WorldWideScience

Sample records for tussock tundra plant

  1. Photosynthesis, plant growth and nitrogen nutrition in Alaskan tussock tundra: Response to experimental warming

    Science.gov (United States)

    Dynes, E.; Welker, J. M.; Moore, D. J.; Sullivan, P.; Ebbs, L.; Pattison, R.

    2009-12-01

    Temperature is predicted to rise significantly in northern latitudes over the next century. The Arctic tundra is a fragile ecosystem with low rates of photosynthesis and low nutrient mineralisation. Rising temperatures may increase photosynthetic capacity in the short term through direct stimulation of photosynthetic rates and also in the longer term due to enhanced nutrient availability. Different species and plant functional types may have different responses to warming which may have an impact on plant community structure. As part of the International Tundra Experiment (ITEX) to investigate the effects of warming on arctic vegetation, a series of open top chambers (OTCs) have been established at the Toolik Field Station (68°38’N, 149°36’W, elevation 720 m). This study employs 12 plots; 6 control plots and 6 warming plots covered with OTCs which maintain a temperature on average +1.54 °C degrees higher than ambient temperatures. The response of photosynthesis to temperature was measured using an infra-red gas analyzer (IRGA) with a cooling adaptor to manipulate leaf temperature and determine AMAX in two contrasting species, Eriophorum vaginatum (sedge) and Betula nana (shrub). Temperature within the chamber head of the IRGA was manipulated from 10 through 25 °C. We also measured the leaf area index of plots using a Decagon Accupar Ceptometer to provide insights into potential differences in canopy cover. In both OTC and control plots the photosynthetic rate of B. nana was greater than that of E. vaginatum, with the AMAX of B. nana peaking at 20.08°C and E. vaginatum peaking slightly lower at 19.7°C in the control plots. There was no apparent difference in the temperature optimum of photosynthesis of either species when exposed to the warming treatment. Although there was no difference in temperature optimum there were differences in the peak values of AMAX between treatment and control plots. In the case of B. nana, AMAX was higher in the OTCs than in

  2. Interannual variability of plant phenology in tussock tundra: modelling interactions of plant productivity, plant phenology, snowmelt and soil thaw

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Laundre, J.A.; Shaver, G.R.

    2003-01-01

    We present a linked model of plant productivity, plant phenology, snowmelt and soil thaw in order to estimate interannual variability of arctic plant phenology and its effects on plant productivity. The model is tested using 8 years of soil temperature data, and three years of bud break data of Betu

  3. Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska.

    Science.gov (United States)

    Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-02-01

    Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage. © 2014 The Authors. Global Change

  4. Controls over nutrient flow through plants and microbes in Arctic tundra. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schimel, J.

    1994-02-01

    Ecosystem productivity in the Arctic is strongly controlled by N availability to plants. Thus, disturbances to the Arctic system are likely to have their greatest impacts by altering the supply of nutrients to plants. Thus, to understand the dynamics of Arctic tundra, a complete understanding of the controls on N cycling in tundra soils is necessary. This project focused on understanding nutrient dynamics in arctic tussock tundra, specifically evaluating the role of microbial uptake and competition for nutrients as a control on plant N-uptake. The project consisted of several major components: Short- and long-term partitioning of NH{sub 4}{sup +} in tussock tundra (1990--1991); Measurement of NH{sub 4}{sup +} uptake rates by Eriophorum vaginatum and by soil microbes; Determination of microbial NH{sub 4}{sup +} and NO{sub 3}{minus} uptake kinetics; and Determination of the partitioning of NH{sub 4}{sup +} and amino acids between E. vaginatum and soil microbes.

  5. Influence of the Tussock Growth Form on Arctic Ecosystem Carbon Stocks

    Science.gov (United States)

    Curasi, S.; Rocha, A. V.; Sonnentag, O.; Wullschleger, S. D.; Myers-Smith, I. H.; Fetcher, N.; Mack, M. C.; Natali, S.; Loranty, M. M.; Parker, T.

    2015-12-01

    The influence of plant growth forms on ecosystem carbon (C) cycling has been under appreciated. In arctic tundra, environmental factors and plant traits of the sedge Eriophorum vaginatum cause the formation of mounds that are dense amalgamations of belowground C called tussocks. Tussocks have important implications for arctic ecosystem biogeochemistry and C stocks, but the environmental and biological factors controlling their size and distribution across the landscape are poorly understood. In order to better understand how landscape variation in tussock size and density impact ecosystem C stocks, we formed the Carbon in Arctic Tussock Tundra (CATT) network and recruited an international team to sample locations across the arctic. The CATT network provided a latitudinal and longitudinal gradient along which to improve our understanding of tussocks' influence on ecosystem structure and function. CATT data revealed important insights into tussock formation across the arctic. Tussock density generally declined with latitude, and tussock size exhibited substantial variation across sites. The relationship between height and diameter was similar across CATT sites indicating that both biological and environmental factors control tussock formation. At some sites, C in tussocks comprised a substantial percentage of ecosystem C stocks that may be vulnerable to climate change. It is concluded that the loss of this growth form would offset C gains from projected plant functional shifts from graminoid to shrub tundra. This work highlights the role of plant growth forms on the magnitude and retention of ecosystem C stocks.

  6. Annual patterns and budget of CO2 flux in an Alaskan arctic tussock tundra ecosystem at Atqasuk, Alaska

    Science.gov (United States)

    Oechel, W. C.; Kalhori, A. A.; Burba, G. G.; Gioli, B.

    2013-12-01

    Arctic ecosystem functioning is not only critically affected by climate change, but also has the potential for major positive feedbacks on climate. There is however relatively little information available on the role, patterns, and vulnerabilities of CO2 fluxes during the non-summer seasons. Presented here is a year-around study of CO2 fluxes in an Alaskan Arctic tussock tundra ecosystem. Also presented are key environmental controls on CO2 fluxes as well as possible impacts of likely changes in season timing. This is aided by a new empirical quantification of seasons in the Arctic based on net radiation, which can help describe seasonal responses to greenhouse gas fluxes under climate change. The fluxes were computed using standard FluxNet methodology and corrected using standard WPL density terms, adjusted for influences of instrument surface heating. The results showed that the non-summer season comprises a significant source of carbon to the atmosphere. The summer period was a net sink of 10.83 g C m-2 yr-1, while the non-summer seasons released more than four times the CO2 uptake observed in the summer, resulting in a net annual source of 37.6 g C m-2 yr-1 to the atmosphere. This shows a change in this region of the Arctic from a long-term annual sink of CO2 from the atmosphere to an annual source of CO2 from the terrestrial ecosystem and soils to the atmosphere. The results presented here demonstrate that nearly continuous observations may be required in order to accurately calculate the annual NEE of Arctic ecosystems, and to build predictive understanding that can be used to estimate, with confidence, Arctic fluxes under future conditions. Daily CO2 fluxes over the year, average daily net radiation, average daily PAR, average daily air temperature and average daily soil respiration (at -5 cm).

  7. Succession Stages of Tundra Plant Communities Following Wildfire Disturbance in Arctic Alaska

    Science.gov (United States)

    Breen, A. L.; Hollingsworth, T. N.; Mack, M. C.; Jones, B. M.

    2015-12-01

    Rapid climate change is affecting climate-sensitive disturbance regimes throughout the world. In particular, the impacts of climate change on Arctic disturbance regimes are poorly understood because landscape-scale disturbances are infrequent or occur in remote localities. Wildfire in Arctic Alaska is presently limited by ignition source and favorable burn weather. With rapid climate change, a lengthening growing season, and subsequent increase in plant biomass and productivity, wildfire frequency and annual area burned in tundra ecosystems is expected to increase over the next century. Yet, post-fire tundra vegetation succession is inadequately characterized except at a few point locations. We identify succession stages of tussock tundra communities following wildfire using a chronosequence of 65 relevés in 10 tundra fire scars (1971-2011) and nearby unburned tundra from sites on the Seward Peninsula and northern foothills of the Brooks Range. We used the Braun-Blanquét approach to classify plant communities, and applied nonmetric multidimentional scaling (NMDS) to identify ecological gradients underlying community differentiation. The ordination revealed a clear differentiation between unburned and burned tundra communities. Ecological gradients, reflected by ordination axes, correspond to fire history (e.g., time since last fire, number of times burned, burn severity) and a complex productivity gradient. Post-fire species richness is less than unburned tundra; primarily reflected as a decrease in lichen species and turnover of bryophyte species immediately post-fire. Species richness of grasses increases post-fire and is greatest in communities that burned more than once in the past 30 years. Shrub cover and total aboveground biomass are greatest in repeat burn sites. We review and discuss our results focusing on the implications of a changing tundra fire regime, its effect on vegetation succession trajectories, and subsequent rates of carbon sequestration and

  8. The unseen iceberg: plant roots in arctic tundra.

    Science.gov (United States)

    Iversen, Colleen M; Sloan, Victoria L; Sullivan, Patrick F; Euskirchen, Eugenie S; McGuire, A David; Norby, Richard J; Walker, Anthony P; Warren, Jeffrey M; Wullschleger, Stan D

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits - including distribution, chemistry, anatomy and resource partitioning - play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  9. The unseen iceberg: Plant roots in arctic tundra

    Science.gov (United States)

    Iverson, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; Euskirchen, E.S.; McGuire, Anthony; Norby, Richard J.; Walker, Anthony P.; Warren, Jeffrey M.; Wullschleger, Stan D.

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits – including distribution, chemistry, anatomy and resource partitioning – play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  10. Extracellular acid phosphatase activities in Eriophorum vaginatum tussocks: A modeling synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Moorhead, D.L. (Texas Tech Univ., Lubbock (United States)); Kroehler, C.J. (Virginia Polytechnic Inst. and State Univ., Blacksburg (United States)); Linkins, A.E. (Clarkson Univ., Potsdan, NY (United States)); Reynolds, J.F. (San Diego State Univ., CA (United States))

    1993-02-01

    Analyses of Eriophorum vaginatum tussocks provided mass and kinetic parameters for a Michaelis-Menten model of phosphatase activities in Alaskan tussock tundra. This model was used to simulate the temporal patterns of phosphatase activities, given a 90-d thawing season and organic phosphorus concentrations of 30 [mu]M in the first and last 10-d intervals; 15 [mu]M at other times. Results indicated that about 28% of the total annual tussock activity (155 mg P released) occurred during the brief period of high substrate availability in autumn; little occurred in spring because most of the tussock was frozen and live root mass was low. Phosphatases associated with living roots of E. vaginatum were responsible for about 4% of the total activity in tussocks (ca. 6 mg P), which is almost twice the annual plant demand (ca. 3.5 mg). These results suggest that (1) E. vaginatum may obtain much of its phosphorus requirement from the activities of root surface phosphatases, and (2) the timing of maximum plant phosphorus uptake (late in year) and growth (early in year) are asynchronous, i.e., E. vaginatum integrates nutrient availabilities across years. 41 refs., 2 figs., 1 tab.

  11. Can lemmings control the expansion of woody plants on tundra?

    Science.gov (United States)

    Oksanen, Lauri; Oksanen, Tarja; Olofsson, Johan; Virtanen, Risto; Hoset, Katrine; Tuomi, Maria; Kyrö, Kukka

    2013-04-01

    The ongoing expansion of woody vegetation in the arctic, due to global warming, creates a positive feed back loop. Increasing abundance of woody plants reduces surface albedo both directly and via speeding up snow melt. Thus a successively greater fraction of incoming solar radiation is absorbed and converted to heat. Browsing mammals - both big and small - can prevent this by consuming woody plants. However, the grazer/browser community of many tundra areas is dominated by brown/Norwegian lemmings (Lemmus spp.) which eat graminoids and mosses and cannot use woody plants as forage. It would seem a priori likely that in such areas, mammalian herbivores speed up the expansion of woody plants by improving the chances of their seedlings to get established. We studied the impact of lemmings on woody plants by constructing lemming proof exclosures within piece high-altitude tundra at Joatkanjávri, northernmost Norway. The exclosures were constructed in 1998, during a period of low lemming densities, in snow-beds, where Norwegian lemmings (L. lemmus) were the only ecologically significant herbivorous mammals. (Reindeer migrate through the area in May, when snow-beds are inaccessible for them; during the fall migration, the area represents a dead end and is therefore avoided.) We chose pairs of maximally similar vegetation patches of 0.5 by 0.5 m and randomly assigned one of each pair to become an exclosure while the other plot was left open. The initial state of the vegetation was documented by the point frequency method. In 2008, after the 2007 lemming outbreak, the same documentation was repeated; thereafter the plots were harvested, the vegetation was sorted to species, oven dried and weighed. Exclusion of lemmings resulted to pronounced increase in community level plant biomass. Evergreen woody plants were especially favored by the exclusion of lemming: their above-ground biomass in exclosures was 14 times as great as their biomass on open reference plots. The

  12. Formation of tussocks by sedges: effects of hydroperiod and nutrients.

    Science.gov (United States)

    Lawrence, Beth A; Zedler, Joy B

    2011-07-01

    Tussock formation is a global phenomenon that enhances microtopography and increases biodiversity by adding structure to ecological communities, but little is known about tussock development in relation to environmental factors. To further efforts to restore wetland microtopography and associated functions, we investigated Carex stricta tussock size in relation to elevation (a proxy for water depth) at a range of sites in southern Wisconsin, USA, and tested the effect of five hydroperiods and N+P addition (15 g N/m2 + 0.37 g P/m2) on tussock formation during a three-year mesocosm experiment. Wet meadows dominated by C. stricta averaged 4.9 tussocks/m2, with a mean volume of 1160 cm3 and height of 15 cm. Within sites, taller tussocks occurred at lower elevations, suggesting a structural adaptation to anoxic conditions. In our mesocosm experiment, C. stricta accelerated tussock formation when inundated, and it increased overall productivity with N + P addition. Within two growing seasons, continuous inundation (+18 cm) in the mesocosms led to tussocks that were nearly as tall as in our field survey (mean height in mesocosms, 10 +/- 1.3 cm; maximum, 17 cm). Plants grown with constant low water (-18 cm) only formed short mounds (mean height = 2 +/- 0.4 cm). After three growing seasons, the volume of the largest tussocks (3274 +/- 376 cm3, grown with +18 cm water depth and N + P addition) was 12 times that of the smallest (275 +/- 38 cm3, grown with -18 cm water depth and no N + P). Though tussock composition varied among hydroperiods, tussocks were predominantly organic (74-94% of dry mass) and composed of leaf bases (46-59%), fine roots (10-31%), and duff (5-13%). Only the plants subjected to high water levels produced the vertically oriented rhizomes and ascending shoot bases that were prevalent in field-collected tussocks. Under continuous or periodic inundation, tussocks achieved similar heights and accumulated similar levels of organic matter (range: 163-394 g C

  13. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature

    Science.gov (United States)

    Wang, Peng; Heijmans, Monique M. P. D.; Mommer, Liesje; van Ruijven, Jasper; Maximov, Trofim C.; Berendse, Frank

    2016-05-01

    Climate warming is known to increase the aboveground productivity of tundra ecosystems. Recently, belowground biomass is receiving more attention, but the effects of climate warming on belowground productivity remain unclear. Enhanced understanding of the belowground component of the tundra is important in the context of climate warming, since most carbon is sequestered belowground in these ecosystems. In this study we synthesized published tundra belowground biomass data from 36 field studies spanning a mean annual temperature (MAT) gradient from -20 °C to 0 °C across the tundra biome, and determined the relationships between different plant biomass pools and MAT. Our results show that the plant community biomass-temperature relationships are significantly different between above and belowground. Aboveground biomass clearly increased with MAT, whereas total belowground biomass and fine root biomass did not show a significant increase over the broad MAT gradient. Our results suggest that biomass allocation of tundra vegetation shifts towards aboveground in warmer conditions, which could impact on the carbon cycling in tundra ecosystems through altered litter input and distribution in the soil, as well as possible changes in root turnover.

  14. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities

    Science.gov (United States)

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale. PMID:27149113

  15. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities.

    Directory of Open Access Journals (Sweden)

    Adrian Zwolicki

    Full Text Available We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina. Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale.

  16. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities.

    Science.gov (United States)

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale.

  17. Evapotranspiration across plant types and geomorphological units in polygonal Arctic tundra

    Science.gov (United States)

    Raz-Yaseef, Naama; Young-Robertson, Jessica; Rahn, Thom; Sloan, Victoria; Newman, Brent; Wilson, Cathy; Wullschleger, Stan D.; Torn, Margaret S.

    2017-10-01

    Coastal tundra ecosystems are relatively flat, and yet display large spatial variability in ecosystem traits. The microtopographical differences in polygonal geomorphology produce heterogeneity in permafrost depth, soil temperature, soil moisture, soil geochemistry, and plant distribution. Few measurements have been made, however, of how water fluxes vary across polygonal tundra plant types, limiting our ability to understand and model these ecosystems. Our objective was to investigate how plant distribution and geomorphological location affect actual evapotranspiration (ET). These effects are especially critical in light of the rapid change polygonal tundra systems are experiencing with Arctic warming. At a field site near Barrow, Alaska, USA, we investigated the relationships between ET and plant cover in 2014 and 2015. ET was measured at a range of spatial and temporal scales using: (1) An eddy covariance flux tower for continuous landscape-scale monitoring; (2) An automated clear surface chamber over dry vegetation in a fixed location for continuous plot-scale monitoring; and (3) Manual measurements with a clear portable chamber in approximately 60 locations across the landscape. We found that variation in environmental conditions and plant community composition, driven by microtopographical features, has significant influence on ET. Among plant types, ET from moss-covered and inundated areas was more than twice that from other plant types. ET from troughs and low polygonal centers was significantly higher than from high polygonal centers. ET varied seasonally, with peak fluxes of 0.14 mm h-1 in July. Despite 24 hours of daylight in summer, diurnal fluctuations in incoming solar radiation and plant processes produced a diurnal cycle in ET. Combining the patterns we observed with projections for the impact of permafrost degradation on polygonal structure suggests that microtopographic changes associated with permafrost thaw have the potential to alter tundra

  18. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils

    Directory of Open Access Journals (Sweden)

    Akihiro eKoyama

    2014-10-01

    Full Text Available The pool of soil organic carbon (SOC in the Arctic is disproportionally large compared to those in other biomes. This large quantity of SOC accumulated over millennia due to slow rates of decomposition relative to net primary productivity. Decomposition is constrained by low temperatures and nutrient concentrations, which limit soil microbial activity. We investigated how nutrients limit bacterial and fungal biomass and community composition in organic and mineral soils within moist acidic tussock tundra ecosystems. We sampled two experimental arrays of moist acidic tussock tundra that included fertilized and non-fertilized control plots. One array included plots that had been fertilized annually since 1989 and the other since 2006. Fertilization significantly altered overall bacterial community composition and reduced evenness, to a greater degree in organic than mineral soils, and in the 1989 compared to the 2006 site. The relative abundance of copiotrophic α-proteobacteria and β-proteobacteria was higher in fertilized than control soils, and oligotrophic Acidobacteria were less abundant in fertilized than control soils at the 1989 site. Fungal community composition was less sensitive to increased nutrient availability, and fungal responses to fertilization were not consistent between soil horizons and sites. We detected two ectomycorrhizal genera, Russula and Cortinarius spp., associated with shrubs. Their relative abundance was not affected by fertilization despite increased dominance of their host plants in the fertilized plots. Our results indicate that fertilization, which has been commonly used to simulate warming in Arctic tundra, has limited applicability for investigating fungal dynamics under warming.

  19. Polycyclic aromatic hydrocarbons in soils and lower-layer plants of the southern shrub tundra under technogenic conditions

    Science.gov (United States)

    Yakovleva, E. V.; Gabov, D. N.; Beznosikov, V. A.; Kondratenok, B. M.

    2014-06-01

    In soils and plants of the southern shrub tundra, 15 polycyclic aromatic hydrocarbons (PAHs) have been detected by high-performance liquid chromatography. Polyarenes in emissions, soil organic horizons, and plants mainly include low-molecular-weight PAHs: naphthalene, fluorine, and pyrene. The contents of the total PAHs in soils and plants exceed the background levels by 3-5 times. The distribution of polyarenes among the organs of the studied plants is nonuniform and depends on the plant species and technogenic load on the area. The studied plants include both hyperaccumulators of polyarenes ( Pleurozium schreberi) and indicators of PAHs in the soil ( Polytrichum commune). Pleurozium schreberi is the most abundant species in the areas under study, and it accumulates the largest mass fraction of PAHs. The differences in the accumulation of PAHs by the plants of the tundra and taiga zones have been revealed.

  20. Carbon balance of Arctic tundra under increased snow cover mediated by a plant pathogen

    Science.gov (United States)

    Olofsson, Johan; Ericson, Lars; Torp, Mikaela; Stark, Sari; Baxter, Robert

    2011-07-01

    Climate change is affecting plant community composition and ecosystem structure, with consequences for ecosystem processes such as carbon storage. Climate can affect plants directly by altering growth rates, and indirectly by affecting predators and herbivores, which in turn influence plants. Diseases are also known to be important for the structure and function of food webs. However, the role of plant diseases in modulating ecosystem responses to a changing climate is poorly understood. This is partly because disease outbreaks are relatively rare and spatially variable, such that that their effects can only be captured in long-term experiments. Here we show that, although plant growth was favoured by the insulating effects of increased snow cover in experimental plots in Sweden, plant biomass decreased over the seven-year study. The decline in biomass was caused by an outbreak of a host-specific parasitic fungus, Arwidssonia empetri, which killed the majority of the shoots of the dominant plant species, Empetrum hermaphroditum, after six years of increased snow cover. After the outbreak of the disease, instantaneous measurements of gross photosynthesis and net ecosystem carbon exchange were significantly reduced at midday during the growing season. Our results show that plant diseases can alter and even reverse the effects of a changing climate on tundra carbon balance by altering plant composition.

  1. Reconstruction and analysis of historical changes in carbon storage in arctic tundra

    Energy Technology Data Exchange (ETDEWEB)

    McKane, R.B.; Rastetter, E.B.; Shaver, G.R. [Ecosystems Center, Woods Hole, MA (United States)] [and others

    1997-06-01

    Surface air temperature in arctic regions has increased since pre-industrial times, raising concerns that warmer and possibly drier conditions have increased soil decomposition rates, thereby stimulating the release to the atmosphere of the large stores of carbon (C) in arctic soils. We used a model (MBL-GEM, Marine Biological Laboratory General Ecosystem Model) of ecosystem C and nitrogen (N) dynamics to predict and analyze historical (1829-1990) changes in C storage in a N-limited, tussock-tundra ecosystem near Toolik Lake on the North Slope of Alaska. The model simulates stand-level photosynthesis and N uptake by plants, allocation of C and N to foliage, stems, and fine roots, respiration in these tissues, turnover of biomass through litterfall, and decomposition of litter and soil organic matter. We first calibrated the model by deriving a single parameter set that closely simulated the response of tussock tundra to decade-long experimental manipulations of nutrients, temperature, light, and atmospheric CO{sub 2}. 60 refs., 5 figs., 1 tab.

  2. Action of Douglas Fir Tussock Moth Larvae and Their Microflora on Dietary Terpenes

    OpenAIRE

    Andrews, R E; Spence, K. D.

    1980-01-01

    A single type of bacterium, tentatively identified as a member of the genus Bacillus, was isolated from 2 of 20 midguts of Douglas fir tussock moth larvae being fed a diet of fir needles. No bacteria could be isolated from most midguts. Although spherically shaped bodies were present in the food bolus, these bodies, if microorganisms, could not be distinguished from spherical bodies associated with the plant tissue. The Douglas fir tussock moth dietary terpenes were altered during their passa...

  3. Fractionation of Nitrogen Isotopes by Plants with Different Types of Mycorrhiza in Mountain Tundra Ecosystems

    Science.gov (United States)

    Buzin, Igor; Makarov, Mikhail; Maslov, Mikhail; Tiunov, Alexei

    2017-04-01

    We studied nitrogen concentration and nitrogen isotope composition in plants from four mountain tundra ecosystems in the Khibiny Mountains. The ecosystems consisted of a toposequence beginning with the shrub-lichen heath (SLH) on the ridge and upper slope, followed by the Betula nana dominated shrub heath (SH) on the middle slope, the cereal meadow (CM) on the lower slope and the sedge meadow (SM) at the bottom of the slope. The inorganic nitrogen concentration of the soils from the studied ecosystems were significantly different; the SLH soil was found to contain the minimum concentration of N-NH4+ and N-NO3- , while in the soils of the meadow ecosystems these concentrations were much higher. The concentration of nitrogen in leaves of the dominant plant species in all of the ecosystems is directly connected with the concentration of inorganic nitrogen in the soils, regardless of the plant's mycorrhizal symbiosis type. However, such a correlation is not apparent in the case of plant roots, especially for plant roots with ectomycorrhiza and ericoid mycorrhiza. The majority of plant species with these types of mycorrhiza in the SH and particularly in the CM were enriched in 15N in comparison with the SLH (such plants were not found within the SM). This could be due to several reasons: 1) the decreasing role of mycorrhiza in nitrogen consumption and therefore in the fractionation of isotopes in the relatively-N-enriched ecosystems; 2) the use of relatively-15N-enriched forms of nitrogen for plant nutrition in meadow ecosystems. This heavier nitrogen isotope composition in plant roots with ectomycorrhiza and ericoid mycorrhiza in ecosystems with available nitrogen enriched soils doesn't correspond to the classical idea of mycorrhiza decreasing participation in nitrogen plant nutrition. The analysis of the isotope composition of separate labile forms of nitrogen makes it possible to explain the phenomenon. Not all arbuscular mycorrhizal species within the sedge meadow

  4. Potential changes in arctic seasonality and plant communities may impact tundra soil chemistry and carbon dynamics

    Science.gov (United States)

    Crow, S.; Cooper, E.; Beilman, D.; Filley, T.; Reimer, P.

    2009-04-01

    On the Svalbard archipelago, as in other high Arctic regions, tundra soil organic matter (SOM) is primarily plant detritus that is largely stabilized by cold, moist conditions and low nitrogen availability. However, the resistance of SOM to decomposition is also influenced by the quality of organic matter inputs to soil. Different plant communities are likely to give different qualities to SOM, especially where lignin-rich woody species encroach into otherwise graminoid and bryophyte-dominated regions. Arctic woody plant species are particularly sensitive to changes in temperature, snow cover, and growing season length. In a changing environment, litter chemistry may emerge as an important control on tundra SOM stabilization. In summer 2007, we collected plant material and soil from the highly-organic upper horizon (appx. 0-5 cm) and the mineral-dominated lower horizon (appx. 5-10cm) from four locations in the southwest facing valleys of Svalbard, Norway. The central goal of the ongoing experiment is to determine whether a greater abundance of woody plants could provide a negative feedback to warming impacts on the carbon (C) balance of Arctic soils. Towards this, we used a combination of plant biopolymer analyses (cupric oxide oxidation and quantification of lignin-derived phenols and cutin/suberin-derived aliphatics) and radiocarbon-based estimates of C longevity and mean residence time (MRT) to characterize potential links between plant type and soil C pools. We found that graminoid species regenerate above- and belowground tissue each year, whereas woody species (Cassiope tetragona and Dryas octopetala) regenerated only leaves yearly. In contrast, C within live branches and roots persisted for 15-18 yr on average. Leaves from woody species remained nearly intact in surface litter for up to 20 yr without being incorporated into the upper soil horizon. Leaves from both graminoid and woody species were concentrated in lignin-derived phenols relative to roots, but

  5. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia.

    Science.gov (United States)

    Berner, Logan T; Beck, Pieter S A; Bunn, Andrew G; Goetz, Scott J

    2013-11-01

    Russia's boreal (taiga) biome will likely contract sharply and shift northward in response to 21st century climatic change, yet few studies have examined plant response to climatic variability along the northern margin. We quantified climate dynamics, trends in plant growth, and growth-climate relationships across the tundra shrublands and Cajander larch (Larix cajanderi Mayr.) woodlands of the Kolyma river basin (657 000 km(2) ) in northeastern Siberia using satellite-derived normalized difference vegetation indices (NDVI), tree ring-width measurements, and climate data. Mean summer temperatures (Ts ) increased 1.0 °C from 1938 to 2009, though there was no trend (P > 0.05) in growing year precipitation or climate moisture index (CMIgy ). Mean summer NDVI (NDVIs ) increased significantly from 1982 to 2010 across 20% of the watershed, primarily in cold, shrub-dominated areas. NDVIs positively correlated (P NDVI record there was no trend in mean BAI (P > 0.05), which significantly correlated with NDVIs (r = 0.44, P < 0.05, 1982-2007). Both satellite and tree-ring analyses indicated that plant growth was constrained by both low temperatures and limited moisture availability and, furthermore, that warming enhanced growth. Impacts of future climatic change on forests near treeline in Arctic Russia will likely be influenced by shifts in both temperature and moisture, which implies that projections of future forest distribution and productivity in this area should take into account the interactions of energy and moisture limitations. © 2013 John Wiley & Sons Ltd.

  6. Arctic Tundra Soils: A Microbial Feast That Shrubs Will Cease

    Science.gov (United States)

    Machmuller, M.; Calderon, F.; Cotrufo, M. F.; Lynch, L.; Paul, E. A.; Wallenstein, M. D.

    2016-12-01

    Rapid climate warming may already be driving rapid decomposition of the vast stocks of carbon in Arctic tundra soils. However, stimulated decomposition may also release nitrogen and support increased plant productivity, potentially counteracting soil carbon losses. At the same time, these two processes interact, with plant derived carbon potentially fueling soil microbes to attack soil organic matter (SOM) to acquire nitrogen- a process known as priming. Thus, differences in the physiology, stoichiometry and microbial interactions among plant species could affect climate-carbon feedbacks. To reconcile these interactive mechanisms, we examined how vegetation type (Betula nana and Eriophorum vaginatum) and fertilization (short-term and long-term) influenced the decomposition of native SOM after labile carbon and nutrient addition. We hypothesized that labile carbon inputs would stimulate the loss of native SOM, but the magnitude of this effect would be indirectly related to soil nitrogen concentrations (e.g. SOM priming would be highest in N-limited soils). We added isotopically enriched (13C) glucose and ammonium nitrate to soils under shrub (B. nana) and tussock (E. vaginatum) vegetation. We found that nitrogen additions stimulated priming only in tussock soils, characterized by lower nutrient concentrations and microbial biomass (ppriming in soils that had been fertilized for >20yrs. Rather, we found that long-term fertilization shifted SOM chemistry towards a greater abundance of recalcitrant SOM, lower microbial biomass, and decreased SOM respiration (ppriming is dependent on vegetation and soil nitrogen concentrations, but this effect may not persist if shrubs increase in abundance under climate warming. Therefore, including nitrogen as a control on SOM decomposition and priming is critical to accurately model the effects of climate change on arctic carbon storage.

  7. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature

    NARCIS (Netherlands)

    Peng, Wang; Heijmans, M.M.P.D.; Mommer, L.; Ruijven, van J.; Maximov, Trofim C.; Berendse, F.

    2016-01-01

    Climatewarming is known to increase the aboveground productivity of tundra ecosystems.
    Recently, belowground biomass is receiving more attention, but the effects of climate warming on
    belowground productivity remain unclear. Enhanced understanding of the belowground component
    of the tund

  8. Tundra in the rain

    DEFF Research Database (Denmark)

    Keuper, Frida; Parmentier, Frans-Jan; Blok, Daan

    2012-01-01

    increments) and Arctagrostis latifolia (leaf size and specific leaf area), but none were observed at the Swedish site. Total biomass production did not increase at either of the study sites. This study corroborates studies in other tundra vegetation types and shows that despite regional differences...... tundra (northeast Siberia) and a dry Sphagnum fuscum-dominated bog (northern Sweden). Positive responses to approximately doubled ambient precipitation (an increase of 200 mm year-1) were observed at the Siberian site, for B. nana (30 % larger length increments), Salix pulchra (leaf size and length...... at the plant level, total tundra plant productivity is, at least at the short or medium term, largely irresponsive to experimentally increased summer precipitation....

  9. Alaska North Slope Tundra Travel Model and Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Harry R. Bader; Jacynthe Guimond

    2006-03-01

    The Alaska Department of Natural Resources (DNR), Division of Mining, Land, and Water manages cross-country travel, typically associated with hydrocarbon exploration and development, on Alaska's arctic North Slope. This project is intended to provide natural resource managers with objective, quantitative data to assist decision making regarding opening of the tundra to cross-country travel. DNR designed standardized, controlled field trials, with baseline data, to investigate the relationships present between winter exploration vehicle treatments and the independent variables of ground hardness, snow depth, and snow slab thickness, as they relate to the dependent variables of active layer depth, soil moisture, and photosynthetically active radiation (a proxy for plant disturbance). Changes in the dependent variables were used as indicators of tundra disturbance. Two main tundra community types were studied: Coastal Plain (wet graminoid/moist sedge shrub) and Foothills (tussock). DNR constructed four models to address physical soil properties: two models for each main community type, one predicting change in depth of active layer and a second predicting change in soil moisture. DNR also investigated the limited potential management utility in using soil temperature, the amount of photosynthetically active radiation (PAR) absorbed by plants, and changes in microphotography as tools for the identification of disturbance in the field. DNR operated under the assumption that changes in the abiotic factors of active layer depth and soil moisture drive alteration in tundra vegetation structure and composition. Statistically significant differences in depth of active layer, soil moisture at a 15 cm depth, soil temperature at a 15 cm depth, and the absorption of photosynthetically active radiation were found among treatment cells and among treatment types. The models were unable to thoroughly investigate the interacting role between snow depth and disturbance due to a

  10. Plant carbon-nutrient interactions control CO{sub 2} exchange in Alaskan wet sedge tundra ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.C.; Shaver, G.R.; Cades, D.H.; Rastetter, E.; Nadelhoffer, K.; Giblin, A.; Laundre, J.; Stanley, A.

    2000-02-01

    The authors explored the long-term (8-yr) effects of separate field manipulations of temperature and nutrient availability on carbon balance in wet sedge tundra near the Arctic Long Term Ecological Research (LTER) site at Toolik Lake, Alaska. Their goals were (1) to assess the relative importance of chronic warming (with field greenhouses) and increased N and P availability (by fertilization) in controlling gross ecosystem photosynthesis, ecosystem respiration, and ultimately ecosystem C balance; and (2) to attempt to partition ecosystem responses to these treatments between plant and soil contributions. The authors present results of the effects of these manipulations on whole-system CO{sub 2} exchange over seasonal and duel cycles, and on nonrhizosphere soil microbial respiration using in situ soil incubations.

  11. Phenological dynamics of arctic tundra vegetation and its implications on satellite imagery interpretation

    Science.gov (United States)

    Juutinen, Sari; Aurela, Mika; Mikola, Juha; Räsänen, Aleksi; Virtanen, Tarmo

    2016-04-01

    Remote sensing is a key methodology when monitoring the responses of arctic ecosystems to climatic warming. The short growing season and rapid vegetation development, however, set demands to the timing of image acquisition in the arctic. We used multispectral very high spatial resolution satellite images to study the effect of vegetation phenology on the spectral reflectance and image interpretation in the low arctic tundra in coastal Siberia (Tiksi, 71°35'39"N, 128°53'17"E). The study site mainly consists of peatlands, tussock, dwarf shrub, and grass tundra, and stony areas with some lichen and shrub patches. We tested the hypotheses that (1) plant phenology is responsive to the interannual weather variation and (2) the phenological state of vegetation has an impact on satellite image interpretation and the ability to distinguish between the plant communities. We used an empirical transfer function with temperature sums as drivers to reconstruct daily leaf area index (LAI) for the different plant communities for years 2005, and 2010-2014 based on measured LAI development in summer 2014. Satellite images, taken during growing seasons, were acquired for two years having late and early spring, and short and long growing season, respectively. LAI dynamics showed considerable interannual variation due to weather variation, and particularly the relative contribution of graminoid dominated communities was sensitive to these phenology shifts. We have also analyzed the differences in the reflectance values between the two satellite images taking account the LAI dynamics. These results will increase our understanding of the pitfalls that may arise from the timing of image acquisition when interpreting the vegetation structure in a heterogeneous tundra landscape. Very high spatial resolution multispectral images are available at reasonable cost, but not in high temporal resolution, which may lead to compromises when matching ground truth and the imagery. On the other hand

  12. Regulation of methane production, oxidation, and emission by vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra

    Science.gov (United States)

    Knoblauch, Christian; Spott, Oliver; Evgrafova, Svetlana; Kutzbach, Lars; Pfeiffer, Eva-Maria

    2015-12-01

    Methane (CH4) production, oxidation, and emission were studied in ponds of the permafrost-affected polygonal tundra in northeast Siberia. Microbial degradation of organic matter in water-saturated soils is the most important source for the climate-relevant trace gas CH4. Although ponds and lakes cover a substantial fraction of the land surface of northern Siberia, data on CH4 fluxes from these water bodies are scarce. Summer CH4 fluxes were measured with closed chambers at the margins of ponds vegetated by vascular plants and in their centers without vascular plants. Furthermore, CH4 and oxygen concentration gradients, stable carbon isotope signatures of dissolved and emitted CH4, and microbial CH4 production and CH4 oxidation were determined. Mean summer fluxes were significantly higher at the margins of the ponds (46.1 ± 15.4 mg CH4 m-2 d-1) than at the centers (5.9 ± 8.2 mg CH4 m-2 d-1). CH4 transport was dominated by diffusion in most open water sites, but substantial ebullitive fluxes (12.0 ± 8.1 mg CH4 m-2 d-1) were detected in one pond. Plant-mediated transport accounted for 70 to 90% of total CH4 fluxes above emerged vegetation. In the absence of vascular plants, 61 to 99% of the CH4 produced in the anoxic bottom soil was consumed in a layer of the submerged moss Scorpidium scorpioides, which covered the bottoms of the ponds. The fraction of CH4 oxidized was lower at sites with vascular plants since CH4 was predominantly transported through their aerenchyma, thereby bypassing the CH4 oxidation zone in the moss layer. These results emphasize the importance of moss-associated CH4 oxidation causing low CH4 fluxes from the studied Siberian ponds.

  13. Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants: a case study from a subarctic tundra heath

    Science.gov (United States)

    Tang, Jing; Schurgers, Guy; Valolahti, Hanna; Faubert, Patrick; Tiiva, Päivi; Michelsen, Anders; Rinnan, Riikka

    2016-12-01

    The Arctic is warming at twice the global average speed, and the warming-induced increases in biogenic volatile organic compounds (BVOCs) emissions from Arctic plants are expected to be drastic. The current global models' estimations of minimal BVOC emissions from the Arctic are based on very few observations and have been challenged increasingly by field data. This study applied a dynamic ecosystem model, LPJ-GUESS, as a platform to investigate short-term and long-term BVOC emission responses to Arctic climate warming. Field observations in a subarctic tundra heath with long-term (13-year) warming treatments were extensively used for parameterizing and evaluating BVOC-related processes (photosynthesis, emission responses to temperature and vegetation composition). We propose an adjusted temperature (T) response curve for Arctic plants with much stronger T sensitivity than the commonly used algorithms for large-scale modelling. The simulated emission responses to 2 °C warming between the adjusted and original T response curves were evaluated against the observed warming responses (WRs) at short-term scales. Moreover, the model responses to warming by 4 and 8 °C were also investigated as a sensitivity test. The model showed reasonable agreement to the observed vegetation CO2 fluxes in the main growing season as well as day-to-day variability of isoprene and monoterpene emissions. The observed relatively high WRs were better captured by the adjusted T response curve than by the common one. During 1999-2012, the modelled annual mean isoprene and monoterpene emissions were 20 and 8 mg C m-2 yr-1, with an increase by 55 and 57 % for 2 °C summertime warming, respectively. Warming by 4 and 8 °C for the same period further elevated isoprene emission for all years, but the impacts on monoterpene emissions levelled off during the last few years. At hour-day scale, the WRs seem to be strongly impacted by canopy air T, while at the day-year scale, the WRs are a combined

  14. Plant nutrient acquisition strategies in tundra species: at which soil depth do species take up their nitrogen?

    Science.gov (United States)

    Limpens, Juul; Heijmans, Monique; Nauta, Ake; van Huissteden, Corine; van Rijssel, Sophie

    2016-04-01

    The Arctic is warming at unprecedented rates. Increased thawing of permafrost releases nutrients locked up in the previously frozen soils layers, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co-determine whether Arctic warming is mitigated or accelerated, making understanding successional trajectories urgent. One of the key factors influencing the competitive relationships between plant species is their access to nutrients, in particularly nitrogen (N). We assessed the depth at which plant species took up N by performing a 15N tracer study, injecting 15(NH4)2SO4 at three depths (5, 15, 20 cm) into the soil in arctic tundra in north-eastern Siberia in July. In addition we explored plant nutrient acquisition strategy by analyzing natural abundances of 15N in leaves. We found that vascular plants took up 15N at all injection depths, irrespective of species, but also that species showed a clear preference for specific soil layers that coincided with their functional group (graminoids, dwarf shrubs, cryptogams). Graminoids took up most 15N at 20 cm depth nearest to the thaw front, with grasses showing a more pronounced preference than sedges. Dwarf shrubs took up most 15N at 5 cm depth, with deciduous shrubs displaying more preference than evergreens. Cryptogams did not take up any of the supplied 15N . The natural 15N abundances confirmed the pattern of nutrient acquisition from deeper soil layers in graminoids and from shallow soil layers in both deciduous and evergreen dwarf shrubs. Our results prove that graminoids and shrubs differ in their N uptake strategies, with graminoids profiting from nutrients released at the thaw front, whereas shrubs forage in the upper soil layers. The above implies that graminoids, grasses in particular, will have a competitive advantage over shrubs as the thaw front proceeds and/or superficial soil layers dry out. Our results suggest that the vertical distribution of nutrients

  15. Above- and below-ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization

    NARCIS (Netherlands)

    Wang, Peng; Limpens, Juul; Mommer, Liesje; Ruijven, van Jasper; Nauta, Ake L.; Berendse, Frank; Schaepman-Strub, Gabriela; Blok, Daan; Maximov, Trofim C.; Heijmans, Monique M.P.D.

    2017-01-01

    Climate warming is faster in the Arctic than the global average. Nutrient availability in the tundra soil is expected to increase by climate warming through (i) accelerated nutrient mobilization in the surface soil layers, and (ii) increased thawing depths during the growing season which

  16. Spectral estimation of soil properties in siberian tundra soils and relations with plant species composition

    DEFF Research Database (Denmark)

    Bartholomeus, Harm; Schaepman-Strub, Gabriela; Blok, Daan

    2012-01-01

    yields a good prediction model for K and a moderate model for pH. Using these models, soil properties are determined for a larger number of samples, and soil properties are related to plant species composition. This analysis shows that variation of soil properties is large within vegetation classes...... will significantly impact the global carbon cycle. We explore the potential of soil spectroscopy to estimate soil carbon properties and investigate the relation between soil properties and vegetation composition. Soil samples are collected in Siberia, and vegetation descriptions are made at each sample point. First...

  17. Photosynthetic Characterization of Plant Functional Types from Coastal Tundra to Improve Representation of the Arctic in Earth System Models

    Science.gov (United States)

    Rogers, A.; Xu, C.; McDowell, N. G.; Sloan, V. L.; Norby, R. J.

    2012-12-01

    The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the carbon fluxes associated with the terrestrial carbon cycle. Photosynthetic CO2 uptake is well described by the Farquhar, von Caemmerer and Berry model of photosynthesis, and most ESMs use a derivation of this model. One of the key parameters required by the Farquhar, von Caemmerer and Berry model is an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max). In ESMs the parameter Vc,max is usually fixed for a given plant functional type (PFT) and often estimated from the empirical relationship between leaf N content and Vc,max. However, uncertainty in the estimation of Vc,max has been shown to account for significant variation in model estimation of gross primary production, particularly in the Arctic. As part of a new multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we have begun to characterize photosynthetic parameters and N acquisition in the key Arctic PFTs. We measured the response of photosynthesis (A) to internal CO2 concentration (ci) in situ in two sedges (Carex aquatilis, Eriophorum angustifolium), a grass (Dupontia fisheri) and a forb (Petasites frigidus) growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max (normalized to 25oC) currently used to represent Arctic PFTs in ESMs are approximately half of the values we measured in these species in July, 2012, on the coastal tundra in Barrow. We hypothesize that these plants have a greater fraction of leaf N invested in Rubisco (FLNR) than is assumed by the models. The parameter Vc,max is used directly as a driver for respiration in some ESMs, and in other ESMs Vc,max is linked to leaf N content and N acquisition through FLNR. Therefore, these results have implications for ESMs beyond photosynthesis, and suggest that

  18. Research on dynamics of tundra ecosystems and their potential response to energy resource development. Progress report, May 1, 1978-April 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Miller, P.C.

    1979-01-01

    The ecological effects (costs and benefits) of impacts that can be expected from the development and utilization of energy resources in the arctic. The impacts selected for study are: altered nutrient availability (nitrogen and phosphorus); altered patterns of soil water drainage; and vehicle tracks. The general ecosystem characteristics chosen to provide integrative measures of the possible ecological effects include annual primary production and the relative aboveground growth of the different species or growth forms comprising the vegetation. Plant growth forms are defined by height, leaf longevity, position of the perennating bud, and rooting pattern. The growth forms and species selected are: erect deciduous shrubs (Betula nana, Vaccinium uliginosum, Salix pulchra); erect evergreen shrubs (Ledum palustre); prostrate evergreen shrub (Vaccinium vitis-idaea); tussock graminoid (Eriophorum vaginatum); rhizomatous graminoid (Carex bigelowii, Carex aquatilis, Eriophorum angustifolium); forb (Artemisia arctica); grass (Calamagrostis or Arctagrostis); cushion moss (Dicranum sp.); Sphagnum sp.; and Polytrichum commune. Progress is reported in field and laboratory studies. The main conclusion of the research is that species respond individually in terms of nutrient and total nonstructural carbohydrates accumulation to fertilization, and that the growth forms studied are not distinctive from each other on the basis of plant nutrition or growth. The explicit mechanism for integrating and guiding this research and for extrapolating the existing data base to make quantitative predictions of the effects of perturbations is a simulation model of arctic tundra vegetation and soil processes called ARTUS (Arctic Tundra Simulator). (JGB)

  19. Influence of BRDF on NDVI and biomass estimations of Alaska Arctic tundra

    Science.gov (United States)

    Buchhorn, Marcel; Raynolds, Martha K.; Walker, Donald A.

    2016-12-01

    Satellites provide the only practical source of data for estimating biomass of large and remote areas such as the Alaskan Arctic. Researchers have found that the normalized difference vegetation index (NDVI) correlates well with biomass sampled on the ground. However, errors in NDVI and biomass estimates due to bidirectional reflectance distribution function (BRDF) effects are not well reported in the literature. Sun-sensor-object geometries and sensor band-width affect the BRDF, and formulas relating NDVI to ground-sampled biomass vary between projects. We examined the effects of these different variables on five studies that estimated above-ground tundra biomass of two common arctic vegetation types that dominate the Alaska tundra, moist acidic tussock tundra (MAT) and moist non-acidic tundra (MNT). We found that biomass estimates were up to 33% (excluding extremes) more sensitive than NDVI to BRDF effects. Variation between the sensors resulted in differences in NDVI of under 3% over all viewing geometries, and wider bands were more stable in their biomass estimates than narrow bands. MAT was more sensitive than MNT to BRDF effects due to irregularities in surface reflectance created by the tussocks. Finally, we found that studies that sampled only a narrow range of biomass and NDVI produced equations that were more difficult to correct for BRDF effects.

