and roughness as given by whitelight confocal microscopy and atomic force microscopy. Different measuring parameters were compared to justify the usefulness of the techniques in giving a comprehensive description of the surface microstructure. The results suggest that confocal microscopy is well suited for giving reliable topographical parameters for matte surfaces with microscaled crystals in the surfaces. Atomic force microscopy was better suited for smooth surfaces or for describing the local topographic parameters of closely limited areas, e.g. the surroundings of separate crystals in the surface

  11. Topographic characterization of glazed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Froeberg, Linda [Process Chemistry Centre, Abo Akademi University, FI-20500 Turku (Finland)], E-mail: lfroberg@abo.fi; Hupa, Leena [Process Chemistry Centre, Abo Akademi University, FI-20500 Turku (Finland)

    2008-01-15

    Detailed characterization of surface microstructure, i.e. phase composition and surface geometry, has become an important criterion of glazed ceramics. Topographic characterization is an important parameter in, e.g. estimating the influence of additional films on the average roughness of a surface. Also, the microscaled and nanoscaled roughnesses correlate with the cleanability and the self-cleaning properties of the surfaces. In this work the surface geometry of several matte glazes were described by topography and roughness as given by whitelight confocal microscopy and atomic force microscopy. Different measuring parameters were compared to justify the usefulness of the techniques in giving a comprehensive description of the surface microstructure. The results suggest that confocal microscopy is well suited for giving reliable topographical parameters for matte surfaces with microscaled crystals in the surfaces. Atomic force microscopy was better suited for smooth surfaces or for describing the local topographic parameters of closely limited areas, e.g. the surroundings of separate crystals in the surface.

  12. MEASUREMENT OF INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPY MACHINES

    Science.gov (United States)

    The article provides background information on indoor air emissions from office equipment, with emphasis on dry-process photocopy machines. The test method is described in detail along with results of a study to evaluate the test method using four dry-process photocopy machines. ...

  13. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    Science.gov (United States)

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Measurement of natural radioactivity in commercial granites and glazing stones from Aswan area, Egypt

    International Nuclear Information System (INIS)

    Ahmad, F.; Shousha, H.A.

    2005-01-01

    Ornamental stones are considered as an important source of the mineral wealth in Egypt. These rocks have characteristics that enable them to be used in decoration as being hard, able to be polished and have low water absorption. A knowledge of radioactivity present in these natural rock samples helps to assess the possible radiological hazards to human health and hence take safety precautions if necessary. For the first time, the natural radioactivity of glazing stones used in granite possessing was measured. The concentration of natural radionuclides U-238, Th-232 and K-40 for eighteen ore and three processed granite samples from Aswan area have been determined using a shielded high purity germanium detector coupled to a computerized multichannel analyzer. Also, the gamma activities of 13 glazing stones, which are used in processing of granite, were measured. The average values of the measured activities for granite were 66.15 ± 4.48, 86.12 ± 5.43 and 1902.03 ± 50.64 Bq/kg and for glazing stones were 44.05 ± 3.54, 51.58 ± 4.44 and 87.55 ± 5.46 Bq/kg for U-238, Th-232 and K-40, respectively. The main absorbed dose rates were 167.04 ± 7.52 and 56.72 ± 7.00 n Gy/h at one meter above the ground level for granite and glazing stones, respectively. The average estimated radium equivalent was 335.75 ± 16.48 and 124.55 ± 11.36 Bq/kg for granite and glazing stones, respectively. This value is comparable with the reported values for many countries (370 Bq/kg). The external hazard index varied from 0.5 ± 0.02 to 1.79 ± 0.09 mGy/y for granite and from 0.042 ± 0.011 to 0.852 ± 0.080 mGy/y for glazing stones. Cs-137 concentration ranged from 0.15 ± 0.07 to 3.31 ± 0.29 Bq/kg for granite and from 0.29 ± 0.02 to 1.49 ± 0.010 Bq/kg for glazing stones. For glazing stones, the measured samples are acceptable for use and safe to the workers in granite processing. The radon exhalation rate for granite samples was calculated using nuclear track detector (CR-39). It was

  15. Dry deposition and soil-air gas exchange of polychlorinated biphenyls (PCBs) in an industrial area.

    Science.gov (United States)

    Bozlaker, Ayse; Odabasi, Mustafa; Muezzinoglu, Aysen

    2008-12-01

    Ambient air and dry deposition, and soil samples were collected at the Aliaga industrial site in Izmir, Turkey. Atmospheric total (particle+gas) Sigma(41)-PCB concentrations were higher in summer (3370+/-1617 pg m(-3), average+SD) than in winter (1164+/-618 pg m(-3)), probably due to increased volatilization with temperature. Average particulate Sigma(41)-PCBs dry deposition fluxes were 349+/-183 and 469+/-328 ng m(-2) day(-1) in summer and winter, respectively. Overall average particulate deposition velocity was 5.5+/-3.5 cm s(-1). The spatial distribution of Sigma(41)-PCB soil concentrations (n=48) showed that the iron-steel plants, ship dismantling facilities, refinery and petrochemicals complex are the major sources in the area. Calculated air-soil exchange fluxes indicated that the contaminated soil is a secondary source to the atmosphere for lighter PCBs and as a sink for heavier ones. Comparable magnitude of gas exchange and dry particle deposition fluxes indicated that both mechanisms are equally important for PCB movement between air and soil in Aliaga.

  16. Pulsed Streamer Discharge Characteristics of Ozone Production in Dry Air

    OpenAIRE

    Samaranayake, W.J.M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Sakugawa, T.; Hackam, R.; Akiyama, H.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 波平, 隆男; 勝木, 淳; 秋山, 秀典

    2000-01-01

    Experimental investigation of HV short pulsed streamer discharges in dry air-fed ozonizers under various operating conditions are reported. Ozone concentration, energy input and ozone production yield (efficiency) were measured at various voltages (14 to 37 kV), pulse repetition rates (25 to 400 pulses per second, pps), flow rates (1.5 to 3.0 1/min) and different gap spacings (10 to 20 mm) at a pressure of 1.01×105 Pa in dry air. A spiral copper wire (1 mm in diameter) made to a cylindrical c...

  17. Air-drying of cells, the novel conditions for stimulated synthesis of triacylglycerol in a Green Alga, Chlorella kessleri.

    Directory of Open Access Journals (Sweden)

    Takuma Shiratake

    Full Text Available Triacylglycerol is used for the production of commodities including food oils and biodiesel fuel. Microalgae can accumulate triacylglycerol under adverse environmental conditions such as nitrogen-starvation. This study explored the possibility of air-drying of green algal cells as a novel and simple protocol for enhancement of their triacylglycerol content. Chlorella kessleri cells were fixed on the surface of a glass fibre filter and then subjected to air-drying with light illumination. The dry cell weight, on a filter, increased by 2.7-fold in 96 h, the corresponding chlorophyll content ranging from 1.0 to 1.3-fold the initial one. Concomitantly, the triacylglycerol content remarkably increased to 70.3 mole% of fatty acids and 15.9% (w/w, relative to total fatty acids and dry cell weight, respectively, like in cells starved of nitrogen. Reduction of the stress of air-drying by placing the glass filter on a filter paper soaked in H2O lowered the fatty acid content of triacylglycerol to 26.4 mole% as to total fatty acids. Moreover, replacement of the H2O with culture medium further decreased the fatty acid content of triacylglycerol to 12.2 mole%. It thus seemed that severe dehydration is required for full induction of triacylglycerol synthesis, and that nutritional depletion as well as dehydration are crucial environmental factors. Meanwhile, air-drying of Chlamydomonas reinhardtii cells increased the triacylglycerol content to only 37.9 mole% of fatty acids and 4.8% (w/w, relative to total fatty acids and dry cell weight, respectively, and a marked decrease in the chlorophyll content, on a filter, of 33%. Air-drying thus has an impact on triacylglycerol synthesis in C. reinhardtii also, however, the effect is considerably limited, owing probably to instability of the photosynthetic machinery. This air-drying protocol could be useful for the development of a system for industrial production of triacylglycerol with appropriate selection of the

  18. [Chemical composition and chromaticity characteristic of Jilan glaze of Ming and Qing official kilns].

    Science.gov (United States)

    Wu, Jun-ming; Zhang, Mao-lin; Li, Qi-jiang; Wu, Juan; Quan, Kui-shan; Cao, Jian-wen

    2012-08-01

    Color glazes of Ming and Qing official kilns are excellent representatives of the famous ancient Chinese porcelains. The study of official ware with Jilan glaze has been an important topic. But it made slow progress due to the rarity of samples with strict production management and using system. The recipes, chemical composition and chromaticity characteristic of the Jilan samples excavated from official kilns in the Ming and Qing dynasties were first discussed by systematical testing with the energy dispersive X-ray fluorescence (EDXRF) and color difference meter. The results showed that the porcelain stone content in Jilan bodies of official kiln in the Ming dynasty is higher than the samples of the Qing dynasty. The manganese content in Jilan glazes of the Ming dynasty is higher than that in the Qing dynasty, while the glaze ash addition and the lightness value in the glaze are opposite.

  19. 49 CFR 571.205(a) - Glazing equipment manufactured before September 1, 2006 and glazing materials used in vehicles...

    Science.gov (United States)

    2010-10-01

    ... injuries resulting from impact to glazing surfaces, to ensure a necessary degree of transparency in motor... material that will minimize the loss of transparency, and instructions for removing frost and ice, and, at...

  20. DEHYDRATION OF CHEESE BY HOT AIR, MICROWAVE AND FREEZE-DRYING

    Directory of Open Access Journals (Sweden)

    ANA RITA C. PINHO

    2017-12-01

    Full Text Available The objective of this work was to study the dehydration of skim cheese through different methods, in particular by hot air, microwave and freeze-drying, in order to assess which of these methods would be more suitable for the development of a new product (cheese snack. For the three processes of dehydration, several temperatures, powers and times were used, respectively. The drying time was optimized to allow the water activity of the final product to be between 0.3 and 0.4. The color and texture of the product obtained by the three processes were evaluated, and the nutritional analysis (protein, lipids, ash of the product dried by hot air at 52 ºC and by microwave at 750 W and 850 W was performed. The sensory analysis of the microwave dehydrated products was also carried out. The results obtained revealed that the temperature played a relevant role in the drying time and the hardness of the product. In the dehydration by microwave, the power of 850 W resulted in a lower drying time and a better color preservation, but in a high hardness of the samples. Among the three processes studied, the microwave drying was the fastest for the water removal from the cheese.

  1. Effect of additives and steaming on quality of air dried noodles.

    Science.gov (United States)

    Gatade, Abhijeet Arun; Sahoo, Akshaya Kumar

    2015-12-01

    Texture is the most important property for consumer acceptance in cooked noodles. The air dried noodles are known to have higher cooking loss and cooking time, to that of instant fried noodles. But the fat content of instant fried noodles is more. In the present work attempts were made to optimize the moisture content so as to obtain a smooth dough for extruded noodle preparation and develop air dried noodles of low fat content with lesser cooking loss and cooking time. To meet the objectives, the effect of various additives and steaming treatment on cooking quality, sensory attributes, textural properties and microstructure of noodles were studied. Dough prepared by addition of 40 ml water to 100 g flour resulted into formation of a soft dough, leading to production of noodles of improved surface smoothness and maximum yield. The use of additives (5 g oil, 0.2 g guar gum, 2 g gluten and 1 ml of 1 % kansui solution for 100 g of flour) and steaming treatment showed significant effect on noodles quality, with respect to cooking characteristics, sensory attributes and textural properties. The microstructure images justified the positive correlation between the effects of ingredients with steaming and quality parameters of noodles. Air dried noodles with reduced cooking loss (~50 % reduction) with marginal reduction in cooking time was developed, which were having similar characteristics to that of instant fried noodles. Compared to the instant fried noodle, the prepared air dried noodle was having substantially reduced fat content (~70 % reduction). Thus the present study will be useful for guiding extrusion processes for production of air dried noodles having less cooking time and low fat content.

  2. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    Science.gov (United States)

    Gajek, M.; Lis, J.; Partyka, J.; Wójczyk, M.

    2011-10-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al2O3-SiO2, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO2, ZrO2, V2O5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6~8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5~6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO2-Al2O3, were examined with use of DTA, XRD and SEM methods.

  3. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    International Nuclear Information System (INIS)

    Gajek, M; Lis, J; Partyka, J; Wojczyk, M

    2011-01-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al 2 O 3 -SiO 2 , have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO 2 , ZrO 2 , V 2 O 5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6∼8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm 2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5∼6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO 2 -Al 2 O 3 , were examined with use of DTA, XRD and SEM methods.

  4. Development of a distributed air pollutant dry deposition modeling framework

    International Nuclear Information System (INIS)

    Hirabayashi, Satoshi; Kroll, Charles N.; Nowak, David J.

    2012-01-01

    A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. - Highlights: ► A distributed air pollutant dry deposition modeling system was developed. ► The developed system enhances the functionality of i-Tree Eco. ► The developed system employs nationally available input datasets. ► The developed system is transferable to any U.S. city. ► Future planting and protection spots were visually identified in a case study. - Employing nationally available datasets and a GIS, this study will provide urban forest managers in U.S. cities a framework to quantify and visualize urban forest structure and its air pollution removal effect.

  5. 49 CFR 238.421 - Glazing.

    Science.gov (United States)

    2010-10-01

    ... in this paragraph; (ii) The name of the manufacturer; and (iii) The type or brand identification of...; and (C) The type or brand identification of the material. (d) Glazing securement. Each exterior window... words conveying that meaning, in letters at least 3/8 of an inch high. [64 FR 25660, May 12, 1999, as...

  6. SIMULATION OF SOLAR LITHIUM BROMIDE–WATER ABSORPTION COOLING SYSTEM WITH DOUBLE GLAZED FLAT PLATE COLLECTOR FOR ADRAR

    Directory of Open Access Journals (Sweden)

    ML CHOUGUI

    2014-12-01

    Full Text Available Adrar is a city in the Sahara desert, in southern Algeria known for its hot and dry climate, where a huge amount of energy is used for air conditioning. The aim of this research is to simulate a single effect lithium bromide–water absorption chiller coupled to a double-glazed flat plate collector to supply the cooling loads for a house of 200m2 in Adrar. The thermal energy is stored in an insulated thermal storage tank. The system was designed to cover a cooling load of 10.39KW for design day of July. Thermodynamic model was established to simulate the absorption cycle. The results have shown that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 65.3 m2, which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy.

  7. The Impact of Dry Midlevel Air on Hurricane Intensity in Idealized Simulations with No Mean Flow

    Science.gov (United States)

    Braun, Scott A.; Sippel, Jason A.; Nolan, David S.

    2012-01-01

    This study examines the potential negative influences of dry midlevel air on the development of tropical cyclones (specifically, its role in enhancing cold downdraft activity and suppressing storm development). The Weather Research and Forecasting model is used to construct two sets of idealized simulations of hurricane development in environments with different configurations of dry air. The first set of simulations begins with dry air located north of the vortex center by distances ranging from 0 to 270 km, whereas the second set of simulations begins with dry air completely surrounding the vortex, but with moist envelopes in the vortex core ranging in size from 0 to 150 km in radius. No impact of the dry air is seen for dry layers located more than 270 km north of the initial vortex center (approximately 3 times the initial radius of maximum wind). When the dry air is initially closer to the vortex center, it suppresses convective development where it entrains into the storm circulation, leading to increasingly asymmetric convection and slower storm development. The presence of dry air throughout the domain, including the vortex center, substantially slows storm development. However, the presence of a moist envelope around the vortex center eliminates the deleterious impact on storm intensity. Instead, storm size is significantly reduced. The simulations suggest that dry air slows intensification only when it is located very close to the vortex core at early times. When it does slow storm development, it does so primarily by inducing outward- moving convective asymmetries that temporarily shift latent heating radially outward away from the high-vorticity inner core.

  8. OPTIMIZATION OF MICROWAVE AND AIR DRYING CONDITIONS OF QUINCE (CYDONIA OBLONGA, MILLER USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Cem Baltacioglu

    2015-03-01

    Full Text Available Effects of slice thickness of quince (Cydonia oblonga Miller , microwave incident power and air drying temperature on antioxidant activity and total phenolic content of quince were investigated during drying in microwave and air drying. Optimum conditions were found to be: i for microwave drying, 285 W and 4.14 mm thick (maximum antioxidant activity and 285 W and 6.85 mm thick (maximum total phenolic content, and ii for air drying, 75 ºC and 1.2 mm thick (both maximum antioxidant activity and total phenolic content. Drying conditions were optimized by using the response surface methodology. 13 experiments were carried out considering incident microwave powers from 285 to 795 W, air temperature from 46 to 74 ºC and slice thickness from 1.2 to 6.8 mm.

  9. Air solar collectors in building use - A review

    Science.gov (United States)

    Bejan, Andrei-Stelian; Labihi, Abdelouhab; Croitoru, Cristiana; Catalina, Tiberiu

    2018-02-01

    In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.

  10. Air solar collectors in building use - A review

    Directory of Open Access Journals (Sweden)

    Bejan Andrei-Stelian

    2018-01-01

    Full Text Available In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.

  11. Assessment of the environmental microbiological cross contamination following hand drying with paper hand towels or an air blade dryer.

    Science.gov (United States)

    Margas, E; Maguire, E; Berland, C R; Welander, F; Holah, J T

    2013-08-01

    This study compared the potential for cross contamination of the surrounding environment resulting from two different hand-drying methods: paper towels and the use of an air blade dryer. One hundred volunteers for each method washed their hands and dried them using one of the two methods. Bacterial contamination of the surrounding environment was measured using settle plates placed on the floor in a grid pattern, air sampling and surface swabs. Both drying methods produced ballistic droplets in the immediate vicinity of the hand-drying process. The air blade dryer produced a larger number of droplets which were dispersed over a larger area. Settle plates showed increased microbial contamination in the grid squares which were affected by ballistic droplets. Using the settle plates counts, it was estimated that approx. 1.7 × 10(5) cfu more micro-organisms were left on the laboratory floor (total area approx. 17.15 m(2)) after 100 volunteers used an air blade dryer compared to when paper towels were used. The two drying methods led to different patterns of ballistic droplets and levels of microbial contamination under heavy use conditions. Whilst the increase in microbial levels in the environment is not significant if only nonpathogenic micro-organisms are spread, it may increase the risk of pathogen contamination of the environment when pathogens are occasionally present on people's hands. The study suggests that the risk of cross contamination from the washroom users to the environment and subsequent users should be considered when choosing a hand-drying method. The data could potentially give guidance following the selection of drying methods on implementing measures to minimise the risk of cross contamination. © 2013 The Society for Applied Microbiology.

  12. Criticality Analysis of SFP Region I under Dry Air Condition

    International Nuclear Information System (INIS)

    Kim, Ki Yong; Kim, Min Chul

    2016-01-01

    This paper is to provide a result of the criticality evaluation under the condition that new fuel assemblies for initial fuel loading are storing in Region 1 of SFP in the dry air. The objective of this analysis is to ensure the effective neutron multiplication factor(k_e_f_f) of SFP is less than 0.95 under that condition. This analysis ensured the effective neutron multiplication factor(k_e_f_f) of Region 1 of SFP is less than 0.95 under the condition in the air. The keff in Region I of SFP under the condition of the dry air is 0.5865. The increased k_c_a_l_c of the Region 1 after the mislocated fuel assembly accident is 0.0444 at the pool flooded with un-borated water

  13. Thin layer convective air drying of wild edible plant (Allium roseum) leaves: experimental kinetics, modeling and quality.

    Science.gov (United States)

    Ben Haj Said, Leila; Najjaa, Hanen; Farhat, Abdelhamid; Neffati, Mohamed; Bellagha, Sihem

    2015-06-01

    The present study deals with the valorization of an edible spontaneous plant of the Tunisian arid areas: Allium roseum. This plant is traditionally used for therapeutic and culinary uses. Thin-layer drying behavior of Allium roseum leaves was investigated at 40, 50 and 60 °C drying air temperatures and 1 and l.5 m/s air velocity, in a convective dryer. The increase in air temperature significantly affected the moisture loss and reduced the drying time while air velocity was an insignificant factor during drying of Allium roseum leaves. Five models selected from the literature were found to satisfactorily describe drying kinetics of Allium roseum leaves for all tested drying conditions. Drying data were analyzed to obtain moisture diffusivity values. During the falling rate-drying period, moisture transfer from Allium roseum leaves was described by applying the Fick's diffusion model. Moisture diffusivity varied from 2.55 × 10(-12) to 8.83 × 10(-12) m(2)/s and increased with air temperature. Activation energy during convective drying was calculated using an exponential expression based on Arrhenius equation and ranged between 46.80 and 52.68 kJ/mol. All sulfur compounds detected in the fresh leaves were detected in the dried leaves. Convective air drying preserved the sulfur compounds potential formation.

  14. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, M; Lis, J; Partyka, J; Wojczyk, M, E-mail: mgajek@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramic, al. Mickiewicza 30, 30-059 Cracow (Poland)

    2011-10-29

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al{sub 2}O{sub 3}-SiO{sub 2}, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO{sub 2}, ZrO{sub 2}, V{sub 2}O{sub 5} on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6{approx}8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm{sup 2} (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5{approx}6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO{sub 2}-Al{sub 2}O{sub 3}, were examined with use of DTA, XRD and SEM methods.

  15. Design of solar drying-plant for bulk material drying

    Directory of Open Access Journals (Sweden)

    Peter Horbaj

    2008-11-01

    Full Text Available A generally well-known high energy requirement for technological processes of drying and the fact that the world’s supplyof the conventional energy sources has considerably decreased are the decisive factors forcing us to look for some new, if possible,renewable energy sources for this process by emphasising their environmental reliability. One of the possibilities how to replace, atleast partly, the conventional energy sources – heat in a drying process is solar energy.Air-drying of bulk materials usually has a series of disadvantages such as time expenditure, drying defects in the bulk materialand inadequate final moisture content. A method that obviates or reduces the disadvantages of air-drying and, at the same time, reducesthe costs of kiln drying, is drying with solar heat. Solar energy can replace a large part of this depletable energy since solar energy cansupply heat at the temperatures most often used to dry bulk material. Solar drying-plant offer an attractive solution.

  16. Effect of additives and steaming on quality of air dried noodles

    OpenAIRE

    Gatade, Abhijeet Arun; Sahoo, Akshaya Kumar

    2015-01-01

    Texture is the most important property for consumer acceptance in cooked noodles. The air dried noodles are known to have higher cooking loss and cooking time, to that of instant fried noodles. But the fat content of instant fried noodles is more. In the present work attempts were made to optimize the moisture content so as to obtain a smooth dough for extruded noodle preparation and develop air dried noodles of low fat content with lesser cooking loss and cooking time. To meet the objectives...

  17. Simultaneous application of microwave energy and hot air to whole drying process of apple slices: drying kinetics, modeling, temperature profile and energy aspect

    Science.gov (United States)

    Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni

    2018-02-01

    Drying kinetics, modeling, temperature profile and energy indices were investigated in apple slices during drying by a specially designed microwave-hot air domestic hybrid oven at the following conditions: 120, 150 and 180 W microwave powers coupled with 50, 60 and 70 °C air temperatures. Both sources of energy were applied simultaneously during the whole drying processes. The drying process continued until the moisture content of apple slices reached to 20% from 86.3% (wet basis, w.b). Drying times ranged from 330 to 800 min and decreased with increasing microwave power and air temperatures. The constant rate period was only observed at low microwave powers and air temperatures. Two falling rate periods were observed. Temperature of apple slices sharply increased within the first 60 min, then reached equilibrium with drying medium and finally increased at the end of the drying process. In order to describe drying behavior of apple slices nine empirical models were applied. The Modified Logistic Model fitted the best our experimental data ( R 2 = 0.9955-0.9998; χ 2 = 3.46 × 10-5-7.85 × 10-4 and RMSE = 0.0052-0.0221). The effective moisture and thermal diffusivities were calculated by Fick's second law and ranged from 1.42 × 10-9 to 3.31 × 10-9 m2/s and 7.70 × 10-9 to 12.54 × 10-9 m2/s, respectively. The activation energy ( Ea) values were calculated from effective moisture diffusivity ( Deff), thermal diffusivity ( α) and the rate constant of the best model ( k). The Ea values found from these three terms were similar and varied from 13.04 to 33.52 kJ/mol. Energy consumption and specific energy requirement of the hybrid drying of apple slices decreased and energy efficiency of the drying system increased with increasing microwave power and air temperature. Apples can be dried rapidly and effectively by use of the hybrid technique.

  18. Economical analysis of the spray drying process by pre-dehumidification of the inlet air

    Energy Technology Data Exchange (ETDEWEB)

    Madeira, A.N.; Camargo, J.R. [University of Taubate (UNITAU), SP (Brazil). Mechanical Engineering Dept.

    2009-07-01

    Spray drying is a dehumidification process by atomization in a closed chamber that aims to remove moisture of a product by heat and mass transfer from the product's contained water to the air that, in this process is previously heated. This paper presents a case study for an industry that produces food ingredients. The current process applied in the product to heat the air can uses one of these two systems: a direct heating process that burns liquid petroleum gas in contact with the inlet air or indirect heating that uses a heat exchanger which heat the air. This heating system consumes 90% of the total process energy. However, this inlet air can reach the dehumidifier with high moisture from the atmosphere condition requesting, in this case, more energy consumption according to the year's seasons. This paper promotes a utilization study of the current process through the installation of a pre-dehumidification device of the inlet air and shows a study to three different dehumidification systems that means by refrigeration, adsorption and actual comparing their performance in an energetic and economical point of view. The goals of this study are to analyze the capacity of moisture removing of each removing device, the influence of moisture variation of the inlet air in the process as well as the economic impact of each device in the global system. It concludes that the utilization of dehumidification devices can eliminate the heating system reducing this way the energy consumption. Moreover it promotes the increasing of moisture gradient between the inlet air and the product optimizing the drying process and increasing the global energy efficiency in the global system. Choosing the most appropriate system for the pre-dehumidification device depends on the desired initial and final moisture content of the product, but applying pre-dehumidifiers at the inlet air promotes an energetic optimization in the spray drying process. (author)

  19. The effect of osmotic pretreatment on the density of hot-air-dried carrot

    Directory of Open Access Journals (Sweden)

    J Soleimani

    2012-02-01

    Full Text Available Consumption of large amounts of fruits and vegetables throughout the world, have encouraged the development of various methods for their processing. Drying is considers as the most common method for preservation of vegetable and fruits. Although drying extend the shelf-life, it has various side effects on keeping quality of these foods; including decreasing of the color and texture quality as well as missing the flavor and nutritional values. These negative effects have increased the demand for the discovering the alternative drying methods and consequently for the production of fresh-like products. The aim of this study was to introduce and optimize the novel method for the drying of carrot as well as to develop and optimize the quality of osmo-air-dried carrots with special respect to the color, flavor, texture, rehydration properties, density and shriveling of the product. For this, the effect of osmotic pretreatment on the density of carrot slices was investigated, using 50% glucose syrup +5% salt at 40°C with 150 rpm, followed by complementary drying step. The result of treated group was compared with control samples which were dried only by hot-air-drier. The results showed that using osmotic pretreatment could increase the density through inhibition of the product's shrinkage. Meanwhile, in air-dried samples the density was decreased considerably and high shrinkage was also observed.

  20. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    Science.gov (United States)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  1. Hot air balloon engine

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd, 12 Lentara Street, Kenmore, Brisbane 4069 (Australia)

    2009-04-15

    This paper describes a solar powered reciprocating engine based on the use of a tethered hot air balloon fuelled by hot air from a glazed collector. The basic theory of the balloon engine is derived and used to predict the performance of engines in the 10 kW to 1 MW range. The engine can operate over several thousand metres altitude with thermal efficiencies higher than 5%. The engine thermal efficiency compares favorably with the efficiency of other engines, such as solar updraft towers, that also utilize the atmospheric temperature gradient but are limited by technical constraints to operate over a much lower altitude range. The increased efficiency allows the use of smaller area glazed collectors. Preliminary cost estimates suggest a lower $/W installation cost than equivalent power output tower engines. (author)

  2. Soft tissue adhesion of polished versus glazed lithium disilicate ceramic for dental applications.

    Science.gov (United States)

    Brunot-Gohin, C; Duval, J-L; Azogui, E-E; Jannetta, R; Pezron, I; Laurent-Maquin, D; Gangloff, S C; Egles, C

    2013-09-01

    Ceramics are widely used materials for prosthesis, especially in dental fields. Despite multiple biomedical applications, little is known about ceramic surface modifications and the resulting cell behavior at its contact. The aim of this study is to evaluate the biological response of polished versus glazed surface treatments on lithium disilicate dental ceramic. We studied a lithium disilicate ceramic (IPS e.max(®) Press, Ivoclar Vivadent) with 3 different surface treatments: raw surface treatment, hand polished surface treatment, and glazed surface treatment (control samples are Thermanox(®), Nunc). In order to evaluate the possible modulation of cell response at the surface of ceramic, we compared polished versus glazed ceramics using an organotypic culture model of chicken epithelium. Our results show that the surface roughness is not modified as demonstrated by equivalent Ra measurements. On the contrary, the contact angle θ in water is very different between polished (84°) and glazed (33°) samples. The culture of epithelial tissues allowed a very precise assessment of histocompatibility of these interfaces and showed that polished samples increased cell adhesion and proliferation as compared to glazed samples. Lithium disilicate polished ceramic provided better adhesion and proliferation than lithium disilicate glazed ceramic. Taken together, our results demonstrate for the first time, how it is possible to use simple surface modifications to finely modulate the adhesion of tissues. Our results will help dental surgeons to choose the most appropriate surface treatment for a specific clinical application, in particular for the ceramic implant collar. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Overall energy, exergy and carbon credit analysis by different type of hybrid photovoltaic thermal air collectors

    International Nuclear Information System (INIS)

    Agrawal, Sanjay; Tiwari, G.N.

    2013-01-01

    Highlights: ► Comparative study of PVT air collectors. ► CO 2 analysis of all type of PVT air collectors. ► Study of thermal energy, exergy gain and exergy efficiency. ► Exergy efficiency of unglazed hybrid PVT tiles air collector is most efficient. - Abstract: In this paper, comparative analysis of different type of photovoltaic thermal (PVT) air collector namely: (i) unglazed hybrid PVT tiles, (ii) glazed hybrid PVT tiles and (iii) conventional hybrid PVT air collectors have been carried out for the composite climate of Srinagar (India). The comparative study has been carried out in terms of overall thermal energy and exergy gain, exergy efficiency and carbon credit earned by different type of hybrid PVT air collectors. It has been observed that overall annual thermal energy and exergy gain of unglazed hybrid PVT tiles air collector is higher by 27% and 29.3% respectively as compared to glazed hybrid PVT tiles air collector and by 61% and 59.8% respectively as compared to conventional hybrid PVT air collector. It has also been observed that overall annual exergy efficiency of unglazed and glazed hybrid PVT tiles air collector is higher by 9.6% and 53.8% respectively as compared to conventional hybrid PVT air collector. On the basis of comparative study, it has been concluded that CO 2 emission reduction per annum on the basis of overall thermal energy gain of unglazed and glazed hybrid PVT tiles air collector is higher by 62.3% and 27.7% respectively as compared to conventional hybrid PVT air collector and on the basis of overall exergy gain it is 59.7% and 22.7%.

  4. Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments

    Directory of Open Access Journals (Sweden)

    Seyed-Hassan Miraei Ashtiani

    2017-06-01

    Full Text Available The drying kinetics of peppermint leaves was studied to determine the best drying method for them. Two drying methods include hot-air and infrared techniques, were employed. Three different temperatures (30, 40, 50 °C and air velocities (0.5, 1, 1.5 m/s were selected for the hot-air drying process. Three levels of infrared intensity (1500, 3000, 4500 W/m2, emitter-sample distance (10, 15, 20 cm and air speed (0.5, 1, 1.5 m/s were used for the infrared drying technique. According to the results, drying had a falling rate over time. Drying kinetics of peppermint leaves was explained and compared using three mathematical models. To determine coefficients of these models, non-linear regression analysis was used. The models were evaluated in terms of reduced chi-square (χ2, root mean square error (RMSE and coefficient of determination (R2 values of experimental and predicted moisture ratios. Statistical analyses indicated that the model with the best fitness in explaining the drying behavior of peppermint samples was the Logarithmic model for hot-air drying and Midilli model for infrared drying. Moisture transfer in peppermint leaves was also described using Fick’s diffusion model. The lowest effective moisture diffusivity (1.096 × 10−11 m2/s occurred during hot-air drying at 30 °C using 0.5 m/s, whereas its highest value (5.928 × 10−11 m2/s belonged to infrared drying using 4500 W/m2 infrared intensity, 0.5 m/s airflow velocity and 10 cm emitter-sample distance. The activation energy for infrared and hot-air drying were ranged from 0.206 to 0.439 W/g, and from 21.476 to 27.784 kJ/mol, respectively.

  5. Influence of alumina characteristics on glaze properties

    Directory of Open Access Journals (Sweden)

    Arrufat, S.

    2010-10-01

    Full Text Available Aluminium oxide is a synthetic raw material manufactured from bauxite by the Bayer process, whose Al2O3 content typically exceeds 99%. Four main types of alumina can be defined, depending on the processing used: hydrargillite Al(OH3, boehmite AlOOH, transition aluminas (calcined at low temperatures, 1000 °C, with an intermediary crystallographic structure between hydrates and alpha alumina, and α-Al2O3 (calcined at high temperatures, >1100 °C. In glaze manufacturing, α-Al2O3 is the main type of alumina used. This raw material acts as a matting agent: the matt effect depends on alumina particle size and content in the glaze. This study examines the effect of the degree of alumina calcination on glaze technical and aesthetic properties. For this purpose, aluminas with different degrees of calcination were added to a glaze formulated with a transparent frit and kaolin, in order to simplify the system to be studied. The results show that, depending on the degree of calcination, alumina particles can react with the glaze components (SiO2, CaO, and ZnO to form new crystalline phases (anorthite and gahnite. Both crystallisations extract CaO and ZnO from the glassy phase, increasing glassy phase viscosity. The variation in crystalline phases and glassy phase viscosity yields glazes with different technical and aesthetic properties.

    El óxido de aluminio es una materia prima sintética fabricada a partir de la bauxita por medio del proceso Bayer, cuyo contenido de Al2O3 supera, por regla general, el 99%. Se pueden definir cuatro tipos de alúmina, en función del tipo de proceso usado: hidrargilita Al(OH3, boehmita AlOOH, alúminas de transición (calcinadas a bajas temperaturas, 1000 °C, con una estructura cristalográfica intermedia entre los hidratos y la alfa alúmina, y la α-Al2O3 (calcinada a

  6. performance simulation of a natural circulation solar air

    African Journals Online (AJOL)

    User

    in a single glazed flat plate natural circulation solar a prepared in modules .... Nigerian Journal of Technology, used instead of ... boundary associated with the melting the phase ...... Mathematical Modeling of the Thin Layer Drying of Sweet ...

  7. Measurement of transient thickness between the body and glaze layers of ancient porcelains using microprobe EDXRF technique

    International Nuclear Information System (INIS)

    Peng Zicheng

    2004-01-01

    The oxide contents of TiO 2 , MnO, SrO and Fe 2 O 3 in the body and glaze layers of the Jiao-Tan-Xia (JTX) and Lao-Hu-Dong (LHD) porcelains in Southern Song Dynasty (1127-1279 A.D.) have been determined using an International Eagle-II μ-probe EDXRF spectrometer. The results show that the contents in the body are much different from those in the glaze one. Therefore, the transient thickness (TT) between the body and glaze layers can be measured through determination of a distance of the drift change in the chemical contents. The TT average for the JTX porcelains is 161 μm, while that for the LHD porcelains is 258 μm, which are consistent with a range of 0.15-0.3 mm in the Ru-Yao porcelains. The different TT is related to the variances in firing temperature and raw material for manufacturing the respective porcelains. (authors)

  8. Nitrogen mineralization from anaerobically digested centrifuge cake and aged air-dried biosolids.

    Science.gov (United States)

    Kumar, Kuldip; Hundal, Lakhwinder S; Cox, Albert E; Granato, Thomas

    2014-09-01

    This study was conducted to estimate nitrogen (N) mineralization of anaerobically digested centrifuge cake from the Stickney Water Reclamation Plant (SWRP) and Calumet Water Reclamation Plant (CWRP), lagoon-aged air-dried biosolids from the CWRP, and Milorganite at three rates of application (0, 12.5 and 25 Mg ha(-1)). The N mineralized varied among biosolids as follows: Milorganite (44%) > SWRP centrifuge cake (35%) > CWRP centrifuge cake (31%) > aged air-dried (13%). The N mineralized in the SWRP cake (32%) and CWRP aged air-dried biosolids (12%) determined from the 15N study were in agreement with the first study. The N mineralization value for centrifuge cake biosolids observed in our study is higher than the value given in the Part 503 rule and Illinois Part 391 guidelines. These results will be used to fine-tune biosolids application rate to match crop N demand without compromising yield while minimizing any adverse effect on the environment.

  9. Highly insulating glazing in new multi-storey buildings; Hoejisolerende glaspartier i nye etageboliger

    Energy Technology Data Exchange (ETDEWEB)

    Engelund Thomsen, K.; Schmidt, H.; Aggerholm, S.

    2001-07-01

    The purpose of this report is to illustrate how highly insulating types of glazing can be used in multi-storey buildings for housing in new ways. These are energy efficient and provide good indoor climate and also satisfy requirements to high architectural quality. The project has resulted in a number of design proposal demonstrating how new types of glazing can be fitted into multi-storey buildings and how new facade expressions, space and lighting effects can be obtained by using highly insulating glass areas. The project is collaboration between the architects Boje Lundgaard and Lene Tranberg's Tegnestue, KAB Bygge og Boligadministration and Danish Building and Urban Research. Calculations of heat demand suggest that it is possible to meet the targets outlined in the Danish Government's action plan for energy. Energy 21 by using new types of highly insulating glazing in new buildings. Another 33% reduction of the heating demand is targeted in relation to existing requirements in the Danish Building Regulations 1995 (BR 95) and the Danish Building Regulations for Small Dwellings 1998 (BR-S 98). The project builds on experience gained from 'High-insulated Glass House' (Wittchen and Aggerholm, 1999) built on the housing estage Egebjerggaard in Ballerup, a suburb of Copenhagen. Examples of existing multi-storey buildings with glass facades show extensive use of glazing as early as 1830 in Spain. Walls preceding the curtain wall were built from wood and glass and rested on stone corbels at about 1 m from the load-bearing facade. The first multi-storey buildings with facades entirely made from glass date from the 1920s. The architect Le Corbusier was the first to create a building system that facilitated the construction of non-loadbearing facades. Various conditions must be especially considered at the design of facades with highly insulating glass areas, i.a. type of glass and glazing, solar shadings, frame constructions and airtightness

  10. Design and evaluation of daylighting applications of holographic glazings

    Energy Technology Data Exchange (ETDEWEB)

    Papamichael, K.; Ehrlich, C.; Ward, G.

    1996-12-01

    According to the contractual agreement, BTP would develop a computer model of the POC holographic structures and then simulate the performance of alternative designs using the RADIANCE lighting and rendering computer program [Ward 1990]. The RADIANCE model would then be used to evaluate the daylight performance of alternative designs of holographic glazings in a prototypical office space. The simulation process would be validated against actual photometric measurements of holographic glazing samples developed by POC. The results would be used to evaluate the potential for increased electric lighting savings through increased daylight illuminance levels at distances more than 15 ft--20 ft (4.6 m--6.1 m ) from the window wall.

  11. Environmental assessment of electrochromic glazing production

    International Nuclear Information System (INIS)

    Syrrakou, E.; Papaefthimiou, S.; Yianoulis, P.

    2005-01-01

    The life cycle analysis method was used to determine the environmental impacts associated with the production of an electrochromic (EC) glazing (called ECD). This paper describes the inventory analysis for all the basic materials used during the manufacture of the ECD, i.e. K-Glass, tungsten oxide (WO 3 ), poly-methyl methacrylate (PMMA), propylene carbonate (PC), lithium perchlorate (LiClO 4 ) and acetic silicone sealant. K-Glass, PC and PMMA account for the 98% of the total device mass and the CO 2 emissions during their production processes are 810 g. The total embodied energy was estimated to be 49 MJ/ECD, with 32.1 MJ/unit of them derived from the K-Glass. The comparison of the total embodied energies of the ECD and various insulating glass units concluded that mass-produced EC glazings could easily compete with them in terms of environmental performance, anticipating cost attenuation and overall thermal and optical behavior. The above analysis could be implemented for the reduction of the embodied energy of the ECD life cycle, since it is proposed as an energy saving device. (Author)

  12. Characteristics of ancient Egyptian glazed ceramic objects from Fatimid and Mamluk periods as revealed by ion beam analysis

    International Nuclear Information System (INIS)

    Sadek, Hamada; Abd El Hady M M

    2012-01-01

    Ion beam analysis (PIXE, μPIXE) has been successfully applied in analysis of archaeological materials, it has many advantages. In this work Ion Beam Analysis (IBA) used in analysis of ancient Egyptian glazed ceramic from 10th to the 16th centuries (Fatimid and Mamluk periods). Glazed ceramic samples from Al-Fustat Excavation store have been chosen to represent different colours (green, blue, brown, black ...etc), the colours of glaze depend on many factors such as oxides present in the glaze layer, fluxes and the conditions in which objects had been manufactured in the past. Ion Beam allows the identification of elemental composition of the glaze layer i.e., the information about colorants used in glaze, which is of great importance for compositional data play a key role in solving questions concerning dating, provenance, technology, use and the relationship between ancient cultures with the environment.

  13. Thin layer convective air drying of wild edible plant (Allium roseum) leaves: experimental kinetics, modeling and quality

    OpenAIRE

    Ben Haj Said, Leila; Najjaa, Hanen; Farhat, Abdelhamid; Neffati, Mohamed; Bellagha, Sihem

    2014-01-01

    The present study deals with the valorization of an edible spontaneous plant of the Tunisian arid areas: Allium roseum. This plant is traditionally used for therapeutic and culinary uses. Thin-layer drying behavior of Allium roseum leaves was investigated at 40, 50 and 60 °C drying air temperatures and 1 and l.5 m/s air velocity, in a convective dryer. The increase in air temperature significantly affected the moisture loss and reduced the drying time while air velocity was an insignificant f...

  14. The provenance study of Chinese ancient color glaze from Shanxi by INAA and factor analysis

    International Nuclear Information System (INIS)

    Cheng, L.; Ding, X.L.; Feng, S.L.; Feng, X.Q.; Lu, Z.R.

    2005-01-01

    This paper reports the results of the provenance study of Chinese ancient color glaze in Shanxi. The minor and trace elements of body of color glaze in different dynasty from Xiyue temper kiln and that of Lidipo kiln in Ming Dynasty determined by INAA, some of ancient porcelain from Lidipo kiln were measured, also. The factor analysis showed that provenances of the ancient color glazes from Xiyue Temple that were produced during Song Dynasty to the early Qing Dynasty were in the place of the Xiyue kiln, and body material of ancient color have little been changed, on the other hand, that of Later Qing Dynasty were-produced from Lidipo kiln. Different color glazes were measured by SRXRF and it proved the colored elements were Fe and Cu.

  15. Turbulent transport across an interface between dry and humid air in a stratified environment

    Science.gov (United States)

    Gallana, Luca; de Santi, Francesca; di Savino, Silvio; Iovieno, Michele; Ricchiardone, Renzo; Tordella, Daniela

    2014-11-01

    The transport of energy and water vapor across a thin layer which separates two decaying isotropic turbulent flows with different kinetic energy and humidity is considered. The interface is placed in a shearless stratified environment in temporal decay. This system reproduces a few aspects of small scale turbulent transport across a dry air/moist air interface in an atmospheric like context. In our incompressible DNS at Reλ = 250 , Boussinesq's approximation is used for momentum and energy transport while the vapor is modeled as a passive scalar (Kumar, Schumacher & Shaw 2014). We investigated different stratification levels with an initial Fr between 0.8 and 8 in presence of a kinetic energy ratio equal to 7. As the buoyancy term becomes of the same order of the inertial ones, a spatial redistribution of kinetic energy, dissipation and vapor concentration is observed. This eventually leads to the onset of a well of kinetic energy in the low energy side of the mixing layer which blocks the entrainment of dry air. Results are discussed and compared with laboratory and numerical experiments. A posteriori estimates of the eventual compression/expansion of fluid particles inside the interfacial mixing layer are given (Nance & Durran 1994).

  16. Innovations for glazing of buildings; Innovationen fuer die Verglasung von Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Wittwer, V. [Fraunhofer-Inst. fuer Solare Energiesysteme, Freiburg (Germany). Abt. Thermische und Optische Systeme

    1998-02-01

    There are two main aspects in the development of new glazing. On the one hand, windows with extremely low thermal conductivity are wanted. On the other hand, solar irradiation should contribute to thermal gains during the heating season. A large number of different coatings and window systems is suited for many different applications. In particular for the prevention of overheating in the summer, there is a huge interest in glazing regulating the irradiation itself without additional mechanical devices. Indeed, innovations have sprung using several of these ideas. (orig.) [Deutsch] Bei der Entwicklung neuer Verglasungen spielen zwei Gesichtspunkte eine hervorragende Rolle. Zum einen ist man an Fenstern mit sehr geringen Waermeverlusten interessiert. Zum anderen soll aber auch die solare Einstrahlung waehrend der Heizperiode zu thermischen Gewinnen beitragen. Die Vielfalt der einsetzbaren Beschichtungen und Fenstersysteme ermoeglicht eine breite Palette von Anwendungsmoeglichkeiten. Insbesondere um Ueberhitzungsprobleme im Sommer auszuschliessen, ist man an Verglasungen interessiert, die die Einstrahlung selber, d.h. ohne mechanische Zusaetze, regeln. Tatsaechlich fuehren hierfuer verschiedene Ansaetze zu Neuentwicklungen. (orig.)

  17. Influence of drying air parameters on mass transfer characteristics of apple slices

    Science.gov (United States)

    Beigi, Mohsen

    2016-10-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  18. Neutron activation analysis of the arovenance relation of tang tri-color glazed potteryies of huangye kiln and yaozhou kiln

    International Nuclear Information System (INIS)

    Li Guoxia; Zhao Weijuan; Gao Zhengyao; Xie Jianzhong; Guo Min

    2006-01-01

    The technique of neutron activation analysis (NAA) has been employed to measure the content of 29 kinds of elements in the Tang Tri-color glazed potteryies of Huangye kiln and Yaozhou kiln. Then a fuzzy cluster analysis has been conducted to the NAA data. The results indicate that the places of origin of raw materials of body samples in the Tang Tri-color glazed potteryies of Huangye kiln are very concentrated, and that the places of origin of raw materials of body and glaze samples are scattered the places of origin of raw materials of the body and glaze raw material cover that of the body raw material. The source of raw materials of samples in the Tang Tri-color glazed potteryies of Huangye kiln is obviously different from that of samples in the Tang Tri-color glazed potteryies of Yaozhou kiln. (authors)

  19. Effect of inspired air conditions on exercise-induced bronchoconstriction and urinary CC16 levels in athletes.

    Science.gov (United States)

    Bolger, C; Tufvesson, E; Anderson, S D; Devereux, G; Ayres, J G; Bjermer, L; Sue-Chu, M; Kippelen, P

    2011-10-01

    Injury to the airway epithelium has been proposed as a key susceptibility factor for exercise-induced bronchoconstriction (EIB). Our goals were to establish whether airway epithelial cell injury occurs during EIB in athletes and whether inhalation of warm humid air inhibits this injury. Twenty-one young male athletes (10 with a history of EIB) performed two 8-min exercise tests near maximal aerobic capacity in cold dry (4°C, 37% relative humidity) and warm humid (25°C, 94% relative humidity) air on separate days. Postexercise changes in urinary CC16 were used as a biomarker of airway epithelial cell perturbation and injury. Bronchoconstriction occurred in eight athletes in the cold dry environment and was completely blocked by inhalation of warm humid air [maximal fall in forced expiratory volume in 1 s = 18.1 ± 2.1% (SD) in cold dry air and 1.7 ± 0.8% in warm humid air, P air [median CC16 increase pre- to postchallenge = 1.91 and 0.35 ng/μmol in cold dry and warm humid air, respectively, in athletes with EIB (P = 0.017) and 1.68 and 0.48 ng/μmol in cold dry and warm humid air, respectively, in athletes without EIB (P = 0.002)]. The results indicate that exercise hyperpnea transiently disrupts the airway epithelium of all athletes (not only in those with EIB) and that inhalation of warm moist air limits airway epithelial cell perturbation and injury.

  20. Surface characterization of polymers used in fabrication of interim prostheses after treatment with photopolymerized glaze

    International Nuclear Information System (INIS)

    Santos, Daniela Micheline dos; Commar, Betina Chiarelo; Rocha Bonatto, Liliane da; Freitas da Silva, Emily Vivianne; Sônego, Mariana Vilela; Rangel, Elidiane Cipriano; Pesqueira, Aldieris Alves; Goiato, Marcelo Coelho

    2017-01-01

    The material used for interim prostheses fabrication must present excellent physical properties for greater longevity in the face of environmental conditions, which can occur in the oral cavity. The purpose of this study was to evaluate the effect of a photopolymerized glaze on the physical and mechanical properties of polymers used for the fabrication of interim prostheses, before and after thermocycling and immersion in staining solutions. One hundred samples of composite and acrylic resins were fabricated: Dencor chemically activated acrylic resin (CAAR) (n = 20) and heat-polymerized acrylic resin (HPAR) (n = 20), Charisma (n = 20), Structur (n = 20), and Protemp (n = 20). A mechanical polishing was performed on half of the samples, and a chemical polishing was performed on the remaining samples. Subsequently, all samples were submitted to thermocycling and immersion in coffee staining solution for 21 days. Analysis of color and microhardness, as well as atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive x-ray spectrometry (EDS) were performed. The data were submitted to repeated-measures analysis of variance (ANOVA), followed by the Tukey test (α = 0.05) and the Student t-test (α = 0.05). It was verified that the glaze decreased the chromatic alteration values, and increased the microhardness values of the samples, with the exception of the Charisma resin. The samples that did not receive chemical polishing had the greatest number of surface irregularities. This study concluded that the groups with glaze presented less color alteration. In addition, Charisma and Structur resins exhibited the greatest chromatic stability. As to the microhardness, the values were greater when the samples were treated with the glaze, with the exception of the Charisma group. - Highlights: • Polymers used in fabrication of interim prostheses were analyzed. • The influence of a chemical polishing on these polymers was analyzed.

  1. Surface characterization of polymers used in fabrication of interim prostheses after treatment with photopolymerized glaze

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Daniela Micheline dos, E-mail: danielamicheline@foa.unesp.br [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ Estadual Paulista (UNESP), José Bonifácio St., 1193, Aracatuba, São Paulo 16015-050 (Brazil); Commar, Betina Chiarelo; Rocha Bonatto, Liliane da; Freitas da Silva, Emily Vivianne; Sônego, Mariana Vilela [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ Estadual Paulista (UNESP), José Bonifácio St., 1193, Aracatuba, São Paulo 16015-050 (Brazil); Rangel, Elidiane Cipriano [Technological Plasma Laboratory (LaPTec), Experimental Campus of Sorocaba, Univ Estadual Paulista (UNESP), Tres de Março Av., 511, Sorocaba, Sao Paulo, 18087-180 (Brazil); Pesqueira, Aldieris Alves; Goiato, Marcelo Coelho [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ Estadual Paulista (UNESP), José Bonifácio St., 1193, Aracatuba, São Paulo 16015-050 (Brazil)

    2017-02-01

    The material used for interim prostheses fabrication must present excellent physical properties for greater longevity in the face of environmental conditions, which can occur in the oral cavity. The purpose of this study was to evaluate the effect of a photopolymerized glaze on the physical and mechanical properties of polymers used for the fabrication of interim prostheses, before and after thermocycling and immersion in staining solutions. One hundred samples of composite and acrylic resins were fabricated: Dencor chemically activated acrylic resin (CAAR) (n = 20) and heat-polymerized acrylic resin (HPAR) (n = 20), Charisma (n = 20), Structur (n = 20), and Protemp (n = 20). A mechanical polishing was performed on half of the samples, and a chemical polishing was performed on the remaining samples. Subsequently, all samples were submitted to thermocycling and immersion in coffee staining solution for 21 days. Analysis of color and microhardness, as well as atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive x-ray spectrometry (EDS) were performed. The data were submitted to repeated-measures analysis of variance (ANOVA), followed by the Tukey test (α = 0.05) and the Student t-test (α = 0.05). It was verified that the glaze decreased the chromatic alteration values, and increased the microhardness values of the samples, with the exception of the Charisma resin. The samples that did not receive chemical polishing had the greatest number of surface irregularities. This study concluded that the groups with glaze presented less color alteration. In addition, Charisma and Structur resins exhibited the greatest chromatic stability. As to the microhardness, the values were greater when the samples were treated with the glaze, with the exception of the Charisma group. - Highlights: • Polymers used in fabrication of interim prostheses were analyzed. • The influence of a chemical polishing on these polymers was analyzed.

  2. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment

    Science.gov (United States)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42 %. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments.

  3. Reduced heat stress in offices in the tropics using solar powered drying of the supply air

    DEFF Research Database (Denmark)

    Gunnarsen, Lars; Santos, A M B

    2002-01-01

    air may facilitate personal cooling by increased evaporation of sweat. Heat acclimatized people with efficient sweating may in particular benefit from this cooling. A prototype solar powered supply system for dried-only air was made. Air from the system was mixed with room air, heated to six different...... content of room air, temperature of supply air and moisture content of supply air was developed based on the experiments. Reduction of moisture content in the supply air by 1.6 g/kg had the same effect as lowering the operative temperature by 1 degree C. The solar-powered system for supplying dry air...... is a low-cost alternative to traditional air conditioning in hot and humid regions....

  4. Evaluation of green tea extract as a glazing material for shrimp frozen by cryogenic freezing.

    Science.gov (United States)

    Sundararajan, Srijanani; Prudente, Alfredo; Bankston, J David; King, Joan M; Wilson, Paul; Sathivel, Subramaniam

    2011-09-01

    Solutions of green tea (Camellia sinensis) extract (GTE) in distilled water were evaluated as a glazing material for shrimp frozen by cryogenic freezing. Total of 2%, 3%, and/or 5% GTE solutions (2GTE, 3GTE, 5GTE) were used for glazing. Distilled water glazed (GDW) and nonglazed shrimp (NG) served as controls. The GTE was characterized by measuring color, pH, (o) Brix, total phenols, and % antiradical activity. Individual catechins were identified by HPLC. The freezing time, freezing rate, and energy removal rate for freezing shrimp by cryogenic freezing process were estimated. The frozen shrimp samples were stored in a freezer at -21 °C for 180 d. Samples were analyzed for pH, moisture content, glazing yield, thaw yield, color, cutting force, and thiobarbituric acid reactive substances (TBARS) after 1, 30, 90, and 180 d. The HPLC analysis of GTE revealed the presence of catechins and their isomers and the total polyphenol content was 148.10 ± 2.49 g/L. The freezing time (min) and energy removal rate (J/s) were 48.67 ± 2.3 and 836.67 ± 78.95, respectively. Glazed samples had higher moisture content compared to NG shrimp after 180 d storage. GTE was effective in controlling the lipid oxidation in shrimp. Glazing with GTE affected a* and b* color values, but had no significant effect on the L* values of shrimp. © 2011 Institute of Food Technologists®

  5. The effect of glazing and aging on the surface properties of CAD/CAM resin blocks.

    Science.gov (United States)

    Tekçe, Neslihan; Fidan, Sinan; Tuncer, Safa; Kara, Dilan; Demirci, Mustafa

    2018-02-01

    To investigate the effect of accelerated aging on surface properties of glazed CAD/CAM resin blocks using a 2D surface profilometer and a 3D non-contact optical profilometer. Three types of CAD/CAM resin restorative materials, LAVA Ultimate (3M ESPE, St Paul, MN, USA), VITA Enamic (Vita Zahnfabrik H. Rauter, Bad Säckingen, Germany), and Cerasmart (GC Corparation, Tokyo, Japan) were used for this study. CAD/CAM blocks were cut in 3-mm thickness slabs and divided into three groups; Group 1: control group (specimens polished with 600 grit SCI paper); Group 2: specimens sandblasted, silanized, and glazed with Optiglaze Color (GC); Group 3: glazed specimens subjected to 5000 thermocycles (n=15). The surface roughness (R a and R z ) was evaluated using a profilometer and a 3D scanning instrument. Data were analyzed using two-way ANOVA and Tukey's post-hoc test ( P .05). For VITA and Cerasmart, the specimens in Group 1 exhibited significantly higher R a values than Group 2 ( P .05). Glaze material Optiglaze Color makes CAD/CAM resin surfaces smooth and glazed CAD/CAM surfaces seem resistant to deterioration under 5000 thermocycles.

  6. Drying characteristics of zucchini and empirical modeling of its drying process

    Directory of Open Access Journals (Sweden)

    Naciye Kutlu

    2017-10-01

    Full Text Available The aim of the study was to dry zucchini (Cucurbita pepo by two different methods (convective hot-air (CHD and microwave-assisted drying (MWD. The effect of air temperature (60, 70 and 80°C, microwave (MW power (180, 360, 540 W and sample thickness (5 and 10 mm on some drying characteristics of zucchini were investigated. Thirteen mathematical models available in the literature were fitted to the experimental moisture ratio data. The coefficients of the models were determined by non-linear regression analysis. It was determined that the model that fits the moisture ratio data the best varies at different drying conditions. Increasing drying temperature and MW power and reducing sample thickness improved the drying rate and drying time. Drying in microwave has reduced the drying time by 52-64% for zucchini. It was found that the effective moisture diffusivities increased with increasing temperature and MW power. MWD samples had better rehydration ratios compared to ones dried only in tray drier for 5 mm thickness.  

  7. Fabricate-On-Demand Vacuum Insulating Glazings

    Energy Technology Data Exchange (ETDEWEB)

    McCamy, James W. [PPG Industries, Inc., Pittsburgh, PA (United States)

    2017-09-19

    PPG proposed to design a fabricate-on-demand manufacturing process to overcome the cost and supply chain issues preventing widespread adoption of vacuum insulated glazing (VIG) units. To do so, we focused on improving three areas of VIG manufacturing that drive high costs and limit the ability for smaller manufacturers to enter the market: edge sealing, pillar design/placement, and evacuating the VIG.

  8. In vitro analysis of different properties of acrylic resins for ocular prosthesis submitted to accelerated aging with or without photopolymerized glaze

    International Nuclear Information System (INIS)

    Santos, Daniela Micheline dos; Nagay, Bruna Egumi; Freitas da Silva, Emily Vivianne; Bonatto, Liliane da Rocha; Sonego, Mariana Vilela; Moreno, Amália; Rangel, Elidiane Cipriano; Cruz, Nilson Cristino da; Goiato, Marcelo Coelho

    2016-01-01

    The effect of a photopolymerized glaze on different properties of acrylic resin (AR) for ocular prostheses submitted to accelerated aging was investigated. Forty discs were divided into 4 groups: N1 AR without glaze (G1); colorless AR without glaze (G2); N1 AR with glaze (G3); and colorless AR with glaze (G4). All samples were polished with sandpaper (240, 600 and 800-grit). In G1 and G2, a 1200-grit sandpaper was also used. In G3 and G4, samples were coated with MegaSeal glaze. Property analysis of color stability, microhardness, roughness, and surface energy, and assays of atomic force microscopy, scanning electron microscopy, and energy-dispersive spectroscopy were performed before and after the accelerated aging (1008 h). Data were submitted to the ANOVA and Tukey Test (p < 0.05). Groups with glaze exhibited statistically higher color change and roughness after aging. The surface microhardness significantly decreased in groups with glaze and increased in groups without glaze. The surface energy increased after the aging, independent of the polishing procedure. All groups showed an increase of surface irregularities. Photopolymerized glaze is an inadequate surface treatment for AR for ocular prostheses and it affected the color stability, roughness, and microhardness. The accelerated aging interfered negatively with the properties of resins. - Highlights: • We analyzed the influence of polishing on two acrylic resins for ocular prosthesis. • We performed different analyzes of esthetic, mechanical and physical properties. • The glaze is an inadequate surface treatment to ocular prosthesis acrylic resin.

  9. In vitro analysis of different properties of acrylic resins for ocular prosthesis submitted to accelerated aging with or without photopolymerized glaze

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Daniela Micheline dos, E-mail: danielamicheline@foa.unesp.br [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Sao Paulo State University (UNESP), Aracatuba, Sao Paulo (Brazil); Nagay, Bruna Egumi; Freitas da Silva, Emily Vivianne; Bonatto, Liliane da Rocha; Sonego, Mariana Vilela [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Sao Paulo State University (UNESP), Aracatuba, Sao Paulo (Brazil); Moreno, Amália [Department of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais (Brazil); Rangel, Elidiane Cipriano; Cruz, Nilson Cristino da [Technological Plasma Laboratory (LaPTec), Experimental Campus of Sorocaba, UNESP, Sorocaba, Sao Paulo (Brazil); Goiato, Marcelo Coelho [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Sao Paulo State University (UNESP), Aracatuba, Sao Paulo (Brazil)

    2016-12-01

    The effect of a photopolymerized glaze on different properties of acrylic resin (AR) for ocular prostheses submitted to accelerated aging was investigated. Forty discs were divided into 4 groups: N1 AR without glaze (G1); colorless AR without glaze (G2); N1 AR with glaze (G3); and colorless AR with glaze (G4). All samples were polished with sandpaper (240, 600 and 800-grit). In G1 and G2, a 1200-grit sandpaper was also used. In G3 and G4, samples were coated with MegaSeal glaze. Property analysis of color stability, microhardness, roughness, and surface energy, and assays of atomic force microscopy, scanning electron microscopy, and energy-dispersive spectroscopy were performed before and after the accelerated aging (1008 h). Data were submitted to the ANOVA and Tukey Test (p < 0.05). Groups with glaze exhibited statistically higher color change and roughness after aging. The surface microhardness significantly decreased in groups with glaze and increased in groups without glaze. The surface energy increased after the aging, independent of the polishing procedure. All groups showed an increase of surface irregularities. Photopolymerized glaze is an inadequate surface treatment for AR for ocular prostheses and it affected the color stability, roughness, and microhardness. The accelerated aging interfered negatively with the properties of resins. - Highlights: • We analyzed the influence of polishing on two acrylic resins for ocular prosthesis. • We performed different analyzes of esthetic, mechanical and physical properties. • The glaze is an inadequate surface treatment to ocular prosthesis acrylic resin.

  10. Illustration of compositional variations over time of Chinese porcelain glazes combining micro-X-ray Fluorescence spectrometry, multivariate data analysis and Seger formulas

    Energy Technology Data Exchange (ETDEWEB)

    Van Pevenage, J., E-mail: Raman@UGent.be [Department of Analytical Chemistry, Raman Spectroscopy Research Group, Ghent University, Krijgslaan 281, S12, B-9000 Ghent (Belgium); Verhaeven, E. [Department of Conservation and Restoration, University College Antwerp, Blindestraat 9, B-2000 Antwerp (Belgium); Vekemans, B. [Department of Analytical Chemistry, Ghent University, Krijgslaan 281, S12, B-9000 Ghent (Belgium); Lauwers, D., E-mail: Raman@UGent.be [Department of Analytical Chemistry, Raman Spectroscopy Research Group, Ghent University, Krijgslaan 281, S12, B-9000 Ghent (Belgium); Herremans, D.; De Clercq, W. [Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, B-9000 Ghent (Belgium); Vincze, L. [Department of Analytical Chemistry, Ghent University, Krijgslaan 281, S12, B-9000 Ghent (Belgium); Moens, L., E-mail: Raman@UGent.be [Department of Analytical Chemistry, Raman Spectroscopy Research Group, Ghent University, Krijgslaan 281, S12, B-9000 Ghent (Belgium); Vandenabeele, P. [Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, B-9000 Ghent (Belgium)

    2015-01-01

    In this research, the transparent glaze layers of Chinese porcelain samples were investigated. Depending on the production period, these samples can be divided into two groups: the samples of group A dating from the Kangxi period (1661–1722), and the samples of group B produced under emperor Qianlong (1735–1795). Due to the specific sample preparation method and the small spot size of the X-ray beam, investigation of the transparent glaze layers is enabled. Despite the many existing research papers about glaze investigations of ceramics and/or porcelain ware, this research reveals new insights into the glaze composition and structure of Chinese porcelain samples. In this paper it is demonstrated, using micro-X-ray Fluorescence (μ-XRF) spectrometry, multivariate data analysis and statistical analysis (Hotelling's T-Square test) that the transparent glaze layers of the samples of groups A and B are significantly different (95% confidence level). Calculation of the Seger formulas, enabled classification of the glazes. Combining all the information, the difference in composition of the Chinese porcelain glazes of the Kangxi period and the Qianlong period can be demonstrated. - Highlights: • Fully described methodology for the analysis of silicate glazes of Chinese porcelain samples • The combination of a semi-quantitative analysis of silicate glazes, multi-variate data and statistical analysis. • The use of Seger formula to understand better the composition of the glazes. • New insights into the glaze composition and structure of Chinese porcelain glazes of different time periods.

  11. Illustration of compositional variations over time of Chinese porcelain glazes combining micro-X-ray Fluorescence spectrometry, multivariate data analysis and Seger formulas

    International Nuclear Information System (INIS)

    Van Pevenage, J.; Verhaeven, E.; Vekemans, B.; Lauwers, D.; Herremans, D.; De Clercq, W.; Vincze, L.; Moens, L.; Vandenabeele, P.

    2015-01-01

    In this research, the transparent glaze layers of Chinese porcelain samples were investigated. Depending on the production period, these samples can be divided into two groups: the samples of group A dating from the Kangxi period (1661–1722), and the samples of group B produced under emperor Qianlong (1735–1795). Due to the specific sample preparation method and the small spot size of the X-ray beam, investigation of the transparent glaze layers is enabled. Despite the many existing research papers about glaze investigations of ceramics and/or porcelain ware, this research reveals new insights into the glaze composition and structure of Chinese porcelain samples. In this paper it is demonstrated, using micro-X-ray Fluorescence (μ-XRF) spectrometry, multivariate data analysis and statistical analysis (Hotelling's T-Square test) that the transparent glaze layers of the samples of groups A and B are significantly different (95% confidence level). Calculation of the Seger formulas, enabled classification of the glazes. Combining all the information, the difference in composition of the Chinese porcelain glazes of the Kangxi period and the Qianlong period can be demonstrated. - Highlights: • Fully described methodology for the analysis of silicate glazes of Chinese porcelain samples • The combination of a semi-quantitative analysis of silicate glazes, multi-variate data and statistical analysis. • The use of Seger formula to understand better the composition of the glazes. • New insights into the glaze composition and structure of Chinese porcelain glazes of different time periods

  12. Large Scale Glazed Concrete Panels

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Today, there is a lot of focus on concrete surface’s aesthitic potential, both globally and locally. World famous architects such as Herzog De Meuron, Zaha Hadid, Richard Meyer and David Chippenfield challenge the exposure of concrete in their architecture. At home, this trend can be seen...... in the crinkly façade of DR-Byen (the domicile of the Danish Broadcasting Company) by architect Jean Nouvel and Zaha Hadid’s Ordrupgård’s black curved smooth concrete surfaces. Furthermore, one can point to initiatives such as “Synlig beton” (visible concrete) that can be seen on the website www.......synligbeton.dk and spæncom’s aesthetic relief effects by the designer Line Kramhøft (www.spaencom.com). It is my hope that the research-development project “Lasting large scale glazed concrete formwork,” I am working on at DTU, department of Architectural Engineering will be able to complement these. It is a project where I...

  13. Basaltic scorias from Romania - complex building material us for concrete, glazing tiles, ceramic glazes, glass ceramics, mineral wool

    Energy Technology Data Exchange (ETDEWEB)

    Marica, S.; Cetean, V. [PROCEMA S.A., Bucharest (Romania)

    2002-07-01

    The most spectacular deposit of basaltic scoria from Romania is the Heghes Hill from Racos, locality situated in the central part of country. This deposit emerged as grains of various dimensions, as volcanic ash with specific porosity up to 30% and vacuolar basaltic rocks. All types of basaltic scorias have specific vacuolar appearance, red- brick or blackish - grey coloured, scoria textures and similar chemical composition with others basalts of the world. The physical and mechanical characteristics determined included the scorias in the Heghes Hill in the following categories : light rocks (2,98 g/ dmc), porous(11,04%), similar to expanded slag, slightly absorbing rocks (3,86%), with low compression strengths (1700 daN/cmp). Basaltic scoria from Heghes is a very good row material for the manufacture of concrete, for obtain decorative cutting tiles glazing with ceramic and basaltic glazes (up to 40%) varied the range of colours and for obtaining glass ceramic, mineral wool, crushing sand for road maintenance, heat -insulating bricks and shid -proof material. (orig.)

  14. Optimum dry-cooling sub-systems for a solar air conditioner

    Science.gov (United States)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  15. Robust Vacuum-/Air-Dried Graphene Aerogels and Fast Recoverable Shape-Memory Hybrid Foams.

    Science.gov (United States)

    Li, Chenwei; Qiu, Ling; Zhang, Baoqing; Li, Dan; Liu, Chen-Yang

    2016-02-17

    New graphene aerogels can be fabricated by vacuum/air drying, and because of the mechanical robustness of the graphene aerogels, shape-memory polymer/graphene hybrid foams can be fabricated by a simple infiltration-air-drying-crosslinking method. Due to the superelasticity, high strength, and good electrical conductivity of the as-prepared graphene aerogels, the shape-memory hybrid foams exhibit excellent thermotropical and electrical shape-memory properties, outperforming previously reported shape-memory polymer foams. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A systematization of glaze spalling in azulejos

    Directory of Open Access Journals (Sweden)

    João Manuel Mimoso

    2016-01-01

    Full Text Available The detachment of the glaze in azulejos is the ultimate form of decay, since it leads to the loss of the pictorial content. The detachment is usually considered in a diffuse way, however a close observation allows recognizing several types, often related to crazing, which this paper proposes to systematize.

  17. Temperature Control of Heating Zone for Drying Process: Effect of Air Velocity Change

    Directory of Open Access Journals (Sweden)

    Wutthithanyawat Chananchai

    2016-01-01

    Full Text Available This paper proposes a temperature control technique to adjust air temperature in a heating zone for drying process. The controller design is achieved by using an internal model control (IMC approach. When the IMC controller parameters were designed by calculating from an actual process transfer function estimated through an open-loop step response with input step change from 50% to 60% at a reference condition at air velocity of 1.20 m/s, the performance of temperature controller was experimentally tested by varying an air velocity between 1.32 m/s and 1.57 m/s, respectively. The experimental results showed that IMC controller had a high competency for controlling the drying temperature.

  18. Calculation of axial hydrogen redistribution on the spent fuels during interim dry storage

    International Nuclear Information System (INIS)

    Sasahara, Akihiro; Matsumura, Tetsuo

    2006-01-01

    One of the phenomena that will affect fuel integrity during a spent fuel dry storage is a hydrogen axial migration in cladding. If there is a hydrogen pickup in cladding in reactor operation, hydrogen will move from hotter to colder cladding region in the axial direction under fuel temperature gradient during dry storage. Then hydrogen beyond solubility limit in colder region will be precipitated as hydride, and consequently hydride embrittlement may take place in the cladding. In this study, hydrogen redistribution experiments were carried out to obtain the data related to hydrogen axial migration by using actually twenty years dry (air) stored spent PWR-UO 2 fuel rods of which burn-ups were 31 and 58 MWd/kg HM. From the hydrogen redistribution experiments, the heat of transport of hydrogen of zircaloy-4 cladding from twenty years dry stored spent PWR-UO 2 fuel rods were from 10.1 to 18.6 kcal/mol and they were significantly larger than that of unirradiated zircaloy-4 cladding. This means that hydrogen in irradiated cladding can move easier than that in unirradiated cladding. In the hydrogen redistribution experiments, hydrogen diffusion coefficients and solubility limit were also obtained. There are few differences in the diffusion coefficients and solubility limits between the irradiated cladding and unirradiated cladding. The hydrogen redistribution in the cladding after dry storage for forty years was evaluated by one-dimensional diffusion calculation using the measured values. The maximum values as the heat of transports, diffusion coefficients and solubility limits of the irradiated cladding and various spent fuel temperature profiles reported were used in the calculation. The axial hydrogen migration was not significant after dry storage for forty years in helium atmosphere and the maximum values as the heat of transports, diffusion coefficients and solubility limits of the unirradiated cladding gave conservative evaluation for hydrogen redistribution

  19. Permanent transparent color-warming glazes for dimmable and non-dimmable LED bulbs

    Science.gov (United States)

    Spanard, Jan-Marie A.

    2014-02-01

    Illuminant metameric failure is frequently experienced when viewing material samples under LED generated light vs. traditional incandescent light. LED light temperatures can be improved with phosphor coatings, but long-wave red light is still generally absent in LED "warm-white" light, resulting in metameric failure of orange-to-red objects. Drawing on techniques developed for the architectural restoration of stained glass, we find that transparent, heat-resistant, permanent, pigmented coatings can be applied to any glass, aluminum or plastic surface of an LED bulb, including the phosphor plate, dome or envelope, to produce warmer visible light than in current warm-light LED bulbs. These glazes can be applied in combination with existing technologies to better tune the LED emitted light or they may be used alone. These pigmented coatings include, but are not limited to, those made by suspending inorganic materials in potassium silicates or durable transparent pigmented resins. The pigmented resin glazes may be produced in either a clear gloss vehicle or an iridescent, light diffusing transparent base. Further, a graduated density of the tinted glazes on dimmable bulbs allow the light to change color as wattage is diminished. The glazes may be applied in the manufacturing of the bulb or marketed to current bulb owners as an after-market product to better tune the thousands of LED light bulbs currently in use.

  20. Infrared reflecting glazing for automotive application. New developments to improve fuel efficiency and thermal comfort

    Energy Technology Data Exchange (ETDEWEB)

    Thielsch, R.; Wahl, A.; Kleinhempel, R. [Southwall Europe GmbH, Grossroehrsdorf (Germany); Coda, M.; Boman, L. [Southwall Technologies Inc., Palo Alto, CA (United States)

    2011-04-15

    Solar control coatings in automotive glazing improve the thermal comfort for passengers, degrease solar irradiation into the cabin and reduce fading of materials. In IRR glazing solar radiation reduction is performed by silver based low-e-stacks with high visual transmittance and high near infrared reflectance. The proposed ARB regulation for Califormia published 2009 demanded for reduced total solartransmittance Tts of <50% of automotive glazing in new cars from 2012 on and of <40% starting 2016. Unfortunately, the regulation was ceased last minute and of March 2010 due to some technical concerns related to proper operation of electronic communication devices. Nevertheless, the technical goals regarding the total solar energy transmittance became a widely accepted performance target for solar heat protection glazing in upcoming new car models for the next years. In order to achieve the challenging new Tts target <40% major steps forward in coating design and optimization of layer properties are required. (orig.)

  1. Cryogenic air separation: the last twenty years

    International Nuclear Information System (INIS)

    Grenier, M.; Petit, P.

    1986-01-01

    In the last 20 years cryogenic air separation plant sizes have increased from 150 tons per day to 2800 tons per day. Progressively reversing heat exchangers have replaced regenerators. However, with this arrangement, the quantity of pure product output is limited to about 50% of the air input. With the appearance on the market of molecular sieve, another arrangement was developed, which allows one to produce a combined pure product flow equivalent to 85% of the air input. Recently, there has been a strong tendency for the reversing exchangers to be superseded by this arrangement. Due to the ever increasing cost of energy, optimization studies are today pushed much further than they used to be; as a consequence there have been major changes in the size of equipment, improvements in the machinery, and simultaneous developments in instrumentation

  2. Development of a simplified method for intelligent glazed façade design under different control strategies and verified by building simulation tool BSim

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Wittchen, Kim Bjarne; Heiselberg, Per

    2014-01-01

    The research aims to develop a simplified calculation method for intelligent glazed facade under different control conditions (night shutter, solar shading and natural ventilation) to simulate the energy performance and indoor environment of an office room installed with the intelligent facade......, it is possible to calculate the whole year performance of a room or building with intelligent glazed façade, which makes it a less time consuming tool to investigate the performance of the intelligent façade under different control strategies in the design stage with acceptable accuracy. Results showed good....... The method took the angle dependence of the solar characteristic into account, including the simplified hourly building model developed according to EN 13790 to evaluate the influence of the controlled façade on both the indoor environment (indoor air temperature, solar transmittance through the façade...

  3. Mercury fluxes from air/surface interfaces in paddy field and dry land

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jinshan [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China); Wang Dingyong, E-mail: dywang@swu.edu.cn [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China)] [Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716 (China); Liu Xiao; Zhang Yutong [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China)

    2011-02-15

    Research highlights: {yields} It was found that agricultural fields are important local atmospheric Hg sources in the region. {yields} The Hg emissions from dry cornfield were higher than those from the flooded rice paddy, higher mercury emissions in the warm season than the cold season, and during daytime than at night. {yields} Mercury evasion is strongly related to solar radiation which is important in the emission of Hg at both sites. - Abstract: In order to provide insight into the characteristics of Hg exchange in soil/water-air surface from cropland (including paddy field and dry land), Hg fluxes were measured in Chengjiang. Mercury fluxes were measured using the dynamic flux chamber method, coupled with a Lumex (registered) multifunctional Hg analyzer RA-915{sup +} (Lumex Ltd., Russia). The Hg fluxes from paddy field and dry land were alternatively measured every 30 min. Data were collected for 24-48 h once per month for 5 months. Mercury fluxes in both fields were synchronously measured under the same conditions to compare Hg emissions between paddy field and dry land over diurnal and seasonal periods and find out what factors affect Hg emission on each surface. These results indicated that air Hg concentrations at the monitoring site was double the value observed at the global background sites in Europe and North America. The Hg release fluxes were 46.5 {+-} 22.8 ng m{sup -2} h{sup -1} in the warm season, 15.5 {+-} 18.8 ng m{sup -2} h{sup -1} in the cold season for dry land, and 23.8 {+-} 15.6 ng m{sup -2} h{sup -1} in the warm season, 6.3 {+-} 11.9 ng m{sup -2} h{sup -1} in the cold season for paddy field. Solar radiation is important in the emission of Hg over both sites. Hg exchange at the soil/air and water/air interfaces showed temporal variations. The amount of Hg emission from dry land was higher than that from the paddy field, and the emission in daytime was higher than that at night. Moreover, Hg emissions from land covered by crops, was lower

  4. Development of Simplified and Dynamic Model for Double Glazing Unit Validated with Full-Scale Facade Element

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Wittchen, Kim Bjarne; Heiselberg, Per

    2012-01-01

    The project aims at developing simplified calculation methods for the different features that influence energy demand and indoor environment behind “intelligent” glazed façades. This paper describes how to set up simplified model to calculate the thermal and solar properties (U and g value......) together with comfort performance (internal surface temperature of the glazing) of a double glazing unit. Double glazing unit is defined as 1D model with nodes representing different layers of material. Several models with different number of nodes and position of these are compared and verified in order...... to find a simplified method which can calculate the performance as accurately as possible. The calculated performance in terms of internal surface temperature is verified with experimental data collected in a full-scale façade element test facility at Aalborg University (DK). The advantage...

  5. Empirical Modeling on Hot Air Drying of Fresh and Pre-treated Pineapples

    Directory of Open Access Journals (Sweden)

    Tanongkankit Yardfon

    2016-01-01

    Full Text Available This research was aimed to study drying kinetics and determine empirical model of fresh pineapple and pre-treated pineapple with sucrose solution at different concentrations during drying. 3 mm thick samples were immersed into 30, 40 and 50 Brix of sucrose solution before hot air drying at temperatures of 60, 70 and 80°C. The empirical models to predict the drying kinetics were investigated. The results showed that the moisture content decreased when increasing the drying temperatures and times. Increase in sucrose concentration led to longer drying time. According to the statistical values of the highest coefficients (R2, the lowest least of chi-square (χ2 and root mean square error (RMSE, Logarithmic model was the best models for describing the drying behavior of soaked samples into 30, 40 and 50 Brix of sucrose solution.

  6. Effect of self-glazing on reducing the radioactivity levels of red mud based ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Shuo [College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Wu, Bolin, E-mail: wubolin3211@gmail.com [College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004 (China)

    2011-12-30

    Graphical abstract: Self-glazing red mud based ceramic materials (RMCM) were produced by normal pressure sintering process using the main raw materials of red mud. The properties of the RMCM samples were investigated by the measurements of mechanical properties, radiation measurement, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the self-glazing RMCM have good mechanical properties (water absorption and apparent porosity approached zero; bulk density, 2.94 g/cm{sup 3}; compressive strength, 78.12 MPa). The radiation level has clear change regularity that the radioactivity levels of red mud (6360 Bq) are obvious declined, and can be reduced to that of the natural radioactive background of Guilin Karst landform, China (3600 Bq). It will not only consume large quantities of red mud, but also decrease the production cost of self-glazing RMCM. And the statement of this paper will offer effective ways to reduce the radioactivity level of red mud. Highlights: Black-Right-Pointing-Pointer The self-glazing phenomenon in red mud system was first discovered in our research. Black-Right-Pointing-Pointer Radiation levels of red mud can be reduced efficiently by self-glazing layer. Black-Right-Pointing-Pointer Red mud based ceramic materials will not cause harm to environment and humans. Black-Right-Pointing-Pointer This research possesses important economic significances to aluminum companies. - Abstract: Self-glazing red mud based ceramic materials (RMCM) were produced by normal pressure sintering process using the main raw materials of red mud. The properties of the RMCM samples were investigated by the measurements of mechanical properties, radiation measurement, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the self-glazing RMCM have good mechanical properties (water absorption and apparent porosity approached zero; bulk density, 2.94 g/cm{sup 3}; compressive strength, 78.12 MPa). The radiation

  7. Hyperventilation with cold versus dry air in 2- to 5-year-old children with asthma

    DEFF Research Database (Denmark)

    Nielsen, Kim G; Bisgaard, Hans

    2005-01-01

    UNLABELLED: Cold air challenge (CACh) has been shown to discriminate between children with asthma and healthy young children. Hyperventilation with dry room-temperature air is a simplified alternative. We compared responsiveness in young children with asthma between two standardized, single......-subject SDs (SDw). The challenge sequence was randomly assigned. A comparator challenge was performed 1 hour later if the first challenge gave a change of 3 SDw or more. Forty 2- to 5-year-old children with asthma were included. Responsiveness to cold versus dry air showed significant, but weak, correlation...

  8. Study on sources of colored glaze of Xiyue Temple in Shanxi province by INAA and multivariable statistical analysis

    International Nuclear Information System (INIS)

    Cheng Lin; Feng Songlin

    2005-01-01

    The major, minor and trace elements in the bodies of ancient colored glazes which came from the site of Xiyue Temple and Lidipo kiln in Shanxi province, and were unearthed from the stratums of Song, Yuan, Ming, Early Qing and Late Qing dynasty were analyzed by instrumental neutron activation analysis (INAA). The results of multivariable statistical analyses show that the chemical compositions of the colored glaze bodies are steady from Song to Early Qing dynasty, but distinctly different from that in Late Qing. Probably, the sources of fired material of ancient colored glaze from Song to Early Qing came from the site of Xiyue Temple. The chemical compositions of three pieces of colored glazes in Ming dynasty and that in Late Qing are similar to that of Lidipo kiln. From this, authors could conclude that the sources of the materials of ancient coloured glazes of Xiyue Temple in Late Qing dynasty were fired in Lidipo kiln. (authors)

  9. Improving Malaysian cocoa quality through the use of dehumidified air under mild drying conditions.

    Science.gov (United States)

    Hii, Ching L; Law, Chung L; Cloke, Michael; Sharif, Suzannah

    2011-01-30

    Various studies have been conducted in the past to improve the quality of Malaysian cocoa beans. However, the processing methods still remain crude and lack technological advancement. In terms of drying, no previous study has attempted to apply advanced drying technology to improve bean quality. This paper presents the first attempt to improve the quality of cocoa beans through heat pump drying using constant air (28.6 and 40.4 °C) and stepwise (step-up 30.7-43.6-56.9 °C and step-down 54.9-43.9 °C) drying profiles. Comparison was made against hot air drying at 55.9 °C. Product quality assessment showed significant improvement in the quality of Malaysian cocoa beans. Quality was found to be better in terms of lower acidity (higher pH) and higher degree of browning (cut test) for cocoa beans dried using the step-up profile. All heat pump-dried samples showed flavour quality comparable to that of Ghanaian and better than that of Malaysian and Indonesian commercial samples. Step-up-dried samples showed the best flavour profile with high level of cocoa flavour, low in sourness and not excessive in bitterness and astringency. Dried cocoa samples from the step-up drying profile showed the best overall quality as compared with commercial samples from Malaysia, Indonesia and Ghana. The improvement of Malaysian cocoa bean quality is thus achievable through heat pump drying. 2010 Society of Chemical Industry.

  10. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.

    Science.gov (United States)

    Shima, Jun; Ando, Akira; Takagi, Hiroshi

    2008-03-01

    Yeasts used in bread making are exposed to air-drying stress during dried yeast production processes. To clarify the genes required for air-drying tolerance, we performed genome-wide screening using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 278 gene deletions responsible for air-drying sensitivity. These genes were classified based on their cellular function and on the localization of their gene products. The results showed that the genes required for air-drying tolerance were frequently involved in mitochondrial functions and in connection with vacuolar H(+)-ATPase, which plays a role in vacuolar acidification. To determine the role of vacuolar acidification in air-drying stress tolerance, we monitored intracellular pH. The results showed that intracellular acidification was induced during air-drying and that this acidification was amplified in a deletion mutant of the VMA2 gene encoding a component of vacuolar H(+)-ATPase, suggesting that vacuolar H(+)-ATPase helps maintain intracellular pH homeostasis, which is affected by air-drying stress. To determine the effects of air-drying stress on mitochondria, we analysed the mitochondrial membrane potential under air-drying stress conditions using MitoTracker. The results showed that mitochondria were extremely sensitive to air-drying stress, suggesting that a mitochondrial function is required for tolerance to air-drying stress. We also analysed the correlation between oxidative-stress sensitivity and air-drying-stress sensitivity. The results suggested that oxidative stress is a critical determinant of sensitivity to air-drying stress, although ROS-scavenging systems are not necessary for air-drying stress tolerance. (c) 2008 John Wiley & Sons, Ltd.

  11. Research on Properties of Foamed Concrete Reinforced with Small Sized Glazed Hollow Beads

    Directory of Open Access Journals (Sweden)

    Chi Hu

    2016-01-01

    Full Text Available Foamed concrete (400 kg/m3 was prepared through a physical foaming method using ordinary Portland cement (42.5R, vegetable protein foaming agent, fly ash, and glazed hollow beads (GHB, K46 as raw materials. The performance of cement paste as well as the structure and distribution of air voids was characterized by rheometry, SEM, and XRD analyses with imaging software. The effects of GHBs on the compressive strength and thermal conductivity of the foamed concrete sample were also explored. Results show that the proportion of 50–400 μm air voids, average air-void diameter, 28 d compressive strength, and thermal conductivity of the test sample mixed with 2.4 wt% GHBs are 94.44%, 182.10 μm, 2.39 MPa, and 0.0936 w/(m·k, respectively. Excessive amount of GHBs (>2.4 wt% increases the amount of air voids with diameter smaller than 50 μm in the hardened foamed concrete as well as the degree of open porosity. Moreover, the proportion of 50–400 μm air voids, average air-void diameter, 28 d compressive strength, and thermal conductivity of the sample mixed with 4.0 wt% GHBs are 88.54%, 140.50 μm, 2.05 MPa, and 0.0907 w/(m·k, respectively.

  12. Wear characteristics of polished and glazed lithium disilicate ceramics opposed to three ceramic materials.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo

    2016-01-01

    This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016).

  13. The use of micro-XRD for the study of glaze color decorations

    Energy Technology Data Exchange (ETDEWEB)

    Pradell, T.; Molina, G. [Universitat Politecnica de Catalunya, Dpt. Fisica i Enginyeria Nuclear, Castelldefels (Spain); Molera, J.; Pla, J. [Universitat de Vic, GRTD, Escola Politecnica Superior, Vic (Spain); Labrador, A. [BM16-ESRF, LLS, BP 220, Grenoble Cedex (France); Lund University, MAX IV Laboratory, Lund (Sweden)

    2013-04-15

    The compounds responsible for the colors and decorations in glass and glazed ceramics include: coloring agents (transition-metal ions), pigments (micro- and nanoprecipitates of compounds that either do not dissolve or recrystallize in the glassy matrix) and opacifiers (microcrystalline compounds with high light scattering capability). Their composition, structure and range of stability are highly dependent not only on the composition but also on the procedures followed to obtain them. Chemical composition of the colorants and crystallites may be obtained by means of SEM-EDX and WDX. Synchrotron radiation micro-X-ray diffraction (SR-micro-XRD) has a small beam size adequate (10 to 50 microns footprint size) to obtain the structural information of crystalline compounds and high brilliance, optimal for determining the crystallites even when present in low amounts. In addition, in glass decorations the crystallites often appear forming thin layers (from 10 to 100 micrometers thick) and they show a depth-dependent composition and crystal structure. Their nature and distribution across the glass/glaze decorations gives direct information on the technology of production and stability and may be related to the color and appearance. A selection of glass and glaze coloring agents and decorations are studied by means of SR-micro-XRD and SEM-EDX including: manganese brown, antimony yellow, red copper lusters and cobalt blue. The selection includes Medieval (Islamic, and Hispano Moresque) and Renaissance tin-glazed ceramics from the 10th to the 17th century AD. (orig.)

  14. An investigation of twenty-one cases of low-frequency noise complaints

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik; Persson-Waye, Kerstin

    2007-01-01

    Twenty-one cases of low-frequency noise complaints were thoroughly investigated with the aim of answering the question whether it is real physical sound or low-frequency tinnitus that causes the annoyance. Noise recordings were made in the homes of the complainants taking the spatial variation...

  15. Effect of water activity and protective solutes on growth and subsequent survival to air-drying of Lactobacillus and Bifidobacterium cultures.

    Science.gov (United States)

    Champagne, Claude P; Raymond, Yves; Simon, Jean-Paul

    2012-08-01

    Probiotic cultures of Lactobacillus plantarum, Lactobacillus rhamnosus, Bifidobacterium longum, Lactobacillus casei and Lactobacillus acidophilus were grown in media having water activities (a (w)) adjusted between 0.99 and 0.94 with NaCl or with a mixture of glycerol and sucrose in order to find conditions of osmotic stress which would still allow for good growth. Cultures grown at a (w) = 0.96 or 0.99 were then recovered by centrifugation, added to a sucrose-phosphate medium and air-dried. In some assays, a 2-h osmotic stress was applied to the cell concentrate prior to air-drying. Assays were also carried out where betaine, glutamate and proline (BGP) supplements were added as protective compounds to the growth or drying media. For most strains, evidence of osmotic stress and benefits of BGP supplementation on growth occurred at a (w) = 0.96. Growing the cells in complex media adjusted at a (w) = 0.96 did not enhance their subsequent survival to air-drying, but applying the 2-h osmotic stress did. Addition of the BGP supplements to the growth medium or in the 2-h stress medium did not enhance survival to air-drying. Furthermore, addition of BGP to a sucrose-phosphate drying medium reduced survival of the cultures to air-drying. This study provides preliminary data for producers of probiotics who wish to use air-drying in replacement of freeze-drying for the stabilization of cultures.

  16. Influence of warm air-drying on enamel bond strength and surface free-energy of self-etch adhesives.

    Science.gov (United States)

    Shiratsuchi, Koji; Tsujimoto, Akimasa; Takamizawa, Toshiki; Furuichi, Tetsuya; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2013-08-01

    We examined the effect of warm air-drying on the enamel bond strengths and the surface free-energy of three single-step self-etch adhesives. Bovine mandibular incisors were mounted in self-curing resin and then wet ground with #600 silicon carbide (SiC) paper. The adhesives were applied according to the instructions of the respective manufacturers and then dried in a stream of normal (23°C) or warm (37°C) air for 5, 10, and 20 s. After visible-light irradiation of the adhesives, resin composites were condensed into a mold and polymerized. Ten samples per test group were stored in distilled water at 37°C for 24 h and then the bond strengths were measured. The surface free-energies were determined by measuring the contact angles of three test liquids placed on the cured adhesives. The enamel bond strengths varied according to the air-drying time and ranged from 15.8 to 19.1 MPa. The trends for the bond strengths were different among the materials. The value of the γS⁺ component increased slightly when drying was performed with a stream of warm air, whereas that of the γS⁻ component decreased significantly. These data suggest that warm air-drying is essential to obtain adequate enamel bond strengths, although increasing the drying time did not significantly influence the bond strength. © 2013 Eur J Oral Sci.

  17. PV-PCM integration in glazed building. Co-simulation and genetic optimization study

    DEFF Research Database (Denmark)

    Elarga, Hagar; Dal Monte, Andrea; Andersen, Rune Korsholm

    2017-01-01

    . An exploratory step has also been considered prior to the optimization algorithm: it evaluates the energy profiles before and after the application of PCM to PV module integrated in glazed building. The optimization analysis investigate parameters such as ventilation flow rates and time schedule to obtain......The study describes a multi-objective optimization algorithm for an innovative integration of forced ventilated PV-PCM modules in glazed façade buildings: the aim is to identify and optimize the parameters that most affect thermal and energy performances. 1-D model, finite difference method FDM...

  18. The effect of air dried conditions on mechanical and physical ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... small dimension wooden material is used and this affects the cost of ... The first serious application of laminating technique ... buildings, stock hangar, farms and stables constructions ... resistant lamine elements to air dried condition were easy .... the other was organic solvent water repellent protim WR230.

  19. Fireplace insert and its parameters depend on the used glazing

    Science.gov (United States)

    Papučík, Štefan; Čaja, Alexander

    2016-06-01

    The contribution deals with the analysis of the impact of using double glass to change the performance and emission parameters of the fireplace insert. Conventional fireplace inserts are equipped with heat-resistant glass, which is resistant to high temperatures. For this type of inserts are required to be radiant constituent maximized. Prevailing part of heat is into the interior gets just by radiation through the glazed part. The hot water fireplace inserts is the requirement that the radiant constituent to the environment to a minimum. Therefore, instead of a single glass using double glazing which is intended to reduce this part of heat transfer. The temperature in the furnace is increased, and transmitted most of the heat into the water.

  20. Effects of production methods and protective ingredients on the viability of probiotic Lactobacillus rhamnosus R0011 in air-dried alginate beads.