  20. Stratospheric ozone depletion : High arctic tundra plant growth on Svalbard is not affected by enhanced UV-B after 7 years of UV-B supplementation in the field

    NARCIS (Netherlands)

    Rozema, Jelte; Boelen, P.; Solheim, B.; Zielke, M.; Buskens, A; Doorenbosch, M.; Fijn, R.; Herder, J.; Callaghan, T.; Bjoern, L.O.; Jones, D.G.; Broekman, R.; Blokker, P.; van de Poll, W.H.

    The response of tundra plants to enhanced UV-B radiation simulating 15 and 30% ozone depletion was studied at two high arctic sites (Isdammen and Adventdalen, 78 degrees N, Svalbard).The set-up of the UV-B supplementation systems is described, consisting of large and small UV lamp arrays, installed

  1. Accumulation of polycyclic aromatic hydrocarbons in soils and plants of the tundra zone under the impact of coal-mining industry

    Science.gov (United States)

    Yakovleva, E. V.; Gabov, D. N.; Beznosikov, V. A.; Kondratenok, B. M.

    2016-11-01

    Thirteen polycyclic aromatic hydrocarbon (PAH) compounds were identified in organic horizons of tundra surface-gleyed soils ( Histic Stagnosols (Gelistagnic) and plants. The total content of PAHs in contaminated soils exceeded the background values by three times. Concentrations of low-molecular weight hydrocarbons in soils at different distances from the coalmines were relatively stable. Concentrations of highmolecular weight hydrocarbons had a distinct maximum at a distance of about 0.5 km from the source of emission. The increased values of correlation coefficients were found between PAH concentrations in organic soil horizons, plants, and coal of the Vorkutinskaya mine. Mostly low-molecular weight structures predominated in the organic soil horizons and in the studied plant species. The maximum capacity for the biological accumulation of PAHs was displayed by Pleurozium schreberi and the minimum capacity was displayed by Vaccinium myrtillus. Mosses and lichens actively absorbed polyarenes from the surface; most of the PAHs were transported into the plants. This phenomenon was not observed for Vaccinium myrtillus Concentrations of PAHs on the surface and in plant tissues decreased with an increase in the distance from the mine. Distribution of polyarenes in plant organs was nonuniform. Insignificant excess of concentration of polyarenes was found in dead part of Pleurozium schreberi in comparison with its living part. The accumulation of polyarenes in the leaves of Vaccinium myrtillus was higher than that in its stems and roots.

  2. NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra.

    Science.gov (United States)

    Sweet, Shannan K; Asmus, Ashley; Rich, Matthew E; Wingfield, John; Gough, Laura; Boelman, Natalie T

    2015-04-01

    The physical and biological responses to rapid arctic warming are proving acute, and as such, there is a need to monitor, understand, and predict ecological responses over large spatial and temporal scales. The use of the normalized difference vegetation index (NDVI) acquired from airborne and satellite sensors addresses this need, as it is widely used as a tool for detecting and quantifying spatial and temporal dynamics of tundra vegetation cover, productivity, and phenology. Such extensive use of the NDVI to quantify vegetation characteristics suggests that it may be similarly applied to characterizing primary and secondary consumer communities. Here, we develop empirical models to predict canopy arthropod biomass with canopy-level measurements of the NDVI both across and within distinct tundra vegetation communities over four growing seasons in the Arctic Foothills region of the Brooks Range, Alaska, USA. When canopy arthropod biomass is predicted with the NDVI across all four growing seasons, our overall model that includes all four vegetation communities explains 63% of the variance in canopy arthropod biomass, whereas our models specific to each of the four vegetation communities explain 74% (moist tussock tundra), 82% (erect shrub tundra), 84% (riparian shrub tundra), and 87% (dwarf shrub tundra) of the observed variation in canopy arthropod biomass. Our field-based study suggests that measurements of the NDVI made from air- and spaceborne sensors may be able to quantify spatial and temporal variation in canopy arthropod biomass at landscape to regional scales.

  3. Soil and Plant Mercury Concentrations and Pools in the Arctic Tundra of Northern Alaska by Hedge Christine, Obrist Daniel, Agnan Yannick, Moore Christopher, Biester Harald, Helmig Detlev

    Science.gov (United States)

    Hedge, C.; Agnan, Y.

    2015-12-01

    We present vegetation, soil and runoff mercury (Hg) concentrations and pool sizes in vegetation and soils at several arctic tundra sites, an area that represents <7 x 106 km2 of land surface globally. The primary measurement location is at Toolik Field Station (TFS, 68° 38' N) in northern Alaska, with additional samples collected along a transect from TFS to the Arctic Ocean, and in Noatak National Preserve to be collected in August 2015. Soil and vegetation samples from all sites will be analyzed for total Hg concentration, pH, soil texture, bulk density, soil moisture content, organic and total carbon (C), nitrogen, along with major and trace elements. Initial results already obtained from TFS (characterized as moist to wet tundra with Typic Aquiturbel soils) show Hg concentrations in tundra vegetation (112±15 μg kg-1) and organic soil (140±8 μg kg-1) similar to those found in temperate sites. Calculation of plant-based Hg deposition rates by litterfall of 17.3 μg kg-1 yr-1 were surprisingly high, exceeding all other Hg deposition fluxes at this site. Hg concentrations in mineral soils (95±3 μg kg-1) were 2-3 times higher than those found at temperate sites. Hg concentrations showed weak relationships to organic C concentrations contrasting patterns from temperate soils where concentrations typically decline with depth following lower organic carbon contents. In fact, vertical mass profiles of Hg showed a strong increase with depth, with mineral layers storing over 90% (200-500 g ha-1) of Hg within these soils. A principle component analysis including major and trace elements indicated that soil Hg was not of lithogenic origin but from atmospheric sources, possibly by long-range transport. Carbon-14 dating results showed over 7,000 years old organic carbon in mineral soils of the active layer where highest concentrations of soil Hg were observed, suggesting long term retention of atmospheric Hg. These patterns suggest vertical translocation of Hg from the

  4. Above- and belowground responses of Arctic tundra ecosystems to altered soil nutrients and mammalian herbivory.

    Science.gov (United States)

    Gough, Laura; Moore, John C; Shaver, Gauis R; Simpson, Rodney T; Johnson, David R

    2012-07-01

    Theory and observation indicate that changes in the rate of primary production can alter the balance between the bottom-up influences of plants and resources and the top-down regulation of herbivores and predators on ecosystem structure and function. The exploitation ecosystem hypothesis (EEH) posited that as aboveground net primary productivity (ANPP) increases, the additional biomass should support higher trophic levels. We developed an extension of EEH to include the impacts of increases in ANPP on belowground consumers in a similar manner as aboveground, but indirectly through changes in the allocation of photosynthate to roots. We tested our predictions for plants aboveground and for phytophagous nematodes and their predators belowground in two common arctic tundra plant communities subjected to 11 years of increased soil nutrient availability and/or exclusion of mammalian herbivores. The less productive dry heath (DH) community met the predictions of EEH aboveground, with the greatest ANPP and plant biomass in the fertilized plots protected from herbivory. A palatable grass increased in fertilized plots while dwarf evergreen shrubs and lichens declined. Belowground, phytophagous nematodes also responded as predicted, achieving greater biomass in the higher ANPP plots, whereas predator biomass tended to be lower in those same plots (although not significantly). In the higher productivity moist acidic tussock (MAT) community, aboveground responses were quite different. Herbivores stimulated ANPP and biomass in both ambient and enriched soil nutrient plots; maximum ANPP occurred in fertilized plots exposed to herbivory. Fertilized plots became dominated by dwarf birch (a deciduous shrub) and cloudberry (a perennial forb); under ambient conditions these two species coexist with sedges, evergreen dwarf shrubs, and Sphagnum mosses. Phytophagous nematodes did not respond significantly to changes in ANPP, although predator biomass was greatest in control plots. The

  5. Monk’s tonsure-like gaps in the tussock grass Spartina argentinensis (Gramineae

    Directory of Open Access Journals (Sweden)

    J. P. Lewis

    2001-03-01

    Full Text Available Monk's tonsure-like gaps develop inside gramineans and other plants. The tonsures of Spartina argentinensis originate as a result of tussock development and disturbance. As the tonsure develops the ring of tillers around it breakes down and new tussocks develop from the fragments, regenerating the grassland matrix vegetatively. The microenvironment inside the tonsure is different from the surroundings and microhabitat-specific taxa grow there.Los "claros tipo tonsura de monje" se desarrollan tanto en el interior de matas de gramíneas, como de especies no pertenecientes a dicha familia. Describimos las matas de Spartina argentinensis y sus tonsuras que surgen por el propio desarrollo de la mata y disturbios. A medida que la tonsura se desarrolla, el anillo de culmos que la rodea se rompe y nuevas matas se desarrollan a partir de los fragmentos, regenerando vegetativamente la matriz del pastizal. Los microambientes dentro y fuera de la tonsura son distintos, al igual que las especies que se establecen en ellos.

  6. Response of tundra ecosystems to elevated atmospheric carbon dioxide. [Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.; Grulke, N.E.

    1988-12-31

    Our past research shows that arctic tussock tundra responds to elevated atmospheric CO{sub 2} with marked increases in net ecosystem carbon flux and photosynthetic rates. However, at ambient temperatures and nutrient availabilities, homeostatic adjustments result in net ecosystem flux rates dropping to those found a contemporary CO{sub 2} levels within three years. Evidence for ecosystem-level acclimation in the first season of elevated CO{sub 2} exposure was found in 1987. Photosynthetic rates of Eriophorum vaginatum, the dominant species, adjusts to elevated CO{sub 2} within three weeks. Past research also indicates other changes potentially important to ecosystem structure and function. Elevated CO{sub 2} treatment apparently delays senescence and increases the period of positive photosynthetic activity. Recent results from the 1987 field season verify the results obtained in the 1983--1986 field seasons: Elevated CO{sub 2} resulted in increased ecosystem-level flux rates. Regressions fitted to the seasonal flux rates indicate an apparent 10 d extension of positive CO{sub 2} uptake reflecting a delay of the onset of plant dormancy. This delay in senescence could increase the frost sensitivity of the system. Major end points proposed for this research include the effects of elevated CO{sub 2} and the interaction of elevated atmospheric CO{sub 2} with elevated soil temperature and increased nutrient availability on: (1) Net ecosystem CO{sub 2} flux; (2) Net photosynthetic rates; (3) Patterns and resource controls on homeostatic adjustment in the above processes to elevated CO{sub 2}; (4) Plant-nutrient status, litter quality, and forage quality; (5) Soil-nutrient status; (6) Plant-growth pattern and shoot demography.

  7. Stochastic daily modeling of arctic tundra ecosystems

    Science.gov (United States)

    Erler, A.; Epstein, H. E.; Frazier, J.

    2011-12-01

    ArcVeg is a dynamic vegetation model that has simulated interannual variability of production and abundance of arctic tundra plant types in previous studies. In order to address the effects of changing seasonality on tundra plant community composition and productivity, we have uniquely adapted the model to operate on the daily timescale. Each section of the model-weather generation, nitrogen mineralization, and plant growth dynamics-are driven by daily fluctuations in simulated temperature conditions. These simulation dynamics are achieved by calibrating stochastic iterative loops and mathematical functions with raw field data. Air temperature is the fundamental driver in the model, parameterized by climate data collected in the field across numerous arctic tundra sites, and key daily statistics are extracted (mean and standard deviation of temperature for each day of the year). Nitrogen mineralization is calculated as an exponential function from the simulated temperature. The seasonality of plant growth is driven by the availability of nitrogen and constrained by historical patterns and dynamics of the remotely sensed normalized difference vegetation index (NDVI), as they pertain to the seasonal onset of growth. Here we describe the methods used for daily weather generation, nitrogen mineralization, and the daily competition among twelve plant functional types for nitrogen and subsequent growth. This still rather simple approach to vegetation dynamics has the capacity to generate complex relationships between seasonal patterns of temperature and arctic tundra vegetation community structure and function.

  8. Climatic effects on tundra carbon storage inferred from experimental data and a model

    Energy Technology Data Exchange (ETDEWEB)

    McKane, R.B.; Rastetter, E.B.; Shaver, G.R. [Ecosystems Center, Woods Hole, MA (United States)] [and others

    1997-06-01

    A process-based model of ecosystem carbon (C) and nitrogen (N) dynamics, MBL-GEM (Marine Biological Laboratory General Ecosystem Model) was used, to integrate and analyze the results of several experiments that examined the response of arctic tussock tundra to manipulations of CO{sub 2}, temperature, light, and soil nutrients. The experiments manipulated these variables over 3- to 9-yr periods and were intended to simulate anticipated changes in the arctic environment. Our objective was to use the model to extend the analysis of the experimental data so that unmeasured changes in ecosystem C storage and the underlying mechanisms controlling those changes could be estimated and compared. Using an inverse calibration method, we derived a single parameter set for the model that closely simulated the measured responses of tussock tundra to all of the experimental treatments. This parameterization allowed us to infer confidence limits for ecosystem components and processes that were not directly measured in the experiments. Thus, we used the model to estimate changes in ecosystem C storage by inferring key soil processes within the constraints imposed by measured components of the ecosystem C budget. 28 refs., 2 figs., 4 tabs.

  9. Effects of a Tundra Fire on Soils and Plant Communities along a Hillslope in the Seward Peninsula, Alaska.

    Science.gov (United States)

    1980-11-01

    Dicranum elongatum, Hypnum pratense and mineral soil, no discernible plant parts Aulocomium palustre; and lichen species, remaining. Cladonia gracilis, C... rangiferina , Cetraria cucul- 2. Moderately burned-organic layer lata, C.islandica and Peltigera aphthosa. partially consumed, parts of woody Above this

  10. Plant community composition and species richness in the High Arctic tundra: from the present to the future

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Normand, Signe; Hui, Francis K.C.

    2017-01-01

    1. Arctic plant communities are altered by climate changes. The magnitude of these alterations depends on whether species distributions are determined by macroclimatic conditions, by factors related to local topography, or by biotic interactions. Our current understanding of the relative importan...

  11. Tundra in the rain

    DEFF Research Database (Denmark)

    Keuper, Frida; Parmentier, Frans Jan W; Blok, Daan

    2012-01-01

    Precipitation amounts and patterns at high latitude sites have been predicted to change as a result of global climatic changes. We addressed vegetation responses to three years of experimentally increased summer precipitation in two previously unaddressed tundra types: Betula nana-dominated shrub...

  12. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic.

    Science.gov (United States)

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2015-01-01

    Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N) pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle). Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard). The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.

  13. Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic.

    Science.gov (United States)

    Bjorkman, Anne D; Vellend, Mark; Frei, Esther R; Henry, Gregory H R

    2017-04-01

    Rapidly rising temperatures are expected to cause latitudinal and elevational range shifts as species track their optimal climate north and upward. However, a lack of adaptation to environmental conditions other than climate - for example photoperiod, biotic interactions, or edaphic conditions - might limit the success of immigrants in a new location despite hospitable climatic conditions. Here, we present one of the first direct experimental tests of the hypothesis that warmer temperatures at northern latitudes will confer a fitness advantage to southern immigrants relative to native populations. As rates of warming in the Arctic are more than double the global average, understanding the impacts of warming in Arctic ecosystems is especially urgent. We established experimentally warmed and nonwarmed common garden plots at Alexandra Fiord, Ellesmere Island in the Canadian High Arctic with seeds of two forb species (Oxyria digyna and Papaver radicatum) originating from three to five populations at different latitudes across the Arctic. We found that plants from the local populations generally had higher survival and obtained a greater maximum size than foreign individuals, regardless of warming treatment. Phenological traits varied with latitude of the source population, such that southern populations demonstrated substantially delayed leaf-out and senescence relative to northern populations. Our results suggest that environmental conditions other than temperature may influence the ability of foreign populations and species to establish at more northerly latitudes as the climate warms, potentially leading to lags in northward range shifts for some species.

  14. Plant and microbial uptake and allocation of organic and inorganic nitrogen related to plant growth forms and soil conditions at two subarctic tundra sites in Sweden

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Clemmensen, Karina Engelbrecht; Michelsen, Anders

    2008-01-01

    transported a high proportion of 15N to aboveground parts, whereas the dwarf shrubs allocated most 15N to underground storage. Enhanced 13C in Betula nana roots represents the first field evidence of uptake of intact glycine by this important circumpolar plant. Plant and microbial uptake of label...... was complementary as plants took up more inorganic than organic N, while microbes preferred organic N. Microbes initially took up a large part of the added label, but over the following four weeks microbial 15N decreased by 50% and most 15N was recovered in soil organic matter, while a smaller but slowly increasing...

  15. Can antibrowsing defense regulate the spread of woody vegetation in arctic tundra?

    Science.gov (United States)

    Bryant, John P.; Joly, Kyle; Chapin, F. Stuart; DeAngelis, Donald L.; Kielland, Knut

    2014-01-01

    Global climate warming is projected to promote the increase of woody plants, especially shrubs, in arctic tundra. Many factors may affect the extent of this increase, including browsing by mammals. We hypothesize that across the Arctic the effect of browsing will vary because of regional variation in antibrowsing chemical defense. Using birch (Betula) as a case study, we propose that browsing is unlikely to retard birch expansion in the region extending eastward from the Lena River in central Siberia across Beringia and the continental tundra of central and eastern Canada where the more effectively defended resin birches predominate. Browsing is more likely to retard birch expansion in tundra west of the Lena to Fennoscandia, Iceland, Greenland and South Baffin Island where the less effectively defended non-resin birches predominate. Evidence from the literature supports this hypothesis. We further suggest that the effect of warming on the supply of plant-available nitrogen will not significantly change either this pan-Arctic pattern of variation in antibrowsing defense or the resultant effect that browsing has on birch expansion in tundra. However, within central and east Beringia warming-caused increases in plant-available nitrogen combined with wildfire could initiate amplifying feedback loops that could accelerate shrubification of tundra by the more effectively defended resin birches. This accelerated shrubification of tundra by resin birch, if extensive, could reduce the food supply of caribou causing population declines. We conclude with a brief discussion of modeling methods that show promise in projecting invasion of tundra by woody plants.

  16. Global assessment of experimental climate warming on tundra vegetation

    DEFF Research Database (Denmark)

    Elmendorf, S.C.; Henry, G.H.R.; Bjorkman, A.D.

    2012-01-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this ap...

  17. Tundra in the rain: differential vegetation responses to three years of experimentally doubled summer precipitation in Siberian shrub and Swedish bog tundra.

    Science.gov (United States)

    Keuper, Frida; Parmentier, Frans-Jan W; Blok, Daan; van Bodegom, Peter M; Dorrepaal, Ellen; van Hal, Jurgen R; van Logtestijn, Richard S P; Aerts, Rien

    2012-01-01

    Precipitation amounts and patterns at high latitude sites have been predicted to change as a result of global climatic changes. We addressed vegetation responses to three years of experimentally increased summer precipitation in two previously unaddressed tundra types: Betula nana-dominated shrub tundra (northeast Siberia) and a dry Sphagnum fuscum-dominated bog (northern Sweden). Positive responses to approximately doubled ambient precipitation (an increase of 200 mm year(-1)) were observed at the Siberian site, for B. nana (30 % larger length increments), Salix pulchra (leaf size and length increments) and Arctagrostis latifolia (leaf size and specific leaf area), but none were observed at the Swedish site. Total biomass production did not increase at either of the study sites. This study corroborates studies in other tundra vegetation types and shows that despite regional differences at the plant level, total tundra plant productivity is, at least at the short or medium term, largely irresponsive to experimentally increased summer precipitation.

  18. Relationship of cyanobacterial and algal assemblages with vegetation in the high Arctic tundra (West Spitsbergen, Svalbard Archipelago

    Directory of Open Access Journals (Sweden)

    Richter Dorota

    2015-09-01

    Full Text Available The paper presents the results of a study of cyanobacteria and green algae assemblages occurring in various tundra types determined on the basis of mosses and vascular plants and habitat conditions. The research was carried out during summer in the years 2009-2013 on the north sea-coast of Hornsund fjord (West Spitsbergen, Svalbard Archipelago. 58 sites were studied in various tundra types differing in composition of vascular plants, mosses and in trophy and humidity. 141 cyanobacteria and green algae were noted in the research area in total. Cyanobacteria and green algae flora is a significant element of many tundra types and sometimes even dominate there. Despite its importance, it has not been hitherto taken into account in the description and classification of tundra. The aim of the present study was to demonstrate the legitimacy of using phycoflora in supplementing the descriptions of hitherto described tundra and distinguishing new tundra types. Numeric hierarchical-accumulative classification (MVSP 3.1 software methods were used to analyze the cyanobacterial and algal assemblages and their co-relations with particular tundra types. The analysis determined dominant and distinctive species in the communities in concordance with ecologically diverse types of tundra. The results show the importance of these organisms in the composition of the vegetation of tundra types and their role in the ecosystems of this part of the Arctic.

  19. Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, Walter C.

    1990-09-05

    OAK B188 Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}. Atmospheric CO{sub 2} is expected to double by the end of the next century. Global mean increases in surface air temperature of 1.5-4.5 C are anticipated with larger increases towards the poles predicted. Changes in CO{sub 2} levels and temperature could have major impacts on ecosystem functioning, including primary productivity, species composition, plant-animal interactions, and carbon storage. Until recently, there has been little direct information on the impact of changes in CO{sub 2} and temperature on native ecosystems. The study described here was undertaken to evaluate the effects of a 50 and 100% increase in atmospheric CO{sub 2}, and a 100% increase in atmospheric CO{sub 2} coupled with a 4 C summer air temperature rise on the structure and function of an arctic tussock tundra ecosystem. The arctic contains large stores of carbon as soil organic matter, much frozen in permafrost and currently not reactive or available for oxidation and release into the atmosphere. About 10-27% of the world's terrestrial carbon occurs in arctic and boreal regions, and carbon is accumulating in these regions at the rate of 0.19 GT y{sup -1}. Mean temperature increases of 11 C and summer temperature increases of 4 C have been suggested. Mean July temperatures on the arctic coastal plain and arctic foothills regions are 4-12 C, and mean annual temperatures are -7 to -13 C (Haugen, 1982). The projected temperature increases represent a substantial elevation above current temperatures which will have major impacts on physical processes such as permafrost development and development of the active layer, and on biological and ecosystem processes such as primary productivity, carbon storage, and species composition. Extreme nutrient and temperature limitation of this ecosystem raised questions of the responsiveness of arctic systems to elevated CO{sub 2}. Complex ecosystem interactions with the effects

  20. Drivers of post-fire successional trajectories in arctic tundra: the importance of physical and biophysical interactions

    Science.gov (United States)

    Rocha, A. V.; Jiang, Y.; Rastetter, E. B.; Drysdale, J.; Kremers, K.; Shaver, G. R.

    2013-12-01

    Fires in arctic tundra are rare with return intervals in the hundreds to thousands of years, but these events have large implications for carbon and energy fluxes in an environmentally changing and sensitive ecosystem. Permafrost degradation, species composition shifts, and ecosystem function alterations are just a few of the potential consequences of fire that could feedback on future climate change. Here we describe remote sensing, eddy covariance, thaw depth, and biomass measurements along an arctic tundra chronosequence to understand long-term post-fire carbon and energy budgets. Historical remote sensing and fire perimeter data were used to choose sites that were representative of a 0-6, 18, and 36 year old fire scar, which were paired with a representative nearby unburned control. Fires caused successional changes to carbon and energy budgets through changes to the soil thermal regime, caused by decreased organic layer from combustion, and shifts from tussock to grass and shrub dominated systems. Measurements and modeling with the Multiple Element Limitation (MEL) model indicate that nutrients played a key role in these shifts and that these dynamics change are controlled by biophysical conditions immediately after fire (i.e. residual organic layer depth) and climate during early succession. Results highlight the importance of initial conditions in determining the successional trajectory of arctic tundra and yield important insights on how these systems will respond to future climate change.

  1. Net Primary Production and Carbon Stocks for Subarctic Mesic-Dry Tundras with Contrasting Microtopography, Altitude, and Dominant Species

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Demey, A;

    2009-01-01

    production was obtained from average species growth rates, previously assessed at the sites. Results showed that aboveground vascular NPP (15-270 g m-2), annual NPP (214-282 g m-2 or 102-137 g C m-2) and vegetation biomass (330-2450 g m-2) varied greatly among communities. Vegetation dominated by Empetrum......Mesic-dry tundras are widespread in the Arctic but detailed assessments of net primary production (NPP) and ecosystem carbon (C) stocks are lacking. We addressed this lack of knowledge by determining the seasonal dynamics of aboveground vascular NPP, annual NPP, and whole-ecosystem C stocks in five...... of the vegetation production occurred aboveground (85%). Ecosystem C and N stocks were 2100-8200 g C m-2 and 80-330 g N m-2, respectively, stored mainly in the soil turf and in the fine organic soil. Such stocks are comparable to the C and N stocks of moister tundra types, such as tussock tundra....

  2. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    Science.gov (United States)

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska.

  3. A model of growth and carbon storage in Eriophorum Vaginatum L.

    Science.gov (United States)

    Curasi, S. R.; Rocha, A. V.; Bolster, D.; Fetcher, N.; Parker, T.

    2016-12-01

    Eriophorum Vaginatum L. is a rhizomatous, tussock forming, perennial sedge commonly found in Arctic tundra environments. Tussocks are well suited to harsh nutrient poor environments and tussock tundra is common in Alaska, Canada and Northeastern Russia accounting for 24% of Arctic land area. Tussocks play important roles in Arctic ecosystem biogeochemistry and C storage. However, the environmental and biological factors controlling their size, distribution across the landscape and growth are poorly understood as a result of their growth form and slow growth rate ( 150 years). In order to better understand the role of tussocks in tussock tundra ecosystem C stocks and the potential impacts of climate change on tussock tundra we amassed data from a core site at Toolik field station in North Slope Alaska as well as other Arctic locations. Using this information we constructed a model of carbon storage and growth in E. Vaginatum. We conclude that environmental conditions and the physical properties of the tussock growth form control the rate of tussock growth and retention of C. This work highlights the role of plant growth forms in the retention of tundra ecosystem C stocks. It also has broader applicability to those interested in predicating the impacts of climate change and shifts in vegetation species composition on C storage and fuel loading as well as broader vegetation modeling efforts in tundra ecosystems.

  4. Transformation of nitrogen compounds in the tundra soils of Northern Fennoscandia

    Science.gov (United States)

    Maslov, M. N.; Makarov, M. I.

    2016-07-01

    The transformation of organic nitrogen compounds in the soils of tundra ecosystems of Northern Fennoscandia has been studied under laboratory and natural conditions. Tundra soils contain significant reserves of total nitrogen, but they are poor in its extractable mineral and organic forms. The potential rates of the net mineralization and net immobilization of nitrogen by microorganisms vary among the soils and depend on the C: N ratio in the extractable organic matter and microbial biomass of soil. Under natural conditions, the rate of nitrogen net mineralization is lower than the potential rate determined under laboratory conditions by 6-25 times. The incubation of tundra soils in the presence of plants does not result in the accumulation of mineral nitrogen compounds either in the soil or in microbial biomass. This confirms the high competitive capacity of plants under conditions of limited nitrogen availability in tundra ecosystems.

  5. Lepidoptera Larvae as an Indicator of Multi-trophic Level Responses to Changing Seasonality in an Arctic Tundra Ecosystem

    Science.gov (United States)

    Daly, K. M.; Steltzer, H.; Boelman, N.; Weintraub, M. N.; Darrouzet-Nardi, A.; Wallenstein, M. D.; Sullivan, P.; Gough, L.; Rich, M.; Hendrix, C.; Kielland, K.; Philip, K.; Doak, P.; Ferris, C.; Sikes, D.

    2011-12-01

    Earlier snowmelt and warming temperatures in the Arctic will impact multiple trophic levels through the timing and availability of food resources. Lepidoptera are a vital link within the ecosystem; their roles include pollinator, parasitized host for other pollinating insects, and essential food source for migrating birds and their fledglings. Multiple environmental cues including temperature initiate plant growth, and in turn, trigger the emergence of Lepidoptera and the migrations of birds. If snowmelt is accelerated and temperature is increased, it is expected that the Lepidoptera larvae will respond to early plant growth by increasing their abundance within areas that have accelerated snowmelt and warmer conditions. In May of 2011 in a moist acidic tussock tundra system, we accelerated snowmelt by 15 days through the use of radiation-absorbing fabric and warmed air and soil temperatures using open-top chambers, individually and in combination. Every 1-2 days from May 27th to July 8th, 2 minute searches were performed for Lepidoptera larvae in all treatments; when an animal was found, their micro-habitat, surface temperature, behavior, food source, and time of day were noted. The length, body and head width were measured, and the animals were examined for braconid wasp and tachinid fly parasites. Lepidoptera larvae collected in pitfall traps from May 26th to July 7th were also examined and measured. Total density of parasitized larvae accounted for 54% of observed specimens and 50% of pitfall specimens, indicating that Lepidoptera larvae serve an integral role as a host for other pollinators. Total larvae density was highest within the accelerated snowmelt plots compared to the control plots; 66% of observed live specimens and 63% of pitfall specimens were found within the accelerated snowmelt plots. Ninety percent of the total observed animals were found within the open-top warming chambers. Peak density of animals occurred at Solar Noon between 14:00 -15

  6. Variation in bird's originating nitrogen availability limits High Arctic tundra development over last 2000 year (Hornsund, Svalbard)

    Science.gov (United States)

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Hua, Quan; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2016-04-01

    Arctic and subarctic regions play important roles in the global carbon balance. However, nitrogen (N) deficiency is a major constraint for organic carbon sequestration in the High Arctic. Hence, the identification of the relative contributions from different N-sources is critical for understanding the constraints that limit tundra growth. The stable nitrogen composition of the three main N-sources and numerous plants were analyzed in ten tundra types (including those influenced by seabirds) in the Fuglebekken catchment (Hornsund, Svalbard, 77°N 15°E). The percentage of the total tundra N-pool provided by seabirds' feces (from planktivorous colonially breeding little auks Alle alle), ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment originated from birds (36%), atmospheric deposition (38%), and N2-fixation (26%). The results clearly show that N-pool in the tundra is significantly supplemented by nesting seabirds. Thus, if they experienced climate change induced substantial negative environmental pressure, it would adversely influence the tundra N-budget (Skrzypek et al. 2015). The growth rates and the sediment thickness (PLoS ONE 10(9): e0136536.

  7. Radiation budget and soil heat fluxes in different Arctic tundra vegetation types

    Science.gov (United States)

    Juszak, Inge; Iturrate Garcia, Maitane; Gastellu-Etchegorry, Jean-Philippe; Schaepman, Michael E.; Schaepman-Strub, Gabriela

    2016-04-01

    While solar radiation is one of the primary energy sources for warming and thawing permafrost soil, the amount of shortwave radiation reaching the soil is reduced by vegetation shading. Climate change has led to greening, shrub expansion and encroachment in many Arctic tundra regions and further changes are anticipated. These vegetation changes feed back to the atmosphere and permafrost as they modify the surface energy budget. However, canopy transmittance of solar radiation has rarely been measured or modelled for a variety of tundra vegetation types. We assessed the radiation budget of the most common vegetation types at the Kytalyk field site in North-East Siberia (70.8°N, 147.5°E) with field measurements and 3D radiative transfer modelling and linked it to soil heat fluxes. Our results show that Arctic tundra vegetation types differ in canopy albedo and transmittance as well as in soil heat flux and active layer thickness. Tussock sedges transmitted on average 56% of the incoming light and dwarf shrubs 27%. For wet sedges we found that the litter layer was very important as it reduced the average transmittance to only 6%. Model output indicated that both, albedo and transmittance, also depend on the spatial aggregation of vegetation types. We found that permafrost thaw was more strongly related to soil properties than to canopy shading. The presented radiative transfer model allows quantifying effects of the vegetation layer on the surface radiation budget in permafrost areas. The parametrised model can account for diverse vegetation types and variation of properties within types. Our results highlight small scale radiation budget and permafrost thaw variability which are indicated and partly caused by vegetation. As changes in species composition and biomass increase can influence thaw rates, small scale patterns should be considered in assessments of climate-vegetation-permafrost feedbacks.

  8. How to preserve the tundra in a warming climate?

    Science.gov (United States)

    Käyhkö, Jukka

    2014-05-01

    The warming climate of the polar regions may change much of the current arctic-alpine tundra to forest or dense scrubland. This modification requires adaptation by traditional livelihoods such as reindeer herding, which relies on diverse, seasonal pasturelands. Vegetation change may also trigger positive warming feedbacks, where more abundant forest-scrub vegetation will decrease the global albedo. NCoE Tundra team investigates the complex climate-animal-plant interaction of the tundra ecosystem and aim to unravel the capability of herbivorous mammals to control the expansion of woody vegetation. Our interdisciplinary approach involves several work packages, whose results will be summarised in the presentation. In the ecological WPs, we study the dynamics of the natural food chains involving small herbivorous and the impacts of reindeer on the vegetation and the population dynamics of those arctic-alpine plants, which are most likely to become threatened in a warmer climate. Our study demonstrates the potential of a relatively sparse reindeer stocks (2-5 heads per km2) together with natural populations of arvicoline rodents to prevent the expansion of erect woody plants at the arctic-alpine timberline. In the climatic WPs we study the impact of grazing-dependent vegetation differences on the fraction of solar energy converted to heat. In the socio-economic WPs, we study the conditions for maintaining the economic and cultural viability of reindeer herding while managing the land use so that the arctic-alpine biota would be preserved.

  9. Carbon and nutrient responses to fire and climate warming in Alaskan arctic tundra

    Science.gov (United States)

    Jiang, Y.; Rastetter, E. B.; Shaver, G. R.; Rocha, A. V.; Kwiatkowski, B.; Pearce, A.; Zhuang, Q.; Mishra, U.

    2015-12-01

    Fire frequency has dramatically increased in the tundra of northern Alaska, which has major implications for the carbon budget of the region and the functioning of these ecosystems that support important wildlife species. We applied the Multiple Element Limitation (MEL) model to investigate both the short- and long-term post-fire succession of plant and soil carbon, nitrogen, and phosphorus fluxes and stocks along a burn severity gradient in the 2007 Anaktuvuk River Fire scar in northern Alaska. We compared the patterns of biomass and soil carbon, nitrogen and phosphorus recoveries with different burn severities and warming intensities. Modeling results indicated that the early regrowth of post-fire tundra vegetation was limited primarily by its canopy photosynthetic potential, rather than nutrient availability. The long-term recovery of C balance from fire disturbance is mainly determined by the internal redistribution of nutrients among ecosystem components, rather than the supply of nutrients from external sources (e.g., nitrogen deposition and fixation, phosphorus weathering). Soil organic matter is the principal source of plant-available nutrients and determines the spatial variation of vegetation biomass across the North Slope of Alaska. Across the North Slope of Alaska, we examined the effects of changes in N and P cycles on tundra C budgets under climate warming. Our results indicate that the ongoing climate warming in Arctic enhances mineralization and leads to a net transfer of nutrient from soil organic matter to vegetation, thereby stimulating tundra plant growth and increased C sequestration in the tundra ecosystems.

  10. Below-ground carbon transfer among Betula nana may increase with warming in Arctic tundra.

    Science.gov (United States)

    Deslippe, Julie R; Simard, Suzanne W

    2011-11-01

    • Shrubs are expanding in Arctic tundra, but the role of mycorrhizal fungi in this process is unknown. We tested the hypothesis that mycorrhizal networks are involved in interplant carbon (C) transfer within a tundra plant community. • Here, we installed below-ground treatments to control for C transfer pathways and conducted a (13)CO(2)-pulse-chase labelling experiment to examine C transfer among and within plant species. • We showed that mycorrhizal networks exist in tundra, and facilitate below-ground transfer of C among Betula nana individuals, but not between or within the other tundra species examined. Total C transfer among conspecific B. nana pairs was 10.7 ± 2.4% of photosynthesis, with the majority of C transferred through rhizomes or root grafts (5.2 ± 5.3%) and mycorrhizal network pathways (4.1 ± 3.3%) and very little through soil pathways (1.4 ± 0.35%). • Below-ground C transfer was of sufficient magnitude to potentially alter plant interactions in Arctic tundra, increasing the competitive ability and mono-dominance of B. nana. C transfer was significantly positively related to ambient temperatures, suggesting that it may act as a positive feedback to ecosystem change as climate warms.

  11. Gaps in Data and Modeling Tools for Understanding Fire and Fire Effects in Tundra Ecosystems

    Science.gov (United States)

    French, N. H.; Miller, M. E.; Loboda, T. V.; Jenkins, L. K.; Bourgeau-Chavez, L. L.; Suiter, A.; Hawkins, S. M.

    2013-12-01

    capability for accurate estimation of fire emissions in this region. Initial evaluation of Landsat for tundra fire characterization (Loboda et al. 2013) and successful use of the rich archive of Synthetic Aperture Radar imagery for many fire-disturbed sites in the region will be additional topics covered in this poster presentation. References: Breiman, L. 2001. Random forests. Machine Learning, 45:5-32. French, N.H.F., W.J. de Groot, L.K. Jenkins, B.. Rogers, et al. 2011. Model comparisons for estimating carbon emissions from North American wildland fire. J. Geophys. Res. 116:G00K05, doi:10.1029/2010JG001469. Loboda, T L, N H F French, C. Hight-Harf, L. Jenkins, M.E. Miller. 2013. Mapping fire extent and burn severity in Alaskan tussock tundra: An analysis of the spectral response of tundra vegetation to wildland fire. Remote Sens. Enviro. 134:194-209.

  12. International Tundra Experiment ITEX Manual Second Edition

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Nonforest plots of Long Term Ecological Monitoring sites follow protocols developed for the International Tundra Experiment Walker et al. 1993, Walker 1996.

  13. Koyukuk NWR tundra/trumpeter swan survey

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A tundra/trumpeter swan survey was conducted on the Koyukuk National Wildlife Refuge from 14 August to 23 August 1984. Twenty-four six mile square plots were...

  14. Shifts in the phylogenetic structure and functional capacity of soil microbial communities follow alteration of native tussock grassland ecosystems

    NARCIS (Netherlands)

    Wakelin, Steven A.; Barratt, Barbara I.P.; Gerard, Emily; Gregg, Adrienne L.; Brodie, Eoin L.; Andersen, Gary L.; DeSantis, Todd Z.; Zhou, Jizhong; He, Zhili; Kowalchuk, George A.; O'Callaghan, Maureen

    Globally, tussock-based grasslands are being modified to increase productive capacity. The impacts of cultivation and over-sowing with exotic grass and legumes on soil microbiology were assessed at four sites in New Zealand which differed in soil type, climate and vegetation. Primary alteration of

  15. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time

    Science.gov (United States)

    Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollister; Robert G. Björk; Anne D. Bjorkman; Terry V. Callaghan; [and others] NO-VALUE; William Gould; Joel Mercado

    2012-01-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty...

  16. Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in arctic tundra?

    Energy Technology Data Exchange (ETDEWEB)

    Boelman, Natalie T [Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964 (United States); Gough, Laura; McLaren, Jennie R [Department of Biology, University of Texas at Arlington, Arlington, TX 76019 (United States); Greaves, Heather, E-mail: nboelman@ldeo.columbia.edu [Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331 (United States)

    2011-07-15

    This study explores relationships between the normalized difference vegetation index (NDVI) and structural characteristics associated with deciduous shrub dominance in arctic tundra. Our structural measures of shrub dominance are stature, branch abundance, aerial per cent woody stem cover (deciduous and evergreen species), and per cent deciduous shrub canopy cover. All measurements were taken across a suite of transects that together represent a gradient of deciduous shrub height. The transects include tussock tundra shrub and riparian shrub tundra communities located in the northern foothills of the Brooks Range, in northern Alaska. Plot-level NDVI measurements were made in 2010 during the snow-free period prior to deciduous shrub leaf-out (early June, NDVI{sub pre-leaf}), at the point in the growing season when canopy NDVI has reached half of its maximum growing season value (mid-June, NDVI{sub demi-leaf}) and during the period of maximum leaf-out (late July, NDVI{sub peak-leaf}). We found that: (1) NDVI{sub pre-leaf} is best suited to capturing variation in the per cent woody stem cover, maximum shrub height, and branch abundance, particularly between 10 and 50 cm height in the canopy; (2) NDVI{sub peak-leaf} is best suited to capturing variation in deciduous canopy cover; and (3) NDVI{sub demi-leaf} does not capture variability in any of our measures of shrub dominance. These findings suggest that in situ NDVI measurements made prior to deciduous canopy leaf-out could be used to identify small differences in maximum shrub height, woody stem cover, and branch abundance (particularly between 10 and 50 cm height in the canopy). Because shrubs are increasing in size and regional extent in several regions of the Arctic, investigation into spectrally based tools for monitoring these changes are worthwhile as they provide a first step towards development of remotely sensed techniques for quantifying associated changes in regional carbon cycling, albedo, radiative

  17. Effects of temperature seasonality on tundra vegetation productivity using a daily vegetation dynamics model

    Science.gov (United States)

    Epstein, H. E.; Erler, A.; Frazier, J.; Bhatt, U. S.

    2011-12-01

    Changes in the seasonality of air temperature will elicit interacting effects on the dynamics of snow cover, nutrient availability, vegetation growth, and other ecosystem properties and processes in arctic tundra. Simulation models often do not have the fine temporal resolution necessary to develop theory and propose hypotheses for the effects of daily and weekly timescale changes on ecosystem dynamics. We therefore developed a daily version of an arctic tundra vegetation dynamics model (ArcVeg) to simulate how changes in the seasonality of air temperatures influences the dynamics of vegetation growth and carbon sequestration across regions of arctic tundra. High temporal-resolution air and soil temperature data collected from field sites across the five arctic tundra bioclimate subzones were used to develop a daily weather generator operable for sites throughout the arctic tundra. Empirical relationships between temperature and soil nitrogen were used to generate daily dynamics of soil nitrogen availability, which drive the daily uptake of nitrogen and growth among twelve tundra plant functional types. Seasonal dynamics of the remotely sensed normalized difference vegetation index (NDVI) and remotely sensed land surface temperature from the Advanced Very High Resolution Radiometer (AVHRR) GIMMS 3g dataset were used to investigate constraints on the start of the growing season, although there was no indication of any spatially consistent temperature or day-length controls on greening onset. Because of the exponential nature of the relationship between soil temperature and nitrogen mineralization, temperature changes during the peak of the growing season had greater effects on vegetation productivity than changes earlier in the growing season. However, early season changes in temperature had a greater effect on the relative productivities of different plant functional types, with potential influences on species composition.

  18. Decadal changes of phenological patterns over Arctic tundra biome

    Science.gov (United States)

    Jia, G. J.; Epstein, H. E.; Walker, D. A.; Wang, H.

    2008-12-01

    The northern high latitudes have experienced a continuous and accelerated trend of warming during the past 30 years, with most recent decade ranks the warmest years since 1850. Warmer springs are especially evident throughout the Arctic. Meanwhile, Arctic sea ice declined rapidly to unprecedented low extents in all months, with late summer experiences the most significant declining. Warming in the north is also evident from observations of early melting of snow and reducing snow cover. Now a key question is: in the warmth limited northern biome, what will happen to the phenological patterns of tundra vegetation as the global climate warms and seasonality of air temperature, sea ice, and snow cover shift? To answer the question we examined the onset of vegetation greenness, senescence of greenness, length of growing season, and dates of peak greenness along Arctic bioclimate gradients (subzones) to see how they change over years. Here, we combine multi-scale sub-pixel analysis and remote sensing time-series analysis to investigate recent decadal changes in vegetation phenology along spatial gradients of summer temperature and vegetation in the Arctic. The datasets used here are AVHRR 15-day 8 km time series, AVHRR 8-day 1 km dataset, and MODIS 8-day 500m Collection 5 dataset. There were detectable changes in phenological pattern over tundra biome in past two decades. Increases of vegetation greenness were observed in most of the summer periods in low arctic and mid-summer in high arctic. Peak greenness appeared earlier in high arctic and declined slower after peak in low arctic. Generally, tundra plants were having longer and stronger photosynthesis activities, and therefore increased annual vegetation productivities. Field studies have observed early growth and enhanced peak growth of many deciduous shrub species in tundra plant communities. These changes in seasonality are very likely to alter surface albedo and heat budget, modify plant photosynthesis

  19. Response of rhizosphere soil microbial to Deyeuxia angustifolia encroaching in two different vegetation communities in alpine tundra

    Science.gov (United States)

    Li, Lin; Xing, Ming; Lv, Jiangwei; Wang, Xiaolong; Chen, Xia

    2017-02-01

    Deyeuxia angustifolia (Komarov) Y. L Chang is an herb species originating from the birch forests in the Changbai Mountain. Recently, this species has been found encroaching into large areas in the western slopes of the alpine tundra in the Changbai Mountain, threatening the tundra ecosystem. In this study, we systematically assessed the response of the rhizosphere soil microbial to D. angustifolia encroaching in alpine tundra by conducting experiments for two vegetation types (shrubs and herbs) by real-time PCR and Illumina Miseq sequencing methods. The treatments consisted of D. angustifolia sites (DA), native sites (NS, NH) and encroaching sites (ES, EH). Our results show that (1) Rhizosphere soil properties of the alpine tundra were significantly impacted by D. angustifolia encroaching; microbial nutrient cycling and soil bacterial communities were shaped to be suitable for D. angustifolia growth; (2) The two vegetation community rhizosphere soils responded differently to D. angustifolia encroaching; (3) By encroaching into both vegetation communities, D. angustifolia could effectively replace the native species by establishing positive plant-soil feedback. The strong adaptation and assimilative capacity contributed to D. angustifolia encroaching in the alpine tundra. Our research indicates that D. angustifolia significantly impacts the rhizosphere soil microbial of the alpine tundra.

  20. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw

    Science.gov (United States)

    van der Kolk, Henk-Jan; Heijmans, Monique M. P. D.; van Huissteden, Jacobus; Pullens, Jeroen W. M.; Berendse, Frank

    2016-11-01

    Over the past decades, vegetation and climate have changed significantly in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid-dominated wetland. Which factors drive vegetation changes in the tundra ecosystem are still not sufficiently clear. In this study, the dynamic tundra vegetation model, NUCOM-tundra (NUtrient and COMpetition), was used to evaluate the consequences of climate change scenarios of warming and increasing precipitation for future tundra vegetation change. The model includes three plant functional types (moss, graminoids and shrubs), carbon and nitrogen cycling, water and permafrost dynamics and a simple thaw pond module. Climate scenario simulations were performed for 16 combinations of temperature and precipitation increases in five vegetation types representing a gradient from dry shrub-dominated to moist mixed and wet graminoid-dominated sites. Vegetation composition dynamics in currently mixed vegetation sites were dependent on both temperature and precipitation changes, with warming favouring shrub dominance and increased precipitation favouring graminoid abundance. Climate change simulations based on greenhouse gas emission scenarios in which temperature and precipitation increases were combined showed increases in biomass of both graminoids and shrubs, with graminoids increasing in abundance. The simulations suggest that shrub growth can be limited by very wet soil conditions and low nutrient supply, whereas graminoids have the advantage of being able to grow in a wide range of soil moisture conditions and have access to nutrients in deeper soil layers. Abrupt permafrost thaw initiating thaw pond formation led to complete domination of graminoids. However, due to increased drainage, shrubs could profit from such changes in adjacent areas. Both climate and thaw pond formation

  1. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time.