    Science.gov (United States)

    Champagne, Claude P; Raymond, Yves; Arcand, Yves

    2017-01-01

    The goal of this study was to use a microencapsulation technology to prepare air-dried concentrated cultures of Lactobacillus rhamnosus R0011. The cultures were microencapsulated in alginate beads, which were added to a growth medium to allow cell multiplication inside the matrix; the beads were recovered, dipped in protective solutions, and air-dried. The effects of fermentation technology and of the composition of the protective solutions on subsequent survival during air-drying were examined. The cells prepared under a constant pH of 6.2 had only 2.5% survival to air-drying at 25 °C when the protective solution was composed of sucrose and phosphate. Allowing the pH to drop to 4.2 during the biomass production step and using a protective medium composed of glycerol, maltodextrin, yeast extract, and ascorbate increased survival to 20%. If the ingredients of the protective medium at the beginning of drying were concentrated at a water activity of 0.96 rather than 0.98, survival during air-drying increased further to 56%. This rate was similar to that of a traditional freeze-drying process. These data suggest that applying a combination of acid and osmotic stresses to L. rhamnosus R0011 cells improves their subsequent stability during the air-drying process. Dried microencapsulated cultures having 2.6 × 10 11 CFU·g -1 were obtained.

  1. Illustration of compositional variations over time of Chinese porcelain glazes combining micro-X-ray Fluorescence spectrometry, multivariate data analysis and Seger formulas

    Science.gov (United States)

    Van Pevenage, J.; Verhaeven, E.; Vekemans, B.; Lauwers, D.; Herremans, D.; De Clercq, W.; Vincze, L.; Moens, L.; Vandenabeele, P.

    2015-01-01

    In this research, the transparent glaze layers of Chinese porcelain samples were investigated. Depending on the production period, these samples can be divided into two groups: the samples of group A dating from the Kangxi period (1661-1722), and the samples of group B produced under emperor Qianlong (1735-1795). Due to the specific sample preparation method and the small spot size of the X-ray beam, investigation of the transparent glaze layers is enabled. Despite the many existing research papers about glaze investigations of ceramics and/or porcelain ware, this research reveals new insights into the glaze composition and structure of Chinese porcelain samples. In this paper it is demonstrated, using micro-X-ray Fluorescence (μ-XRF) spectrometry, multivariate data analysis and statistical analysis (Hotelling's T-Square test) that the transparent glaze layers of the samples of groups A and B are significantly different (95% confidence level). Calculation of the Seger formulas, enabled classification of the glazes. Combining all the information, the difference in composition of the Chinese porcelain glazes of the Kangxi period and the Qianlong period can be demonstrated.

  2. Generalized drying curves in conductive/convective paper drying

    Directory of Open Access Journals (Sweden)

    O.C. Motta Lima

    2000-12-01

    Full Text Available This work presents a study related to conductive/convective drying of paper (cellulose sheets over heated surfaces, under natural and forced air conditions. The experimental apparatus consists in a metallic box heated by a thermostatic bath containing an upper surface on which the paper samples (about 1 mm thick are placed. The system is submitted to ambient air under two different conditions: natural convection and forced convection provide by an adjustable blower. The influence of initial paper moisture content, drying (heated surface temperature and air velocity on drying curves behavior is observed under different drying conditions. Hence, these influence is studied through the proposal of generalized drying curves. Those curves are analyzed individually for each air condition exposed above and for both together. A set of equations to fit them is proposed and discussed.

  3. 2004 Survey of United States architects on the subject of switchable glazings

    International Nuclear Information System (INIS)

    Sottile, G.M.

    2005-01-01

    The 21st century has ushered in an era marked by the growing integration of technology and other scientific advances into commercial buildings and residential homes. Of particular interest to many architects, developers and builders are 'switchable' glazing, a new category of technologically advanced glass and plastic building materials that can be used to control light, glare and heat entering an office or a home. Interest in switchable glazing technology is influenced by a variety of factors, including a growing movement to offer sustainable, energy-efficient building solutions, and the emerging desire by users to maintain greater control over their working and living environments. This paper examines the movement toward sustainable development and the end-user needs that are driving it. Further, it presents the results of a proprietary survey research study of United States architects on the subject of switchable glazing. This study includes an examination of the attributes most desired by architects regarding smart window technology, and provides additional insight into the potential application of this smart material to the building community

  4. Influence of carbon monoxide additions on the sensitivity of the dry hydrogen-air mixtures to detonation

    International Nuclear Information System (INIS)

    Magzumov, A.E.; Kirillov, I.A.; Fridman, A.A.; Rusanov, V.D.

    1995-01-01

    Under severe accident conditions of water cooled nuclear reactors the hydrogen-air detonation represents one of the most hazardous events which can result in the reactor containment damage. An important factor related with the measure of gas mixture detonability is the detonation cell size which correlates with the critical tube diameter and detonation initiation energy. A numerical kinetic study is presented of the influence of carbon monoxide admixtures (from 0 vol.% to 40 vol.%) upon the sensitivity (detonation cell size) of the dry hydrogen-air gas mixtures to detonation in post-accident containment atmosphere. (author). 3 refs., 3 figs

  5. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index

    International Nuclear Information System (INIS)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M.

    2016-01-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  6. Twenty-One Ways to Use Music in Teaching the Language Arts.

    Science.gov (United States)

    Cardarelli, Aldo F.

    Twenty-one activities that integrate music and the language arts in order to capitalize on children's interests are described in this paper. Topics of the activities are as follows: alphabetical order, pantomime, vocabulary building from words of a favorite song, words that are "the most (whatever)" from songs, mood words, a configuration clue…

  7. Fourier analysis of conductive heat transfer for glazed roofing materials

    Energy Technology Data Exchange (ETDEWEB)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  8. Use of a new borate raw material for glaze formulation; Utilizacion de una nueva materia prima boracica para la formulacion de esmaltes

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Tena, M. P.; Moreno, A.; Bou, E.; Cook, S.; Galindo, M.

    2010-07-01

    The Rio Tinto Minerals company has developed a new borate (E-4972), which can be used in glaze formulation (patent WO 2007/148101). This new borate, synthesised by low-temperature calcination, fundamentally contributes five oxides: silicon oxide (SiO{sub 2}), aluminium oxide (Al{sub 2}O{sub 3}), boron oxide (B{sub 2}O{sub 3}), calcium oxide (CaO), and sodium oxide (Na{sub 2}O), its content in B{sub 2}O{sub 3} being between 10 and 11% by weight. It is largely amorphous, and quartz is the major crystalline phase present. The characteristics of this new borate, such as its low solubility and ability readily to form glassy phase, enable it to be used as a raw material in glaze compositions. Its suitability for glaze formulation has been the result of several years research in collaboration with the Instituto de Tecnologia Ceramica. In this paper, the feasibility has been studied of fabricating ceramic glazes by using a new synthetic borate raw material that contributes boron to the glaze composition without this needing to be done in fritted form. It has been possible to obtain fired glazes with similar technical and aesthetics characteristics to those obtained from industrial glaze compositions that contain typical frits in their compositions, thus enabling glazes to be formulated by using the new synthetic boron raw material. The results obtained show that this new raw material (E-4972) is particularly appropriate for use in producing glazes with low gloss at high temperature. (Author) 15 refs.

  9. Effect of internal woven roller shade and glazing on the energy and daylighting performances of an office building in the cold climate of Shillong

    International Nuclear Information System (INIS)

    Singh, Ramkishore; Lazarus, I.J.; Kishore, V.V.N.

    2015-01-01

    Highlights: • We simulated a number of glazing and interior roller shade alternatives. • Office room has been simulated for three window-to-wall ratios in a cold climate. • Daylighting and energy performances have been assessed for each alternative. • Maximum energy savings have been estimated in the office with a 30% glazed area. • Energy saving decreases for larger glazed area and fabric transmittance. - Abstract: The energy and visual performances of the façades are defined by many parameters including façade size, properties of glazings and shadings, and their arrangements as well as control strategies. In this study, a number of combinations of internal woven roller shades and four double glazings have been proposed and assessed in integrated manner in order to improve the energy efficiency and visual comfort in new or existing office buildings. Office rooms facing south, east, north and west have been simulated for cold climate, by varying glazed areas and proposed glazing and shading alternatives. Results have been calculated, compared and analyzed in terms of the energy consumptions, energy saving potentials, daylight autonomy, useful daylight illuminance and discomfort glare free time, for each of the combinations. Simulation results show that the choice of glazing and shading alternatives can have substantial impact on energy and visual performances of the office space. Regardless of façade orientation, the maximum energy saving is achieved for a window-to-wall ratio (WWR) of 30%. Saving potential decreases significantly for larger glazed area and for each façade orientation. For all façade orientations and glazed areas (except for 30% WWR in the north wall), a bare low-e coated double glazing (U = 1.616 W/m"2 K, SHGC = 0.209, τ_v = 0.301) is found to be the most energy efficient choice. For 30% north glazing, the energy efficiency can be maximized with a different bare low-e coated double glazing (U = 1.628 W/m"2 K, SHGC = 0.370, τ_v = 0

  10. Analysis of elemental maps from glaze to body of ancient Chinese Jun and Ru porcelain by micro-X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lin [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing Radiation Center, Beijing 100875 (China)], E-mail: chenglin@bnu.edu.cn; Li Rongwu [Department of Physics, Beijing Normal University, Beijing 100049 (China); Pan Qiuli [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing Radiation Center, Beijing 100875 (China); Li Guoxia; Zhao Weijuan [Institute of Physical Engineering, Zhengzhou University, Zhengzhou 450052 (China); Liu Zhiguo [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing Radiation Center, Beijing 100875 (China)

    2009-01-15

    The reasons how the middle layer of Ru and Jun porcelain between the glaze and body came into being are still not completely understood. Here, elemental maps from the glaze to the body of pieces of ancient Chinese Ru and Jun porcelain were analyzed by micro-X-ray fluorescence. The results show the middle layer was probably formed by the chemical composition of the glaze turning into glassy states and undergoing complex physical-chemical reactions with the body. However, the middle layer of Jun porcelain was formed by the chemical composition of the glaze turning into glassy states and then infiltrating the body at high temperatures during the firing process.

  11. Analysis of elemental maps from glaze to body of ancient Chinese Jun and Ru porcelain by micro-X-ray fluorescence

    Science.gov (United States)

    Cheng, Lin; Li, Rongwu; Pan, Qiuli; Li, Guoxia; Zhao, Weijuan; Liu, Zhiguo

    2009-01-01

    The reasons how the middle layer of Ru and Jun porcelain between the glaze and body came into being are still not completely understood. Here, elemental maps from the glaze to the body of pieces of ancient Chinese Ru and Jun porcelain were analyzed by micro-X-ray fluorescence. The results show the middle layer was probably formed by the chemical composition of the glaze turning into glassy states and undergoing complex physical-chemical reactions with the body. However, the middle layer of Jun porcelain was formed by the chemical composition of the glaze turning into glassy states and then infiltrating the body at high temperatures during the firing process.

  12. Environmental, economic and energy analysis of double glazing with a circulating water chamber in residential buildings

    International Nuclear Information System (INIS)

    Gil-Lopez, Tomas; Gimenez-Molina, Carmen

    2013-01-01

    Highlights: ► Glazed façade area is the part that produces greatest energy losses and gains. ► A potential for energy savings has been detected in residential buildings. ► Active glazing comprising two laminated glass panels with a circulating water chamber. ► Analysis of energy performance, economic viability and impact on carbon footprint. ► Natural gas condensing boilers is the less contaminating and more efficient option. -- Abstract: In general, the glazed façade area of a building is the part that produces the greatest energy losses and gains. The basic aim of this work is to achieve a more efficient heat control in closed spaces. To this end, an exhaustive study has been made of active glazing comprising two laminated glass panels with a circulating water chamber. Not only has the energy consumption been analysed but also the energy efficiency according to fuel type, the amount of CO 2 emitted into the atmosphere and the economic cost. The results of this study, from the points of view of economic feasibility and energy efficiency, show that the solution of double glazing with a circulating water chamber is a less polluting and more efficient option than the systems currently used. This solution is able to reduce the energy losses and gains that are produced through the glazed façade of a building by 18.26% for calorific and frigorific energy compared to the total consumption of the building. The layout of the proposed installation facilitates its integration into any type of residential building, either under construction or being renovated. Moreover, its zero visual impact means it can even be implemented in places with strict town-planning regulations.

  13. Twenty-second DOE/NRC nuclear air cleaning and treatment conference

    International Nuclear Information System (INIS)

    Bellamy, R.R.; Moeller, D.W.; First, M.W.

    1992-01-01

    The Twenty-Second Department of Energy/Nuclear Regulatory Commission Nuclear Air Cleaning and Treatment Conference was held Aug. 24-27, 1992, in Denver, Colo. A total of 224 air-cleaning specialists attended the conference. The United States and 12 foreign countries were represented, and the specialists were affiliated with government agencies, educational institutions, and all aspects of the nuclear industry, including utilities, architect engineers, equipment suppliers, and consultants. Several major topics were discussed, similar to areas covered at previous conferences: chemical processing off-gas cleaning; particulate filler developments, including filter testing, performance, and response to physical stress,adsorber testing and performance, including laboratory and in-place testing; waste management; system operation; codes and standards; and advanced nuclear power plants. The conference continued to provide an effective forum for direct interchange of information of both a practical and theoretical nature. International participation and interest continues, as evidenced by over 40% of the papers being sponsored by foreign interests and almost 20% of the attendees being from outside the United States. The potential for new, safer nuclear plants of an advanced design was an optimistic note during the conference. Regulatory authorities are playing a major role in providing guidance in the development of safety goals and other technical criteria for these new installations

  14. Characterization of glazes, enamels and oxides by XRF

    International Nuclear Information System (INIS)

    Mbarek, Iheb

    2009-01-01

    The purpose of this work is to control the technique of X-ray fluorescence, both in qualitative and quantitative characterization for ceramic glazes, enamels and oxides. it's a recent subject of investigation, its purpose is to discover the presence of toxic substances (Pb, Cd, Sn, As ..) and their quantities if it exists in the manufacturing materials.

  15. Changes to Glazed Dental Ceramic Shade, Roughness, and Microhardness after Bleaching and Simulated Brushing.

    Science.gov (United States)

    Rodrigues, Carlos Roberto Teixeira; Turssi, Cecilia Pedroso; Amaral, Flávia Lucisano Botelho; Basting, Roberta Tarkany; França, Fabiana Mantovani Gomes

    2017-09-05

    To evaluate shade stability, surface roughness, microhardness, and compressive strength of a glazed feldspathic ceramic subjected to bleaching and simulated brushing. Eighty-eight glazed feldspathic ceramic specimens were made from microparticulate leucite and divided into eight groups (n = 10). The whitening products used were: Opalescence Trèswhite Supreme (Ultradent), Opalescence®\\ PF 15% (Ultradent), and Oral-B 3D White Whitestrips. All substances for whitening were used for 4 hours/day for a period of 14 days; the control group was not bleached. Next, half of the specimens were individually brushed. Microhardness and surface roughness data were subjected to three-way ANOVA and Tukey test. The diametrical tensile strength data were subjected to two-way ANOVA. The shade change data were analyzed using Kruskal-Wallis, Mann-Whitney, and the Student-Newman-Keuls test. The significance level was set at 5%. Glazed feldspathic ceramic surface microhardness was significantly affected by bleaching agents (p = 0.007). Initially, glazed ceramic microhardness was significantly higher than that observed after contact with the bleaching agents, whether or not brushing was performed. The specimens submitted to bleaching in preloaded trays presented lower surface roughness values after brushing (p = 0.037). The surface roughness was significantly lower in the brushed specimens (p = 0.044). The diametrical tensile strength was not significantly affected by the application of bleaching agents (p = 0.563) or by brushing (p = 0.477). When the specimens were brushed, however, shade change was significantly influenced by the bleaching agent used (p = 0.041). Bleaching agents associated with brushing cycles can alter surface properties and shade stability of glazed feldspathic ceramics, though such findings may not reflect the performance of unglazed feldspathic ceramics. © 2017 by the American College of Prosthodontists.

  16. Experimental Investigation of Solar Drying for Orange Peels by Forced convection

    International Nuclear Information System (INIS)

    Ben Slama, Romdhane; Mechlouch, Fethi; Ben Daoud, Houcine

    2009-01-01

    Solar drier does not degrade any more the dried products with the manner of the products dried at the natural sun. The drying unit is composed mainly of a solar air collector and an enclosure of drying. The transformation of the solar radiation into heat is done thanks to the solar collector whose effectiveness is increased by the addition of suitable baffles in the mobile air vein. The efficiency of the collector reaches then 80. The hot air on the outlet side of the collector arrives in the enclosure of drying where the heat transfer with the product to be dried is done by convection. The kinetics drying study shows that in addition to the dependence of the temperature and air velocity of drying, the speed of drying also depends on fragmentation on the product to dry, and mainly, of the product surface in contact with the drying air. Thus, the hygrometry is reduced from 76 to 13 pour cent in one day.. The total efficiency of the drier reached 28 pour cent

  17. Generalization of drying curves in conductive/convective drying of cellulose

    Directory of Open Access Journals (Sweden)

    M. Stenzel

    2003-03-01

    Full Text Available The objective of this work is to analyze the possibility of applying the drying curves generalization methodology to the conductive/convective hot plate drying of cellulose. The experiments were carried out at different heated plate temperatures and air velocities over the surface of the samples. This kind of approach is very interesting because it permits comparison of the results of different experiments by reducing them to only one set, which can be divided into two groups: the generalized drying curves and the generalized drying rate curves. The experimental apparatus is an attempt to reproduce the operational conditions of conventional paper dryers (ratio of paper/air movement and consists of a metallic box heated by a thermostatic bath containing an upper surface on which the cellulose samples are placed. Sample material is short- and long-fiber cellulose sheets, about 1 mm thick, and ambient air was introduced into the system by a adjustable blower under different conditions. Long-fiber cellulose generalized curves were obtained and analyzed first individually and then together with the short-fiber cellulose results from Motta Lima et al. (2000 a,b. Finally, a set of equations to fit the generalized curves obtained was proposed and discussed.

  18. Determination of levels of polychlorinated biphenyls (PCBs) present in caulk and window glazing material samples from older buildings

    Science.gov (United States)

    Levels of polychlorinated biphenyls (PCBs) in caulk and window glazing material samples from older buildings were determined, using a method developed for this purpose. This method was evaluated by analyzing a combination of 47 samples of caulk, glazing materials, including quali...

  19. Solar air heaters for industrial drying; Aquecedor solar de ar para secagem industrial

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Everaldo Mendes [Governo do Estado da Paraiba, Joao Pessoa, PB (Brazil). Secretaria de Planejamento e Gestao

    2008-07-01

    The objective of this study is to encourage the use of solar energy in industrial drying of fruits, with the producers poles, at the same time, promote the rational use of energy for heat, or replacing the hydroelectric and oil derivatives for this purpose. This study is presented in the following chapters: availability of solar energy; details of constructive solar heated air; drying fruit; market. (author)

  20. The volatile oil composition of fresh and air-dried buds of Cannabis sativa.

    Science.gov (United States)

    Ross, S A; ElSohly, M A

    1996-01-01

    The composition of the steam-distilled volatile oil of fresh and air-dried, indoor-grown marijuana was studied by GC/FID and GC/MS. In all, 68 components were detected of which 57 were fully identified. Drying of the plant material had no effect on the qualitative composition of the oil and did not affect the ability of individuals familiar with marijuana smell to recognize the odor.

  1. Solar Energy Gain and Space-Heating Energy Supply Analyses for Solid-Wall Dwelling Retrofitted with the Experimentally Achievable U-value of Novel Triple Vacuum Glazing

    Directory of Open Access Journals (Sweden)

    Saim Memon

    2017-06-01

    Full Text Available A considerable effort is devoted to devising retrofit solutions for reducing space-heating energy in the domestic sector. Existing UK solid-wall dwellings, which have both heritage values and historic fabric, are being improved but they tend to have meagre thermal performance, partly, due to the heat-loss through glazings. This paper takes comparative analyses approach to envisage space-heating supply required in order to maintain thermal comfort temperatures and attainable solar energy gains to households with the retrofit of an experimentally achievable thermal performance of the fabricated sample of triple vacuum glazing to a UK solid-wall dwelling. 3D dynamic thermal models (timely regimes of heating, occupancy, ventilation and internal heat gains of an externally-insulated solid-wall detached dwelling with a range of existing glazing types along with triple vacuum glazings are modelled. A dramatic decrease of space-heating load and moderate increase of solar gains are resulted with the dwelling of newly achievable triple vacuum glazings (having centre-of-pane U-value of 0.33 Wm-2K-1 compared to conventional glazing types. The space-heating annual cost of single glazed dwellings was minimised to 15.31% (≈USD 90.7 with the retrofit of triple-vacuum glazings. An influence of total heat-loss through the fabric of solid-wall dwelling was analysed with steady-state calculations which indicates a fall of 10.23 % with triple vacuum glazings compared to single glazings.

  2. A Numerical Assessment of the Air Flow Behaviour in a Conventional Compact Dry Kiln

    OpenAIRE

    Paulo Zdanski; Daniel Possamai; Miguel Vaz Jr.

    2015-01-01

    Convective drying is the most common drying strategy used in timber manufacturing industries in the developing world. In convective drying, the reduction rate of the moisture content is directly affected by the flow topology in the inlet and exit plenums and the air flow velocity in the channels formed by timber layers.Turbulence, boundary layer separation, vortex formation and recirculation regions are flow features that are intrinsically associated with the kiln geometry, which in turn dict...

  3. Black Hats and White Hats: The Effect of Organizational Culture and Institutional Identity on the Twenty-third Air Force

    National Research Council Canada - National Science Library

    Koskinas, Ioannis

    2006-01-01

    .... Although brief, the Twenty-third Air Force's experience provides sufficient data for a thorough analysis of the effect of organizational culture and institutional agendas on the evolution of a nascent organization...

  4. Characterization of the interaction between glazes and ceramic bodies

    Czech Academy of Sciences Publication Activity Database

    Kavanová, M.; Kloužková, A.; Kloužek, Jaroslav

    2017-01-01

    Roč. 61, č. 3 (2017), s. 267-275 ISSN 0862-5468 Institutional support: RVO:67985891 Keywords : glazes * ceramic s * thermal analysis * coefficients of the thermal expansion * dilatometry Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass OBOR OECD: Ceramic s Impact factor: 0.439, year: 2016

  5. Air-Lubricated Thermal Processor For Dry Silver Film

    Science.gov (United States)

    Siryj, B. W.

    1980-09-01

    Since dry silver film is processed by heat, it may be viewed on a light table only seconds after exposure. On the other hand, wet films require both bulky chemicals and substantial time before an image can be analyzed. Processing of dry silver film, although simple in concept, is not so simple when reduced to practice. The main concern is the effect of film temperature gradients on uniformity of optical film density. RCA has developed two thermal processors, different in implementation but based on the same philosophy. Pressurized air is directed to both sides of the film to support the film and to conduct the heat to the film. Porous graphite is used as the medium through which heat and air are introduced. The initial thermal processor was designed to process 9.5-inch-wide film moving at speeds ranging from 0.0034 to 0.008 inch per second. The processor configuration was curved to match the plane generated by the laser recording beam. The second thermal processor was configured to process 5-inch-wide film moving at a continuously variable rate ranging from 0.15 to 3.5 inches per second. Due to field flattening optics used in this laser recorder, the required film processing area was plane. In addition, this processor was sectioned in the direction of film motion, giving the processor the capability of varying both temperature and effective processing area.

  6. Selectively coated high efficiency glazing for solar-thermal flat-plate collectors

    International Nuclear Information System (INIS)

    Ehrmann, N.; Reineke-Koch, R.

    2012-01-01

    In order to increase the efficiency of solar-thermal flat-plate collectors at temperatures above 100 °C or with low solar irradiation, we implement a double glazing with a low-emitting (low-e) coating on the inner pane to improve the insulation of the transparent cover. Since commercially available low-e glazing provides only insufficient solar transmittance for the application in thermal flat-plate collectors we are developing a sputter-deposited low e-coating system based on transparent conductive oxides which provides a high solar transmittance of 85% due to additional antireflective coatings and the use of low-iron glass substrates. Durability tests of the developed coating system show that our low e-coating system is well suitable even at high temperatures, humidity and condensation.

  7. Influence of 60Co γ irradiation pre-treatment on characteristics of hot air drying sweet potato slices

    International Nuclear Information System (INIS)

    Jiang Ning; Liu Chunquan; Li Dajing; Liu Xia; Yan Qimei

    2012-01-01

    The influences of irradiation, hot air temperature and thicknesses of the slices on the characters of dehydration and surface temperature of 60 Co γ-rays irradiated sweet potato were investigated. Meanwhile, microscopic observation and determination of water activity of irradiated sweet potato were conducted. The results show that the drying rate and the surface temperature rose with the increasing of irradiation dose. When the dry basis moisture content was 150%, the drying rate of the samples were 1.92, 1.97, 2.05, 2.28, 3.12% /min while the irradiation dose were 0, 2, 5, 8, 10 kGy, and the surface temperature were 48.5 ℃, 46.3℃, 44.5 ℃, 42.2 ℃, 41.5 ℃, respectively. With higher air temperature and thinner of the sweet potato slices, the dehydration of the irradiated sweet potato slices were faster. The drying speed of sweet potato slices at 85 ℃ was 170 min faster than that of 65 ℃. The drying speed of 7 mm sweet potato slices was 228 min faster than that of 3 mm sample. The cell wall and the vacuole of the sweet potato slices were broken after irradiation, and its water activity increased with the increase is radiation dose. The water activity of the irradiated samples were 0.92, 0.945, 0.958, 0.969, 0.979 with the irradiation doses of 0, 2, 5, 8, 10 kGy, respectively. The hot air drying rate, surface temperature and water activity of sweet potato are significantly impacted by irradiation. The conclusion provides a theoretical foundation for further processing technology of combined radiation and hot air drying sweet potato. (authors)

  8. Experimental investigation of drying characteristics of cornelian cherry fruits ( Cornus mas L.)

    Science.gov (United States)

    Ozgen, Filiz

    2015-03-01

    Major target of present paper is to investigate the drying kinetics of cornelian cherry fruits ( Cornus mas L.) in a convective dryer, by varying the temperature and the velocity of drying air. Freshly harvested fruits are dried at drying air temperature of 35, 45 and 55 °C. The considered drying air velocities are V air = 1 and 1.5 m/s for each temperature. The required drying time is determined by taking into consideration the moisture ratio measurements. When the moisture ratio reaches up to 10 % at the selected drying air temperature, then the time is determined ( t = 40-67 h). The moisture ratio, fruit temperature and energy requirement are presented as the functions of drying time. The lowest drying time (40 h) is obtained when the air temperature is 55 °C and air velocity is 1.5 m/s. The highest drying time (67 h) is found under the conditions of 35 °C temperature and 1 m/s velocity. Both the drying air temperature and the air velocity significantly affect the required energy for drying system. The minimum amount of required energy is found as 51.12 kWh, at 55 °C and 1 m/s, whilst the maximum energy requirement is 106.7 kWh, at 35 °C and 1.5 m/s. It is also found that, air temperature significantly influences the total drying time. Moreover, the energy consumption is decreasing with increasing air temperature. The effects of three parameters (air temperature, air velocity and drying time) on drying characteristics have also been analysed by means of analysis of variance method to show the effecting levels. The experimental results have a good agreement with the predicted ones.

  9. Gas Dispersion in Granular Porous Media under Air-Dry and Wet Conditions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Hamamoto, S; Kawamoto, K

    2012-01-01

    Subsurface gaseous-phase transport is governed by three gas transport parameters: the air permeability coefficient (ka), gas diffusion coefficient (DP), and gas dispersion coefficient (DH). Among these, DH is the least understood due to hitherto limited research into the relationship between gas...... dispersion and soil physical characteristics. In this study, a series of advection–dispersion experiments was performed on granular porous media to identify the effects of soil column dimensions (length and diameter), particle size and shape, dry bulk density, and moisture content on the magnitude of gas...... dispersion. Glass beads and various sands of different shapes (angular and rounded) with mean particle diameters (d50) ranging from 0.19 to 1.51 mm at both air-dry and variable moisture contents were used as granular porous media. Gas dispersion coefficients and gas dispersivities (a = DH/v, where v...

  10. Properties of metallocene complexes during the oxidative crosslinking of air drying coatings

    Science.gov (United States)

    Stava, Vit; Erben, Milan; Vesely, David; Kalenda, Petr

    2007-05-01

    Driers are added to air drying paints to accelerate the hardening of spread coating. For decades cobalt octoate has been the most widely used drier because of its good performance at ambient temperature. Recently, several reports describing possible carcinogenity and genotoxicity of cobalt and cobalt salts, such as cobalt sulfate in aerosols, have appeared. It is necessary to reduce the amount of cobalt compounds in coatings industry. Present study deals with the possibility of using ferrocene and its derivatives as driers for air drying coatings. We concentrated particularly on the synergic effect between these metallocene complexes and the cobalt drier. In the first step the kinetics of autooxidation by FTIR spectroscopy in model systems was investigated. Then the metallocene complexes were applied together with cobalt drier to alkyd resin, where their influence on hardness of spread coatings was examined.

  11. Low temperature hot air drying of potato cubes subjected to osmotic dehydration and intermittent microwave: drying kinetics, energy consumption and product quality indexes

    Science.gov (United States)

    Dehghannya, Jalal; Bozorghi, Somayyeh; Heshmati, Maryam Khakbaz

    2018-04-01

    Hot-air drying is a slow energy-extensive process. Use of intermittent microwave (IM) in hot-air (HA) drying of food products is characterized with advantages including reduced process time, energy saving, and improved final quality. In this study, the effect of IM-HA drying following an osmotic dehydration (OD) pretreatment was analyzed on qualitative and quantitative properties of the output (i.e. effective moisture diffusion coefficient (Deff), shrinkage, bulk density, rehydration and energy consumption). Temperature and airflow velocity were fixed at 40°C and 1 m/s, respectively. The process variables included sucrose solution concentration at five levels (0 or control, 10, 30, 50 and 70 w/w%), microwave output power at four levels (0 or control, 360, 600 and 900 W), and pulse ratio at four levels (1, 2, 3 and 4). Use of osmotic dehydration in combination with IM-HA drying reduced the drying time by up to about 54%. Increasing the osmotic solution concentration to 30% and using higher pulse ratios increased the Deff. The lowest shrinkage and bulk density as well as the highest rehydration belonged to the 900 W microwave power and pulse ratio of 4. The lowest energy consumption was observed when using the 900 W power level, showing 63.27% less consumption than the HA drying method.

  12. Development of lime based mortars for repairing glazed tile coatings of historic buildings in the city of Ovar, Portugal

    Directory of Open Access Journals (Sweden)

    B. Teixeira

    2008-01-01

    Full Text Available Portugal is one of the European countries in which built heritage is a testimony of its history. In this context, the legacy of the decorative glazed tile coatings of facades must be preserved and restored. This research is dedicated to the conservation of such facades in the city of Ovar, considered an example due to its rich heritage in glazed tiles, a high percentage of which requires a deep intervention. Therefore, this work is focused on the study of lime renders serving as a support for this type of tile facades. For this, samples were collected from several buildings in the city, targeting their mechanical and physical study with the aim of producing compatible mortars to be used for application of detached tiles in these buildings and generally for the repair of the facades with glazed tile coatings. For this purpose, four lime mortar formulations with different volumetric ratios were composed. The aggregates used were: ordinary river sand and local gravel. In three of the mixtures, metakaolin was added, with the intention of acting as an artificial pozzolan and thus improving the performance of these mortars. The use of a pozzolanic addition promotes hardening of lime mortars in cases when the ingression of carbon dioxide is low as is the case of mortars placed below glazed tile coatings. These mortars were also tested in the laboratory taking into account their physical and mechanical characteristics. The mechanical characteristics determined were: modulus of elasticity by two different methods, compressive strength and flexural strength. In turn, the physical characteristics determined were: water vapour permeability and water absorption by total immersion and capillary action. The best mechanical behaviour (compressive and flexural was observed in the mortar with pozzolanic additions. Similarly, the value of the modulus of elasticity was better in mortars with pozzolanic additions. The performance of these mortars was also adequate

  13. Antioxidant capacity and total phenolic content of air-dried cape gooseberry (Physalis peruviana L. at different ripeness stages

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Narváez-Cuenca

    2014-08-01

    Full Text Available Because the use of drying at high temperatures might negatively affect the functional properties of fruits, the effect of air-drying at 60°C on the total phenolic content (TPC and antioxidant capacity (AOC of cape gooseberry fruit was evaluated at three ripeness stages. The AOC was evaluated with 2,2'-azino-bis(3- ethylbenzothiazoline-6-sulfonic acid (ABTS , ferric reducing ability of plasma (FRAP, 1,1-diphenyl-2-picrylhydrazyl (DPPH, and beta-carotene-linoleate assays. The TPC and AOC increased in the fresh fruit as the ripeness stage increased. The TPC increased from 401.8±19.8 to 569.3±22.3 mg GA E/100 g dry weight (DW. The AOC values obtained with ABTS in the fresh fruit (ranging from 79.4±4.5 to 132.7±12.9 mumol trolox/g fruit DW were comparable to those obtained with FRAP (ranging from 82.9±16.3 to 153.9±31.7 mumol trolox/g fruit DW. The values assessed with DPPH ranged from 21.0±3.2 to 34.1±5.1 mumol trolox/g fruit DW. The beta-carotene-linoleate assay gave values ranging from 5.8±1.1 to 12.7±2.0 mumol a-tocoferol/g fruit DW. Air-drying the cape gooseberry fruit had a small influence on the TPC. The air-dried fruit had AOC values ranging from 27 to 164% of the value of the fresh fruit. While the ABTS assay produced higher values in the air-dried fruit than in the fresh fruit, the FRAP, DPPH, and beta-carotene-linoleate assays resulted in lower values in the air-dried fruit.

  14. Supply of dry ambient air in Alstroemenia. Test on the impact of the supply of dry ambient air on the microclimate and crops in alstroemeria; Droge buitenlucht toevoeren in Alstroemeria. Praktijkproef naar de invloed van droge buitenlucht toevoeren op microklimaat en gewas in alstroemeria

    Energy Technology Data Exchange (ETDEWEB)

    Van der Helm, F.; Van Weel, P.; Raaphorst, M.

    2012-08-15

    After one year of dry air distribution in Alstroemeria it is shown that it can effectively lower the vapour deficit between the leaves. It resulted in a decrease of leaf tip damage of 70% compared to the reference, but not to a decrease of spontaneously broken stems. The research is conducted in practice at Hoogenboom Alstroemeria on 1000 m{sup 2} within a larger greenhouse compartment planted with the variety 'Primadonna'. Wageningen UR has conducted the research with an air distribution system of 8 m{sup 3}/m{sup 2} from supplier Lekhabo. The dry air was distributed in the crop by two transparent air tubes. Climate could not be controlled in the research area separate from the reference, therefore more dry air was required than expected, which is contradictive with energy saving. Growers that want to use dry air to either to prevent leaf tips or to save energy will have to find a balance between these two benefits that partly contradict. Both advantages are required to make the investment profitable. It is calculated that nurseries with a relatively small heat and power cogeneration and greenhouses that are already equipped with a second screen can probably profitably invest in a simple and small capacity dry air distribution system [Dutch] Na ruim een jaar opgewarmde buitenlucht toevoeren in Alstroemeria is duidelijk geworden dat hiermee effectief het vocht deficit tussen het gewas verlaagd kan worden. Dit leidde in dit onderzoek tot een afname van vochtblaadjes van 70%, maar niet tot minder afgroeiers. De proef is uitgevoerd in 1000 m{sup 2} binnen een afdeling met het ras Primadonna bij het bedrijf Hoogenboom alstroemeria in Nieuwe Wetering. De proef is door Wageningen UR glastuinbouw uitgevoerd met een installatie voor aanvoer van 8m{sup 3}/m{sup 2} per uur lucht door twee slurven aan de zijkant van het bed. In de proefomgeving kon het klimaat niet apart geregeld worden op het toevoeren van buitenlucht. Hierdoor is steeds relatief veel buitenlucht

  15. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    International Nuclear Information System (INIS)

    Labidi, A.; Bejaoui, A.; Ouali, H.; Akkari, F. Chaffar; Hajjaji, A.; Gaidi, M.; Kanzari, M.; Bessais, B.; Maaref, M.

    2011-01-01

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  16. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    Energy Technology Data Exchange (ETDEWEB)

    Labidi, A., E-mail: Ahmed_laabidi@yahoo.fr [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Bejaoui, A.; Ouali, H. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Akkari, F. Chaffar [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Hajjaji, A.; Gaidi, M. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Maaref, M. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia)

    2011-09-15

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  17. Cold Vacuum Drying facility heating, ventilation, and Air Conditioning system design description

    International Nuclear Information System (INIS)

    SINGH, G.

    2000-01-01

    This System Design Description (SDD) addresses the HVAC system for the CVDF. The CVDF HVAC system consists of five subsystems: (1) Administration building HVAC system; (2) Process bay recirculation HVAC system; (3) Process bay local exhaust HVAC and process vent system; (4) Process general supply/exhaust HVAC system; and (5) Reference air system. The HVAC and reference air systems interface with the following systems: the fire protection control system, Monitoring and Control System (MCS), electrical power distribution system (including standby power), compressed air system, Chilled Water (CHW) system, drainage system, and other Cold Vacuum Drying (CVD) control systems not addressed in this SDD

  18. Solar assisted biogas plants: Pt. 4. Optimum area for blackening and double glazing over a fixed-dome biogas plant

    Energy Technology Data Exchange (ETDEWEB)

    Jayashankar, B.C.; Kishor, J.; Goyal, I.C.; Sawhney, R.L.; Sodha, M.S.

    The economic analysis of a fixed-dome biogas plant of rated capacity 8 m/sup 3/, above which a part of the ground is blackened and doubly glazed in the cold climate of Srinagar is presented. Blackening and glazing of the ground cannot alone maintain the slurry temperature at 35/sup 0/C, which is the optimum temperature in the mesophilic range for the anaerobic digestion of cattle dung, and so a part of the biogas must be burnt. The electrical simulation experiments have been performed to determine the loss or gain of heat from the underground biodigestor to the ambient atmosphere through the ground if a part of the ground above is blackened and double glazed. Economic analysis of the system shows that the optimum area to be blackened and glazed would have a radius 1.5 times that of the biodigestor.

  19. Mössbauer analysis of the firing process of the sky-green glaze of the imitative ancient Chinese Ru porcelain

    Science.gov (United States)

    Songhua, Chen; Zhengyao, Gao; Guoju, Hu; Xiande, Chen

    1994-12-01

    The variation of the Mössbauer parameters of the imitative ancient Ru porcelain skygreen glaze with the firing conditions is studied in detail in the present paper. The Mössbauer spectra show that the sky-green glaze contains three kinds of iron minerals, i.e. the structural iron (Fe2+ and Fe3+); Fe2O3 and Fe3O4. The relative intensity of the paramagnetic peak Fe2+ increases and the magnetic ratio of the magnetic peak decreases with increasing temperature. Based on the variation of the quadrupole splitting ( QS) of the paramagnetic peak Fe2+, the phase transformation characteristics of the sky-green glaze in the firing process is discussed. The coloring mechanism of the sky-green glaze and the variation of its magnetism in the firing process are also investigated in the present paper.

  20. Convective losses through an air-filled gap

    Energy Technology Data Exchange (ETDEWEB)

    Baum, V A; Ovezsakhatov, N

    1976-01-01

    Simplified formulas for the heat fluxes with given parameters of the air are used to calculate the specific heat losses by convection in a number of solar-energy systems (water heater, thermal generator, double-glazed window, and still). Heat losses by convection and radiation are compared.

  1. Drying of α-amylase by spray drying and freeze-drying - a comparative study

    Directory of Open Access Journals (Sweden)

    S. S. de Jesus

    2014-09-01

    Full Text Available This study is aimed at comparing two traditional methods of drying of enzymes and at verifying the efficiency of each one and their advantages and disadvantages. The experiments were performed with a laboratory spray dryer and freeze-dryer using α-amylase as the model enzyme. An experimental design in star revealed that spray drying is mainly influenced by the inlet air temperature and feed flow rate, which were considered to be the main factors influencing the enzymatic activity and water activity; the long period of material exposure to high temperatures causes a partial activity loss. In the experiments of freeze drying, three methods of freezing were used (freezer, acetone and dry ice, and liquid nitrogen and samples subsequently freeze-dried for times ranging between 0-24 hours. The product obtained from the two techniques showed high enzymatic activity and low water activity. For the drying of heat-resistant enzymes, in which the product to be obtained does not have high added value, spray drying may be more economically viable because, in the freeze drying process, the process time can be considered as a limiting factor when choosing a technique.

  2. Performance of a solar dryer using hot air from roof-integrated solar collectors for drying herbs and spices

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Tung, P. [Silpakorn University, Pathom (Thailand). Dept. of Physics

    2005-11-01

    A solar dryer for drying herbs and spices using hot air from roof-integrated solar collectors was developed. The dryer is a bin type with a rectangular perforated floor. The bin has a dimension of 1.0 m x 2.0 m x 0.7 m. Hot air is supplied to the dryer from fiberglass-covered solar collectors, which also function as the roof of a farmhouse. The total area of the solar collectors is 72 m{sup 2}. To investigate its performance, the dryer was used to dry four batches of rosella flowers and three batches of lemon-grasses during the year 2002-2003. The dryer can be used to dry 200 kg of rosella flowers and lemon-grasses within 4 and 3 days, respectively. The products being dried in the dryer were completely protected from rains and insects and the dried products are of high quality. The solar air heater has an average daily efficiency of 35% and it performs well both as a solar collector and a roof of a farmhouse. (author)

  3. Tensile Bond Strength of Metal Bracket Bonding to Glazed Ceramic Surfaces With Different Surface Conditionings

    Directory of Open Access Journals (Sweden)

    M. Imani

    2011-12-01

    Full Text Available Objective: The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments.Materials and Methods: Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA. Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primerand adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively.Results: The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (P<0.01.Conclusion: In spite of limitations in laboratory studies it may be concluded that in application of Scotch bond multipurpose plus adhesive, phosphoric acid can be used instead of HFA for bonding brackets to the glazed ceramic restorations with enough tensile bond strength.

  4. Drying kinetics and characteristics of dried gambir leaves using solar heating and silica gel dessicant

    Science.gov (United States)

    Hasibuan, R.; Hidayati, J.; Sundari, R.; Wicaksono, A. S.

    2018-02-01

    A drying combination of solar heating and silica gel dessicant has been applied to dry gambir leaves. The solar energy is captured by a collector to heat the air and the hot air is used to dry gambir leaves in a drying chamber. An exhaust fan in drying chamber assists to draw water molecules from gambir leaves accelerated by silica gel dessicant. This study has investigated the drying kinetics and drying characteristics of gambir leaves drying. In drying operation the air velocity is tuned by a PWM (pulse width modulation) controller to adjust minimum and maximum level, which is based on the rotation speed of the exhaust fan. The results show that the air velocity influenced the drying kinetics and drying characteristics of gambir leaves using solar-dessicant drying at 40 cm distance between exhaust fan and silica gel dessicant.

  5. Study of the morphology of corrosion features of natural graphite oxidised by dry and humid air

    International Nuclear Information System (INIS)

    Senevat, Jean

    1965-12-01

    The author reports a study which aimed at highlighting the morphology differences between corrosion features which affect flakes of natural graphite oxidised by dry air and by humid air. The study is based on observations made by optical and transmission electronic microscopy, this last one being performed on replicates. As the so-called 'Hennig' replicates did not result in a sufficient resolution of corrosion feature details, another method has been developed. Three classes of samples (in relationship with the rate of impurities present in samples) have been studied. Flakes have thus been sorted and each flake has then been oxidised at different wear rates. This highlights the influence of damages created by impurities in the lattice [fr

  6. Mathematical models and qualities of shredded Thai-style instant rice under a combined gas-fired infrared and air convection drying

    Science.gov (United States)

    Nachaisin, Mali; Teeta, Suminya; Deejing, Konlayut; Pharanat, Wanida

    2017-09-01

    Instant food is a product produced for convenience for consumer. Qualities are an important attribute of food materials reflecting consumer acceptance. The most problem of instant rice is casehardening during drying process resulted in the longer rehydration time. The objective of this research was to study the qualities of shredded Thai-style instant rice under a combined gas-fired infrared and air convection drying. Additionally, the mathematical models for gas-fired infrared assisted thin-layer drying of shredded Thai-style rice for traditional was investigated. The thin-layer drying of shredded Thai-style rice was carried out under gas-fired infrared intensities of 1000W/m2, air temperatures of 70°C and air velocities of 1 m/s. The drying occurred in the falling rate of drying period. The Page model was found to satisfactorily describe the drying behavior of shredded Thai-style rice, providing the highest R2 (0.997) and the lowest MBE and RMSE (0.01 and 0.18) respectively. A 9 point hedonic test showed in softness and color, but odor and overall acceptance were very similar.

  7. Oxidation mechanism of Fe–16Cr alloy as SOFC interconnect in dry/wet air

    International Nuclear Information System (INIS)

    Chen, Zhi-Yuan; Wang, Li-Jun; Li, Fu-Shen; Chou, Kuo-Chih

    2013-01-01

    Highlights: •A special thermodynamic description corresponding to the kinetics was applied. •We reported the relationships of degradation time with temperature and moisture. •”Turning time” in the Fe–16Cr alloy oxidation kinetic model was given. •The oxidation mechanism of Fe–16Cr alloy in the wet air was discussed. -- Abstract: Experimental study on the oxidation corrosions of Fe–16Cr alloy was carried out at 800–1100 °C under dry/wet air conditions. Faster oxidation rate was observed at higher temperature and water vapor content. The degradation time t d between two stages in oxidation process showed an exponential relationship with elevating corrosion temperature in dry air, and a linear relationship with the water content in the case of water vapor introduced to the system. The mechanism of oxidation corrosions of Fe–16Cr alloy was suggested by the Real Physical Picture (RPP) model. It was found that the break-away oxidation in stage II was controlled by diffusion at initial both in dry and wet air, then became linear with the exposure time, which implied that the oxidation rate was then controlled by chemical reaction of the interface between the metal and the oxidized scale. Moreover, the effect of water in the oxidation process is not only to supply more oxygen into system, but also to modify the structures of oxide scale due to the existence of hydrogen atom, which results in the accelerated corrosions

  8. Pecan drying with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Chhinnan, M.S.

    1983-07-01

    High moisture in-shell pecans were dried by keeping them in direct and indirect contact with silica gel to investigate their drying characteristics. In-shell pecans were also dried with ambient air from a controlled environment chamber and with air dehumidified by silica gel. Direct contact and dehumidified air drying seemed feasible approaches.

  9. Modeling and experimental validation of the solar loop for absorption solar cooling system using double-glazed collectors

    International Nuclear Information System (INIS)

    Marc, Olivier; Praene, Jean-Philippe; Bastide, Alain; Lucas, Franck

    2011-01-01

    Solar cooling applied to buildings is without a doubt an interesting alternative for reducing energy consumption in traditional mechanical steam compression air conditioning systems. The study of these systems should have a closely purely fundamental approach including the development of numerical models in order to predict the overall installation performance. The final objective is to estimate cooling capacity, power consumption, and overall installation performance with relation to outside factors (solar irradiation, outside temperature...). The first stage in this work consists of estimating the primary energy produced by the solar collector field. The estimation of this primary energy is crucial to ensure the evaluation of the cooling capacity and therefore the cooling distribution and thermal comfort in the building. Indeed, the absorption chiller performance is directly related to its heat source. This study presents dynamic models for double glazing solar collectors and compares the results of the simulation with experimental results taken from our test bench (two collectors). In the second part, we present an extensive collector field model (36 collectors) from our solar cooling installation at The University Institute of Technology in St Pierre, Reunion Island as well as our stratified tank storage model. A comparison of the simulation results with real scale solar experimental data taken from our installation enables validation of the double glazing solar collector and stratified tank dynamic models.

  10. Microwave assisted air drying of osmotically treated pineapple with variable power programmes

    CSIR Research Space (South Africa)

    Botha, GE

    2012-01-01

    Full Text Available Variable power programmes for microwave assisted air drying of pineapple were studied. The pineapple pieces were pre-treated by osmotic dehydration in a 55º Brix sucrose solution at 40ºC for 90 minutes. Variable power output programmes were designed...