    Science.gov (United States)

    Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Björk, Robert G; Bjorkman, Anne D; Callaghan, Terry V; Collier, Laura Siegwart; Cooper, Elisabeth J; Cornelissen, Johannes H C; Day, Thomas A; Fosaa, Anna Maria; Gould, William A; Grétarsdóttir, Járngerður; Harte, John; Hermanutz, Luise; Hik, David S; Hofgaard, Annika; Jarrad, Frith; Jónsdóttir, Ingibjörg Svala; Keuper, Frida; Klanderud, Kari; Klein, Julia A; Koh, Saewan; Kudo, Gaku; Lang, Simone I; Loewen, Val; May, Jeremy L; Mercado, Joel; Michelsen, Anders; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Pieper, Sara; Post, Eric; Rixen, Christian; Robinson, Clare H; Schmidt, Niels Martin; Shaver, Gaius R; Stenström, Anna; Tolvanen, Anne; Totland, Orjan; Troxler, Tiffany; Wahren, Carl-Henrik; Webber, Patrick J; Welker, Jeffery M; Wookey, Philip A

    2012-02-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.

  2. Experimentally substantiated equations of the interrelations between the agrochemical characteristics of tundra soils

    Science.gov (United States)

    Vasil'Evskaya, V. D.; Grigor'ev, V. Ya.; Pogozhev, E. Yu.; Pogozheva, E. A.

    2011-01-01

    The detailed analysis of the results obtained in the course of experimental studying of the tundra soils in Western and Central Siberia and in the European part of Russia has revealed the general regularities of the variability and the relationships between the agrochemical and other properties of the soils. On the basis of these data, the calculated methods for the assessment of a complex of agrochemical properties of natural and disturbed tundra soils under different moisture and thermal conditions were elaborated. Among the properties analyzed, the following are important for plant growth: the acidity and the content of humus, organic carbon, total nitrogen, mobile phosphorus, nitrogen, and potassium. The relationships between the soil agro-chemical properties and the plant productivity allowed applying them for the quantitative evaluation of the environmental threat of the soil-plant cover's degradation because of different predominantly mechanical disturbances.

  3. Aspects of the grammar of Tundra Yukaghir

    NARCIS (Netherlands)

    M. Schmalz

    2013-01-01

    The present thesis is an attempt at a grammatical description of Tundra Yukaghir (TY), based on a variety of primary data including those collected by the author during three field trips from 2009 till 2012. TY is a highly endangered minority language spoken in north-eastern Russia. It has slightly

  4. Aspects of the grammar of Tundra Yukaghir

    NARCIS (Netherlands)

    Schmalz, M.

    2013-01-01

    The present thesis is an attempt at a grammatical description of Tundra Yukaghir (TY), based on a variety of primary data including those collected by the author during three field trips from 2009 till 2012. TY is a highly endangered minority language spoken in north-eastern Russia. It has slightly

  5. Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1996-11-01

    The overall objective of this research was to document current patterns of CO{sub 2} flux in selected locations of the circumpolar arctic, and to develop the information necessary to predict how these fluxes may be affected by climate change. In fulfillment of these objectives, net CO{sub 2} flux was measured at several sites on the North Slope of Alaska during the 1990--94 growing season (June--August) to determine the local and regional patterns of seasonal CO{sub 2} exchange. In addition, net CO{sub 2} flux was measured in the Russian and Icelandic Arctic to determine if the patterns of CO{sub 2} exchange observed in Arctic Alaska were representative of the circumpolar Arctic, while cold-season CO{sub 2} flux measurements were carried out during the 1993--94 winter season to determine the magnitude of CO{sub 2} efflux not accounted for by the growing season measurements. Manipulations of soil water table depth and surface temperature, which were identified from the extensive measurements as being the most important variables in determining the magnitude and direction of net CO{sub 2} exchange, were carried out during the 1993--94 growing seasons in tussock and wet sedge tundra ecosystems. Finally, measurements of CH{sub 4} flux were also measured at several of the North Slope study sites during the 1990--91 growing seasons.

  6. Arctic shrubification mediates the impacts of warming climate on changes to tundra vegetation

    Science.gov (United States)

    Mod, Heidi K.; Luoto, Miska

    2016-12-01

    Climate change has been observed to expand distributions of woody plants in many areas of arctic and alpine environments—a phenomenon called shrubification. New spatial arrangements of shrubs cause further changes in vegetation via changing dynamics of biotic interactions. However, the mediating influence of shrubification is rarely acknowledged in predictions of tundra vegetation change. Here, we examine possible warming-induced landscape-level vegetation changes in a high-latitude environment using species distribution modelling (SDM), specifically concentrating on the impacts of shrubification on ambient vegetation. First, we produced estimates of current shrub and tree cover and forecasts of their expansion under climate change scenarios to be incorporated to SDMs of 116 vascular plants. Second, the predictions of vegetation change based on the models including only abiotic predictors and the models including abiotic, shrub and tree predictors were compared in a representative test area. Based on our model predictions, abundance of woody plants will expand, thus decreasing predicted species richness, amplifying species turnover and increasing the local extinction risk for ambient vegetation. However, the spatial variation demonstrated in our predictions highlights that tundra vegetation can be expected to show a wide variety of different responses to the combined effects of warming and shrubification, depending on the original plant species pool and environmental conditions. We conclude that realistic forecasts of the future require acknowledging the role of shrubification in warming-induced tundra vegetation change.

  7. Carbon cycling of alpine tundra ecosystems on Changbai Mountain and its comparison with arctic tundra

    Institute of Scientific and Technical Information of China (English)

    DAI; Limin(代力民); WU; Gang(吴钢); ZHAO; Jingzhu(赵景柱); KONG; Hongmei(孔红梅); SHAO; Guofan(邵国凡); DENG; Hongbing(邓红兵)

    2002-01-01

    The alpine tundra on Changbai Mountain was formed as a left-over ‘island' in higher elevations after the glacier retrieved from the mid-latitude of Northern Hemisphere to the Arctic during the fourth ice age. The alpine tundra on Changbai Mountain also represents the best-reserved tundra ecosystems and the highest biodiversity in northeast Eurasia. This paper examines the quantity of carbon assimilation, litters, respiration rate of soil, and storage of organic carbon within the alpine tundra ecosystems on Changbai Mountain. The annual net storage of organic carbon was 2092 t/a, the total storage of organic carbon was 33457 t, the annual net storage of organic carbon in soil was 1054 t/a, the total organic carbon storage was 316203 t, and the annual respiration rate of soil was 92.9% and was 0.52 times more than that of the Arctic. The tundra-soil ecosystems in alpine Changbai Mountain had 456081 t of carbon storage, of which, organic carbon accounted for 76.7% whereas the mineral carbon accounted for 23.3%.

  8. Long-term recovery patterns of arctic tundra after winter seismic exploration.

    Science.gov (United States)

    Jorgenson, Janet C; Ver Hoef, Jay M; Jorgenson, M T

    2010-01-01

    In response to the increasing global demand for energy, oil exploration and development are expanding into frontier areas of the Arctic, where slow-growing tundra vegetation and the underlying permafrost soils are very sensitive to disturbance. The creation of vehicle trails on the tundra from seismic exploration for oil has accelerated in the past decade, and the cumulative impact represents a geographic footprint that covers a greater extent of Alaska's North Slope tundra than all other direct human impacts combined. Seismic exploration for oil and gas was conducted on the coastal plain of the Arctic National Wildlife Refuge, Alaska, USA, in the winters of 1984 and 1985. This study documents recovery of vegetation and permafrost soils over a two-decade period after vehicle traffic on snow-covered tundra. Paired permanent vegetation plots (disturbed vs. reference) were monitored six times from 1984 to 2002. Data were collected on percent vegetative cover by plant species and on soil and ground ice characteristics. We developed Bayesian hierarchical models, with temporally and spatially autocorrelated errors, to analyze the effects of vegetation type and initial disturbance levels on recovery patterns of the different plant growth forms as well as soil thaw depth. Plant community composition was altered on the trails by species-specific responses to initial disturbance and subsequent changes in substrate. Long-term changes included increased cover of graminoids and decreased cover of evergreen shrubs and mosses. Trails with low levels of initial disturbance usually improved well over time, whereas those with medium to high levels of initial disturbance recovered slowly. Trails on ice-poor, gravel substrates of riparian areas recovered better than those on ice-rich loamy soils of the uplands, even after severe initial damage. Recovery to pre-disturbance communities was not possible where trail subsidence occurred due to thawing of ground ice. Previous studies of

  9. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Sonal, E-mail: S.Choudhary@sheffield.ac.uk [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Management School, University of Sheffield, Conduit Road, Sheffield S10 1FL (United Kingdom); Blaud, Aimeric [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Osborn, A. Mark [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); School of Applied Sciences, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Press, Malcolm C. [School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Manchester Metropolitan University, Manchester, M15 6BH (United Kingdom); Phoenix, Gareth K. [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem {sup 15}N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m{sup −2} yr{sup −1}, applied as {sup 15}NH{sub 4}{sup 15}NO{sub 3} in Svalbard (79{sup °}N), during the summer. Separate applications of {sup 15}NO{sub 3}{sup −} and {sup 15}NH{sub 4}{sup +} were also made to determine the importance of N form in their retention. More than 95% of the total {sup 15}N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of {sup 15}N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater {sup 15}NO{sub 3}{sup −} than {sup 15}NH{sub 4}{sup +}, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events

  10. Climate Variations and Alaska Tundra Vegetation Productivity Declines in Spring

    Science.gov (United States)

    Bhatt, U. S.; Walker, D. A.; Bieniek, P.; Raynolds, M. K.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2015-12-01

    While sea ice has continued to decline, vegetation productivity increases have declined particularly during spring in Alaska as well as many parts of the Arctic tundra. To understand the processes behind these features we investigate spring climate variations that includes temperature, circulation patterns, and snow cover to determine how these may be contributing to spring browning. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2014. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), atmospheric reanalysis data, dynamically downscaled climate data, meteorological station data, and snow water equivalent (GlobSnow, assimilated snow data set). We analyzed the data for the full period (1982-2014) and for two sub-periods (1982-1998 and 1999-2014), which were chosen based on the declining Alaska SWI since 1998. MaxNDVI has increased from 1982-2014 over most of the Arctic but has declined from 1999 to 2014 southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but display widespread declines over the 1999-2014 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999 and these declines are particularly noteworthy during spring in Alaska. Spring declines in Alaska have been linked to increased spring snow cover that can delay greenup (Bieniek et al. 2015) but recent ground observations suggest that after an initial warming and greening, late season freezing temperature are damaging the plants. The late season freezing temperature hypothesis will be explored with meteorological climate/weather data sets for Alaska tundra regions. References P.A. Bieniek, US Bhatt, DA Walker, MK Raynolds, JC Comiso, HE Epstein, JE Pinzon, CJ Tucker, RL Thoman, H Tran, N M

  11. Microbial diversity in alpine tundra soils correlates with snow cover dynamics.

    Science.gov (United States)

    Zinger, Lucie; Shahnavaz, Bahar; Baptist, Florence; Geremia, Roberto A; Choler, Philippe

    2009-07-01

    The temporal and spatial snow cover dynamics is the primary factor controlling the plant communities' composition and biogeochemical cycles in arctic and alpine tundra. However, the relationships between the distribution of snow and the diversity of soil microbial communities remain largely unexplored. Over a period of 2 years, we monitored soil microbial communities at three sites, including contiguous alpine meadows of late and early snowmelt locations (LSM and ESM, respectively). Bacterial and fungal communities were characterized by using molecular fingerprinting and cloning/sequencing of microbial ribosomal DNA extracted from the soil. Herein, we show that the spatial and temporal distribution of snow strongly correlates with microbial community composition. High seasonal contrast in ESM is associated with marked seasonal shifts for bacterial communities; whereas less contrasted seasons because of long-lasting snowpack in LSM is associated with increased fungal diversity. Finally, our results indicate that, similar to plant communities, microbial communities exhibit important shifts in composition at two extremes of the snow cover gradient. However, winter conditions lead to the convergence of microbial communities independently of snow cover presence. This study provides new insights into the distribution of microbial communities in alpine tundra in relation to snow cover dynamics, and may be helpful in predicting the future of microbial communities and biogeochemical cycles in arctic and alpine tundra in the context of a warmer climate.

  12. Topographic patterns of above- and below ground production and nitrogen cycling in alpine tundra

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, M.C.; Schmidt, S.K.; Seastedt, T.R. [Univ. of Colorado, Boulder, CO (United States)

    1998-10-01

    Topography controls snowpack accumulation and hence growing-season length, soil water availability, and the distribution of plant communities in the Colorado Front Range alpine. Nutrient cycles in such an environment are likely to be regulated by interactions between topographically determined climate and plant species composition. The authors investigated variation in plant and soil components of internal N cycling across topographic gradients of dry, moist, and wet alpine tundra meadows at Niwot Ridge, Colorado. They expected that plant production and N cycling would increase from dry to wet alpine tundra meadows, but they hypothesized that variation in N turnover would span a proportionately greater range than productivity, because of feedbacks between plants and soil microbial processes that determine N availability. Plant production of foliage and roots increased over topographic sequences from 280 g{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1} in dry meadows to 600 g{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1} in wet meadows and was significantly correlated to soil moisture. Contrary to their expectation, plant N uptake for production increased to a lesser degree, from 3.9 g N{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1} in dry meadows to 6.8 g N{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1} in wet meadows. In all communities, the belowground component accounted for the majority of biomass, production, and N use for production.

  13. BRDF characteristics of tundra vegetation communities in Yamal, Western Siberia

    Science.gov (United States)

    Buchhorn, Marcel; Heim, Birgit; Walker, Donald A. Skip; Epstein, Howard; Leibman, Marina

    2013-04-01

    (NASA Yamal-LCLUC) transects and réleves at Laboravaya (southern Yamal) and Vaskiny Dachi (central Yamal), and at the Circumpolar Active Layer Monitoring (CALM) site in Vaskiny Dachi. The LCLUC plots are Greening of the Arctic (GOA) sites established in 2007 by Walker et al. (2009). The Circumpolar Active Layer Monitoring (CALM) site was established by M. Leibman (ECI) in 1993. BRDF processing for the tundra test sites demonstrate the mirror asymmetry in relative azimuth with respect to the principal plane. It also showed that the maximum scattering appears in the backward direction, but that there is no minimal forward scattering. Instead, the forward scattering is characterized by similar to higher reflectance values compared to the nadir position. Moreover, the analysis of the anisotropic behaviour of moss-dominated tundra types with 10 to 15% vascular plant cover show that the BRDF influence on vegetation indices (VI) of low-growing arctic vegetation communities can be up to 15% of the nadir value. The low sun elevation at the arctic latitudes prevents hotspot-effects, but a BRDF normalization still should be taken into account for the development of tundra-adapted vegetation indices. Walker, D.A. et al. (2009): Data Report of the 2007 and 2008 Yamal Expeditions. AGC Data Report. 133.

  14. Mapping Arctic Tundra Vegetation Communities Using Field Spectroscopy and Multispectral Satellite Data in North Alaska, USA

    Directory of Open Access Journals (Sweden)

    Scott J. Davidson

    2016-11-01

    Full Text Available The Arctic is currently undergoing intense changes in climate; vegetation composition and productivity are expected to respond to such changes. To understand the impacts of climate change on the function of Arctic tundra ecosystems within the global carbon cycle, it is crucial to improve the understanding of vegetation distribution and heterogeneity at multiple scales. Information detailing the fine-scale spatial distribution of tundra communities provided by high resolution vegetation mapping, is needed to understand the relative contributions of and relationships between single vegetation community measurements of greenhouse gas fluxes (e.g., ~1 m chamber flux and those encompassing multiple vegetation communities (e.g., ~300 m eddy covariance measurements. The objectives of this study were: (1 to determine whether dominant Arctic tundra vegetation communities found in different locations are spectrally distinct and distinguishable using field spectroscopy methods; and (2 to test which combination of raw reflectance and vegetation indices retrieved from field and satellite data resulted in accurate vegetation maps and whether these were transferable across locations to develop a systematic method to map dominant vegetation communities within larger eddy covariance tower footprints distributed along a 300 km transect in northern Alaska. We showed vegetation community separability primarily in the 450–510 nm, 630–690 nm and 705–745 nm regions of the spectrum with the field spectroscopy data. This is line with the different traits of these arctic tundra communities, with the drier, often non-vascular plant dominated communities having much higher reflectance in the 450–510 nm and 630–690 nm regions due to the lack of photosynthetic material, whereas the low reflectance values of the vascular plant dominated communities highlight the strong light absorption found here. High classification accuracies of 92% to 96% were achieved using

  15. Biogeochemistry: Arctic plants take up mercury vapour

    Science.gov (United States)

    Shotyk, William

    2017-07-01

    Trace elements are enriched in plants by natural processes, human activities or both. An analysis of mercury in Arctic tundra vegetation offers fresh insight into the uptake of trace metals from the atmosphere by plants. See Letter p.201

  16. Root traits explain observed tundra vegetation nitrogen uptake patterns: Implications for trait-based land models

    Science.gov (United States)

    Zhu, Qing; Iversen, Colleen M.; Riley, William J.; Slette, Ingrid J.; Vander Stel, Holly M.

    2016-12-01

    Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. However, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, to explain the observations. Observations using an 15N tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. In addition, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. Our results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.

  17. Douglas-Fir Tussock Moth- and Douglas-Fir Beetle-Caused Mortality in a Ponderosa Pine/Douglas-Fir Forest in the Colorado Front Range, USA

    Directory of Open Access Journals (Sweden)

    José F. Negrón

    2014-12-01

    Full Text Available An outbreak of the Douglas-fir tussock moth, Orgyia pseudotsugata McDunnough, occurred in the South Platte River drainage on the Pike-San Isabel National Forest in the Colorado Front Range attacking Douglas-fir, Pseudotsuga menziesii (Mirb. Franco. Stocking levels, species composition, and tree size in heavily and lightly defoliated stands were similar. Douglas-fir tussock moth defoliation resulted in significant Douglas-fir mortality in the heavily defoliated stands, leading to a change in dominance to ponderosa pine, Pinus ponderosa Lawson. Douglas-fir beetle, Dendroctonus pseudotsuqae Hopkins, populations increased following the defoliation event but caused less mortality, and did not differ between heavily and lightly defoliated stands. Douglas-fir tussock moth-related mortality was greatest in trees less than 15 cm dbh (diameter at 1.4 m above the ground that grew in suppressed and intermediate canopy positions. Douglas-fir beetle-related mortality was greatest in trees larger than 15 cm dbh that grew in the dominant and co-dominant crown positions. Although both insects utilize Douglas-fir as its primary host, stand response to infestation is different. The extensive outbreak of the Douglas-fir tussock moth followed by Douglas-fir beetle activity may be associated with a legacy of increased host type growing in overstocked conditions as a result of fire exclusion.

  18. Monitoring larval populations of the Douglas-fir tussock moth and the western spruce budworm on permanent plots: sampling methods and statistical properties of data

    Science.gov (United States)

    A.R. Mason; H.G. Paul

    1994-01-01

    Procedures for monitoring larval populations of the Douglas-fir tussock moth and the western spruce budworm are recommended based on many years experience in sampling these species in eastern Oregon and Washington. It is shown that statistically reliable estimates of larval density can be made for a population by sampling host trees in a series of permanent plots in a...

  19. Above and below ground carbon stocks in northeast Siberia tundra ecosystems: a comparison between disturbed and undisturbed areas

    Science.gov (United States)

    Weber, L. R.; Pena, H., III; Curasi, S. R.; Ramos, E.; Loranty, M. M.; Alexander, H. D.; Natali, S.

    2014-12-01

    Changes in arctic tundra vegetation have the potential to alter the regional carbon (C) budget, with feedback implications for global climate. A number of studies have documented both widespread increases in productivity as well as shifts in the dominant vegetation. In particular, shrubs have been replacing other vegetation, such as graminoids, in response to changes in their environment. Shrub expansion is thought to be facilitated by exposure of mineral soil and increased nutrient availability, which are often associated with disturbance. Such disturbances can be naturally occurring, typically associated with permafrost degradation or with direct anthropogenic causes such as infrastructure development. Mechanical disturbance associated with human development is not uncommon in tundra and will likely become more frequent as warming makes the Arctic more hospitable for resource extraction and other human activities. As such, this type of disturbance will become an increasingly important component of tundra C balance. Both increased productivity and shrub expansion have clear impacts on ecosystem C cycling through increased C uptake and aboveground (AG) storage. What is less clear, however, are the concurrent changes in belowground (BG) C storage. Here we inventoried AG and BG C stocks in disturbed and undisturbed tundra ecosystems to determine the effects of disturbance on tundra C balance. We measured differences in plant functional type, AG and BG biomass, soil C, and specific leaf area (SLA) for the dominant shrub (Salix) in 2 tundra ecosystems in northern Siberia—an undisturbed moist acidic tundra and an adjacent ecosystem that was used as a road ~50 years ago. Deciduous shrubs and grasses dominated both ecosystems, but biomass for both functional types was higher in the disturbed area. SLA was also higher inside the disturbance. Conversely, nonvascular plants and evergreen shrubs were less abundant in the disturbed area. BG plant biomass was substantially

  20. Soil Organic Matter in Forest Ecosystems of the Forest-tundra zone of Central Siberia

    Science.gov (United States)

    Mukhortova, Liudmila

    2010-05-01

    Our study was conducted on 17 forest sample plots in the forest-tundra zone of Central Siberia, Krasnoyarsk region, Russia. They were covered by larch/feather moss/shrub and larch/grass forest types growing on cryozems and podburs (Cryosols). The investigation was aimed at estimating soil organic matter storage and structure in forest ecosystems growing along the northern tree line. Such ecosystems have low rates of exchange processes and biological productivity. Estimating soil carbon in these forest types is important for a deeper understanding of their role in biogeochemical cycles and forecasting consequences of climate changes. Soil organic matter was divided into pools by biodegradation resistance level and, hence, different roles of these pools in biological cycles. The soil organic matter was divided into an easily mineralizable (LMOM) fraction, which includes labile (insoluble) (LOM) and mobile (soluble) (MOM) organic compounds, and a stable organic matter fraction that is humus substances bound with soil matrix. The forest-tundra soil carbon was found to total 30.9 to 125.9 tons/ha. Plant residues were the main part of the soil easily mineralizable organic matter and contained from 13.3 to 62.4% of this carbon. Plant residue carbon was mainly allocated on the soil surface, in the forest litter. Plant residues in the soil (dead roots + other "mortmass") were calculated to contribute 10-30% of the plant residues carbon, or 2.5-15.1% of the total soil carbon. Soil surface and in-soil dead plant material included 60-95% of heavily decomposed residues that made up a forest litter fermentation subhorizon and an "other mortmass" fraction of the root detritus. Mobile organic matter (substances dissolved in water and 0.1N NaOH) of plant residues was found to allocate 15-25% of carbon. In soil humus, MOM contribution ranged 14 to 64%. Easily mineralizable organic matter carbon appeared to generally dominate forest-tundra soil carbon pool. It was measured to

  1. Recent Arctic tundra fire initiates widespread thermokarst development

    Science.gov (United States)

    Jones, Benjamin M.; Grosse, Guido; Arp, Christopher D.; Miller, Eric K.; Liu, Lingli; Hayes, Daniel J.; Larsen, Christopher F.

    2015-01-01

    Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for ~50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.

  2. Evidence and Implications of Frequent Fires in Ancient Shrub Tundra

    Energy Technology Data Exchange (ETDEWEB)

    Higuera, P E; Brubaker, L B; Anderson, P M; Brown, T A; Kennedy, A T; Hu, F S

    2008-03-06

    Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birchdominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/- 90 s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleo-fires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21st century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere.

  3. Ecosystem partitioning of 15N-glycine after long-term climate and nutrient manipulations, plant clipping and addition of labile carbon in a subarctic heath tundra

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Michelsen, Anders; Jonasson, Sven Evert

    2008-01-01

    Low temperatures and high soil moisture restrict cycling of organic matter in arctic soils, but also substrate quality, i.e. labile carbon (C) availability, exerts control on microbial activity. Plant exudation of labile C may facilitate microbial growth and enhance microbial immobilization......, microorganisms and plants. There were few effects of long-term warming and fertilization on soil and plant pools. However, fertilization increased soil and plant N pools and increased pool dilution of the added 15N label. In all treatments, microbes immobilized a major part of the added 15N shortly after label...... addition. However, plants exerted control on the soil inorganic N concentrations and recovery of total dissolved 15N (TD15N), and likewise the microbes reduced these soil pools, but only when fed with labile C. Soil microbes in clipped plots were primarily C limited, and the findings of reduced N...

  4. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    Science.gov (United States)

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication.

  5. Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest

    Science.gov (United States)

    Thompson, C.; Beringer, J.; Chapin, F. S.; McGuire, A.D.

    2004-01-01

    Question: Current climate changes in the Alaskan Arctic, which are characterized by increases in temperature and length of growing season, could alter vegetation structure, especially through increases in shrub cover or the movement of treeline. These changes in vegetation structure have consequences for the climate system. What is the relationship between structural complexity and partitioning of surface energy along a gradient from tundra through shrub tundra to closed canopy forest? Location: Arctic tundra-boreal forest transition in the Alaskan Arctic. Methods: Along this gradient of increasing canopy complexity, we measured key vegetation characteristics, including community composition, biomass, cover, height, leaf area index and stem area index. We relate these vegetation characteristics to albedo and the partitioning of net radiation into ground, latent, and sensible heating fluxes. Results: Canopy complexity increased along the sequence from tundra to forest due to the addition of new plant functional types. This led to non-linear changes in biomass, cover, and height in the understory. The increased canopy complexity resulted in reduced ground heat fluxes, relatively conserved latent heat fluxes and increased sensible heat fluxes. The localized warming associated with increased sensible heating over more complex canopies may amplify regional warming, causing further vegetation change in the Alaskan Arctic.

  6. The modeled effects of fire on carbon balance and vegetation abundance in Alaskan tundra

    Science.gov (United States)

    Dietze, M. C.; Davidson, C. D.; Kelly, R.; Higuera, P. E.; Hu, F.

    2012-12-01

    vegetation composition following fire within tundra. Ensembles of model runs were conducted within burned and unburned sites along the Anaktuvuk River fire scar. Modeled net ecosystem exchange at these sites were compared to the observations of flux towers. In addition, a series of simulations were performed at these sites to access the suitability of the model in simulating fire succession over a moderate time scale of 20 years. Two simulations were performed on burned and unburned tundra, as was done in the ensemble analysis. An additional set of 3 simulations were also performed on unburned tundra in which one of 3 alterations were applied that were simulated in burned tundra. Alterations reflected observations made in past studies within the Anaktuvuk River burn scar, and consisted of a reduction of aboveground biomass, a temporary reduction in surface albedo, and a reduction in the depth of the organic soil layer. Results of these simulation suggest the nature of post-fire plant composition and carbon balance within the model is driven primarily by the combustion of vegetation, with alterations to surface albedo providing an effect to a lesser degree.

  7. Constraining predictions of tundra permafrost and vegetation through model-data feedbacks and data-assimilation

    Science.gov (United States)

    Davidson, C. D.; Dietze, M.

    2011-12-01

    Arctic climate is warming at a rate disproportionate to the rest of the world, and recent interest has emerged in using terrestrial biosphere models to understand and predict the response of tundra ecosystems to such warming. Of particular interest are the potential feedbacks between permafrost melting, plant community dynamics, and biogeochemical cycles. Here, we report on efforts to calibrate and validate version 2 of the Ecosystem Demography model (ED2) for the Alaskan tundra and on the use of model analyses to motivate targeted field measurements. ED2 is a terrestrial biosphere model unique in its ability to scale physiological and plant community dynamics to regional levels. We began by assessing the ability of ED2's land surface model to capture permafrost thermodynamics and hydrology. Simulations at Barrow and Toolik Lake, Alaska bore several incongruities with observed data, with soil temperatures significantly higher and soil moisture lower than observed. Modifications were made to increase the soil column depth and to simulate the effect of wind compaction on snow density, and in turn, the insulation of winter soils. In addition to these changes, a new soil class was created to represent unique characteristics within the organic horizon of tundra soils. Together these changes significantly improved permafrost dynamics without substantially altering dynamics in the temperate region. To capture tundra vegetation dynamics, tundra species were classified into three plant functional types (graminoid, deciduous shrub, evergreen shrub). ED2 was then iteratively calibrated for the tundra using the Predictive Ecosystem Analyzer (PEcAn), a scientific workflow and ecoinformatics toolbox developed to aid model parameterization and analysis. Initial parameter estimates were derived from a formal Bayesian meta-analysis of compiled plant trait data. Sensitivity analyses and variance decomposition demonstrated that model uncertainties were driven by the minimum

  8. U.S. Tundra Biome-International Biological Program. U.S. Tundra Biome Publication List.

    Science.gov (United States)

    1983-09-01

    4040) /Bib 33-4561/ Rastorfer, J.R., H.J. Webster and D.K. Smith (1973) Floristic and ecologic studies of bryophytes of selected habitats at...al., Eds). Stockholm: IBP Tundra Biome Steering Committee, pp. 375-378. (1799) /Bib 29-3367/ Flock, J.W. (1978) Lichen- bryophyte distribution along a...1973) Natural oil seeps at Cape Simpson, Alaska: Localized influences on terrestrial habitat . Proceedings of the Symposium on the Impact of Soil

  9. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Amtorp, Cecilie

    2015-01-01

    Nitrogen (N) mineralization, nutrient availability, and plant growth in the Arctic are often restricted by low temperatures. Predicted increases of cold-season temperatures may be important for plant nutrient availability and growth, given that N mineralization is also taking place during the cold...... season. Changing nutrient availability may be reflected in plant N and chlorophyll content and lead to increased photosynthetic capacity, plant growth, and ultimately carbon (C) assimilation by plants. In this study, we increased snow depth and thereby cold-season soil temperatures in high Arctic...... for some species. Responses to cold-season soil warming are vegetation type- and species-specific, with potentially stronger responses in moister vegetation types. This study therefore highlights the contrasting effect of snow in a tundra landscape and has important implications for projections of whole...

  10. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    Science.gov (United States)

    Huemmrich, Karl Fred; Gamon, John A.; Tweedie, Craig E.; Campbell, Petya K. Entcheva; Landis, David R.; Middleton, Elizabeth M.

    2013-01-01

    Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow, AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013 plus or minus 0.0002, 0.0018 plus or minus 0.0002, and 0.0012 plus or minus 0.0001 mol C mol (exp -1) absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Along the transect, area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. The patch-level statistical discriminant functions applied to in situ hyperspectral reflectance data collected along the transect successfully unmixed cover fractions of the vegetation functional types. The unmixing functions, developed from the transect data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine variability in distribution of the vegetation functional types for an area near Barrow, AK. Spatial variability of LUE was derived from the observed functional type distributions. Across this landscape, a

  11. Response of a tundra ecosytem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1996-11-01

    The overall objective of this research was to document current patterns of CO{sub 2} flux in selected locations of the circumpolar arctic, and to develop the information necessary to predict how these fluxes may be affected by climate change. In fulfillment of these objectives, net CO{sub 2} flux was measured at several sites on the North Slope of Alaska during the 1990-94 growing season (June-August) to determine the local and regional patterns, of seasonal CO{sub 2} exchange. In addition, net CO{sub 2} flux was measured in the Russian and Icelandic Arctic to determine if the patterns of CO{sub 2} exchange observed in Arctic Alaska were representative of the circumpolar arctic, while cold-season CO{sub 2} flux measurements were carried out during the 1993-94 winter season to determine the magnitude of CO{sub 2} efflux not accounted for by the growing season measurements. Manipulations of soil water table depth and surface temperature, which were identified from the extensive measurements as being the most important variables in determining the magnitude and direction of net CO{sub 2} exchange, were carried out during the 1993-94 growing seasons in tussock and wet sedge tundra ecosystems. Finally, measurements of CH{sub 4} flux were also measured at several of the North Slope study sites during the 1990-91 growing seasons. Measurements were made on small (e.g. 0.5 m{sup 2}) plots using a portable gas-exchange system and cuvette. The sample design allowed frequent measurements of net CO{sub 2} exchange and respiration over diurnal and seasonal cycles, and a large spatial extent that incorporated both locally and regionally diverse tundra surface types. Measurements both within and between ecosystem types typically extended over soil water table depth and temperature gradients, allowing for the indirect analysis of the effects of anticipated climate change scenarios on net CO{sub 2} exchange. In situ experiments provided a direct means for testing hypotheses.

  12. Tundra swan avian influenza surveillance and banding effort

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Tundra swans (Cygnus columbianus) were captured on the Northern Alaska Peninsula (NAKP) and the Southern Alaska Peninsula (SAKP) in late July 2010 as part of...

  13. Tundra swan avain influenza surveillance and banding effort

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Tundra swans (Cygnus columbianus) were captured on the Alaska Peninsula as part of statewide Avian Influenza (AI) investigations in late July 2006. At Caribou River,...

  14. Tundra swan avian infuenza surveillance and banding effort

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Tundra swans (Cygnus columbianus) were captured on the Alaska Peninsula as part of statewide Avian Influenza (AI) investigations in mid to late July 2008. This...

  15. Tundra swan avian influenza surveillance and banding effort

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Tundra swans (Cygnus columbianus) were captured on the Northern Alaska Peninsula (NAKP) as part of statewide Avian Influenza (AI) investigations in late July 2009....

  16. Tundra swan avian influenza surveillance and banding effort

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Tundra swans (Cygnus columbianus) were captured on the Alaska Peninsula as part of statewide Avian Influenza (AI) investigations in late July 2007. On the Northern...

  17. Review of SOP's for Prodcutivity Surveys for EP tundra swans

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report reviews the SOPs for productivity surveys of tundra swans to identify areas of improvement. An average of 18,700 swans has been surveyed in the Atlantic...

  18. Stem secondary growth of tundra shrubs

    DEFF Research Database (Denmark)

    Campioli, Matteo; Leblans, Niki; Michelsen, Anders

    2012-01-01

    Our knowledge of stem secondary growth of arctic shrubs (a key component of tundra net primary production, NPP) is very limited. Here, we investigated the impact of the physical elements of the environment on shrub secondary growth by comparing annual growth rates of model species from similar...... habitats at contrasting altitude, microtopography, latitude, geographical location, and soil type, in both the sub- and High Arctic. We found that secondary growth has a modest sensitivity to the environment but with large differences among species. For example, the evergreen Cassiope tetragona is affected...... by altitude, microtopography, and latitude, whereas the evergreen Empetrum hermaphroditum has rather constant secondary growth in all environments. Deciduous species seem to be most affected by microtopography. Furthermore, the impact of the environment on secondary growth differed from the impact on primary...

  19. Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains.

    Science.gov (United States)

    Kaarlejärvi, Elina; Eskelinen, Anu; Olofsson, Johan

    2017-09-04

    Climate warming is altering the diversity of plant communities but it remains unknown which species will be lost or gained under warming, especially considering interactions with other factors such as herbivory and nutrient availability. Here, we experimentally test effects of warming, mammalian herbivory and fertilization on tundra species richness and investigate how plant functional traits affect losses and gains. We show that herbivory reverses the impact of warming on diversity: in the presence of herbivores warming increases species richness through higher species gains and lower losses, while in the absence of herbivores warming causes higher species losses and thus decreases species richness. Herbivores promote gains of short-statured species under warming, while herbivore removal and fertilization increase losses of short-statured and resource-conservative species through light limitation. Our results demonstrate that both rarity and traits forecast species losses and gains, and mammalian herbivores are essential for preventing trait-dependent extinctions and mitigate diversity loss under warming and eutrophication.Warming can reduce plant diversity but it is unclear which species will be lost or gained under interacting global changes. Kaarlejärvi et al. manipulate temperature, herbivory and nutrients in a tundra system and find that herbivory maintains diversity under warming by reducing species losses and promoting gains.

  20. Short-term herbivory has long-term consequences in warmed and ambient high Arctic tundra

    Science.gov (United States)

    Little, Chelsea J.; Cutting, Helen; Alatalo, Juha; Cooper, Elisabeth

    2017-02-01

    Climate change is occurring across the world, with effects varying by ecosystem and region but already occurring quickly in high-latitude and high-altitude regions. Biotic interactions are important in determining ecosystem response to such changes, but few studies have been long-term in nature, especially in the High Arctic. Mesic tundra plots on Svalbard, Norway, were subjected to grazing at two different intensities by captive Barnacle geese from 2003–2005, in a factorial design with warming by Open Top Chambers. Warming manipulations were continued through 2014, when we measured vegetation structure and composition as well as growth and reproduction of three dominant species in the mesic meadow. Significantly more dead vascular plant material was found in warmed compared to ambient plots, regardless of grazing history, but in contrast to many short-term experiments no difference in the amount of living material was found. This has strong implications for nutrient and carbon cycling and could feed back into community productivity. Dominant species showed increased flowering in warmed plots, especially in those plots where grazing had been applied. However, this added sexual reproduction did not translate to substantial shifts in vegetative cover. Forbs and rushes increased slightly in warmed plots regardless of grazing, while the dominant shrub, Salix polaris, generally declined with effects dependent on grazing, and the evergreen shrub Dryas octopetala declined with previous intensive grazing. There were no treatment effects on community diversity or evenness. Thus despite no changes in total live abundance, a typical short-term response to environmental conditions, we found pronounced changes in dead biomass indicating that tundra ecosystem processes respond to medium- to long-term changes in conditions caused by 12 seasons of summer warming. We suggest that while high arctic tundra plant communities are fairly resistant to current levels of climate warming

  1. Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane, and nitrous oxide.

    Science.gov (United States)

    Voigt, Carolina; Lamprecht, Richard E; Marushchak, Maija E; Lind, Saara E; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J; Biasi, Christina

    2017-08-01

    Rapidly rising temperatures in the Arctic might cause a greater release of greenhouse gases (GHGs) to the atmosphere. To study the effect of warming on GHG dynamics, we deployed open-top chambers in a subarctic tundra site in Northeast European Russia. We determined carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O) fluxes as well as the concentration of those gases, inorganic nitrogen (N) and dissolved organic carbon (DOC) along the soil profile. Studied tundra surfaces ranged from mineral to organic soils and from vegetated to unvegetated areas. As a result of air warming, the seasonal GHG budget of the vegetated tundra surfaces shifted from a GHG sink of -300 to -198 g CO2 -eq m(-2) to a source of 105 to 144 g CO2 -eq m(-2) . At bare peat surfaces, we observed increased release of all three GHGs. While the positive warming response was dominated by CO2 , we provide here the first in situ evidence of increasing N2 O emissions from tundra soils with warming. Warming promoted N2 O release not only from bare peat, previously identified as a strong N2 O source, but also from the abundant, vegetated peat surfaces that do not emit N2 O under present climate. At these surfaces, elevated temperatures had an adverse effect on plant growth, resulting in lower plant N uptake and, consequently, better N availability for soil microbes. Although the warming was limited to the soil surface and did not alter thaw depth, it increased concentrations of DOC, CO2, and CH4 in the soil down to the permafrost table. This can be attributed to downward DOC leaching, fueling microbial activity at depth. Taken together, our results emphasize the tight linkages between plant and soil processes, and different soil layers, which need to be taken into account when predicting the climate change feedback of the Arctic. © 2016 John Wiley & Sons Ltd.

  2. Isoprene emissions from a tundra ecosystem

    Directory of Open Access Journals (Sweden)

    M. J. Potosnak

    2012-10-01

    Full Text Available Whole-system fluxes of isoprene from a~moist acidic tundra ecosystem and leaf-level emission rates of isoprene from a common species (Salix pulchra in that same ecosystem were measured during three separate field campaigns. The field campaigns were conducted during the summers of 2005, 2010 and 2011 and took place at the Toolik Field Station (68.6° N, 149.6° W on the north slope of the Brooks Range in Alaska, USA. The maximum rate of whole-system isoprene flux measured was over 1.2 mg C m−2 h−1 with an air temperature of 22 ° C and a PAR level over 1500 μmol m−2 s−1. Leaf-level isoprene emission rates for S. pulchra averaged 12.4 nmol m−2 s−1 (27.4 μg C gdw−1 h−1 extrapolated to standard conditions (PAR = 1000 μmol m−2 s−1 and leaf temperature = 30° C. Leaf-level isoprene emission rates were well characterized by the Guenther algorithm for temperature, but less so for light. Chamber measurements from a nearby moist acidic tundra ecosystem with less S. pulchra emitted significant amounts of isoprene, but at lower rates (0.45 mg C m−2 h−1. Comparison of our results to predictions from a global model found broad agreement, but a detailed analysis revealed some significant discrepancies. An atmospheric chemistry box model predicts that the observed isoprene emissions have a significant impact on Arctic atmospheric chemistry, including the hydroxyl radical (OH. Our results support the prediction that isoprene emissions from Arctic ecosystems will increase with global climate change.

  3. Development of Antarctic herb tundra vegetation near Arctowski station, King George Island

    Science.gov (United States)

    Kozeretska, I. A.; Parnikoza, I. Yu.; Mustafa, O.; Tyschenko, O. V.; Korsun, S. G.; Convey, P.

    2010-01-01

    We studied the development of the Antarctic herb tundra vegetation formation in relation to the history of deglaciation across a range of habitats near H. Arctowski Research Station (King George Island, South Shetland Islands). Across the three identified environmental zones (coastal, intermediate, periglacial), we quantified the total vegetation cover, cover of the two indigenous flowering plants and bryophytes, age structure and reproductive features of the two flowering plants, and species diversity of mosses and liverworts. Analysis of these data supported the recognition of the three environmental zones; however, there were few indications of systematic differences in biological features of the two higher plants across the three zones, generally supporting the view that these, and the grass Deschampsia antarctica in particular, are effective primary colonists of recently deglaciated ground in this region.

  4. Vegetation shifts observed in arctic tundra 17 years after fire

    Science.gov (United States)

    Barrett, Kirsten; Rocha, Adrian V.; van de Weg, Martine Janet; Shaver, Gaius

    2012-01-01

    With anticipated climate change, tundra fires are expected to occur more frequently in the future, but data on the long-term effects of fire on tundra vegetation composition are scarce. This study addresses changes in vegetation structure that have persisted for 17 years after a tundra fire on the North Slope of Alaska. Fire-related shifts in vegetation composition were assessed from remote-sensing imagery and ground observations of the burn scar and an adjacent control site. Early-season remotely sensed imagery from the burn scar exhibits a low vegetation index compared with the control site, whereas the late-season signal is slightly higher. The range and maximum vegetation index are greater in the burn scar, although the mean annual values do not differ among the sites. Ground observations revealed a greater abundance of moss in the unburned site, which may account for the high early growing season normalized difference vegetation index (NDVI) anomaly relative to the burn. The abundance of graminoid species and an absence of Betula nana in the post-fire tundra sites may also be responsible for the spectral differences observed in the remotely sensed imagery. The partial replacement of tundra by graminoid-dominated ecosystems has been predicted by the ALFRESCO model of disturbance, climate and vegetation succession.

  5. Vertical electrical resistivity sounding (VERS) of tundra and forest tundra soils of Yamal region

    Science.gov (United States)

    Alekseev, Ivan; Kostecki, Jakub; Abakumov, Evgeny

    2017-01-01

    The aim of the study was to determine electrical resistivity peculiarities of tundra and forest tundra soils and soil-permafrost layers of the Yamal region. Measurements of electrical resistivity of soil and permafrost strata were performed with a portable device LandMapper (to a depth of 300-500 cm). These measurements allow determination of the values of apparent electrical resistivity of soils and permafrost at different depths and determination of the depths of the permafrost table on each key plot. It was found that there are several trends in vertical distribution of apparent electrical resistivity values. The first trend is a monotonous increase in electrical resistivity values to the depth. It may be explained by the increasing electrical resistivity within the soil depth in relation to the increase in permafrost density. The second trend is a sharp decrease replaced by a gradual increase in electrical resistivity values caused by changing of non-frozen friable debris to frozen massive crystalline rock. These differences were related to the type of landscape: flat lowlands composed of friable grounds underlain by permafrost or friable grounds with permafrost underlain by a rock crystalline layer.

  6. Disturbance and Recovery of Arctic Alaskan Tundra Terrain. A Review of Recent Investigations.

    Science.gov (United States)

    1987-07-01

    always considerably along the coastal plain according to available, possibly in the seed bank. Bryophyte - local substrate and temperature regime, and...Anthropogenic disturbances ......................................... 14 Toward an ecological understanding of disturbance and recovery in arctic tundra...major topic the basic research on tundra ecology . Studies of of scientific research in northern Alaska for the the response of arctic tundra to human

  7. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw.

    Science.gov (United States)

    Salmon, Verity G; Soucy, Patrick; Mauritz, Marguerite; Celis, Gerardo; Natali, Susan M; Mack, Michelle C; Schuur, Edward A G

    2016-05-01

    Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330-1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5 years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5 year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5 years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools.

  8. Lead toxicosis in tundra swans near a mining and smelting complex in northern Idaho

    Science.gov (United States)

    Blus, L.J.; Henny, C.J.; Hoffman, D.J.; Grove, R.A.

    1991-01-01

    Die-offs of waterfowl have occurred in the Coeur d`Alene River system in northern Idaho since at least the early 1900`s. We investigated causes of mortality and lead and cadmium contamination of 46 tundra swans (Cygnus columbianus) from 1987 to 1989; an additional 22 swans found dead in 1990 were not examined. We necropsied 43 of the 46 birds found from 1987 to 1989; 38 of these were from the Coeur d`Alene River system, which has been contaminated with mining and smelting wastes for a century, and the other 5 were from a nearby, relatively uncontaminated area. Of the 36 livers of swans from the contaminated area that were analyzed, 32 contained lethal levels of lead (6 to 40 micrograms/g, wet weight) and all birds exhibited several symptoms of lead poisoning, notably enlarged gall bladders containing viscous, darkgreen bile. Only 13% of the lead-poisoned birds (10% when data were included from other studies of swans in the area) contained shot, compared to 95% of lead-poisoning swans in studies outside northern Idaho. Lead concentrations in blood samples from 16 apparently healthy swans (0.5 to 2.3 micrograms/g, and 4 leadpoisoned birds found moribund (1.3 to 9.6 micrograms/g) indicating that tundra swans accumulated high levels of lead from ingestion of sediment that contained up to 8,700 micrograms/g of lead and plants that contained up to 400 micrograms/g. The swans spend only a few weeks in the area staging during the spring migration. The five tundra swans from the uncontaminated area had low levels of lead and essentially no symptoms of lead poisoning.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Mercury dynamics of an arctic tundra ecosystem in northern Alaska: a mass balance

    Science.gov (United States)

    Obrist, D.; Helmig, D.; Agnan, Y.; Hedge, C.; Moore, C. W.; Paxton, D.; Hueber, J.

    2015-12-01

    To constrain the mercury (Hg) mass balance of a tundra ecosystem, we measured atmospheric mercury (Hg) concentrations and surface-atmosphere exchange at Toolik Field Station (68° 38' N) beginning September 2014. We also conducted automated measurements of gaseous Hg in soil pores and snow interstitial air to quantify gas exchange between soils, snow, and the atmosphere; and characterized wet and dry deposition and plant-derived Hg inputs. Results show that atmospheric Hg concentrations peak in winter, decrease in spring, and show summertime minima. Oxidized atmospheric Hg was below detection limits (0.05 ng m-3) indicating no significant dry deposition. Summertime minima of atmospheric Hg concentrations were associated with depositional fluxes of gaseous Hg (up to 2.8 ng m-2 hr-1; measured by a gradient method) that emerged after complete snowmelt. In contrast, gaseous Hg fluxes were below detection limits when snowpack was present; this was supported by in situ snowpack measurements and in contrast to commonly observed gaseous emissions from temperate snowpacks. The cumulative annual gaseous deposition flux of mercury was 12 µg m-2, in similar range as plant-derived inputs (17 µg m-2 yr-1) which we consider the major reason for observed gaseous Hg sink. Wet deposition was extremely low (<1 µg m-2 yr-1) compared to other sites. Hg concentrations in plants and soils are similar to levels found at temperate sites, but terrestrial pool sizes are large in comparison ranging around 400 g ha-1. The results suggest that: atmospheric Hg exposure is low at this site; that deposition is dominated by plant-derived deposition; and that significant Hg pools accumulate in tundra soils, likely driven by strong retention and low re-emissions after deposition. The high Hg soil pool sizes and key role of plant-productivity for Hg deposition may indicate a high sensitivity to climate change, in particular to permafrost soil thawing and increased growing season length.

  10. 100% Retention of Snowpack Derived Nitrogen Over 10 Years in High Arctic Tundra

    Science.gov (United States)

    Choudhary, S.; Tye, A. M.; Young, S. D.; West, H. M.; Phoenix, G. K.

    2013-12-01

    Tundra ecosystems are susceptible to atmospheric nitrogen (N) deposition, increasing as a result of anthropogenic activities as well as climate change. Depositions that get accumulated within the snowpack during winter months are released in spring during snowmelt, providing a periodic input of reactive N in the melt water to such nutrient limited ecosystems. Identifying ecosystem N retention and allocation and how this change over time is important to understanding the long-term consequences of such N depositions to these ecosystems. We reanalysed 10 years later an atmospheric N deposition study established in Svalbard that in 2001 used 15N isotope tracers to determine the fate of N released from melting snowpack. Applications of 15N (99 atom%) at 0.1 and 0.5 g N m-2 were made immediately after snowmelt in 2001 as either Na15NO3 or 15NH4Cl. These applications were approximately 1 × and 5 × the yearly atmospheric deposition rates. In both the previous short-term (one week to two years after 15N tracer application) and our long-term re-sampling (10 years after 15N tracer application), ~67% of the total applied 15N was retained in the ecosystem, irrespective of the N forms or N dose. This meant the tundra had 100% long-term N retention after initial partitioning, suggesting a highly conservative N cycling. Bryophytes, followed by the organic soil horizon and then the microbial biomass formed the greatest short-term 15N sink. Maximum changes in 15N retention from the short- to long-term were observed in the microbial 15N pools, with ~75% of the 15N in soil located in its biomass during the initial partitioning (July 2001) decreasing to ~17% 10 years later. This indicates significant microbial N turnover mostly into stable humus N. In contrast, vascular plants, particularly Salix polaris, showed significant increases (~60%) in their 15N retention after 10 years, indicating a high capacity for acting as a long-term N sink in this tundra ecosystem. Because the largest

  11. Remotely sensed vicennial changes of green phytomass, Salix cover, and leaf turnover in a sedge-shrub tundra, Arctic National Wildlife Refuge, Alaska

    Science.gov (United States)

    Kushida, K.; Kim, Y.; Tsuyuzaki, S.; Watanabe, M.; Kadosaki, G.; Sawada, Y.; Ishikawa, M.; Fukuda, M.

    2007-12-01

    We obtained the relationship between spectral indices, green phytomass, Salix - non-Salix ratio, and leaf turnover in a sedge-shrub tundra, Arctic National Wildlife Refuge (ANWR), Alaska based on the field observations of spectral reflectance and phytomass, and we used Landsat TM images acquired in July of 1986, 1994, and 2006 and the time series of NOAA AVHRR (Advanced Very High Resolution Radiometer) for evaluating the vicennial changes. 51% of Beaufort coastal plain, Alaska was occupied by lowland moist sedge-shrub tundra, lowland wet sedge tundra, riverine moist sedge-shrub tundra, and riverine wet sedge tundra, where willow shrubs and sedges dominate. We set a 50-m × 50-m plot located on the floodplain of Jago River in ANWR. Shrub (Salix lanata L.) and sedge (Carex bigelowii Torr.) dominated in the plot. Ten 0.5-m × 0.5-m quadrates (Salix} quadrates) were set on the Salix cover and ten 0.5-m × 0.5-m quadrates (non-Salix quadrates) were set on the ground that was not covered with Salix lanata. Salix lanata in each of the Salix quadrates was harvested, and the leaf area index (LAI) and the oven-dried weights of the photosynthetic (leaf) and non-photosynthetic parts were measured. After harvesting Salix, other green plants were harvested and the oven-dried weights of the plants were measured. The Salix quadrates were spectrally measured with a spectroradiometer at a wavelength of 350 - 2500 nm before and after harvesting Salix and after harvesting other green plants. Non-Salix quadrates were also spectrally measured with the spectroradiometer. The coefficients of determination (R2) of the green phytomass, Salix - non-Salix ratio, and leaf turnover estimations from the spectral indices were 0.63, 0.57, and 0.79, respectively. These estimations were used for evaluating the vicennial changes using the satellite data.

  12. Ecosystem Respiration Rates of Arctic Tundra Mesocosms in Response to Cold-Season Temperatures

    Science.gov (United States)

    Oberbauer, S. F.; Moser, J. G.; Olivas, P. C.; Starr, G.; Mortazavi, B.

    2013-12-01

    The cold season in the Arctic extends over 8 to 9 mo, during which air temperatures often reach as low as -40 °C. However, as a result of the insulating layer created by snow cover, temperatures seldom fall below -15 °C, and are likely warm enough to support some metabolism. Little research has been conducted on arctic plants and tundra during the cold season, despite its length and the fact that warming is predicted to be greatest during this period. The primary focus of cold-season research has been on rates of winter ecosystem respiration (ER) for estimates of annual carbon balance. The majority of these measurements during the winter or at winter temperatures indicate that some respiration is occurring. Although rates are low, they may contribute substantially to the annual carbon balance because of the length of the cold season. However, estimates of respiration at low temperatures differ substantially, have been taken at different temperatures using different methodologies, and importantly almost none provide quantitative relationships across a range of temperatures. We measured respiration rates of intact arctic tundra monoliths from 15 to -15 °C at 5 °C steps to facilitate improved model estimates of tundra respiration. Six tundra monoliths (~900 cm2) taken from Toolik Field Station, Alaska were conditioned for the cold season in growth chambers at shortened photoperiods and low, but above-freezing temperatures. Desired temperatures were obtained with a combination of growth chambers and a modified freezer. The average of five samplings of [CO2] at each temperature step was used to estimate the ER rates. Measurements were conducted with a closed system using incubation periods of 30 to 180 min, depending on the temperature. Carbon dioxide concentrations were measured by syringe samples injected into a N2 gas stream flowing through an infrared gas analyzer. Rates of ER calculated on an area basis were close to zero at -15 °C, but increased steadily with

  13. Acidobacteria dominate the active bacterial communities of Arctic tundra with widely divergent winter-time snow accumulation and soil temperatures.

    Science.gov (United States)

    Männistö, Minna K; Kurhela, Emilia; Tiirola, Marja; Häggblom, Max M

    2013-04-01

    The timing and extent of snow cover is a major controller of soil temperature and hence winter-time microbial activity and plant diversity in Arctic tundra ecosystems. To understand how snow dynamics shape the bacterial communities, we analyzed the bacterial community composition of windswept and snow-accumulating shrub-dominated tundra heaths of northern Finland using DNA- and RNA-based 16S rRNA gene community fingerprinting (terminal restriction fragment polymorphism) and clone library analysis. Members of the Acidobacteria and Proteobacteria dominated the bacterial communities of both windswept and snow-accumulating habitats with the most abundant phylotypes corresponding to subdivision (SD) 1 and 2 Acidobacteria in both the DNA- and RNA-derived community profiles. However, different phylotypes within Acidobacteria were found to dominate at different sampling dates and in the DNA- vs. RNA-based community profiles. The results suggest that different species within SD1 and SD2 Acidobacteria respond to environmental conditions differently and highlight the wide functional diversity of these organisms even within the SD level. The acidic tundra soils dominated by ericoid shrubs appear to select for diverse stress-tolerant Acidobacteria that are able to compete in the nutrient poor, phenolic-rich soils. Overall, these communities seem stable and relatively insensitive to the predicted changes in the winter-time snow cover.

  14. Matrix matters: differences of grand skink metapopulation parameters in native tussock grasslands and exotic pasture grasslands.

    Directory of Open Access Journals (Sweden)

    Konstanze Gebauer

    Full Text Available Modelling metapopulation dynamics is a potentially very powerful tool for conservation biologists. In recent years, scientists have broadened the range of variables incorporated into metapopulation modelling from using almost exclusively habitat patch size and isolation, to the inclusion of attributes of the matrix and habitat patch quality. We investigated the influence of habitat patch and matrix characteristics on the metapopulation parameters of a highly endangered lizard species, the New Zealand endemic grand skink (Oligosoma grande taking into account incomplete detectability. The predictive ability of the developed zxmetapopulation model was assessed through cross-validation of the data and with an independent data-set. Grand skinks occur on scattered rock-outcrops surrounded by indigenous tussock (bunch and pasture grasslands therefore implying a metapopulation structure. We found that the type of matrix surrounding the habitat patch was equally as important as the size of habitat patch for estimating occupancy, colonisation and extinction probabilities. Additionally, the type of matrix was more important than the physical distance between habitat patches for colonisation probabilities. Detection probability differed between habitat patches in the two matrix types and between habitat patches with different attributes such as habitat patch composition and abundance of vegetation on the outcrop. The developed metapopulation models can now be used for management decisions on area protection, monitoring, and the selection of translocation sites for the grand skink. Our study showed that it is important to incorporate not only habitat patch size and distance between habitat patches, but also those matrix type and habitat patch attributes which are vital in the ecology of the target species.

  15. Matrix matters: differences of grand skink metapopulation parameters in native tussock grasslands and exotic pasture grasslands.

    Science.gov (United States)

    Gebauer, Konstanze; Dickinson, Katharine J M; Whigham, Peter A; Seddon, Philip J

    2013-01-01

    Modelling metapopulation dynamics is a potentially very powerful tool for conservation biologists. In recent years, scientists have broadened the range of variables incorporated into metapopulation modelling from using almost exclusively habitat patch size and isolation, to the inclusion of attributes of the matrix and habitat patch quality. We investigated the influence of habitat patch and matrix characteristics on the metapopulation parameters of a highly endangered lizard species, the New Zealand endemic grand skink (Oligosoma grande) taking into account incomplete detectability. The predictive ability of the developed zxmetapopulation model was assessed through cross-validation of the data and with an independent data-set. Grand skinks occur on scattered rock-outcrops surrounded by indigenous tussock (bunch) and pasture grasslands therefore implying a metapopulation structure. We found that the type of matrix surrounding the habitat patch was equally as important as the size of habitat patch for estimating occupancy, colonisation and extinction probabilities. Additionally, the type of matrix was more important than the physical distance between habitat patches for colonisation probabilities. Detection probability differed between habitat patches in the two matrix types and between habitat patches with different attributes such as habitat patch composition and abundance of vegetation on the outcrop. The developed metapopulation models can now be used for management decisions on area protection, monitoring, and the selection of translocation sites for the grand skink. Our study showed that it is important to incorporate not only habitat patch size and distance between habitat patches, but also those matrix type and habitat patch attributes which are vital in the ecology of the target species.

  16. Longer thaw seasons increase nitrogen availability for leaching during fall in tundra soils

    Science.gov (United States)

    Treat, Claire C.; Wollheim, Wilfred M.; Varner, Ruth K.; Bowden, William B.

    2016-06-01

    Climate change has resulted in warmer soil temperatures, earlier spring thaw and later fall freeze-up, resulting in warmer soil temperatures and thawing of permafrost in tundra regions. While these changes in temperature metrics tend to lengthen the growing season for plants, light levels, especially in the fall, will continue to limit plant growth and nutrient uptake. We conducted a laboratory experiment using intact soil cores with and without vegetation from a tundra peatland to measure the effects of late freeze and early spring thaw on carbon dioxide (CO2) exchange, methane (CH4) emissions, dissolved organic carbon (DOC) and nitrogen (N) leaching from soils. We compared soil C exchange and N production with a 30 day longer seasonal thaw during a simulated annual cycle from spring thaw through freeze-up and thaw. Across all cores, fall N leaching accounted for ˜33% of total annual N loss despite significant increases in microbial biomass during this period. Nitrate ({{{{NO}}}3}-) leaching was highest during the fall (5.33 ± 1.45 mg N m-2 d-1) following plant senescence and lowest during the summer (0.43 ± 0.22 mg N m-2 d-1). In the late freeze and early thaw treatment, we found 25% higher total annual ecosystem respiration but no significant change in CH4 emissions or DOC loss due to high variability among samples. The late freeze period magnified N leaching and likely was derived from root turnover and microbial mineralization of soil organic matter coupled with little demand from plants or microbes. Large N leaching during the fall will affect N cycling in low-lying areas and streams and may alter terrestrial and aquatic ecosystem nitrogen budgets in the arctic.

  17. [The gene pool of native inhabitants of the Samburg tundra].

    Science.gov (United States)

    Osipova, L P; Posukh, O L; Ivakin, E A; Kriukov, Iu A; Karafet, T M

    1996-06-01

    This study continues a series of investigations of the gene pool of native Siberian ethnic groups. In a population of Tundra Nentsi (Northern Samoyeds) and a group of Komi-Zyryans (Finno-Ugrian) (Samburg settlement, Tyumenskaya oblast, Yamalo-Nenetskii Autonomous okrug), gene markers of the following genetic systems were studied: blood groups (ABO, MNSs, Rhesus, Kell, Duffy, and P), erythrocyte acid phosphatase (AcP), phosphoglucomutase 1 (PGM 1), haptoglobin (Hp), and transferrin (Tf). The population of Samburg Tundra Nentsi was shown to have a close genetic relationship with the "core" of the Forest Nentsi population. In Northern Samoyeds, three carriers of the rare allele K (blood group Kell) were found for the first time. It is suggested that this allele was transferred into the population of Tundra Nentsi from Komi. Samburg Tundra Nentsi are found to have the maximum frequency of the allele PGM 1 (Posphoglucomutase 1) among aboriginal populations of northern Asia. Analysis of original data and the literature revealed a significant genetic distance between the Komi and Northern Samoyed populations. It was shown that Samburg Komi occupy an intermediate position between the clusters of Nenets populations and Finno-Ugrians (Komi) living in Komi Republic.

  18. Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation?

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Gough, L.; Hobbie, S.E.; Shaver, G.R.

    2003-01-01

    1 A field-experiment was used to determine how plant species might retain dominance in an arctic ecosystem receiving added nutrients. We both measured and modelled the above-ground and below-ground biomass allocation and root morphology of non-acidic tussock tundra near Toolik Lake, Alaska, after 4

  19. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution

    Science.gov (United States)

    Obrist, Daniel; Agnan, Yannick; Jiskra, Martin; Olson, Christine L.; Colegrove, Dominique P.; Hueber, Jacques; Moore, Christopher W.; Sonke, Jeroen E.; Helmig, Detlev

    2017-07-01

    Anthropogenic activities have led to large-scale mercury (Hg) pollution in the Arctic. It has been suggested that sea-salt-induced chemical cycling of Hg (through ‘atmospheric mercury depletion events’, or AMDEs) and wet deposition via precipitation are sources of Hg to the Arctic in its oxidized form (Hg(II)). However, there is little evidence for the occurrence of AMDEs outside of coastal regions, and their importance to net Hg deposition has been questioned. Furthermore, wet-deposition measurements in the Arctic showed some of the lowest levels of Hg deposition via precipitation worldwide, raising questions as to the sources of high Arctic Hg loading. Here we present a comprehensive Hg-deposition mass-balance study, and show that most of the Hg (about 70%) in the interior Arctic tundra is derived from gaseous elemental Hg (Hg(0)) deposition, with only minor contributions from the deposition of Hg(II) via precipitation or AMDEs. We find that deposition of Hg(0)—the form ubiquitously present in the global atmosphere—occurs throughout the year, and that it is enhanced in summer through the uptake of Hg(0) by vegetation. Tundra uptake of gaseous Hg(0) leads to high soil Hg concentrations, with Hg masses greatly exceeding the levels found in temperate soils. Our concurrent Hg stable isotope measurements in the atmosphere, snowpack, vegetation and soils support our finding that Hg(0) dominates as a source to the tundra. Hg concentration and stable isotope data from an inland-to-coastal transect show high soil Hg concentrations consistently derived from Hg(0), suggesting that the Arctic tundra might be a globally important Hg sink. We suggest that the high tundra soil Hg concentrations might also explain why Arctic rivers annually transport large amounts of Hg to the Arctic Ocean.

  20. Paenibacillus tundrae sp. nov. and Paenibacillus xylanexedens sp. nov., Psychrotolerant, Xylan-Degrading, Bacteria from Alaskan Tundra

    Science.gov (United States)

    Psychrotolerant, xylan-degrading, strains of bacteria were isolated from soil beneath moist non-acidic and acidic tundra in northern Alaska. Phylogenetic analysis based on 16S rRNA gene sequences revealed that each strain belonged to the genus Paenibacillus. The highest levels of 16S rRNA gene sim...

  1. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory.

    Science.gov (United States)

    Yu, Qin; Epstein, Howard; Engstrom, Ryan; Walker, Donald

    2017-09-01

    Satellite remote sensing data have indicated a general 'greening' trend in the arctic tundra biome. However, the observed changes based on remote sensing are the result of multiple environmental drivers, and the effects of individual controls such as warming, herbivory, and other disturbances on changes in vegetation biomass, community structure, and ecosystem function remain unclear. We apply ArcVeg, an arctic tundra vegetation dynamics model, to estimate potential changes in vegetation biomass and net primary production (NPP) at the plant community and functional type levels. ArcVeg is driven by soil nitrogen output from the Terrestrial Ecosystem Model, existing densities of Rangifer populations, and projected summer temperature changes by the NCAR CCSM4.0 general circulation model across the Arctic. We quantified the changes in aboveground biomass and NPP resulting from (i) observed herbivory only; (ii) projected climate change only; and (iii) coupled effects of projected climate change and herbivory. We evaluated model outputs of the absolute and relative differences in biomass and NPP by country, bioclimate subzone, and floristic province. Estimated potential biomass increases resulting from temperature increase only are approximately 5% greater than the biomass modeled due to coupled warming and herbivory. Such potential increases are greater in areas currently occupied by large or dense Rangifer herds such as the Nenets-occupied regions in Russia (27% greater vegetation increase without herbivores). In addition, herbivory modulates shifts in plant community structure caused by warming. Plant functional types such as shrubs and mosses were affected to a greater degree than other functional types by either warming or herbivory or coupled effects of the two. © 2017 John Wiley & Sons Ltd.

  2. Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems

    DEFF Research Database (Denmark)

    Clemmensen, Karina Engelbrecht; Michelsen, Anders; Jonasson, Sven Evert;

    2006-01-01

    the response in EM fungal abundance to long-term warming and fertilization in two arctic ecosystems with contrasting responses of the EM shrub Betula nana. •  Ergosterol was used as a biomarker for living fungal biomass in roots and organic soil and ingrowth bags were used to estimate EM mycelial production....... We measured 15N and 13C natural abundance to identify the EM-saprotrophic divide in fungal sporocarps and to validate the EM origin of mycelia in the ingrowth bags. •  Fungal biomass in soil and EM mycelial production increased with fertilization at both tundra sites, and with warming at one site....... This was caused partly by increased dominance of EM plants and partly by stimulation of EM mycelial growth. •  We conclude that cycling of carbon and nitrogen through EM fungi will increase when strongly nutrient-limited arctic ecosystems are exposed to a warmer and more nutrient-rich environment. This has...

  3. Could 4 degrees warming change Arctic tundra from carbon sink to carbon source?

    Science.gov (United States)

    Torn, M. S.; Abramoff, R. Z.; Chafe, O.; Curtis, J. B.; Smith, L. J.; Wullschleger, S. D.

    2015-12-01

    We have set up a controlled, active warming experiment in permafrost tundra on the North Slope of Alaska. The aim of this micro-warming experiment is to investigate the direct effect of soil warming on microbial decomposition of soil organic matter. We are testing the feasibility of small, short-term, in situ warming that can be run off batteries for distributed deployment and that preserves plant-soil relations and natural variability in wind, temperature, and precipitation. Based on preliminary results, the approach looks promising. One resistance heater cable per plot (25 cm diameter plots) was inserted vertically to 50 cm, spanning the full active layer (maximum thaw depth was 40 cm in 2014). Heaters were turned on August 1, 2015, and heated plots reached the 4ºC warming target within 1-3 days. We are measuring soil microclimate, thaw depth, CO2 and CH4 fluxes, and 14CO2, and microbial composition, as part of the DOE Next Generation Ecosystem Experiments (NGEE-Arctic). Ecosystem respiration increased immediately in the heated plots, and net ecosystem exchange under clear chambers changed from net uptake to net CO2 source in two of the four plots. CH4 flux shifted toward reduced net emissions or greater net uptake in all plots. These rapid responses demonstrate direct changes in decomposition without complications from microbial acclimation, altered community structure or changes in substrate availability. However, future Arctic tundra carbon balance will depend on both short term and long term microbial responses, as well as the links between warming, decomposition, nitrogen mineralization, and plant growth. Thus, we envision that distributed micro-warming plots could be combined with new approaches to aboveground passive warming being developed in NGEE, gradient studies, and modeling.

  4. Climate sensitivity of shrub growth across the tundra biome

    DEFF Research Database (Denmark)

    Myers-Smith, Isla H.; Elmendorf, Sarah C.; Beck, Pieter S.A.

    2015-01-01

    or upper elevational range edges. Across latitude, climate sensitivity of growth was greatest at the boundary between the Low and High Arctic, where permafrost is thawing4 and most of the global permafrost soil carbon pool is stored9. The observed variation in climate–shrub growth relationships should...... be incorporated into Earth system models to improve future projections of climate change impacts across the tundra biome.......Rapid climate warming in the tundra biome has been linked to increasing shrub dominance1–4. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost2,5–8, yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting...

  5. Natural causes of the tundra-taiga boundary.

    Science.gov (United States)

    Sveinbjörnsson, Bjartmar; Hofgaard, Annika; Lloyd, Andrea

    2002-08-01

    The tundra-taiga interface is characterized by a change in tree cover or density, tree size and shape, tree growth, and reproduction. Generally, trees get denser, taller, and less damaged as one moves from the tundra into the taiga proper. The environmental covariates and possible mechanisms resulting in these patterns are addressed in the paper. Low seed rain density, lack of safe sites caused by microclimatic variation, low surface substrate moisture, and low soil nutrient availability may limit the density of the tree species. Tree growth may be limited by a short growing season and further diminished, by shoot and root damage reducing carbon and nutrient stores as well as by reducing carbon and nutrient uptake capacities. Positive and negative feedbacks of tree density on tree growth exist at treeline. Increased tree density leads to increased air temperature and decreased wind damage, but also to lower soil temperature, reduced nutrient availability, and greater nutrient competition.

  6. Spatial variability of CO2 uptake in polygonal tundra

    DEFF Research Database (Denmark)

    Pirk, Norbert; Sievers, Jakob; Mertes, Jordan

    2017-01-01

    with an unmanned aerial vehicle (UAV) that mapped ice-wedge morphology to complement eddy covariance (EC) flux measurements of CO2. The analysis of spectral distributions showed that conventional EC methods do not accurately capture the turbulent CO2 exchange with a spatially heterogeneous surface that typically......The large spatial variability in Arctic tundra complicates the representative assessment of CO2 budgets. Accurate measurements of these heterogeneous landscapes are, however, essential to understanding their vulnerability to climate change. We surveyed a polygonal tundra lowland on Svalbard...... features small flux magnitudes. Nonlocal (low-frequency) flux contributions were especially pronounced during snow melt and introduced a large bias of -46 gC m(-2) to the annual CO2 budget in conventional methods (the minus sign indicates a higher uptake by the ecosystem). Our improved flux calculations...

  7. Summertime CO2 fluxes and ecosystem respiration from marine animal colony tundra in maritime Antarctica

    Science.gov (United States)

    Zhu, Renbin; Bao, Tao; Wang, Qing; Xu, Hua; Liu, Yashu

    2014-12-01

    Net ecosystem CO2 exchange (NEE) and ecosystem respiration (ER) were investigated at penguin, seal and skua colony tundra and the adjacent animal-lacking tundra sites in maritime Antarctica. Net CO2 fluxes showed a large difference between marine animal colonies and animal-lacking tundra sites. The mean NEE from penguin, seal and skua colony tundra sites ranged from -37.2 to 5.2 mg CO2 m-2 h-1, whereas animal-lacking tundra sites experienced a larger net gain of CO2 with the mean flux range from -85.6 to -23.9 mg CO2 m-2 h-1. Ecosystem respiration rates at penguin colony tundra sites (mean 201.3 ± 31.4 mg CO2 m-2 h-1) were significantly higher (P animal colony and animal-lacking tundra was significantly positively correlated (P exponential correlation (P animals and the deposition of their excreta might have an important effect on tundra CO2 exchanges and ecosystem respiration, and current climate warming will further decrease tundra CO2 sink in maritime Antarctica.

  8. Anurans in a Subarctic Tundra Landscape Near Cape Churchill, Manitoba

    Science.gov (United States)

    Reiter, M.E.; Boal, C.W.; Andersen, D.E.

    2008-01-01

    Distribution, abundance, and habitat relationships of anurans inhabiting subarctic regions are poorly understood, and anuran monitoring protocols developed for temperate regions may not be applicable across large roadless areas of northern landscapes. In addition, arctic and subarctic regions of North America are predicted to experience changes in climate and, in some areas, are experiencing habitat alteration due to high rates of herbivory by breeding and migrating waterfowl. To better understand subarctic anuran abundance, distribution, and habitat associations, we conducted anuran calling surveys in the Cape Churchill region of Wapusk National Park, Manitoba, Canada, in 2004 and 2005. We conducted surveys along ~l-km transects distributed across three landscape types (coastal tundra, interior sedge meadow-tundra, and boreal forest-tundra interface) to estimate densities and probabilities of detection of Boreal Chorus Frogs (Pseudacris maculata) and Wood Frogs (Lithobates sylvaticus). We detected a Wood Frog or Boreal Chorus Frog on 22 (87%) of 26 transects surveyed, but probability of detection varied between years and species and among landscape types. Estimated densities of both species increased from the coastal zone inland toward the boreal forest edge. Our results suggest anurans occur across all three landscape types in our study area, but that species-specific spatial patterns exist in their abundances. Considerations for both spatial and temporal variation in abundance and detection probability need to be incorporated into surveys and monitoring programs for subarctic anurans.

  9. The Changing Seasonality of Tundra Nutrient Cycling: Implications for Arctic Ecosystem Function

    Science.gov (United States)

    Weintraub, M. N.; Steltzer, H.; Sullivan, P.; Schimel, J.; Wallenstein, M. D.; Darrouzet-Nardi, A.; Segal, A. D.

    2011-12-01

    Arctic soils contain large stores of carbon (C) and may act as a significant CO2 source with warming. However, the key to understanding tundra soil processes is nitrogen (N), as both plant growth and decomposition are N limited. However, current models of tundra ecosystems assume that while N limits plant growth, C limits decomposition. In addition, N availability is strongly seasonal with relatively high concentrations early in the growing season followed by a pronounced crash. We need to understand the controls on this seasonality to predict responses to climate change, but there are multiple questions that need answers: 1) What causes the seasonality in N? 2) Does microbial activity switch seasonally between C and N limitation? 3) How will a lengthening of the growing season alter overall ecosystem C and N dynamics, as a result of differential extension of the periods before and after the nutrient crash? We hypothesized that microbial activity is C limited early in the growing season, when N availability is higher and root exudate C is unavailable, and that microbial activity becomes N limited in response to plant N uptake and immobilization stimulated by root C. To address these questions we are conducting an accelerated snow-melt X warming field experiment in an Alaskan moist acidic arctic tundra community, and following plant and soil dynamics. Changes in the timing of C and N interactions in the different treatments will enable us to develop an enhanced mechanistic understanding of why the nutrient crash occurs and what the implications are for a lengthening of the arctic growing season. In 2010 we successfully accelerated snowmelt by 4 days. Both earlier snowmelt and warming accelerated early season plant life history events, with a few exceptions. However, responses to the combined treatment could not always be predicted from single factor effects. End of season life history events occurred later in response to the treatments, again with a few exceptions

  10. Long-term mountain tundra composition's responses to grazing pressure in the context of environmental changes

    Science.gov (United States)

    Saccone, Patrick; Pyykkonen, Tuija; Eskelinen, Anu; Virtanen, Risto

    2013-04-01

    Strong changes in northern tundra in response to climate changes are expected and in particular an increasing shrubiness. However, global changes contain not only warming or shifts in snow-cover but also changes in land-use, e.g. for arctic low productive ecosystems changes in grazing pressure. Grazing could also represent an important driver of future Arctic tundra communities. However, the relative importance of biotic and abiotic drivers of plant communities' composition remains largely unknown, in particular because short-term experiments provided to conflicting evidences. Here, we present the results from a long-term (23 years) experiment set up in 1989 at Kilpisjärvi in the north-western Finnish Lapland. The experiment consisted in the transplantation of twenty 40x50 cm blocks of Vaccinium myrtillus heath including 5-10 cm thick soil layer from a 660 m.a.s.l. dry slope to a snowbed 150m higher in elevation containing dry and wet sites. We considered the transplantation at higher altitude in snowbed conditions an increase in harsher conditions (shorter growing season, lower productivity). Half of the transplanted blocks were protected from herbivores and the percentage cover of each plant species was estimated in mid-august 2012 from a central 12.5 x12.5 cm area in each block. Our results showed that the dominance of the shrub V. myrtillus was strongly reduced as response to transplantation to snowbed. Consequently the competitive pressure also decreased and allowed an increase of the species richness. Soil moisture differences between installation locations induced divergence in plant communities' composition allowing the increase in abundance of subordinate species as bryophytes and graminoids in wet and dry sites respectively. Excluding herbivory, some species assumed high dominance reducing the community diversity. In the wet exclosures, quarter of the surface was covered by a moss and V. myrtillus co-dominated. The strongest changes occurred in dry

  11. Energy fluxes in a high Arctic tundra heath subjected to strong climate warming

    Science.gov (United States)

    Lund, M.; Hansen, B. U.; Pedersen, S. H.; Stiegler, C.; Tamstorf, M. P.

    2012-12-01

    During recent decades the observed warming in the Arctic has been almost twice as large as the global average. The implications of such strong warming on surface energy balance, regulating permafrost thaw, hydrology, soil stability and carbon mineralization, need to be assessed. In Zackenberg, northeast Greenland, measurements of energy balance components in various environments have been performed since late 90's, coordinated by Zackenberg Ecological Research Operations. During 1996-2009, mean annual temperature in the area has increased by ca. 0.15 °C yr-1; while maximum thaw depth has increased by 1.4-1.8 cm yr-1. Eddy covariance measurements of energy fluxes have been performed in a Cassiope heath plant community, a commonly occurring tundra ecosystem type in circumpolar middle and high Arctic areas, in Zackenberg allowing for detailed investigations of relationships between energy fluxes and meteorological and soil physical characteristics. As the available data set spans more than a decade, possible trends in energy flux components resulting from warming related changes such as earlier snow melt, increased active layer depth and higher temperatures can be investigated. This presentation will focus on the mid-summer period from which eddy covariance measurements are available. The summer-time energy partitioning at the Zackenberg tundra heath site will be characterized using ratios of sensible, latent and ground heat flux to net radiation and Bowen ratio, whereas the surface characteristics will be described using surface resistance, McNaughton and Jarvis Ω value and Priestley-Taylor α coefficient. Furthermore, we aim to estimate the full year, all energy balance components for the tundra heath site using Snow Model (Liston and Elder 2006) for the dark winter period during which no eddy covariance measurements are available. The snow cover duration in the area is a major regulator of the energy partitioning. Early results point towards high summer

  12. The Cooling Capacity of Mosses: Controls on Water and Energy Fluxes in a Siberian Tundra Site

    NARCIS (Netherlands)

    Blok, D.; Heijmans, M.M.P.D.; Schaepman-Strub, G.; Ruijven, van J.; Parmentier, F.J.W.; Maximov, T.C.; Berendse, F.

    2011-01-01

    Arctic tundra vegetation composition is expected to undergo rapid changes during the coming decades because of changes in climate. Higher air temperatures generally favor growth of deciduous shrubs, often at the cost of moss growth. Mosses are considered to be very important to critical tundra ecosy

  13. Shrubs in the cold : interactions between vegetation, permafrost and climate in Siberian tundra

    NARCIS (Netherlands)

    Blok, D.

    2011-01-01

    The Arctic is experiencing strong increases in air temperature during the last decades. High-latitude tundra regions are very responsive to changes in temperature and may cause a shift in tundra vegetation composition towards greater dominance of deciduous shrubs. With increasing deciduous shrub cov

  14. Dynamics of Aboveground Phytomass of the Circumpolar Arctic Tundra During the Past Three Decades

    Science.gov (United States)

    Epstein, Howard E.; Raynolds, Martha K.; Walker, Donald A.; Bhatt, Uma S.; Tucker, Compton J.; Pinzon, Jorge E.

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.

  15. Plot-scale evidence of tundra vegetation change and links to recent summer warming

    Science.gov (United States)

    Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollister; Robert G. Bjork; Noemie Boulanger-Lapointe; Elisabeth J. Cooper; Johannes H.C. Cornelissen; Thomas A. Day; Ellen Dorrepaal; Tatiana G. Elumeeva; Mike Gill; William A. Gould; John Harte; David S. Hik; Annika Hofgaard; David R. Johnson; Jill F. Johnstone; Ingijorg Svala Jonsdottir; Janet C. Jorgenson; Kari Klanderud; Julia A. Klein; Saewan Koh; Gaku Kudo; Mark Lara; Esther Levesque; Borgthor Magnusson; Jeremy L. May; Joel A. Mercado; Anders Michelsen; Ulf Molau; Isla H. Myers-Smith; Steven F. Oberbauer; Vladimir G. Onipchenko; Christian Rixen; Niels Martin Schmidt; Gaius R. Shaver; Marko J. Spasojevic; Pora Ellen Porhallsdottir; Anne Tolvanen; Tiffany Troxler; Craig E. Tweedie; Sandra Villareal; Carl-Henrik Wahren; Xanthe Walker; Patrick J. Webber; Jeffrey M. Welker; Sonja Wipf

    2012-01-01

    Temperature is increasing at unprecedented rates across most of the tundra biome1. Remote-sensing data indicate that contemporary climate warming has already resulted in increased productivity over much of the Arctic2,3, but plot-based evidence for vegetation transformation is not widespread. We analysed change in tundra vegetation surveyed between 1980 and 2010 in 158...

  16. Human-animal agency in reindeer management: Sami herders' perspectives on Fennoscandian tundra vegetation dynamics under climate change

    Science.gov (United States)

    Forbes, B. C.; Horstkotte, T.; Utsi, T. A.; Larsson-Blind, Å.; Burgess, P.; Käyhkö, J.; Oksanen, L.; Johansen, B.

    2016-12-01

    Many primary livelihoods in Arctic and sub-Arctic regions are increasingly faced with accelerating effects of climate change and resource exploitation. The often close connection between indigenous populations and the dynamics of their respective territories allows them to make detailed observations of how these changes transform the landscapes where they practice their daily activities. Here, we report Sami reindeer herders' observations based on their long-term occupancy and use of contrasting pastoral landscapes in northern Fennoscandia. In particular, we focus on the capacity for various herd management regimes to prevent a potential transformation of open tundra vegetation to shrubland or woodland. Fennoscandian Sami herders did not confirm a substantial, rapid or large-scale transformation of treeless arctic-alpine areas into shrub- and/or woodlands as a consequence of climate change. However, where encroachment of open tundra landscapes has been observed, a range of drivers were deemed responsible. These included abiotic conditions, anthropogenic influences and the direct and indirect effects of reindeer. Mountain birch tree line advances were in some cases associated with reduced or discontinued grazing, depending on the seasonal significance of these particular areas. In the many places where tree line has risen, herding practices have by necessity adapted to these changes. Exploiting the capacity of reindeer grazing/browsing as a conservation tool offers new adaptive strategies of ecosystem management to counteract a potential encroachment of the tundra by woody plants. However, such novel solutions in environmental governance are confronted with difficult trade-offs involved in ecosystem management for ecologically reasonable, economically viable and socially desirable management strategies.

  17. Influence of iron redox cycling on organo-mineral associations in Arctic tundra soil

    Science.gov (United States)

    Herndon, Elizabeth; AlBashaireh, Amineh; Singer, David; Roy Chowdhury, Taniya; Gu, Baohua; Graham, David

    2017-06-01

    Arctic tundra stores large quantities of soil organic matter under varying redox conditions. As the climate warms, these carbon reservoirs are susceptible to increased rates of decomposition and release to the atmosphere as the greenhouse gases carbon dioxide (CO2) and methane (CH4). Geochemical interactions between soil organic matter and minerals influence decomposition in many environments but remain poorly understood in Arctic tundra systems and are not considered in decomposition models. The accumulation of iron (Fe) oxyhydroxides and organo-iron precipitates at redox interfaces may be particularly important for carbon cycling given that ferric iron [Fe(III)] species can enhance decomposition by serving as terminal electron acceptors in anoxic soils or inhibit microbial decomposition by binding organic molecules. Here, we examine chemical properties of solid-phase Fe and organic matter in organic and mineral horizons within the seasonally thawed active layer of Arctic tundra on the North Slope of Alaska. Spectroscopic techniques, including micro-X-ray fluorescence (μXRF) mapping, micro-X-ray absorption near-edge structure (μXANES) spectroscopy, and Fourier transform infrared spectroscopy (FTIR), were coupled with chemical sequential extractions and physical density fractionations to evaluate the spatial distribution and speciation of Fe-bearing phases and associated organic matter in soils. Organic horizons were enriched in poorly crystalline and crystalline iron oxides, and approximately 60% of total Fe stored in organic horizons was calculated to derive from upward translocation from anoxic mineral horizons. Ferrihydrite and goethite were present as coatings on mineral grains and plant debris, and in aggregates with clays and particulate organic matter. Minor amounts of ferrous iron [Fe(II)] were present in iron sulfides (i.e., pyrite and greigite) in mineral horizon soils and iron phosphates (vivianite) in organic horizons. Concentrations of organic

  18. Carbon dioxide and methane dynamics in Russian tundra

    DEFF Research Database (Denmark)

    Johansson, Paul Torbjörn; Kiepe, Isabell; Herbst, Mathias

    interactions and the annual carbon dynamics. Here we present eddy correlation measurements of CO2 and CH4 exchange during the period from early spring to late autumn, covering the full growing season, i.e., mid June to mid September. We present preliminary seasonal budgets of carbon, greenhouse gas exchange......, and discuss possible implications of climatic change on this lowland tundra ecosystem. This study have been conducted as a part of the CARBO-North project (2006-2010), a project within the EU 6th framework programme, aiming at quantifying the carbon budget in Northern Russia across temporal and spatial scales....

  19. Long-term Nutrient Fertilization Increases CO2 Loss in Arctic Tundra

    Science.gov (United States)

    Graham, L. M.; Natali, S.; Rastetter, E. B.; Shaver, G. R.; Risk, D. A.; Loranty, M. M.; Jastrow, J. D.

    2015-12-01

    As anthropogenic climate change warms the Arctic, organic carbon (C) trapped in permafrost is at an increased risk of being released to the atmosphere as carbon dioxide (CO2). At the same time, higher rates of decomposition may increase nutrient availability and enhance plant growth, leading to an uptake of C that may offset respiratory losses. Arctic tundra ecosystems are highly nitrogen (N) limited, and the indirect effects of warming on nutrient availability will be the most likely outcome of increased temperature on plant productivity. This study aims to understand the effects of nutrient addition on arctic CO2 and H2O exchange in a tundra ecosystem at Toolik Lake Field Station, Alaska. The nutrient addition experiment, which began in 2006, is comprised of 7 fertilization treatments: 0.5, 1, 2, 5, and 10 g m-2 of N as NO3- and NH4+ (1:1) with 0.25, 0.5, 1, 2.5, and 5 g m-2 of phosphorus as PO43-; 5 g m-2 of N as NO3-; 5 g m-2 of N as NH4+, and one control plot. Plot-level CO2 and H2O exchange was measured at 5 light levels 7 times over a four-week period in June and July 2015. We measured ecosystem CO2 and H2O exchange using a rectangular plexiglass chamber (0.49 m2) that was connected to an infrared gas analyzer (LI-840). Other ecosystem variables measured include thaw depth, soil moisture and temperature, and normalized difference vegetation index. After 10 years of nutrient addition, fertilization significantly altered ecosystem C cycling. Soil respiration was greatest in the highest fertilization treatment (2.97 μmol m-2 s-1), increasing linearly with nutrient level at a rate of 0.133 μmol m-2 s-1 per g m-2 of N added (R2=0.914). Net CO2 uptake was greatest under highest fertilization (-2.06 μmol m-2 s-1), decreasing linearly with nutrient addition at a rate of -0.068 μmol m-2 s-1 per g m-2 of N added (R2=0.687). These results suggest that as nutrients become more available under a warmer climate, plant productivity increases may not offset respiratory

  20. Estimation of surface energy fluxes in the Arctic tundra using the remote sensing thermal-based Two-Source Energy Balance model

    Science.gov (United States)

    Cristóbal, Jordi; Prakash, Anupma; Anderson, Martha C.; Kustas, William P.; Euskirchen, Eugénie S.; Kane, Douglas L.

    2017-03-01

    The Arctic has become generally a warmer place over the past decades leading to earlier snow melt, permafrost degradation and changing plant communities. Increases in precipitation and local evaporation in the Arctic, known as the acceleration components of the hydrologic cycle, coupled with land cover changes, have resulted in significant changes in the regional surface energy budget. Quantifying spatiotemporal trends in surface energy flux partitioning is key to forecasting ecological responses to changing climate conditions in the Arctic. An extensive local evaluation of the Two-Source Energy Balance model (TSEB) - a remote-sensing-based model using thermal infrared retrievals of land surface temperature - was performed using tower measurements collected over different tundra types in Alaska in all sky conditions over the full growing season from 2008 to 2012. Based on comparisons with flux tower observations, refinements in the original TSEB net radiation, soil heat flux and canopy transpiration parameterizations were identified for Arctic tundra. In particular, a revised method for estimating soil heat flux based on relationships with soil temperature was developed, resulting in significantly improved performance. These refinements result in mean turbulent flux errors generally less than 50 W m-2 at half-hourly time steps, similar to errors typically reported in surface energy balance modeling studies conducted in more temperate climatic regimes. The MODIS leaf area index (LAI) remote sensing product proved to be useful for estimating energy fluxes in Arctic tundra in the absence of field data on the local biomass amount. Model refinements found in this work at the local scale build toward a regional implementation of the TSEB model over Arctic tundra ecosystems, using thermal satellite remote sensing to assess response of surface fluxes to changing vegetation and climate conditions.

  1. Organic matter composition and stabilization in a polygonal tundra soil of the Lena Delta

    Directory of Open Access Journals (Sweden)

    S. Höfle

    2013-05-01

    Full Text Available This study investigated soil organic matter (OM composition of differently stabilized soil OM fractions in the active layer of a polygonal tundra soil in the Lena Delta, Russia, by applying density and particle size fractionation combined with qualitative OM analysis using solid state 13C nuclear magnetic resonance spectroscopy, and lipid analysis combined with 14C analysis. Bulk soil OM was mainly composed of plant-derived, little-decomposed material with surprisingly high and strongly increasing apparent 14C ages with active layer depth suggesting slow microbial OM transformation in cold climate. Most soil organic carbon was stored in clay and fine-silt fractions (n-alkane and n-fatty acid compounds and low alkyl/O-alkyl C ratios. Organo-mineral associations, which are suggested to be a key mechanism of OM stabilization in temperate soils, seem to be less important in the active layer as the mainly plant-derived clay- and fine-silt-sized OM was surprisingly "young", with 14C contents similar to the bulk soil values. Furthermore, these fractions contained less organic carbon compared to density fractionated OM occluded in soil aggregates – a further important OM stabilization mechanism in temperate soils restricting accessibility of microorganisms. This process seems to be important at greater active layer depth where particulate OM, occluded in soil aggregates, was "older" than free particulate OM.

  2. Demographics and limiting factors of tundra nesting birds at the Canning River products

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Products resulting from the Arctic NWR project "Demographics and limiting factors of tundra nesting birds at the Canning River" (PRIMR survey FF07RARC00-010).

  3. Pacific Flyway management plan for the Western Population of tundra swans

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this plan is to establish guidelines for the cooperative management of the Western Population (WP) of tundra swans (Cygnus c. columbianus). This...

  4. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland.

    Science.gov (United States)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob; Citterio, Michele; Hansen, Birger U; van As, Dirk

    2017-02-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere-atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.

  5. Tundra swan avian influenza surveillance and banding effort, Alaska Peninsula, 18-28 July, 2010

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Tundra swans (Cygnus columbianus) were captured on the Northern Alaska Peninsula (NAKP) and the Southern Alaska Peninsula (SAKP) in late July20 10 as part of...

  6. Tundra swan population survey in Bristol Bay, northern Alaska Peninsula, June 2002

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A report on a tundra swan survey pilot study conducted in June 2002. The objectives of the project were to get initial population and productivity estimates for...

  7. Terrestrial bird populations and habitat use on coastal plain tundra of the Arctic National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report covers terrestrial bird populations and habitat use on the coastal plain tundra of the Arctic National Wildlife Refuge. Bird census plots were monitored....

  8. Tundra swan populations, productivity, and local movements on Selawik National Wildlife Refuge, northwest Alaska, 1985

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the monitoring of populations and production of tundra swans on Selawik National Wildlife Refuge in 1985 as part of a long-term study. Radio...

  9. Pathways of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska

    National Research Council Canada - National Science Library

    Herndon, Elizabeth M; Mann, Benjamin F; Roy Chowdhury, Taniya; Yang, Ziming; Wullschleger, Stan D; Graham, David; Liang, Liyuan; Gu, Baohua

    2015-01-01

    .... To predict releases of CO 2 and CH 4 from tundra soils, it is necessary to identify pathways of soil organic matter decomposition under the anoxic conditions that are prevalent in Arctic ecosystem...

  10. Tundra swan population survey in Bristol Bay, northern Alaska Peninsula, 2003 and 2008

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Tundra swan (Cygnus columbianus) population surveys were conducted in spring and late summer of 2003 and 2008 according to the schedule established in the Alaska...

  11. Tundra Disturbance and Recovery Nine Years After Winter Seismic Exploration in Northern Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Seismic exploration was conducted during the winters of 1984 and 1985 on the coastal plain tundra of the Arctic National Wildlife Refuge, Alaska. In 1986, 1989, and...