  11. Drying Kinetics Analysis of Seaweed Gracilaria changii using Solar Drying System

    International Nuclear Information System (INIS)

    Mohd Yusof Othman; Ahmad Fudholi; Kamaruzzaman Sopian; Mohd Hafidz Ruslan; Muhammad Yahya

    2012-01-01

    A solar drying system suitable for agricultural and marine products have been designed, constructed and evaluated under Malaysia climatic conditions. The solar drying system has been constructed and evaluated for the drying of seaweed Gracilaria changii. The initial and final moisture content of seaweed are 95 % (wet basis) and 10 % (product basis), respectively. The drying time was about 7 hours at average solar radiation of 593 W/ m 2 and air flow rate of 0.0613 kg/ s. Three different thin-layer drying models were compared with experimental data, during the drying of seaweed using the solar drying system at average temperature and humidity of about 50 degree Celsius and 20 %, respectively. The one with highest R2 and lowest MBE and RMSE was selected to better estimate the drying curves. The study showed that the Page model was better fit to drying seaweed compared to the other models (Newton model, and Henderson and Pabis model). (author)

  12. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties......Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... of aerogel glazing will allow for a positive net energy gain even for north facing vertical windows in a Danish climate during the heating season. This means that high quality daylight can be obtained even with additional energy gain. On behalf of the partners of the two EU projects, results related...

  13. Market opportunities for solar drying

    International Nuclear Information System (INIS)

    Voskens, R.G.J.H.; Out, P.G.; Schulte, B.

    2000-01-01

    One of the most promising applications for solar heating is the drying of agricultural products. The drying of agricultural products requires large quantities of low temperature air, in many cases, on a year-round basis. Low cost air-based collectors can provide heated air at solar collection efficiencies of 30 to 70%. In 1998/1999 a study was commissioned to better understand the technical and economic potential for solar drying of agricultural products in the world. The practical potential for solar drying was then determined for 59 crops and 22 regions. The world market for solar drying can be divided into three market segments: 1) mechanical drying T 50 deg. C; 3) sun drying. The most promising market for solar drying is generally market segment 1. For this segment the potential amount of energy displaced by solar is in between 216 770 PJ (World-wide). For Western Europe this potential is estimated between 23 88 PJ and for Eastern Europe between 7 and 13 PJ. A different market introduction strategy is required for each market segment. A total of 13 combinations of crops and regions are selected that appear to have the highest practical potential for solar drying. In the Netherlands a programme of activities was carried out by Ecofys and other organisations, to identify and develop the market potential for solar (assisted) drying of agricultural products. A promotional campaign for the use of renewable energy in the (promising) flower bulb sector is planned on a short-term basis to speed up market developments. It can be concluded that there is a large market for solar drying in the World as well as in Europe. (au)

  14. Study parameters process for production of red glazed ceramic plates with waste of stones

    International Nuclear Information System (INIS)

    Santos, J.C.; Taguchi, S.P.; Silva, A.C.

    2014-01-01

    The volume of fine waste's solid dimension stone industry has required a destination appropriate for them due to environmental and economic issues. The main goal of this work was to study the produce plates of glazed pottery with dimension stone waste. For analyzing the crystal structure, the test was conducted X-ray and X-ray fluorescence to determine the chemical composition of clay and the waste. Particle size was analysed too. Ceramic duo type (120x30x10mm) were sintered at 1280° C for 15 and 60 minutes. Characterized the samples for water absorption. The glaze had a strong anchorage in the ceramic base, but the high melting temperature caused cracks in the ceramic base, increasing the water absorption values. Thus, flux was added, based on the phase diagram Na_2O: CaO: SiO_2, which reduced the melting temperature of the glaze to 980 °C, enabling to produce the ceramic at 1100°C for 30 minutes, more uniform surface and best technological properties. (author)

  15. Uncertainty and sensitivity analyses of energy and visual performances of office building with external venetian blind shading in hot-dry climate

    International Nuclear Information System (INIS)

    Singh, Ramkishore; Lazarus, I.J.; Kishore, V.V.N.

    2016-01-01

    Highlights: • Various alternatives of glazing and venetian blind were simulated for office space. • Daylighting and energy performances were assessed for each alternative. • Large uncertainties were estimated in the energy consumptions and UDI values. • Glazing design parameters were prioritised by performing sensitivity analysis. • WWR, glazing type, blind orientation and slat angle were identified top in priority. - Abstract: Fenestration has become an integral part of the buildings and has a significant impact on the energy and indoor visual performances. Inappropriate design of the fenestration component may lead to low energy efficiency and visual discomfort as a result of high solar and thermal heat gains, excessive daylight and direct sunlight. External venetian blind has been identified as one of the effective shading devices for controlling the heat gains and daylight through fenestration. This study explores uncertainty and sensitivity analyses to identify and prioritize the most influencing parameters for designing glazed components that include external shading devices for office buildings. The study was performed for hot-dry climate of Jodhpur (Latitude 26° 180′N, longitude 73° 010′E) using EnergyPlus, a whole building energy simulation tool providing a large number of inputs for eight façade orientations. A total 150 and 845 data points (for each orientation) for input variables were generated using Hyper Cubic Sampling and extended FAST methods for uncertainty and sensitivity analyses respectively. Results indicated a large uncertainty in the lighting, HVAC, source energy consumptions and useful daylight illuminance (UDI). The estimated coefficients of variation were highest (up to 106%) for UDI, followed by lighting energy (up to 45%) and HVAC energy use (around 33%). The sensitivity analysis identified window to wall ratio, glazing type, blind type (orientation of slats) and slat angle as highly influencing factors for energy and

  16. Drying properties and quality parameters of dill dried with intermittent and continuous microwave

    OpenAIRE

    Eştürk, Okan

    2012-01-01

    In this study, influence of various microwave-convective air drying applications on drying kinetics, color and sensory quality of dill leaves (Anethum graveolens L.) were investigated. In general, increasing the drying air temperature decreased the drying time, and increased the drying rate. Increasing microwave pulse ratio increased the drying time. Page, Logarithmic, Midilli et al, Wang & Singh and Logistic models were fitted to drying data and the Page model was found to satisfactorily...

  17. Development and sensitivity study of a simplified and dynamic method for double glazing facade and verified by a full-scale façade element

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Wittchen, Kim Bjarne; Heiselberg, Per

    2014-01-01

    The research aims to develop a simplified calculation method for double glazing facade to calculate its thermal and solar properties (U and g value) together with comfort performance (internal surface temperature of the glazing). Double glazing is defined as 1D model with nodes representing......, taking the thermal mass of the glazing into account. In addition, angle and spectral dependency of solar characteristic is also considered during the calculation. By using the method, it is possible to calculate whole year performance at different time steps, which makes it a time economical and accurate...

  18. A fast atom bombardment study of the lead isotope ratios in early nineteenth century Niagara Peninsula pottery glazes

    International Nuclear Information System (INIS)

    Miller, J.M.; Jones, T.R.B.; Kenney, Tina; Rupp, D.W.

    1986-01-01

    The application of fast atom bombardment (FAB) mass spectrometry to the determination of lead isotope ratios in nineteenth century pottery glazes from the Niagara Peninsula has been investigated with the aim of determining the source of the lead used in the glazes. Methods of sampling have been compared, including direct analysis of glass chips, analysis of powdered glaze scrapings, analysis of acid extracts of the former, and simple acid leaching of the surface of a piece of pottery. The latter method gave the best results. The FAB data, as obtained on an older mass spectrometer, can distinguish lead from igneous vs. sedimentary deposits, but is not adequate to determine specific mining locations. Although newer FAB instrumentation can narrow this range, the overlap of data from the Niagara Peninsula and England precludes a simple answer to the archeological question as to English vs. Canadian origin of the lead used in the Jordan pottery glazes. However, the data do suggest that the potter used a local source for the lead

  19. STATISTIC MODELING OF DRYING KINETHIC OF SPINACH LEAVES USING MICROWAVE AND HOT AIR METHODS

    Directory of Open Access Journals (Sweden)

    Mojtaba Nouri

    2015-06-01

    Full Text Available The target of this study was to model of spinach leaves drying using microwave and hot air dryer. This test performed in combination treatment of temperatures (50°C, 60°C, and 70°C and microwave (90, 180, 360, 600 and 900w in 3 replications. Sample moisture measured within drying. All the results were fitted and analyzed with 8 mathematical models base on 3 parameters including determination (R2, Chi square(X2, root mean square errors(RSME. Results also revealed that temperature and microwave power effectively reduce the drying time when increase. Drying occurs in degrading stage; moreover the comparison of results exhibited that Page and Two sentences models were fitted appropriately to estimate moisture changing and drying description. Regarding all the results, it is cleared that microwave method is an appropriate method in spinach drying as a result of reducing drying temperature and its high efficiency.

  20. Directional and hemispherical solar energy transmittance of single and double glazing

    NARCIS (Netherlands)

    Nijnatten, van P.A.; Hugot-Le Goff, le A; Granqvist, C.-G.; Lampert, C.M.

    1992-01-01

    Solar and visual light transmittance, color appearance, thermal emissivity, and other optical properties of architectural glazing are in general angular dependent. Realistic computation of solar properties, therefore, requires the angular behavior to be known. Determination of these properties for

  1. PADDY DRYING IN MIXED ADSORPTION DRYER WITH ZEOLITE: DRYING RATE AND TIME ESTIMATION

    Directory of Open Access Journals (Sweden)

    Mochammad Djaeni

    2013-11-01

    Full Text Available Recently, the main problem of the rice stock and distribution in Indonesia is the quality degradation as indicated in unpleasant odor (smelly, stained, yellowness, and high percentage of broken rice. This is due to the low of paddy quality dried by from either direct sunlight or conventional fluidized bed dryer. As a result, the paddy cracks and breaks easily during milling in which causes the storage life being shorter as the enzymatic degradation by germ or fungi occurs. Air dehumidified with zeolite at drying medium temperature is potential to improve the quality of paddy. Zeolite is a material having high affinity to water vapor. In this case, the paddy and zeolite was mixed and fluidized with the air. The air will evaporate water from paddy, and at same time, the zeolite will adsorb water from air. Hence, the humidity of dryer can be kept low in which improves the driving force for drying. This work discusses the effect of presence of zeolite in the dryer, operational drying temperature, air velocity and relative humidity on drying rate of paddy. The results showed that increasing of zeolite as well as operational temperature increased the drying rate. In addition, using the model, the air dehumidification with zeolite and increase of air velocity can speed up drying time significantly at operational temperature below 80oC. This condition is very suitable for paddy drying since the quality degradation can be avoided.

  2. Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME-GC-MS and electronic nose.

    Science.gov (United States)

    Yang, Wenjian; Yu, Jie; Pei, Fei; Mariga, Alfred Mugambi; Ma, Ning; Fang, Yong; Hu, Qiuhui

    2016-04-01

    Volatile compounds are important factors that affect the flavor quality of Flammulina velutipes, but the changes occurring during hot air drying is still unclear. To clarify the dynamic changes of flavor components during hot air drying, comprehensive flavor characterization and volatile compounds of F. velutipes were evaluated using electronic nose technology and headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. Results showed that volatile components in F. velutipes significantly changed during hot air drying according to the principal component analysis and radar fingerprint chart of electronic nose. Volatile compounds of fresh F. velutipes consisted mainly of ketones, aldehydes and alcohols, and 3-octanone was the dominant compound. Drying process could significantly decrease the relative content of ketones and promoted the generation of alcohols, acids, and esters, which became the main volatile compounds of dried F. velutipes. These may provide a theoretical basis for the formation mechanism of flavor substances in dried F. velutipes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Air-drying Models for New-built Offshore Gas Pipelines%新建海底天然气管道干空气干燥模型研究

    Institute of Scientific and Technical Information of China (English)

    曹学文; 王立洋; 林宗虎

    2005-01-01

    Drying (conditioning) is an important procedure to prevent hydrate formation during gas pipeline gas-up and to protect pipelines against corrosion. The air-drying method is preferred in offshore gas pipelines pre-commissioning. The air-drying process of gas pipelines commonly includes two steps, air purging and soak test. The mass conservation and the phase equilibrium theory are applied to setting up the mathematical models of air purging, which can be used to simulate dry airflow rate and drying time. Fick diffusion law is applied to setting up the mathematical model of soak test, which can predict the water vapor concentration distribution. The results calculated from the purging model and the soak test model are in good agreement with the experimental data in the DF1-1 offshore production pipeline conditioning. The models are verified to be available for the air-drying project design of offshore gas pipelines. Some proposals for air-drying engineering and operational procedures are put forward by analyzing the air-drying process of DF1-1 gas-exporting pipelines.

  4. Drying characteristics of whole Musa AA group ‘Kluai Leb Mu Nang’ using hot air and infrared vacuum

    Science.gov (United States)

    Kulketwong, C.; Thungsotanon, D.; Suwanpayak, N.

    2017-06-01

    Dried Musa AA group ‘Kluai Leb Mu Nang’ are the famous processing goods of Chumphon province, the south of Thailand. In this paper, we improved the qualities of whole Musa AA group ‘Kluai leb Mu Nang’ by using the hot air and infrared vacuum (HA and infrared vacuum) drying method which has two stages. The first stage of the method is the hot air (HA) and hot air-infrared (HAI) drying for rapidly reducing the moisture content and the drying times at atmospheric pressure, and the second stage, the moisture content, and color of the samples can be controlled by the HA and infrared vacuum drying. The experiment was evaluated by the terms of firmness, color change, moisture content, vacuum pressure and energy consumption at various temperatures. The results were found that the suitable temperature of the HAI and HA and infrared vacuum drying stages at 70°C and 55°C, respectively, while the suitable vacuum pressure in the second process was -0.4 bar. The samples were dried in a total of 28 hrs using 13.83 MJ/kg of specific energy consumption (stage 1 with 8.8 MJ/kg and stage 2 of 5.03 MJ/kg). The physical characteristics of the 21% (wb) of dried bananas can be measured the color change, L*=38.56, a*=16.47 and b*=16.3, was approximate the goods from the local market, whereas the firmness of them was more tender and shown a value of 849.56 kN/m3.

  5. Latest Apple Drying Technologies: A Review

    OpenAIRE

    ÖZDEMİR, Yasin; SAYIN, Emir Olcay; KURULTAY, Şefik

    2009-01-01

    Drying is known as one of the oldest preservation methods and can be applicable to many fruits. Sun drying of apple has been known from ancient times. However, this technique is weather-dependent and has contamination problems such as dust, soil, sand particles and insects. Hot air drying of apples has low energy efficiency and requires longer drying period. The desire to eliminate these problems, prevent quality loss, and achieve fast and effective thermal processing has resulted in an incre...

  6. Effects of air temperature and velocity on the drying kinetics and product particle size of starch from arrowroot (Maranta arundinacae)

    Science.gov (United States)

    Caparanga, Alvin R.; Reyes, Rachael Anne L.; Rivas, Reiner L.; De Vera, Flordeliza C.; Retnasamy, Vithyacharan; Aris, Hasnizah

    2017-11-01

    This study utilized the 3k factorial design with k as the two varying factors namely, temperature and air velocity. The effects of temperature and air velocity on the drying rate curves and on the average particle diameter of the arrowroot starch were investigated. Extracted arrowroot starch samples were dried based on the designed parameters until constant weight was obtained. The resulting initial moisture content of the arrowroot starch was 49.4%. Higher temperatures correspond to higher drying rates and faster drying time while air velocity effects were approximately negligible or had little effect. Drying rate is a function of temperature and time. The constant rate period was not observed for the drying rate of arrowroot starch. The drying curves were fitted against five mathematical models: Lewis, Page, Henderson and Pabis, Logarithmic and Midili. The Midili Model was the best fit for the experimental data since it yielded the highest R2 and the lowest RSME values for all runs. Scanning electron microscopy (SEM) was used for qualitative analysis and for determination of average particle diameter of the starch granules. The starch granules average particle diameter had a range of 12.06 - 24.60 μm. The use of ANOVA proved that particle diameters for each run varied significantly with each other. And, the Taguchi Design proved that high temperatures yield lower average particle diameter, while high air velocities yield higher average particle diameter.

  7. Childhood Blood Lead Reductions Following Removal of Leaded Ceramic Glazes in Artisanal Pottery Production: A Success Story

    OpenAIRE

    Donald E. Jones, MS; Mario Covarrubias Pérez; Bret Ericson; Daniel Estrada Sánchez; Sandra Gualtero; Andrea Smith-Jones, MS; Jack Caravanos, DrPH, CIH

    2013-01-01

    Background. Lead exposure within artisanal ceramics workshop communities in Mexico continues to be a major source of childhood lead poisoning. Artisanal ceramics workshops expose children through direct ingestion, contaminated soil, and food prepared in lead-glazed pottery. Conversion to non-lead glazes alone may not effectively reduce exposure. This paper describes a model comprehensive intervention and environmental remediation of an artisanal ceramics workshop in the state of Hidalgo, Mexi...

  8. Air drying modelling of Mastocarpus stellatus seaweed a source of hybrid carrageenan

    Science.gov (United States)

    Arufe, Santiago; Torres, Maria D.; Chenlo, Francisco; Moreira, Ramon

    2018-01-01

    Water sorption isotherms from 5 up to 65 °C and air drying kinetics at 35, 45 and 55 °C of Mastocarpus stellatus seaweed were determined. Experimental sorption data were modelled using BET and Oswin models. A four-parameter model, based on Oswin model, was proposed to estimate equilibrium moisture content as function of water activity and temperature simultaneously. Drying experiments showed that water removal rate increased significantly with temperature from 35 to 45 °C, but at higher temperatures drying rate remained constant. Some chemical modifications of the hybrid carrageenans present in the seaweed can be responsible of this unexpected thermal trend. Experimental drying data were modelled using two-parameter Page model (n, k). Page parameter n was constant (1.31 ± 0.10) at tested temperatures, but k varied significantly with drying temperature (from 18.5 ± 0.2 10-3 min-n at 35 °C up to 28.4 ± 0.8 10-3 min-n at 45 and 55 °C). Drying experiments allowed the determination of the critical moisture content of seaweed (0.87 ± 0.06 kg water (kg d.b.)-1). A diffusional model considering slab geometry was employed to determine the effective diffusion coefficient of water during the falling rate period at different temperatures.

  9. Development of a simplified and dynamic method for double glazing façade with night insulation and validated by full-scale façade element

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Wittchen, Kim Bjarne; Heiselberg, Per

    2013-01-01

    The study aims to develop a simplified calculation method to simulate the performance of double glazing fac¸ ade with night insulation. This paper describes the method to calculate the thermal properties (Uvalue) and comfort performance (internal surface temperature of glazing) of the double...... with night insulation is calculated and compared with that of the facade without the night insulation. Based on standards EN 410 and EN 673, the method takes the thermal mass of glazing and the infiltration between the insulation layer and glazing into account. Furthermore it is capable of implementing whole...

  10. A comparative study on the effect of glazing and cooling for compound parabolic concentrator PV systems – Experimental and analytical investigations

    International Nuclear Information System (INIS)

    Bahaidarah, Haitham M.; Gandhidasan, P.; Baloch, Ahmer A.B.; Tanweer, Bilal; Mahmood, M.

    2016-01-01

    Highlights: • We model glazed and unglazed PV-CPC systems with and without active water cooling. • Model is validated with experimental results and found good agreement. • Significant increase in the maximum power output is observed with active cooling. • Unglazed PV-CPC system is recommended for greater electric power output. • Levelized cost of energy found was found lower for unglazed CPC with cooling. - Abstract: A key barrier to achieving the economic viability and widespread adoption of photovoltaic (PV) technology for the direct conversion of solar radiation to electricity is the losses related to the high operating temperatures of typical flat-type PV modules. This technical and economic study addresses the cost reduction of PV systems by proposing a methodology for the improvement of solar cell efficiency using low-concentration PV technology and compound parabolic concentrators (CPCs). A theoretical model was developed to evaluate the performance of PV-CPC systems considering their optical, thermal and electrical properties. The model was implemented to investigate glazed and unglazed PV-CPC systems with and without active cooling and it was validated against experimental data. A laboratory-scale bench-top PV string was designed and built with symmetrically truncated CPC modules in these four configurations. The constructed glazed and unglazed PV-CPC systems were used for measurements at the geographic location of Dhahran and showed a very good agreement of 3.8–6.5% between the calculated and experimental results. The effect of glazing was studied and from the electrical point of view, glazing was found to reduce the power output. From the thermal point of view, glazing increased the thermal gain of the PV-CPC system. An unglazed PV-CPC system is recommended for greater electric power output, and glazed system is recommended for higher thermal gain. For economic feasibility, levelized cost of energy (LCE) analysis was performed using annual

  11. An experimental study on the application of polyalcohol solid-solid phase change materials in solar drying with cross-corrugated solar air collectors

    Science.gov (United States)

    Gao, W. F.; Lin, W. X.; Liu, T.; Li, M.

    2017-11-01

    In this paper, two identical solar driers with the same cross-corrugated solar air collectors and drying chamber were developed, one with phase-change materials (PCMs) and the other without PCMs. These two solar drying systems were tested in typical sunny and cloudy days in Kunming and their thermal performances were analyzed. The experimental results show that the temperature changing is smoother in the collector with the PCMs, which is beneficial for the drying as the useful drying time was prolonged. The same trend was also found in the chamber with the PCMs. The PCMs in solar drying system was found to play a role in temperature regulating. There were several cycles of heat charging-discharging in a cloudy testing day while the temperatures on collectors and in chambers with the polyalcohol PCMs is higher than each phase-change temperature. Nevertheless, there was only one cycle of heat charging-discharging in a sunny testing day. The collector with PCMs has higher daily useful heat gain than the collector without PCMs.

  12. The prospects for dry fuel storage

    International Nuclear Information System (INIS)

    Harris, G.G.; Elliott, D.

    1994-01-01

    Dry storage of spent nuclear fuels is one method of dealing with radioactive waste. This article reports from a one day seminar on future prospects for dry fuel storage held in November 1993. Dry storage in an inert gas or air environment in vaults or casks, is an alternative to wet storage in water-filled ponds. Both wet and dry storage form part of the Interim Storage option for radioactive waste materials, and form alternatives to reprocessing or direct disposal in a deep repository. It has become clear that a large market for dry fuel storage will exist in the future. It will therefore be necessary to ensure that the various technical, safety, commercial, legislative and political constraints associated with it can be met effectively. (UK)

  13. The Design And Development Of A Double Glazed Gape – Roof ...

    African Journals Online (AJOL)

    On exposure of the developed dryer to the open for solar heating, the hot air in the solar collector plate (absorber) enters the drying chamber by natural circulation. While the heated air flows over the pellets moisture is extracted from the products. By this means, the cassava pellets achieve about 70% moisture, reduction, ...

  14. Analysis of Damage in Laminated Architectural Glazing Subjected to Wind Loading and Windborne Debris Impact

    Directory of Open Access Journals (Sweden)

    Daniel S. Stutts

    2013-05-01

    Full Text Available Wind loading and windborne debris (missile impact are the two primary mechanisms that result in window glazing damage during hurricanes. Wind-borne debris is categorized into two types: small hard missiles; such as roof gravel; and large soft missiles representing lumber from wood-framed buildings. Laminated architectural glazing (LAG may be used in buildings where impact resistance is needed. The glass plies in LAG undergo internal damage before total failure. The bulk of the published work on this topic either deals with the stress and dynamic analyses of undamaged LAG or the total failure of LAG. The pre-failure damage response of LAG due to the combination of wind loading and windborne debris impact is studied. A continuum damage mechanics (CDM based constitutive model is developed and implemented via an axisymmetric finite element code to study the failure and damage behavior of laminated architectural glazing subjected to combined loading of wind and windborne debris impact. The effect of geometric and material properties on the damage pattern is studied parametrically.

  15. Drying kinetics and quality aspects during heat pump drying of onion (Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Nihar Ranjan Sahoo

    2012-10-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 A prototype heat pump dryer has been developed for drying of fruits and vegetables at low temperature and relative humidity to maintain the quality of dried product. Onions, of Nasik red variety were peeled, trimmed and sliced to 2 mm thickness. The onion slices were dried in the heat pump dryer at 35ºC (32 % R.H., 40ºC (26 % R.H., 45ºC (19 % R.H. and 50ºC (15 % R.H.. Samples were also dried in a hot air dryer at 50ºC (52 % R.H. for comparison. The drying rate increased with increase in drying air temperature, associated with reduced R.H., in the heat pump dryer. Drying took place mainly under the falling rate period. The Page equation, resulting in a higher coefficient of determination and lower root mean square error, better described the thin-layer drying of onion slices than the Henderson and Pabis equation. Heat pump drying took less drying time of 360 min and yielded better quality dried product, with higher retention of ascorbic acid and pyruvic acid and lower colour change, as compared to a hot air dryer at the same drying air temperature of 50ºC.

  16. Data in support of energy performance of double-glazed windows.

    Science.gov (United States)

    Shakouri, Mahmoud; Banihashemi, Saeed

    2016-06-01

    This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy ("Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network" (Shakouri Hassanabadi and Banihashemi Namini, 2012) [1], "Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates" (Banihashemi et al., 2015) [2]). A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows.

  17. Development and demonstration of calculation tool for industrial drying processes ''DryPack''; Udvikling og demonstration af beregningsvaerktoej til industrielle toerreprocesser ''DryPack''

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, P.; Weinkauff Kristoffersen, J.; Blazniak Andreasen, M. [Teknologisk Institut, Aarhus (Denmark); Elmegaard, B.; Kaern, M. [Danmarks Tekniske Univ.. DTU Mekanik, Kgs. Lyngby (Denmark); Monrad Andersen, C. [Lokal Energi, Viby J. (Denmark); Grony, K. [SE Big Blue, Kolding (Denmark); Stihoej, A. [Enervision, Kolding (Denmark)

    2013-03-15

    In this project we have developed a calculation tool for calculating energy consumption in different drying processes - primarily drying processes with air. The program can be used to determine the energy consumption of a current drying process, after which it can be calculated how much energy can be saved by various measures. There is also developed a tool for the simulation of a batch drier, which calculates the drying of a batch depending on the time. The programs have demonstrated their usefulness in connection with three cases that are reviewed in the report. In the project measurements on four different dryers have been carried out, and energy consumption is calculated using ''DryPack''. With ''DryPack'' it is possible to find potential savings by optimizing the drying processes. The program package includes utilities for the calculation of moist air: 1) Calculation of the thermodynamic properties of moist air; 2) Device operation with moist air (mixing, heating, cooling and humidification); 3) Calculation of the relative change of the drying time by changing the process parameters; 4) IX-diagram at a temperature above 100 deg. C. (LN)

  18. The effect of glaze on the quality of frozen stored Alaska pollack (Theragra chalcogramma fillets under stable and unstable conditions

    Directory of Open Access Journals (Sweden)

    Peter Žoldoš

    2011-01-01

    Full Text Available Frozen fillets (n = 288 of Alaska pollack (Theragra chalcogramma were used to evaluate the effect of glaze on lipid oxidation and microbiological indicators during 6 months of freezing storage under stable (−18 °C and unstable temperature (varying from −5 to −18 °C conditions. The amount of glaze, moisture, fat and protein content were measured. Despite the low fat content in Alaska pollack, a positive effect of glazing and stable freezing conditions of storage on the range of oxidative changes of lipids expressed as thiobarbituric acid reactive substances was found. Total counts of viable cells slightly rose before the end of the storage period in both groups with commercially glazed fish. The average counts of psychrotrophs in each group ( were at the same level, ranging from 9.1 ×103 CFU·g-1 to 1.1 × 104 CFU·g-1. According to the microbiological results fillets stored under unstable conditions were considered to be acceptable, but sensory evaluation showed that at the end of frozen storage they could not be consumed because of rancidity. Based on our results, glaze application ranged from 10 to 15% guarantee of final quality, however, prevention of temperature fluctuation during storage is important to keep the quality of the frozen fillets. This is the first similar study in Alaska pollack.

  19. Microparticle charging in dry air plasma created by an external ionization source

    International Nuclear Information System (INIS)

    Derbenev, I N; Filippov, A V

    2015-01-01

    In the present paper the dust particle charging is studied in a dry air plasma created by an external ionization source. The ionization rate is changed in the range 10 1 -10 20 cm -3 s -1 . It is found that the main positive ion of the plasma is O + 4 and the main negative ones are O − 2 and O − 4 . The point sink model based on the diffusion-drift approach shows that the screening potential distribution around a dust particle is a superposition of four Debye-like exponentials with four different spatial scales. The first scale almost coincides with the Debye radius. The second one is the distance, passed by positive and negative plasma components due to ambipolar diffusion in their recombination time. The third one is defined by the negative ion conversion and diffusion. The fourth scale is described by the electron attachment, recombination and diffusion at low gas ionization rates and by the recombination and diffusion of negative diatomic ions at high ionization rates. It is also shown that the electron flux defines the microparticle charge at high ionization rates, whereas the electron number density is much less than the ion one. (paper)

  20. Detection of PAX8/PPARG and RET/PTC Rearrangements Is Feasible in Routine Air-Dried Fine Needle Aspiration Smears

    DEFF Research Database (Denmark)

    Ferraz, Carolina; Rehfeld, Christian; Krogdahl, Annelise

    2012-01-01

    Background: The diagnostic limitations of fine needle aspiration (FNA), like the indeterminate category, can be partially overcome by molecular analysis. As PAX8/PPARG and RET/PTC rearrangements have been detected in follicular thyroid carcinomas (FTCs) and papillary thyroid carcinomas (PTCs......), their detection in FNA smears could improve the FNA diagnosis. To date, these rearrangements have never been analyzed in routine air-dried FNA smears, but only in frozen tissue, formalin-fixed paraffin-embedded (FFPE) tissue, and in fresh FNA material. Fixed routine air-dried FNA samples have hitherto been judged...... as generally not suitable for testing these rearrangements in a clinical setting. Therefore, the objective of the present study was to investigate the feasibility of extracting RNA from routine air-dried FNA smears for the detection of these rearrangements with real-time polymerase chain reaction (RT...

  1. Time-Dependent Effects of Glaze Ice on the Aerodynamic Characteristics of an Airfoil

    Directory of Open Access Journals (Sweden)

    Narges Tabatabaei

    2018-01-01

    Full Text Available The main objective of this study is to estimate the dynamic loads acting over a glaze-iced airfoil. This work studies the performance of unsteady Reynolds-averaged Navier-Stokes (URANS simulations in predicting the oscillations over an iced airfoil. The structure and size of time-averaged vortices are compared to measurements. Furthermore, the accuracy of a two-equation eddy viscosity turbulence model, the shear stress transport (SST model, is investigated in the case of the dynamic load analysis over a glaze-iced airfoil. The computational fluid dynamic analysis was conducted to investigate the effect of critical ice accretions on a 0.610 m chord NACA 0011 airfoil. Leading edge glaze ice accretion was simulated with flat plates (spoiler-ice extending along the span of the blade. Aerodynamic performance coefficients and pressure profiles were calculated and validated for the Reynolds number of 1.83 × 106. Furthermore, turbulent separation bubbles were studied. The numerical results confirm both time-dependent phenomena observed in previous similar measurements: (1 low-frequency mode, with a Strouhal number Sth≈0,013–0.02, and (2 higher frequency mode with a Strouhal number StL≈0,059–0.69. The higher frequency motion has the same characteristics as the shedding mode and the lower frequency motion has the flapping mode characteristics.

  2. Low-airflow drying of fungicide-treated shelled corn

    International Nuclear Information System (INIS)

    Peterson, W.H.; Benson, P.W.

    1993-02-01

    Approved fungicides inhibit mold growth in shelled corn and allow for longer, natural-air drying. The longer drying periods permit lower than-normal airflows and smaller power units, thus reducing electrical demands on utilities in corn-producing states. Researchers placed approximately 67 m 3 (1900 bu) of one variety of shelled corn at approximately 24% moisture in each of five equally sized storage bins. They partitioned each bin vertically and filled one half of each bin with fungicide-treated corn and one half with untreated corn. Each of four bins used a different airflow. A fifth bin used the lowest of the four airflows but was equipped to capture and use solar energy. All corn dried rapidly with resulting good quality. The percentage of damaged kernels was significantly higher for untreated than for treated corn. The energy required for the lowest airflow system was approximately one half of that required for the higher, more traditional airflows. Because of lower-than-normal airflows, the electrical demand on the utility is approximately one fourth as great as that imposed when the higher, more traditional natural-air systems are used. The 1991 corn growing and drying seasons were unusual in central Illinois, the site of the study. Both harvest and drying occurred several weeks ahead of schedule. Additional work is needed to verify that findings hold true during more-normal Midwest corn growing and drying seasons; the investigators predict that they will. It should be noted that the fungicide used in this study has not yet been approved for widespread use in drying corn

  3. Elimination of the dirty crust of white alterated glaze from excavated ceramics using the laser cleaning alternative

    OpenAIRE

    Aura Castro, Elvira; Saiz Mauleón, María Begoña; Domenech Carbo, Mª Teresa

    2006-01-01

    The laser technique has been applied to the cleaning process of glazed decorated ceramics from excavation sites. The use of this method arises as the only possible alternative in the process of cleaning pieces with crusts of dirt that are extremely hard and strongly stuck over altered and friable white glaze layers. The study carried out has allowed to fix the optimal laser parameters in the elimination of the dark dirty layer found on several fragments from different periods. The study has b...

  4. Influence of local air velocity from air conditioner evaluated by salivary and skin biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Masaki; Takahashi, Takayuki; Yoshino, Yuichiro; Sasaki, Makoto [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Nishimiya, Hajime [Asahi Kasei Homes Corporation, R and D Laboratories, 2-1 Samejima, Fuji, Shizuoka 416-8501 (Japan)

    2010-11-15

    The purpose of this paper is to reveal both the psychosomatic and the physical effects of local air velocity from an air conditioner using biomarkers which can be collected noninvasively. Salivary {alpha}-amylase activity (SAA) and salivary cortisol were used as the indexes of psychosomatic effects. The total protein (TP) collected from stratum corneum was used as an index of the physical condition of dry skin. A continuous experiment over a 5 days period in summer was conducted using 8 healthy young male adults for 2-types of airflow conditioners, a whole ceiling-type air conditioner (without local air velocity) and a normal-type air conditioner (with local air velocity). The subjects felt cool, windy, dry and uncomfortable when under the normal-type air conditioner as determined in a subjective evaluation. The SAA under the normal-type air conditioner fluctuated more widely than with the whole ceiling-type air conditioner. The level of salivary cortisol decreased more in a day under the normal-type air conditioner than with the whole ceiling-type air conditioner. These results showed that reducing local air velocity may provide more healthy psychosomatic conditions over the long-term. Moreover, the TP of a drying-exposed skin area showed a significant change during this experiment whereas the TP of drying-protected area was relatively unchanged. It was indicated that one week's exposure to local air velocity conditions possibly influences the drying of facial skin. Thus, air movement at low velocity can be provides more comfortable conditions not only psychosomatically but also physically. (author)

  5. Modeling of convective drying kinetics of Pistachio kernels in a fixed bed drying system

    Directory of Open Access Journals (Sweden)

    Balbay Asım

    2013-01-01

    Full Text Available Drying kinetics of Pistachio kernels (PKs with initial moisture content of 32.4% (w.b was investigated as a function of drying conditions in a fixed bed drying system. The drying experiments were carried out at different temperatures of drying air (40, 60 and 80°C and air velocities (0.05, 0.075 and 0.1 m/s. Several experiments were performed in terms of mass of PKs (15g and 30g using a constant air velocity of 0.075 m/s. The fit quality of models was evaluated using the determination coefficient (R2, sum square error (SSE and root mean square error (RMSE. Among the selected models, the Midilli et al model was found to be the best models for describing the drying behavior of PKs. The activation energies were calculated as 29.2 kJ/mol and effective diffusivity values were calculated between 1.38 and 4.94x10-10 m2/s depending on air temperatures.

  6. Measurement of the total solar energy transmittance (g-value) for conventional glazings

    DEFF Research Database (Denmark)

    Duer, Karsten

    1998-01-01

    Three different glazings have been investigated in the Danish experimental setup METSET. (A device for calorimetric measurement of total solar energy transmittance - g-value).The purpose of the measurements is to increase the confidence in the calorimetric measurements. This is done by comparison...

  7. Measurement of the total solar energy transmittance (g-value) for complex glazings

    DEFF Research Database (Denmark)

    Duer, Karsten

    1999-01-01

    Four different complex glazings have been investigated in the Danish experimental setup METSET.The purpose of the measurements is to increase the confidence in the calorimetric measurements and to perform measurements and corrections according to a method developed in the ALTSET project...

  8. Determination of drying characteristics and quality properties of eggplant in different drying conditions

    Directory of Open Access Journals (Sweden)

    Gözde Bayraktaroglu Urun

    2015-12-01

    Full Text Available Drying is the most traditional process used for preserving eggplant a long time. The aim of this study was to determining drying characteristics and quality properties of eggplant dried by sun drying, hot air convective drying and infrared assisted convective drying. Convective drying and infrared assisted convective were carried out in a convective dryer at three different temperatures(40°, 50°, 60°C and air velocity at 5 m/s.The increasing of temperatures during the drying of eggplant led to a significant reduction of the drying time. However loss of nutrition was observed in eggplant samples dried at higher temperature.The biggest change in colour parameters was observed in samples dried with sun drying.So it was thought that sun drying had a negative effect on quality properties of eggplant samples.

  9. Flexible edge seal for vacuum insulating glazing units

    Science.gov (United States)

    Bettger, Kenneth J.; Stark, David H.

    2012-12-11

    A flexible edge seal is provided for a vacuum insulating glazing unit having a first glass pane and a second glass pane spaced-apart from the first. The edge seal comprises a seal member formed of a hermetically bondable material and having a first end, a second end and a center section disposed therebetween. The first end is hermetically bondable to a first glass pane. The second end is hermetically bondable to a second glass pane. The center section comprises a plurality of convolutes.

  10. Development of an Inline Dry Power Inhaler That Requires Low Air Volume.

    Science.gov (United States)

    Farkas, Dale; Hindle, Michael; Longest, P Worth

    2017-12-20

    Inline dry powder inhalers (DPIs) are actuated by an external air source and have distinct advantages for delivering aerosols to infants and children, and to individuals with compromised lung function or who require ventilator support. However, current inline DPIs either perform poorly, are difficult to operate, and/or require large volumes (∼1 L) of air. The objective of this study was to develop and characterize a new inline DPI for aerosolizing spray-dried formulations with powder masses of 10 mg and higher using a dispersion air volume of 10 mL per actuation that is easy to load (capsule-based) and operate. Primary features of the new low air volume (LV) DPIs are fixed hollow capillaries that both pierce the capsule and provide a continuous flow path for air and aerosol passing through the device. Two different configurations were evaluated, which were a straight-through (ST) device, with the inlet and outlet capillaries on opposite ends of the capsule, and a single-sided (SS) device, with both the inlet and outlet capillaries on the same side of the capsule. The devices were operated with five actuations of a 10 mL air syringe using an albuterol sulfate (AS) excipient-enhanced growth (EEG) formulation. Device emptying and aerosol characteristics were evaluated for multiple device outlet configurations. Each device had specific advantages. The best case ST device produced the smallest aerosol [mean mass median aerodynamic diameter (MMAD) = 1.57 μm; fine particle fraction <5 μm (FPF <5μm ) = 95.2%)] but the mean emitted dose (ED) was 61.9%. The best case SS device improved ED (84.8%), but produced a larger aerosol (MMAD = 2.13 μm; FPF <5μm  = 89.3%) that was marginally higher than the initial deaggregation target. The new LV-DPIs produced an acceptable high-quality aerosol with only 10 mL of dispersion air per actuation and were easy to load and operate. This performance should enable application in high and low flow

  11. Three air quality studies: Great Lakes ozone formation and nitrogen dry deposition; and Tucson aerosol chemical characterization

    Science.gov (United States)

    Foley, Theresa

    (arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, and nickel) in the southern Tucson metropolitan area. A Tucson company that uses beryllium oxide to manufacture thermally conductive ceramics has prompted strong citizen concern. This study found that the study area has good air quality with respect to PM10 and metals, with ambient concentrations meeting US Environmental Protection Agency and World Health Organization standards. Beryllium was detected only once (during a dust storm) and was ascribed to naturally-occurring beryllium in the suspended soil. The third paper (to be submitted to the Journal of Great Lakes Research) studies nitrogen dry deposition over Lake Michigan and Lake Superior. Numerous studies have shown that wet and dry deposition of nitrogen has contributed to the eutrophication of coastal waters and declining productivity of marine fisheries. Nitrogen dry deposition over the Great Lakes themselves, as opposed to the shorelines, has not been documented in the peer-reviewed literature. This paper calculates nitrogen dry deposition over Lake Michigan and Lake Superior, using aircraft measurements from the LADCO Aircraft Study, and finds that over-water, nitrogen dry deposition is a significant source of nitrogen to Lake Michigan and Lake Superior.

  12. Data in support of energy performance of double-glazed windows

    Directory of Open Access Journals (Sweden)

    Mahmoud Shakouri

    2016-06-01

    Full Text Available This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy (“Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network” (Shakouri Hassanabadi and Banihashemi Namini, 2012 [1], “Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates” (Banihashemi et al., 2015 [2]. A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows.

  13. The Sequence of Wet and Dry Days at Ibadan and Onne (Sub ...

    African Journals Online (AJOL)

    Twenty-three years daily rainfall data were collected for Ibadan while twenty years data were collected for Onne. These data were analysed and modelled for the dependence of wet days following dry days; dry days following wet days; dry days following dry days and wet days following wet days using the first order Markov ...

  14. Photovoltaic assisted solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ali, M.I.; Ibarahim, Z.

    2006-01-01

    A photovoltaic assisted solar drying system has been constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. This drying system uses a custom designed parallel flow V-groove type collector. A fan powered by photovoltaic source assists the air flow through the drying system. A funnel with increasing diameter towards the top with ventilator turbine is incorporated into the system to facilitate the air flow during the absence of photovoltaic energy source. This drying system is designed with high efficiency and portability in mind so that it can readily be used at plantation sites where the crops are harvested or produced. A daily mean efficiency about 44% with mean air flow rate 0.16 kgs -1 has been achieved at mean daily radiation intensity of 800 Wm -2 . daily mean temperature of air drying chamber under the above conditions is 46 o C. Study has shown that the air flow and air temperature increase with the increase of solar radiation intensity. On a bright sunny day with instantaneous solar intensity about 600 Wm -2 , the temperature of air entering the drying chamber of 45 o C has been measured. In the absence of photovoltaic or in natural convection flow, the instantaneous efficiency decreased when solar radiation increased. The instantaneous efficiency recorded are 35% and 27% respectively at 570 Wm -2 and 745 Wm -2 of solar radiation. The temperature of drying chamber for the same amount of solar radiation are 42 o C and 48 o C respectively. Thus, the solar dryer shows a great potential for application in drying process of agricultural produce

  15. STATISTIC MODELING OF DRYING KINETHIC OF SPINACH LEAVES USING MICROWAVE AND HOT AIR METHODS

    OpenAIRE

    Mojtaba Nouri; Marzieh Vahdani; Shilan Rashidzadeh; Lukáš Hleba; Mohammad Ali Shariati

    2015-01-01

    The target of this study was to model of spinach leaves drying using microwave and hot air dryer. This test performed in combination treatment of temperatures (50°C, 60°C, and 70°C) and microwave (90, 180, 360, 600 and 900w) in 3 replications. Sample moisture measured within drying. All the results were fitted and analyzed with 8 mathematical models base on 3 parameters including determination (R2), Chi square(X2), root mean square errors(RSME). Results also revealed that temperature and micr...

  16. Dry purification of aspirational air in coke-sorting systems with wet slaking of coke

    Energy Technology Data Exchange (ETDEWEB)

    T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    Coke transportation after wet slaking is accompanied by the release of dust in the production building and in the surrounding atmosphere. Wet methods are traditionally used to purify very humid air. Giprokoks has developed designs for highly efficient dry dust-removal methods in such conditions.

  17. CFD Analysis on the Passive Heat Removal by Helium and Air in the Canister of Spent Fuel Dry Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Do Young; Jeong, Ui Ju; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2016-05-15

    In the current commercial design, the canister of the dry storage system is mainly backfilled with helium gas. Helium gas shows very conductive behavior due to high thermal conductivity and small density change with temperature. However, other gases such as air, argon, or nitrogen are expected to show effective convective behavior. Thus these are also considered as candidates for the backfill gas to provide effective coolability. In this study, to compare the dominant cooling mechanism and effectiveness of cooling between helium gas and air, a computational fluid dynamics (CFD) analysis for the canister of spent fuel dry storage system with backfill gas of helium and air is carried out. In this study, CFD simulations for the helium and air backfilled gas for dry storage system canister were carried out using ANSYS FLUENT code. For the comparison work, two backfilled fluids were modeled with same initial and boundary conditions. The observed major difference can be summarized as follows. - The simulation results showed the difference in dominant heat removal mechanism. Conduction for helium, and convection for air considering Reynolds number distribution. - The temperature gradient inside the fuel assembly showed that in case of air, more effective heat mixing occurred compared to helium.

  18. Optimum Design Parameters of Box Window DSF Office at Different Glazing Types under Sub Interval of Intermediate Sky Conditions (20-40 klux)

    Science.gov (United States)

    Elayeb, O. K.; Alghoul, M. A.; Sopian, K.; Khrita, N. G.

    2017-11-01

    Despite Double skin façade (DSF) buildings are widely deployed worldwide, daylighting strategy is not commonly incorporated in these buildings compare to other strategies. Therefore, further theoretical and experimental studies would lead to adopting daylighting strategy in DSF office buildings. The aim of this study is to investigate the daylighting performance of office building at different design parameters of box window DSF using different glazing types under sub interval of intermediate sky conditions (20-40) klux using the (IES VE) simulation tool from Integrated Environmental Solutions - Virtual Environment. The implemented design parameters are window wall ratio (WWR) of internal façade (10-100) %, cavity depth (CD) of DSF (1-2.5) m and different glazing types. The glazing types were selected from the list available in the (IES VE) simulation tool. After series of evaluations, bronze tinted coating (STOPSOL) is implemented for the exterior façade while clear float, clear reflective coating (STOPSOL), grey and brown tinted coating (Anti-sun float) and blue coating tinted (SUNCOOL float) are implemented for the interior façade. In this paper, several evaluation parameters are used to quantify the optimum design parameters that would balance the daylighting requirements of a box window DSF office versus sky conditions range (20-40) klux. The optimum design parameters of DSF office building obtained under different glazing types are highlighted as follows. When using bronze tinted coating (STOPSOL) for the exterior façade, the glazing types of interior façade that showed superior daylighting performance of DSF office at (CD of 1.0m with WWR of 70%), (CD of 1.5m with WWR of 70%), (CD of 2.0m with WWR of 70%) and (CD of 2.0m with WWR of 70%) are grey tinted coating (Anti-sun float), clear reflective coating (STOPSOL), brown tinted coating (Anti-sun float), and clear float glazing respectively. Blue Coating tinted (SUNCOOL float) of interior façade glazing

  19. Spent fuel behaviour during dry storage - a review

    International Nuclear Information System (INIS)

    Shivakumar, V.; Anantharaman, K.