  12. Carbon Turnover in Alaskan Tundra Soils: Effects of Organic Matter Quality, Temperature, Moisture and Fertilizer

    National Research Council Canada - National Science Library

    Gaius R. Shaver; A. E. Giblin; K. J. Nadelhoffer; K. K. Thieler; M. R. Downs; J. A. Laundre; E. B. Rastetter

    2006-01-01

    .... This study describes how soil C loss is related to temperature, moisture and chemical composition of organic matter in Alaskan tundra soils, including soils that were fertilized annually for 8 years prior to the study...

  13. Dynamics of the recovery of damaged tundra vegetation. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Amundsen, C.C.

    1976-01-01

    A study, begun in 1971, continues to document the environmental factors which affect the recovery of damaged tundra landscapes. A measurement technique was developed on Amchitka Island to allow the rapid acquisition of data on species presence and frequency across areas disturbed at various times and in various ways. Samples across all examples of aspect, slope steepness and exposure are taken. Studies now include Adak Island and the Point Barrow area. We have concluded that there was no directional secondary succession on the Aleutian tundra, although there was vigorous recovery on organic soils. Our study led to recommendations which resulted in less intensive reclamation management at a considerable financial saving and without further biological perturbation. Because of the increasing activity on tundra landscapes, for energy extraction, transportation or production, military or other reasons, we have expanded our sampling to other tundra areas where landscape disruption is occurring or is predicted.

  14. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland

    DEFF Research Database (Denmark)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob

    2017-01-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere–atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt....... For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during...... summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled...

  15. Terriglobus saanensis sp. nov., an acidobacterium isolated from tundra soil.

    Science.gov (United States)

    Männistö, Minna K; Rawat, Suman; Starovoytov, Valentin; Häggblom, Max M

    2011-08-01

    Two aerobic bacterial strains, designated SP1PR4(T) and SP1PR5, were isolated from tundra soil samples collected from Saana fjeld, North-western Finland (69° 03' N 20° 50' E). Cells of both strains were Gram-negative, non-motile rods. Phylogenetic analysis indicated that the strains belong to the genus Terriglobus in subdivision 1 of the phylum Acidobacteria. Strains SP1PR4(T) and SP1PR5 shared identical BOX and ERIC fingerprints and 99.7 % 16S rRNA gene similarity indicating that, together with their identical physiological features, these strains are members of the same species. The 16S rRNA gene sequence similarity of SP1PR4(T) and SP1PR5 with Terriglobus roseus DSM 18391(T) was 97.1 %. A low DNA-DNA hybridization value (<20 %) and rpoB gene sequence similarity (83.6 %) with T. roseus DSM 18391(T) indicated that the tundra soil isolates represent novel members of the genus Terriglobus. Strains SP1PR4(T) and SP1PR5 grew at pH 4.5-7.5 and 4-30 °C. Sugars were the preferred growth substrates. The major cellular fatty acids were iso-C(15 : 0), C(16 : 1)ω7c, iso-C(13 : 0) and C(16 : 0). The DNA G+C content of strain SP1PR4(T) was 57.3 mol%. Based on phylogenetic, chemotaxonomic and physiological analyses, the name Terriglobus saanensis sp. nov. is proposed to accommodate the two strains; the type strain is SP1PR4(T) ( = DSM 23119(T)  = ATCC BAA-1853(T)).

  16. Fourfold higher tundra volatile emissions due to arctic summer warming

    Science.gov (United States)

    Lindwall, Frida; Schollert, Michelle; Michelsen, Anders; Blok, Daan; Rinnan, Riikka

    2016-03-01

    Biogenic volatile organic compounds (BVOCs), which are mainly emitted by vegetation, may create either positive or negative climate forcing feedbacks. In the Subarctic, BVOC emissions are highly responsive to temperature, but the effects of climatic warming on BVOC emissions have not been assessed in more extreme arctic ecosystems. The Arctic undergoes rapid climate change, with air temperatures increasing at twice the rate of the global mean. Also, the amount of winter precipitation is projected to increase in large areas of the Arctic, and it is unknown how winter snow depth affects BVOC emissions during summer. Here we examine the responses of BVOC emissions to experimental summer warming and winter snow addition—each treatment alone and in combination—in an arctic heath during two growing seasons. We observed a 280% increase relative to ambient in BVOC emissions in response to a 4°C summer warming. Snow addition had minor effects on growing season BVOC emissions after one winter but decreased BVOC emissions after the second winter. We also examined differences between canopy and air temperatures and found that the tundra canopy surface was on average 7.7°C and maximum 21.6°C warmer than air. This large difference suggests that the tundra surface temperature is an important driver for emissions of BVOCs, which are temperature dependent. Our results demonstrate a strong response of BVOC emissions to increasing temperatures in the Arctic, suggesting that emission rates will increase with climate warming and thereby feed back to regional climate change.

  17. Female-specific wing degeneration caused by ecdysteroid in the Tussock Moth, Orgyia recens: Hormonal and developmental regulation of sexual dimorphism

    Directory of Open Access Journals (Sweden)

    Saori Lobbia

    2003-04-01

    Full Text Available Females of the tussock moth Orgyia recens have vestigial wings, whereas the males have normal wings. During early pupal development, female wings degenerate drastically compared with those of males. To examine whether ecdysteroid is involved in this sex-specific wing development, we cultured pupal wings just after pupation with ecdysteroid (20-hydroxyecdysone, 20E. In the presence of 20E, the female wings degenerated to about one-fifth their original size. In contrast, the male wings cultured with 20E showed only peripheral degeneration just outside the bordering lacuna, as in other butterflies and moths. TUNEL analysis showed that apoptotic signals were induced by 20E over the entire region of female wings, but only in the peripheral region of male wings. Semi-thin sections of the wings cultured with ecdysteroid showed that phagocytotic hemocytes were observed abundantly throughout the female wings, but in only peripheral regions of male wings. These observations indicate that both apoptotic events and phagocytotic activation are triggered by ecdysteroid, in sex-specific and region-specific manners.

  18. Look again: Revising ideas about the greening of Alaska’s arctic tundra

    Science.gov (United States)

    Geoffrey Koch; Robert Pattison

    2017-01-01

    Alaska’s Arctic tundra is one of the most rapidly warming regions in the world. For years, scientists have been working to interpret the effects of its changing climate and determine what these changes may mean for the rest of the planet. Coarse-scale satellite imagery of much of this region shows the tundra is becoming greener. This has been widely attributed to shrub...

  19. Increasing shrub abundance and N addition in Arctic tundra affect leaf and root litter decomposition differently

    Science.gov (United States)

    McLaren, J.; van de Weg, M. J.; Shaver, G. R.; Gough, L.

    2013-12-01

    Changes in global climate have resulted in a ';greening' of the Arctic as the abundance of deciduous shrub species increases. Consequently, not only the living plant community, but also the litter composition changes, which in turn can affect carbon turnover patterns in the Arctic. We examined effects of changing litter composition (both root and leaf litter) on decomposition rates with a litter bag study, and specifically focused on the impact of deciduous shrub Betula nana litter on litter decomposition from two evergreen shrubs (Ledum palustre, and Vaccinium vitis-idaea) and one graminoid (Eriophorum vaginatum) species. Additionally, we investigated how decomposition was affected by nutrient availability by placing the litterbags in an ambient and a fertilized moist acidic tundra environment. Measurements were carried out seasonally over 2 years (after snow melt, mid-growing season, end growing season). We measured litter mass loss over time, as well as the respiration rates (standardized for temperature and moisture) and temperature sensitivity of litter respiration at the time of harvesting the litter bags. For leaves, Betula litter decomposed faster than the other three species, with Eriophorum leaves decomposing the slowest. This pattern was observed for both mass loss and litter respiration rates, although the differences in respiration became smaller over time. Surprisingly, combining Betula with any other species resulted in slower overall weight loss rates than would be predicted based on monoculture weight loss rates. This contrasted with litter respiration at the time of sampling, which showed a positive mixing effect of adding Betula leaf liter to the other species. Apparently, during the first winter months (September - May) Betula litter decomposition is negatively affected by mixing the species and this legacy can still be observed in the total mass loss results later in the year. For root litter there were fewer effects of species identity on root

  20. Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil across alpine/subarctic tundra communities

    DEFF Research Database (Denmark)

    M. Alatalo, Juha; K. Jägerbrand, Annika; Juhanson, Jaanis

    2017-01-01

    High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three...... contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from...... be important for buffering mites from global warming. The results indicated that juvenile mites may be more vulnerable to global warming than adult stages. Importantly, the results also indicated that global warming may cause carbon and nitrogen losses in alpine and tundra mineral soils and that its effects...

  1. Complete genome sequence of Granulicella mallensis type strain MP5ACTX8(T), an acidobacterium from tundra soil

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, Suman R. [Rutgers University; Mannisto, Minna [Finnish Forest Research Institute, Parkano, Finland; Starovoytov, Valentin [Rutgers University; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Davenport, Karen W. [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Haggblom, Max [Rutgers University

    2013-01-01

    Granulicella mallensis MP5ACTX8(T) is a novel species of the genus Granulicella in subdivision 1 of Acidobacteria. G. mallensis is of ecological interest being a member of the dominant soil bacterial community active at low temperatures and nutrient limiting conditions in Arctic alpine tundra. G. mallensis is a cold-adapted acidophile and a versatile heterotroph that hydrolyzes a suite of sugars and complex polysaccharides. Genome analysis revealed metabolic versatility with genes involved in metabolism and transport of carbohydrates. These include gene modules encoding the carbohydrate-active enzyme (CAZyme) family involved in breakdown, utilization and biosynthesis of diverse structural and storage polysaccharides including plant based carbon polymers. The genome of Granulicella mallensis MP5ACTX8(T) consists of a single replicon of 6,237,577 base pairs (bp) with 4,907 protein-coding genes and 53 RNA

  2. Land-atmosphere fluxes of methane and carbon dioxide at Siberian polygonal tundra - new data from 2009 in comparison to data from 2003/04 and 2006.

    Science.gov (United States)

    Schreiber, Peter; Wille, Christian; Sachs, Torsten; Pfeiffer, Eva-Maria; Kutzbach, Lars

    2010-05-01

    The fluxes of carbon dioxide (CO2) and methane (CH4) between wet arctic polygonal tundra and the atmosphere were investigated by the eddy covariance method and empirical modeling. The study site is situated in the Lena River Delta in Northern Siberia (72° 22' N, 126° 30' E) and is characterized by a polar and distinctly continental climate, very cold and ice-rich permafrost, and its position at the interface between the Eurasian continent and the Arctic Ocean. The soils at the site are characterized by high organic matter content, low nutrient availability and pronounced water logging. The vegetation is dominated by sedges and mosses. Flux measurements were performed during one 'synthetic' growing season consisting of the periods July - October 2003 and May - July 2004, one full growing season in 2006 (June - September), and during July - August in 2009. The main carbon exchange processes - gross photosynthesis, ecosystem respiration, and CH4 emissions - were generally found to be of low intensity. Over the 2004/2003 growing season (June - September), these gas fluxes accumulated to -0.43 kg m-2, +0.33 kg m-2, and +2 g m-2, respectively. CH4 emissions from June - September 2006 were 1.96 g m-2 with highest emissions in July (+0.57 g m-2) and August (+0.64 g m-2). Day-to-day variations of photosynthesis were mainly controlled by radiation and hence by the synoptic weather conditions. Variations of ecosystem respiration were best explained by an exponential function of surface temperature, which indicates that plant respiration plays a major role within the tundra carbon balance. The factors controlling CH4 emissions were found to be soil temperature and near-surface atmospheric turbulence. The influence of atmospheric turbulence was attributed to the high coverage of open water surfaces in the tundra. For the 2003- 2004 period, winter fluxes were modeled based on functional relationships found in the measured data. On an annual basis, CH4 emissions accounted for

  3. Organic matter composition and stabilization in a polygonal tundra soil of the Lena-Delta

    Directory of Open Access Journals (Sweden)

    S. Höfle

    2012-09-01

    Full Text Available This study investigated soil organic matter (OM composition of differently stabilized soil OM fractions in the active layer of a polygonal tundra soil in the Lena-Delta, Russia by applying density and particle-size fractionation combined with qualitative OM analysis using solid state 13C nuclear magnetic resonance spectroscopy, and lipid analysis combined with 14C analysis. Bulk soil OM was mainly composed of plant-derived, little decomposed material with surprisingly low and strongly increasing apparent 14C ages with active layer depth suggesting slow microbial OM transformation in cold climate. Most soil organic carbon was stored in clay and fine silt fractions (< 6.3 μm, which were composed of little decomposed plant material indicated by the dominance of long n-alkane and n-fatty acid compounds and low alkyl/O-alkyl C ratios. Organo-mineral associations, which are suggested to be a key mechanism of OM stabilization in temperate soils, seem to be less important in the active layer as the mainly plant-derived clay and fine silt sized OM was surprisingly "young" with 14C contents similar to the bulk soil values. Furthermore these fractions contained less organic carbon compared to density fractionated OM occluded in soil aggregates – a further important OM stabilization mechanism in temperate soils restricting accessibility of microorganisms. This process seems to be important at greater active layer depth where particulate OM, occluded in soil aggregates, was "older" than free particulate OM.

  4. Climatically induced interannual variability in aboveground production in forest-tundra and northern taiga of central Siberia.

    Science.gov (United States)

    Knorre, Anastasia A; Kirdyanov, Alexander V; Vaganov, Eugene A

    2006-02-01

    To investigate the variability of primary production of boreal forest ecosystems under the current climatic changes, we compared the dynamics of annual increments and productivity of the main components of plant community (trees, shrubs, mosses) at three sites in the north of Siberia (Russia). Annual radial growth of trees and shrubs was mostly defined by summer temperature regime (positive correlation), but climatic response of woody plants was species specific and depends on local conditions. Dynamics of annual increments of mosses were opposite to tree growth. The difference in climatic response of the different vegetation components of the forest ecosystems indicates that these components seem to be adapted to use climatic conditions during the short and severe northern summer, and decreasing in annual production of one component is usually combined with the increase of other component productivity. Average productivity in the northern forest ecosystems varies from 0.05 to 0.14 t ha(-1) year(-1) for trees, from 0.05 to 0.18 t ha(-1) year(-1) for shrubs and from 0.54 to 0.66 t ha(-1) year(-1) for mosses. Higher values of tree productivity combined with lower annual moss productivity were found in sites in northern taiga in comparison with forest-tundra. Different tendencies in the productivity of the dominant species from each vegetation level (trees, shrubs, mosses) were indicated for the last 10 years studied (1990-1999): while productivity of mosses is increasing, productivity of trees is decreasing, but there is no obvious trend in the productivity of shrubs. Our results show that in the long term, the main contribution to changes in annual biomass productivity in forest-tundra and northern taiga ecosystems under the predicted climatic changes will be determined by living ground cover.

  5. The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia

    Directory of Open Access Journals (Sweden)

    L. Kutzbach

    2007-06-01

    were still largely unfrozen. The temporal variability of the ecosystem respiration during summer was best explained by an exponential function with surface temperature, and not soil temperature, as the independent variable. This was explained by the major role of the plant respiration within the CO2 balance of the tundra ecosystem. The wet polygonal tundra of the Lena River Delta was observed to be a substantial CO2 sink with an accumulated net ecosystem CO2 exchange of –119 g m−2 over the summer and an estimated annual net ecosystem CO2 exchange of –71 g m−2.

  6. The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia

    Science.gov (United States)

    Kutzbach, L.; Wille, C.; Pfeiffer, E.-M.

    2007-10-01

    was best explained by an exponential function with surface temperature, and not soil temperature, as the independent variable. This was explained by the major role of the plant respiration within the CO2 balance of the tundra ecosystem. The wet polygonal tundra of the Lena River Delta was observed to be a substantial CO2 sink with an accumulated net ecosystem CO2 exchange of -119 g m-2 over the summer and an estimated annual net ecosystem CO2 exchange of -71 g m-2.

  7. Vectors and transmission dynamics for Setaria tundra (Filarioidea; Onchocercidae, a parasite of reindeer in Finland

    Directory of Open Access Journals (Sweden)

    Kuusela Jussi

    2009-01-01

    Full Text Available Abstract Background Recent studies have revealed expansion by an array of Filarioid nematodes' into the northern boreal region of Finland. The vector-borne nematode, Setaria tundra, caused a serious disease outbreak in the Finnish reindeer population in 2003–05. The main aim of this study was to understand the outbreak dynamics and the rapid expansion of S. tundra in the sub arctic. We describe the vectors of S. tundra, and its development in vectors, for the first time. Finally we discuss the results in the context of the host-parasite ecology of S. tundra in Finland Results Development of S. tundra to the infective stage occurs in mosquitoes, (genera Aedes and Anopheles. We consider Aedes spp. the most important vectors. The prevalence of S. tundra naturally infected mosquitoes from Finland varied from 0.5 to 2.5%. The rate of development in mosquitoes was temperature-dependent. Infective larvae were present approximately 14 days after a blood meal in mosquitoes maintained at room temperature (mean 21 C, but did not develop in mosquitoes maintained outside for 22 days at a mean temperature of 14.1 C. The third-stage (infective larvae were elongated (mean length 1411 μm (SD 207, and width 28 μm (SD 2. The anterior end was blunt, and bore two liplike structures, the posterior end slight tapering with a prominent terminal papilla. Infective larvae were distributed anteriorly in the insect's body, the highest abundance being 70 larvae in one mosquito. A questionnaire survey revealed that the peak activity of Culicidae in the reindeer herding areas of Finland was from the middle of June to the end of July and that warm summer weather was associated with reindeer flocking behaviour on mosquito-rich wetlands. Conclusion In the present work, S. tundra vectors and larval development were identified and described for the first time. Aedes spp. mosquitoes likely serve as the most important and competent vectors for S. tundra in Finland. Warm summers

  8. What Does Matter?: Idols and Icons in the Nenets Tundra

    Directory of Open Access Journals (Sweden)

    Laur Vallikivi

    2011-08-01

    Full Text Available This paper examines a mission encounter in the Nenets reindeer herders’ tundra. In post-Soviet Arctic Russia, Pentecostal and Baptist missionaries of Russian and Ukrainian origin have been fighting against idolatry and trying to persuade the Nenets to burn their sacred images or khekhe’’. They claim that among the indigenous Siberians idolatry exists in its quintessential or prototypical form, as it is described in the Bible. I shall suggest that this encounter takes place in a gap, in which the Nenets and Protestant have different understandings of language and materiality. Missionaries rely simultaneously on the ‘modern’ ideology of signification and the ‘non-modern’ magic of the material. They argue that idols, which are ‘nothing’ according to the scriptures, dangerously bind the ‘pagans’’ minds. For reindeer herders, for whom sacred items occupy an important place in the family wellbeing, the main issue is how to sever the link with the spirits without doing any damage.

  9. How Will the Tundra-Taiga Interface Respond to Climate Change?

    Energy Technology Data Exchange (ETDEWEB)

    Skre, Oddvar [Norwegian Forest Research Inst., Fana (Norway); Baxter, Bob [Univ. of Durham (United Kingdom). School of Biological and Biomedical Sciences; Crawford, Robert M.M. [Univ. of St. Andrews (United Kingdom); Callaghan, Terry V. [Univ. of Sheffield (United Kingdom). Sheffield Centre for Arctic Ecology; Fedorkov, Aleksey [Russian Academy of Sciences, Syktyvkar (Russian Federation). Inst. of Biology

    2002-08-01

    The intuitive and logical answer to the question of how the tundra-taiga interface will react to global warming is that it should move north and this is mirrored by many models of potential treeline migration. Northward movement may be the eventual outcome if climatic warming persists over centuries or millennia. However, closer examination of the tundra-taiga interface across its circumpolar extent reveals a more complex situation. The regional climatic history of the tundra-taiga interface is highly varied, and consequently it is to be expected that the forest tundra boundary zone will respond differently to climate change depending on local variations in climate, evolutionary history, soil development, and hydrology. Investigations reveal considerable stability at present in the position of the treeline and while there may be a long-term advance northwards there are oceanic regions where climatic warming may result in a retreat southwards due to increased bog development. Reinforcing this trend is an increasing human impact, particularly in the forest tundra of Russia, which forces the limit of the forested areas southwards. Local variations will therefore require continued observation and research, as they will be of considerable importance economically as well as for ecology and conservation.

  10. How will the tundra-taiga interface respond to climate change?

    Science.gov (United States)

    Skre, Oddvar; Baxter, Robert; Crawford, Robert M M; Callaghan, Terry V; Fedorkov, Alexey

    2002-08-01

    The intuitive and logical answer to the question of how the tundra-taiga interface will react to global warming is that it should move north and this is mirrored by many models of potential treeline migration. Northward movement may be the eventual outcome if climatic warming persists over centuries or millennia. However, closer examination of the tundra-taiga interface across its circumpolar extent reveals a more complex situation. The regional climatic history of the tundra-taiga interface is highly varied, and consequently it is to be expected that the forest tundra boundary zone will respond differently to climate change depending on local variations in climate, evolutionary history, soil development, and hydrology. Investigations reveal considerable stability at present in the position of the treeline and while there may be a long-term advance northwards there are oceanic regions where climatic warming may result in a retreat southwards due to increased bog development. Reinforcing this trend is an increasing human impact, particularly in the forest tundra of Russia, which forces the limit of the forested areas southwards. Local variations will therefore require continued observation and research, as they will be of considerable importance economically as well as for ecology and conservation.

  11. Soil organic carbon and nitrogen stock alteration under the influences of bushfires in tundra-forest permafrost ecosystems of the Western Siberia

    Science.gov (United States)

    Shamilishvili, George; Abakumov, Evgeniy; Maksimova, Ekaterina

    2017-04-01

    The study provides information on the alteration of soil organic carbon (SOC) and total nitrogen (N tot) stocks in postfire podzol soils of the tundra-forest permafrost ecosystem of the Western Siberia. Data was derived in August 2016, describing the consequence of the surface-crown bushfire on the permafrost affected tundra soils, previously occurred in Nadym region of the YaNAR, Russia. Obtained data on the SOC content in upper organic horizons show sharp decline of these parameters in postfire soil in comparison with control soil of the tundra area unexposed to fire (from 38,27 to 26,59% respectively). SOC stocks, calculated for the upper organic (O, 0-3 cm) and subsequent eluvial horizons (E, 3-10(20) cm), were found to be significantly lower in postfire soils (decreasing from 20,28 and 0,89 kg/m2 to 2,69 and 0,28 kg/m2 in postfire soil). The analytic data obtained showed a raise of N tot content in burned horizon of the postfire soil with a maximal level of 0,94% in the ash. Calculated nitrogen stocks also showed enrichment in postfire soils. This feature is explained by the release of nutrients from organic residues and plant material to the soil under the influence of high temperatures. The pyrogenic impact increases the portion of humic acids in the organic matter. Along with the transfer of the clay fraction, the translocation of polycyclic aromatic hydrocarbons resulting from the fires to the accumulative geochemical positions is also possible.

  12. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source

    DEFF Research Database (Denmark)

    Nauta, Ake L.; Heijmans, Monique P.D.; Blok, Daan;

    2015-01-01

    Arctic tundra ecosystems are warming almost twice as fast as the global average1. Permafrost thaw and the resulting release of greenhouse gases from decomposing soil organic carbon have the potential to accelerate climate warming2,3. In recent decades, Arctic tundra ecosystems have changed rapidly4......, including expansion of woody vegetation5,6, in response to changing climate conditions. How such vegetation changes contribute to stabilization or destabilization of the permafrost is unknown. Here we present six years of field observations in a shrub removal experiment at a Siberian tundra site. Removing...... the shrub part of the vegetation initiated thawing of ice-rich permafrost, resulting in collapse of the originally elevated shrub patches into waterlogged depressions within five years. This thaw pond development shifted the plots from a methane sink into a methane source. The results of our field...

  13. Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape

    Science.gov (United States)

    Kumar, Jitendra; Collier, Nathan; Bisht, Gautam; Mills, Richard T.; Thornton, Peter E.; Iversen, Colleen M.; Romanovsky, Vladimir

    2016-09-01

    Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to the atmosphere under warming climate scenarios. Ice-wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. This microtopography plays a critical role in regulating the fine-scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behavior under the current as well as changing climate. We present here an end-to-end effort for high-resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites near Barrow, Alaska, spanning across low to transitional to high-centered polygons, representing a broad polygonal tundra landscape. A multiphase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using a high-resolution lidar digital elevation model (DEM), microtopographic features of the landscape were characterized and represented in the high-resolution model mesh. The best available soil data from field observations and literature were utilized to represent the complex heterogeneous subsurface in the numerical model. Simulation results demonstrate the ability of the developed modeling approach to capture - without recourse to model calibration - several aspects of the complex thermal regimes across the sites, and provide insights into the critical role of polygonal tundra microtopography in regulating the thermal dynamics of the carbon-rich permafrost soils. Areas of significant disagreement between model results and observations highlight the importance of field-based observations of soil thermal and

  14. Shrub Abundance Mapping in Arctic Tundra with Misr

    Science.gov (United States)

    Duchesne, R.; Chopping, M. J.; Wang, Z.; Schaaf, C.; Tape, K. D.

    2013-12-01

    Over the last 60 years an increase in shrub abundance has been observed in the Arctic tundra in connection with a rapid surface warming trend. Rapid shrub expansion may have consequences in terms of ecosystem structure and function, albedo, and feedbacks to climate; however, its rate is not yet known. The goal of this research effort is thus to map large scale changes in Arctic tundra vegetation by exploiting the structural signal in moderate resolution satellite remote sensing images from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped onto a 250m Albers Conic Equal Area grid. We present here large area shrub mapping supported by reference data collated using extensive field inventory data and high resolution panchromatic imagery. MISR Level 1B2 Terrain radiance scenes from the Terra satellite from 15 June-31 July, 2000 - 2010 were converted to surface bidirectional reflectance factors (BRF) using MISR Toolkit routines and the MISR 1 km LAND product BRFs. The red band data in all available cameras were used to invert the RossThick-LiSparse-Reciprocal BRDF model to retrieve kernel weights, model-fitting RMSE, and Weights of Determination. The reference database was constructed using aerial survey, three field campaigns (field inventory for shrub count, cover, mean radius and height), and high resolution imagery. Tall shrub number, mean crown radius, cover, and mean height estimates were obtained from QuickBird and GeoEye panchromatic image chips using the CANAPI algorithm, and calibrated using field-based estimates, thus extending the database to over eight hundred locations. Tall shrub fractional cover maps for the North Slope of Alaska were constructed using the bootstrap forest machine learning algorithm that exploits the surface information provided by MISR. The reference database was divided into two datasets for training and validation. The model derived used a set of 19 independent variables(the three kernel weights, ratios and interaction terms

  15. Digital necrobacillosis in Norwegian wild tundra reindeer (Rangifer tarandus tarandus).

    Science.gov (United States)

    Handeland, K; Boye, M; Bergsjø, B; Bondal, H; Isaksen, K; Agerholm, J S

    2010-07-01

    Outbreaks of digital necrobacillosis in Norwegian wild tundra reindeer (Rangifer tarandus tarandus) are described. The outbreaks occurred in late summer and autumn 2007 and 2008, subsequent to periods with an unusually high number of days with precipitation and high air temperature. Lesions were generally restricted to one foot and the disease incidence was highest in calves. Single limbs from 20 animals and six whole carcasses were submitted for laboratory examination. Gross lesions were characterized by swelling of the fetlock to coronary band area and cutaneous sinus tracts with sparse discharge of pus. Subcutaneous tissue was inflamed and oedematous with focal necrosis. Tendons, tendon sheaths, joints and periosteum of the digital bones were often affected. Animals shot during winter showed severe chronic periostitis and osteomyelitis and necrotizing deforming arthritis. Microscopically, skin lesions were characterized by deep ulcers with centrally located necrotic tissue, bordered by a zone of oedema and intense inflammation with granulation tissue and fibrosis. Necrosis, suppurative inflammation and oedema were found in the synovial membranes, tendons and tendon sheaths. Digital bone lesions were characterized by necrosis, fibrosis and extensive bone proliferation. Vasculitis and thrombosis were common in all lesions. Elongate filamentous gram-negative bacteria in necrotic lesions from all animals were identified as Fusobacterium necrophorum by fluorescence in-situ hybridization. F. necrophorum was cultured from the foot lesions of six animals. Five of these isolates were examined by 16S rRNA sequencing. The sequences were identical and differed from all other strains listed in GenBank. These results are consistent with circulation of a reindeer-adapted pathogenic strain of F. necrophorum in the wild reindeer population, causing outbreaks of digital necrobacillosis following warm and humid summers.

  16. Metagenomics reveals pervasive bacterial populations and reduced community diversity across the Alaska tundra ecosystem

    Directory of Open Access Journals (Sweden)

    Eric Robert Johnston

    2016-04-01

    Full Text Available How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 grams are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth by sequencing, and the recovery of twenty-seven high-quality, almost complete (>80% completeness population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity. Collectively

  17. The Blazing Arctic? Linkages of Tundra Fire Regimes to Climatic Change and Implications for Carbon Cycling (Invited)

    Science.gov (United States)

    Hu, F.; Higuera, P. E.; Walsh, J. E.; Chapman, W.; Duffy, P.; Brubaker, L.; Chipman, M. L.

    2010-12-01

    Among the major challenges in anticipating Arctic changes are “surprises” stemming from changes in system components that have remained relatively stable in the historic record. Tundra burning is potentially one such component. We conducted charcoal analysis of lake sediments from several tundra regions to evaluate the uniqueness of recent tundra fires, and examined potential climatic controls of Alaskan tundra fires from CE 1950-2009. A striking example of tundra burning is the 2007 Anaktuvuk River (AR) Fire, an unusually large fire in the tundra of the Alaskan Arctic. This fire doubled the area burned north of 68 oN in that region since record keeping began in 1950. Analysis of lake-sediment cores reveals peak values of charcoal accumulation corresponding to the AR Fire in 2007, with no evidence of other fire events in that area throughout the past five millennia. However, a number of tundra fires, including one as large as the AR Fire, have occurred over the past 60 years in western Alaska, where average summer temperatures are substantially higher than the AR area. In addition, charcoal analysis of lake sediments from interior and northwestern Alaska suggests that during certain periods of the Late Glacial and Holocene, tundra fire frequencies were as high as those of the modern boreal forests. These records along with the AR and historic fires demonstrate that tundra ecosystems support diverse fire regimes and can burn frequently. Reconciling these dramatic differences in tundra fire regimes requires knowledge of climate-fire relationships. Atmospheric reanalysis suggests that the AR Fire was favored by exceptionally warm/dry weather conditions in summer and early autumn. Boosted regression tree modeling shows that warm, dry summer conditions can explain up to 95% of the inter-annual variability in tundra area burned throughout Alaska over the past 60 years and that the response of tundra burning to climatic warming is non-linear. Additionally, tundra area

  18. Impacts of introduced Rangifer on ecosystem processes of maritime tundra on subarctic islands

    Science.gov (United States)

    Ricca, Mark; Miles, A. Keith; Van Vuren, Dirk H.; Eviner, Valerie T.

    2016-01-01

    Introductions of mammalian herbivores to remote islands without predators provide a natural experiment to ask how temporal and spatial variation in herbivory intensity alter feedbacks between plant and soil processes. We investigated ecosystem effects resulting from introductions of Rangifer tarandus (hereafter “Rangifer”) to native mammalian predator- and herbivore-free islands in the Aleutian archipelago of Alaska. We hypothesized that the maritime tundra of these islands would experience either: (1) accelerated ecosystem processes mediated by positive feedbacks between increased graminoid production and rapid nitrogen cycling; or (2) decelerated processes mediated by herbivory that stimulated shrub domination and lowered soil fertility. We measured summer plant and soil properties across three islands representing a chronosequence of elapsed time post-Rangifer introduction (Atka: ~100 yr; Adak: ~50; Kagalaska: ~0), with distinct stages of irruptive population dynamics of Rangifer nested within each island (Atka: irruption, K-overshoot, decline, K-re-equilibration; Adak: irruption, K-overshoot; Kagalaska: initial introduction). We also measured Rangifer spatial use within islands (indexed by pellet group counts) to determine how ecosystem processes responded to spatial variation in herbivory. Vegetation community response to herbivory varied with temporal and spatial scale. When comparing temporal effects using the island chronosequence, increased time since herbivore introduction led to more graminoids and fewer dwarf-shrubs, lichens, and mosses. Slow-growingCladonia lichens that are highly preferred winter forage were decimated on both long-termRangifer-occupied islands. In addition, linear relations between more concentrated Rangifer spatial use and reductions in graminoid and forb biomass within islands added spatial heterogeneity to long-term patterns identified by the chronosequence. These results support, in part, the hypothesis that

  19. Different parts, different stories: climate sensitivity of growth is stronger in root collars vs. stems in tundra shrubs.

    Science.gov (United States)

    Ropars, Pascale; Angers-Blondin, Sandra; Gagnon, Marianne; Myers-Smith, Isla H; Lévesque, Esther; Boudreau, Stéphane

    2017-08-01

    Shrub densification has been widely reported across the circumpolar arctic and subarctic biomes in recent years. Long-term analyses based on dendrochronological techniques applied to shrubs have linked this phenomenon to climate change. However, the multi-stemmed structure of shrubs makes them difficult to sample and therefore leads to non-uniform sampling protocols among shrub ecologists, who will favor either root collars or stems to conduct dendrochronological analyses. Through a comparative study of the use of root collars and stems of Betula glandulosa, a common North American shrub species, we evaluated the relative sensitivity of each plant part to climate variables and assessed whether this sensitivity is consistent across three different types of environments in northwestern Québec, Canada (terrace, hilltop and snowbed). We found that root collars had greater sensitivity to climate than stems and that these differences were maintained across the three types of environments. Growth at the root collar was best explained by spring precipitation and summer temperature, whereas stem growth showed weak and inconsistent responses to climate variables. Moreover, sensitivity to climate was not consistent among plant parts, as individuals having climate-sensitive root collars did not tend to have climate-sensitive stems. These differences in sensitivity of shrub parts to climate highlight the complexity of resource allocation in multi-stemmed plants. Whereas stem initiation and growth are driven by microenvironmental variables such as light availability and competition, root collars integrate the growth of all plant parts instead, rendering them less affected by mechanisms such as competition and more responsive to signals of global change. Although further investigations are required to determine the degree to which these findings are generalizable across the tundra biome, our results indicate that consistency and caution in the choice of plant parts are a key

  20. Alpine forest-tundra ecotone response to temperature change, Sayan Mountains, Siberia

    Science.gov (United States)

    Kharuk, V.; Jon, R.; Im, S.

    2007-12-01

    Models of climate change predict shifts of vegetation zones. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. There is evidence of vegetation change on the northern treeline However, observations on alpine tree line response are controversial. In this NEESPI related study we show that during the past three decades in the forest-tundra ecotone of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure, regeneration propagation into the alpine tundra, and transformation of prostrate Siberian pine and fir into arboreal forms. We found that these changes occurred since the mid 1980s, and strongly correlates with positive temperature (and to a lesser extent, precipitation) trends. Improving climate for forest growth( i.e., warmer temperatures and increased precipitation) provides competitive advantages to Siberian pine in the alpine forest-tundra ecotone, as well as in areas typically dominated by larch, where it has been found to be forming a secondary canopy layer. Substitution of deciduous conifer, larch, for evergreen conifers, decreases albedo and provides positive feedback for temperature increase.

  1. Blood lead concentrations in Alaskan tundra swans: linking breeding and wintering areas with satellite telemetry

    Science.gov (United States)

    Ely, Craig R.; Franson, Christian

    2014-01-01

    Tundra swans (Cygnus columbianus) like many waterfowl species are susceptible to lead (Pb) poisoning, and Pb-induced mortality has been reported from many areas of their wintering range. Little is known however about Pb levels throughout the annual cycle of tundra swans, especially during summer when birds are on remote northern breeding areas where they are less likely to be exposed to anthropogenic sources of Pb. Our objective was to document summer Pb levels in tundra swans throughout their breeding range in Alaska to determine if there were population-specific differences in blood Pb concentrations that might pose a threat to swans and to humans that may consume them. We measured blood Pb concentrations in tundra swans at five locations in Alaska, representing birds that winter in both the Pacific Flyway and Atlantic Flyway. We also marked swans at each location with satellite transmitters and coded neck bands, to identify staging and wintering sites and determine if winter site use correlated with summer Pb concentrations. Blood Pb levels were generally low ( Blood Pb levels varied significantly across the five breeding areas, with highest concentrations in birds on the North Slope of Alaska (wintering in the Atlantic Flyway), and lowest in birds from the lower Alaska Peninsula that rarely migrate south for winter.

  2. Estimation and extrapolation of soil properties in the Siberian tundra, using field spectroscopy

    NARCIS (Netherlands)

    Bartholomeus, H.; Schaepman-Strub, G.; Blok, D.; Udaltsov, S.; Sofronov, R.

    2010-01-01

    The Siberian tundra is a complex and sensitive ecosystem. Predicted global warming will be highest in the Arctic and will severely affect permafrost environments. Due to its large spatial extent and large stocks of soil organic carbon, changes to the carbon fluxes in the Arctic will have significant

  3. Carbon dioxide exchange in three tundra sites show a dissimilar response to environmental variables

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe; Lund, Magnus; Christensen, Torben Røjle

    2015-01-01

    Due to the heterogeneity of the Arctic tundra, general current understanding of net carbon (C) uptake in these ecosystems is poorly developed. This study investigates the dependency of carbon dioxide (CO2) fluxes on environmental, meteorological and vegetation properties in high, low and subarctic...

  4. Alpine forest-tundra ecotone response to temperature change,Sayan Mountains, Siberia

    Science.gov (United States)

    Ranson, K Jon; Kharuk, Vyetcheslav I.

    2007-01-01

    Models of climate change predict shifts of vegetation zones. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. There is evidence of vegetation change on the northern treeline However, observations on alpine tree line response are controversial. In this NEESPI related study we show that during the past three decades in the forest-tundra ecotone of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure, regeneration propagation into the alpine tundra, and transformation of prostrate Siberian pine and fir into arboreal forms. We found that these changes occurred since the mid 1980s, and strongly correlates with positive temperature (and to a lesser extent, precipitation) trends. Improving climate for forest growth( i.e., warmer temperatures and increased precipitation) provides competitive advantages to Siberian pine in the alpine forest-tundra ecotone, as well as in areas typically dominated by larch, where it has been found to be forming a secondary canopy layer. Substitution of deciduous conifer, larch, for evergreen conifers, decreases albedo and provides positive feedback for temperature increase.

  5. Surface energy exchanges along a tundra-forest transition and feedbacks to climate

    Science.gov (United States)

    Beringer, J.; Chapin, F. S.; Thompson, Catharine Copass; McGuire, A.D.

    2005-01-01

    Surface energy exchanges were measured in a sequence of five sites representing the major vegetation types in the transition from arctic tundra to forest. This is the major transition in vegetation structure in northern high latitudes. We examined the influence of vegetation structure on the rates of sensible heating and evapotranspiration to assess the potential feedbacks to climate if high-latitude warming were to change the distribution of these vegetation types. Measurements were made at Council on the Seward Peninsula, Alaska, at representative tundra, low shrub, tall shrub, woodland (treeline), and boreal forest sites. Structural differences across the transition from tundra to forest included an increase in the leaf area index (LAI) from 0.52 to 2.76, an increase in canopy height from 0.1 to 6.1 m, and a general increase in canopy complexity. These changes in vegetation structure resulted in a decrease in albedo from 0.19 to 0.10 as well as changes to the partitioning of energy at the surface. Bulk surface resistance to water vapor flux remained virtually constant across sites, apparently because the combined soil and moss evaporation decreased while transpiration increased along the transect from tundra to forest. In general, sites became relatively warmer and drier along the transect with the convective fluxes being increasingly dominated by sensible heating, as evident by an increasing Bowen ratio from 0.94 to 1.22. The difference in growing season average daily sensible heating between tundra and forest was 21 W m-2. Fluxes changed non-linearly along the transition, with both shrubs and trees substantially enhancing heat transfer to the atmosphere. These changes in vegetation structure that increase sensible heating could feed back to enhance warming at local to regional scales. The magnitude of these vegetation effects on potential high-latitude warming is two to three times greater than suggested by previous modeling studies. ?? 2005 Elsevier B.V. All

  6. Snowmelt runoff from northern alpine tundra hillslopes: major processes and methods of simulation

    Directory of Open Access Journals (Sweden)

    W. L. Quinton

    2004-01-01

    Full Text Available In northern alpine tundra, large slope gradients, late-lying snow drifts and shallow soils overlying impermeable substrates all contribute to large hillslope runoff volumes during the spring freshet. Understanding the processes and pathways of hillslope runoff in this environment is, therefore, critical to understanding the water cycle within northern alpine tundra ecosystems. This study: (a presents the results of a field study on runoff from a sub-alpine tundra hillslope with a large snow drift during the spring melt period; (b identifies the major runoff processes that must be represented in simulations of snowmelt runoff from sub-alpine tundra hillslopes; (c describes how these processes can be represented in a numerical simulation model; and d compares field measurements with modelled output to validate or refute the conceptual understanding of runoff generation embodied in the process simulations. The study was conducted at Granger Creek catchment, 15 km south of Whitehorse, Yukon Territory, Canada, on a north-facing slope below a late-lying snow drift. For the freshet period, the major processes to be represented in a runoff model include the rate of meltwater release from the late-lying snowdrift, the elevation and thickness of the saturated layer, the magnitude of the soil permeability and its variation with depth. The daily cycle of net all-wave radiation was observed to drive the diurnal pulses of melt water from the drift; this, in turn, was found to control the daily pulses of flow through the hillslope subsurface and in the stream channel. The computed rate of frost table lowering fell within the observed values; however, there was wide variation among the measured frost table depths. Spatial variability in frost table depth would result in spatial variabilities in saturated layer depth and thickness, which would, in turn, produce variations in subsurface flow rates over the slope, including preferential flowpaths. Keywords

  7. Will Arctic ground squirrels impede or accelerate climate-induced vegetation changes to the Arctic tundra?

    Science.gov (United States)

    Dalton, J.; Flower, C. E.; Brown, J.; Gonzalez-Meler, M. A.; Whelan, C.

    2014-12-01

    Considerable attention has been given to the climate feedbacks associated with predicted vegetation shifts in the Arctic tundra in response to global environmental change. However, little is known regarding the extent to which consumers can facilitate or respond to shrub expansion. Arctic ground squirrels, the largest and most northern ground squirrel, are abundant and widespread throughout the North American tundra. Their broad diet of seeds, flowers, herbage, bird's eggs and meat speaks to the need to breed, feed, and fatten in a span of some 12-16 weeks that separate their 8-9 month bouts of hibernation with the potential consequence to impact ecosystem dynamics. Therefore Arctic ground squirrels are a good candidate to evaluate whether consumers are mere responders (bottom-up effects) or drivers (top-down) of the observed and predicted vegetation changes. As a start towards this question, we measured the foraging intensity (giving-up densities) of Arctic ground squirrels in experimental food patches within which the squirrels experience diminishing returns as they seek the raisins and peanuts that we provided at the Toolik Lake field station in northern Alaska. If the squirrels show their highest feeding intensity in the shrubs, they may impede vegetation shifts by slowing the establishment and expansion of shrubs in the tundra. Conversely, if they show their lowest feeding intensity within shrub dominated areas, they may accelerate vegetation shifts. We found neither. Feeding intensity varied most among transects and times of day, and least along a tundra-to-shrub vegetation gradient. This suggests that the impacts of squirrels will be heterogeneous - in places responders and in others drivers. We should not be surprised then to see patches of accelerated and impeded vegetation changes in the tundra ecosystem. Some of these patterns may be predictable from the foraging behavior of Arctic ground squirrels.

  8. Seasonal variation in soil nitrogen availability across a fertilization chronosequence in moist acidic tundra

    Science.gov (United States)

    McLaren, J. R.; Gough, L.; Weintraub, M. N.

    2012-12-01

    Changes in global climate may result in altered timing of seasonal events including the timing of the spring-thaw and fall freeze-up. In addition to this changing seasonality, arctic environments are experiencing overall increases in nutrient availability caused by climate warming resulting in alterations of plant species composition, such as the observed increases in the abundance of deciduous shrubs. Changing species composition may have large effects on nutrient dynamics in the surrounding ecosystem because of documented differences in how particular plant species influence soil nutrient availability. Although we have some idea of how plant identity influences soil nutrients, soil biogeochemical processes are strongly seasonal, and we have a poor understanding of how plant identity, or nutrient levels, may influence these seasonal patterns. We examined the responses of moist acidic tundra to experimentally increased soil nutrient availability and the accompanying increase in shrub abundance at the Arctic Long Term Ecological Research (LTER) site at Toolik Lake, Alaska. We examined a chrono-sequence of long-term fertilization experiments, composed of experiments fertilized for 5, 15 and 22 years, which has resulted in increasing shrub density with time since fertilization. The fertilized plots receive both nitrogen (N, 10 g/m2/yr) and phosphorus (5 g/m2/yr) annually following snowmelt. In the 2011 growing season we measured variation in soil available N weekly, including measures of ammonium (NH4), nitrate (NO3) and total free amino acids (TFAA). We found that differences between fertilized and control plots depended strongly on both the seasonal timing of measurements, as well as the duration of the fertilization treatment. Early in the growing season fertilization resulted in large increases in available soil N (both NH4 and NO3) across the entire chronosequence. As the season progressed, however, older fertilized plots show evidence of N saturation, where

  9. Tundra vegetation change near Barrow, Alaska (1972-2010)

    Science.gov (United States)

    Villarreal, S.; Hollister, R. D.; Johnson, D. R.; Lara, M. J.; Webber, P. J.; Tweedie, C. E.

    2012-03-01

    Knowledge of how arctic plant communities will respond to change has been largely derived from plot level experimental manipulation, not from trends of decade time scale environmental observations. This study documents plant community change in 330 marked plots at 33 sites established during the International Biological Program near Barrow, Alaska in 1972. Plots were resampled in 1999, 2008 and 2010 for species cover and presence. Cluster analysis identified nine plant communities in 1972. Non-metric multidimensional scaling (NMS) indicates that plant communities have changed in different ways over time, and that wet communities have changed more than dry communities. The relative cover of lichens increased over time, while the response of other plant functional groups varied. Species richness and diversity also increased over time. The most dramatic changes in the cover of bryophytes, graminoids and bare ground coincided with a lemming high in 2008.

  10. Monitoring larval populations of the douglas-fir tussock moth and the western spruce budworm on permanent plots: Sampling methods and statistical properties of data. Forest Service general technical report

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R.R.; Paul, H.G.

    1994-05-01

    Procedures for monitoring Larval populations of the Douglas-fir tussock moth and the western spruce budworm are recommended based on many years experience of sample these species in eastern Oregon and Washington. It is shown that statistically reliable estimates of larval density can be made for a population by sampling host trees in a series of permanent plots in a geographical monitoring unit. The most practical method is to estimate densities of both insect species simultaneously on a plot by the nondestructive sampling of foliage on lower crown branches of host trees. For best results, sampling methods need to be consistent with monitoring done annually to accumulate continuous databases that reflect the behavior of defoliator populations over a long period of time.

  11. Central planning, market and subsistence from a tundra perspective: Field experience with reindeer herders in the Kola Peninsula

    Directory of Open Access Journals (Sweden)

    Dessislav Sabev

    2002-04-01

    Full Text Available This paper is based on field experience in the tundra camp of a reindeer-herding brigade with mixed ethnic background (Komi, Sami, Nenets, Russians belonging to the ex-Sovkhoz of Krasnoschelie. Its purpose is to situate the new critical issues facing the reindeer-herding collectives after the economic collapse in Russia in 1998. My main argument is that the increasing economic isolation of the tundra periphery forces the herders to redefine their relationship with both the centre(s and the other tundra actors. Reindeer herding on the Kola Peninsula is analysed in relation to its heterogeneous economic system defined by the old Sovkhoz-like management and the new Western buyer of reindeer meat. Furthermore, the social environment in the herding territories has changed since the deterioration of the central planning economy, implying new renewable resources' users. After massive loss of jobs, militaries, miners and geologists came into the tundra for substantial hunting and fishing and so became actors in the local informal economy. Finally, tundra-located herders and hunters seem to be somewhere unified by a discourse against the town-based administrative power and economic actors such as mining industry. Therefore herders have to deal with both an old administrative system in the agrocentre and new realities in the tundra. Based on a case study of herding/hunting activities in a tundra camp, the paper analyses the social relationships between the different actors in the post-Soviet Kola tundra and express their quest for solutions.

  12. Sorting out non-sorted circles: Effects of winter climate change on the Collembola community of cryoturbated subarctic tundra

    Science.gov (United States)

    Krab, Eveline; Monteux, Sylvain; Becher, Marina; Blume-Werry, Gesche; Keuper, Frida; Klaminder, Jonatan; Kobayashi, Makoto; Lundin, Erik J.; Milbau, Ann; Roennefarth, Jonas; Teuber, Laurenz Michael; Weedon, James; Dorrepaal, Ellen

    2015-04-01

    Non-sorted circles (NSC) are a common type of cryoturbated (frost-disturbed) soil in the arctic and store large amounts of soil organic carbon (SOC) by the burial of organic matter. They appear as sparsely vegetated areas surrounded by denser tundra vegetation, creating patterned ground. Snowfall in the arctic is expected to increase, which will modify freezing intensity and freeze-thaw cycles in soils, thereby impacting on SOC dynamics. Vegetation, soil fauna and microorganisms, important drivers of carbon turnover, may benefit directly from the altered winter conditions and the resulting reduction in cryoturbation, but may also impact each other through trophic cascading. We investigated how Collembola, important decomposer soil fauna in high latitude ecosystems, are affected by increased winter insulation and vegetation cover. We subjected NSC in North-Swedish subarctic alpine tundra to two years of increased thermal insulation (snow fences or fiber cloth) in winter and spring, increasing soil temperatures and strongly reducing freeze-thaw frequency. From these NSC we sampled the Collembola community in: (i) the non-vegetated center, (ii) sparsely vegetated parts in the center and (iii) the vegetated domain surrounding NSC. To link changes in Collembola density and community composition to SOC dynamics, we included measurements of decomposer activity, dissolved organic carbon (DOC) and total extractable nitrogen (TN). We observed differences in Collembola density, community composition and soil fauna activity between the sampling points in the NSC. Specifically Collembola diversity increased with the presence of vegetation and density was higher in the vegetated outer domains. Increased winter insulation did not affect diversity but seemed to negatively affect density and decomposer activity in the vegetated outer domains. Interestingly, SOM distribution over NSC changed with snow addition (also to a lesser extent with fleece insulation) towards less SOM in the

  13. Soil bacterial community and functional shifts in response to altered snowpack in moist acidic tundra of northern Alaska

    Science.gov (United States)

    Ricketts, Michael P.; Poretsky, Rachel S.; Welker, Jeffrey M.; Gonzalez-Meler, Miquel A.

    2016-09-01

    Soil microbial communities play a central role in the cycling of carbon (C) in Arctic tundra ecosystems, which contain a large portion of the global C pool. Climate change predictions for Arctic regions include increased temperature and precipitation (i.e. more snow), resulting in increased winter soil insulation, increased soil temperature and moisture, and shifting plant community composition. We utilized an 18-year snow fence study site designed to examine the effects of increased winter precipitation on Arctic tundra soil bacterial communities within the context of expected ecosystem response to climate change. Soil was collected from three pre-established treatment zones representing varying degrees of snow accumulation, where deep snow ˜ 100 % and intermediate snow ˜ 50 % increased snowpack relative to the control, and low snow ˜ 25 % decreased snowpack relative to the control. Soil physical properties (temperature, moisture, active layer thaw depth) were measured, and samples were analysed for C concentration, nitrogen (N) concentration, and pH. Soil microbial community DNA was extracted and the 16S rRNA gene was sequenced to reveal phylogenetic community differences between samples and determine how soil bacterial communities might respond (structurally and functionally) to changes in winter precipitation and soil chemistry. We analysed relative abundance changes of the six most abundant phyla (ranging from 82 to 96 % of total detected phyla per sample) and found four (Acidobacteria, Actinobacteria, Verrucomicrobia, and Chloroflexi) responded to deepened snow. All six phyla correlated with at least one of the soil chemical properties (% C, % N, C : N, pH); however, a single predictor was not identified, suggesting that each bacterial phylum responds differently to soil characteristics. Overall, bacterial community structure (beta diversity) was found to be associated with snow accumulation treatment and all soil chemical properties. Bacterial

  14. Efficacy of different treatment regimes against setariosis (Setaria tundra, Nematoda: Filarioidea and associated peritonitis in reindeer

    Directory of Open Access Journals (Sweden)

    Nieminen Mauri

    2008-12-01

    Full Text Available Abstract Background When a severe peritonitis outbreak in semi-domesticated reindeer was noticed in 2003 in Finland, the concerned industry urged immediate preventive actions in order to avoid detrimental effects of S. tundra and further economical losses. A research programme was swiftly initiated to study S. tundra and its impact on the health and wellbeing of reindeer. Methods The ultimate aim of this study was to test the efficacy of different treatment regimes against S. tundra and associated peritonitis in reindeer. The timing of the trials was planned to be compatible with the annual rhythm of the reindeer management; (1 the treatment of calves in midsummer, during routine calf ear marking, with ivermectin injection prophylaxis and deltamethrin pour-on solution as a repellent against insect vectors, (2 the treatment of infected calves in early autumn with ivermectin injection, and (3 ivermectin treatment of breeding reindeer in winter. The results were assessed using the post mortem inspection data and S. tundra detection. Finally, to evaluate on the population level the influence of the annual (late autumn-winter ivermectin treatment of breeding reindeer on the transmission dynamics of S. tundra, a questionnaire survey was conducted. Results In autumn, ivermectin treatment was efficient against peritonitis and in midsummer had a slight negative impact on the degree of peritonitis and positive on the fat layer, but deltamethrin had none. Ivermectin was efficient against adult S. tundra and its smf. All the reindeer herding cooperatives answered the questionnaire and it appeared that antiparasitic treatment of reindeer population was intense during the study period, when 64–90% of the animals were treated. In the southern part of the Finnish reindeer husbandry area, oral administration of ivermectin was commonly used. Conclusion Autumn, and to a lesser degree summer, treatment of reindeer calves with injectable ivermectin resulted in

  15. Five Years of Land Surface Phenology in a Large Scale Hydrological Manipulation Experiment in an Arctic Tundra Landscape

    Science.gov (United States)

    Goswami, S.; Gamon, J. A.; Tweedie, C. E.

    2010-12-01

    Climate change appears to be most pronounced at high northern latitudes. Many of the observed and modeled climate change responses in arctic tundra ecosystems have profound effects on surface energy budgets, land-atmosphere carbon exchange, plant phenology, and geomorphic processes. Detecting biotic responses to a changing environment is essential for understanding the consequences of global change. Plants can work as very effective indicators of changing conditions and, depending on the nature of the change, respond by increasing or decreasing amounts of green-leaf biomass, chlorophyll, and water content. Shifts in the composition and abundance of plant species have important effects on ecosystem processes such as net primary production and nutrient cycling. Vegetation is expected to be responsive to arctic warming, although there is some uncertainty as to how the interplay between geomorphic, hydrologic, climatic and other biotic will manifest over a range of spatial scales. The NSF-supported Biocomplexity project in Barrow, Alaska, involves experimental manipulation of water table (drained, flooded, and control treatments) in a vegetated arctic thaw lake basin to investigate the effects of altered hydrology on land-atmosphere carbon balance. In each experimental treatment, hyperspectral reflectance data were collected in the visible and near IR range of the spectrum using a robotic tram system that operated along a 300m tramline during the snow free growing period between June and August 2005-09. Water table depths and soil volumetric water content was also collected along these transects. The years 2005-2007 were control or unmanipulated experimental years and 2008 and 2009 were experimental years where water table was raised (+10cm) and lowered (-10cm) in flooding and draining experiments respectively. This presentation will document the change in phenology (NDVI) between years, treatments, and land cover types. Findings from this research have implications

  16. The structure of the bacterial heterotrophic block in tundra soils of Yamal Peninsula

    Science.gov (United States)

    Kukharenko, O. S.; Dobrovol'Skaya, T. G.; Golovchenko, A. V.; Stepanov, A. L.; Matyshak, G. V.

    2009-04-01

    The tundra cryogenic soils of Yamal Peninsula have a high pool of prokaryote microorganisms characteristic of ecosystems where the environmental conditions are unfavorable for microbiological processes. The lowering of the cultivation temperature from 20 to 5°C did not affect the number of bacteria and their taxonomic structure. Psychrotolerant gram-negative bacteria represented by oligotrophs and copiotrophs predominated in the bacterial communities. Among the bacteria of the hydrolytic block, only bacilli were isolated upon cultivation on the media. The species spectrum of the Bacillus genus was determined by the capability of its representatives for growth at low temperatures. The bacteria isolated from the cryogenic soils had a high nitrogenase activity, which increased under the lower cultivation temperature. This fact shows that the majority of the bacteria in tundra soils has adapted to functioning at low temperatures.

  17. Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence

    Science.gov (United States)

    Luus, K. A.; Commane, R.; Parazoo, N. C.; Benmergui, J.; Euskirchen, E. S.; Frankenberg, C.; Joiner, J.; Lindaas, J.; Miller, C. E.; Oechel, W. C.; Zona, D.; Wofsy, S.; Lin, J. C.

    2017-02-01

    Accurately quantifying the timing and magnitude of respiration and photosynthesis by high-latitude ecosystems is important for understanding how a warming climate influences global carbon cycling. Data-driven estimates of photosynthesis across Arctic regions often rely on satellite-derived enhanced vegetation index (EVI); we find that satellite observations of solar-induced chlorophyll fluorescence (SIF) provide a more direct proxy for photosynthesis. We model Alaskan tundra CO2 cycling (2012-2014) according to temperature and shortwave radiation and alternately input EVI or SIF to prescribe the annual seasonal cycle of photosynthesis. We find that EVI-based seasonality indicates spring "green-up" to occur 9 days prior to SIF-based estimates, and that SIF-based estimates agree with aircraft and tower measurements of CO2. Adopting SIF, instead of EVI, for modeling the seasonal cycle of tundra photosynthesis can result in more accurate estimates of growing season duration and net carbon uptake by arctic vegetation.

  18. Alaska tundra vegetation trends and their links to the large-scale climate

    Science.gov (United States)

    Bieniek, P. A.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Comiso, J. C.

    2011-12-01

    The arctic Normalized Vegetation Index (NDVI) data set (a measure of vegetation photosynthetic capacity) has been used to document coherent temporal relationships between near-coastal sea ice, summer tundra land surface temperatures, and vegetation productivity throughout the Arctic (Bhatt et al. 2010). Land warming over North America has displayed larger trends (+30%) when compared to Eurasia (+16%) since 1982. In the tundra of northern Alaska the greatest change was found in absolute maximum NDVI along the Beaufort Sea coast (+14%). In contrast, tundra areas in southwest Alaska along the Bering Sea have seen a decline (-4%). Greenup date in these regions has been occurring as much as 1-4 days earlier per decade, but trends are mixed. Winter snow water equivalent (SWE) has only increased slightly (+0.1 mm/yr) in the Arctic region of Alaska since 1987 (R. Muskett, personal communication). These findings suggest that there have been changes in the seasonal climate in Alaska during the NDVI record. The tundra trends are further investigated by evaluating remotely sensed sea ice, surface air temperature, SWE, daily snow cover, and NDVI3g. While the snow data has a relatively short record (1999-2010), notable trends can be observed in snow melt, occurring as much 15 days earlier per decade in northern Alaska. Unfortunately, other snow data sets have been found to be problematic and could not be used to extend our analysis. This highlights the need for a long-term pan-arctic snow data set that is suitable for climate analysis. Possible climate drivers are also investigated. Results show that the summer tundra, in terms of NDVI and summer warmth index (SWI), has few direct links with the large-scale climate. However, the sea ice concentration along the coast of the tundra regions has strong preseason links to the large-scale climate. This suggests that the large-scale climate influences the sea ice concentration which then affects the NDVI and SWI. Three tundra regions

  19. Bird communities of the arctic shrub tundra of Yamal: habitat specialists and generalists.

    Directory of Open Access Journals (Sweden)

    Vasiliy Sokolov

    Full Text Available BACKGROUND: The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km(2. Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra. CONCLUSION/SIGNIFICANCE: If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone.

  20. Distribution patterns of typical enzyme activities in tundra soils on the Fildes Peninsula of maritime Antarctica

    Institute of Scientific and Technical Information of China (English)

    DING Wei; WANG Qing; ZHU Renbin; MA Dawei

    2015-01-01

    Soil enzyme activities can be used as indicators of microbial activity and soil fertility. In this paper, the activities of invertase (IA), phosphatase (PA) and urease (UA) were investigated in tundra soils collected from marine animal colonies, areas of human activity and background areas on Fildes Peninsula, maritime Antarctica. Soil enzyme activities were in the range of 1.0–82.7 mg·kg-1·h-1 for IA, 0.2–8.2 mg·kg-1·h-1 for PA and 0.2–39.8 mg·kg-1·h-1 for UA. The spatial distribution patterns for soil enzyme activities corresponded strongly with marine animal activity and human activity. Significantly higher soil IA and PA activities occurred in penguin colony soils, whereas seal colony soils showed higher UA activity. Statistical analysis indicated that soil IA activity was controlled by the levels of soil nutrients (TOC, TN and TP), PA activity was closely related with TP, and UA activity was affected by the soil pH. Overall, the deposition amount of penguin guano or seal excreta could impact the distribution of enzyme activity in Antarctic tundra soils. Multiple stepwise regression models were established between the enzyme activities, soil physicochemical properties and heavy metals Cu and Zn ([IA]=0.7[TP]–0.2[Cu]+22.3[TN]+15.1, [PA]=0.3[TP]+0.03[Mc]+0.2, [UA]=16.7[pH]–0.5[Cu]+ 0.4[Zn]–72.6). These models could be used to predict enzyme activities in the tundra soils, which could be helpful to study the effects of marine animal activity and environmental change on tundra ecosystems in maritime Antarctica.

  1. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming

    Science.gov (United States)

    Xue, Kai; M. Yuan, Mengting; J. Shi, Zhou; Qin, Yujia; Deng, Ye; Cheng, Lei; Wu, Liyou; He, Zhili; van Nostrand, Joy D.; Bracho, Rosvel; Natali, Susan; Schuur, Edward. A. G.; Luo, Chengwei; Konstantinidis, Konstantinos T.; Wang, Qiong; Cole, James R.; Tiedje, James M.; Luo, Yiqi; Zhou, Jizhong

    2016-06-01

    Microbial decomposition of soil carbon in high-latitude tundra underlain with permafrost is one of the most important, but poorly understood, potential positive feedbacks of greenhouse gas emissions from terrestrial ecosystems into the atmosphere in a warmer world. Using integrated metagenomic technologies, we showed that the microbial functional community structure in the active layer of tundra soil was significantly altered after only 1.5 years of warming, a rapid response demonstrating the high sensitivity of this ecosystem to warming. The abundances of microbial functional genes involved in both aerobic and anaerobic carbon decomposition were also markedly increased by this short-term warming. Consistent with this, ecosystem respiration (Reco) increased up to 38%. In addition, warming enhanced genes involved in nutrient cycling, which very likely contributed to an observed increase (30%) in gross primary productivity (GPP). However, the GPP increase did not offset the extra Reco, resulting in significantly more net carbon loss in warmed plots compared with control plots. Altogether, our results demonstrate the vulnerability of active-layer soil carbon in this permafrost-based tundra ecosystem to climate warming and the importance of microbial communities in mediating such vulnerability.

  2. Wet meadow ecosystems contribute the majority of overwinter soil respiration from snow-scoured alpine tundra

    Science.gov (United States)

    Knowles, John F.; Blanken, Peter D.; Williams, Mark W.

    2016-04-01

    We measured soil respiration across a soil moisture gradient ranging from dry to wet snow-scoured alpine tundra soils throughout three winters and two summers. In the absence of snow accumulation, soil moisture variability was principally determined by the combination of mesotopographical hydrological focusing and shallow subsurface permeability, which resulted in a patchwork of comingled ecosystem types along a single alpine ridge. To constrain the subsequent carbon cycling variability, we compared three measures of effective diffusivity and three methods to calculate gradient method soil respiration from four typical vegetation communities. Overwinter soil respiration was primarily restricted to wet meadow locations, and a conservative estimate of the rate of overwinter soil respiration from snow-scoured wet meadow tundra was 69-90% of the maximum carbon dioxide (CO2) respired by seasonally snow-covered soils within this same catchment. This was attributed to higher overwinter soil temperatures at wet meadow locations relative to fellfield, dry meadow, and moist meadow communities, which supported liquid water and heterotrophic respiration throughout the winter. These results were corroborated by eddy covariance-based measurements that demonstrated an average of 272 g C m-2 overwinter carbon loss during the study period. As a result, we updated a conceptual model of soil respiration versus snow cover to express the potential for soil respiration variability from snow-scoured alpine tundra.

  3. Summertime surface O3 behavior and deposition to tundra in the Alaskan Arctic

    Science.gov (United States)

    Van Dam, Brie; Helmig, Detlev; Doskey, Paul V.; Oltmans, Samuel J.

    2016-07-01

    Atmospheric turbulence quantities, boundary layer ozone (O3) levels, and O3 deposition to the tundra surface were investigated at Toolik Lake, AK, during the 2011 summer season. Beginning immediately after snowmelt, a diurnal cycle of O3 in the atmospheric surface layer developed with daytime O3 maxima, and minima during low-light hours, resulting in a mean amplitude of 13 ppbv. This diurnal O3 cycle is far larger than observed at other high Arctic locations during the snow-free season. During the snow-free months of June, July, and August, O3 deposition velocities were ˜3 to 5 times faster than during May, when snow covered the ground most of the month. The overall mean O3 deposition velocity between June and August was 0.10 cm s-1. The month of June had the highest diurnal variation, with a median O3 deposition velocity of 0.2 cm s-1 during the daytime and 0.08 cm s-1 during low-light conditions. These values are slightly lower than previously reported summertime deposition velocities in northern latitudes over tundra or fen. O3 loss during low-light periods was attributed to a combination of surface deposition to the tundra and stable boundary layer conditions. We also hypothesize that emissions of reactive biogenic volatile organic compounds into the shallow boundary layer may contribute to nighttime O3 loss.

  4. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems

    Science.gov (United States)

    Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K.; Hinzman, L.; Yoshikawa, K.; Tweedie, C.; Noyle, B.; Silapaswan, C.; Douglas, D.; Griffith, B.; Jia, G.; Epstein, H.; Walker, D.; Daeschner, S.; Petersen, A.; Zhou, L.; Myneni, R.

    2004-01-01

    The objective of this paper is to review research conducted over the past decade on the application of multi-temporal remote sensing for monitoring changes of Arctic tundra lands. Emphasis is placed on results from the National Science Foundation Land-Air-Ice Interactions (LAII) program and on optical remote sensing techniques. Case studies demonstrate that ground-level sensors on stationary or moving track platforms and wide-swath imaging sensors on polar orbiting satellites are particularly useful for capturing optical remote sensing data at sufficient frequency to study tundra vegetation dynamics and changes for the cloud prone Arctic. Less frequent imaging with high spatial resolution instruments on aircraft and lower orbiting satellites enable more detailed analyses of land cover change and calibration/validation of coarser resolution observations. The strongest signals of ecosystem change detected thus far appear to correspond to expansion of tundra shrubs and changes in the amount and extent of thaw lakes and ponds. Changes in shrub cover and extent have been documented by modern repeat imaging that matches archived historical aerial photography. NOAA Advanced Very High Resolution Radiometer (AVHRR) time series provide a 20-year record for determining changes in greenness that relates to photosynthetic activity, net primary production, and growing season length. The strong contrast between land materials and surface waters enables changes in lake and pond extent to be readily measured and monitored. ?? 2003 Elsevier Inc. All rights reserved.

  5. Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: implications for aquatic systems

    Science.gov (United States)

    Baron, Jill S.; Ojima, Dennis S.; Holland, Elisabeth A.; Parton, William J.

    1994-01-01

    We employed grass and forest versions of the CENTURY model under a range of N deposition values (0.02–1.60 g N m−2 y−1) to explore the possibility that high observed lake and stream N was due to terrestrial N saturation of alpine tundra and subalpine forest in Loch Vale Watershed, Rocky Mountain National Park, Colorado. Model results suggest that N is limiting to subalpine forest productivity, but that excess leachate from alpine tundra is sufficient to account for the current observed stream N. Tundra leachate, combined with N leached from exposed rock surfaces, produce high N loads in aquatic ecosystems above treeline in the Colorado Front Range. A combination of terrestrial leaching, large N inputs from snowmelt, high watershed gradients, rapid hydrologic flushing and lake turnover times, and possibly other nutrient limitations of aquatic organisms constrain high elevation lakes and streams from assimilating even small increases in atmospheric N. CENTURY model simulations further suggest that, while increased N deposition will worsen the situation, nitrogen saturation is an ongoing phenomenon.

  6. Humic substances elemental composition of selected taiga and tundra soils from Russian European North-East

    Directory of Open Access Journals (Sweden)

    Lodygin Evgeny

    2017-06-01

    Full Text Available Soils of Russian European North were investigated in terms of stability and quality of organic matter as well as in terms of soils organic matter elemental composi­tion. Therefore, soil humic acids (HAs, extracted from soils of different natural zones of Russian North-East were studied to characterize the degree of soil organic matter stabilization along a zonal gradient. HAs were extracted from soil of different zonal environments of the Komi Republic: south, middle and north taiga as well as south tundra. Data on elemental composition of humic acids and fulvic acids (FAs extracted from different soil types were obtained to assess humus formation mechanisms in the soils of taiga and tundra of the European North-East of Russia. The specificity of HAs elemental composition are discussed in relation to environmental conditions. The higher moisture degree of taiga soils results in the higher H/C ratio in humic substances. This reflects the reduced microbiologic activity in Albeluvisols sods and subsequent conser­vation of carbohydrate and amino acid fragments in HAs. HAs of tundra soils, shows the H/C values decreasing within the depth of the soils, which reflects increasing of aromatic compounds in HA structure of mineral soil horizons. FAs were more oxidized and contains less carbon while compared with the HAs. Humic acids, extracted from soil of different polar and boreal environments differ in terms of elemental composition winch reflects the climatic and hydrological regimes of humification.

  7. Multisensor NDVI-Based Monitoring of the Tundra-Taiga Interface (Mealy Mountains, Labrador, Canada

    Directory of Open Access Journals (Sweden)

    Heather Ward

    2013-03-01

    Full Text Available The analysis of a series of five normalized difference vegetation index (NDVI images produced information about a Labrador (Canada portion of the tundra-taiga interface. The twenty-five year observation period ranges from 1983 to 2008. The series composed of Landsat, SPOT and ASTER images, provided insight into regional scale characteristics of the tundra-taiga interface that is usually monitored from coarse resolution images. The image set was analyzed by considering an ordinal classification of the NDVI to account for the cumulative effect of differences of near-infrared spectral resolutions, the temperature anomalies, and atmospheric conditions. An increasing trend of the median values in the low, intermediate and high NDVI classes is clearly marked while accounting for variations attributed to cross-sensor radiometry, phenology and atmospheric disturbances. An encroachment of the forest on the tundra for the whole study area was estimated at 0 to 60 m, depending on the period of observation, as calculated by the difference between the median retreat and advance of an estimated location of the tree line. In small sections, advances and retreats of up to 320 m are reported for the most recent four- and seven-year periods of observations.

  8. Relationships between hyperspectral data and components of vegetation biomass in Low Arctic tundra communities at Ivotuk, Alaska

    Science.gov (United States)

    Bratsch, Sara; Epstein, Howard; Buchhorn, Marcel; Walker, Donald; Landes, Heather

    2017-02-01

    Warming in the Arctic has resulted in a lengthening of the growing season and changes to the distribution and composition of tundra vegetation including increased biomass quantities in the Low Arctic. Biomass has commonly been estimated using broad-band greenness indices such as NDVI; however, vegetation changes in the Arctic are occurring at spatial scales within a few meters. The aim of this paper is to assess the ability of hyperspectral remote sensing data to estimate biomass quantities among different plant tissue type categories at the North Slope site of Ivotuk, Alaska. Hand-held hyperspectral data and harvested biomass measurements were collected during the 1999 growing season. A subset of the data was used as a training set, and was regressed against the hyperspectral bands using LASSO. LASSO is a modification of SPLS and is a variable selection technique that is useful in studies with high collinearity among predictor variables such as hyperspectral remote sensing. The resulting equations were then used to predict biomass quantities for the remaining Ivotuk data. The majority of significant biomass-spectra relationships (65%) were for shrubs categories during all times of the growing season and bands in the blue, green, and red edge wavelength regions of the spectrum. The ability to identify unique biomass-spectra relationships per community is decreased at the height of the growing season when shrubs obscure lower-lying vegetation such as mosses. The results of this study support previous research arguing that shrubs are dominant controls over spectral reflectance in Low Arctic communities and that this dominance results in an increased ability to estimate shrub component biomass over other plant functional types.

  9. Changing Climate Sensitivity in Response to Forest-Tundra Snow Albedo Feedback during the mid to late Pliocene Cooling

    Science.gov (United States)

    Paiewonsky, P.

    2015-12-01

    The forest-tundra snow albedo feedback is an important feedback in Earth's climate system, especially due to its potential role in modulating glacial cycles. Until now, little research has been done on how the strength of this feedback might vary with the background climate state. Over the last 4 million years, I hypothesize that the feedback has been generally weaker under warm Northern Hemispheric conditions when tundra has been primarily confined to the high Arctic and forest has extended to most of the Arctic coastline than under cooler Northern Hemispheric conditions in which the forest-tundra boundary has generally lain to the south, extending across the interiors of the large continental land masses. To test the hypothesis of the weakened/strengthened feedback, I used an Earth System Model of Intermediate Complexity that consists of a dynamic terrestrial vegetation model coupled to a climate model. A set of time-slice experiments with different orbital and greenhouse gas concentrations were analyzed. In one set of experiments, the feedback gain with respect to annual average top-of-atmosphere net short wave radiation due to vegetation was 1.42 for modern conditions but only 1.14 for the mid-Pliocene. Additionally, we compared experiments with different shortwave-radiation parameterizations, which differed in the amount of shortwave energy flux reaching the surface (and subsequently affecting vegetative biomass). These techniques allowed us to isolate the mechanisms responsible for the varying strength of the forest-tundra snow albedo feedback. The results also show that many factors affect the strength of feedback. In this presentation I will concentrate on the availability of land for conversion of forest to tundra (and vice versa), cloud cover near the forest-tundra boundary, and the integrated surface insolation contrast between tundra and forest during the snow-covered season.

  10. Timing, Magnitude and Sources of Ecosystem Respiration in High Arctic Tundra of NW Greenland

    Science.gov (United States)

    Lupascu, M.; Xu, X.; Lett, C.; Maseyk, K. S.; Lindsey, D. S.; Thomas, J. S.; Welker, J. M.; Czimczik, C. I.

    2011-12-01

    High arctic ecosystems with low vegetation density contain significant stocks of organic carbon (C) in the form of soil organic matter that range in age from modern to ancient. How rapidly these C pools can be mineralized and lost to the atmosphere as CO2 (ecosystem respiration, ER) as a consequence of warming and, or changes in precipitation is a major uncertainty in our understanding of current and future arctic biogeochemistry and for predicting future levels of atmospheric CO2. In a 2-year study (2010-2011), we monitored seasonal changes in the magnitude, timing and sources of ER and soil pore space CO2 in the High Arctic of NW Greenland under current and simulated, future climate conditions. Measurements were taken from May to August at a multi-factorial, long-term climate change experiment in prostrate dwarf-shrub tundra on patterned ground with 5 treatments: (T1) +2oC warming, (T2) +4oC warming, (W) +50% summer precipitation, (T2W) +4oC + 50% summer precipitation, and (C) control. ER (using opaque chambers) and soil CO2 concentrations (wells) were monitored daily via infrared spectroscopy (LI-COR 800 & 840). The source of CO2 was inferred from its radiocarbon (14C) content analyzed at the AMS facility in UCI. CO2 was sampled monthly using molecular sieve traps (chambers) or evacuated canisters (wells). Highest rates of ER are observed on vegetated ground with a maximum in mid summer - reflecting a peak in plant productivity and soil temperature. Respiration rates from bare ground remain similar throughout the summer. Additional soil moisture, administered or due to precipitation events, strongly enhances ER from both vegetated and bare ground. Daily ER budget for the sampling period was of 53.1 mmol C m-2 day-1 for the (C) vegetated areas compared to the 60.0 for the (T2), 68.1 for the (T2W) or the 79.9 for the (W) treatment. ER was highly correlated to temperature (eg. C = 0.8; T2W = 0.8) until middle of July, when heavy precipitation started to occur. In

  11. Negative plant soil feedback explaining ring formation in clonal plants.

    Science.gov (United States)

    Cartenì, Fabrizio; Marasco, Addolorata; Bonanomi, Giuliano; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco

    2012-11-21

    Ring shaped patches of clonal plants have been reported in different environments, but the mechanisms underlying such pattern formation are still poorly explained. Water depletion in the inner tussocks zone has been proposed as a possible cause, although ring patterns have been also observed in ecosystems without limiting water conditions. In this work, a spatially explicit model is presented in order to investigate the role of negative plant-soil feedback as an additional explanation for ring formation. The model describes the dynamics of the plant biomass in the presence of toxicity produced by the decomposition of accumulated litter in the soil. Our model qualitatively reproduces the emergence of ring patterns of a single clonal plant species during colonisation of a bare substrate. The model admits two homogeneous stationary solutions representing bare soil and uniform vegetation cover which depend only on the ratio between the biomass death and growth rates. Moreover, differently from other plant spatial patterns models, but in agreement with real field observations of vegetation dynamics, we demonstrated that the pattern dynamics always lead to spatially homogeneous vegetation covers without creation of stable Turing patterns. Analytical results show that ring formation is a function of two main components, the plant specific susceptibility to toxic compounds released in the soil by the accumulated litter and the decay rate of these same compounds, depending on environmental conditions. These components act at the same time and their respective intensities can give rise to the different ring structures observed in nature, ranging from slight reductions of biomass in patch centres, to the appearance of marked rings with bare inner zones, as well as the occurrence of ephemeral waves of plant cover. Our results highlight the potential role of plant-soil negative feedback depending on decomposition processes for the development of transient vegetation patterns.

  12. The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra

    DEFF Research Database (Denmark)

    Li, Bingxi; Heijmans, Monique M P D; Berendse, Frank;

    2016-01-01

    It is widely believed that deciduous tundra-shrub dominance is increasing in the pan-Arctic region, mainly due to rising temperature. We sampled dwarf birch (Betula nana L.) at a northeastern Siberian tundra site and used dendrochronological methods to explore the relationship between climatic...

  13. Slow recovery of lichen on burned caribou winter range in Alaska tundra: potential influences of climate warming and other disturbance factors

    Science.gov (United States)

    Randi Jandt; Kyle Joly; C. Randy Meyers; Charles. Racine

    2008-01-01

    Lichen regeneration timelines are needed to establish sound fire management guidelines for caribou (Rangifer tarandus) winter range. Paired burned and unburned permanent vegetative cover transects were established after 1981, 1977, and 1972 tundra fires in northwestern Alaska to document regrowth of tundra vegetation including caribou forage...

  14. Partitioning of organic carbon in European Russian tundra and taiga ecosystems

    Science.gov (United States)

    Oosterwoud, M. R.; Temminghoff, E. J. M.; van der Zee, S. E. A. T. M.

    2009-04-01

    Sorption of dissolved organic carbon (DOC) on mineral phases is an important process for carbon preservation and element cycling in soils. Sorption of DOC to active minerals results in its fractionation because hydrophobic compounds (humic and fulvic acids) will be preferentially sorbed. Binding of cations (Ca2+, Mg2+, Al3+, Fe3+) by the DOC reduces the negative charge and thus its water solubility. At low pH and high cation concentrations, cations may cause coagulation of DOC. The sorption and/or coagulation are important factors in relation to DOC transport. Little is known about DOC partitioning between the soil solid and solution phases of arctic ecosystems. As a consequence of future warming arctic ecosystem will shift from surface water dominated to groundwater dominated systems. In general, permafrost affected soils with shallow active layers, having lateral flow towards the stream with only short contact time to mineral layers, lead to higher hydrophobic (humic and fulvic acid) DOC concentrations in streams compared to permafrost free soils where a larger share of hydrophilic DOC is expected to be discharged into streams. Changes in the delivery of DOC, nutrients and major ions to arctic rivers may have important consequences for primary production and carbon cycling. The partitioning of DOC is a fundamental process needed for modelling current and future stream water quality and solute transport. Therefore, the objective of this study is to determine the sorption and consequent fractionation of DOC in arctic ecosystems. During fieldwork carried out in the summer of 2007 and 2008 in the Russian Komi Republic, we collected soil, soil solution and surface water samples in both a forested taiga and a permafrost affected tundra catchment. The liquid samples were analysed for total organic carbon and inorganic cations. A rapid batch procedure was used for determining the humic-, fulvic- and hydrophilic acid fractions. Using the chemical speciation model

  15. Nitrogen deposition but not climate warming promotes Deyeuxia angustifolia encroachment in alpine tundra of the Changbai Mountains, Northeast China.

    Science.gov (United States)

    Zong, Shengwei; Jin, Yinghua; Xu, Jiawei; Wu, Zhengfang; He, Hongshi; Du, Haibo; Wang, Lei

    2016-02-15

    Vegetation in the alpine tundra area of the Changbai Mountains, one of two alpine tundra areas in China, has undergone great changes in recent decades. The aggressive herb species Deyeuxia angustifolia (Komarov) Y. L. Chang, a narrow-leaf small reed, was currently encroaching upon the alpine landscape and threatening tundra biota. The alpine tundra of the Changbai Mountains has been experiencing a warmer climate and receiving a high load of atmospheric nitrogen deposition. In this study, we aimed to assess the respective roles of climate warming and atmospheric nitrogen deposition in promoting the upward encroachment of D. angustifolia. We conducted experiments for three years to examine the response of D. angustifolia and a native alpine shrub, Rhododendron chrysanthum, to the conditions in which temperature and nitrogen were increased. Treatments consisting of temperature increase, nitrogen addition, temperature increase combined with nitrogen addition, and controls were conducted on the D. angustifolia communities with three encroachment levels (low, medium, and high levels). Results showed that 1) D. angustifolia grew in response to added nutrients but did not grow well when temperature increased. R. chrysanthum showed negligible responses to the simulated environmental changes. 2) Compared to R. chrysanthum, D. angustifolia could effectively occupy the above-ground space by increasing tillers and growing rapidly by efficiently using nitrogen. The difference in nitrogen uptake abilities between the two species contributed to expansion of D. angustifolia. 3) D. angustifolia encroachment could deeply change the biodiversity of tundra vegetation and may eventually result in the replacement of native biota, especially with nitrogen addition. Our research indicated that nutrient perturbation may be more important than temperature perturbation in promoting D. angustifolia encroachment upon the nutrient- and species-poor alpine tundra ecosystem in the Changbai

  16. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra

    Science.gov (United States)

    Natali, Susan M.; Schuur, Edward A. G.; Mauritz, Marguerite; Schade, John D.; Celis, Gerardo; Crummer, Kathryn G.; Johnston, Catherine; Krapek, John; Pegoraro, Elaine; Salmon, Verity G.; Webb, Elizabeth E.

    2015-03-01

    As permafrost degrades, the amount of organic soil carbon (C) that thaws during the growing season will increase, but decomposition may be limited by saturated soil conditions common in high-latitude ecosystems. However, in some areas, soil drying is expected to accompany permafrost thaw as a result of increased water drainage, which may enhance C release to the atmosphere. We examined the effects of ecosystem warming, permafrost thaw, and soil moisture changes on C balance in an upland tundra ecosystem. This study was conducted at a water table drawdown experiment, established in 2011 and located within the Carbon in Permafrost Experimental Heating Research project, an ecosystem warming and permafrost thawing experiment in Alaska. Warming and drying increased cumulative growing season ecosystem respiration by 20% over 3 years of this experiment. Warming caused an almost twofold increase in decomposition of a common substrate in surface soil (0-10 cm) across all years, and drying caused a twofold increase in decomposition (0-20 cm) relative to control after 3 years of drying. Decomposition of older C increased in the dried and in the combined warmed + dried plots based on soil pore space 14CO2. Although upland tundra systems have been considered CH4 sinks, warming and ground thaw significantly increased CH4 emission rates. Water table depth was positively correlated with monthly respiration and negatively correlated with CH4 emission rates. These results demonstrate that warming and drying may increase loss of old permafrost C from tundra ecosystems, but the form and magnitude of C released to the atmosphere will be driven by changes in soil moisture.

  17. Temporal Variation of NDVI and the Drivers of Climate Variables in the Arctic Tundra Transition Zone

    Science.gov (United States)

    Lee, J.; Ryu, Y.; Lee, Y. K.

    2016-12-01

    The Arctic is a sensitive region to temperature, which is drastically increasing with climate change. Vegetation in transition zones of the sub-arctic tundra biome are most sensitive to the warming climate, as temperature in the Arctic ecosystem is one of important limiting factors of vegetation growth and decomposition. Previous research in the transition zone show that there is a difference of sensible heat flux (21 Wm-2), Leaf Area Index increase from 0.58 - 2.76 and canopy height from 0.1 - 6.1m across dwarf and tall shrubs to forest, however, we lack understanding of NDVI trend of this zone. To better understand the vegetation in transition zones of the arctic ecosystem, we analyze the long-term trend of NDVI (AVHRR 3g GIMMs data), temperature and precipitation (Climate Research Unit data) trend from 1982 - 2010 in Council, Alaska that is a region where arctic tundra is transitioning to boreal forest. We also analyze how the climatic factors, temperature or precipitation, affect NDVI. Annual precipitation had the highest interannual variability compared to temperature and NDVI. There was an overall decreasing trend of annual maximum NDVI (y = -0.0019x+4.7). During 1982 to 2003, NDVI and temperature had a similar pattern, but when temperature suddenly jumped to 13.2°C in 2004, NDVI and precipitation declined. This study highlights that temperature increase does not always lead to greening, but after a certain threshold they may cause damage to sub-arctic tundra vegetation.

  18. Net ecosystem exchange over heterogeneous Arctic tundra: Scaling between chamber and eddy covariance measurements

    Science.gov (United States)

    Fox, Andrew M.; Huntley, Brian; Lloyd, Colin R.; Williams, Mathew; Baxter, Robert

    2008-06-01

    Net ecosystem exchange (NEE) was estimated for an area of tundra near Abisko using both eddy covariance (EC) data and chamber measurements. This area of tundra is heterogeneous with six principal elements forming a landscape mosaic. Chamber measurements in patches of the individual mosaic elements were used to model NEE as a function of irradiance and temperature. The area around the EC mast was mapped, and a footprint model was used to simulate the varying source fraction attributable to each mosaic element. Various upscaling approaches were used to estimate NEE for comparison with NEE calculated from the EC observations. The results showed that EC measurements made for such a heterogeneous site are robust to the variations in NEE between mosaic elements that also vary substantially in their source fractions. However, they also revealed a large (˜60%) bias in the absolute magnitude of the cumulative negative NEE for a 40-day study period simulated by various upscaling approaches when compared to the value calculated from the EC observations. The magnitude of this bias, if applied to estimates for the entire tundra region, is substantial in relation to other components of the global carbon budget. Various hypotheses to account for this bias are discussed and, where possible, evaluated. A need is identified for more systematic sampling strategies when performing chamber measurements in order to assess the extent to which subjectivity of chamber location may account for much of the observed bias. If this is the origin of the bias, then upscaling approaches using chamber measurements may generally overestimate CO2 uptake.

  19. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s.

    Science.gov (United States)

    Frost, Gerald V; Epstein, Howard E

    2014-04-01

    Circumpolar expansion of tall shrubs and trees into Arctic tundra is widely thought to be occurring as a result of recent climate warming, but little quantitative evidence exists for northern Siberia, which encompasses the world's largest forest-tundra ecotonal belt. We quantified changes in tall shrub and tree canopy cover in 11, widely distributed Siberian ecotonal landscapes by comparing very high-resolution photography from the Cold War-era 'Gambit' and 'Corona' satellite surveillance systems (1965-1969) with modern imagery. We also analyzed within-landscape patterns of vegetation change to evaluate the susceptibility of different landscape components to tall shrub and tree increase. The total cover of tall shrubs and trees increased in nine of 11 ecotones. In northwest Siberia, alder (Alnus) shrubland cover increased 5.3-25.9% in five ecotones. In Taymyr and Yakutia, larch (Larix) cover increased 3.0-6.7% within three ecotones, but declined 16.8% at a fourth ecotone due to thaw of ice-rich permafrost. In Chukotka, the total cover of alder and dwarf pine (Pinus) increased 6.1% within one ecotone and was little changed at a second ecotone. Within most landscapes, shrub and tree increase was linked to specific geomorphic settings, especially those with active disturbance regimes such as permafrost patterned-ground, floodplains, and colluvial hillslopes. Mean summer temperatures increased at most ecotones since the mid-1960s, but rates of shrub and tree canopy cover expansion were not strongly correlated with temperature trends and were better correlated with mean annual precipitation. We conclude that shrub and tree cover is increasing in tundra ecotones across most of northern Siberia, but rates of increase vary widely regionally and at the landscape scale. Our results indicate that extensive changes can occur within decades in moist, shrub-dominated ecotones, as in northwest Siberia, while changes are likely to occur much more slowly in the highly continental

  20. First Record of Setaria Tundra in Danish Roe Deer (Capreolus Capreolus)

    DEFF Research Database (Denmark)

    Enemark, Heidi L.; Harslund, Jakob le Fèvre; Oksanen, A.

    2011-01-01

    No previous finds of the mosquito-borne filarioid nematode Setaria tundra have been reported from Denmark, although it was described decades ago in Swedish and Norwegian reindeer as well as in roe deer from Germany, Bulgaria and more recently also from Italy and Finland. Setaria spp. are usually...... and thereby larger numbers of mosquitoes, it is important to monitor this vector-borne parasite. This will not only increase the understanding of factors promoting its expansion but also help to predict disease outbreaks....

  1. Seasonal variability of leaf area index and foliar nitrogen in contrasting dry-mesic tundras

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Lemeur, Raoul;

    2009-01-01

    Assimilation and exchange of carbon for arctic ecosystems depend strongly on leaf area index (LAI) and total foliar nitrogen (TFN). For dry-mesic tundras, the seasonality of these characteristics is unexplored. We addressed this knowledge gap by measuring variations of LAI and TFN at five...... contrasting subarctic heaths during the growing season 2007, from about 2 weeks after bud burst until about 2 weeks before senescence. The communities generally showed an early season LAI and TFN increase, owing to leaf development of deciduous shrubs, and limited variations later on, owing to concurrent leaf...

  2. First Record of Setaria Tundra in Danish Roe Deer (Capreolus Capreolus)

    DEFF Research Database (Denmark)

    Enemark, Heidi L.; Harslund, Jakob le Fèvre; Oksanen, A.

    2011-01-01

    , and may be connected to the spreading of this parasite. In reindeer heavy worm burdens of S. tundra have been found to cause severe peritonitis and negatively affect body condition score. Thus in the light of the possible climatic changes which could result in warmer, more humid weather in Scandinavia...... and thereby larger numbers of mosquitoes, it is important to monitor this vector-borne parasite. This will not only increase the understanding of factors promoting its expansion but also help to predict disease outbreaks....

  3. Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil.

    OpenAIRE

    Vasilyeva, Lina V; Omelchenko, Marina V.; Berestovskaya, Yulia Y; Lysenko, Anatolii M; Abraham, Wolf-Rainer; Dedysh, Svetlana N.; Zavarzin, George A

    2006-01-01

    A Gram-negative, aerobic, heterotrophic, non-pigmented, dimorphic prosthecate bacterium was isolated from tundra wetland soil and designated strain Z-0023(T). Cells of this strain had a dimorphic life cycle and developed a non-adhesive stalk at a site not coincident with the centre of the cell pole, a characteristic typical of representatives of the genus Asticcacaulis. A highly distinctive feature of cells of strain Z-0023(T) was the presence of a conical, bell-shaped sheath when grown at lo...

  4. Differential Utilization of Carbon Substrates by Bacteria and Fungi in Tundra Soil

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Bååth, Erland

    2009-01-01

    Little is known about the contribution of bacteria and fungi to decomposition of different carbon compounds in arctic soils, which are an important carbon store and possibly vulnerable to climate warming. Soil samples from a subarctic tundra heath were incubated with 13C-labeled glucose, acetic...... at concentrations low enough not to affect the total amount of PLFA. The label of glucose and acetic acid was rapidly incorporated into the PLFA in a pattern largely corresponding to the fatty acid concentration profile, while glycine and especially starch were mainly taken up by bacteria and not fungi, showing...

  5. An assessment of the carbon balance of arctic tundra: comparisons among observations, process models, and atmospheric inversions

    Science.gov (United States)

    McGuire, A.D.; Christensen, T.R.; Hayes, D.; Heroult, A.; Euskirchen, E.; Yi, Y.; Kimball, J.S.; Koven, C.; Lafleur, P.; Miller, P.A.; Oechel, W.; Peylin, P.; Williams, M.

    2012-01-01

    Although arctic tundra has been estimated to cover only 8% of the global land surface, the large and potentially labile carbon pools currently stored in tundra soils have the potential for large emissions of carbon (C) under a warming climate. These emissions as radiatively active greenhouse gases in the form of both CO2 and CH4 could amplify global warming. Given the potential sensitivity of these ecosystems to climate change and the expectation that the Arctic will experience appreciable warming over the next century, it is important to assess whether responses of C exchange in tundra regions are likely to enhance or mitigate warming. In this study we compared analyses of C exchange of Arctic tundra between 1990–1999 and 2000–2006 among observations, regional and global applications of process-based terrestrial biosphere models, and atmospheric inversion models. Syntheses of the compilation of flux observations and of inversion model results indicate that the annual exchange of CO2 between arctic tundra and the atmosphere has large uncertainties that cannot be distinguished from neutral balance. The mean estimate from an ensemble of process-based model simulations suggests that arctic tundra acted as a sink for atmospheric CO2 in recent decades, but based on the uncertainty estimates it cannot be determined with confidence whether these ecosystems represent a weak or a strong sink. Tundra was 0.6 °C warmer in the 2000s compared to the 1990s. The central estimates of the observations, process-based models, and inversion models each identify stronger sinks in the 2000s compared with the 1990s. Similarly, the observations and the applications of regional process-based models suggest that CH4 emissions from arctic tundra have increased from the 1990s to 2000s. Based on our analyses of the estimates from observations, process-based models, and inversion models, we estimate that arctic tundra was a sink for atmospheric CO2 of 110 Tg C yr-1 (uncertainty between a

  6. Changes in tundra pond limnology: re-sampling Alaskan ponds after 40 years.

    Science.gov (United States)

    Lougheed, Vanessa L; Butler, Malcolm G; McEwen, Daniel C; Hobbie, John E

    2011-09-01

    The arctic tundra ponds at the International Biological Program (IBP) site in Barrow, AK, were studied extensively in the 1970s; however, very little aquatic research has been conducted there for over three decades. Due to the rapid climate changes already occurring in northern Alaska, identifying any changes in the ponds' structure and function over the past 30-40 years can help identify any potential climate-related impacts. Current research on the IBP ponds has revealed significant changes in the physical, chemical, and biological characteristics of these ponds over time. These changes include increased water temperatures, increased water column nutrient concentrations, the presence of at least one new chironomid species, and increased macrophyte cover. However, we have also observed significant annual variation in many measured variables and caution that this variation must be taken into account when attempting to make statements about longer-term change. The Barrow IBP tundra ponds represent one of the very few locations in the Arctic where long-term data are available on freshwater ecosystem structure and function. Continued monitoring and protection of these invaluable sites is required to help understand the implications of climate change on freshwater ecosystems in the Arctic.