    1997-09-01

    One of the strategies employed for management of spent fuel prior to their final disposal/reprocessing is their dry storage in casks, after they have been sufficiently cooled in spent fuel pools. In this interim storage, one of the main consideration is that the fuel should retain its integrity to ensure (a) radiological health hazard remains minimal and (b) the fuel is retrievable for down steam fuel management processes such as geological disposal or reprocessing. For dry storage of spent fuel in air, oxidation of the exposed UO 2 is the most severe of phenomena affecting the integrity of fuel. This is kept within acceptable limits for desired storage time by limiting the fuel temperature in the storage cask. The limit on the fuel temperature is met by having suitable limits on maximum burn-up of fuel, minimum cooling period in storage pool and optimum arrangement of fuel bundles in the storage cask from heat removal considerations. The oxidation of UO 2 by moist air has more deleterious effects on the integrity of fuel than that by dry air. The removal of moisture from the storage cask is therefore a very important aspect in dry storage practice. The kinetics of the oxidation phenomena at temperatures expected during dry storage in air is very slow and therefore the majority of the existing data is based on extrapolation of data obtained at higher fuel temperatures. This and the complex effects of factors like fission products in fuel, radiolysis of storage medium etc. has necessitated in having a conservative limiting criteria. The data generated by various experimental programmes and results from the on going programmes have shown that dry storage is a safe and economical practice. (author)

  20. Effect of process parameters on energy performance of spray drying with exhaust air heat recovery for production of high value particles

    International Nuclear Information System (INIS)

    Julklang, Wittaya; Golman, Boris

    2015-01-01

    Highlights: • We study heat recovery from spray dryer using air-to-air heat exchanger. • We examine dryer energy performance using advanced mathematical model. • We use the response surface methodology to study the effect of process parameters. • Energy efficiency up to 43.3% is obtained at high flow rate of dilute slurry. • Energy saving up to 52.4% is obtained at high drying air temperature. - Abstract: Spray drying process has been widely used in various industries for many decades for production of numerous materials. This paper explores the energy performance of an industrial scale spray dryer equipped with an exhaust air heat recovery system for production of high value particles. Energy efficiency and energy saving were calculated using a comprehensive mathematical model of spray drying. The response surface methodology (RSM) was utilized to study the effect of process parameters on energy performance using a space-filling design. The meta model equations were formulated employing the well-fitted response surface equations with adjusted R 2 larger than 0.995. The energy efficiency as high as 43.3% was obtained at high flow rate of dilute slurry, while the highest energy saving of 52.4% was found by combination of positive effect of drying air temperature and negative effect of slurry mass flow rate. The utilization of efficient air-to-air heat exchanger leads to an increase in energy efficiency and energy savings. The detailed temperature and vapor concentration profiles obtained with the model are also valuable in determining final product quality when spray dryer is operated at energy efficient conditions

  1. Tensile bond strength of metal bracket bonding to glazed ceramic surfaces with different surface conditionings.

    Science.gov (United States)

    Akhoundi, Ms Ahmad; Kamel, M Rahmati; Hashemi, Sh Mahmood; Imani, M

    2011-01-01

    The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments. Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA). Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primer and adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively. The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (Ptensile bond strength.

  2. Effects of small-grit grinding and glazing on mechanical behaviors and ageing resistance of a super-translucent dental zirconia.

    Science.gov (United States)

    Lai, Xuan; Si, Wenjie; Jiang, Danyu; Sun, Ting; Shao, Longquan; Deng, Bin

    2017-11-01

    The purpose of this study is to elucidate the effects of small-grit grinding on the mechanical behaviors and ageing resistance of a super-translucent dental zirconia and to investigate the necessity of glazing for the small-grit ground zirconia. Small-grit grinding was performed using two kinds of silicon carbide abrasive papers. The control group received no grinding. The unground surfaces and the ground surfaces were glazed by an experienced dental technician. Finally, the zirconia materials were thermally aged in water at 134°C for 5h. After aforementioned treatments, we observed the surface topography and the microstructures, and measured the extent of monoclinic phase, the nano-hardness and nano-modulus of the possible transformed zone and the flexural strength. Small-grit grinding changed the surface topography. The zirconia microstructure did not change obviously after surface treatments and thermal ageing; however, the glaze in contact with zirconia showed cracks after thermal ageing. Small-grit grinding did not induce a phase transformation but improved the flexural strength and ageing resistance. Glazing prevented zirconia from thermal ageing but severely diminished the flexural strength. The nano-hardness and nano-modulus of the surface layer were increased by ultrafine grinding. The results suggest that small-grit grinding is beneficial to the strength and ageing resistance of the super-translucent dental zirconia; however, glazing is not necessary and even impairs the strength for the super-translucent dental zirconia. This study is helpful to the researches about dental grinding tools and maybe useful for dentists to choose reasonable zirconia surface treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Shrinkage and porosity evolution during air-drying of non-cellular food systems: Experimental data versus mathematical modelling.

    Science.gov (United States)

    Nguyen, Thanh Khuong; Khalloufi, Seddik; Mondor, Martin; Ratti, Cristina

    2018-01-01

    In the present work, the impact of glass transition on shrinkage of non-cellular food systems (NCFS) during air-drying will be assessed from experimental data and the interpretation of a 'shrinkage' function involved in a mathematical model. Two NCFS made from a mixture of water/maltodextrin/agar (w/w/w: 1/0.15/0.015) were created out of maltodextrins with dextrose equivalent 19 (MD19) or 36 (MD36). The NCFS made with MD19 had 30°C higher Tg than those with MD36. This information indicated that, during drying, the NCFS with MD19 would pass from rubbery to glassy state sooner than NCFS MD36, for which glass transition only happens close to the end of drying. For the two NCFS, porosity and volume reduction as a function of moisture content were captured with high accuracy when represented by the mathematical models previously developed. No significant differences in porosity and in maximum shrinkage between both samples during drying were observed. As well, no change in the slope of the shrinkage curve as a function of moisture content was perceived. These results indicate that glass transition alone is not a determinant factor in changes of porosity or volume during air-drying. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Glazing façade modules : daylighting performance simulation for Bragança, Coimbra, Évora and Faro

    OpenAIRE

    Sacht, Helenice Maria; Bragança, L.; Almeida, Manuela Guedes de; Caram, Rosana

    2012-01-01

    The daylighting performance improvement is one better strategy to reduce the artificial lighting consumption in buildings and obviously requires solar radiation from the exterior. Daylighting comes not only from direct sunlight but also from illumination provided by the sky on overcast days. Particular attention must be given to daylighting while designing a building when the aim is to maximize visual comfort or to reduce energy consumption. Visual comfort of glazing façades is a fundamental ...

  5. Effect of air-blowing duration on the bond strength of current one-step adhesives to dentin.

    Science.gov (United States)

    Fu, Jiale; Saikaew, Pipop; Kawano, Shimpei; Carvalho, Ricardo M; Hannig, Matthias; Sano, Hidehiko; Selimovic, Denis

    2017-08-01

    To evaluate the influence of different air-blowing durations on the micro-tensile bond strength (μTBS) of five current one-step adhesive systems to dentin. One hundred and five caries-free human molars and five current one-step adhesive systems were used: ABU (All Bond Universal, Bisco, Inc.), CUB (CLEARFIL™ Universal Bond, Kuraray), GPB (G-Premio BOND, GC), OBA (OptiBond All-in-one, Kerr) and SBU (Scotchbond Universal, 3M ESPE). The adhesives were applied to 600 SiC paper-flat dentin surfaces according to each manufacturer's instructions and were air-dried with standard, oil-free air pressure of 0.25MPa for either 0s, 5s, 15s or 30s before light-curing. Bond strength to dentin was determined by using μTBS test after 24h of water storage. The fracture pattern on the dentin surface was analyzed by SEM. The resin-dentin interface of untested specimens was visualized by panoramic SEM image. Data from μTBS were analyzed using two-way ANOVA (adhesive vs. air-blowing time), and Games-Howell (a=0.05). Two-way ANOVA revealed a significant effect of materials (p=0.000) and air-blowing time (p=0.000) on bond strength to dentin. The interaction between factors was also significantly different (p=0.000). Maximum bond strength for each system were recorded, OBA/15s (76.34±19.15MPa), SBU/15s (75.18±12.83MPa), CUB/15s (68.23±16.36MPa), GPB/30s (55.82±12.99MPa) and ABU/15s (44.75±8.95MPa). The maximum bond strength of OBA and SUB were significantly higher than that of GPB and ABU (padhesive systems is material-dependent (p=0.000), and was influenced by air-blowing duration (p=0.000). For the current one-step adhesive systems, higher bond strengths could be achieved with prolonged air-blowing duration between 15-30s. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica).

    Science.gov (United States)

    Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica

    2009-01-01

    The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity.

  7. Modelling the optical and thermal properties of advanced glazing overview of recent developments

    NARCIS (Netherlands)

    Rosenfeld, J.L.J.; Platzer, W.J.; Dijk, H.A.L. van; Maccari, A.

    2001-01-01

    The recently completed ALTSET project was part of the European Commission's Standards, Measurement and Testing programme. Its objective was the development of European standard test procedures for the determination of angular-dependent light and total solar energy transmittance for complex glazings

  8. Energy Labelling of Glazings and Windows in Denmark: Calculated and Measured Values

    DEFF Research Database (Denmark)

    Duer, Karsten; Svendsen, Svend; Mogensen, Morten Møller

    2002-01-01

    The influence of windows on the energy consumption in buildings is well known and in order to encourage the development and the appropriate use of high performance glazings and windows in Denmark, an Energy Labelling and Rating system is being developed. During this work a need for establishing...

  9. Assessment of five control strategies of an adjustable glazing at three different climate zones

    Directory of Open Access Journals (Sweden)

    Volker Ritter

    2015-11-01

    Full Text Available The energy demand for operating modern office spaces is often driven by either the annual heating demand, cooling demand or the demand for electrical lighting. The irradiation of the sun directly and indirectly affects the demand of all three. Consequently, the glazing of higher office buildings is often treated with coating that allows a fixed transmittance. Due to changing exterior conditions and interior needs, a fix-transmittance value is a compromise and most often doesn’t provide optimal thermal and visual conditions. The team in the research project named Fluidglass develops a new glazing in which the transmittance of the glazing can be adjusted. This is possible by colouring a fluid, which is circulated in chambers of the glazing. The concentration of the colorant can be infinitely adjusted. In addition, this window allows collecting heat in the exterior fluid and allows the interior fluid chamber to operate as heating panel. This paper presents a first assessment of different control strategies for adjusting the colorant concentration with a simplified model. The assessed control strategies result in considerably different overall energy demands. Certain control strategies have high potential for reducing the energy demand for heating and cooling depending on the locations (Munich 20–30% , Madrid 50–70% , Dubai 50–60%. However, certain control strategies increase the electricity demand for lighting, which needs to be considered in the further development. In general, control strategies that only consider the solar irradiation are less promising strategies in temperate climate than strategies that also take the interior temperature into account. The results of controls that also respect the thermal comfort based on a Predicted Mean Vote (PMV index can achieve low energy demand, presuming that a deviation from the highest level of comfort is acceptable. At this stage of research, none of the studied control strategies shows to be

  10. The study of chemical composition and elemental mappings of colored over-glaze porcelain fired in Qing Dynasty by micro-X-ray fluorescence

    International Nuclear Information System (INIS)

    Cheng Lin; Li Meitian; Kim Youshi; Fan Changsheng; Wang Shanghai; Pan Qiuli; Liu Zhiguo; Li Rongwu

    2011-01-01

    It is very difficult to measure the chemical composition of colored pigments of over-glaze porcelain by X-ray fluorescence because it contains high concentration of Pb. One of the disadvantages of our polycapillary optics is that it has low transmission efficiency to the high energy X-ray. However, it is beneficial to measure the chemical compositions of rich Pb sample. In this paper, we reported the performances of a tabletop setup of micro-X-ray fluorescence system base on slightly focusing polycapillary and its applications for analysis of rich Pb sample. A piece of Chinese ancient over-glaze porcelain was analyzed by micro-X-ray fluorescence. The experimental results showed that the Cu, Fe and Mn are the major color elements. The possibilities of the process of decorative technology were discussed in this paper, also.

  11. The study of chemical composition and elemental mappings of colored over-glaze porcelain fired in Qing Dynasty by micro-X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lin, E-mail: chenglin@bnu.edu.c [Beijing Normal University, Beijing 100875 (China); Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Radiation Center, Beijing 100875 (China); Li Meitian; Kim Youshi [Beijing Normal University, Beijing 100875 (China); Fan Changsheng; Wang Shanghai [Jiangxi Provincial Institute of Archaeology, Jiangxi Province 330025 (China); Pan Qiuli; Liu Zhiguo [Beijing Normal University, Beijing 100875 (China); Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Radiation Center, Beijing 100875 (China); Li Rongwu [Beijing Normal University, Beijing 100875 (China)

    2011-02-01

    It is very difficult to measure the chemical composition of colored pigments of over-glaze porcelain by X-ray fluorescence because it contains high concentration of Pb. One of the disadvantages of our polycapillary optics is that it has low transmission efficiency to the high energy X-ray. However, it is beneficial to measure the chemical compositions of rich Pb sample. In this paper, we reported the performances of a tabletop setup of micro-X-ray fluorescence system base on slightly focusing polycapillary and its applications for analysis of rich Pb sample. A piece of Chinese ancient over-glaze porcelain was analyzed by micro-X-ray fluorescence. The experimental results showed that the Cu, Fe and Mn are the major color elements. The possibilities of the process of decorative technology were discussed in this paper, also.

  12. Salivary contamination during bonding procedures with a one-bottle adhesive system.

    Science.gov (United States)

    Fritz, U B; Finger, W J; Stean, H

    1998-09-01

    The effect of salivary contamination of enamel and dentin on bonding efficacy of an experimental one-bottle resin adhesive was investigated. The adhesive was a light-curing urethane dimethacrylate/hydroxyethyl methacrylate/4-methacryloxyethyl trimellitate anhydride mixture dissolved in acetone. Evaluation parameters were shear bond strength and marginal gap width in a dental cavity. Apart from a control group without contamination (group 1), etched enamel and dentin were (2) contaminated with saliva and air dried; (3) contaminated, rinsed, and blot dried; (4) coated with adhesive, contaminated, rinsed, and blot dried; (5) coated with adhesive, light cured, contaminated, rinsed, and air dried; or (6) treated as in group 5, with additional adhesive application after air drying. There was no negative effect in groups 3 and 4, compared with control. Air drying after salivary contamination (group 2) resulted in low shear bond strengths and wide marginal gaps. Contamination of the cured adhesive layer (groups 5 and 6) had no adverse effect on enamel shear bond strengths, but resulted in 50% reduced dentin shear bond strengths and wide marginal gaps. The one-bottle adhesive system is relatively insensitive to salivary contamination, provided that the contamination occurs prior to light curing of the adhesive and is carefully rinsed and blot dried. Salivary contact after adhesive curing must be avoided.

  13. Herbal dryer: drying of ginger (zingiber officinale) using tray dryer

    Science.gov (United States)

    Haryanto, B.; Hasibuan, R.; Alexander; Ashari, M.; Ridha, M.

    2018-02-01

    Drying is widely used as a method to preserve food because of its convenience and affordability. Drying of ginger using tray dryer were carried out at various drying conditions, such as air-drying flow, air-drying temperature, and sample dimensions, to achieve the highest drying rate. Samples with various dimensions were placed in the tray dryer and dried using various air-drying flow and temperatures. The weights of samples were observed every 3 minutes interval. Drying was stopped after three times of constant weighing. Data of drying was collected to make the drying curves. Drying curves show that the highest drying rate is achieved using highest air flow and temperature.

  14. Dry air oxidation kinetics of K-Basin spent nuclear fuel

    International Nuclear Information System (INIS)

    Abrefah, J.; Buchanan, H.C.; Gerry, W.M.; Gray, W.J.; Marschman, S.C.

    1998-06-01

    The safety and process analyses of the proposed Integrated Process Strategy (IPS) to move the N-Reactor spent nuclear fuel (SNF) stored at K-Basin to an interim storage facility require information about the oxidation behavior of the metallic uranium. Limited experiments have been performed on the oxidation reaction of SNF samples taken from an N-Reactor outer fuel element in various atmospheres. This report discusses studies on the oxidation behavior of SNF using two independent experimental systems: (1) a tube furnace with a flowing gas mixture of 2% oxygen/98% argon; and (2) a thermogravimetric system for dry air oxidation

  15. Herbs drying using a heat pump dryer

    Energy Technology Data Exchange (ETDEWEB)

    Fatouh, M.; Metwally, M.N.; Helali, A.B.; Shedid, M.H. [Department of Mechanical Power Engineering, Faculty of Engineering at El Mattaria, Helwan University, P.O. Box 11718, Masaken El-Helmia, Cairo (Egypt)

    2006-09-15

    In the present work, a heat pump assisted dryer is designed and constructed to investigate the drying characteristics of various herbs experimentally. R134a is used as a working fluid in the heat pump circuit during the experimental work. Experiments have been conducted on Jew's mallow, spearmint and parsley. The effects of herb size, stem presence, surface load, drying air temperature and air velocity on the drying characteristics of Jew's mallow have been predicted. Experimental results show that a high surface load of 28kg/m{sup 2} yields the smallest drying rate, while the drying air with temperature of 55{sup o}C and velocity of 2.7m/s achieves the largest drying rate. A maximum dryer productivity of about 5.4kg/m{sup 2}h is obtained at the air temperature of 55{sup o}C, air velocity of 2.7m/s and dryer surface load of 28kg/m{sup 2}. It was found that small size herbs without stem need low specific energy consumption and low drying time. Comparison of the drying characteristics of different herbs revealed that parsley requires the lowest specific energy consumption (3684kJ/kg{sub H{sub 2}O}) followed by spearmint (3982kJ/kg{sub H{sub 2}O}) and Jew's mallow (4029kJ/kg{sub H{sub 2}O}). Finally, dryer productivity has been correlated in terms of surface load, drying air velocity and drying air temperature. (author)

  16. Study of the composition and viscosity of engobe and glazed from dimension stones wastes for application in red tile

    International Nuclear Information System (INIS)

    Hastenreiter, L.L. G.; Santos, J.C.; Taguchi, S.P.

    2014-01-01

    The dimension stones wastes has some constituents that may be employed in the ceramic. This work is about the production of engobe and glaze for ceramic coating. Chemical characterization of the residue and Clay (XRF) was performed. Several compositions were tested in order to decrease the melting temperature of the glaze to 980°C, enabling to produce the ceramic at 1100°C for 15 to 60 minutes, it presenting more uniform and better technological properties of the surface. The viscosities of some compositions of glaze and engobe were studied, to be applied on the red tile (100x100mm) to obtain the ceramic coating. These were analyzed for resistance to abrasion, according to NBR 13 818/1997 and it was found that the ceramic was classified as PEI 1 and may be used, eg in residential bathrooms and dormitories with no doors to the outside. (author)

  17. Air cooling of refrigerating loops: 'dry-hybrid' systems; Refroidissement par air des circuits frigorifiques: les systemes ''secs hybrides''

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W. [Societe Jaggi-Gunter (Switzerland)

    2003-02-01

    Different type of cooling systems can be implemented on coldness production plants. The choice very often depends on the initial investment, but from a technical and economical point of view, this choice is not necessary the best solution. Thus, it can be useful to know the different existing systems and their exploitation costs with respect to the expected needs. A particular solution which uses a 'dry-hybrid' cooler is presented in this study: 1 - open-loop evaporative cooler; 2 - open-loop evaporative cooler with intermediate exchanger; 3 - close-loop evaporative cooler; 4 - dry-cooler; 5 - dry cooler with spraying in the air flow way; 6 - dry cooler with counterflow spraying; 7 - hybrid dry cooler; 8 - example of a realization in Germany: technical and economical value of the project, description of compared solutions and hypotheses, interpretation of results. (J.S.)

  18. Effect mechanism of air deflectors on the cooling performance of dry cooling tower with vertical delta radiators under crosswind

    International Nuclear Information System (INIS)

    Zhao, Yuanbin; Long, Guoqing; Sun, Fengzhong; Li, Yan; Zhang, Cuijiao; Liu, Jiabin

    2015-01-01

    Highlights: • A 3D numerical model was set for NDDCTV to study the effect of air deflectors. • The air deflectors improve the tower performance by 1.375 °C at u c = 6 m/s for a case. • The air deflectors reduce the air inflow deviation angle θ d at most delta entries. • The reduced θ d can improve the cooling performance of former deteriorated columns. • Both the radial inflow air velocity and θ d impact the cooling performance of delta. - Abstract: To study the effect mechanism of air deflectors on dry cooling tower, a three dimensional numerical model was established, with full consideration of the delta structure. The accuracy and credibility of dry cooling tower numerical model were validated. By numerical model, the average air static pressure and the average radial inflow air velocity were computed and analyzed at delta air entry, sector air entry and exit faces. By the air inflow deviation angle θ d , the effect of air deflectors on the aerodynamic field around tower was analyzed. The water exit temperatures of θ −1 columns, θ +2 columns and cooling sectors were also presented to clarify the effect of air deflectors. It was found that the air deflectors improved the aerodynamic field around cooling columns. The reduced air inflow deviation degree at delta entry improved the cooling performance of deteriorated columns. Referring to the radial inflow air velocity u ra and the air inflow deviation degree at delta entry, the effect mechanism of air deflectors are clarified under crosswind

  19. Physical properties of sunflower grains after drying

    Directory of Open Access Journals (Sweden)

    Paulo Carteri Coradi

    2015-12-01

    Full Text Available The knowledge of the physical properties of the grains is important for the optimization of post-harvest operations. This study aimed to evaluate the effects of convective drying with different air temperatures (45, 55, 65 and 75 °C the physical properties of sunflower seeds. The drying sunflower grains was performed in convection oven with forced air. In natural conditions, samples of 5 kg of pellets were used for each repetition drying. During the drying process, the grains samples were weighed periodically until they reach 10% (wet basis, w.b., then were subjected to evaluations of physical properties. According to the results it was observed that the porosity, apparent density, thousand kernel weight to the drag coefficient, roundness, sphericity and width of sunflower seed did not change with increasing temperature drying air. It was concluded that the drying air temperatures of 45 °C and 55 retained the initial physical characteristics of sunflower seeds. The temperature of the drying air of 75 °C had greater influence on changes in volumetric shrinkage of the grains.

  20. Microstructure characteristics of vacuum glazing brazing joints using laser sealing technique

    Science.gov (United States)

    Liu, Sixing; Yang, Zheng; Zhang, Jianfeng; Zhang, Shanwen; Miao, Hong; Zhang, Yanjun; Zhang, Qi

    2018-05-01

    Two pieces of plate glass were brazed into a composite of glazing with a vacuum chamber using PbO-TiO2-SiO2-RxOy powder filler alloys to develop a new type of vacuum glazing. The brazing process was carried out by laser technology. The interface characteristics of laser brazed joints formed between plate glass and solder were investigated using optical microscope, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The results show that the inter-diffusion of Pb/Ti/Si/O elements from the sealing solder toward the glass and O/Al/Si elements from the glass toward the solder, resulting in a reaction layer in the brazed joints. The microstructure phases of PbTiO3, AlSiO, SiO2 and PbO in the glass/solder interface were confirmed by XRD analysis. The joining of the sealing solder to the glass was realized by the reaction products like fibrous structures on interface, where the wetting layer can help improve the bonding performance and strength between the sealing solder and the plate glass during the laser brazing process.

  1. Numerical modelling of the effect of dry air traces in a helium parallel plate dielectric barrier discharge

    Science.gov (United States)

    Lazarou, C.; Belmonte, T.; Chiper, A. S.; Georghiou, G. E.

    2016-10-01

    A validated numerical model developed for the study of helium barrier discharges in the presence of dry air impurities is presented in this paper. The model was used to numerically investigate the influence of air traces on the evolution of the helium dielectric barrier discharge (DBD). The level of dry air used as impurity was in the range from 0 to 1500 ppm, which corresponds to the most commonly encountered range in atmospheric pressure discharge experiments. The results presented in this study clearly show that the plasma chemistry and consequently the discharge evolution is highly affected by the concentration level of impurities in the mixture. In particular, it was observed that air traces assist the discharge ignition at low concentration levels (~55 ppm), while on the other hand, they increase the burning voltage at higher concentration levels (~1000 ppm). Furthermore, it was found that the discharge symmetry during the voltage cycle highly depends on the concentration of air. For the interpretation of the results, a detailed analysis of the processes that occur in the discharge gap is performed and the main reaction pathways of ion production are described. Thanks to this approach, useful insight into the physics behind the evolution of the discharge is obtained.

  2. Daily efficiency of flat-plate solar air collectors for grain drying

    Energy Technology Data Exchange (ETDEWEB)

    Ting, K.C.; Shove, G.C.

    1983-01-01

    Single cover flat-plate solar collectors incorporated into walls and roofs of farm buildings have been used to heat ambient air for low temperature grain drying systems. Large surface area and high airflow rate are common features of these collectors. The drying period may range from several days to several weeks. Therefore, a knowledge of the variations of the collectors' daily efficiencies with respect to their design parameters would be helpful in applying solar collectors to grain drying. The objective of this study was to develop a simpler means of direct calculation of a collector's daily efficiency based on its design parameters. Many factors, such as configuration of the collector, airflow rate, weather conditions, etc. will affect the performance of solar collectors. A large number of varied conditions need to be tested in order to investigate the effect of different parameters on the collector performance. To facilitate this investigation, a computer simulation model developed by Ting was used to calculate the daily efficiencies of collectors under different operating conditions. The computer model was verified by Morrison's experimental data. Based on the simulation results, a functional relationship was developed between the daily efficiencies of collectors and their design parameters.

  3. Effect of sodium dodecylbenzene sulfonate on the dispersion stability of ceramic glaze suspension

    Energy Technology Data Exchange (ETDEWEB)

    Satchawan, Suphapan; Naksata, Wimol; Rattanakawin, Chairoj; Thiansem, Sakdiphon; Arqueropanyo, Orn-anong [Chiang Mai University, Chiang Mai (Thailand); Panya, Preecha [Kamphaengphet Rajabhat University, Kamphaengphet (Thailand); Sooksamiti, Ponlayuth [The Office of Primary Industries and Mines Region 3, Chiang Mai (Thailand); Scales, Peter J. [The University of Melbourne, Parkville Victoria (Australia)

    2014-06-15

    Sodium dodecylbenzene sulfonate (SDBS) was used to render the stability of ceramic glaze dispersion which is composed of limestone, feldspar, quartz, kaolin and ferric oxide. The measured zeta potential showed negative values for the systems in deionized water and 0.001 M MgCl{sub 2} media at pH above 2, but a positive value was observed in 0.1M MgCl{sub 2} at pH higher than 6.7. Adsorption of SDBS in aqueous suspensions of ceramic glaze in deionized water and in 0.001 M MgCl{sub 2}, within the concentration range studied, followed both the Langmuir and Freundlich isotherms, but the Freundlich isotherm was more favored. Adsorption of SDBS in 0.1M MgCl{sub 2} corresponded to the Freundlich isotherm. From dispersion stability investigation, SDBS could render the suspension in deionized water and in 0.001 mM MgCl{sub 2} more than in 0.1 mM MgCl{sub 2}.

  4. Effect of sodium dodecylbenzene sulfonate on the dispersion stability of ceramic glaze suspension

    International Nuclear Information System (INIS)

    Satchawan, Suphapan; Naksata, Wimol; Rattanakawin, Chairoj; Thiansem, Sakdiphon; Arqueropanyo, Orn-anong; Panya, Preecha; Sooksamiti, Ponlayuth; Scales, Peter J.

    2014-01-01

    Sodium dodecylbenzene sulfonate (SDBS) was used to render the stability of ceramic glaze dispersion which is composed of limestone, feldspar, quartz, kaolin and ferric oxide. The measured zeta potential showed negative values for the systems in deionized water and 0.001 M MgCl 2 media at pH above 2, but a positive value was observed in 0.1M MgCl 2 at pH higher than 6.7. Adsorption of SDBS in aqueous suspensions of ceramic glaze in deionized water and in 0.001 M MgCl 2 , within the concentration range studied, followed both the Langmuir and Freundlich isotherms, but the Freundlich isotherm was more favored. Adsorption of SDBS in 0.1M MgCl 2 corresponded to the Freundlich isotherm. From dispersion stability investigation, SDBS could render the suspension in deionized water and in 0.001 mM MgCl 2 more than in 0.1 mM MgCl 2

  5. Micro energy dispersive X-ray fluorescence analysis of polychrome lead-glazed Portuguese faiences

    International Nuclear Information System (INIS)

    Guilherme, A.; Pessanha, S.; Carvalho, M.L.; Santos, J.M.F. dos; Coroado, J.

    2010-01-01

    Several glazed ceramic pieces, originally produced in Coimbra (Portugal), were submitted to elemental analysis, having as premise the pigment manufacture production recognition. Although having been produced in Coimbra, their location changed as time passed due to historical reasons. A recent exhibition in Coimbra brought together a great number of these pieces and in situ micro Energy Dispersive X-ray Fluorescence (μ-EDXRF) analyses were performed in order to achieve some chemical and physical data on the manufacture of faiences in Coimbra. A non-commercial μ-EDXRF equipment for in situ analysis was employed in this work, carrying some important improvements when compared to the conventional ones, namely, analyzing spot sizes of about 100 μm diameter. The combination of a capillary X-ray lens with a new generation of low power microfocus X-ray tube and a drift chamber detector enabled a portable unit for micro-XRF with a few tens of μm lateral resolution. The advantages in using a portable system emphasized with polycapillary optics enabled to distinguish proximal different pigmented areas, as well as the glaze itself. These first scientific results on the pigment analysis of the collection of faiences seem to point to a unique production center with own techniques and raw materials. This conclusion arose with identification of the blue pigments having in its constitution Mn, Fe Co and As and the yellows as a result of the combination between Pb and Sb. A statistical treatment was used to reveal groups of similarities on the pigments elemental profile.

  6. Assessment of Bond Strength between Metal Brackets and Non-Glazed Ceramic in Different Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    I. Harririan

    2010-06-01

    Full Text Available Objective: The aim of this study was to evaluate the bond strength between metal brackets and non-glazed ceramic with three different surface treatment methods.Materials and Methods: Forty-two non-glazed ceramic disks were assigned into three groups. Group I and II specimens were etched with 9.5% hydrofluoric acid. Subsequently in group I, silane and adhesive were applied and in group II, bonding agent was used only.In group III, specimens were treated with 35% phosphoric acid and then silane and adhesive were applied. Brackets were bonded with light-cured composites. The specimens were stored in water in room temperature for 24 hours and then thermocycled 500 times between 5°C and 55°C.Results: The difference of tensile bond strength between groups I and III was not significant(P=0.999. However, the tensile bond strength of group II was significantly lower than groups I, and III (P<0.001. The adhesive remnant index scores between the threegroups had statistically significant differences (P<0.001.Conclusion: With the application of scotch bond multi-purpose plus adhesive, we can use phosphoric acid instead of hydrofluoric acid for bonding brackets to non-glazed ceramic restorations.

  7. Convective drying of chilies using a concentrating solar collector

    International Nuclear Information System (INIS)

    Hanif, M.; Khattak, M.K.; Aamir, M.

    2015-01-01

    A concentrating solar collector was developed for convective drying of green chilies by providing optimum drying environment. A temperature in the range of 45-65 degree C and relative humidity of less than 10% was observed during the drying period provided by the solar collector from 9.00 am to 5.00 pm. Different levels of drying temperature and air mass flow rates were tested to find their effect on drying time of the chilies. The experiment was laid out as a randomized complete block design with a factorial arrangement of the treatments consisting of 3 levels of temperature and 3 levels of air mass flow rate, replicated 3 times. Drying temperature and air mass flow rates effected the drying time significantly. The means comparison showed that minimum drying time of 17.96 h was recorded at high temperature of 65 degree C followed by a drying time of 20.27 and 21.43 h at temperatures of 55 and 45 degree C. The means of air mass flow rates showed that minimum drying time of 18.49 h was noted at high air mass flow rate of 3.50 kg min-1 followed by 20.32 and 20.86 h at air mass flow rates of 1.5 and 2.30 kg min-l. Chilies dried at temperature of 65 degree C and air mass flow rate of 3.5 kg min-1 showed an average drying rate of 0.02 g(H20)hrl cm-2as compared to the slow drying rates at 55 and 45 degree C. It was concluded that chilies must be dried at high temperature and high air mass flow rates to get on time quality dried chilies. (author)

  8. Development of Solar Drying Model for Selected Cambodian Fish Species

    OpenAIRE

    Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan

    2014-01-01

    A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h...

  9. Warm Dry Weather Conditions Cause of 2016 Fort McMurray Wild Forest Fire and Associated Air Quality

    Science.gov (United States)

    de Azevedo, S. C.; Singh, R. P.; da Silva, E. A., Sr.

    2016-12-01

    The climate change is evident from the increasing temperature around the world, day to day life and increasing frequency of natural hazards. The warm and dry conditions are the cause of frequent forest fires around the globe. Forest fires severely affect the air quality and human health. Multi sensor satellites and dense network of ground stations provide information about vegetation health, meteorological, air quality and atmospheric parameters. We have carried out detailed analysis of satellite and ground data of wild forest fire that occurred in May 2016 in Fort McMurray, Alberta, Canada. This wild forest fire destroyed 10 per cent of Fort McMurray's housing and forced more than 90,000 people to evacuate the surrounding areas. Our results show that the warm and dry conditions with low rainfall were the cause of Fort McMurray wild fire. The air quality parameters (particulate matter, CO, ozone, NO2, methane) and greenhouse gases measured from Atmospheric Infrared Sounder (AIRS) satellite show enhanced levels soon after the forest fire. The emissions from the forest fire affected health of population living in surrounding areas up to 300 km radius.

  10. Intelligent Glazed Facades for Fulfilment of Future Energy Regulations

    DEFF Research Database (Denmark)

    Winther, Frederik Vildbrad; Heiselberg, Per; Jensen, Rasmus Lund

    2010-01-01

    This project aims at testing technologies for control of heat transfer, irradiation, mass transport and energy storage in order to investigate the potential of a intelligent dynamic glazed facade. Furthermore a development of algorithms for control of the technologies included in the facade......, for use in the design phase, is done. The methods used are initially based on thermal building calculations. This analysis shows that a dynamic adaptive facade is the only way in which future office buildings can fulfil the energy regulations. By designing the facade according to the usage...

  11. The characterisation of the daylighting properties of special glazings and solar shading devices

    NARCIS (Netherlands)

    Dijk, H.A.L. van; Bakker, L.G.

    1998-01-01

    Within the EU DGXII R&D Programme JOULE a project, called REVIS. started in 1998 and will be completed within 2.5 years, with the objective to develop detailed daylight product information of novel products of glazings and solar shading devices. This involves a test procedure, definition of product

  12. X-ray fluorescence (conventional and 3D) and scanning electron microscopy for the investigation of Portuguese polychrome glazed ceramics: Advances in the knowledge of the manufacturing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Guilherme, A. [Departamento de Fisica da Faculdade de Ciencias, Centro de Fisica Atomica da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal); Coroado, J. [Instituto Politecnico Tomar, Dep. Arte Conservacao and Restauro, P-2300313 Tomar (Portugal); Santos, J.M.F. dos [GIAN, Departamento de Fisica, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Luehl, L.; Wolff, T.; Kanngiesser, B. [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Hardenbergstr. 36 D-10623 Berlin (Germany); Carvalho, M.L., E-mail: luisa@cii.fc.ul.pt [Departamento de Fisica da Faculdade de Ciencias, Centro de Fisica Atomica da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal)

    2011-05-15

    This work shows the first analytical results obtained by X-Ray Fluorescence (XRF) (conventional and 3D) and Scanning Electron Microscopy with Energy Dispersive System (SEM-EDS) on original Portuguese ceramic pieces produced between the 16th and 18th centuries in Coimbra and Lisbon. Experts distinguished these productions based only on the color, texture and brightness, which originates mislabeling in some cases. Thanks to lateral and spatial resolution in the micrometer regime, the results obtained with {mu}-XRF were essential in determining the glaze and pigment thicknesses by monitoring the profile of the most abundant element in each 'layer'. Furthermore, the dissemination of these elements throughout the glaze is different depending on the glaze composition, firing temperature and on the pigment itself. Hence, the crucial point of this investigation was to analyze and understand the interfaces color/glaze and glaze/ceramic support. Together with the XRF results, images captured by SEM and the corresponding semi-quantitative EDS data revealed different manufacturing processes used by the two production centers. Different capture modes were suitable to distinguish different crystals from the minerals that confer the color of the pigments used and to enhance the fact that some of them are very well spread through the glassy matrix, sustaining the theory of an evolved and careful procedure in the manufacturing process of the glaze.

  13. Study of microwave drying of wet materials based on one-dimensional two-phase model

    Science.gov (United States)

    Salomatov, Vl V.; Karelin, V. A.

    2017-11-01

    Currently, microwave is one of the most interesting ways to conduct drying of dielectric materials, in particular coal. In this paper, two processes were considered - heating and drying. The temperature field of the coal semi-mass in the heating mode is found analytically strictly with the use of integral transformations. The drying process is formulated as a nonlinear Stephen problem with a moving boundary of the liquid-vapor phase transformation. The temperature distribution, speed and drying time in this mode are determined approximately analytically. Parametric analysis of the influence of the material and boundary conditions on the dynamics of warming up and drying is revealed.

  14. Application of large-area chromogenics to architectural glazings

    Science.gov (United States)

    Selkowitz, Stephen E.

    1990-03-01

    Glass plays a significant role in the design of building envelopes today. Since its emergence during the last century as a major building material, glass has evolved into an ubiquitous and versatile building design element, performing functions today that would have been unimaginable a few years ago. The optical clarity and transparency of glass that we take for granted is one of its most unique features. Glass windows keep out the cold wind and rain without blocking the view, but also perform many more complex functions which require variable properties and tradeoffs between conflicting conditions. The glazing that provides view must also provide visual privacy at other times and must sometimes become totally opaque (for audiovisual shows, for example). Transparent glass admits daylight, providing good color rendition and offsetting electric lighting energy needs, but it can also create discomfort and disability glare conditions. The sun provides desirable warmth in winter but its heat is unwelcome in summer when it contributes to thermal discomfort and cooling energy requirements. And glass is an important element in the appearance and aesthetics of a building, both interior and exterior.

  15. A measurement of summertime dry deposition of ambient air particulates and associated metallic pollutants in Central Taiwan.

    Science.gov (United States)

    Fang, Guor-Cheng; Chiang, Hung-Che; Chen, Yu-Cheng; Xiao, You-Fu; Wu, Chia-Ming; Kuo, Yu-Chen

    2015-04-01

    The purpose of this study is to characterize metallic elements associated with atmospheric particulate matter in the dry deposition plate, total suspended particulate, fine particles, and coarse particles at Taichung Harbor and Gong Ming Junior High School (airport) in central Taiwan at a sampling site from June 2013 to August 2013. The results indicated that: (1) the average concentrations of the metallic elements Cr and Cd were highest at the Gong Ming Junior High School (airport), and the average concentrations of the metallic elements Ni, Cu, and Pb were highest at the Taichung Harbor sampling site. (2) The high smelting industry density and export/import rate of heavily loaded cargos were the main reasons leading to these findings. (3) The average metallic element dry deposition and metallic element PM(2.5-10) all followed the order of Pb > Cr > Cu > Ni > Cd at the two sampling sites. However, the average metallic elements Cu and Pb were found to have the highest dry deposition velocities and concentrations in PM(2.5) for the two sampling sites in this study. (4) The correlation coefficients of ambient air particle dry deposition and concentration with wind speed at the airport were higher than those from the harbor sampling site. The wind and broad open spaces at Taichung Airport were the possible reasons for the increasing correlation coefficients for ambient air particle concentration and dry deposition with wind speed at the Taichung Airport sampling site.

  16. Effect of biomass open burning on particulate matter and polycyclic aromatic hydrocarbon concentration levels and PAH dry deposition in ambient air.

    Science.gov (United States)

    Chiu, Jui C; Shen, Yun H; Li, Hsing W; Chang, Shun S; Wang, Lin C; Chang-Chien, Guo P

    2011-01-01

    The objectives of the present study were to investigate particulate matter (PM) and polycyclic aromatic hydrocarbon (PAH) concentrations in ambient air during rice straw open burning and non-open burning periods. In the ambient air of a rice field, the mean PM concentration during and after an open burning event were 1828 and 102 μg m⁻³, respectively, which demonstrates that during a rice field open burning event, the PM concentration in the ambient air of rice field is over 17 times higher than that of the non-open burning period. During an open burning event, the mean total PAH and total toxic equivalence (BaP(eq)) concentrations in the ambient air of a rice field were 7206 ng m⁻³ and 10.3 ng m⁻³, respectively, whereas after the open burning event, they were 376 ng m⁻³ and 1.50 ng m⁻³, respectively. Open burning thus increases total PAH and total BaP(eq) concentrations by 19-fold and 6.8-fold, respectively. During a rice straw open burning event, in the ambient air of a rice field, the mean dry deposition fluxes of total PAHs and total BaP(eq) were 1222 μg m⁻² day⁻¹ and 4.80 μg m⁻² day⁻¹, respectively, which are approximately 60- and 3-fold higher than those during the non-open burning period, respectively. During the non-open burning period, particle-bound PAHs contributed 79.2-84.2% of total dry deposition fluxes (gas + particle) of total PAHs. However, an open burning event increases the contribution to total PAH dry deposition by particle-bound PAHs by up to 85.9-95.5%. The results show that due to the increased amount of PM in the ambient air resulting from rice straw open burning, particle-bound PAHs contributed more to dry deposition fluxes of total PAHs than they do during non-open burning periods. The results show that biomass (rice straw) open burning is an important PAH emission source that significantly increases both PM and PAH concentration levels and PAH dry deposition in ambient air.

  17. Modeling and simulation of a solar powered two bed adsorption air conditioning system

    International Nuclear Information System (INIS)

    Li Yong; Sumathy, K.

    2004-01-01

    A simple lumped parameter model is established to investigate the performance of a solar powered adsorption air conditioning system driven by flat-type solar collectors with three different configurations of glazes: (i) single glazed cover; (ii) double glazed cover and (iii) transparent insulation material (TIM) cover. The dynamic performance of a continuous adsorption cycle using a double adsorber along with heat recovery is measured in terms of the temperature histories, gross solar coefficient of performance and specific cooling power. Also, the influences of some important design and operational parameters on the performance of the system are studied. It is found that the chosen three types of collector configurations make no big difference on the performance, but the adsorbent mass and lumped capacitance have significant effects on the system performance as well as on the system size. Simulation results indicate that the effect of overall heat transfer coefficient is not predominant if the cycle duration is longer. Also, there exists an optimum time to initiate the heating of the adsorbent bed in a day's operation

  18. Effect of solar radiation on drying house performance

    International Nuclear Information System (INIS)

    Rachmat, R.

    2000-01-01

    Solar drying is one of thermal utilization where radiation energy can be utilized efficiently. Solar drying of all sorts of agricultural products have been thoroughly studied and reported in literature, but brown rice drying system has not yet done as many as other products. The aim of the present study is to investigate the effect of solar radiation on drying house performance and brown rice drying characteristics. A construction of drying house is made from FRP sheets with 30 deg. of root slope faces southern part and inside the drying house is installed a flat bed dryer. The site of construction has 136 deg. 31.4'E in longitude and 34 deg. 43.8N in latitude with 3 m in elevation from sea level. The investigated parameters are global solar radiation, absorbed and net radiation and brown rice drying characteristics. The results showed that in unload condition, the air temperature inside drying house was higher (10 deg. C - 12 deg. C) than ambient air when there was not collector and temperature rise become higher (16 deg. C) when there was a black FRP collector inside drying house. The effect of solar radiation on temperature rise has the trend as a linear function. The heat collection efficiency of drying house with black FRP collector was two times higher (36.9 percent) than that without collector (16.3 percent). These phenomena exhibited significant result of collector utilization to the advantageous condition for a drying purpose [in

  19. NSGA-II Algorithm with a Local Search Strategy for Multiobjective Optimal Design of Dry-Type Air-Core Reactor

    Directory of Open Access Journals (Sweden)

    Chengfen Zhang

    2015-01-01

    Full Text Available Dry-type air-core reactor is now widely applied in electrical power distribution systems, for which the optimization design is a crucial issue. In the optimization design problem of dry-type air-core reactor, the objectives of minimizing the production cost and minimizing the operation cost are both important. In this paper, a multiobjective optimal model is established considering simultaneously the two objectives of minimizing the production cost and minimizing the operation cost. To solve the multi-objective optimization problem, a memetic evolutionary algorithm is proposed, which combines elitist nondominated sorting genetic algorithm version II (NSGA-II with a local search strategy based on the covariance matrix adaptation evolution strategy (CMA-ES. NSGA-II can provide decision maker with flexible choices among the different trade-off solutions, while the local-search strategy, which is applied to nondominated individuals randomly selected from the current population in a given generation and quantity, can accelerate the convergence speed. Furthermore, another modification is that an external archive is set in the proposed algorithm for increasing the evolutionary efficiency. The proposed algorithm is tested on a dry-type air-core reactor made of rectangular cross-section litz-wire. Simulation results show that the proposed algorithm has high efficiency and it converges to a better Pareto front.

  20. Research on the drying kinetics of household food waste for the development and optimization of domestic waste drying technique.

    Science.gov (United States)

    Sotiropoulos, A; Malamis, D; Michailidis, P; Krokida, M; Loizidou, M

    2016-01-01

    Domestic food waste drying foresees the significant reduction of household food waste mass through the hygienic removal of its moisture content at source. In this manuscript, a new approach for the development and optimization of an innovative household waste dryer for the effective dehydration of food waste at source is presented. Food waste samples were dehydrated with the use of the heated air-drying technique under different air-drying conditions, namely air temperature and air velocity, in order to investigate their drying kinetics. Different thin-layer drying models have been applied, in which the drying constant is a function of the process variables. The Midilli model demonstrated the best performance in fitting the experimental data in all tested samples, whereas it was found that food waste drying is greatly affected by temperature and to a smaller scale by air velocity. Due to the increased moisture content of food waste, an appropriate configuration of the drying process variables can lead to a total reduction of its mass by 87% w/w, thus achieving a sustainable residence time and energy consumption level. Thus, the development of a domestic waste dryer can be proved to be economically and environmentally viable in the future.

  1. Influence of drying method on steviol glycosides and antioxidants in Stevia rebaudiana leaves.

    Science.gov (United States)

    Periche, Angela; Castelló, María Luisa; Heredia, Ana; Escriche, Isabel

    2015-04-01

    The application of different drying conditions (hot air drying at 100 °C and 180 °C, freeze drying and shade drying) on steviol glycosides (stevioside, dulcoside A, rebaudioside A and rebaudioside C) and antioxidants in Stevia leaves was evaluated. Stevioside, the major glycoside found in fresh leaves (81.2mg/g), suffered an important reduction in all cases, although shade drying was the least aggressive treatment. Considering the antioxidant parameters (total phenols, flavonoids and total antioxidants), the most suitable drying method was hot air at 180 °C, since it substantially increased all of them (76.8 mg gallic acid, 45.1mg catechin and 126 mg Trolox, all equivalent/g Stevia, respectively), with respect to those present in fresh leaves (44.4, 2.5 and 52.9 mg equivalent/g). Therefore, the ideal method for drying Stevia leaves depends on their final use (sweetener or antioxidant), although, hot air at 180 °C is the most recommendable if only one treatment has to be chosen. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Leukotriene-B4 concentrations in exhaled breath condensate and lung function after thirty minutes of breathing technically dried compressed air.

    Science.gov (United States)

    Neubauer, Birger; Struck, Niclas; Mutzbauer, Till S; Schotte, Ulrich; Langfeldt, Norbert; Tetzlaff, Kay

    2002-01-01

    In previous studies it had been shown that leukotriene-B4 [LTB4] concentrations in the exhaled breath mirror the inflammatory activity of the airways if the respiratory tract has been exposed to occupational hazards. In diving the respiratory tract is exposed to cold and dry air and the nasopharynx, as the site of breathing-gas warming and humidification, is bypassed. The aim of the present study was to obtain LTB4-concentrations in the exhaled breath and spirometric data of 17 healthy subjects before and after thirty minutes of technically dried air breathing at normobar ambient pressure. The exhaled breath was collected non-invasively, via a permanently cooled expiration tube. The condensate was measured by a standard enzyme immunoassay for LTB4. Lung function values (FVC, FEV1, MEF 25, MEF 50) were simultaneously obtained by spirometry. The measured pre- and post-exposure LTB4- concentrations as well as the lung function values were in the normal range. The present data gave no evidence for any inflammatory activity in the subjects' airways after thirty minutes breathing technically dried air.