  7. Prevalence, transmission, and genetic diversity of blood parasites infecting tundra-nesting geese in Alaska

    Science.gov (United States)

    Ramey, Andy M.; Reed, John A.; Schmutz, Joel A.; Fondell, Tom F.; Meixell, Brandt W.; Hupp, Jerry W.; Ward, David H.; Terenzi, John; Ely, Craig R.

    2014-01-01

    A total of 842 blood samples collected from five species of tundra-nesting geese in Alaska was screened for haemosporidian parasites using molecular techniques. Parasites of the generaLeucocytozoon Danilewsky, 1890, Haemoproteus Kruse, 1890, and Plasmodium Marchiafava and Celli, 1885 were detected in 169 (20%), 3 (parasites and assess variation relative to species, age, sex, geographic area, year, and decade. Species, age, and decade were identified as important in explaining differences in prevalence of Leucocytozoonparasites. Leucocytozoon parasites were detected in goslings sampled along the Arctic Coastal Plain using both historic and contemporary samples, which provided support for transmission in the North American Arctic. In contrast, lack of detection of Haemoproteus and Plasmodiumparasites in goslings (n = 238) provided evidence to suggest that the transmission of parasites of these genera may not occur among waterfowl using tundra habitats in Alaska, or alternatively, may only occur at low levels. Five haemosporidian genetic lineages shared among different species of geese sampled from two geographic areas were indicative of interspecies parasite transmission and supported broad parasite or vector distributions. However, identicalLeucocytozoon and Haemoproteus lineages on public databases were limited to waterfowl hosts suggesting constraints in the range of parasite hosts.

  8. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra

    Directory of Open Access Journals (Sweden)

    Congcong eShen

    2015-06-01

    Full Text Available The elevational diversity pattern for microorganisms has received great attention recently but is still understudied, and phylogenetic relatedness is rarely studied for microbial elevational distributions. Using a bar-coded pyrosequencing technique, we examined the biodiversity patterns for soil bacterial communities of tundra ecosystem along 2000–2500 m elevations on Changbai Mountain in China. Bacterial taxonomic richness displayed a linear decreasing trend with increasing elevation. Phylogenetic diversity and mean nearest taxon distance (MNTD exhibited a unimodal pattern with elevation. Bacterial communities were more phylogenetically clustered than expected by chance at all elevations based on the standardized effect size of MNTD metric. The bacterial communities differed dramatically among elevations, and the community composition was significantly correlated with soil total carbon, total nitrogen, C:N ratio, and dissolved organic carbon. Multiple ordinary least squares regression analysis showed that the observed biodiversity patterns strongly correlated with soil total carbon and C:N ratio. Taken together, this is the first time that a significant bacterial diversity pattern has been observed across a small-scale elevational gradient. Our results indicated that soil carbon and nitrogen contents were the critical environmental factors affecting bacterial elevational distribution in Changbai Mountain tundra. This suggested that ecological niche-based environmental filtering processes related to soil carbon and nitrogen contents could play a dominant role in structuring bacterial communities along the elevational gradient.

  9. Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil.

    Science.gov (United States)

    Vasilyeva, Lina V; Omelchenko, Marina V; Berestovskaya, Yulia Y; Lysenko, Anatolii M; Abraham, Wolf-Rainer; Dedysh, Svetlana N; Zavarzin, George A

    2006-09-01

    A Gram-negative, aerobic, heterotrophic, non-pigmented, dimorphic prosthecate bacterium was isolated from tundra wetland soil and designated strain Z-0023(T). Cells of this strain had a dimorphic life cycle and developed a non-adhesive stalk at a site not coincident with the centre of the cell pole, a characteristic typical of representatives of the genus Asticcacaulis. A highly distinctive feature of cells of strain Z-0023(T) was the presence of a conical, bell-shaped sheath when grown at low temperature. This prosthecate bacterium was a psychrotolerant, moderately acidophilic organism capable of growth between 4 and 28 degrees Celsius (optimum 15-20 degrees Celsius) and between pH 4.5 and 8.0 (optimum 5.6-6.0). The major phospholipid fatty acid was 18 : 1omega7c and the major phospholipids were phosphatidylglycerols. The G+C content of the DNA was 60.4 mol%. On the basis of 16S rRNA gene sequence similarity, strain Z-0023(T) was most closely related to Asticcacaulis biprosthecium (98 % similarity), Asticcacaulis taihuensis (98 %) and Asticcacaulis excentricus (95 %). However, low levels of DNA-DNA relatedness to these organisms and a number of distinctive features of the tundra wetland isolate indicated that it represented a novel species of the genus Asticcacaulis, for which the name Asticcacaulis benevestitus sp. nov. is proposed. The type strain is Z-0023(T) (=DSM 16100(T)=ATCC BAA-896(T)).

  10. Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia.

    Science.gov (United States)

    Forbes, Bruce C; Kumpula, Timo; Meschtyb, Nina; Laptander, Roza; Macias-Fauria, Marc; Zetterberg, Pentti; Verdonen, Mariana; Skarin, Anna; Kim, Kwang-Yul; Boisvert, Linette N; Stroeve, Julienne C; Bartsch, Annett

    2016-11-01

    Sea ice loss is accelerating in the Barents and Kara Seas (BKS). Assessing potential linkages between sea ice retreat/thinning and the region's ancient and unique social-ecological systems is a pressing task. Tundra nomadism remains a vitally important livelihood for indigenous Nenets and their large reindeer herds. Warming summer air temperatures have been linked to more frequent and sustained summer high-pressure systems over West Siberia, Russia, but not to sea ice retreat. At the same time, autumn/winter rain-on-snow (ROS) events have become more frequent and intense. Here, we review evidence for autumn atmospheric warming and precipitation increases over Arctic coastal lands in proximity to BKS ice loss. Two major ROS events during November 2006 and 2013 led to massive winter reindeer mortality episodes on the Yamal Peninsula. Fieldwork with migratory herders has revealed that the ecological and socio-economic impacts from the catastrophic 2013 event will unfold for years to come. The suggested link between sea ice loss, more frequent and intense ROS events and high reindeer mortality has serious implications for the future of tundra Nenets nomadism.

  11. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows

    Science.gov (United States)

    Forbes, B. C.; Macias Fauria, M.; Zetterberg, P.

    2009-12-01

    Growth in arctic vegetation is generally expected to increase under a warming climate, particularly among deciduous shrubs. We analyzed annual ring growth for an abundant and nearly circumpolar erect willow (Salix lanata L.) from the coastal zone of the northwest Russian Arctic (Nenets Autonomous Okrug). The resulting chronology is strongly related to summer temperature for the period 1942-2005. Remarkably high correlations occur at long distances (>1600 km) across the tundra and taiga zones of West Siberia and Eastern Europe. We also found a clear relationship with photosynthetic activity for upland vegetation at a regional scale for the period 1981-2005, confirming a parallel ‘greening’ trend reported for similarly warming North American portions of the tundra biome. The standardized growth curve suggests a significant increase in shrub willow growth over the last six decades. These findings are in line with field and remote sensing studies that have assigned a strong shrub component to the reported greening signal since the early 1980s. Furthermore, the growth trend agrees with qualitative observations by nomadic Nenets reindeer herders of recent increases in willow size in the region. The quality of the chronology as a climate proxy is exceptional. Given its wide geographic distribution and the ready preservation of wood in permafrost, S. lanata L. has great potential for extended temperature reconstructions in remote areas across the Arctic.

  12. The surface energy balance of a polygonal tundra site in northern Siberia – Part 2: Winter

    Directory of Open Access Journals (Sweden)

    J. Boike

    2011-06-01

    Full Text Available In this study, we present the winter time surface energy balance at a polygonal tundra site in northern Siberia based on independent measurements of the net radiation, the sensible heat flux and the ground heat flux from two winter seasons. The latent heat flux is inferred from measurements of the atmospheric turbulence characteristics and a model approach. The long-wave radiation is found to be the dominant factor in the surface energy balance. The radiative losses are balanced to about 60 % by the ground heat flux and almost 40 % by the sensible heat fluxes, whereas the contribution of the latent heat flux is small. The main controlling factors of the surface energy budget are the snow cover, the cloudiness and the soil temperature gradient. Large spatial differences in the surface energy balance are observed between tundra soils and a small pond. The ground heat flux released at a freezing pond is by a factor of two higher compared to the freezing soil, whereas large differences in net radiation between the pond and soil are only observed at the end of the winter period. Differences in the surface energy balance between the two winter seasons are found to be related to differences in snow depth and cloud cover which strongly affect the temperature evolution and the freeze-up at the investigated pond.

  13. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology

    Science.gov (United States)

    Liljedahl, Anna K.; Boike, Julia; Daanen, Ronald P.; Fedorov, Alexander N.; Frost, Gerald V.; Grosse, Guido; Hinzman, Larry D.; Iijma, Yoshihiro; Jorgenson, Janet C.; Matveyeva, Nadya; Necsoiu, Marius; Raynolds, Martha K.; Romanovsky, Vladimir E.; Schulla, Jörg; Tape, Ken D.; Walker, Donald A.; Wilson, Cathy J.; Yabuki, Hironori; Zona, Donatella

    2016-04-01

    Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions.

  14. Modelling the spatial pattern of ground thaw in a small basin in the arctic tundra

    Directory of Open Access Journals (Sweden)

    S. Endrizzi

    2011-01-01

    Full Text Available In the arctic tundra the ground is normally composed by a relatively thin organic soil layer, overlying mineral sediment. Subsurface water drainage generally occurs in the organic layer for its high hydraulic conductivity. However, the organic layer shows significant decrease of hydraulic conductivity with depth. The position and the topography of the frost table, which here acts as a relatively impermeable surface, are therefore crucial in determining the hillslope drainage rate. This work aims at understanding how the topography of the ground surface affects the spatial variability of the depth of thaw in a 1 km2 low-elevation arctic tundra basin with a fine resolution model that fully couples energy and water flow processes. The simulations indicate that the spatial patterns of ground thaw are not dominated by slope and aspect, but are instead entirely controlled by the spatial distribution of soil moisture, which is determined by subsurface flow patterns. Measured thaw depths have a similar range of variability to the simulated values for each stage of active layer development, although the model slightly overestimated the depth of thaw.

  15. Mobile Phone Revolution in the Tundra? Technological Change among Russian Reindeer Nomads

    Directory of Open Access Journals (Sweden)

    Florian M. Stammler

    2009-04-01

    Full Text Available This contribution looks at the influence of technological change thatnomads in the Russian North have undergone, using as examples two crucial innovations: the snowmobile and the mobile phone. I argue that the snowmobile did not have the same revolutionary impact on the Russian tundra as it did in Fennoscandia, for reasons connected to long distances, infrastructure, spare parts, availability of fuel, priorities of Soviet transport policy as well as the convenience of previously used practices of herd control using ‘sitting transport’. Different from that, I argue that mobile phones have the potential for a greater penetration into nomadic societies. Because they encourage equality rather than stratification, they are low maintenance; they are small enough to be embedded into existing social contexts. Connecting not only neighbours but the whole world, in principle, mobile phones may entail a significant socio-cultural change. The article presents first fieldwork evidence of such change among tundra nomads and relates this to existing theoretical studies on how mobile communication changes societies. Attention is paid to the particularities of a mobile type of communication introduced in mobile communities, that is, among nomads. In doing so, I explore similarities and differences in how technological change influences sedentary and nomadic societies.

  16. Complexation of mercury(II) ions with humic acids in tundra soils

    Science.gov (United States)

    Vasilevich, R. S.; Beznosikov, V. A.; Lodygin, E. D.; Kondratenok, B. M.

    2014-03-01

    The interaction mechanisms of mercury(II) ions with preparations of humic acids (HAs) isolated from organic horizons of surface-gleyed soils (Haplic Stagnosol (Gelic, Siltic)) of shrub tundra and hydromorphic peat gley soils (Histic Cryosol (Reductaquic, Siltic)) of moss-lichen tundra have been studied. The particular features of the interactions between the mercury(II) ions and the HAs are related to the molecular structure of the HAs, the mercury concentration range, and the environmental parameters. The fixation of mercury(II) ions into stable coordination compounds is most efficient in the pH range of 2.5-3.5. At the element concentrations below 0.50 μmol/dm3, the main complexing sites of HAs are their peripheral aminoacid functional groups. Pyrocatechol, salicylate, and phenolic groups from the nuclear moiety of molecules interact in the concentration range of 0.0005-0.50 mmol/dm3; the physical sorption of mercury hydroxo complexes by the surface of HAs is the main process occurring in the system.

  17. Modeling the effects of organic nitrogen uptake by plants on the carbon cycling of boreal ecosystems

    Directory of Open Access Journals (Sweden)

    Q. Zhu

    2013-08-01

    Full Text Available Boreal forest and tundra are the major ecosystems in the northern high latitudes in which a large amount of carbon is stored. These ecosystems are nitrogen-limited due to slow mineralization rate of the soil organic nitrogen. Recently, abundant field studies have found that organic nitrogen is another important nitrogen supply for boreal ecosystems. In this study, we incorporated a mechanism that allowed boreal plants to uptake small molecular amino acids into a process-based biogeochemical model, the Terrestrial Ecosystem Model (TEM, to evaluate the impact of organic nitrogen uptake on ecosystem carbon cycling. The new version of the model was evaluated at both boreal forest and tundra sites. We found that the modeled organic nitrogen uptake accounted for 36–87% of total nitrogen uptake by plants in tundra ecosystems and 26–50% for boreal forests, suggesting that tundra ecosystem might have more relied on the organic form of nitrogen than boreal forests. The simulated monthly gross ecosystem production (GPP and net ecosystem production (NEP tended to be larger with the new version of the model since the plant uptake of organic nitrogen alleviated the soil nitrogen limitation especially during the growing season. The sensitivity study indicated that the most important factors controlling the plant uptake of organic nitrogen were the maximum root uptake rate (Imax and the radius of the root (r0 in our model. The model uncertainty due to uncertain parameters associated with organic nitrogen uptake at tundra ecosystem was larger than at boreal forest ecosystems. This study suggests that considering the organic nitrogen uptake by plants is important to boreal ecosystem carbon modeling.

  18. THE HYDRAULIC CHARACTERISTICS AND GEOCHEMISTRY OF HYPORHEIC AND PARAFLUVIAL ZONES IN ARCTIC TUNDRA STREAMS, NORTH SLOPE, ALASKA

    Science.gov (United States)

    Sodium bromide and Rhodamine WT were used as conservative tracers to examine the hydrologic characteristics of seven tundra streams in Arctic Alaska, during the summers of 1994-1996. Continuous tracer additions were conducted in seven rivers ranging from 1st to 5th order with sam...

  19. An application of plot-scale NDVI in predicting carbon dioxide exchange and leaf area index in heterogeneous subarctic tundra

    Energy Technology Data Exchange (ETDEWEB)

    Dagg, J.; Lafleur, P.

    2010-07-01

    This paper reported on a study that examined the flow of carbon into and out of tundra ecosystems. It is necessary to accurately predict carbon dioxide (CO{sub 2}) exchange in the Tundra because of the impacts of climate change on carbon stored in permafrost. Understanding the relationships between the normalized difference vegetation index (NDVI) and vegetation and CO{sub 2} exchange may explain how small-scale variation in vegetation community extends to remotely sensed estimates of landscape characteristics. In this study, CO{sub 2} fluxes were measured with a portable chamber in a range of Tundra vegetation communities. Biomass and leaf area were measured with destructive harvest, and NDVI was obtained using a hand-held infrared camera. There was a weak correlation between NDVI and leaf area index in some vegetation communities, but a significant correlation between NDVI and biomass, including mosses. NDVI was found to be strongly related to photosynthetic activity and net CO{sub 2} uptake in all vegetation groups. However, NDVI related to ecosystem respiration only in wet sedge. It was concluded that at plot scale, the ability of NDVI to predict ecosystem properties and CO{sub 2} exchange in heterogeneous Tundra vegetation is variable.

  20. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Directory of Open Access Journals (Sweden)

    John-André Henden

    Full Text Available The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation

  1. Migration of Tundra Swans (Cygnus columbianus) Wintering in Japan Using Satellite Tracking: Identification of the Eastern Palearctic Flyway.

    Science.gov (United States)

    Chen, Wenbo; Doko, Tomoko; Fujita, Go; Hijikata, Naoya; Tokita, Ken-Ichi; Uchida, Kiyoshi; Konishi, Kan; Hiraoka, Emiko; Higuchi, Hiroyoshi

    2016-02-01

    Migration through the Eastern Palearctic (EP) flyway by tundra swans (Cygnus columbianus) has not been thoroughly documented. We satellite-tracked the migration of 16 tundra swans that winter in Japan. The objectives of this study were 1) to show the migration pattern of the EP flyway of tundra swans; 2) to compare this pattern with the migration pattern of whooper swans; and 3) to identify stopover sites that are important for these swans' conservation. Tundra swans were captured at Kutcharo Lake, Hokkaido, in 2009-2012 and satellite-tracked. A new method called the "MATCHED (Migratory Analytical Time Change Easy Detection) method" was developed. Based on median, the spring migration began on 18 April and ended on 27 May. Autumn migration began on 9 September and ended on 2 November. The median duration of the spring and autumn migrations were 48 and 50 days, respectively. The mean duration at one stopover site was 5.5 days and 6.8 days for the spring and autumn migrations, respectively. The number of stopover sites was 3.0 and 2.5 for the spring and autumn migrations, respectively. The mean travel distances for the spring and autumn migrations were 6471 and 6331 km, respectively. Seven migration routes passing Sakhalin, the Amur River, and/or Kamchatka were identified. There were 15, 32, and eight wintering, stopover, and breeding sites, respectively. The migration routes and staging areas of tundra swans partially overlap with those of whooper swans, whose migration patterns have been previously documented. The migration patterns of these two swan species that winter in Japan confirm the importance of the Amur River, Udyl' Lake, Shchastya Bay, Aniva Bay, zaliv Chayvo Lake, zal Piltun Lake, zaliv Baykal Lake, Kolyma River, Buyunda River, Sen-kyuyel' Lake, and northern coastal areas of the Sea of Okhotsk.

  2. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Science.gov (United States)

    Henden, John-André; Yoccoz, Nigel G; Ims, Rolf A; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  3. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime

    Science.gov (United States)

    Domine, Florent; Barrere, Mathieu; Morin, Samuel

    2016-12-01

    With climate warming, shrubs have been observed to grow on Arctic tundra. Their presence is known to increase snow height and is expected to increase the thermal insulating effect of the snowpack. An important consequence would be the warming of the ground, which will accelerate permafrost thaw, providing an important positive feedback to warming. At Bylot Island (73° N, 80° W) in the Canadian high Arctic where bushes of willows (Salix richardsonii Hook) are growing, we have observed the snow stratigraphy and measured the vertical profiles of snow density, thermal conductivity and specific surface area (SSA) in over 20 sites of high Arctic tundra and in willow bushes 20 to 40 cm high. We find that shrubs increase snow height, but only up to their own height. In shrubs, snow density, thermal conductivity and SSA are all significantly lower than on herb tundra. In shrubs, depth hoar which has a low thermal conductivity was observed to grow up to shrub height, while on herb tundra, depth hoar only developed to 5 to 10 cm high. The thermal resistance of the snowpack was in general higher in shrubs than on herb tundra. More signs of melting were observed in shrubs, presumably because stems absorb radiation and provide hotspots that initiate melting. When melting was extensive, thermal conductivity was increased and thermal resistance was reduced, counteracting the observed effect of shrubs in the absence of melting. Simulations of the effect of shrubs on snow properties and on the ground thermal regime were made with the Crocus snow physics model and the ISBA (Interactions between Soil-Biosphere-Atmosphere) land surface scheme, driven by in situ and reanalysis meteorological data. These simulations did not take into account the summer impact of shrubs. They predict that the ground at 5 cm depth at Bylot Island during the 2014-2015 winter would be up to 13 °C warmer in the presence of shrubs. Such warming may however be mitigated by summer effects.

  4. Nitrogen Uptake During Fall, Winter and Spring Differs Among Plant Functional Groups in a Subarctic Heath Ecosystem

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Michelsen, Anders; Jonasson, Sven;

    2012-01-01

    Nitrogen (N) is a critical resource for plant growth in tundra ecosystems, and species differences in the timing of N uptake may be an important feature regulating community composition and ecosystem productivity. We added 15N-labelled glycine to a subarctic heath tundra dominated by dwarf shrubs...... to 37 ± 7% by April indicating significant microbial N turnover prior to spring thaw. Only the evergreen dwarf shrubs showed active 15N acquisition before early May indicating that they had the highest potential of all functional groups for acquiring nutrients that became available in early spring...

  5. Potential methane production rates and its carbon isotopic composition from ornithogenic tundra soils in coastal Antarctic

    Institute of Scientific and Technical Information of China (English)

    BAO Tao; ZHU Renbin; BAI Bo; XU Hua

    2016-01-01

    Methane (CH4) is one of important greenhouse gases with chemical activity. The determination of isotopic compositions for CH4 emitted from the soils helps us to understand its production mechanisms. CH4 isotope measurements have been conducted for different types of global terrestrial ecosystems. However, no isotopic data of CH4 have been reported from Antarctic tundra soils. In this paper, ornithogenic soil profiles were collected from four penguin colonies, and potential CH4 production rates and its13C ratio (δ13C) were investigated based upon laboratory incubation experiments. The mean CH4 production rates are highly variable in these soil proifles, ranging from 0.7 to 20.3 μg CH4−C kg−1∙h−1. These ornithogenic soils had high potential production rates of CH4 under ambient air incubation or under N2 incubation, indicating the importance of potential CH4 emissions from penguin colonies. Most of the soil samples had higher δ13C-CH4 under N2 incubation (−39.28%~−43.53%) than under the ambient air incubation (−42.81%~−57.19%). Highly anaerobic conditions were conducive to the production of CH4 enriched in13C, and acetic acid reduction under N2 incubation might be a predominant source for soil CH4production. Overall theδ13C-CH4 showed a signiifcant negative correlation with CH4 production rates in ornithogenic tundra soils under N2 incubation (R2=0.41,p<0.01) or under the ambient air incubation (R2=0.50,p<0.01). Potential CH4 production from ornithogenic soils showed a signiifcant positive correlation with total phosphorus (TP) and NH4+−N contents, pH and soil moisture (Mc), but the δ13C-CH4 showed a signiifcant negative correlation with TP and NH4+−N contents, pH and Mc, indicating that the deposition amount of penguin guano increased potential CH4 production rates from tundra soils, but decreased the δ13C-CH4. The CH4 emissions from the ornithogenic soils affect carbon isotopic compositions of atmospheric CH4in coastal Antarctica.

  6. Thaw pond dynamics and carbon emissions in a Siberian lowland tundra landscape

    Science.gov (United States)

    van Huissteden, Ko; Heijmans, Monique; Dean, Josh; Meisel, Ove; Goovaerts, Arne; Parmentier, Frans-Jan; Schaepman-Strub, Gabriela; Belelli Marchesini, Luca; Kononov, Alexander; Maximov, Trofim; Borges, Alberto; Bouillon, Steven

    2017-04-01

    Arctic climate change induces drastic changes in permafrost surface wetness. As a result of thawing ground ice bodies, ice wedge troughs and thaw ponds are formed. Alternatively, ongoing thaw may enhance drainage as a result of increased interconnectedness of thawing ice wedge troughs, as inferred from a model study (Liljedahl et al., 2016, Nature Geoscience, DOI: 10.1038/NGEO2674). However, a recent review highlighted the limited predictability of consequences of thawing permafrost on hydrology (Walvoord and Kurylyk, 2016, Vadose Zone J., DOI:10.2136/vzj2016.01.0010). Overall, these changes in tundra wetness modify carbon cycling in the Arctic and in particular the emissions of CO2 and CH4 to the atmosphere, providing a possibly positive feedback on climate change. Here we present the results of a combined remote sensing, geomorphological, vegetation and biogechemical study of thaw ponds in Arctic Siberian tundra, at Kytalyk research station near Chokurdakh, Indigirka lowlands. The station is located in an area dominated by Pleistocene ice-rich 'yedoma' sediments and drained thaw lake bottoms of Holocene age. The development of three types of ponds in the Kytalyk area (polygon centre ponds, ice wedge troughs and thaw ponds) has been traced with high resolution satellite and aerial imagery. The remote sensing data show net areal expansion of all types of ponds. Next to formation of new ponds, local vegetation change from dry vegetation types to wet, sedge-dominated vegetation is common. Thawing ice wedges and thaw ponds show an increase in area and number at most studied locations. In particular the area of polygon centre ponds increased strongly between 2010 and 2015, but this is highly sensitive to antecedent precipitation conditions. Despite a nearly 60% increase of the area of thawing ice wedge troughs, there is no evidence of decreasing water surfaces by increasing drainage through connected ice wedge troughs. The number of thaw ponds shows an equilibrium

  7. How is climate warming altering the carbon cycle of a tundra ecosystem in the Siberian Arctic?

    Science.gov (United States)

    Belelli Marchesini, Luca; (Ko) van Huissteden, Jacobus; van der Molen, Michiel; Parmentier, Frans-Jan W.; Maximov, Trofim; Budishchev, Artem; Gallagher, Angela; (Han) Dolman, Albertus J.

    2015-04-01

    Climate has been warming over the the Arctic region with the strongest anomalies taking place in autumn and winter for the period 2000-2010, particularly in northern Eurasia. The quantification of the impact on climate warming on the degradation of permafrost and the associated potential release to the atmosphere of carbon stocked in the soil under the form of greenhouse gases, thus further increasing the radiative forcing of the atmosphere, is currently a matter of scientific debate. The positive trend in primary productivity in the last decades inferred by vegetation indexes (NDVI) and confirmed by observations on the enhanced growth of shrub vegetation represents indeed a contrasting process that, if prevalent could offset GHG emissions or even strengthen the carbon sink over the Arctic tundra. At the site of Kytalyk, in north-eastern Siberia, net fluxes of CO2 at ecosystem scale (NEE) have been monitored by eddy covariance technique since 2003. While presenting the results of the seasonal (snow free period) and inter-annual variability of NEE, conceived as the interplay between meteorological drivers and ecosystem responses, we test the role of climate as the main source of NEE variability in the last decade using a data oriented statistical approach. The impact of the timing and duration of the snow free period on the seasonal carbon budget is also considered. Finally, by including the results of continuous micrometeorological observations of methane fluxes taken during summer 2012, corroborated with seasonal CH4 budgets from two previous shorter campaigns (2008, 2009), as well as an experimentally determined estimate of dissolved organic carbon (DOC) flux, we provide an assessment of the carbon budget and its stability over time. The examined tundra ecosystem was found to sequester CO2 during the snow free season with relatively small inter-annual variability (-97.9±12.1gC m-2) during the last decade and without any evident trend despite the carbon uptake

  8. Detection of tundra trail damage near Barrow, Alaska using remote imagery

    Science.gov (United States)

    Hinkel, K. M.; Eisner, W. R.; Kim, C. J.

    2017-09-01

    In the past several decades, the use of all-terrain vehicles (ATVs) has proliferated in many Arctic communities in North America. One example is the village of Barrow, Alaska. This coastal community has only local roads, so all access to the interior utilizes off-road machines. These 4-wheel vehicles are the primary means of tundra traverse and transport in summer by hunters and berry-pickers, and by village residents accessing summer camps. Traveling cross-country is difficult due to the large number of thermokarst lakes, wetlands, and streams, and tundra trails tend to follow dryer higher ground while avoiding areas of high microrelief such as high-centered ice-wedge polygons. Thus, modern ATV trails tend to follow the margins of drained or partially drained thermokarst lake basins where it is flat and relatively dry, and these trails are heavily used. The deeply-ribbed tires of the heavy and powerful ATVs cause damage by destroying the vegetation and disturbing the underlying organic soil. Exposure of the dark soil enhances summer thaw and leads to local thermokarst of the ice-rich upper permafrost. The damage increases over time as vehicles continue to follow the same track, and sections eventually become unusable; this is especially true where the trail crosses ice-wedge troughs. Deep subsidence in the ponded troughs results in ATV users veering to avoid the wettest area, which leads to a widening of the damaged area. Helicopter surveys, site visits, and collection of ground penetrating radar data were combined with time series analysis of high-resolution aerial and satellite imagery for the period 1955-2014. The analysis reveals that there are 507 km of off-road trails on the Barrow Peninsula. About 50% of the total trail length was developed before 1955 in association with resource extraction, and an additional 40% were formed between 1979 and 2005 by ATVs. Segments of the more modern trail are up to 100 m wide. Damage to the tundra is especially pronounced

  9. What are the main climate drivers for shrub growth in Northeastern Siberian tundra?

    Directory of Open Access Journals (Sweden)

    D. Blok

    2011-01-01

    Full Text Available Deciduous shrubs are expected to rapidly expand in the Arctic during the coming decades due to climate warming. A transition towards more shrub-dominated tundra may have large implications for the regional surface energy balance, permafrost stability and carbon storage capacity, with consequences for the global climate system. However, little information is available on the natural long-term shrub growth response to climatic variability. Our aim was to determine the climate factor and time period that are most important to annual shrub growth in our research site in NE-Siberia. Therefore, we determined annual radial growth rates in Salix pulchra and Betula nana shrubs by measuring ring widths. We constructed shrub ring width chronologies and compared growth rates to regional climate and remotely sensed greenness data. Early summer temperature was the most important factor influencing ring width of S. pulchra (Pearson's r=0.73, p<0.001 and B. nana (Pearson's r=0.46, p<0.001. No effect of winter precipitation on shrub growth was observed. In contrast, summer precipitation of the previous year correlated positively with B. nana ring width (r=0.42, p<0.01, suggesting that wet summers facilitate shrub growth in the following growing season. S. pulchra ring width correlated positively with peak summer NDVI, despite the small coverage of S. pulchra shrubs (<5% surface cover in our research area. We provide the first climate-growth study on shrubs for Northeast Siberia, the largest tundra region in the world. We show that two deciduous shrub species with markedly different growth forms have a similar growth response to changes in climate. The obtained shrub growth response to climate variability in the past increases our understanding of the mechanisms underlying current shrub expansion, which is required to predict future climate-driven tundra vegetation shifts.

  10. What are the main climate drivers for shrub growth in Northeastern Siberian tundra?

    Directory of Open Access Journals (Sweden)

    D. Blok

    2011-05-01

    Full Text Available Deciduous shrubs are expected to rapidly expand in the Arctic during the coming decades due to climate warming. A transition towards more shrub-dominated tundra may have large implications for the regional surface energy balance, permafrost stability and carbon storage capacity, with consequences for the global climate system. However, little information is available on the natural long-term shrub growth response to climatic variability. Our aim was to determine the climate factor and time period that are most important to annual shrub growth in our research site in NE-Siberia. Therefore, we determined annual radial growth rates in Salix pulchra and Betula nana shrubs by measuring ring widths. We constructed shrub ring width chronologies and compared growth rates to regional climate and remotely sensed greenness data. Early summer temperature was the most important factor influencing ring width of S. pulchra (Pearson's r = 0.73, p < 0.001 and B. nana (Pearson's r = 0.46, p < 0.001. No effect of winter precipitation on shrub growth was observed. In contrast, summer precipitation of the previous year correlated positively with B. nana ring width (Pearson's r = 0.42, p < 0.01, suggesting that wet summers facilitate shrub growth in the following growing season. S. pulchra ring width correlated positively with peak summer NDVI, despite the small coverage of S. pulchra shrubs (< 5 % surface cover in our research area. We provide the first climate-growth study on shrubs for Northeast Siberia, the largest tundra region in the world. We show that two deciduous shrub species with markedly different growth forms have a similar growth response to changes in climate. The obtained shrub growth response to climate variability in the past increases our understanding of the mechanisms underlying current shrub expansion, which is required to predict future climate

  11. Geochemical drivers of organic matter decomposition in the active layer of Arctic tundra

    Science.gov (United States)

    Herndon, E.; Roy Chowdhury, T.; Mann, B.; Graham, D. E.; Wullschleger, S. D.; Gu, B.; Liang, L.

    2014-12-01

    Arctic tundra soils store large quantities of organic carbon that are susceptible to decomposition and release to the atmosphere as CO2 and CH4. Decomposition rates are limited by cold temperatures and widespread anoxia; however, ongoing changes in soil temperature, thaw depth, and water saturation are expected to influence rates and pathways of organic matter decomposition. In order to predict greenhouse gas releases from high-latitude ecosystems, it is necessary to identify how geochemical factors (e.g. terminal electron acceptors, carbon substrates) influence CO2 and CH4 production in tundra soils. This study evaluates spatial patterns of aqueous geochemistry in the active layer of low- to high-centered polygons located at the Barrow Environmental Observatory in northern Alaska. Pore waters from saturated soils were low in sulfate and nitrate but contained abundant Fe which may serve a major terminal electron acceptor for anaerobic microbial metabolism. Relatively high concentrations of soluble Fe accumulated in the middle of the active layer near the boundary between the organic and mineral horizon, and we infer that Fe-oxide reduction and dissolution in the mineral horizon produced soluble Fe that diffused upwards and was stabilized by complexation with dissolved organic matter. Fe concentrations in the bulk soil were higher in organic than mineral horizons due to the presence of these organic-Fe complexes and Fe-oxide precipitates. Dissolved CH4 increased with increasing proportions of dissolved Fe(III) in saturated soils from transitional and low-centered polygons. The opposite trend was observed in drier soils from flat- and high-centered polygons where deeper oxidation fronts may inhibit methanogenesis. Using multiple spectroscopic and molecular methods (e.g. UV-Vis, Fourier transform infrared, ultrahigh resolution mass spectrometry), we also observed that pore waters from the middle of the active layer contained more aromatic organics than in mineral

  12. Arctic tundra and mountain landscapes are persistent sinks of atmospheric CH4

    Science.gov (United States)

    Christiansen, Jesper; Winkler, Renato; Juncher Jørgensen, Christian

    2017-04-01

    Recent studies have shown significant rates of net uptake of atmospheric methane (CH4) in Arctic tundra soils. Oxidation of CH4 in these cold, dry soils in the Arctic region can counteract CH4 emissions from wetlands and play a potential important role for the net Arctic CH4 budget. However, significant knowledge gaps exist on the overall magnitude of the net CH4 sink in these cold, dry systems as the spatial and environmental limits for CH4 oxidation has not been determined. In particular, the extent, magnitude and drivers of CH4 oxidation in mountains and alpine landforms, which occupy large land areas in the Arctic and High Arctic has not yet been investigated leaving a potential vast CH4 sink unquantified with major potential implications for our conceptual view of Arctic CH4 budget in a changing climate. Here we present the results from two expeditions in the summers of 2015 and 2016 from Disko Bay and in the pro-glacial landscape in vicinity of the Russell Glacier, Kangerlussuaq, Greenland, respectively. The aim of our work is to determine the magnitude and extent of net uptake of atmospheric CH4 across a variety of previously unexplored dry tundra and post-glacial landforms in the Arctic, i.e. marginal moraines and other glacial features at the Greenland ice sheet as well as mountain tops and outwash plains. We used high-precision, mobile cavity-ring-down spectrometers (e.g. model G4301 GasScouter, Picarro Inc.) to achieve reliable flux estimates in sub-ambient CH4 concentration levels with a 4-minute enclosure time per chamber measurement. Our results show a persistent net uptake of CH4 uptake in these dry, extreme environments that rival the sink strength observed in temperate forest soils, otherwise considered the primary global terrestrial sink of atmospheric CH4. In this dynamic glacial landscape the magnitude of the net CH4 uptake is mainly constrained by recent landscape evolution along glacier margins and meltwater systems. Utilizing the high

  13. Pervasive and strong effects of plants on soil chemistry: a meta-analysis of individual plant ‘Zinke’ effects

    Science.gov (United States)

    Waring, Bonnie G.; Álvarez-Cansino, Leonor; Barry, Kathryn E.; Becklund, Kristen K.; Dale, Sarah; Gei, Maria G.; Keller, Adrienne B.; Lopez, Omar R.; Markesteijn, Lars; Mangan, Scott; Riggs, Charlotte E.; Rodríguez-Ronderos, María Elizabeth; Segnitz, R. Max; Schnitzer, Stefan A.; Powers, Jennifer S.

    2015-01-01

    Plant species leave a chemical signature in the soils below them, generating fine-scale spatial variation that drives ecological processes. Since the publication of a seminal paper on plant-mediated soil heterogeneity by Paul Zinke in 1962, a robust literature has developed examining effects of individual plants on their local environments (individual plant effects). Here, we synthesize this work using meta-analysis to show that plant effects are strong and pervasive across ecosystems on six continents. Overall, soil properties beneath individual plants differ from those of neighbours by an average of 41%. Although the magnitudes of individual plant effects exhibit weak relationships with climate and latitude, they are significantly stronger in deserts and tundra than forests, and weaker in intensively managed ecosystems. The ubiquitous effects of plant individuals and species on local soil properties imply that individual plant effects have a role in plant–soil feedbacks, linking individual plants with biogeochemical processes at the ecosystem scale. PMID:26224711

  14. Influence of management regime and harvest date on the forage quality of rangelands plants: the importance of dry matter content.

    Science.gov (United States)

    Bumb, Iris; Garnier, Eric; Bastianelli, Denis; Richarte, Jean; Bonnal, Laurent; Kazakou, Elena

    2016-01-01

    In spite of their recognized ecological value, relatively little is known about the nutritional value of species-rich rangelands for herbivores. We investigated the sources of variation in dry matter digestibility (DMD), neutral detergent fibre content (NDF) and nitrogen concentration (NC) in plants from species-rich Mediterranean rangelands in southern France, and tested whether the dry matter content (DMC) was a good predictor of the forage quality of different plant parts. Sixteen plant species with contrasting growth forms (rosette, tussock, extensive and stemmed-herb) were studied, representative of two management regimes imposed in these rangelands: (i) fertilization and intensive grazing and (ii) non-fertilization and moderate grazing. Among the 16 plant species, four species were found in both treatments, allowing us to assess the intraspecific variability in forage quality and DMC across the treatments. The components of nutritional value (DMD, NDF and NC) as well as the DMC of leaves, stems and reproductive plant parts, were assessed at the beginning of the growing season and at peak standing biomass. All components of nutritional value and DMC were affected by species growth form: rosettes had higher DMD and NC than tussocks; the reverse being found for NDF and DMC. As the season progressed, DMD and NC of the different plant parts decreased while NDF and DMC increased for all species. DMC was negatively related to DMD and NC and positively to NDF, regardless of the source of variation (species, harvest date, management regime or plant part). Path analysis indicated that NDF was the main determinant of DMD. Better assessment of forage quality in species-rich systems requires consideration of their growth form composition. DMC of all plant parts, which is closely related to NDF, emerged as a good predictor and easily measured trait to estimate DMD in these species-rich systems. Published by Oxford University Press on behalf of the Annals of Botany Company.

  15. Highly Pathogenic Avian Influenza H5N1 Virus Surveillance for Tundra Swans and Wood Ducks on Pocosin Lakes National Wildlife Refuge: Raw data

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Example of raw data submitted from the National Wildlife Health Center of test results from oral-pharyngeal and cloacal swabs collected on Tundra Swans and Wood...

  16. Highly Pathogenic Avian Influenza H5N1 Virus Surveillance for Tundra Swans and Wood Ducks on Pocosin Lakes National Wildlife Refuge: Raw data

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Example of raw data submitted to the National Wildlife Health Center of test results from oral-pharyngeal and cloacal swabs collected on Tundra Swans and Wood Ducks...

  17. Highly Pathogenic Avian Influenza H5N1 Virus Surveillance for Tundra Swans and Wood Ducks on Pocosin Lakes National Wildlife Refuge: Batch 324NC Summary

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Batch summaries from the National Wildlife Health Center of test results from oral-pharyngeal and cloacal swabs collected on Tundra Swans and Wood Ducks on Pocosin...

  18. Highly Pathogenic Avian Influenza H5N1 Virus Surveillance for Tundra Swans and Wood Ducks on Pocosin Lakes National Wildlife Refuge: Raw data

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Example of raw data submitted to the National Wildlife Health Center of test results from oral-pharyngeal and cloacal swabs collected on Tundra Swans and Wood Ducks...

  19. Highly Pathogenic Avian Influenza H5N1 Virus Surveillance for Tundra Swans and Wood Ducks on Pocosin Lakes National Wildlife Refuge: Batch 324NC Summary

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Batch summaries from the National Wildlife Health Center of test results from oral-pharyngeal and cloacal swabs collected on Tundra Swans and Wood Ducks on Pocosin...

  20. Highly Pathogenic Avian Influenza H5N1 Virus Surveillance for Tundra Swans and Wood Ducks on Pocosin Lakes National Wildlife Refuge: Raw data

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Example of raw data submitted from the National Wildlife Health Center of test results from oral-pharyngeal and cloacal swabs collected on Tundra Swans and Wood...

  1. Snowpack fluxes of methane and carbon dioxidefrom high Arctic tundra

    DEFF Research Database (Denmark)

    Pirk, Norbert; Tamstorf, Mikkel P.; Lund, Magnus

    2016-01-01

    the expectedgas emissions to the atmosphere, and conversely lead to snowpack gas accumulations of up to 86 ppm CH4and 3800 ppm CO2by late winter. CH4to C O2ratios indicated distinctly different source characteristicsin the rampart of ice-wedge polygons compared to elsewhere on the measured transect, possibly due...... to 2 orders of magnitude lower than growing season fluxes. Perennially, CH4fluxes resembledthe same spatial pattern, which was largely attributed to differences in soil wetness controlling substrateaccumulation and microbial activity. We found no significant gas sinks or sources inside the snowpack...... togeomorphological soil cracks. Collectively, these findings suggest important ties between growing seasonand cold season greenhouse gas emissions from high Arctic tundra....

  2. [Wood transformation in dead-standing trees in the forest-tundra of Central Siberia].

    Science.gov (United States)

    Mukhortova, L V; Kirdianov, A V; Myglan, V S; Guggenberger, G

    2009-01-01

    Changes in the composition of wood organic matter in dead-standing spruce and larch trees depending on the period after their death have been studied in the north of Central Siberia. The period after tree death has been estimated by means of cross-dating. The results show that changes in the composition of wood organic matter in 63% of cases are contingent on tree species. Wood decomposition in dead-standing trees is accompanied by an increase in the contents of alkali-soluble organic compounds. Lignin oxidation in larch begins approximately 80 years after tree death, whereas its transformation in spruce begins not earlier than after 100 years. In the forest-tundra of Central Siberia, the rate of wood organic matter transformation in dead-standing trees is one to two orders of magnitude lower than in fallen wood, which accounts for their role as a long-term store of carbon and mineral elements in these ecosystems.

  3. Fungi benefit from two decades of increased nutrient availability in tundra heath soil

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Bååth, Erland

    2013-01-01

    is a predicted long-term consequence of climatic warming and mimicked by fertilization, both increase soil microbial biomass. However, while fertilization increased the relative abundance of fungi, warming caused only a minimal shift in the microbial community composition based on the phospholipid fatty acid......If microbial degradation of carbon substrates in arctic soil is stimulated by climatic warming, this would be a significant positive feedback on global change. With data from a climate change experiment in Northern Sweden we show that warming and enhanced soil nutrient availability, which...... of complex organic compounds such as vanillin, while warming has had no such effects. Furthermore, the NLFA-to-PLFA ratio for (13)C-incorporation from acetate increased in warmed plots but not in fertilized ones. Thus, fertilization cannot be used as a proxy for effects on warming in arctic tundra soils...

  4. Changing Seasonality of Panarctic Tundra Vegetation in Relationship to Climatic Variables

    Science.gov (United States)

    Bhatt, Uma S.; Walker, Donald A.; Raynolds, Martha K.; Bieniek, Peter A.; Epstein, Howard E.; Comiso, Josefino C.; Pinzon, Jorge E.; Tucker, Compton J.; Steele, Michael; Ermold, Wendy; hide

    2017-01-01

    Potential climate drivers of Arctic tundra vegetation productivity are investigated to understand recent greening and browning trends documented by maximum normalized difference vegetation index (NDVI) (MaxNDVI) and time-integrated NDVI (TI-NDVI) for 19822015. Over this period, summer sea ice has continued to decline while oceanic heat content has increased. The increases in summer warmth index (SWI) and NDVI have not been uniform over the satellite record. SWI increased from 1982 to the mid-1990s and remained relatively flat from 1998 onwards until a recent upturn. While MaxNDVI displays positive trends from 19822015, TI-NDVI increased from 1982 until 2001 and has declined since. The data for the first and second halves of the record were analyzed and compared spatially for changing trends with a focus on the growing season. Negative trends for MaxNDVI and TI-NDVI were more common during 19992015 compared to 19821998.

  5. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming

    DEFF Research Database (Denmark)

    Faubert, Patrick; Tiiva, Paivi; Rinnan, Åsmund

    2010-01-01

    • Biogenic volatile organic compound (BVOC) emissions from arctic ecosystems are important in view of their role in global atmospheric chemistry and unknown feedbacks to global warming. These cold ecosystems are hotspots of climate warming, which will be more severe here than averaged over...... of a focus on BVOC emissions during climate change. The observed changes have implications for ecological interactions and feedback effects on climate change via impacts on aerosol formation and indirect greenhouse effects....... the globe. We assess the effects of climatic warming on non-methane BVOC emissions from a subarctic heath. • We performed ecosystem-based chamber measurements and gas chromatography-mass spectrometry (GC-MS) analyses of the BVOCs collected on adsorbent over two growing seasons at a wet subarctic tundra...