  3. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    International Nuclear Information System (INIS)

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-01-01

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented

  4. Drying of building lumber

    Energy Technology Data Exchange (ETDEWEB)

    Washimi, Hiroshi

    1988-08-20

    Dried lumber is classified into air dried and kiln-dried lumber. The water content of kiln-dried lumber is specified by the Japan Agricultural Standards. However, since building lumber varies in such factors as the location where it was growing, species and shape, the standards, though relaxed, are not being observed. In fact, lumbered products which are not ''Kiln-dried'' frequently bear ''kiln-dried lumber'' marks. In an attempt to correct the situation, the Forestry Agency has set up voluntary standards, but problems still remain. The conventional drying method consists of first subjecting the lumber to optimum drying, then letting bending and deformations to freely and fully appear, and follow this with corrective sawing to produce planks straight from end to end. Compared with air dried lumber in terms of moisture content, kiln-dried lumber remains much with same with minimal shrinkage and expansion. For oil-containing resin, such normal treatments as drying by heating, steaming and boiling seem to be quite effective. Kiln drying, which is becoming more and more important with changes in the circulation system, consists of the steaming-drying-heating method and the dehumidizing type drying method. The major factor which determines the drying cost is the number of days required for drying, which depends largely on the kind of lumber and moisture content. The Forestry Angency is promoting production of defoiled lumber. (2 figs, 2 tables)

  5. Low emissivity insulating glazing materials: principle and examples; Les vitrages isolants a basse emissivite: principe et exemples

    Energy Technology Data Exchange (ETDEWEB)

    Prost, A. [Saint-Gobain Recherche, 93 - Aubervilliers (France)

    1996-12-31

    One of the stakes of flat glass industry is the limitation of thermal losses from indoor to outdoor through glass walls (K coefficient) in order to increase energy savings. Thermal insulation performances of a double glazing can be reinforced by the application of a highly reflective (low emissive) film with respect to thermal infrared radiation. The low emissive character is obtained with the use of surface-deposited materials that can be described using the Drude model: vacuum pulverization of metals, and vacuum pulverization or pyrolysis deposition of doped semi-conductor oxides. (J.S.)

  6. Optimum drying time for palm nuts for efficient nut cracking in small ...

    African Journals Online (AJOL)

    Palm kernel, one of the end products of oil palm fruit processing is recovered by the cracking of the palm nuts which is first dried to aid efficient kernel recovery. In small-scale mills palm nuts are air-dried. This paper investigates the optimum drying time necessary for efficient nut cracking. Such factors as wholeness of kernel, ...

  7. Daylight and solar control in buildings. General evaluation and optimization of a new angle selective glazing facade

    Energy Technology Data Exchange (ETDEWEB)

    Frontini, Francesco

    2011-07-01

    Buildings account for almost 40% of the overall energy consumption in Europe. For the future energy scenarios, the building envelope, especially the facades, becomes really important as it provides the necessary area for the installation of PV modules or solar collectors to produce energy, using renewable energy sources. A new multifunctional building integrated photovoltaic (BIPV) glazed facade for this application is presented here. The new angle-selective see through facade combines four important tasks in one element: solar control, glare protection, visual contact and electricity generation. Mathematical analysis and complex simulations with the software Radiance are performed to optimize the geometry and to assess the visual impact and optical properties of the new window. In order to evaluate the impact of the new facade in building spaces a new method for modelling the total solar energy transmittance, in building energy simulations software, for complex glazing facades is presented. The new black-box-model (BBM) is implemented into ESP-r software and is validated. The BBM is used to assess the impact of modelling accurately the g-value of complex facade within building simulation. It is shown that the new method can significantly increase the accuracy of heating/cooling loads and room temperatures. (orig.)

  8. Evaluation of energy consumption in different drying methods

    Energy Technology Data Exchange (ETDEWEB)

    Motevali, Ali; Minaei, Saeid; Khoshtagaza, Mohammad Hadi [Department of Agricultural Machinery Engineering, Agricultural Faculty, Tarbiat Modares University, Tehran 14115-111 (Iran, Islamic Republic of)

    2011-02-15

    This study was conducted to evaluate energy consumption in various drying systems including hot-air convection, use of microwave pretreatment with convection dryer, microwave drying, vacuum drying and infrared drying. Tests were conducted using pomegranate arils under various experimental conditions as follows. In convection dryer at six temperature levels (45, 50, 55, 60, 65 and 70 C) and three air velocity levels (0.5, 1 and 1.5 m/s) at three pretreatments of control, 100 W microwave pretreatment for 20 min and 200 W microwave pretreatment for 10 min. Experiments in the microwave dryer were done at three power levels of 100, 200 and 300 W and in vacuum dryer at five temperature levels (50, 60, 70, 80, and 90 C) under 250 kPa pressure. For infrared drying, there were four air velocity levels (0.3, 0.5, 0.7 and 1 m/s) and three illumination levels (0.22, 0.31 and 0.49 W/cm{sup 2}). Experimental results showed that minimum and maximum energy consumption in pomegranate drying were associated with microwave and vacuum dryers, respectively. The use of microwave pretreatment in drying pomegranate arils in hot air dryer decreased drying time and energy consumption in comparison with pure convection drying. In infrared drying, it was found that drying time increased with air velocity which resulted in increased energy consumption. (author)

  9. Evaluation of energy consumption in different drying methods

    International Nuclear Information System (INIS)

    Motevali, Ali; Minaei, Saeid; Khoshtagaza, Mohammad Hadi

    2011-01-01

    This study was conducted to evaluate energy consumption in various drying systems including hot-air convection, use of microwave pretreatment with convection dryer, microwave drying, vacuum drying and infrared drying. Tests were conducted using pomegranate arils under various experimental conditions as follows. In convection dryer at six temperature levels (45, 50, 55, 60, 65 and 70 o C) and three air velocity levels (0.5, 1 and 1.5 m/s) at three pretreatments of control, 100 W microwave pretreatment for 20 min and 200 W microwave pretreatment for 10 min. Experiments in the microwave dryer were done at three power levels of 100, 200 and 300 W and in vacuum dryer at five temperature levels (50, 60, 70, 80, and 90 o C) under 250 kPa pressure. For infrared drying, there were four air velocity levels (0.3, 0.5, 0.7 and 1 m/s) and three illumination levels (0.22, 0.31 and 0.49 W/cm 2 ). Experimental results showed that minimum and maximum energy consumption in pomegranate drying were associated with microwave and vacuum dryers, respectively. The use of microwave pretreatment in drying pomegranate arils in hot air dryer decreased drying time and energy consumption in comparison with pure convection drying. In infrared drying, it was found that drying time increased with air velocity which resulted in increased energy consumption.

  10. Long term integrity of spent fuel and construction materials for dry storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, T [CRIEPI (Japan)

    2012-07-01

    In Japan, two dry storage facilities at reactor sites have already been operating since 1995 and 2002, respectively. Additionally, a large scale dry storage facility away from reactor sites is under safety examination for license near the coast and desired to start its operation in 2010. Its final storage capacity is 5,000tU. It is therefore necessary to obtain and evaluate the related data on integrity of spent fuels loaded into and construction materials of casks during long term dry storage. The objectives are: - Spent fuel rod: To evaluate hydrogen migration along axial fuel direction on irradiated claddings stored for twenty years in air; To evaluate pellet oxidation behaviour for high burn-up UO{sub 2} fuels; - Construction materials for dry storage facilities: To evaluate long term reliability of welded stainless steel canister under stress corrosion cracking (SCC) environment; To evaluate long term integrity of concrete cask under carbonation and salt attack environment; To evaluate integrity of sealability of metal gasket under long term storage and short term accidental impact force.

  11. Thermohydraulic modeling of the dry air passive containment cooling system process in the Westinghouse AP-600 ALWR

    Energy Technology Data Exchange (ETDEWEB)

    Harari, R; Weis, Y; Barnea, Y [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    Following postulated events of a LOCA, the passive Containment Cooling System (PCCS) uses dry air to transfer the residual heat by natural circulation. The air flow path, designed between the steel reactor containment hot shell and the concrete shield building, creates an open thermosyphon. The purpose of this inherently safe process is to assure the long term steady-state cooling of the nuclear core after an emergency shutdown (authors).

  12. The determination of optimum condition in water hyacinth drying process by mixed adsorption drying method and modified fly ash as an adsorbent

    Science.gov (United States)

    Saputra, Asep Handaya; Putri, Rizky Anggreini

    2017-05-01

    Water hyacinth is an aquatic weed that has a very fast growth which makes it becomes a problem to the ecosystem. On the other hand, water hyacinth has a high fiber content (up to 20% by weight) which makes it potential to become raw material for composites and textile industries. As an aquatic plant, water hyacinth has a high initial moisture content that reaches more than 90%. Meanwhile the moisture content of fiber as a raw material for composite and textile industry should not be more than 10% to maintain the good quality of the products. Mixed adsorption drying method is one of the innovative method that can replace conventional drying process. Fluidization method which has been commonly used in agricultural and pharmaceutical products drying, can be enhanced by combining it with the adsorption method as performed in this study. In mixed fluidization-adsorption drying method, fly ash as adsorbent and water hyacinth fiber were put together into the fluidization column where the drying air evaporate the moisture content in water hyacinth fiber. In addition, the adsorbent adsorb the moisture content in the drying air to make the moisture content of the drying air remain low. The drying process is performed in various temperature and composition of water hyacinth and adsorbent in order to obtain the optimum drying condition. In addition, the effect of fly ash pellet and fly ash powder to the drying process was also performed. The result shows that the higher temperature and the more amount of adsorbent results in the faster drying rate. Fly ash pellet shows a better adsorption since it has a smaller pore diameter and wider surface area. The optimum temperature obtained from this study is 60°C and the optimum ratio of water hyacinth and fly ash is 50:50.

  13. Thermal comfort in air-conditioned mosques in the dry desert climate

    Energy Technology Data Exchange (ETDEWEB)

    Al-ajmi, Farraj F. [Department of Civil Engineering, College of Technological Studies, Shuwaikh 70654 (Kuwait)

    2010-11-15

    In Kuwait, as in most countries with a typical dry desert climate, the summer season is long with a mean daily maximum temperature of 45 C. Centralized air-conditioning, which is generally deployed from the beginning of April to the end of October, can have tremendous impact on the amount of electrical energy utilized to mechanically control the internal environment in mosque buildings. The indoor air temperature settings for all types of air-conditioned buildings and mosque buildings in particular, are often calculated based on the analytical model of ASHRAE 55-2004 and ISO 7730. However, a field study was conducted in six air-conditioned mosque buildings during the summers of 2007 to investigate indoor climate and prayers thermal comfort in state of Kuwait. The paper presents statistical data about the indoor environmental conditions in Kuwait mosque buildings, together with an analysis of prayer thermal comfort sensations for a total of 140 subjects providing 140 sets of physical measurements and subjective questionnaires were used to collect data. Results show that the neutral temperature (T{sub n}) of the prayers is found to be 26.1 C, while that for PMV is 23.3 C. Discrepancy of these values is in fact about 2.8 C higher than those predicted by PMV model. Therefore, thermal comfort temperature in Kuwait cannot directly correlate with ISO 7730 and ASHRAE 55-2004 standards. Findings from this study should be considered when designing air conditioning for mosque buildings. This knowledge can contribute towards the development of future energy-related design codes for Kuwait. (author)

  14. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity.

    Science.gov (United States)

    Aral, Serdar; Beşe, Ayşe Vildan

    2016-11-01

    Thin layer drying characteristics and physicochemical properties of hawthorn fruit (Crataegus spp.) were investigated using a convective dryer at air temperatures 50, 60 and 70°C and air velocities of 0.5, 0.9 and 1.3m/s. The drying process of hawthorn took place in the falling rate period, and the drying time decreased with increasing air temperature and velocity. The experimental data obtained during the drying process were fitted to eleven different mathematical models. The Midilli et al.'s model was found to be the best appropriate model for explaining the drying behavior of hawthorn fruit. Effective moisture diffusion coefficients (Deff) were calculated by Fick's diffusion model and their values varied from 2.34×10(-10)m(2)/s to 2.09×10(-9)m(2)/s. An Arrhenius-type equation was applied to determine the activation energies. While the shrinkage decreased, the rehydration ratio increased with increasing air temperature and air velocity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A preliminary study on coloring mechanism of Jun copper red glaze

    International Nuclear Information System (INIS)

    Tian Shibing; Liu Yuzhen; Zhang Maolin; Wang Lihua; Wang Cangsui; Xie Yaning

    2009-01-01

    The origin of a red color glazes decorated on the ancient Jun porcelain has been attributed to the presence of combined copper clusters and cuprous oxide, or cuprous oxide alone. For better understanding of the color-forming mechanism, X-ray absorption at the Cu-edge by the red area of a Jun porcelain shard was carried out. By comparing the XANFS spectra of the sample with metal copper and cubic Cu 2 O, we found that the spectra of the red layer of sample were similar to the spectrum combination of 37% Cu 2 O and 63% metal copper,while the spectra from surface of the red spot mainly resembled that of cubic Cu 2 O. The EXAFS results showed that monovalence copper cations were isolated in the glaze matrix, and copper atoms were formed to metallic copper clusters or mutimers dominantly distributed in the inner layer. These can be responsible to the optical properties of the red decoration with the presence of colloidal composition containing copper particles and the Cu + ions. In conclusion, a preliminary non-destructive elemental analysis using synchrotron radiation-induce X-ray fluorescence (SR-XRF) is demonstrated, and mechanism about the formation of the complicated structures is discussed. (authors)

  16. Exergetic performance analyses of drying of broccoli florets in a tray drier

    International Nuclear Information System (INIS)

    Zafer Erbay

    2009-01-01

    At present, the drying process is one of the major procedures of food preservation and an important unit operation in a wide variety of food industries. Recently, drying of vegetables is of a particular interest because it is added to various ready-to-eat meals in order to improve their nutritional quality due to health benefit compounds present in vegetables (vitamins, phytochemicals, dietary fibers). Broccoli has been described as a vegetable with a high nutritional value due to its important content of vitamins, antioxidants and anti-carcinogenic compounds. Broccoli dehydration has not been investigated to a great extent and a few data are available in the open literature. In this study, broccoli florets were dried in a tray drier at a temperature range of 50-70 deg C with an air velocity range of 0.5-1.5 m/s. The performance of the process and system was evaluated using the exergy analysis method. Based on the experimental data, effects of the drying air temperature and the velocity on the performance of the drying process were discussed. It was obtained that the exergy evaporation rate and the exergetic efficiency of the process were obtained to vary between 0.0006-0.0029 kW and 0.27-1.16%, respectively. They increased as the drying air temperature increased, while the exergetic efficiency decreased with the rise in the drying air velocity. (author)

  17. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Kurucz, Ildikó; Bahria, Sofiane; Hamidat, Abderrahmane; Chaouch, Wafa Braham

    2017-01-01

    Highlights: • A detailed thermal and electrical model for PV and PV/T systems has been presented. • The developed numerical model was validated successfully with previously published experimental results. • A comparative study between four solar devices (PV and PV/T systems) was carried out. • The experimental weather conditions of Algiers site are used in the numerical model. • The glazed double-pass photovoltaic/thermal air collector shows the best overall energy efficiency. - Abstract: The thermal photovoltaic hybrid collector is a genuine cogeneration technology; it can produce electricity and heat simultaneously. In this paper, a comparative study is presented between four solar device configurations: photovoltaic module (PV-I), conventional hybrid solar air collector (PV/T-II), glazed hybrid solar air collector (PV/T-III) and glazed double-pass hybrid solar air collector (PV/T-IV). A numerical model is developed and validated through experimental results indicated in the previous literature. The numerical model takes the heat balance equations and different thermal and electrical parameters into account for each configuration included in this study, the energy performances are evaluated with a sample weather data of Algiers site. The numerical results show that the daily average of overall energy efficiency reaches: 29.63%, 51.02%, 69.47% and 74% for the first (PV-I), the second (PV/T-II), the third (PV/T-III) and the fourth (PV/T-IV) configurations respectively. These values are obtained with an air flow of 0.023 kg/s and introducing a sample of experimental weather data collected in Algiers site for a sunny day in summer.

  18. Inhibition of water uptake after dry storage of cut flowers: Role of aspired air and wound-induced processes in Chrysanthemum

    NARCIS (Netherlands)

    Meeteren, van U.; Arévalo-Galarza, L.; Doorn, van W.G.

    2006-01-01

    We investigated the relative role of aspired air and a plant-induced reaction in the vascular occlusion of dry-stored cv. Cassa chrysanthemum flowers (Chrysanthemum × morifolium Ramat). Measurements of hydraulic capacity showed that the air that is aspired directly after cutting (into the opened

  19. Long-term ageing tests on glazing materials for solar collectors; Langzeit-Alterungsuntersuchung an Abdeckungsmaterialien fuer thermische Sonnenkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch, F.; Brunold, S.; Haeuselmann, T.; Frank, E.; Frei, U.

    2008-02-15

    This report made by the Swiss Institute for Solar Technology at the University of Applied Sciences in Rapperswil, Switzerland, for Swiss Federal Office of Energy (SFOE) takes a look at the results of a project that investigated the long-term behaviour of glazing materials for solar collectors. The locations tested and their associated meteorological data are presented and the tests made concerning the optical characteristics of several different types of glazing are discussed. Soiling and degradation are also looked at. An overview of the solar transmission of the various materials is presented. Details on the various materials such as glass, polymethyl metacrylate (PMMA), polycarbonate (PC), fluorised plastics, unsaturated polyester (UP), polyvinyl chloride (PVC) and polyethylene terephthalate (PET) are presented.

  20. a comparative study of the drying rate constant, drying efficiency

    African Journals Online (AJOL)

    The drying rate constants for the solar dryer and open- air sun dried bitter leaf were 0.8 and ... of cost benefit but the poorest when other considerations ... J. I. Eze, National Centre for Energy Research and Development (NCERD), University of ...

  1. Pipeline drying using dehumidified air with low dew point temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Syed Younus; Gandhidasan, P.; Al-Farayedhi, A.A. [King Fahd Univ. of Petroleum and Minerals, Mechanical Engineering Dept., Dhahran (Saudi Arabia)

    1998-05-01

    The presence of humidity may be detrimental to the operation of pipelines transporting natural gas or other petroleum products. In particular conditions water solidifies or reacts chemically with hydrocarbons, forming hydrates. Such crystalline substances may cause obstruction of the lines and damage the equipment of the relevant facilities. A procedure for predicting the performance of drying a pipeline using dehumidified air with a low dew point is described in this paper. The mathematical model estimates the time required for the complete removal of moisture in the pipeline for the given operating conditions with simplified assumptions. The governing equations are solved analytically as well as numerically and the results are briefly discussed in the paper. (Author)

  2. Performance Analysis of a Solar Dryer Equipped with a Recycling Air System and Desiccant Chamber

    Directory of Open Access Journals (Sweden)

    M.H Aghkhani

    2013-09-01

    Full Text Available Drying is a high energy consuming process. Solar drying is one of the most popular methods for dehydration of agricultural products. In the present study, the performance of a forced convection solar dryer equipped with recycling air system and desiccant chamber was investigated. The solar dryer is comprised of solar collector, drying chamber, silica jell desiccant chamber, air ducts, fan and measuring and controlling system. Drying rate and energy consumption in three levels of air temperature (40, 45 and 50 oC and two modes of drying (with recycling air and no-recycling with open duct system were measured and compared. The results showed that increasing the drying air temperature decreased the drying time and increased the energy consumption in the mode of non-recycling air system. The dryer efficiency and drying rate were better in the mode of recycling air system than open duct system. The highest dryer efficiency was obtained from drying air temperature of 50 oC and the mode of recycling air system. In general, the efficiency of solar collector and the highest efficiency of the dryer were 0.34 and 0.41, respectively.

  3. Infrared Drying as a Quick Preparation Method for Dried Tangerine Peel

    Directory of Open Access Journals (Sweden)

    Mingyue Xu

    2017-01-01

    Full Text Available To establish the most convenient and effective method to dry tangerine peels, different methods (sun drying, hot-air drying, freeze drying, vacuum drying, and medium- and short-wave infrared drying were exploited. Our results indicated that medium- and short-wave infrared drying was the best method to preserve nutraceutical components; for example, vitamin C was raised to 6.77 mg/g (D.W. from 3.39 mg/g (sun drying. Moreover, the drying time can be shortened above 96% compared with sun drying. Importantly, the efficiency of DPPH radical scavenging was enhanced from 26.66% to 55.92%. These findings would provide a reliable and time-saving methodology to produce high-quality dried tangerine peels.

  4. Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer

    International Nuclear Information System (INIS)

    Kaleta, Agnieszka; Górnicki, Krzysztof; Winiczenko, Radosław; Chojnacka, Aneta

    2013-01-01

    Highlights: ► Three new drying models are formulated. ► The developed models are various modifications of the Page model. ► Nineteen models are used to describe the fluidized bed drying of apple. ► The Page model and formulated model is considered as the most appropriate. - Abstract: Three new drying models were formulated. The developed models are various modifications of the Page model. The models were used to describe the drying behaviour of apple (var. Ligol) dried in a fluidized bed dryer. The suitability of new models to describe the drying characteristics were compared to the accuracy of sixteen models available from the literature. The accuracies of the models were measured using the correlation coefficient (R), root mean square error (RMSE), and reduced chi-square (χ 2 ). Three new developed models described the drying characteristics of apple cubes satisfactorily (R > 0.997). The Page model and one of the empirical models formulated by the authors of this study can be considered as the most appropriate (R > 0.9977, RMSE = 0.0094–0.0167, χ 2 = 0.0001–0.0002). The effect of drying air temperature on the drying models parameters were also determined. The shrinkage of apple cubes during drying was measured to assess the changes in quality of dried apples

  5. Specific energy consumption in microwave drying of garlic cloves

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.P. [Department of Processing and Food Engineering, College of Technology and Agricultural Engineering, Udaipur 313 001, Rajasthan (India); Prasad, Suresh [Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721 302 (India)

    2006-09-15

    The convective and microwave-convective drying of garlic cloves was carried out in a laboratory scale microwave dryer, which was developed for this purpose. The specific energy consumption involved in the two drying processes was estimated from the energy supplied to the various components of the dryer during the drying period. The specific energy consumption was computed by dividing the total energy supplied by amount of water removed during the drying process. The specific energy consumption in convective drying of garlic cloves at 70{sup o}C temperature and 1.0m/s air velocity was estimated as 85.45MJ/kg of water evaporated. The increase in air velocity increased the energy consumption. The specific energy consumption at 40W of microwave power output, 70{sup o}C air temperature and 1.0m/s air velocity was 26.32MJ/kg of water removed, resulting in about a 70% energy saving as compared to convective drying processes. The drying time increased with increase in air velocity in microwave-convective drying process; a trend reverse to what was observed in convective drying process of garlic cloves. (author)

  6. Determination of Sliced Pineapple Drying Characteristics in A Closed Loop Heat Pump Assisted Drying System

    Directory of Open Access Journals (Sweden)

    Cüneyt Tunçkal

    2018-02-01

    Full Text Available Pineapple (Ananascomosus slices were dried with the aid of a heat pump assisted dryer (HPD. During this process, air velocity was kept constant at 1m/s, while air temperatures were changed as 37°C, 40°C and 43°C. The drying air was also circulated by using an axial fan in a closed cycle and fresh air was not allowed into the system. The drying rate and drying time were significantly influenced by drying temperature. It was observed that drying temperatures had significant effects on the drying rate and drying time. During the conduct of the study, pineapple slices were dried at 37, 40 and 43°C for 465, 360 and 290 min, respectively. The specific moisture extraction ratio (SMER values were observed to change as drying temperatures were changed. The drying rate curves indicated that the whole drying process occurred in the falling rate period. Seven well-known thin-layer models (Lewis, Henderson &Pabis, Logarithmic, Page, Midilli & Kucuk, Weibull and Aghbashlo et al. were employed to make a prediction about drying kinetics through nonlinear regression analysis. The Midilli & Kucuk and Aghbashlo et al. models were consistent with the experimental data. Fick’s second law of diffusion was used to determine the moisture diffusivity coefficient ranging from 3.78×10–9 to 6.57×10-9  m2/s the each of the above mentioned temperatures. The dependence of effective diffusivity coefficient on temperature was defined by means a fan Arrhenius type equation. The activation energy of moisture diffusion was found to be 75.24kJ/mol.   Article History: Received: July 18th 2017; Received: October 27th 2017; Accepted: January 16th 2018; Available online How to Cite This Article: Tunçkal, C., Coşkun, S., Doymaz, I. and Ergun, E. (2018 Determination of Sliced Pineapple Drying Characteristics in A Closed Loop Heat Pump Assisted Drying System. International Journal of Renewable Energy Development, 7(1, 35-41. https://doi.org/10.14710/ijred.7.1.35-41

  7. Thin layer modelling of Gelidium sesquipedale solar drying process

    International Nuclear Information System (INIS)

    Ait Mohamed, L.; Ethmane Kane, C.S.; Kouhila, M.; Jamali, A.; Mahrouz, M.; Kechaou, N.

    2008-01-01

    The effect of air temperature and air flow rate on the drying kinetics of Gelidium sesquipedale was investigated in convective solar drying. Drying was conducted at 40, 50 and 60 deg. C. The relative humidity was varied from 50% to 57%, and the drying air flow rate was varied from 0.0277 to 0.0833 m 3 /s. The expression for the drying rate equation is determined empirically from the characteristic drying curve. Thirteen mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. The two term model gives the best prediction of the drying curves and satisfactorily describes the drying characteristics of G. sesquipedale with a correlation coefficient R of 0.9999 and chi-square (χ 2 ) of 3.381 x 10 -6

  8. Shelf-life extension of dried shrimps by irradiation and packaging techniques

    International Nuclear Information System (INIS)

    Warunee Varanyanond; Hirata, Takashi; Ishitani, Takasuke

    2000-01-01

    Dried shrimps were air-packaged or N2-packaged in the flexible pouch of oriented polypropylene (OPP), polyvinylidene chloride coated polypropylene (KOP) and ethylene vinyl alcohol copolymer (EVOH). The packages were irradiated with gamma ray from cobalt 60 at 3 and 8 kGy. Non-irradiated dried shrimps were used as a control. The samples were stored at 30 deg C and 70+-5 percent RH for 4 months. Non-enzymatic browning induced the discoloration of dried shrimps, and oxidation of astaxanthin proceeded after irradiation and during storage. The hunter color difference, delta E, of all the samples was increased, especially in the non-irradiated air-packages samples. The decrease in astaxanthin content was found in both air - and N2-packaged samples during storage. The number of microorganisms was reduced by irradiation dose of 3 and 8 kGy from 6.5 to 4.2 and 2.7 log CFU/g, respectively. The decreased concentration of O2 in the package also reduced the number of microorganisms. The air packaged dried shrimps in the OPP pouch deteriorated during storage. Shrinkage of the pouches and growth of halophilic bacteria on the surface of dried shrimps were found at a sub(w) of 0.75. The discoloration of dried shrimps in the OPP pouch was more significant than that in other pouches. Irradiation at 3 and 8 kGy in combination with packaging in KOP and EVOH pouches containing N2 atmosphere was one of the promising methods for prolonging shelf-life of dried shrimps at room temperature

  9. Surface fixation of dried blood by glutaraldehyde and peracetic acid.

    Science.gov (United States)

    Kampf, G; Bloss, R; Martiny, H

    2004-06-01

    The difficulties of successful prion inactivation by chemical agents has led to changes in recommendations regarding the reprocessing of instruments including flexible endoscopes. One of the changes is the preference for peracetic acid instead of glutaraldehyde in order to avoid fixation of organic material, but the surface fixation by various active agents has not been fully investigated. We used a standardized amount of dried blood soil on metal carriers (on average 22 mg). One part of the carriers was exposed to different disinfectants (four based on peracetic acid, three based on glutaraldehyde, two based on quaternary ammonium compounds (QAC), one based on QAC and amines, one based on phenols and one cleaning agent) and air dried. The difference compared with the non-exposed soiled carrier was taken as the measure of blood removal by exposure to the disinfectants. In addition the other part of the carriers was exposed to a cleaning agent and air dried. The cleaning agent itself was capable of removing more than 99% of the dried blood and served as a control for non-fixation. The rate of fixation of dried blood was calculated as the ratio of the weight of residual soil on 'soiled, disinfected and cleaned' carriers and on 'soiled and disinfected' carriers. All experiments were repeated eight times. Blood removal varied between 90.3% +/- 1.5% (phenol-based disinfectant) and peracetic acid. No other preparations showed a potential for blood fixation (peracetic acid, and support the evidence that effective cleaning should precede the chemical disinfection. Copyright 2004 The Hospital Infection Society

  10. Rehydration properties of hybrid method dried fruit enriched by natural components

    Science.gov (United States)

    Kowalska, Hanna; Marzec, Agata; Kowalska, Jolanta; Ciurzyńska, Agnieszka; Samborska, Kinga; Bialik, Michał; Lenart, Andrzej

    2018-04-01

    The aim of the study was to determine the impact of osmotic pre-dehydration and drying of fruit on the rehydration properties of dried fruit. Herein, the effect of fruit juice, applied as a natural enriching substance was very important. In addition, the properties of dried fruits obtained through combined air-drying and subsequent microwave-vacuum drying with `puffing' effect were similar to the freeze-dried fruits, but showed other rehydration properties. As raw material, frozen strawberry (Honeoye variety) and fresh apples (Idared variety) were used in the study. The apples and partially defrosted strawberries were prior dehydrated in solutions of sucrose and a mixture of sucrose with chokeberry juice concentrate at 50°C for 2 h. Next, the fruit samples were dried by one of two ways: air-drying (50°C, 5 h) and microwavevacuum drying for about 360 s; and freeze-drying (30°C, 63 Pa, 24 h). The rehydration was carried out in distilled water (20°C, 5 h). The osmotic pre-dehydration hindered fruit drying process. The impact of drying method became particularly evident while examining the kinetics of rehydration. During the rehydration of the pre-dehydrated dried fruit a slower hydration could be observed. Freeze-dried strawberries absorbed 2-3 times more water than those dried by the `puffing' effect.

  11. Thin layer modelling of Gelidium sesquipedale solar drying process

    Energy Technology Data Exchange (ETDEWEB)

    Ait Mohamed, L. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Ethmane Kane, C.S. [Faculte des Sciences de Tetouan, BP 2121, Tetouan (Morocco); Kouhila, M.; Jamali, A. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Mahrouz, M. [Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Kechaou, N. [Ecole Nationale d' Ingenieurs de Sfax, BPW 3038 (Tunisia)

    2008-05-15

    The effect of air temperature and air flow rate on the drying kinetics of Gelidium sesquipedale was investigated in convective solar drying. Drying was conducted at 40, 50 and 60 C. The relative humidity was varied from 50% to 57%, and the drying air flow rate was varied from 0.0277 to 0.0833 m{sup 3}/s. The expression for the drying rate equation is determined empirically from the characteristic drying curve. Thirteen mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. The two term model gives the best prediction of the drying curves and satisfactorily describes the drying characteristics of G. sesquipedale with a correlation coefficient R of 0.9999 and chi-square ({chi}{sup 2}) of 3.381 x 10{sup -6}. (author)

  12. Solar heating of air used for the drying at medium and large scale, of forestry, fishery, agriculture, cattle and industrial products

    International Nuclear Information System (INIS)

    Gutierrez, F.

    1991-01-01

    The drying process and/or preservation of grains is improved through the previous heating of air. In many cases it is enough to raise the temperature only a few degrees (from 10 to 15 Centigrade), in order to increase their capacity to absorb dampness. This can be done using very simple solar captors. A massive use of solar energy in the drying process of products, by means of hot air, can only be done with very expensive equipment. For this reason, it is recommended the use of lower thermic heaters, which will have a lower cost too. (Author)

  13. Chemical behavior and spectroscopic properties of rare earth borates in glazes

    Energy Technology Data Exchange (ETDEWEB)

    Lezhnina, Marina M., E-mail: marina@fh-muenster.de [Muenster University of Applied Sciences, Department of Chemical Engineering, Stegerwaldstr. 39, 48565 Steinfurt (Germany); Kätker, Heike [Muenster University of Applied Sciences, Department of Chemical Engineering, Stegerwaldstr. 39, 48565 Steinfurt (Germany); Kaiser, Martin [Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin (Germany); Stegemann, Linda [University of Muenster, Physical Institute, Heisenbergstr. 11, 48149 Muenster (Germany); Voss, Eckhard [Wendel GmbH, Am Güterbahnhof 30, 35683 Dillenburg (Germany); Resch-Genger, Ute [Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin (Germany); Strassert, Cristian [University of Muenster, Physical Institute, Heisenbergstr. 11, 48149 Muenster (Germany); Kynast, Ulrich [Muenster University of Applied Sciences, Department of Chemical Engineering, Stegerwaldstr. 39, 48565 Steinfurt (Germany)

    2016-02-15

    Efficient Near UV excited materials (350<λ<400 nm) responding with green line emission are sparse in comparison to higher energy UV excited emitters (λ<350 nm), while corresponding red line emitters are more abundant, albeit typically also restricted to excitation wavelengths below 400 nm. This situation is disadvantageous for several important actual and potential applications. Among these, excitation with high power UV-LEDs and laser diodes are of particular interest. Here we present results on green emitting YBO{sub 3}:Ce, Tb, which can be excited with 370–380 nm radiation at quantum efficiencies of up to 60% and decay times in excess of 2 ms. Moreover, as powderous phosphors typically require stable matrices to be hosted in, we investigated low melting, lead- and fluoride-free glasses for their capability to accommodate the phosphor and yet retain its optical properties. In these, we even observed an increase of the quantum efficiencies of up to 70% at decay times approaching 3 ms. Finally, we characterized the thermal quenching behavior, which showed a clear advantage of the phosphors in glassy matrices. - Highlights: • YBO3:Ce, Tb revisited as a reference material for Near UV excitation. • Absolute quantum yields determined independently at different institutions. • Efficient luminescence from glazing YBO{sub 3}:Ce,Tb with glass forming compositions. • Glaze composites retain or surpass pure phosphor’s optical performance.

  14. Experimental study of drying kinetics by forced convection of aromatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Belghit, A; Boutaleb, B C [Laboratoire de Mecanique des Fluides et Energetique, Marrakech (Morocco). Faculte des Sciences Semlalia; Kouhila, M [Laboratoire d' Energie Solaire, Marrakech (Morocco). Ecole Normale Superieure

    2000-08-01

    This paper has the objectives to determine the isotherms of sorption and the drying kinetics of verbena, which is the most consumed aromatic plant in Morocco. The experiments undertaken consist of examining the effects of drying air velocity, temperature of drying air and air moisture content on the drying kinetics of verbena in a laboratory drying tunnel working by forced convection. The results verified, with good reproducibility, that temperature is the main factor in controlling the rate of drying. The expression of the drying rate is determined empirically from the characteristic curve of drying. (author)

  15. Electro-desalination of glazed tile panels - discussion of possibilities

    DEFF Research Database (Denmark)

    Dias-Ferreira, Célia; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2016-01-01

    . In the few experiments conducted on tiles with attached mortar, the mortar was desalinated to a higher degree than the biscuit and successful desalination of the biscuit through the mortar requires further research. In-situ pilot scale tests were performed on highly salt-contaminated walls without tiles...... by placing electrodes at the same side of the wall. Thus it may be possible to desalinate tile panels, without any physical damage of the fragile glaze, by placing electrodes on the back of the wall or by removing some tiles, placing electrodes in their spaces, and extracting the salts from there before...... the tiles are placed back again....

  16. Elemental oxides analysis of the medieval period glazed ware from Gogha, Gulf of Khambhat, Gujarat, India

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A.S.; Khedekar, V.; Rao, B.R.

    for elemental oxides using scanning electron microscope and energy dispersive spectrum. The results indicate that silicon oxide content of the glazed sherds varies between approx. 73 and 77%, forming three-fourths of the total composition, while it ranges from...

  17. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D [ORNL; Utturkar, Sagar M [ORNL; Klingeman, Dawn Marie [ORNL; Johnson, Courtney M [ORNL; Martin, Stanton [ORNL; Land, Miriam L [ORNL; Lu, Tse-Yuan [ORNL; Schadt, Christopher Warren [ORNL; Doktycz, Mitchel John [ORNL; Pelletier, Dale A [ORNL

    2012-01-01

    To aid in the investigation of the Populus deltoides microbiome we generated draft genome sequences for twenty one Pseudomonas and twenty one other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Burkholderia, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium and Variovorax were generated.

  18. Numerical analysis of temperature and flow effects in a dry, two-dimensional, porous-media reservoir used for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.

    1979-10-01

    The purpose of the work is to define the hydrodynamic and thermodynamic response of a CAES dry porous media reservoir subjected to simulated air mass cycling. The knowledge gained will provide, or will assist in providing, design guidelines for the efficient and stable operation of the air storage reservoir. The analysis and results obtained by two-dimensional modeling of dry reservoirs are presented. While the fluid/thermal response of the underground system is dependent on many parameters, the two-dimensional model was applied only to those parameters that entered the analysis by virtue of inclusion of the vertical dimension. In particular, the parameters or responses that were quantified or characterized include wellbore heat transfer, heat losses to the vertical boundaries of the porous zone, gravitationally induced flows, producing length of the wellbore, and the effects of nonuniform permeability. The analysis of the wellbore heat transfer included consideration of insulation, preheating (bubble development with heated air), and air mass flow rate.

  19. Drying of plasterboard - some quality aspects

    Energy Technology Data Exchange (ETDEWEB)

    Naesman, L. (University of Lund (Sweden)); Wimmerstedt, R. (University of Lund (Sweden))

    1993-06-01

    The manufacture process, especially the drying operation, of plasterboard was studied. The purpose was to measure physical properties, which can be used for the optimization of the process with respect to energy and quality. The cardboard was found to be hygroscopic whereas the gypsum was not. It was determined that the chloride content in the gypsum raw material should not exceed 75 ppm. The starch was found to migrate towards the surface of the gypsum core during the drying process (air temperture 140 C, dew-point of air 30 C and air velocity 10 m/s). The drying of different qualitites of plasterboard was also investigated. It was found that the cardboard is a very important parameter whereas the gypsum core has little effect on the drying rate and core temperature. (orig.)

  20. Evaluation of the effect of polishing on flexural strength of feldspathic porcelain and its comparison with autoglazing and over glazing

    Directory of Open Access Journals (Sweden)

    Jalali H.

    2005-06-01

    Full Text Available Statement of Problem: Ceramic restorations are popular because they can provide the most natural replacement for teeth. However, the brittleness of ceramics is a primary disadvantage. There are various methods for strengthening ceramics such as metal framework, ceramic cores, and surface strengthening mechanisms through glazing, work hardening and ion exchange. Purpose: The purpose of this study was to evaluate the effect of polish on flexural strength of feldspathic porcelain and to compare it with overglaze and autoglaze. Materials and Methods: In this experimental study, one brand of feldspathic porcelain (colorlogic, Ceramco was used and forty bars (25×6×3 mm were prepared according to ISO 6872 and ADA No. 69. The specimens were randomly divided into four groups: overglazed, auto glazed, fine polish and coarse polish (clinic polish. Flexural strength of each specimen was determined by three point bending test (Universal Testing Machine, Zwick 1494, Germany. Collected data was analyzed by ANOVA and post-hoc test with P<0.05 as the limit of significance. Results: A significant difference was observed among the studied groups (P<0.0001. According to post-hoc test, flexural strength in overglaze and fine polish group were significantly stronger than clinic polish and autoglaze group (P<0.001. Although the mean value for overglazed group was higher than fine polish group, this was not statistically significant (P=0.9. Also no statistical difference was seen between autoglazed and coarse polish group (P=0.2. Conclusion: Based on the findings of this study, flexural strength achieved by fine polish (used in this study can compete with overglazing the feldespathic porcelains. It also can be concluded that a final finishing procedure that involves fine polishing may be preferred to simple staining followed by self-glazing.

  1. Illustration of compositional variations over time of Chinese porcelain glazes combining micro-X-ray fluorescence spectrometry, multivariate data analysis and Seger formulas

    OpenAIRE

    Van Pevenage, J.; Verhaeven, E.; Vekemans, B.; Lauwers, D.; Herremans, D.; De Clercq, W.; Vincze, L.; Moens, L.; Vandenabeele, P.

    2015-01-01

    Abstract: In this research, the transparent glaze layers of Chinese porcelain samples were investigated. Depending on the production period, these samples can be divided into two groups: the samples of group A dating from the Kangxi period (1661-1722), and the samples of group B produced under emperor Qianlong (1735-1795). Due to the specific sample preparation method and the small spot size of the X-ray beam, investigation of the transparent glaze layers is enabled. Despite the many existing...

  2. Kinetics, mass transport characteristics, and structural changes during air-drying of purple yam (Dioscorea Alata L.) at different process conditions

    Science.gov (United States)

    De Vera, Flordeliza C.; Comaling, Leif Anthony B.; Lao, Iya Ray Alyanna M.; Caparanga, Alvin R.; Sauli, Zaliman

    2017-11-01

    This experiment was designed to follow the 2k factorial design to study the effects of the three drying parameters on the drying characteristics and effective moisture diffusivity and to fit each run performed on the best thin-layer drying kinetics model. Raw purple yam samples were pre-treated and undergone the designed drying procedures at which the weight of the samples were recorded every minute until such time that the sample weights become constant. Scanning Electron Microscopy (SEM) is utilized for qualitative analysis of the dried samples. The number of pores per unit area and the overall aesthetics of the surface of the dried samples were compared also using SEM. Considering the qualitative analysis conducted on the samples from the images of SEM, dried samples from run 2 has the most desirable conditions such as high temperature and low air velocity for drying because the samples from this run have large pore diameters with minimal cell breakages.

  3. Spray drying of fruit and vegetable juices--a review.

    Science.gov (United States)

    Verma, Anjali; Singh, Satya Vir

    2015-01-01

    The main cause of spray drying is to increase the shelf life and easy handling of juices. In the present paper, the studies carried out so far on spray drying of various fruits and vegetables are reported. The major fruit juices dried are mango, banana, orange, guava, bayberry, watermelon, pineapple, etc. However, study on vegetable juices is limited. In spray drying, the major optimized parameters are inlet air temperature, relative humidity of air, outlet air temperature, and atomizer speed that are given for a particular study. The juices in spray drying require addition of drying agents that include matlodextrin, liquid glucose, etc. The drying agents are added to increase the glass transition temperature. Different approaches for spray dryer design have also been discussed in the present work.

  4. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    International Nuclear Information System (INIS)

    Yehia, Ashraf; Mizuno, Akira

    2013-01-01

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  5. Desorption isotherms, drying characteristics and qualities of glace tropical fruits undergoing forced convection solar drying

    Energy Technology Data Exchange (ETDEWEB)

    Jamradloedluk, Jindaporn; Wiriyaumpaiwong, Songchai [Mahasarakham Univ. Khamriang, Kantarawichai, Mahasarakham (Thailand)

    2008-07-01

    Solar energy, a form of sustainable energy, has a great potential for a wide variety of applications because it is abundant and accessible, especially for countries located in the tropical region. Drying process is one of the prominent techniques for utilization of solar energy. This research work proposes a forced convection solar drying of osmotically pretreated fruits viz. mango, guava, and pineapple. The fruit cubes with a dimension of 1cm x 1cm x 1cm were immersed in 35% w./w. sucrose solution prior to the drying process. Drying kinetics, color and hardness of the final products obtained from solar drying were investigated and compared with those obtained from open air-sun drying. Desorption isotherms of the osmosed fruits were also examined and five mathematical models were used to fit the desorption curves. Experimental results revealed that solar drying provided higher drying rate than natural sun drying. Color of glace fruit processed by solar drying was more intense, indicated by lower value of lightness and higher value of yellowness, than that processed by sun drying. Hardness of the products dehydrated by both drying methods, however, was not significantly different (p>0.05). Validation of the mathematical models developed showed that the GAB model was most effective for describing desorption isotherms of osmotically pretreated mango and pineapple whereas Peleg's model was most effective for describing desorption isotherms of osmotically pretreated guava. (orig.)

  6. Analysis on energy consumption of drying process for dried Chinese noodles

    International Nuclear Information System (INIS)

    Wang, Zhenhua; Zhang, Yingquan; Zhang, Bo; Yang, Fuguang; Yu, Xiaolei; Zhao, Bo; Wei, Yimin

    2017-01-01

    Highlights: • Energy analysis of a tunnel dryer for dried Chinese noodles is completed. • Energy saving performance of dryers with different inlet air was compared. • MND was developed and evaluated, and the efficiency and throughput was improved. - Abstract: Drying is an important operation during the production of dried Chinese noodles, and the energy consumption from drying accounts for approximately 60% of the total energy consumption during the manufacturing process. To investigate the energy consumption and throughput of dryers for dried Chinese noodles, experiments were conducted using a new 130-m long tunnel dryer with two lines of noodles (ND) and an old 60-m long tunnel dryer with five lines of noodles (OD). The energy saving effects of a modified new 130-m long tunnel dryer (MND), which was only modified through the inclusion of automatic control for temperature and humidity without any modifications to the oil heater or ND dryer structure, were also compared. The energy saving effect was determined from the enthalpy difference between the inlet and outlet humid air of the ND and MND. Finally, the MND was found to be better than ND in terms of energy efficiency and throughput, and trends for the future of noodle drying were discussed.

  7. Air Conditioning and Refrigeration. Book One.

    Science.gov (United States)

    Wantiez, Gary W.

    Designed to provide students with the basic skills for an occupation in air conditioning and refrigeration, this curriculum guide includes seven major areas, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Orientation (history and development, and job opportunities), Safety…

  8. Automatic humidification system to support the assessment of food drying processes

    Science.gov (United States)

    Ortiz Hernández, B. D.; Carreño Olejua, A. R.; Castellanos Olarte, J. M.

    2016-07-01

    This work shows the main features of an automatic humidification system to provide drying air that match environmental conditions of different climate zones. This conditioned air is then used to assess the drying process of different agro-industrial products at the Automation and Control for Agro-industrial Processes Laboratory of the Pontifical Bolivarian University of Bucaramanga, Colombia. The automatic system allows creating and improving control strategies to supply drying air under specified conditions of temperature and humidity. The development of automatic routines to control and acquire real time data was made possible by the use of robust control systems and suitable instrumentation. The signals are read and directed to a controller memory where they are scaled and transferred to a memory unit. Using the IP address is possible to access data to perform supervision tasks. One important characteristic of this automatic system is the Dynamic Data Exchange Server (DDE) to allow direct communication between the control unit and the computer used to build experimental curves.

  9. Remediation of muddy tidal flat sediments using hot air-dried crushed oyster shells.

    Science.gov (United States)

    Yamamoto, Tamiji; Kondo, Shunsuke; Kim, Kyung-Hoi; Asaoka, Satoshi; Yamamoto, Hironori; Tokuoka, Makoto; Hibino, Tadashi

    2012-11-01

    In order to prove that hot air-dried crushed oyster shells (HACOS) are effective in reducing hydrogen sulfide in muddy tidal flat sediments and increasing the biomass, field experiments were carried out. The concentration of hydrogen sulfide in the interstitial water, which was 16 mg SL(-1) before the application of HACOS, decreased sharply and maintained almost zero in the experimental sites (HACOS application sites) for one year, whereas it was remained at ca. 5 mg SL(-1) in the control sites. The number of macrobenthos individuals increased to 2-4.5 times higher than that in the control site. Using a simple numerical model, the effective periods for suppression of hydrogen sulfide were estimated to be 3.2-7.6 and 6.4-15.2 years for the experimental sites with 4 and 8 tons per 10 × 10 × 0.2m area, respectively. From these results, it is concluded that HACOS is an effective material to remediate muddy tidal flats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer

    Science.gov (United States)

    Defrere, D.; Hinz, P.; Downey, E.; Boehm, M.; Danchi, W. C.; Durney, O.; Ertel, S.; Hill, J. M.; Hoffmann, W. F.; Mennesson, B.; hide

    2016-01-01

    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feed forward approach to stabilize the path length fluctuations seen by the LBTI nuller uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current

  11. Mathematical modeling of drying of pretreated and untreated pumpkin

    OpenAIRE

    Tunde-Akintunde, T. Y.; Ogunlakin, G. O.

    2011-01-01

    In this study, drying characteristics of pretreated and untreated pumpkin were examined in a hot-air dryer at air temperatures within a range of 40–80 °C and a constant air velocity of 1.5 m/s. The drying was observed to be in the falling-rate drying period and thus liquid diffusion is the main mechanism of moisture movement from the internal regions to the product surface. The experimental drying data for the pumpkin fruits were used to fit Exponential, General exponential, Logarithmic, Page...

  12. Development of automated control system for wood drying

    Science.gov (United States)

    Sereda, T. G.; Kostarev, S. N.

    2018-05-01

    The article considers the parameters of convective wood drying which allows changing the characteristics of the air that performs drying at different stages: humidity, temperature, speed and direction of air movement. Despite the prevalence of this type of drying equipment, the main drawbacks of it are: the high temperature and humidity, negatively affecting the working conditions of maintenance personnel when they enter the drying chambers. It makes the automation of wood drying process necessary. The synthesis of a finite state of a machine control of wood drying process is implemented on a programmable logic device Omron.

  13. Induction of genetic changes in Saccharomyces cerevisiae by partial drying in air of constant relative humidity and by UV

    International Nuclear Information System (INIS)

    Hieda, K.

    1981-01-01

    It was investigated whether there was a critical degree of dryness for induction of genetic changes by drying. Saccharomyces cerevisiae cells were dried in air of 0.33, 53 and 76% relative humidity (RH). The frequencies of mitotic recombination at ade2, of gene conversion at leu1, and of gene mutation at can1 were measured in X2447, XS1473 and S288C strains, respectively. After the cells had been dried at 0% RH for 4 h the frequencies of the genetic changes at ade2, leu1 and can1 were, respectively, 56, 7 and 3.5 times higher than each spontaneous frequency. Induction rates, defined as the frequencies of the induced genetic changes per unit time (1 h) of drying, were greatly decreased with increase in RH. Partial drying in air of 76% RH up to 4 and 8 h induced no genetic change at ade2 and leu1, respectively. It was concluded, therefore, that drying at a certain RH between 53 and 76% gave the critical degreee of dryness of cells for the induction of the genetic changes. The water contents of cells (g water per g dry material) were 12% at 53% RH and 21% at 76% RH, whereas the water content of native cells was 212%. Removal of a large amount of cellular water had no effect on the induction of the genetic changes. UV sensitivity of partially dried cells of X2447 for the induction of the genetic change at ade2 drastically increased with decrease in RH between 76 and 53%. The drastic change in the UV sensitivity suggested that photochemical reactivity of DNA of chromosome XV, in which the ade2 locus is located, changed between 76 and 53% RH. It seems that the genetic changes were induced only in the low RH region where DNA in vivo had a different photochemical reactivity. (orig.)

  14. Application of microwave to drying and blanching of tomatoes

    International Nuclear Information System (INIS)

    Ando, Y.; Orikasa, T.; Shiina, T.; Sotome, I.; Isobe, S.; Muramatsu, Y.; Tagawa, A.

    2010-01-01

    The applicability of microwave to the drying and blanching of tomatoes was examined. The changes of the drying rate and surface color were first measured and compared between drying by hot air (50degC) or microwave at three radiation powers. The drying rates using a microwave were higher than that using hot air. Both a constant-rate drying period and a falling-rate drying period were observed for each microwave radiation power. Compared to hot air drying, microwave drying resulted in an increase in lightness which is a preferable quality of tomatoes. Next, the changes in temperature, nutrients and surface color were measured and compared between blanching by microwave or boiling water. Microwave blanching required less time, resulted in higher retention of nutrients (ascorbic acid and lycopene) and caused less change in color in comparison with boiling water blanching. These results suggest that a microwave could be applied to drying and blanching tomatoes

  15. Building On Builder: The Persistent Icarus Syndrome at Twenty Years

    Science.gov (United States)

    2013-06-01

    mission of the United States Air Force is to "fly, fight, and win…in air, space and cyberspace"--as an intergral member of the Joint team that...Scenarios: A Military Futurist Explores War in the Twenty-First Century (New York: Bantam Books Trade Paperbacksl, 2009), 17. 33 Carl H. Builder

  16. Velocity and uniformity of air circulation in conventional kilns for sawn timber

    Directory of Open Access Journals (Sweden)

    Kolin Branko

    2012-01-01

    Full Text Available This paper presents the results of a research of velocity of air circulation in the conventional kiln drying of sawn timber and its influence on the uniformity of final moisture content. The data showed that the air velocity (between 0.8 - 1.2 m•s -1 is significantly lower than the one that is optimal for timber drying of coniferous species (3 - 4 m•s-1. This results in a reduction in the capacity of installations for drying, increased energy (thermal and electrical consumption and thereby increase in the cost of drying. The correlation between the speed of air circulation and the final MC of timber due to prolonged drying was not established. Recommendations that should eliminate the identified deficiencies are also given.

  17. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture.

    Science.gov (United States)

    Zielinska, Magdalena; Michalska, Anna

    2016-12-01

    The aim of the study was to evaluate the effect of hot air convective drying (HACD), microwave vacuum drying (MWVD) and their combination (HACD+MWVD) on the drying kinetics, colour, total polyphenols, anthocyanins antioxidant capacity and texture of frozen/thawed blueberries. Drying resulted in reduction of total polyphenols content and antioxidant capacity (69 and 77%, respectively). The highest content of total polyphenols was noted after HACD at 90°C. Lower air temperature and prolonged exposure to oxygen resulted in greater degradation of polyphenols and antioxidant capacity. Drying processes caused a significant decrease (from 70 to 95%) in the content of anthocyanins. The highest content of anthocyanins and the strongest antioxidant capacity was found in blueberries dried using HACD at 90°C+MWVD. Among drying methods, HACD at 90°C+MWVD satisfied significant requirements for dried fruits i.e. short drying time and improved product quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Twenty-first workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-01-26

    PREFACE The Twenty-First Workshop on Geothermal Reservoir Engineering was held at the Holiday Inn, Palo Alto on January 22-24, 1996. There were one-hundred fifty-five registered participants. Participants came from twenty foreign countries: Argentina, Austria, Canada, Costa Rica, El Salvador, France, Iceland, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Nicaragua, the Philippines, Romania, Russia, Switzerland, Turkey and the UK. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions concerning: reservoir assessment, modeling, geology/geochemistry, fracture modeling hot dry rock, geoscience, low enthalpy, injection, well testing, drilling, adsorption and stimulation. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bobbie Bishop-Gollan, Tom Box, Jim Combs, John Counsil, Sabodh Garg, Malcolm Grant, Marcel0 Lippmann, Jim Lovekin, John Pritchett, Marshall Reed, Joel Renner, Subir Sanyal, Mike Shook, Alfred Truesdell and Ken Williamson. Jim Lovekin gave the post-dinner speech at the banquet and highlighted the exciting developments in the geothermal field which are taking place worldwide. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager.

  19. Performance of jet impingement in unglazed air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Belusko, M.; Saman, W.; Bruno, F. [Institute for Sustainable Systems and Technologies, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia)

    2008-05-15

    Jet impingement is effective at improving the heat transfer between air and a heated surface. Studies have shown that jet impingement can marginally improve the thermal efficiency of a glazed collector. However, little attention has been placed on applying jet impingement to an unglazed solar air collector. This paper presents a theoretical and experimental investigation identifying the performance characteristics of jet impingement. Overall, jet impingement was able to improve the thermal efficiency of the collector by 21%. An increase in the pressure loss was also measured but found to be small. The flow distribution of jets along the collector was the most significant factor in determining the efficiency. Increasing the hole spacing was found to improve the efficiency. (author)

  20. Humidifying system design of PEMFC test platform based on the mixture of dry and wet air

    Directory of Open Access Journals (Sweden)

    Tiancai Ma

    2015-01-01

    Full Text Available Based on the present humidifying system of PEMFC test platform, a novel design based on dry and wet air mixture is proposed. Key parameters are calculated, and test platform is built. Three experiments are implemented to test the performance of proposed design. Results show that the new design can meet the requirements, and realize the quick response and accurate control.

  1. Effect of different drying methods on moisture ratio and rehydration of pumpkin slices.

    Science.gov (United States)

    Seremet Ceclu, Liliana; Botez, Elisabeta; Nistor, Oana-Viorela; Andronoiu, Doina Georgeta; Mocanu, Gabriel-Danut

    2016-03-15

    This study was carried to determine the influence of hot air drying process and combined methods on physicochemical properties of pumpkin (Cucurbita moschata) samples. The experiments in hot air chamber were lead at 50, 60 and 70 °C. The combined method consists of a triple combination of the main drying techniques. Thus, in first stage the samples were dried in hot air convection at 60 °C followed by hot air ventilation at 40 °C simultaneous with microwave. The time required to reduce the moisture content to any given level was highly dependent on the drying conditions. So, the highest value of drying time in hot air has been 540 min at 50 °C, while the lowest time has been 189 min in hot air combined by microwave at 40 °C and a power of 315 W. The samples dried by hot air shows a higher rehydration capacity than samples dried by combined method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Single droplet drying step characterization in microsphere preparation.

    Science.gov (United States)

    Al Zaitone, Belal; Lamprecht, Alf

    2013-05-01

    Spray drying processes are difficult to characterize since process parameters are not directly accessible. Acoustic levitation was used to investigate microencapsulation by spray drying on one single droplet facilitating the analyses of droplet behavior upon drying. Process parameters were simulated on a poly(lactide-co-glycolide)/ethyl acetate combination for microencapsulation. The results allowed quantifying the influence of process parameters such as temperature (0-40°C), polymer concentration (5-400 mg/ml), and droplet size (0.5-1.37 μl) on the drying time and drying kinetics as well as the particle morphology. The drying of polymer solutions at temperature of 21°C and concentration of 5 mg/ml, shows that the dimensionless particle diameter (Dp/D0) approaches 0.25 and the particle needs 350 s to dry. At 400 mg/ml, Dp/D0=0.8 and the drying time increases to one order of magnitude and a hollow particle is formed. The study demonstrates the benefit of using the acoustic levitator as a lab scale method to characterize and study the microparticle formation. This method can be considered as a helpful tool to mimic the full scale spray drying process by providing identical operational parameters such as air velocity, temperature, and variable droplet sizes. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Multilingual domain modeling in Twenty-One: automatic creation of a bi-directional translation lexicon from a parallel corpus

    NARCIS (Netherlands)

    Hiemstra, Djoerd

    1998-01-01

    Within the project Twenty-One, which aims at the effective dissemination of information on ecology and sustainable development, a sytem is developed that supports cross-language information retrieval in any of the four languages Dutch, English, French and German. Knowledge of this application domain

  4. The Effect of Operating Conditions on Drying Characteristics and Quality of Ginger (Zingiber Officinale Roscoe) Using Combination of Solar Energy-Molecular Sieve Drying System

    Science.gov (United States)

    Hasibuan, R.; Zamzami, M. A.

    2017-03-01

    Ginger (Zingiber officinale Roscoe) is an agricultural product that can be used as beverages and snacks, and especially for traditional medicines. One of the important stages in the processing of ginger is drying. The drying process intended to reduce the water content of 85-90% to 8-10%, making it safe from the influence of fungi or insecticide. During the drying takes place, the main ingredient contained in ginger is homologous ketone phenolic known as gingerol are chemically unstable at high temperatures, for the drying technology is an important factor in maintaining the active ingredient (gingerol) which is in ginger. The combination of solar energy and molecular sieve dryer that are used in the research is capable of operating 24 hours. The purpose of this research is to study the effect of operating conditions (in this case the air velocity) toward the drying characteristics and the quality of dried ginger using the combination of solar energy and molecular sieve dryer. Drying system consist of three main parts which is: desiccator, solar collector, and the drying chamber. To record data changes in the mass of the sample, a load cell mounted in the drying chamber, and then connected to the automated data recording system using a USB data cable. All data of temperature and RH inside the dryer box and the change of samples mass recorded during the drying process takes place and the result is stored in the form of Microsoft Excel. The results obtained, shows that the air velocity is influencing the moisture content and ginger drying rate, where the moisture content equilibrium of ginger for the air velocity of 1.3 m/s was obtained on drying time of 360 minutes and moisture content of 2.8%, at 1.0 m/s was obtained on drying time of 300 minutes and moisture content of 1.4%, at 0, 8 m/s was obtained at 420 minutes drying time and the moisture content is 2.0%. The drying characteristics shows that there are two drying periods, which is: the increasing drying rate

  5. Perinatal occipital lobe injury in children: analysis of twenty-one cases.

    Science.gov (United States)

    Wang, San-Mei; Yang, Chang-Shuan; Hou, Yu; Ma, Xiu-Wei; Feng, Zhi-Chun; Liao, Yu-Zhen

    2012-12-01

    This study used magnetic resonance imaging to analyze causes and clinical courses of pediatric occipital lobe injury. Patients undergoing magnetic resonance imaging for suspected bilateral occipital lobe injury at our Neurodevelopmental Department between July 2007 and June 2011 were included. We evaluated magnetic resonance imaging characteristics, clinical courses, electroencephalogram monitoring, and Denver Development Screen Test scores. Twenty-one infants were examined. Of these, 10 had been born preterm. Thirteen patients demonstrated hypoglycemia. Perinatal period hypoglycemia comprised the most common cause (71.4%) of occipital brain injury. Visual abnormalities were evident in 18 patients. Seventeen (80.9%) patients manifested epilepsy. Infantile spasms were observed in 13 cases (76.5%). According to Denver Development Screen Test assessment, 17 patients demonstrated delayed motor development. Motor function and language improved in 10 patients after effective control of their seizures. Hypoglycemia constitutes the most common cause of occipital injury in infants. Visual impairment, startle episodes, infantile spasms, and motor developmental delay comprise the most common complications, whereas language function is usually spared. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Hot-air drying of purslane ( Portulaca oleracea L.)

    Science.gov (United States)

    Doymaz, İbrahim

    2013-06-01

    Drying characteristics of purslane was experimentally studied in a cabinet dryer. The experimental drying data were fitted best to Modified Henderson and Pabis and Midilli et al. models apart from other models to predict the drying kinetics. The effective moisture diffusivity varied from 1.12 × 10-9 to 3.60 × 10-9 m2/s over the temperature range studied and activation energy was 53.65 kJ/mol.

  7. Mathematical modelling of thin layer drying of pear

    Directory of Open Access Journals (Sweden)

    Lutovska Monika

    2016-01-01

    Full Text Available In this study, a thin - layer drying of pear slices as a function of drying conditions were examined. The experimental data set of thin - layer drying kinetics at five drying air temperatures 30, 40, 50, 60 and 70°C, and three drying air velocities 1, 1.5 and 2 m s-1 were obtained on the experimental setup, designed to imitate industrial convective dryer. Five well known thin - layer drying models from scientific literature were used to approximate the experimental data in terms of moisture ratio. In order to find which model gives the best results, numerical experiments were made. For each model and data set, the statistical performance index, (φ, and chi-squared, (χ2, value were calculated and models were ranked afterwards. The performed statistical analysis shows that the model of Midilli gives the best statistical results. Because the effect of drying air temperature and drying air velocity on the empirical parameters was not included in the base Midilli model, in this study the generalized form of this model was developed. With this model, the drying kinetic data of pear slices can be approximated with high accuracy. The effective moisture diffusivity was determined by using Fick’s second laws. The obtained values of the effective moisture diffusivity, (Deff, during drying ranged between 6.49 x 10-9 and 3.29 x 10-8 m2 s-1, while the values of activation energy (E0 varied between 28.15 to 30.51 kJ mol-1.

  8. Glazed pottery of the South-Eastern Crimea from the excavations of the Tsarev settlement

    Directory of Open Access Journals (Sweden)

    Iudin Nikita I.

    2015-09-01

    Full Text Available The article deals with the findings of glazed ceramics produced in the South-Eastern Crimea, and then excavated at the Tsarev settlement. Their typology, chronology and topography are being introduced by the author. On the basis of the 165 analyzed fragments and whole vessels the author suggests a 4-level classification scheme, which includes the production center, functional purpose of the items, morphological characteristics and ornamentation of the vessels. Basic types and variations of vessels’ shapes are being described according to three major chronological periods: 1. Early 1300s, 2. 1330s, 3. The second half of the 14th century. Notably, the earliest findings of ceramics dated by the first two periods were located on the South-Eastern part of the Tsarev settlement. Most of all, its are the bowls on a circular underpan lacking ornamentation and covered with green transparent glazing. Since the second half of the 14th century the vessels from the South-Eastern Crimea had been widely spread on the entire area of the settlement. The assortment of vessels’ shapes used at this time along with jars and bowls, was now widened by aftobes and apothecary amphoras.

  9. Radioactivity measurement of primordial radionuclides in and dose evaluation from marble and glazed tiles used as covering building materials in Turkey

    International Nuclear Information System (INIS)

    Turhan, S.; Varinlioglu, A.

    2012-01-01

    Measurements of the natural radioactivity arising from primordial radionuclides ( 226 Ra, 232 Th and 40 K) in marble and glazed tile samples used covering building materials in Turkey were carried out by gamma-ray spectrometer with a high purity germanium detector. The mean activity concentrations of the 226 Ra, 232 Th and 40 K in marble and glazed tile samples were found as 8.2, 5.5 and 58.1 Bq kg -1 and 81.2, 65.4 and 450.1 Bq kg -1 , respectively. The radiation doses received by occupants of buildings in which the sample marble and glazed tiles might be used are estimated using measured activity concentrations of constituent primordial radionuclides and dose conversion factors evaluated by the European Commission from models of tile use. Results obtained are presented for each radionuclide, analysed and compared with relevant national and international legislation, guidance and report, and with the results obtained from other studies. Results show that the use of such decorative building materials in the construction of domestic homes or workplaces in Turkey is unlikely to lead to any significant radiation exposure to the occupants. (authors)

  10. Ozone Generation in Dry Air Using Pulsed Discharges With and Without a Solid Dielectric Layer

    OpenAIRE

    Samaranayake, W.J.M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Hackam, R.; Akiyama, H.; ミヤハラ, Y.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 浪平, 隆男; 勝木, 淳; 秋山, 秀典

    2001-01-01

    Energy efficient generation of ozone is very important because ozone is being used increasingly in a wide range of industrial applications. Ozonizers usually use dielectric barrier discharges and employ alternating current (ac) with consequent heat generation, which necessitates cooling. In the present study, very short duration pulsed voltage is employed resulting in reduced heating of the gas and discharge reactor. A comparison of ozone generation in dry air using a coaxial concentric elect...

  11. Increasing precipitation volatility in twenty-first-century California

    Science.gov (United States)

    Swain, Daniel L.; Langenbrunner, Baird; Neelin, J. David; Hall, Alex

    2018-05-01

    Mediterranean climate regimes are particularly susceptible to rapid shifts between drought and flood—of which, California's rapid transition from record multi-year dryness between 2012 and 2016 to extreme wetness during the 2016-2017 winter provides a dramatic example. Projected future changes in such dry-to-wet events, however, remain inadequately quantified, which we investigate here using the Community Earth System Model Large Ensemble of climate model simulations. Anthropogenic forcing is found to yield large twenty-first-century increases in the frequency of wet extremes, including a more than threefold increase in sub-seasonal events comparable to California's `Great Flood of 1862'. Smaller but statistically robust increases in dry extremes are also apparent. As a consequence, a 25% to 100% increase in extreme dry-to-wet precipitation events is projected, despite only modest changes in mean precipitation. Such hydrological cycle intensification would seriously challenge California's existing water storage, conveyance and flood control infrastructure.

  12. Energy-efficient and preservable windows. Measurements and calculations; Energieffektive bevaringsverdige vinduer. Maalinger og beregninger

    Energy Technology Data Exchange (ETDEWEB)

    Homb, Anders; Uvsloekk, Sivert

    2012-11-01

    SINTEF has carried out a project for Cultural Heritage and Enova to document specific qualities of energy-efficient and preservable windows. The work has been based on an older type two-rams window with simple frames and one glass divided into three squares of horizontal crossbars. There were produced two kinds of commodity window, respectively, with single glazing with Insulating. Measurements and calculations have been performed with two different distances from the outer glass to the last frame. The project had the following contents: Measurements of the U-value, Calculation of U-value of accurate and simplified method, Measurements of air density and drying ability, Measurement and evaluation of sound insulation, Estimation of the heat balance (eb)

  13. Qualitative Indices of Istamaran Date Variety Affected by Various Drying Methods

    Directory of Open Access Journals (Sweden)

    E. Mehryar

    2015-09-01

    Full Text Available Drying of fruits and vegetables is one of the oldest methods for preserving foods. Drying not only affects the moisture content of the product, but also changes other physical, chemical and biological properties of the product including enzymatic activity, microbial spoilage, viscosity, hardness, taste and aroma. In order to study the occurring changes in dried product, qualitative characteristics including shrinkage, color and water rehydration are commonly evaluated. The purpose of this research was to study the effect of drying methods on qualitative indices for dried Istamaran dates. The drying methods were hot air, microwave and vacuum drying. The photos of the final product were taken using a digital camera. Then, color parameters (L*, a* and b* of the samples were measured using Photoshop software. The amount of shrinkage for dried product was determined by liquid displacement method. For evaluating rehydration ability, water absorption capacity (WAC, dry matter holding capacity (DHC, and rehydration ability (RA were also estimated. Results showed that the effect of drying method on WAC, DHC, and RA was significant (p<0.01. Means comparison revealed that the structural damage into the final dried product occurred by microwave method was higher than that for hot air and vacuum drying methods. Drying method did not lead to any significant difference among shrinkage values. Drying temperature influenced shrinkage more than drying time. Analysis of variance showed that the effect of drying method on L*, a* and b* parameters was not significant. Since the temperature of drying in microwave method is very high, it is possible that caramelization occurs during this method. This phenomenon can be considered as the reason of color darkness caused by microwave method.

  14. The release of organic compounds during biomass drying depends upon the feedstock and/or altering drying heating medium

    International Nuclear Information System (INIS)

    Rupar, K.; Sanati, M.

    2003-01-01

    The release of organic compounds during the drying of biomass is a potential environmental problem, it may contribute to air pollution or eutrophication. In many countries there are legal restrictions on the amounts of terpenes that may be released into the atmosphere. When considering bioenergy in future energy systems, it is important that information on the environmental effects is available. The emissions of organic compounds from different green and dried biofuels that have been dried in hot air and steam medium, were analyzed by using different techniques. Gas chromatography and gas chromatography mass spectrometry have been used to identify the organic matter. The terpene content was significantly affected by the following factors: changing of the drying medium and the way the same biomass was handled from different localities in Sweden. Comparison between spectra from dried and green fuels reveal that the main compounds emitted during drying are monoterpene and sesquiterpene hydrocarbons, while the emissions of diterpene hydrocarbons seem to be negligible. The relative proportionality between emitted monoterpene, diterpene and sesquiterpene change when the drying medium shifts from steam to hot air. The obtained result of this work implies a parameter optimization study of the dryer with regard to environmental impact. With assistance of this result it might be foreseen that choice of special drying medium, diversity of biomass and low temperature reduce the emissions. A thermo-gravimetric analyzer was used for investigating the biomass drying rate. (author)

  15. Utilization of radiometric method in evaluation of wear on human dental enamel in vitro by dental porcelain glazed and polished

    International Nuclear Information System (INIS)

    Adachi, Lena Katekawa; Campos, Tomie Nakakuki de; Adachi, Eduardo Makoto

    2005-01-01

    The dental porcelain is a material commonly used in prosthesis. Disadvantages of dental porcelain use include possibility to cause tooth or dental materials wear. Before its use in the mouth, surfaces are treated with polishing and/or glazing. This research used the radiometric method to verify the influence of these surface treatments on the porcelains of commercial brands: Ceramco II, Noritake and Finesse. This method was originally developed for dentifrice abrasiveness evaluation. Five specimens of dental enamel and 10 specimens of each porcelain (5 glazed, 5 polished) were used. The dental enamel was flattened and irradiated with neutrons from the IEA-R1 (IPEN/CNEN) nuclear reactor. Then it was weared by each porcelain in sliding motion, with water. After 2,500 cycles for each porcelain specimen, the released enamel residue was measured. The enamel wear was evaluated by measuring beta activity of 32 P transferred to water from the irradiated tooth. Results varied from 2.57 to 5.81 μg of enamel /mm 2 weared surface. There was no statistical difference (α=0.05) between dental enamel wear caused by the same porcelains glazed or polished. The results suggest that adequate surface finishing depend on the type of dental porcelain. (author)

  16. Drying Rate and Product Quality Evaluation of Roselle (Hibiscus sabdariffa L.) Calyces Extract Dried with Foaming Agent under Different Temperatures.

    Science.gov (United States)

    Djaeni, Mohamad; Kumoro, Andri Cahyo; Sasongko, Setia Budi; Utari, Febiani Dwi

    2018-01-01

    The utilisation of roselle ( Hibiscus sabdariffa L.) calyx as a source of anthocyanins has been explored through intensive investigations. Due to its perishable property, the transformation of roselle calyces into dried extract without reducing their quality is highly challenging. The aim of this work was to study the effect of air temperatures and relative humidity on the kinetics and product quality during drying of roselle extract foamed with ovalbumin and glycerol monostearate (GMS). The results showed that foam mat drying increased the drying rate significantly and retained the antioxidant activity and colour of roselle calyces extract. Shorter drying time was achieved when higher air temperature and/or lower relative humidity was used. Foam mat drying produced dried brilliant red roselle calyces extract with better antioxidant activity and colour qualities when compared with nonfoam mat drying. The results showed the potential for retaining the roselle calyces extract quality under suggested drying conditions.

  17. Effect of Turmerin on Endothelial Denudation by Air Drying

    Directory of Open Access Journals (Sweden)

    A. K. Markov

    2002-09-01

    Full Text Available Abstract: The objective of this study is to determine if arterial endothelial injury can be attenuated by local application of 80 μg/ml turmerin at the site of injury and by oral administration of the same dose. Anesthetized Lewis rats (n =12 weighing 200 ± 4.0 gms randomly were assigned to two groups. After 5 min of air drying a segment of right carotid artery, six rats were treated locally 80μg/ml with turmerin and the rest were treated with 0.9% NaCl. Turmerin was then administered by gavage (80 μg every 24 hrs for 14 days. Animals were sacrificed on day 14 and the carotid artery removed from the injured site for histological analysis and serum collected for lipid peroxidation analysis by measuring malondialdehyde (MDA and conjugated dienes. This study showed no proliferation in the intima of one rat out of six rats treated with turmerin while there was significant variation between the treated rats and the controls. MDA for control was 0.593±0.02 nanomoles/ml while turmerin was 0.187±0.04 (p≤0.01; conjugated diene for control was 0.402±0.03 nanomoles/ml while turmerin was 0.212±0.04 nanomoles/ml (p ≤0.05. Although there was significant reduction in serum peroxidation activity, the histological findings indicate that attenuation of carotid artery injury may involve other factors than decreased lipid peroxidation.

  18. Experimental investigation on influence of porous material properties on drying process by a hot air jet

    International Nuclear Information System (INIS)

    Di Marco, P; Filippeschi, S

    2012-01-01

    The drying process of porous media is a subject of scientific interest, and different mathematical approaches can be found in the literature. A previous paper by the same authors showed that the celebrated Martin correlation for hot air jet heat and mass transfer yields different degrees of accuracy (from 15% to 65%, increasing at high values of input power) if tested on different fabrics, the remaining conditions being the same. In this paper the fabric drying has been experimentally investigated more in depth. A dedicated experimental apparatus for hot jet drying was assembled and operated, in which a hot jet impinges perpendicularly onto a wet fabric. A calibrated orifice was adopted to measure the jet flow rate, with an accuracy better than 3%. The drying power was determined by continuously weighing with a precision scale a moistened patch exposed to the drying jet. The effect of the time of the exposure and the initial amount of water has been evaluated for each sample. During the hot jet exposure, the temperature distribution over the wet patch has been observed by an infrared thermo-camera. A mathematical model of water transport inside and outside the fabric was developed, in order to evidence the governing transport resistances. The theoretical predictions have been compared with the experimental results, and showed the necessity to modify correlations and models accounting for fabric properties.

  19. Air-side performance evaluation of three types of heat exchangers in dry, wet and periodic frosting conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Zhejiang Vocational College of Commerce, Hangzhou, Binwen Road 470 (China); Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 1206 West Green Street, Urbana, IL 61801 (United States); Hrnjak, P.S. [Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 1206 West Green Street, Urbana, IL 61801 (United States)

    2009-08-15

    The performances of three types of heat exchangers that use the louver fin geometry: (1) parallel flow parallel fin with extruded flat tubes heat exchanger (PF{sup 2}), (2) parallel flow serpentine fin with extruded flat tubes heat exchanger (PFSF) and (3) round tube wave plate fin heat exchanger (RTPF) have been experimentally studied under dry, wet and frost conditions and results are presented. The parameters quantified include air-side pressure drop, water retention on the surface of the heat exchanger, capacity and overall heat transfer coefficient for air face velocity 0.9, 2 and 3 m/s, air humidity 70% and 80% and different orientations. The performances of three types of heat exchanger are compared and the results obtained are presented. The condensate drainage behavior of the air-side surface of these three heat exchanger types was studied using both the dip testing method and wind tunnel experiment. (author)

  20. Degree of conversion of simplified contemporary adhesive systems as influenced by extended air-activated or passive solvent volatilization modes.

    Science.gov (United States)

    Borges, Boniek C D; Souza-Junior, Eduardo Jose; Brandt, William C; Loguercio, Alessandro D; Montes, Marcos A J R; Puppin-Rontani, Regina M; Sinhoreti, Mario Alexandre Coelho

    2012-01-01

    This study evaluated the effect of five methods of solvent volatilization on the degree of conversion (DC) of nine one-bottle adhesive systems using Fourier transform infrared/attenuated total reflectance (FTIR/ATR) analysis. Nine adhesives were tested: Adper Single Bond 2 (SB), Adper Easy One (EO), One Up Bond F Plus (OUP), One Coat Bond SL (OC), XP Bond (XP), Ambar (AM), Natural Bond (NB), GO, and Stae. The adhesive systems were applied to a zinc-selenide pellet and 1) cured without solvent volatilization, 2) left undisturbed for 10 seconds before curing, 3) left undisturbed for 60 seconds before curing, 4) air-dried with an air stream for 10 seconds before curing, and 5) air-dried with an air stream for 60 seconds before curing. FTIR/ATR spectra were obtained, and the DC was calculated by comparing the aliphatic bonds/reference peaks before and after light activation for 10 seconds (FlashLite 1401). The DC means of each material were analyzed by one-way analysis of variance and post hoc Tukey test (pStae adhesive systems was not affected by the five evaporation conditions. Air-drying for 60 seconds before curing yielded the highest DC for SB, EO, and OC. Extended solvent volatilization time (60 seconds) either with or without air-drying before curing provided the highest DC for AM, NB, XP, and OUP. Thus, the monomer conversion of adhesive systems was material dependent. In general, the 60-second passive or active air-drying modes to volatilize solvents before curing enhanced the degree of conversion for the one-bottle simplified adhesive systems.

  1. Cold, dry air is associated with influenza and pneumonia mortality in Auckland, New Zealand.

    Science.gov (United States)

    Davis, Robert E; Dougherty, Erin; McArthur, Colin; Huang, Qiu Sue; Baker, Michael G

    2016-07-01

    The relationship between weather and influenza and pneumonia mortality was examined retrospectively using daily data from 1980 to 2009 in Auckland, New Zealand, a humid, subtropical location. Mortality events, defined when mortality exceeded 0·95 standard deviation above the mean, followed periods of anomalously cold air (ta.m. = -4·1, P < 0·01; tp.m. = -4·2, P < 0·01) and/or anomalously dry air (ta.m. = -4·1, P < 0·01; tp.m. = -3·8, P < 0·01) by up to 19 days. These results suggest that respiratory infection is enhanced during unusually cold conditions and during conditions with unusually low humidity, even in a subtropical location where humidity is typically high. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  2. Effects of superheated steam on the drying of rubberwood

    Directory of Open Access Journals (Sweden)

    Kanokwan Buaphud

    2006-07-01

    Full Text Available Rubberwood drying is the most time and energy consuming step in the processing of wood product. This research studied the effect of superheated steam drying on the drying time required and the physical and mechanical properties of rubberwood after drying. In this study, a cylindrical drying chamber with a length of 1.2 m and a diameter of 0.5 m was constructed and injected with superheated steam. The dimensions of the wood lumber were 1 m × 7.62 cm × 2.54 cm. The wood samples were impinged with alternating cycles of superheated steam and hot air at ratios of 6:1, 4:1 and 1:6 hours until the moisture content was less than 15% dry basis. The conditions inside the chamber were 110ºC and ambient pressure. Continuous superheated steam and continuous hot air were also used for comparisons. The drying rate and the temperature profile for each process were determined.Initial acceptability of the dried wood was conducted using the prong test and visual inspection. Results showed that if the drying rate was too fast, the dried wood did not pass the prong test due to stress buildup. Therefore, an optimum drying condition was developed based on minimizing defects and reducing the drying time. For the optimum condition, the following schedule was carried out: (1 saturated steam at 100ºC was used during the first 4 hours of drying to prevent the wood surface from drying too quickly which would minimize the moisture gradient between the center and wood surface, (2 superheated steam at 105ºC and 110ºC was used in alternating cycle with hot air (80ºC during the main drying stages to rapidly remove the free water and majority of the bound water inside the wood, and (3 hot air was used continuously during the final stages of drying to reduce the relative humidity inside the chamber making it possible for the removal of the residual bound water. This process successfully reduced the drying time to less than 2 days without causing any defects which compared

  3. Silk cocoon drying in forced convection type solar dryer

    International Nuclear Information System (INIS)

    Singh, Panna Lal

    2011-01-01

    The thin layer silk cocoon drying was studied in a forced convection type solar dryer. The drying chamber was provided with several trays on which the cocoons loaded in thin layer. The hot air generated in the solar air heater was forced into drying chamber to avoid the direct exposure of sunlight and UV radiation on cocoons. The drying air temperature varied from 50 to 75 o C. The cocoon was dried from the initial moisture content of about 60-12% (wb). The drying data was fitted to thin layer drying models. Drying behaviour of the silk cocoon was best fitted with the Wang and Singh drying model. Good agreement was obtained between predicted and experimental values. Quality of the cocoons dried in the solar dryer was at par with the cocoons dried in the conventional electrical oven dryer in term of the silk yield and strength of the silk. Saving of electrical energy was about 0.75 kWh/kg cocoons dried. Economic analysis indicated that the NPV of the solar dryer was higher and more stable (against escalation rate of electricity) as compare to the same for electrical oven dryer. Due to simplicity in design and construction and significant saving of operational electrical energy, solar cocoon dryer seems to be a viable option.

  4. Effects of gamma radiation on freeze-dried wheat seeds

    International Nuclear Information System (INIS)

    Ajayi, N.O.; Larsson, B.

    1975-07-01

    The effect of radiation on freeze-dried wheat seeds are reported. The response of the various parts of the seedling to radiation was found to differ from one another. There was no significant modification of the effect of radiation on the shoot and root growth, while the growth of the coleoptile was slightly reduced in the frezze-dried seeds. The change in the shoot growth-absorbed dose relationship reported by others to occur at high doses for oven-dried as compared to air-dried barley seeds was not seen for the control and freeze-dried wheat seeds. The freeze-dried seeds are believed to show only the effect of radiation without any modification due to drying as such. The dose-effect relationships may be splited into functions characterised by different radiosensitivity. The high sensitivty effect is mainly taking place within the first 40 krad of energy absorption, and the low sensitivity is dominating at higher doses. (author)

  5. Corn Drying with Zeolite in The Fluidized Bed Dryer under Medium Temperature

    Directory of Open Access Journals (Sweden)

    Mohamad Djaeni

    2013-08-01

    Full Text Available Drying is an important step to find high quality of corn. Based on Standard of National Industry, populer as SNI, number 01-3920-1995, the corn was well stored at moisture content 14% or below (wet basis. However, conventional corn drying dealed with in-efficient energy process and corn quality degradation. This research evaluated the performance of corn drying assisted by zeolite as moisture adsorbent. In this process, the zeolite and corn were placed in the dryer fluidized by warm air as drying medium under 40 - 50oC. The air evaporated water product from corn, and at same time the zeolite adsorbed moisture in air. So, the relative humidity of air in dryer can be kept low in which enhanced the driving force for drying. Beside that, the moisture adsoprtion by zeolite was exothermic process that can supply the energy for drying or keep the dryer temperature. Thus, the drying rate can be faster. This work foccussed to observe the effect of drying temperature, air velocity, and corn to zeolite ratio on drying time as well as corn quality. As indicators, the drying rate was estimated and the proxymates content such as protein, fat, and carbohydrate content were analyzed. The results showed that compared with conventional fluidised bed dryer, corn drying with zeolite, can speed up drying time as well as improving the constant of drying rate. In addition, the corn proximate nutrition content can be well retained. At operating temperature 40oC, air velocity 9 m.s-1, and zeolite to corn ratio 1:2, the drying time can be 60 minutes shorter compared to that without zeolite.

  6. Feasibility analysis of heat pump dryer to dry hawthorn cake

    International Nuclear Information System (INIS)

    Wang, D.C.; Zhang, G.; Han, Y.P.; Zhang, J.P.; Tian, X.L.

    2011-01-01

    Highlights: → A heat pump dryer (HPD) is effectively proposed to dry hawthorn cake-likely materials. → Low drying temperature and high COP of heat pump are obtained in drying beginning. → HPD is more effective, economic than a traditional hot air dryer. → Feasibility of the HPD is also validated by the operation economy estimation. - Abstract: A heat pump dryer (HPD) would be an economic, environmentally friendly, hygienic drying machine used to dry some food, such as hawthorn cakes. Based on the production process of the hawthorn cake, a HPD is proposed and its basic principle is introduced. The experimental drying curves of the hawthorn cake using the heat pump drying method and the traditional hot air drying method are compared and analyzed. The drying process of hawthorn cakes is similar to that of the other drying materials. The higher drying temperature causes a faster drying process. But in the initial stage of the heat pump drying process, the water content of the hawthorn cake is not sensitive to the drying temperature, so a lower drying air temperature can be available in order to get a higher coefficient of performance (COP) of the heat pump (HP). The experimental results and the economic analysis indicate that the HPD is feasibly used to dry hawthorn cakes.

  7. Feasibility analysis of heat pump dryer to dry hawthorn cake

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C., E-mail: wdechang@163.com [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China); Zhang, G.; Han, Y.P.; Zhang, J.P.; Tian, X.L. [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China)

    2011-08-15

    Highlights: {yields} A heat pump dryer (HPD) is effectively proposed to dry hawthorn cake-likely materials. {yields} Low drying temperature and high COP of heat pump are obtained in drying beginning. {yields} HPD is more effective, economic than a traditional hot air dryer. {yields} Feasibility of the HPD is also validated by the operation economy estimation. - Abstract: A heat pump dryer (HPD) would be an economic, environmentally friendly, hygienic drying machine used to dry some food, such as hawthorn cakes. Based on the production process of the hawthorn cake, a HPD is proposed and its basic principle is introduced. The experimental drying curves of the hawthorn cake using the heat pump drying method and the traditional hot air drying method are compared and analyzed. The drying process of hawthorn cakes is similar to that of the other drying materials. The higher drying temperature causes a faster drying process. But in the initial stage of the heat pump drying process, the water content of the hawthorn cake is not sensitive to the drying temperature, so a lower drying air temperature can be available in order to get a higher coefficient of performance (COP) of the heat pump (HP). The experimental results and the economic analysis indicate that the HPD is feasibly used to dry hawthorn cakes.

  8. Radiation data input for the design of dry or semi-dry U tailings disposal

    International Nuclear Information System (INIS)

    Kvasnicka, J.

    1986-01-01

    Before discussion of design criteria for the handling of dry or semi-dry tailings, it is necessary to obtain an insight into the radiation levels associated with the tailings particles and to study the basic physical properties of dry tailings. This article presents the experimental results of assessing Ra and specific alpha-activity distribution with respect to particle size of the Ranger (RUM) and Nabarlek (QML) uranium mines dry tailings samples. The variation of Rn emanation coefficient versus particle size of dry tailings has also been measured. The nuclear-track detection technique, gamma spectrometry and alpha counting were used for the above measurements. Surface Rn flux from the hypothetical Nabarlek semi-infinite dry tailings pile is 32 Bq m -2 s -1 and the Rn flux for Ranger is 10 Bq m -2 s -1 . The theoretical exposure rates for 1 m above these hypothetical tailings piles are 0.95 microC kg -1 h -1 and 0.28 microC kg -1 h -1 , respectively. The derived air alpha-contamination limits (DAAC) for the tailings dust were calculated to be 1.2 Bq m -3 for workers and 0.034 Bq m -3 for a member of the public. The limit for workers corresponds to the air tailings dust concentration of 0.79 mg m -3 for QML tailings and 2.2 mg m -3 for RUM tailings. The DAAC limit for the public corresponds to the air tailings dust concentration of 0.022 mg m -3 for QML tailings and 0.064 mg m -3 for RUM tailings

  9. Cool and dry weather enhances the effects of air pollution on emergency IHD hospital admissions.

    Science.gov (United States)

    Qiu, Hong; Yu, Ignatius Tak-Sun; Wang, Xiaorong; Tian, Linwei; Tse, Lap Ah; Wong, Tze Wai

    2013-09-20

    Associations between ambient pollution and cardiovascular morbidity including ischemic heart disease (IHD) have been confirmed. Weather factors such as temperature, season and relative humidity (RH) may modify the effects of pollution. We conducted this study to examine the effects of air pollution on emergency IHD hospital admissions varied across seasons and RH levels, and to explore the possible joint modification of weather factors on pollution effects. Daily time series of air pollution concentrations, mean temperature and RH were collected from IHD hospital admissions from 1998 to 2007 in Hong Kong. We used generalized additive Poisson models with interaction term to estimate the pollution effects varied across seasons and RH levels, after adjusting for time trends, weather conditions, and influenza outbreaks. An increase in the detrimental effects of air pollution in cool season and on low humidity days was observed. In the cool and dry season, a 10 μg/m(3) increment of lag03 exposure was associated with an increase of emergency IHD admissions by 1.82% (95% CI: 1.24-2.40%), 3.89% (95% CI: 3.08-4.70%), and 2.19% (95% CI: 1.33-3.06%) for particles with an aerodynamic diameter less than 10 μm (PM10), nitrogen dioxide (NO2), and ozone (O3), respectively. The effects of pollutants decreased greatly and lost statistical significance in the warm and humid season. We found season and RH jointly modified the associations between ambient pollution and IHD admissions, resulting in increased IHD admissions in the cool and dry season and reduced admissions in the warm and humid season. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. The development of air cooled condensation systems

    International Nuclear Information System (INIS)

    Bodas, J.

    1990-01-01

    EGI - Contracting/Engineering has had experience with the development of air cooled condensing systems since the 1950's. There are two accepted types of dry cooling systems,the direct and the indirect ones. Due to the fact that the indirect system has several advantages over the direct one, EGI's purpose was to develop an economic, reliable and efficient type of indirect cooling system, both for industrial and power station applications. Apart from system development, the main components of dry cooling plant have been developed as well. These are: the water-to-air heat exchangers; the direct contact (DC, or jet) condenser; the cooling water circulating pumps and recovery turbines; and the peak cooling/preheating units. As a result of this broad development work which was connected with intensive market activity, EGI has supplied about 50% of the dry cooling plants employed for large power stations all over the world. This means that today the cumulated capacity of power units using Heller type dry cooling systems supplied and contracted by EGI is over 6000 MW

  11. Drying Rate and Product Quality Evaluation of Roselle (Hibiscus sabdariffa L. Calyces Extract Dried with Foaming Agent under Different Temperatures

    Directory of Open Access Journals (Sweden)

    Mohamad Djaeni

    2018-01-01

    Full Text Available The utilisation of roselle (Hibiscus sabdariffa L. calyx as a source of anthocyanins has been explored through intensive investigations. Due to its perishable property, the transformation of roselle calyces into dried extract without reducing their quality is highly challenging. The aim of this work was to study the effect of air temperatures and relative humidity on the kinetics and product quality during drying of roselle extract foamed with ovalbumin and glycerol monostearate (GMS. The results showed that foam mat drying increased the drying rate significantly and retained the antioxidant activity and colour of roselle calyces extract. Shorter drying time was achieved when higher air temperature and/or lower relative humidity was used. Foam mat drying produced dried brilliant red roselle calyces extract with better antioxidant activity and colour qualities when compared with nonfoam mat drying. The results showed the potential for retaining the roselle calyces extract quality under suggested drying conditions.

  12. Plant dried powders as biocatalysts: Hydrolysis of 1- phenylpropanol ...

    African Journals Online (AJOL)

    The hydrolytic ability of plant dried powders, lyophilized or acetone dried, was tested on the hydrolysis of racemic 1-phenylpropanol acetate. Most of the twenty powders tested showed hydrolytic activity, however the best values of conversion and enantioselectivity were reached with the lyophilized powder of nopal (27% ...

  13. Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings

    International Nuclear Information System (INIS)

    Long, Linshuang; Ye, Hong; Gao, Yanfeng; Zou, Ruqiang

    2014-01-01

    Highlights: • VO 2 and PCM were combined in passive building application for the first time. • Synergetic performance of them is demonstrated in a full size room. • Synergetic application has a better performance than the solo ones. • The materials interact with each other in synergetic application. • ESI can be used to evaluate the performance of the synergetic application. - Abstract: One of the key methods to improve the energy saving performance of a building is to apply advanced materials or components to the building envelope. However, the two parts of a building’s envelope, the transparent one and the non-transparent one, are usually investigated individually by existing literature. In this study, vanadium dioxide (VO 2 ) glazing, an advanced energy-efficient element applied to the transparent parts of the building envelope, and phase change material (PCM), a typical thermal storage material used to improve the non-transparent parts of the building envelope, were adopted simultaneously for the first time. The synergetic performance of VO 2 glazing and PCM, demonstrated in a full-scale, lightweight, passive room, resulted in a significant improvement in the thermal comfort degree. The Energy Saving Index (ESI) is a simple and effective indicator that can be used to evaluate the passive application performance of a single energy-efficient material or component on a common standpoint. In this work, the index was broadened to evaluate the performance of more than one material, showing that ESI is feasible and favorable to analyze the coefficient application of several building materials and/or components. Using the ESI, the performance of the synergetic application was also compared with those of the sole materials, indicating that the synergetic application has a better performance during the cooling period. Furthermore the synergetic application involves an interplay rather than a simple combination of the energy-efficient materials. The

  14. Drying Spirulina with Foam Mat Drying at Medium Temperature

    Directory of Open Access Journals (Sweden)

    Aji Prasetyaningrum

    2012-10-01

    Full Text Available Spirulina is a single cell blue green microalgae (Cyanobacteria containing many Phytonutrients (Beta-carotene, Chlorophyl, Xanthophyl, Phyocianin using as anti-carcinogen in food. Producing dry spirulina by quick drying process at medium temperature is very important to retain the Phytonutrient quality. Currently, the work is still challenging due to the gel formation that block the water diffusion from inside to the surface.  This research studies the performance of foam-mat drying on production of dry spirulina. In this method the spirulina was mixed with foaming agent (glair/egg albumen, popular as white egg at 2.5% by weight at air velocity 2.2 m/sec. Here, the effect of spirulina thickness and operational temperature on drying time and quality (Beta-carotene and color were observed. The drying time was estimated based on the measurement of water content in spirulina versus time. Result showed that the thicker spirulina, the longer drying time. Conversely, the higher operational temperature, faster drying time. At thickness ranging 1-3 mm and operational temperature below 70oC, the quality of spirulina can fit the market requirement

  15. Porcelain tiles by the dry route

    Directory of Open Access Journals (Sweden)

    Boschi, A. O.

    2010-10-01

    Full Text Available In Brazil, the second largest tile producer of the world, at present, 70% of the tiles are produced by the dry route. One of the main reasons that lead to this development is the fact that the dry route uses approximately 30% less thermal energy them the traditional wet route. The increasing world concern with the environment and the recognition of the central role played by the water also has pointed towards privileging dry processes. In this context the objective of the present work is to study the feasibility of producing high quality porcelain tiles by the dry route. A brief comparison of the dry and wet route, in standard conditions industrially used today to produce tiles that are not porcelain tiles, shows that there are two major differences: the particle sizes obtained by the wet route are usually considerably finer and the capability of mixing the different minerals, the intimacy of the mixture, is also usually better in the wet route. The present work studied the relative importance of these differences and looked for raw materials and operational conditions that would result in better performance and glazed porcelain tiles of good quality.

    En Brasil, en este momento segundo productor mundial, el 70% de los pavimentos cerámicos se obtiene por vía seca. Una de las razones fundamentales se debe a que esta vía supone un consumo energético inferior, en un 30%, a la via húmeda tradicional. La creciente preocupación mundial sobre los problemas medioambientales y el reconocimiento del papel central que juega el agua en este proceso han favorecido el desarrollo de la vía seca. En este contexto, el objetivo del presente trabajo es estudiar la viabilidad de la producción de pavimentos porcelánicos de alta calidad por vía seca. Una breve comparación entre ambas vías, en las condiciones standard de producción vigentes para producciones que no son de porcelánico, indican que existen dos diferencias substanciales; el tamaño de

  16. Method of aeration disinfecting and drying grain in bulk and pretreating seeds and a transverse blow silo grain dryer therefor

    Science.gov (United States)

    Danchenko, Vitaliy G [Dnipropetrovsk, UA; Noyes, Ronald T [Stillwater, OK; Potapovych, Larysa P [Dnipropetrovsk, UA

    2012-02-28

    Aeration drying and disinfecting grain crops in bulk and pretreating seeds includes passing through a bulk of grain crops and seeds disinfecting and drying agents including an ozone and air mixture and surrounding air, subdividing the disinfecting and drying agents into a plurality of streams spaced from one another in a vertical direction, and passing the streams at different heights through levels located at corresponding heights of the bulk of grain crops and seeds transversely in a substantially horizontal direction.

  17. Air classifier technology (ACT) in dry powder inhalation. Part 1 : Introduction of a novel force distribution concept (FDC) explaining the performance of a basic air classifier on adhesive mixtures

    NARCIS (Netherlands)

    de Boer, A H; Hagedoorn, P; Gjaltema, D; Goede, J; Frijlink, H W

    2003-01-01

    Air classifier technology (ACT) is introduced as part of formulation integrated dry powder inhaler development (FIDPI) to optimise the de-agglomeration of inhalation powders. Carrier retention and de-agglomeration results obtained with a basic classifier concept are discussed. The theoretical

  18. Development of Solar Drying Model for Selected Cambodian Fish Species

    Science.gov (United States)

    Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan

    2014-01-01

    A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R 2), chi-square (χ 2) test, and root-mean-square error (RMSE), the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing. PMID:25250381

  19. Spray drying of bead resins: feasibility tests

    International Nuclear Information System (INIS)

    Gay, R.L.; Grantham, L.F.; Jones, L.J.

    1984-01-01

    Rockwell International has developed a volume reduction system for low-level reactor wastes based on drying the wastes in a heated-air spray dryer. The drying of slurries of sodium sulfate, boric acid, and powdered ion exchange resins was demonstrated in previous tests. The drying of bead ion exchange resins can be especially difficult due to the relatively large size of bead resins (about 500 to 800 microns) and their natural affinity for water. This water becomes part of the pore structure of the resins and normally comprises 50 t 60 wt % of the resin weight. A 76-cm-diameter spray dryer was used for feasibility tests of spray drying of cation and anion bead resins. These resins were fed to the dryer in the as-received form (similar to dewatered resins) and as slurries. A dry, free-flowing product was produced in all the tests. The volume of the spray-dried product was one-half to one-third the volume of the as-received material. An economic analysis was made of the potential cost savings that can be achieved using the Rockwel spray dryer system. In-plant costs, transportation costs, and burial costs of spray-dried resins were compared to similar costs for disposal of dewatered resins. A typical utility producing 170 m 3 (6,000 ft 3 ) per year of dewatered resins can save $600,000 to $700,000 per year using this volume reduction system

  20. MODELLING OF THIN LAYER DRYING KINETICS OF COCOA BEANS DURING ARTIFICIAL AND NATURAL DRYING

    Directory of Open Access Journals (Sweden)

    C.L. HII

    2008-04-01

    Full Text Available Drying experiments were conducted using air-ventilated oven and sun dryer to simulate the artificial and natural drying processes of cocoa beans. The drying data were fitted with several published thin layer drying models. A new model was introduced which is a combination of the Page and two-term drying model. Selection of the best model was investigated by comparing the determination of coefficient (R2, reduced chi-square (2 and root mean square error (RMSE between the experimental and predicted values. The results showed that the new model was found best described the artificial and natural drying kinetics of cocoa under the conditions tested.

  1. Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products.

    Science.gov (United States)

    Jung, Jooyeoun; Cavender, George; Zhao, Yanyun

    2015-09-01

    This study aimed to evaluate impingement drying (ID) as a rapid drying method to dry wet apple pomace (WAP) and to investigate the fortification of dried apple pomace flour (APF) or WAP in bakery and meat products. ID at ~110 °C reduced the moisture content of apple pomace from 80 % (wet basis) to 4.5 % within 3 h, compared with 24 h to 2.2 % using 40 °C forced-air drying and ~60 h to 2.3 % using freeze drying. Furthermore, ID enhanced the extractable phenolic compounds, allowing for a 58 % increase in total phenolic content (TPC) compared with wet pomace, a 110 % and 83 % higher than TPC in forced-air dried and freeze dried samples, respectively. The 15-20 % APF-fortified cookies were found to be ~44-59 % softer, ~30 % more chewy, and ~14 % moister than those of the control. WAP-fortified meat products had significantly higher dietary fiber content (0.7-1.8 % vs. 0.1-0.2 % in control) and radical scavenging activity than that of the control. These results suggest that impingement drying is a fast and effective method for preparing dried APF with highly retained bioactive compounds, and apple pomace fortified products maintained or even had improved quality.

  2. Neural network modeling of drying of rice in BAU-STR dryer

    Science.gov (United States)

    Alam, Md. Ashraful; Saha, Chayan Kumer; Alam, Md. Monjurul; Ashraf, Md. Ali; Bala, Bilash Kanti; Harvey, Jagger

    2018-05-01

    The experimental performance and artificial neural network modeling of rice drying in BAU-STR dryer is presented in this paper. The dryer consists of a biomass stove as a heat source, a perforated inner bin and a perforated outer bin with annular space for grains, and a blower (1 hp) to supply heated air. The dryer capacity was 500 kg of freshly harvested rice. Twenty experimental runs were conducted to investigate the experimental performance of the dryer for drying of rice. An independent multilayer neural network approach was used to predict the performance of the BAU-STR dryer for drying of rice. Ten sets of experimental data were used for training using back propagation algorithm and another ten sets of data were used for testing the artificial neural network model. The prediction of the performance of the dryer was found to be excellent after it was adequately trained. The statistical analysis showed that the errors (MSE and RMSE) were within and acceptable range of ±5% with a coefficient of determination (R2) of 99%. The model can be used to predict the potential of the dryer for different locations, and can also be used in a predictive optimal control algorithm.

  3. Spray Drying of Mosambi Juice in Lab

    Science.gov (United States)

    Singh, S. V.; Verma, A.

    2014-01-01

    The studies on spray drying of mosambi juice were carried out with Laboratory spray dryer set-up (LSD-48 MINI SPRAY DRYER-JISL). Inlet and outlet air temperature and maltodextrin (drying agent) concentration was taken as variable parameters. Experiments were conducted by using 110 °C to 140 °C inlet air temperature, 60 °C to 70 °C outlet air temperature and 5-7 % maltodextrin concentration. The free flow powder of mosambi juice was obtained with 7 % maltodextrin at 140 °C inlet air temperature and 60 °C outlet air temperature. Fresh and reconstituted juices were evaluated for vitamin C, titrable acidity and sensory characteristics. The reconstituted juice was found slightly acceptable by taste panel.

  4. [Research about effect of spray drying conditions on hygroscopicity of spray dry powder of gubi compound's water extract and its mechanism].

    Science.gov (United States)

    Zong, Jie; Shao, Qi; Zhang, Hong-Qing; Pan, Yong-Lan; Zhu, Hua-Xu; Guo, Li-Wei

    2014-02-01

    To investigate moisture content and hygroscopicity of spray dry powder of Gubi compound's water extract obtained at different spray drying conditions and laying a foundation for spray drying process of Chinese herbal compound preparation. In the paper, on the basis of single-factor experiments, the author choose inlet temperature, liquid density, feed rate, air flow rate as investigated factors. The experimental absorption rate-time curve and scanning electron microscopy results showed that under different spray drying conditions the spray-dried powders have different morphology and different adsorption process. At different spray-dried conditions, the morphology and water content of the powder is different, these differences lead to differences in the adsorption process, at the appropriate inlet temperature and feed rate with a higher sample density and lower air flow rate, in the experimental system the optimum conditions is inlet temperature of 150 degrees C, feed density of 1.05 g x mL(-1), feed rate of 20 mL x min(-1) air flow rate of 30 m3 x h(-1).

  5. Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries

    Science.gov (United States)

    Fresh blueberries were pretreated with pulsed electric fields (PEF) at 2 kV/cm and then dried at 45, 60 and 75 degrees C by conventional hot air or vacuum drying. Drying characteristics and changes in contents of moisture, anthocyanin, total phenolics, vitamin C, and antioxidant activity in the blu...

  6. Effect of drying conditions on drying kinetics and quality of aromatic Pandanus amaryllifolius leaves

    OpenAIRE

    Rayaguru, Kalpana; Routray, Winny

    2010-01-01

    Pandanus amaryllifolius is a plant with aromatic leaves, which impart the characteristic flavour of aromatic rice. The quality of aromatic Pandanus leaves dried at low temperature (35 °C) and low RH (27%) in a heat pump dryer was evaluated and compared with those obtained from hot air drying at 45 °C. Thin-layer drying kinetics has been studied for both the conditions. To determine the kinetic parameters, the drying data were fitted to various semi-theoretical models. The goodness of fit was ...

  7. Viability of G4 after Spray-Drying and Freeze-Drying

    Directory of Open Access Journals (Sweden)

    Stephenie Wong

    2010-01-01

    Full Text Available Viability of Bifidobacterium pseudocatenulatum G4 following spray-drying and freeze-drying in skim milk was evaluated. After spray-drying, the strain experienced over 99% loss in viability regardless of the air outlet temperature (75 and 85 °C and the heat-adaptation temperature (45 and 65 °C, 30 min. The use of heat-adaptation treatment to improve the thermotolerance of this strain was ineffective. On the other hand, the strain showed a superior survival at 71.65%–82.07% after freeze-drying. Viable populations of 9.319–9.487 log 10 cfu/g were obtained when different combinations of skim milk and sugar were used as cryoprotectant. However, the addition of sugars did not result in increased survival during the freeze-drying process. Hence, 10% (w/v skim milk alone is recommended as a suitable protectant and drying medium for this strain. The residual moisture content obtained was 4.41% ± 0.44%.

  8. Postharvest monitoring of organic potato (cv. Anuschka) during hot-air drying using visible-NIR hyperspectral imaging.

    Science.gov (United States)

    Moscetti, Roberto; Sturm, Barbara; Crichton, Stuart Oj; Amjad, Waseem; Massantini, Riccardo

    2018-05-01

    The potential of hyperspectral imaging (500-1010 nm) was evaluated for monitoring of the quality of potato slices (var. Anuschka) of 5, 7 and 9 mm thickness subjected to air drying at 50 °C. The study investigated three different feature selection methods for the prediction of dry basis moisture content and colour of potato slices using partial least squares regression (PLS). The feature selection strategies tested include interval PLS regression (iPLS), and differences and ratios between raw reflectance values for each possible pair of wavelengths (R[λ 1 ]-R[λ 2 ] and R[λ 1 ]:R[λ 2 ], respectively). Moreover, the combination of spectral and spatial domains was tested. Excellent results were obtained using the iPLS algorithm. However, features from both datasets of raw reflectance differences and ratios represent suitable alternatives for development of low-complex prediction models. Finally, the dry basis moisture content was high accurately predicted by combining spectral data (i.e. R[511 nm]-R[994 nm]) and spatial domain (i.e. relative area shrinkage of slice). Modelling the data acquired during drying through hyperspectral imaging can provide useful information concerning the chemical and physicochemical changes of the product. With all this information, the proposed approach lays the foundations for a more efficient smart dryer that can be designed and its process optimized for drying of potato slices. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. The Influence of Different Air-Drying Conditions on Bioactive Compounds and Antioxidant Activity of Berries.

    Science.gov (United States)

    Bustos, Mariela C; Rocha-Parra, Diego; Sampedro, Ines; de Pascual-Teresa, Sonia; León, Alberto E

    2018-03-21

    The aim of the present research was to study the effect of convective drying on color, bioactive compounds, and antioxidant activity of berry fruits and to chemically characterize the polyphenolic composition of raspberry, boysenberry, redcurrants, and blackcurrants fruit. Drying berries at 65 °C provoked the best conservations of color, particularly for boysenberry and blackcurrant. Drying at 65 °C was also the condition that showed higher level of polyphenols, while drying at 50 or 130 °C showed above % degradation of them due to the long time or high temperature drying. Radical scavenging activity was the predominant antioxidant mechanism in all samples, with 65 °C dried berries being the most active ones possibly because of polyphenol depolymerization. The anthocyanin profile showed that delphinidin and cyanidin derivatives were the most abundant anthocyanidins with different predominance between berry genera. Degradation of anthocyanins was increased with drying temperature been Cy 3-glucoside and Cy 3-rutinoside the most abundant.

  10. Two dimensional finite element thermal model of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Naher, S.

    2016-10-01

    A two dimensional (2D) transient thermal model with line-heat-source was developed by Finite Element Method (FEM) for laser surface glazing of H13 tool steel using commercial software-ANSYS 15. The geometry of the model was taken as a transverse circular cross-section of cylindrical specimen. Two different power levels (300W, 200W) were used with 0.2mm width of laser beam and 0.15ms exposure time. Temperature distribution, heating and cooling rates, and the dimensions of modified surface were analysed. The maximum temperatures achieved were 2532K (2259°C) and 1592K (1319°C) for laser power 300W and 200W respectively. The maximum cooling rates were 4.2×107 K/s for 300W and 2×107 K/s for 200W. Depths of modified zone increased with increasing laser power. From this analysis, it can be predicted that for 0.2mm beam width and 0.15ms time exposer melting temperature of H13 tool steel is achieved within 200-300W power range of laser beam in laser surface glazing.

  11. Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficus indica)

    International Nuclear Information System (INIS)

    Lahsasni, Siham; Kouhila, Mohammed; Mahrouz, Mostafa; Idlimam, Ali; Jamali, Abdelkrim

    2004-01-01

    This paper presents the thin layer convective solar drying and mathematical modeling of prickly pear peel. For these purposes, an indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation fan and a drying cabinet is used for drying experiments. Moreover, the prickly pear peel is sufficiently dried in the ranges of 32 to 36 deg. C of ambient air temperature, 50 to 60 deg. C of drying air temperature, 23 to 34% of relative humidity, 0.0277 to 0.0833 m 3 /s of drying air flow rate and 200 to 950 W/m 2 of daily solar radiation. The experimental drying curves show only a falling drying rate period. The main factor in controlling the drying rate was found to be the drying air temperature. The drying rate equation is determined empirically from the characteristic drying curve. Also, the experimental drying curves obtained were fitted to a number of mathematical models. The Midilli-Kucuk drying model was found to satisfactorily describe the solar drying curves of prickly pear peel with a correlation coefficient (r) of 0.9998 and chi-square (χ 2 ) of 4.6572 10 -5

  12. Effects of hot air and freeze drying methods on antioxidant activity, colour and some nutritional characteristics of strawberry tree (Arbutus unedo L) fruit.

    Science.gov (United States)

    Orak, H H; Aktas, T; Yagar, H; İsbilir, S Selen; Ekinci, N; Sahin, F Hasturk

    2012-08-01

    Antioxidant activity, colour and some nutritional properties of hot air and freeze-dried strawberry tree (Arbutus unedo L.) fruits were investigated. Additionally, the effects of two pre-treatments, namely ethyl oleate and water blanching, were compared in terms of drying characteristics. For determination of antioxidant activities in ethanol extracts, two different analytical methods were used: 1,1-diphenyl-2-picrylhydrazyl scavenging activity and β-carotene bleaching activity. As a result, the ethyl oleate pre-treatment shortened the drying time by hot air method and gave a higher 1,1-diphenyl-2-picrylhydrazyl scavenging activity (82.16 ± 0.34%), total phenolic content (7.62 ± 1.09 µg GAE/g extract), ascorbic acid content (236.93 ± 20.14 mg/100 g), besides hydromethylfurfural was not observed. Freeze-dried fruits exhibited higher ascorbic acid content (368.63 ± 17.16 mg/100 g) than those fresh fruits (231.33 ± 19.51 mg/100 g) and nearly 1,1-diphenyl-2-picrylhydrazyl activity (93.52 ± 0.41 %) to fresh fruits (94.03 ± 1.18%). Colour characteristics, sugar content and mineral contents of fruits were significantly affected by pre-treatments and drying methods (p drying of strawberry tree fruits should bring a valuable and attractive foodstuff to food industry due to the rich nutritional components, antioxidant activity and colour. Another conclusion from this study is that the freeze-drying is the best drying method to keep the nutritional value, antioxidant activity and sensory properties of fruits.

  13. Simulation and Effectiveness Analysis on One versus One Beyond Visual Range Air Combat

    Directory of Open Access Journals (Sweden)

    Haoyu Liu

    2018-01-01

    Full Text Available A kind of one versus one beyond visual range (BVR air combat model has been established, which includes functional models of radar, missile and fighter and the process of several combat stages. Air combat effectiveness ratio (ACER is defined to analyse the result. The 2k factor design method is used to design combat test case and analyses the influence of three factors (fighter stealth character, missile range and flight height on ACER. Simulation result reveals that when RCS of one fighter is reduced from 0dBm2 to -10dBm2 which cannot remarkably affect the opposition fighter’s radar detection distance and missile launch distance, the RCS factor has small influence and the missile range factor has great influence. When RCS of one fighter is reduced from -10dBm2 to -20dBm2, the opposition fighter’s radar detection distance will be reduced and lead the result of its missile launch distance be less than its missile range. Compared with the former case, the effect of RCS factor increases and the effect of missile range factor decreases. However, the effect of height is not significant.

  14. Estimation of cauliflower mass transfer parameters during convective drying

    Science.gov (United States)

    Sahin, Medine; Doymaz, İbrahim

    2017-02-01

    The study was conducted to evaluate the effect of pre-treatments such as citric acid and hot water blanching and air temperature on drying and rehydration characteristics of cauliflower slices. Experiments were carried out at four different drying air temperatures of 50, 60, 70 and 80 °C with the air velocity of 2.0 m/s. It was observed that drying and rehydration characteristics of cauliflower slices were greatly influenced by air temperature and pre-treatment. Six commonly used mathematical models were evaluated to predict the drying kinetics of cauliflower slices. The Midilli et al. model described the drying behaviour of cauliflower slices at all temperatures better than other models. The values of effective moisture diffusivities ( D eff ) were determined using Fick's law of diffusion and were between 4.09 × 10-9 and 1.88 × 10-8 m2/s. Activation energy was estimated by an Arrhenius type equation and was 23.40, 29.09 and 26.39 kJ/mol for citric acid, blanch and control samples, respectively.

  15. A breath actuated dry powder inhaler

    NARCIS (Netherlands)

    de Boer, Anne; Frijlink, Henderik W.; Hagedoorn, Paul

    2015-01-01

    A breath actuated dry powder inhaler with a single air circulation chamber for de-agglomeration of entrained powdered medicament using the energy of the inspiratory air stream. The chamber has a substantially polygonal sidewall, a plurality of air supply channels entering the chamber substantially

  16. Preliminary comparison of three processes of AlN oxidation: dry, wet and mixed ones

    Directory of Open Access Journals (Sweden)

    Korbutowicz R.

    2016-03-01

    Full Text Available Three methods of AlN layers oxidation: dry, wet and mixed (wet with oxygen were compared. Some physical parameters of oxidized thin films of aluminum nitride (AlN layers grown on silicon Si(1 1 1 were investigated by means Energy-Dispersive X-ray Spectroscopy (EDS and Spectroscopic Ellipsometry (SE. Three series of the thermal oxidations processes were carried out at 1012 °C in pure nitrogen as carrying gas and various gas ambients: (a dry oxidation with oxygen, (b wet oxidation with water steam and (c mixed atmosphere with various process times. All the research methods have shown that along with the rising of the oxidation time, AlN layer across the aluminum oxide nitride transforms to aluminum oxide. The mixed oxidation was a faster method than the dry or wet ones.

  17. Modeling of thin layer drying of tarragon (Artemisia dracunculus L.)

    NARCIS (Netherlands)

    ArabHosseini, A.; Huisman, W.; Boxtel, van A.J.B.; Mueller, J.

    2009-01-01

    The drying behavior of tarragon leaves as well as chopped plants were evaluated at air temperatures ranging from 40 to 90 °C, at various air relative humidities and a constant air velocity of 0.6 m/s. The experimental data was fitted to a number of thin layer drying equations. The equations were

  18. energetic performance analysis of drying agricultural products

    African Journals Online (AJOL)

    user

    ... a solar box dryer aided by a tracking device, and open air drying over an effective total drying time of 6 hours each day, for 5 days. ... cost in the use of modern dryers. Drying can be ..... speed, cloud cover and humidity respectively. 4.2 Solar ...

  19. Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficus indica)

    Energy Technology Data Exchange (ETDEWEB)

    Lahsasni, S.; Mahrouz, M. [Unite de Chimie Agroalimentaire (LCOA), Faculte des Sciences Semlalia, Marrakech (Morocco); Kouhila, M.; Idlimam, A.; Jamali, A. [Ecole Normale Superieure, Marrakech (Morocco). Lab. d' Energie Solaire et Plantes Aromatiques et Medicinales

    2004-02-01

    This paper presents the thin layer convective solar drying and mathematical modeling of prickly pear peel. For these purposes, an indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation fan and a drying cabinet is used for drying experiments. Moreover, the prickly pear peel is sufficiently dried in the ranges of 32 to 36 {sup o} C of ambient air temperature, 50 to 60 {sup o}C of drying air temperature, 23 to 34% of relative humidity, 0.0277 to 0.0833 m{sup 3}/s of drying air flow rate and 200 to 950 W/m{sup 2} of daily solar radiation. The experimental drying curves show only a falling drying rate period. The main factor in controlling the drying rate was found to be the drying air temperature. The drying rate equation is determined empirically from the characteristic drying curve. Also, the experimental drying curves obtained were fitted to a number of mathematical models. The Midilli-Kucuk drying model was found to satisfactorily describe the solar drying curves of prickly pear peel with a correlation coefficient (r) of 0.9998 and chi-square ({chi}{sup 2}) of 4.6572 10{sup -5}. (Author)

  20. Study on the glaze ice accretion of wind turbine with various chord lengths

    Science.gov (United States)

    Liang, Jian; Liu, Maolian; Wang, Ruiqi; Wang, Yuhang

    2018-02-01

    Wind turbine icing often occurs in winter, which changes the aerodynamic characteristics of the blades and reduces the work efficiency of the wind turbine. In this paper, the glaze ice model is established for horizontal-axis wind turbine in 3-D. The model contains the grid generation, two-phase simulation, heat and mass transfer. Results show that smaller wind turbine suffers from more serious icing problem, which reflects on a larger ice thickness. Both the collision efficiency and heat transfer coefficient increase under smaller size condition.

  1. Novel hybridized drying methods for processing of apple fruit: Energy conservation approach

    International Nuclear Information System (INIS)

    Hazervazifeh, Amin; Nikbakht, Ali M.; Moghaddam, Parviz A.

    2016-01-01

    Strategic outlook of apple cultivation and its significant post-processing challenges have been the leading factors for energy and time saving research approaches in apple processing. In this research, apple slices were subjected to hot air flow, microwave radiation and combined microwave-hot air flow drying. Drying time, energy consumption and thermal efficiency at different microwave power levels (500 W, 1000 W, 1500 W and 2000 W), hot air temperatures (40 °C, 50 °C, 60 °C and 70 °C) and inlet air velocities (0.5 ms"−"1, 1 ms"−"1, 1.5 ms"−"1 and 2 ms"−"1) were studied and compared. The minimum time of processing was 17 min when integrated hot air flow and microwave radiation was applied with 2000 W power at the temperature of 70 °C and air velocity of 2 ms"−"1. Furthermore, the minimum value of total energy consumption during entire process of apple slices drying was 2684 kJ which belonged to microwave drying with 2000 W power. - Highlights: • Microwave radiation is implemented to reduce the energy demand for drying. • Simultaneous impact of microwave and hot air on energy and time consumption was analyzed. • Minimum drying time occurs with combined utilization of microwave and hot air. • Thermal efficiency was desirable in low air velocities and high temperatures. • Thermal efficiency of microwave radiation increased by 200% compared to single hot air method.

  2. Development of Solar Drying Model for Selected Cambodian Fish Species

    Directory of Open Access Journals (Sweden)

    Anna Hubackova

    2014-01-01

    Full Text Available A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R2, chi-square (χ2 test, and root-mean-square error (RMSE, the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing.

  3. Drying characteristics and nitrogen loss of biogas digestate during drying process

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, C.; Muller, J. [Hohenheim Univ., Stuttgart (Germany). Inst. of Agricultural Engineering, Tropical and Subtropical Group

    2010-07-01

    The cost of transporting biogas digestate can be decreased by reducing its water content. However, the digestate emits volatile compounds during drying. This study investigated the drying behaviour and the change of digestate composition. Drying took place in a hybrid solar/waste-heat dryer that used solar energy as well as waste heat from a combined heat and power unit (CHP) and the exhaust air of a microturbine. The experiment involved the use of 60 t of liquid digestate. Climatic conditions were measured inside and outside the drying hall. Dry matter (DM) and organic dry matter (ODM) were also measured on a daily basis. In addition, the energy consumption of waste and solar heat were recorded and related to the quantity of dried feedstock. The total nitrogen, ammonium, phosphate, potassium oxide, magnesium oxide and calcium oxide in the digestate were subjected to chemical analysis before and after the drying process. Losses of nitrogen were calculated. Specific energy consumption depended on the climatic condition. Most of the energy consumption was covered by the waste heat of the CHP. A considerable amount of nitrogen was lost during the drying process.

  4. Practice for dispersing pigments and other materials into water-based suspensions with a high intensity mixer

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 In preparing ceramic glazes and slurries for use, it is often necessary to add pigments to develop a desired fired color, to incorporate viscosity control agents for developing, or providing to develop the desired thickness of the glaze on the ware, to add materials which stabilize the suspension, control bacterial growth, and develop the desired hardness of the glaze on the ware to allow moving and handling before firing. While it is convenient to add these materials to the glaze or slurry in the dry form, it is often possible to use slurries where these materials are dispersed in a slurry and the slurry then added to the liquid glaze. Regardless of the state of the additions (dry or slurry), the dispersion can be done efficiently and effectively by the use of a high intensity mixer (sometimes referred to as a dissolver) and the procedure used is described here. 1.2 The values stated in SI units are to be regarded as the standard. This standard does not purport to address all of the safety concerns, if...

  5. THE PRODUCTION OF BREADFRUIT FLOUR: EFFECT OF HEATER TEMPERATURE TO THE DRYING RATE AND TIME OF THE BREADFRUIT

    Directory of Open Access Journals (Sweden)

    Denni Kartika Sari

    2017-06-01

    Full Text Available The composition of mineral and vitamin from breadfruit is particularly known of having benefits compared to rice which is a main source of carbohydrate consumed by societies. The process of drying is one of the factors that affects foodstuffs quality. The aim of this research was to provide an understanding of drying phenomena from data experiment and discover the influence of drying air temperature to breadfruit drying time and rates. This research was conducted in several stages which are material preparation (breadfruit by through downsizing process, then weigh the material (breadfruit once every 5 minutes on each drying air temperature variations (50 ºC, 60 oC, 70 oC, and 80 oC. The research were conducted using breadfruit with the best drying time which is obtained at 60 0C for 100 minutes. The lowest water content obtained was 0.4%, while the highest drying rate was 0.00144 Kg2/m2.s at 80 ºC of temperature.

  6. Mathematical model of one-man air revitalization system

    Science.gov (United States)

    1976-01-01

    A mathematical model was developed for simulating the steady state performance in electrochemical CO2 concentrators which utilize (NMe4)2 CO3 (aq.) electrolyte. This electrolyte, which accommodates a wide range of air relative humidity, is most suitable for one-man air revitalization systems. The model is based on the solution of coupled nonlinear ordinary differential equations derived from mass transport and rate equations for the processes which take place in the cell. The boundary conditions are obtained by solving the mass and energy transport equations. A shooting method is used to solve the differential equations.

  7. Modeling of solar transmission through multilayer glazing facade using shading blinds with arbitrary geometrical and surface optical properties

    International Nuclear Information System (INIS)

    Luo, Yongqiang; Zhang, Ling; Wu, Jing; Wang, Xiliang; Liu, Zhongbing; Wu, Zhenghong

    2017-01-01

    A system model that can accurately simulate the instantaneous solar transmittance through multilayer glazing façade (MGF) and shading device can provide a solid foundation for the thermal and daylighting performance calculation of MGF as well as indoor visual comfort evaluation. Traditional optical models for venetian blind and glazing façade meet with their limitations to analyze new prototype of shading blind like photovoltaic (PV) blind which has quite different surface optical properties compared with conventional venetian blind. The present study proposed a new system model for MGF using shading blind with arbitrary geometrical and optical features which is suitable for a wide range of applications. Three major calculation types for modeling of shading blinds cover all the possible situations in application. Guess Integer-Valued Function is adopted for delivering a general description on direct radiation transport. The direct-direct, direct-diffuse and diffuse-diffuse radiation transports are separately considered. A series of experiments were carried out to validate the model under various parameter settings and different weather conditions. Parametric study revealed some new findings in the evaluations of influence of ambient radiation situations, geometrical and optical features of blind space on both solar transmittance and solar absorption by blind layer. - Highlights: • Solar transport through glazing façades with PV blind with arbitrary geometry is simulated. • Ray-tracing and radiosity method are coupled in calculation. • Guess Integer-Valued Function is used in calculation of direct radiation transport. • Experiment and simulated data are compared for model validation. • Parametric study is conducted for evaluating the impact of different factors on the system.

  8. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index; Influencia das caracteristicas da superficie no indice de refletancia solar de telhas ceramicas esmaltadas

    Energy Technology Data Exchange (ETDEWEB)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M., E-mail: luciana.maccarini@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Blumenau, SC (Brazil)

    2016-07-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  9. Drying of Agricultural Products Using Long Wave Infrared Radiation(Part 2). Drying of Welsh Onion

    International Nuclear Information System (INIS)

    Itoh, K.; Han, C.S.

    1995-01-01

    The investigation was carried out to clarify the intermittent drying characteristics for welsh onion use of long-wave infrared radiation. When compared with two other methods: use of air and vacuum freezing, this method showed significantly high rate of drying. The experiments were carried out analyzing the influence of different lengths of the welsh onion, different rate of radiation and different temperature of the airflow. The obtained results were as follows: 1. The rate of drying increases as the length of welsh onion decrease and the rate of radiation increase. 2. The airflow, temperature does not influence to the rate of drying. 3. The increasing of the drying time considerably aggravate the quality the dried welsh onion

  10. Radiation preservation of dry fruits and nuts

    International Nuclear Information System (INIS)

    Wahid, M.; Sattar, A.; Jan, M.; Ahmad, A.; Khan, I.

    1988-01-01

    Dried fruits are considered a major source of income and foreign exchange in many countries. The spoilage of dried fruits and nuts by insect infestation, colour deterioration and chemical changes during storage are the serious problems especially under humid tropical conditions. The present work was undertaken to study the effect of irradiation in combination with different modified storage environments on insect infestation as well as chemical and sensory quality indices. The affect of gamma radiation dose of 1 KGy and storage environments such as air vacuum and carbon dioxide on insect infestation of dry fruits and nuts. In the case of un-irradiated samples, insect infestation progressed throughout the storage period especially in those kept under air. The vacuum storage was found better in checking infestation followed by CO/sub/2 and air. (orig./A.B.)

  11. Comparison of different drying methods on the physical properties, bioactive compounds and antioxidant activity of raspberry powders.

    Science.gov (United States)

    Si, Xu; Chen, Qinqin; Bi, Jinfeng; Wu, Xinye; Yi, Jianyong; Zhou, Linyan; Li, Zhaolu

    2016-04-01

    Dehydration has been considered as one of the traditional but most effective techniques for perishable fruits. Raspberry powders obtained after dehydration can be added as ingredients into food formulations such as bakery and dairy products. In this study, raspberry powders obtained by hot air drying (HAD), infrared radiation drying (IRD), hot air and explosion puffing drying (HA-EPD), infrared radiation and microwave vacuum drying (IR-MVD) and freeze drying (FD) were compared on physical properties, bioactive compounds and antioxidant activity. Drying techniques affected the physical properties, bioactive compounds and antioxidant activity of raspberry powders greatly. FD led to significantly higher (P drying methods. However, thermal drying techniques, especially combined drying methods, were superior to FD in final total polyphenol content, total flavonoid content and antioxidant activity. The combined drying methods, especially IR-MVD, showed the highest total polyphenol content (123.22 g GAE kg(-1) dw) and total flavonoid content (0.30 g CAE kg(-1) dw). Additionally, IR-MVD performed better in antioxidant activity retention. Overall, combined drying methods, especially IR-MVD, were found to result in better quality of raspberry powders among the thermal drying techniques. IR-MVD could be recommended for use in the drying industry because of its advantages in time saving and nutrient retention. © 2015 Society of Chemical Industry.

  12. Design and simulation of heat exchangers using Aspen HYSYS, and Aspen exchanger design and rating for paddy drying application

    Science.gov (United States)

    Janaun, J.; Kamin, N. H.; Wong, K. H.; Tham, H. J.; Kong, V. V.; Farajpourlar, M.

    2016-06-01

    Air heating unit is one of the most important parts in paddy drying to ensure the efficiency of a drying process. In addition, an optimized air heating unit does not only promise a good paddy quality, but also save more for the operating cost. This study determined the suitable and best specifications heating unit to heat air for paddy drying in the LAMB dryer. In this study, Aspen HYSYS v7.3 was used to obtain the minimum flow rate of hot water needed. The resulting data obtained from Aspen HYSYS v7.3 were used in Aspen Exchanger Design and Rating (EDR) to generate heat exchanger design and costs. The designs include shell and tubes and plate heat exchanger. The heat exchanger was designed in order to produce various drying temperatures of 40, 50, 60 and 70°C of air with different flow rate, 300, 2500 and 5000 LPM. The optimum condition for the heat exchanger were found to be plate heat exchanger with 0.6 mm plate thickness, 198.75 mm plate width, 554.8 mm plate length and 11 numbers of plates operating at 5000 LPM air flow rate.

  13. A XANES study of cobalt speciation state in blue-and-white glazes from 16th to 17th century Chinese porcelains

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, M.O., E-mail: ondina.figueiredo@lneg.pt [CENIMAT/I3N, Faculty Sciences and Technology, New University of Lisbon, Campus da Caparica, 2829-516 Caparica (Portugal); National Laboratory of Energy and Geology (LNEG), Apartado 7586, 2721-866 Alfragide (Portugal); Silva, T.P. [National Laboratory of Energy and Geology (LNEG), Apartado 7586, 2721-866 Alfragide (Portugal); CENIMAT/I3N, Faculty Sciences and Technology, New University of Lisbon, Campus da Caparica, 2829-516 Caparica (Portugal); Veiga, J.P. [CENIMAT/I3N, Faculty Sciences and Technology, New University of Lisbon, Campus da Caparica, 2829-516 Caparica (Portugal)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Speciation of cobalt in ancient Chinese porcelain glazes studied by X-ray absorption near-edge spectroscopy. Black-Right-Pointing-Pointer Blue pigmenting role of tetrahedral Co{sup 2+} ions. Black-Right-Pointing-Pointer Uncertainties in deducing a formal valence state for cobalt ions from the edge energy. - Abstract: The composition of cobalt blue pigments used in ancient blue-and-white Chinese glazes is known to have changed between the 14th and the 17th century and ratios of some main chemical components plus trace elements are relevant guide-lines to establish the porcelain manufacture period. Once archaeological findings of Chinese porcelains can contribute to set up dating processes, a study of blue-and-white porcelain shards recovered during recent excavations in Lisbon Old-City was carried out by non-destructive laboratory X-ray fluorescence spectrometry for chemical characterization, combined with X-ray absorption spectroscopy (XAS) using synchrotron radiation to ascertain the formal valence and coordination of pigmenting cobalt ions. Following a preliminary extended X-ray absorption fine-structure study that revealed a coordination of divalent cobalt ions slightly above four, a detailed analysis of the near-edge region of Co 1s X-ray absorption spectra (XANES) was carried out on the blue-and-white glazes from those archaeological Chinese porcelain fragments. Pre-edge features and edge details are discussed in comparison with XANES spectra obtained from model compounds with well known crystal structure - Co{sub 3}O{sub 4}, CoAl{sub 2}O{sub 4} and Co{sub 2}SiO{sub 4}, plus a cobalt-based blue pigment (cerulean). Present chemical data validate the manufacture period of studied Chinese porcelains advanced by Art Historians on the single basis of stylistic features (late 16th and medium 17th century). Spectroscopic results confirm a coordination environment of pigmenting Co{sup 2+} ions close to tetrahedral and

  14. A XANES study of cobalt speciation state in blue-and-white glazes from 16th to 17th century Chinese porcelains

    International Nuclear Information System (INIS)

    Figueiredo, M.O.; Silva, T.P.; Veiga, J.P.

    2012-01-01

    Highlights: ► Speciation of cobalt in ancient Chinese porcelain glazes studied by X-ray absorption near-edge spectroscopy. ► Blue pigmenting role of tetrahedral Co 2+ ions. ► Uncertainties in deducing a formal valence state for cobalt ions from the edge energy. - Abstract: The composition of cobalt blue pigments used in ancient blue-and-white Chinese glazes is known to have changed between the 14th and the 17th century and ratios of some main chemical components plus trace elements are relevant guide-lines to establish the porcelain manufacture period. Once archaeological findings of Chinese porcelains can contribute to set up dating processes, a study of blue-and-white porcelain shards recovered during recent excavations in Lisbon Old-City was carried out by non-destructive laboratory X-ray fluorescence spectrometry for chemical characterization, combined with X-ray absorption spectroscopy (XAS) using synchrotron radiation to ascertain the formal valence and coordination of pigmenting cobalt ions. Following a preliminary extended X-ray absorption fine-structure study that revealed a coordination of divalent cobalt ions slightly above four, a detailed analysis of the near-edge region of Co 1s X-ray absorption spectra (XANES) was carried out on the blue-and-white glazes from those archaeological Chinese porcelain fragments. Pre-edge features and edge details are discussed in comparison with XANES spectra obtained from model compounds with well known crystal structure – Co 3 O 4 , CoAl 2 O 4 and Co 2 SiO 4 , plus a cobalt-based blue pigment (cerulean). Present chemical data validate the manufacture period of studied Chinese porcelains advanced by Art Historians on the single basis of stylistic features (late 16th and medium 17th century). Spectroscopic results confirm a coordination environment of pigmenting Co 2+ ions close to tetrahedral and substantiate the dual role of cobalt as network former plus modifier in the glaze of ancient Chinese porcelains.

  15. Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method.

    Science.gov (United States)

    Sramek, Martin; Schweiggert, Ralf Martin; van Kampen, Andreas; Carle, Reinhold; Kohlus, Reinhard

    2015-08-01

    We present a rapid and gentle drying method for the production of high-grade tomato powders from double concentrated tomato paste, comparing results with powders obtained by foam mat air drying and freeze dried powders. The principle of this method consists of drying tomato paste in foamed state at low temperatures in vacuum. The formulations were dried at temperatures of 50, 60, and 70 °C and vacuum of 200 mbar. Foam stability was affected by low serum viscosity and the presence of solid particles in tomato paste. Consequently, serum viscosity was increased by maltodextrin addition, yielding optimum stability at tomato paste:maltodextrin ratio of 2.4:1 (w/w) in dry matter. Material foamability was improved by addition of 0.5% (w/w, fresh weight) egg white. Because of solid particles in tomato paste, foam air filling had to be limited to critical air volume fraction of Φ = 0.7. The paste was first pre-foamed to Φ = 0.2 and subsequently expanded in vacuo. After drying to a moisture content of 5.6% to 7.5% wet base (w.b.), the materials obtained were in glassy state. Qualities of the resulting powders were compared with those produced by freeze and air drying. Total color changes were the least after vacuum drying, whereas air drying resulted in noticeable color changes. Vacuum foam drying at 50 °C led to insignificant carotenoid losses, being equivalent to the time-consuming freeze drying method. In contrast, air drying caused lycopene and β-carotene losses of 18% to 33% and 14% to 19% respectively. Thus, vacuum foam drying enables production of high-grade tomato powders being qualitatively similar to powders obtained by freeze drying. © 2015 Institute of Food Technologists®

  16. Development of Solar Biomass Drying System

    Directory of Open Access Journals (Sweden)

    Atnaw Samson Mekbib

    2017-01-01

    Full Text Available The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the drying chamber. The biomass absorbs the heat and transforms the moisture content within the biomass into water vapour and then leaves the chamber via the exhaust air outlet. This problem however can be solved by adopting indirect solar drying system. High and controllable temperatures can be achieved as a fan is used to move the air through the solar collector. This project has successfully created a solar cabinet dryer that combines both direct and indirect solar drying systems and functions to dry biomass as well as crops effectively and efficiently with minimal maintenance. Hence, it is indeed a substitution for conventional dryers which are affordable to local farmers.

  17. Drying of prickly pear cactus cladodes (Opuntia ficus indica) in a forced convection tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, R.; de Ita, A.; Vaca, M. [Universidad Autonoma Metropolitana-Azcapotzalco, DePt. de Energia, Area de Termofluidos, Av. San Pablo 180, Col. Reynosa Tamaulipas, Del. Azcapotzalco, C.P. 02200, Mexico D.F. (Mexico)

    2009-09-15

    In this work we evaluated the kinetics of drying of Opuntia's cladodes observing two conditions: complete cladode with the protective cuticle of the intact product and with reduced cuticle (partially removed), using a drying tunnel with forced flow. The temperature of the air was set at 35, 45, and 60 C with velocities of 1.5 and 3.0 m/s. The conditions of the environment were controlled and maintained at 22 C and 30% of relative humidity. The results show that the drying time was considerably reduced when approximately 30% of the cuticle that protects the product was removed. Additionally, the temperature had greater influence than the velocity of the air. The numerical model that best describes the behavior of the drying process is the double logarithmic one, with the imposed restrictions of r close to the unit, the lowest possible {chi}{sup 2} and the RSEM tending to zero. The characteristic drying function of the product resulted in a third-grade exponential curve, where r and SD were the corresponding selection criteria. (author)

  18. Drying of prickly pear cactus cladodes (Opuntia ficus indica) in a forced convection tunnel

    International Nuclear Information System (INIS)

    Lopez, R.; Ita, A. de; Vaca, M.

    2009-01-01

    In this work we evaluated the kinetics of drying of Opuntia's cladodes observing two conditions: complete cladode with the protective cuticle of the intact product and with reduced cuticle (partially removed), using a drying tunnel with forced flow. The temperature of the air was set at 35, 45, and 60 deg. C with velocities of 1.5 and 3.0 m/s. The conditions of the environment were controlled and maintained at 22 deg. C and 30% of relative humidity. The results show that the drying time was considerably reduced when approximately 30% of the cuticle that protects the product was removed. Additionally, the temperature had greater influence than the velocity of the air. The numerical model that best describes the behavior of the drying process is the double logarithmic one, with the imposed restrictions of r close to the unit, the lowest possible χ 2 and the RSEM tending to zero. The characteristic drying function of the product resulted in a third-grade exponential curve, where r and SD were the corresponding selection criteria.

  19. Influence of drying conditions on the effective moisture diffusivity and energy requirements during the drying of pretreated and untreated pumpkin

    International Nuclear Information System (INIS)

    Tunde-Akintunde, Toyosi Y.; Ogunlakin, Grace O.

    2011-01-01

    Pumpkin as a fruit is consumed by both animals and humans. Its high moisture content makes it perishable and thus there is a need for drying as a means of preservation. Thin-layer drying characteristics for the samples dried using a hot-air dryer were obtained from the experiment data. The drying was observed to take place in the falling rate drying period. Ficks law was used to determine the moisture diffusivity which varied from a minimum of 1.19 x 10 -9 m 2 /s for untreated pumpkin samples dried at 40 o C to a maximum value of 4.27 x 10 -9 m 2 /s for steam blanched samples dried at 80 o C. The value of the energy of activation varied from 21.44 to 28.67 kJ/mol. The input energy values and specific energy requirement for thin-drying of pumpkin samples were found to be in the range of 317.8-458.1 kW h and 1588.8-2290.3 kW h/kg from 40 o C to 80 o C with a drying air velocity of 1.5 m/s respectively.

  20. Influence of drying conditions on the effective moisture diffusivity and energy requirements during the drying of pretreated and untreated pumpkin

    Energy Technology Data Exchange (ETDEWEB)

    Tunde-Akintunde, Toyosi Y.; Ogunlakin, Grace O. [Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Oyo State (Nigeria)

    2011-02-15

    Pumpkin as a fruit is consumed by both animals and humans. Its high moisture content makes it perishable and thus there is a need for drying as a means of preservation. Thin-layer drying characteristics for the samples dried using a hot-air dryer were obtained from the experiment data. The drying was observed to take place in the falling rate drying period. Ficks law was used to determine the moisture diffusivity which varied from a minimum of 1.19 x 10{sup -9} m{sup 2}/s for untreated pumpkin samples dried at 40 C to a maximum value of 4.27 x 10{sup -9} m{sup 2}/s for steam blanched samples dried at 80 C. The value of the energy of activation varied from 21.44 to 28.67 kJ/mol. The input energy values and specific energy requirement for thin-drying of pumpkin samples were found to be in the range of 317.8-458.1 kW h and 1588.8-2290.3 kW h/kg from 40 C to 80 C with a drying air</