  6. The importance of willow thickets for ptarmigan and hares in shrub tundra: the more the better?

    Science.gov (United States)

    Ehrich, Dorothée; Henden, John-André; Ims, Rolf Anker; Doronina, Lilyia O; Killengren, Siw Turid; Lecomte, Nicolas; Pokrovsky, Ivan G; Skogstad, Gunnhild; Sokolov, Alexander A; Sokolov, Vasily A; Yoccoz, Nigel Gilles

    2012-01-01

    In patchy habitats, the relationship between animal abundance and cover of a preferred habitat may change with the availability of that habitat, resulting in a functional response in habitat use. Here, we investigate the relationship of two specialized herbivores, willow ptarmigan (Lagopus lagopus) and mountain hare (Lepus timidus), to willows (Salix spp.) in three regions of the shrub tundra zone-northern Norway, northern European Russia and western Siberia. Shrub tundra is a naturally patchy habitat where willow thickets represent a major structural element and are important for herbivores both as food and shelter. Habitat use was quantified using feces counts in a hierarchical spatial design and related to several measures of willow thicket configuration. We document a functional response in the use of willow thickets by ptarmigan, but not by hares. For hares, whose range extends into forested regions, occurrence increased overall with willow cover. The occurrence of willow ptarmigan showed a strong positive relationship to willow cover and a negative relationship to thicket fragmentation in the region with lowest willow cover at landscape scale, where willow growth may be limited by reindeer browsing. In regions with higher cover, in contrast, such relationships were not observed. Differences in predator communities among the regions may contribute to the observed pattern, enhancing the need for cover where willow thickets are scarce. Such region-specific relationships reflecting regional characteristics of the ecosystem highlight the importance of large-scale investigations to understand the relationships of habitat availability and use, which is a critical issue considering that habitat availability changes quickly with climate change and human impact.

  7. Shrub encroachment in Arctic tundra: Betula nana effects on above- and below-ground litter decomposition.

    Science.gov (United States)

    McLaren, Jennie R; Buckeridge, Kate M; van de Weg, Martine J; Shaver, Gaius R; Schimel, Joshua P; Gough, Laura

    2017-03-06

    Rapid arctic vegetation change as a result of global warming includes an increase in the cover and biomass of deciduous shrubs. Increases in shrub abundance will result in a proportional increase of shrub litter in the litter community, potentially affecting carbon turnover rates in arctic ecosystems. We investigated the effects of leaf and root litter of a deciduous shrub, Betula nana, on decomposition, by examining species-specific decomposition patterns, as well as effects of Betula litter on the decomposition of other species. We conducted a two-year decomposition experiment in moist acidic tundra in northern Alaska, where we decomposed three tundra species (Vaccinium vitis-idaea, Rhododendron palustre, and Eriophorum vaginatum) alone and in combination with Betula litter. Decomposition patterns for leaf and root litter were determined using three different measures of decomposition (mass loss, respiration, extracellular enzyme activity). We report faster decomposition of Betula leaf litter compared to other species, with support for species differences coming from all three measures of decomposition. Mixing effects were less consistent among the measures, with negative mixing effects shown only for mass loss. In contrast, there were few species differences or mixing effects for root decomposition. Overall, we attribute longer-term litter mass loss patterns in to patterns created by early decomposition processes in the first winter. We note numerous differences for species patterns between leaf and root decomposition, indicating that conclusions from leaf litter experiments should not be extrapolated to below-ground decomposition. The high decomposition rates of Betula leaf litter aboveground, and relatively similar decomposition rates of multiple species below, suggest a potential for increases in turnover in the fast-decomposing carbon pool of leaves and fine roots as the dominance of deciduous shrubs in the Arctic increases, but this outcome may be tempered

  8. Age-specific survival of tundra swans on the lower Alaska Peninsula

    Science.gov (United States)

    Meixell, Brandt W.; Lindberg, Mark S.; Conn, Paul B.; Dau, Christian P.; Sarvis, John E.; Sowl, Kristine M.

    2013-01-01

    The population of Tundra Swans (Cygnus columbianus columbianus) breeding on the lower Alaska Peninsula represents the southern extremity of the species' range and is uniquely nonmigratory. We used data on recaptures, resightings, and recoveries of neck-collared Tundra Swans on the lower Alaska Peninsula to estimate collar loss, annual apparent survival, and other demographic parameters for the years 1978–1989. Annual collar loss was greater for adult males fitted with either the thinner collar type (0.34) or the thicker collar type (0.15) than for other age/sex classes (thinner: 0.10, thicker: 0.04). The apparent mean probability of survival of adults (0.61) was higher than that of immatures (0.41) and for both age classes varied considerably by year (adult range: 0.44–0.95, immature range: 0.25–0.90). To assess effects of permanent emigration by age and breeding class, we analyzed post hoc the encounter histories of swans known to breed in our study area. The apparent mean survival of known breeders (0.65) was generally higher than that of the entire marked sample but still varied considerably by year (range 0.26–1.00) and indicated that permanent emigration of breeding swans was likely. We suggest that reductions in apparent survival probability were influenced primarily by high and variable rates of permanent emigration and that immigration by swans from elsewhere may be important in sustaining a breeding population at and near Izembek National Wildlife Refuge.

  9. Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra.

    Science.gov (United States)

    Vaughn, Lydia J S; Conrad, Mark E; Bill, Markus; Torn, Margaret S

    2016-10-01

    Arctic wetlands are currently net sources of atmospheric CH4 . Due to their complex biogeochemical controls and high spatial and temporal variability, current net CH4 emissions and gross CH4 processes have been difficult to quantify, and their predicted responses to climate change remain uncertain. We investigated CH4 production, oxidation, and surface emissions in Arctic polygon tundra, across a wet-to-dry permafrost degradation gradient from low-centered (intact) to flat- and high-centered (degraded) polygons. From 3 microtopographic positions (polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH4 and CO2 fluxes, concentrations and stable isotope compositions of CH4 and DIC at three depths in the soil, and soil moisture and temperature. More degraded sites had lower CH4 emissions, a different primary methanogenic pathway, and greater CH4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or temperature could explain. Surface CH4 flux decreased from 64 nmol m(-2)  s(-1) in intact polygons to 7 nmol m(-2)  s(-1) in degraded polygons, and stable isotope signatures of CH4 and DIC showed that acetate cleavage dominated CH4 production in low-centered polygons, while CO2 reduction was the primary pathway in degraded polygons. We see evidence that differences in water flow and vegetation between intact and degraded polygons contributed to these observations. In contrast to many previous studies, these findings document a mechanism whereby permafrost degradation can lead to local decreases in tundra CH4 emissions.

  10. Arctic biodiversity: Increasing richness accompanies shrinking refugia for a cold-associated tundra fauna

    Science.gov (United States)

    Hope, Andrew; Waltari, Eric; Malaney, Jason L.; Payer, David C.; Cook, J.A.; Talbot, Sandra

    2015-01-01

    As ancestral biodiversity responded dynamically to late-Quaternary climate changes, so are extant organisms responding to the warming trajectory of the Anthropocene. Ecological predictive modeling, statistical hypothesis tests, and genetic signatures of demographic change can provide a powerful integrated toolset for investigating these biodiversity responses to climate change, and relative resiliency across different communities. Within the biotic province of Beringia, we analyzed specimen localities and DNA sequences from 28 mammal species associated with boreal forest and Arctic tundra biomes to assess both historical distributional and evolutionary responses and then forecasted future changes based on statistical assessments of past and present trajectories, and quantified distributional and demographic changes in relation to major management regions within the study area. We addressed three sets of hypotheses associated with aspects of methodological, biological, and socio-political importance by asking (1) what is the consistency among implications of predicted changes based on the results of both ecological and evolutionary analyses; (2) what are the ecological and evolutionary implications of climate change considering either total regional diversity or distinct communities associated with major biomes; and (3) are there differences in management implications across regions? Our results indicate increasing Arctic richness through time that highlights a potential state shift across the Arctic landscape. However, within distinct ecological communities, we found a predicted decline in the range and effective population size of tundra species into several discrete refugial areas. Consistency in results based on a combination of both ecological and evolutionary approaches demonstrates increased statistical confidence by applying cross-discipline comparative analyses to conservation of biodiversity, particularly considering variable management regimes that seek

  11. Object-Based Mapping of the Circumpolar Taiga-Tundra Ecotone with MODIS Tree Cover

    Science.gov (United States)

    Ranson, K. J.; Montesano, P. M.; Nelson, R.

    2011-01-01

    The circumpolar taiga tundra ecotone was delineated using an image-segmentation-based mapping approach with multi-annual MODIS Vegetation Continuous Fields (VCF) tree cover data. Circumpolar tree canopy cover (TCC) throughout the ecotone was derived by averaging MODIS VCF data from 2000 to 2005 and adjusting the averaged values using linear equations relating MODIS TCC to Quickbird-derived tree cover estimates. The adjustment helped mitigate VCF's overestimation of tree cover in lightly forested regions. An image segmentation procedure was used to group pixels representing similar tree cover into polygonal features (segmentation objects) that form the map of the transition zone. Each polygon represents an area much larger than the 500 m MODIS pixel and characterizes the patterns of sparse forest patches on a regional scale. Those polygons near the boreal/tundra interface with either (1) mean adjusted TCC values from5 to 20%, or (2) mean adjusted TCC values greater than 5% but with a standard deviation less than 5% were used to identify the ecotone. Comparisons of the adjusted average tree cover data were made with (1) two existing tree line definitions aggregated for each 1 degree longitudinal interval in North America and Eurasia, (2) Landsat-derived Canadian proportion of forest cover for Canada, and (3) with canopy cover estimates extracted from airborne profiling lidar data that transected 1238 of the TCC polygons. The adjusted TCC from MODIS VCF shows, on average, less than 12% TCC for all but one regional zone at the intersection with independently delineated tree lines. Adjusted values track closely with Canadian proportion of forest cover data in areas of low tree cover. A comparison of the 1238 TCC polygons with profiling lidar measurements yielded an overall accuracy of 67.7%.

  12. Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil mites across alpine/subarctic tundra communities

    Science.gov (United States)

    Alatalo, Juha M.; Jägerbrand, Annika K.; Juhanson, Jaanis; Michelsen, Anders; Ľuptáčik, Peter

    2017-03-01

    High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from the mineral soil layer in mesic meadow, but not in wet meadow or heath or from the organic soil layer. There was a significant site effect on the density of one mite species, Oppiella neerlandica, and all soil parameters. A significant plot-scale impact on mites suggests that small-scale heterogeneity may be important for buffering mites from global warming. The results indicated that juvenile mites may be more vulnerable to global warming than adult stages. Importantly, the results also indicated that global warming may cause carbon and nitrogen losses in alpine and tundra mineral soils and that its effects may differ at local scale.

  13. Experimental modeling of the influence of the rise in average summer temperatures on carbon circulation in tundra ecosystems

    Science.gov (United States)

    Barkhatov, Yu. V.; Tikhomirov, A. A.; Ushakova, S. A.; Shikhov, V. N.; Bartsev, S. I.; Degermendzhi, A. G.

    2016-11-01

    A sealed vegetation chamber was designed and constructed for physical simulation of climate conditions in the Subarctic zone during the spring-summer time. The small laboratory tundra-simulating ecosystem (TSE) was created for comparative evaluation of the rates of soil respiration and of the total balance of carbon fluxes in tundra ecosystems. The test experiment was performed to study the TSE response to a temperature rise in air and soil by 2°C in terms of the intensity of the CO2 flux. It was shown that this increase in temperature would cause a pronounced shift in the balance of CO2 production and utilization in the ecosystem from near-zero values to a stable generation of 24 μmol/h of CO2 per 1 kg of dry biomass.

  14. Quantification of DOC concentrations in relation with soil properties of soils in tundra and taiga of Northern European Russia

    Directory of Open Access Journals (Sweden)

    M. R. Oosterwoud

    2010-05-01

    Full Text Available Potential mobilization and transport of Dissolved Organic Carbon (DOC in subarctic river basins towards the oceans is enormous, because 23–48% of the worlds Soil Organic Carbon (SOC is stored in northern regions. As climate changes, the amount and composition of DOC exported from these basins are expected to change. The transfer of organic carbon between soils and rivers results in fractionation of organic carbon compounds. The aim of this research is to determine the DOC concentrations, its fractions, i.e. humic (HA, fulvic (FA, and hydrophilic (HY acids, and soil characteristics that influence the DOC sorptive properties of different soil types within a tundra and taiga catchment of Northern European Russia. DOC in taiga and tundra soil profiles (soil solution consisted only of HY and FA, where HY became more abundant with increasing depth. Adsorption of DOC on mineral phases is the key geochemical process for release and removal of DOC from potentially soluble carbon pool. We found that adsorbed organic carbon may desorb easily and can release DOC quickly, without being dependent on mineralization and degradation. Although Extractable Organic Carbon (EOC comprise only a small part of SOC, it is a significant buffering pool for DOC. We found that about 80–90% of released EOC was previously adsorbed. Fractionation of EOC is also influenced by the fact that predominantly HA and FA adsorbed to soil and therefore also are the main compounds released when desorbed. Flowpaths vary between taiga and tundra and through seasons, which likely affects DOC concentration found in streams. As climate changes, also flowpaths of water through soils may change, especially in tundra caused by thawing soils. Therefore, adsorptive properties of thawing soils exert a major control on DOC leaching to rivers. To better understand the process of DOC ad- and de-sorption in soils, process based soil chemical modelling, which could bring more insight in solution

  15. Landsat-based Analysis of Mountain Forest-tundra Ecotone Response to Climate Trends in Sayan Mountains

    Science.gov (United States)

    Kharuk, Viatcheslav I.; Im, Sergey T.; Ranson, K. Jon

    2007-01-01

    observations of temperatures Siberia has shown a several degree warming over the past 30 years. It is expected that forest will respond to warming at high latitudes through increased tree growth and northward or upward slope migration. migration. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. Making repeated satellite observations over several decades provides an opportunity to track vegetation response to climate change. Based on Landsat data of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure and an upward tree-line shift in the of the forest-tundra ecotone during the last quarter of the 2oth century,. On-ground observations, supporting these results, also showed regeneration of Siberian pine in the alpine tundra, and the transformation of prostrate Siberian pine and fir into arboreal (upright) forms. During this time period sparse stands transformed into closed stands, with existing closed stands increasing in area at a rate of approx. 1 %/yr, and advancing their upper border at a vertical rate of approx. 1.0 m/yr. In addition, the vertical rate of regeneration propagation is approx. 5 m/yr. It was also found that these changes correlated positively with temperature trends

  16. Divergent hydrological responses to 20th century climate change in shallow tundra ponds, western Hudson Bay Lowlands

    Science.gov (United States)

    Wolfe, Brent B.; Light, Erin M.; Macrae, Merrin L.; Hall, Roland I.; Eichel, Kaleigh; Jasechko, Scott; White, Jerry; Fishback, LeeAnn; Edwards, Thomas W. D.

    2011-12-01

    The hydrological fate of shallow tundra lakes and ponds under conditions of continued warming remains uncertain, but has important implications for wildlife habitat and biogeochemical cycling. Observations of unprecedented pond desiccation, in particular, signify catastrophic loss of aquatic habitat in some Arctic locations. Shallow tundra ponds are a ubiquitous feature in the western Hudson Bay Lowlands (HBL), a region that has undergone intense warming over the past ˜50 years. But it remains unknown how hydrological processes in these ponds have responded. Here, we use cellulose-inferred pond water oxygen isotope records from sediment cores, informed by monitoring of modern pond water isotope compositions during the 2009 and 2010 ice-free seasons, to reconstruct hydrological conditions of four shallow tundra ponds in the western HBL over the past three centuries. Following an interval of relative hydrological stability during the early part of the records, results reveal widely differing hydrological responses to 20th century climate change among the study sites, which is largely dependent on hydrological connectivity of the basins within their respective surrounding peatlands. These findings suggest the 20th century has been characterized by an increasingly dynamic landscape that has variably influenced surface water balance - a factor that is likely to play a key role in determining the future water balance of ponds in this region.

  17. Consequences of artic ground squirrels on soil carbon loss from Siberian tundra

    Science.gov (United States)

    Golden, N. A.; Natali, S.; Zimov, N.

    2014-12-01

    A large pool of organic carbon (C) has been accumulating in the Arctic for thousands of years. Much of this C has been frozen in permafrost and unavailable for microbial decomposition. As the climate warms and permafrost thaws, the fate of this large C pool will be driven not only by climatic conditions, but also by ecosystem changes brought about by arctic animal populations. In this project we studied arctic ground squirrels (Spermophilus parryii), which are widely-distributed throughout the Arctic. These social mammals create subterranean burrows that mix soil layers, increase aeration, alter soil moisture and temperature, and redistribute soil nutrients, all of which may impact microbial decomposition. We examined the effects of arctic ground squirrel activity on soil C mineralization in dry heath tundra underlain by continuous permafrost in the Kolyma River watershed in northeast Siberia, Russia. Vegetation cover was greatly reduced on the ground squirrel burrows (80% of ground un-vegetated), compared to undisturbed sites (35% of ground un-vegetated). Soils from ground squirrel burrows were also significantly dryer and warmer. To examine effects of ground squirrel activity on microbial respiration, we conducted an 8-day incubation of soil fromburrows and from adjacent undisturbed tundra. In addition, we assessed the impact of nutrient addition by including treatments with low and high levels of nitrogen addition. Microbial respiration (per gram soil) was three-fold higher in incubated soils from the undisturbed sites compared to soils collected from the burrows. The lower rates of respiration from the disturbed soils may have been a result of lower carbon quality or low soil moisture. High nitrogen addition significantly increased respiration in the undisturbed soils, but not in the disturbed burrow soils, which suggests that microbial respiration in the burrow soils was not primarily limited by nitrogen. These results demonstrate the importance of wildlife

  18. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra

    Science.gov (United States)

    Juszak, Inge; Eugster, Werner; Heijmans, Monique M. P. D.; Schaepman-Strub, Gabriela

    2016-07-01

    Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and

  19. Carbon dioxide balance of subarctic tundra from plot to regional scales

    Directory of Open Access Journals (Sweden)

    M. E. Marushchak

    2013-01-01

    Full Text Available We report here the carbon dioxide (CO2 budget of a 98.6 km2 subarctic tundra area in northeast European Russia based on measurements at two different scales and two independent upscaling approaches. Plot-scale measurements (chambers on terrestrial surfaces, gas gradient method and bubble collectors on lakes were carried out from July 2007 to October 2008. The landscape-scale eddy covariance (EC measurements covered the snow-free period of 2008. The annual net ecosystem exchange (NEE of different land cover types ranged from −251 to 84 g C m−2. Leaf area index (LAI was an excellent predictor of the spatial variability in gross photosynthesis (GP, NEE and ecosystem respiration (ER. The plot-scale CO2 fluxes were first scaled up to the EC source area and then to the whole study area using two data sets: a land cover classification and a LAI map, both based on field data and a 2.4 m pixel-sized QuickBird satellite image. The good agreement of the CO2 balances for the EC footprint based on the different measuring techniques (−105 to −81 g C m−2 vs. −79 g C m−2; growing season 2008 justified the integration of the plot-scale measurements over the larger area. The regional CO2 balance based on area-integrated plot-scale measurements was −41 or −79 g C m−2 yr−1 according to the two upscaling methods, the land cover classification and the LAI map, respectively. Due to the heterogeneity of tundra, the effect of climate change on CO2 uptake will vary strongly according to the land cover type and, moreover, likely changes in their relative coverage in the future will have great impact on the regional CO2 balance.

  20. MODIS Tree Cover Validation for the Circumpolar Taiga-Tundra Transition Zone

    Science.gov (United States)

    Montesano, P. M.; Nelson, R.; Sun, G.; Margolis, H.; Kerber, A.; Ranson, K. J.

    2009-01-01

    A validation of the 2005 500m MODIS vegetation continuous fields (VCF) tree cover product in the circumpolar taiga-tundra ecotone was performed using high resolution Quickbird imagery. Assessing the VCF's performance near the northern limits of the boreal forest can help quantify the accuracy of the product within this vegetation transition area. The circumpolar region was divided into longitudinal zones and validation sites were selected in areas of varying tree cover where Quickbird imagery is available in Google Earth. Each site was linked to the corresponding VCF pixel and overlaid with a regular dot grid within the VCF pixel's boundary to estimate percent tree crown cover in the area. Percent tree crown cover was estimated using Quickbird imagery for 396 sites throughout the circumpolar region and related to the VCF's estimates of canopy cover for 2000-2005. Regression results of VCF inter-annual comparisons (2000-2005) and VCF-Quickbird image-interpreted estimates indicate that: (1) Pixel-level, inter-annual comparisons of VCF estimates of percent canopy cover were linearly related (mean R(sup 2) = 0.77) and exhibited an average root mean square error (RMSE) of 10.1 % and an average root mean square difference (RMSD) of 7.3%. (2) A comparison of image-interpreted percent tree crown cover estimates based on dot counts on Quickbird color images by two different interpreters were more variable (R(sup 2) = 0.73, RMSE = 14.8%, RMSD = 18.7%) than VCF inter-annual comparisons. (3) Across the circumpolar boreal region, 2005 VCF-Quickbird comparisons were linearly related, with an R(sup 2) = 0.57, a RMSE = 13.4% and a RMSD = 21.3%, with a tendency to over-estimate areas of low percent tree cover and anomalous VCF results in Scandinavia. The relationship of the VCF estimates and ground reference indicate to potential users that the VCF's tree cover values for individual pixels, particularly those below 20% tree cover, may not be precise enough to monitor 500m pixel

  1. Sea Ice, Hydrocarbon Extraction, Rain-on-Snow and Tundra Reindeer Nomadism in Arctic Russia

    Science.gov (United States)

    Forbes, B. C.; Kumpula, T.; Meschtyb, N.; Laptander, R.; Macias-Fauria, M.; Zetterberg, P.; Verdonen, M.

    2015-12-01

    It is assumed that retreating sea ice in the Eurasian Arctic will accelerate hydrocarbon development and associated tanker traffic along Russia's Northern Sea Route. However, oil and gas extraction along the Kara and Barents Sea coasts will likely keep developing rapidly regardless of whether the Northwest Eurasian climate continues to warm. Less certain are the real and potential linkages to regional biota and social-ecological systems. Reindeer nomadism continues to be a vitally important livelihood for indigenous tundra Nenets and their large herds of semi-domestic reindeer. Warming summer air temperatures over the NW Russian Arctic have been linked to increases in tundra productivity, longer growing seasons, and accelerated growth of tall deciduous shrubs. These temperature increases have, in turn, been linked to more frequent and sustained summer high-pressure systems over West Siberia, but not to sea ice retreat. At the same time, winters have been warming and rain-on-snow (ROS) events have become more frequent and intense, leading to record-breaking winter and spring mortality of reindeer. What is driving this increase in ROS frequency and intensity is not clear. Recent modelling and simulation have found statistically significant near-surface atmospheric warming and precipitation increases during autumn and winter over Arctic coastal lands in proximity to regions of sea-ice loss. During the winter of 2013-14 an extensive and lasting ROS event led to the starvation of 61,000 reindeer out of a population of ca. 300,000 animals on Yamal Peninsula, West Siberia. Historically, this is the region's largest recorded mortality episode. More than a year later, participatory fieldwork with nomadic herders during spring-summer 2015 revealed that the ecological and socio-economic impacts from this extreme event will unfold for years to come. There is an urgent need to understand whether and how ongoing Barents and Kara Sea ice retreat may affect the region's ancient

  2. Evolutionary relationships can be more important than abiotic conditions in predicting the outcome of plant-plant interactions

    Science.gov (United States)

    Soliveres, Santiago; Torices, Rubén; Maestre, Fernando T.

    2015-01-01

    Positive and negative plant-plant interactions are major processes shaping plant communities. They are affected by environmental conditions and evolutionary relationships among the interacting plants. However, the generality of these factors as drivers of pairwise plant interactions and their combined effects remain virtually unknown. We conducted an observational study to assess how environmental conditions (altitude, temperature, irradiance and rainfall), the dispersal mechanism of beneficiary species and evolutionary relationships affected the co-occurrence of pairwise interactions in 11 Stipa tenacissima steppes located along an environmental gradient in Spain. We studied 197 pairwise plant-plant interactions involving the two major nurse plants (the resprouting shrub Quercus coccifera and the tussock grass S. tenacissima) found in these communities. The relative importance of the studied factors varied with the nurse species considered. None of the factors studied were good predictors of the co-ocurrence between S. tenacissima and its neighbours. However, both the dispersal mechanism of the beneficiary species and the phylogenetic distance between interacting species were crucial factors affecting the co-occurrence between Q. coccifera and its neighbours, while climatic conditions (irradiance) played a secondary role. Values of phylogenetic distance between 207-272.8 Myr led to competition, while values outside this range or fleshy-fruitness in the beneficiary species led to positive interactions. The low importance of environmental conditions as a general driver of pairwise interactions was caused by the species-specific response to changes in either rainfall or radiation. This result suggests that factors other than climatic conditions must be included in theoretical models aimed to generally predict the outcome of plant-plant interactions. Our study helps to improve current theory on plant-plant interactions and to understand how these interactions can

  3. Forest patch height uncertainty from spaceborne data in the taiga-tundra ecotone

    Science.gov (United States)

    Montesano, P. M.; Sun, G.; Ranson, J.; Dubayah, R.

    2014-12-01

    In the taiga-tundra ecotone (TTE), vegetation structure change can be subtle and site-dependent, yet occur across broad scales. Recent remote sensing studies have highlighted the degree to which vegetation structure in the TTE can be characterized with spaceborne remote sensing at the plot-scale. These studies demonstrate the fundamental uncertainty of space-based local-scale vertical structure measurements that are available across broad scales and provide the opportunity to understand regional variation in detailed vegetation characteristics. Patch-scale analyses of vegetation structure provide a means to examine vertical structure and horizontal patch form, their association with landscape characteristics, and a basis for examining the variation of change in patch characteristics across sites. In this study we delineate forest patches in study sites along the TTE in northern Siberia with high resolution (0.5 - 3m) spaceborne imagery (HRSI) and attribute patches with tree cover and spectral data from Landsat 7, backscatter power from ALOS PALSAR and canopy height data based on a HRSI-derived digital surface model and ICESat-GLAS ground elevation. We examine the uncertainty of forest patch height from this suite of spaceborne medium and high resolution optical, radar, and LiDAR data. Results demonstrate the potential and limits of spaceborne estimates of patch-scale forest height whose differences are often small, biophysically relevant, and subject to variable rates of change across the broad-scale of the circumpolar TTE.

  4. Calibration and Validation of Landsat Tree Cover in the Taiga−Tundra Ecotone

    Directory of Open Access Journals (Sweden)

    Paul Mannix Montesano

    2016-06-01

    Full Text Available Monitoring current forest characteristics in the taiga−tundra ecotone (TTE at multiple scales is critical for understanding its vulnerability to structural changes. A 30 m spatial resolution Landsat-based tree canopy cover map has been calibrated and validated in the TTE with reference tree cover data from airborne LiDAR and high resolution spaceborne images across the full range of boreal forest tree cover. This domain-specific calibration model used estimates of forest height to determine reference forest cover that best matched Landsat estimates. The model removed the systematic under-estimation of tree canopy cover >80% and indicated that Landsat estimates of tree canopy cover more closely matched canopies at least 2 m in height rather than 5 m. The validation improved estimates of uncertainty in tree canopy cover in discontinuous TTE forests for three temporal epochs (2000, 2005, and 2010 by reducing systematic errors, leading to increases in tree canopy cover uncertainty. Average pixel-level uncertainties in tree canopy cover were 29.0%, 27.1% and 31.1% for the 2000, 2005 and 2010 epochs, respectively. Maps from these calibrated data improve the uncertainty associated with Landsat tree canopy cover estimates in the discontinuous forests of the circumpolar TTE.

  5. Short-term Climate Characteristics at Ny-(A)lesund over the Arctic Tundra Area

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on the Germany Koldwey Station's 1994-2003 conventional observation hourly data, this paper conducts a statistical analysis on the short-term climate characteristics for an arctic tundra region (Ny-(A)lesund island) where our first arctic expedition station (Huanghe Station) was located. Affected by the North Atlantic warming current, this area has a humid temperate climate, and the air temperature at Ny-(A)lesund rose above 0 ℃ even during deep winter season during our research period. The wind speed in this area was low and appeared most at southeast direction. We find that the temperature at Ny-(A)lesund rose in the faster rate (0.68 ℃/10 a) than those at the whole Arctic area. Compared with the floating ices where our expedition conducted in the Arctic, Ny-(A)lesund was warmer and more humid and had lower wind speed. Comparison of the near surface air temperature derived by NCEP/NCAR reanalysis to the conventional measurements conducted at the Koldwey site in Ny-(A)lesund area shows a good agreement for winter season and a significant difference for summer season.

  6. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, David A.; Raab, Theodore K.; Parker , Melanie; Kelley , Scott T.; Brislawn, Colin J.; Jansson, Janet K.

    2015-08-01

    Summary This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes,

  7. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, David A.; Raab, Theodore K.; Parker , Melanie; Kelley , Scott T.; Brislawn, Colin J.; Jansson, Janet K.

    2015-07-21

    This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska, and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography, but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes, dominated by fermenters (Bacteroidetes and Firmicutes).

  8. Pentecostals and Charismatic Protestants in the Republic of Komi and Nenets Tundra

    Directory of Open Access Journals (Sweden)

    Art Leete

    2015-09-01

    Full Text Available Between 2010 and 2012, an extended team of scholars studied contemporary Protestant groups in Russia. The project was labelled Center for the Study of Pentecostal and Charismatic Movements in Russia1 (CSPCMR and was led by Aleksandr Panchenko from the European University in Saint Petersburg and Patrick Plattet from the University of Alaska Fairbanks. Besides Russia and the USA, scholars from Ireland, the United Kingdom, France, and Estonia were involved in this collaborative research effort. The host institution of the project was the European University in St. Petersburg. The aim of the project was to analyse the Protestant-charismatic (P/c Christianity in various regions of post-Soviet Russia. The project proceeded from the notions concerned with global effects of the rapid extension of P/c Christianity in the contemporary world. In the anthropology of Pentecostalism, problems of continuity and change, globalisation and indigenisation, preservation of pre-Pentecostal ontologies, creating the new morality and approaches to economy and politics have been discussed (Coleman 2000; Robbins 2004a, 2004b. The Estonian team’s specific task was to analyse contemporary Protestant missions and churches in the north-eastern corner of European Russia, in the Republic of Komi and the European Nenets tundra.

  9. Measurements and modelling of snowmelt and turbulent heat fluxes over shrub tundra

    Directory of Open Access Journals (Sweden)

    D. Bewley

    2010-07-01

    Full Text Available Measurements of snowmelt and turbulent heat fluxes were made during the snowmelt periods of two years at two neighbouring tundra sites in the Yukon, one in a sheltered location with tall shrubs exposed above deep snow and the other in an exposed location with dwarf shrubs covered by shallow snow. The snow was about twice as deep in the valley as on the plateau at the end of each winter and melted out about 10 days later. The site with buried vegetation showed a transition from air-to-surface heat transfers to surface-to-air heat transfers as bare ground became exposed during snowmelt, but there were daytime transfers of heat from the surface to the air at the site with exposed vegetation even while snow remained on the ground. A model calculating separate energy balances for snow and exposed vegetation, driven with meteorological data from the sites, is found to be able to reproduce these behaviours. Averaged over 30-day periods the model gives about 8 Wm−2 more sensible heat flux to the atmosphere for the valley site than for the plateau site. Sensitivity of simulated fluxes to model parameters describing vegetation cover and density is investigated.

  10. Backscatter from ice growing on shallow tundra lakes near Barrow, Alaska, winter 1991-1992

    Science.gov (United States)

    Jeffries, M. O.; Wakabayashi, H.; Weeks, W. F.; Morris, K.

    1993-01-01

    The timing of freeze-up and break-up of Arctic lake ice is a potentially useful environmental indicator that could be monitored using SAR. In order to do this, it is important to understand how the properties and structure of the ice during its growth and decay affect radar backscatter and thus lake ice SAR signatures. The availability of radiometrically and geometrically calibrated digital SAR data time series from the Alaska SAR Facility has made it possible for the first time to quantify lake ice backscatter intensity (sigma(sup o)) variations. This has been done for ice growing on shallow tundra lakes near Barrow, NW Alaska, from initial growth in September 1991 until thawing and decay in June 1992. Field and laboratory observations and measurements of the lake ice were made in late April 1992. The field investigations of the coastal lakes near Barrow confirmed previous findings that, (1) ice frozen to the lake bottom had a dark signature in SAR images, indicating weak backscatter, while, (2) ice that was floating had a bright signature, indicating strong backscatter. At all sites, regardless of whether the ice was grounded or floating, there was a layer of clear, inclusion-free ice overlaying a layer of ice with dense concentrations of vertically oriented tubular bubbles. At some sites, there was a third layer of porous, snow-ice overlaying the clear ice.

  11. Site Scale Wetness Classification of Tundra Regions with C-Band SAR Satellite Data

    Science.gov (United States)

    Widhalm, Barbara; Bartsch, Annett; Siewert, Matthias Benjamin; Gugelius, Gustaf; Elberling, Bo; Leibman, Marina; Dvornikov, Yury; Khomutov, Artem

    2016-08-01

    A representative and consistent wetland map for the circumpolar region is required for a range of applications including modelling of permafrost properties as well as upscaling of carbon pools and fluxes. Synthetic Aperture Radar (SAR) data has been shown to be suitable for wetland mapping, especially C- band ASAR GM data (1-km resolution). A circumpolar wetness classification map has been introduced previously [1].With heterogeneity being a major challenge in the Arctic, higher spatial resolution products than GM are essential. In this study we therefore investigate the potential of this approach at site scale using ENVISAT ASAR WS data ( 120 m resolution). These higher resolution ASAR WS maps have been produced for study sites representing different settings throughout the Arctic and compared to high resolution land cover maps and field survey data.It can be shown that a medium resolution C-band SAR based wetness level map can be derived for tundra regions where no scattering due to tree trunks hampers the applied methodology.

  12. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    Science.gov (United States)

    Thompson, Catharine Copass; McGuire, A.D.; Clein, J.S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  13. Experimental Evidence that Fungi are Dominant Microbes in Carbon Content and Growth Response to Added Soluble Organic Carbon in Moss-rich Tundra Soil.

    Science.gov (United States)

    Anderson, O Roger; Lee, Jee Min; McGuire, Krista

    2016-05-01

    Global warming significantly affects Arctic tundra, including permafrost thaw and soluble C release that may differentially affect tundra microbial growth. Using laboratory experiments, we report some of the first evidence for the effects of soluble glucose-C enrichment on tundra soil prokaryotes (bacteria and archaea) and fungi, with comparisons to microbial eukaryotes. Fungal increase in C-biomass was equivalent to 10% (w/w) of the added glucose-C, and for prokaryote biomass 2% (w/w), the latter comparable to prior published results. The C-gain after 14 d was 1.3 mg/g soil for fungi, and ~200 μg/g for prokaryotes.

  14. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting.

    Science.gov (United States)

    Sitnikova, Natalia A; Romanenko, Svetlana A; O'Brien, Patricia C M; Perelman, Polina L; Fu, Beiyuan; Rubtsova, Nadezhda V; Serdukova, Natalya A; Golenishchev, Feodor N; Trifonov, Vladimir A; Ferguson-Smith, Malcolm A; Yang, Fengtang; Graphodatsky, Alexander S

    2007-01-01

    Cross-species chromosome painting has become the mainstay of comparative cytogenetic and chromosome evolution studies. Here we have made a set of chromosomal painting probes for the field vole (Microtus agrestis) by DOP-PCR amplification of flow-sorted chromosomes. Together with painting probes of golden hamster (Mesocricetus auratus) and mouse (Mus musculus), the field vole probes have been hybridized onto the metaphases of the tundra vole (Microtus oeconomus). A comparative chromosome map between these two voles, golden hamster and mouse has been established based on the results of cross-species chromosome painting and G-banding comparisons. The sets of paints from the field vole, golden hamster and mouse identified a total of 27, 40 and 47 homologous autosomal regions, respectively, in the genome of tundra vole; 16, 41 and 51 fusion/fission rearrangements differentiate the karyotype of the tundra vole from the karyotypes of the field vole, golden hamster and mouse, respectively.

  15. Sensitivity of Plant Communities and Soil Flora to Seawater Spills, Prudhoe Bay, Alaska,

    Science.gov (United States)

    1983-09-01

    tundra habitats . In the ent effects on the vegetation. A considerably wet and mesic study sites, bryophytes form a near- larger spill might not be as...confined, as in the basin of a small and help provide a habitat for new plant growth. .- : pond. The bryophyte response was hard to interpret ini- " tially...Abstract (contd.). - Live (green) bryophyte cover was markedly reduced in the moist experimental sites in 1981. Bryophytes in all but one of the wet-site

  16. Methane emission rates from the Arctic coastal tundra at Barrow are log-normally distributed: Is this a tail that wags climate?

    Science.gov (United States)

    von Fischer, J. C.; Rhew, R.

    2008-12-01

    Over the past two growing seasons, we have conducted >200 point measurements of methane emission and ecosystem respiration rates on the Arctic coastal tundra within the Barrow Environmental Observatory. These measures reveal that methane emission rates are log-normally distributed, but ecosystem respiration rates are normally distributed. The contrast in frequency distributions indicates that methane and carbon dioxide emission rates respond in a qualitatively different way to their environmental drivers: while ecosystem respiration rates rise linearly with increasing temperature and soil moisture, methane emissions increase exponentially. Thus, the long positive tail in methane emission rates does generate positive feedback on climate change that is strongly non-linear. To further evaluate this response, we examined the spatial statistics of our dataset, and conducted additional measures of carbon flux from points on the landscape that typically had the highest rates of methane emission. The spatial analysis showed that neither ecosystem respiration nor methane emission rates have spatial co-correlation beyond that predicted by macroscopic properties of vegetation (e.g., species composition, plant height) and soil (e.g., permafrost depth, temperature, water content), suggesting that our findings can be used to scale up. Our analysis of high-emission points focused on wet and flooded areas where Carex aquatilis growth was greatest. Here, we found variation in methane emission rates to be correlated with Carex aboveground biomass and rates of gross primary production, but not ecosystem respiration. Given the sensitivity of Carex's phenotype to inundation, permafrost depth and soil temperature, we anticipate that the magnitude the climate-methane feedback in the Arctic coastal plain will depend strongly on how permafrost thaw alters the ecology of Carex aquatilis.

  17. Assessing the spatial variability in peak season CO2 exchange characteristics across the Arctic tundra using a light response curve parameterization

    Directory of Open Access Journals (Sweden)

    H. N. Mbufong

    2014-05-01

    Full Text Available This paper aims to assess the functional and spatial variability in the response of CO2 exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC parameters. This investigation allows us to better understand the future response of Arctic tundra under climatic change. Data was collected using the micrometeorological eddy covariance technique from 12 circumpolar Arctic tundra sites, in the range of 64–74° N. The LRCs were generated for 14 days with peak net ecosystem exchange (NEE using an NEE -irradiance model. Parameters from LRCs represent site specific traits and characteristics describing: (a NEE at light saturation (Fcsat, (b dark respiration (Rd, (c light use efficiency (α, (d NEE when light is at 1000 μmol m−2 s−1 (Fc1000, (e potential photosynthesis at light saturation (Psat and (f the light compensation point (LCP. Parameterization of LRCs was successful in predicting CO2 flux dynamics across the Arctic tundra. Yet we did not find any trends in LRC parameters across the whole Arctic tundra but there were indications for temperature and latitudinal differences within sub-regions like Russia and Greenland. Together, LAI and July temperature had a high explanatory power of the variance in assimilation parameters (Fcsat, Fc1000 and Psat, thus illustrating the potential for upscaling CO2 exchange for the whole Arctic tundra. Dark respiration was more variable and less correlated to environmental drivers than was assimilation parameters. Thus, indicating the inherent need to include other parameters such as nutrient availability, substrate quantity and quality in flux monitoring activities.

  18. Spatial variability of CO2 uptake in polygonal tundra: assessing low-frequency disturbances in eddy covariance flux estimates

    Science.gov (United States)

    Pirk, Norbert; Sievers, Jakob; Mertes, Jordan; Parmentier, Frans-Jan W.; Mastepanov, Mikhail; Christensen, Torben R.

    2017-06-01

    The large spatial variability in Arctic tundra complicates the representative assessment of CO2 budgets. Accurate measurements of these heterogeneous landscapes are, however, essential to understanding their vulnerability to climate change. We surveyed a polygonal tundra lowland on Svalbard with an unmanned aerial vehicle (UAV) that mapped ice-wedge morphology to complement eddy covariance (EC) flux measurements of CO2. The analysis of spectral distributions showed that conventional EC methods do not accurately capture the turbulent CO2 exchange with a spatially heterogeneous surface that typically features small flux magnitudes. Nonlocal (low-frequency) flux contributions were especially pronounced during snowmelt and introduced a large bias of -46 gC m-2 to the annual CO2 budget in conventional methods (the minus sign indicates a higher uptake by the ecosystem). Our improved flux calculations with the ogive optimization method indicated that the site was a strong sink for CO2 in 2015 (-82 gC m-2). Due to differences in light-use efficiency, wetter areas with low-centered polygons sequestered 47 % more CO2 than drier areas with flat-centered polygons. While Svalbard has experienced a strong increase in mean annual air temperature of more than 2 K in the last few decades, historical aerial photographs from the site indicated stable ice-wedge morphology over the last 7 decades. Apparently, warming has thus far not been sufficient to initiate strong ice-wedge degradation, possibly due to the absence of extreme heat episodes in the maritime climate on Svalbard. However, in Arctic regions where ice-wedge degradation has already initiated the associated drying of landscapes, our results suggest a weakening of the CO2 sink in polygonal tundra.

  19. The origin of spheroidal patterns of weathering in the Pados-Tundra mafic-ultramafic complex, Kola Peninsula, Russia

    Directory of Open Access Journals (Sweden)

    A.Y. Barkov

    2016-12-01

    Full Text Available We document a new and unusual occurrence of patterns of protruding spheroidal weathering developed in a dunitic rock of the Pados-Tundra mafic-ultramafic complex of Early Proterozoic age, Kola Peninsula, Russia. It provides an example similar to that reported recently from a mineralized harzburgite in the Monchepluton layered complex in the same region. These patterns are genetically different from common results of “normal spheroidal weathering” sensu stricto. The spheroidally weathered dunite at Pados-Tundra consists of a high-Fo olivine, Ol (Fo 87. 5, which is, in fact, not altered. Accessory grains of aluminous chromite are present. Relief spheroids (1.5 to 4 cm in diameter; up to ~5 vol. % are distributed sparsely and heterogeneously. They are hosted by the olivine matrix and composed of talc, Tlc, and tremolite, Tr, (Mg# = 95-96 formed presumably at the expense of orthopyroxene, Opx, (i.e., pre-existing oikocrysts during a deuteric (autometasomatic alteration. In contrast, oikocrystic Opx (En 86.0 is quite fresh in related spheroids at Monchepluton, in which only minor deuteric alteration (Tlc + Tr are observed. We infer that (1 the ball-shaped morphology of the weathered surface is a reflection of the presence of oikocrysts of Opx, which crystallized after Ol at the magmatic stage; they were entirely replaced by the deuterically induced Tlc + Tr at Pados-Tundra. (2 Differential rates of weathering are implied for rock-forming minerals in these ultramafic rocks, with a higher resistance of Opx vs. Fo-rich Ol, and Tlc + Tr vs. Fo-rich Ol. (3 The ball-like shape of the large spheroids, produced by magmatic processes, may likely represent an additional factor of their higher stability to weathering in the superficial environment. Similar patterns can be expected in other mafic-ultramafic complexes, especially in layered intrusions.

  20. Reconstructing the Historical Series of Plant Functional Types in the Three-River Headwaters Region in China

    Science.gov (United States)

    Mao, X.; Li, T.

    2016-12-01

    This study uses a physiological biome model to reconstruct the 5910 years historical plant functional type series based on the mechanisms about how environmental constraints affect plant growths. The study area is the Three-Rivers Source Headwaters Region (TRHR) in the south of Qinghai Province of China, which is the source area of the Yangtse River, Yellow River, and Lantsang River, with mean altitude above 4000 meters. The environmental constraints we use are temperature and precipitation. Our results demonstrate that there are only three kinds of biomes existing in this area in the history: the Cool Grass/Shrub, Tundra, and Semidesert. The evolutions of biomes are ruled by two basic patterns. The first is the precipitation driving interconversion of the Semidesert and Tundra and the conversion from the Cool Grass/Shrub to the Semidesert. The second is the temperature driving interconversion of the Tundra and Cool Grass/Shrub. The conversion from the Semidesert to the Cool Grass/Shrub can be generated by the permutations of the first process and the second process. The frequency of the first mode is far higher than the second one, which means that precipitation plays a more active role in the biome evolutions while the temperature makes a long and stable influence on these processes. In the spatial and temporal plant type series generated above, we find that the proportion of the area covered by high quality plants (the Cool Grass/Shrub and Tundra) in around 600 AD is higher than most of other periods in the history, which may led to the rise of the Tibetan Empire. The proportion above, however, decreased sharply in around 1600 AD, which was caused by the Little Ice Age. From this research, we can find the influences of major climatic events on the plant distribution, and understand the interaction or co-evolution of climates and plants more clearly. This study will help us protect our environment more scientifically and with a clearer direction.

  1. Invasion of terrestrial enchytraeids into two postglacial tundras: North-eastern Greenland and the Arctic Archipelago of Canada (Enchytraeidae, Oligochaeta)

    DEFF Research Database (Denmark)

    Christensen, Bent; Dózsa-Farkas, Klára

    2006-01-01

    that of potential source regions indicating either strong selection or varied dispersal ability. It appears that the Archipelago is influenced mainly from North America and North-eastern Greenland from Europe while the specialized fauna of the ancient Beringian tundra is of minor importance. The two alternative...... scenarios: (a) survival of a prepleistocene fauna in protected refugia within the area or (b) a postglacial re-invasion from outside are discussed, but the available data do not discriminate between these two possibilities. A total of 24 terrestrial enchytraeid taxa are recorded of which 22 are identified...

  2. The seasonal cycle of the greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia

    Directory of Open Access Journals (Sweden)

    M. K. van der Molen

    2007-07-01

    Full Text Available Carbon dioxide and methane fluxes were measured at a tundra site near Chokurdakh, in the lowlands of the Indigirka river in north-east Siberia. This site is one of the few stations on Russian tundra and it is different from most other tundra flux stations in its continentality. A suite of methods was applied to determine the fluxes of NEE, GPP, Reco and methane, including eddy covariance, chambers and leaf cuvettes. Net carbon dioxide fluxes were unusually high, compared with other tundra sites, with NEE=–92 g C m−2 yr−1, which is composed of an Reco=+141 g C m−2 yr−1 and GPP=–232 g C m−2 yr−1. This large carbon dioxide sink may be explained by the continental climate, that is reflected in low winter soil temperatures (–14°C, reducing the respiration rates, and short, relatively warm summers, stimulating high photosynthesis rates. Interannual variability in GPP was dominated by the frequency of light limitation (Rg <200 W m−2, whereas Reco depends most directly on soil temperature and time in the growing season, which serves as a proxy of the combined effects of active layer depth, leaf area index, soil moisture and substrate availability. The methane flux, in units of global warming potential, was +28 g C-CO2e m−2 yr−1, so that the greenhouse gas balance was –64 g C-CO2e m−2 yr−1. Methane fluxes depended only slightly on soil temperature and were highly sensitive to hydrological conditions and vegetation composition.

  3. The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia

    Directory of Open Access Journals (Sweden)

    M. K. van der Molen

    2007-11-01

    Full Text Available Carbon dioxide and methane fluxes were measured at a tundra site near Chokurdakh, in the lowlands of the Indigirka river in north-east Siberia. This site is one of the few stations on Russian tundra and it is different from most other tundra flux stations in its continentality. A suite of methods was applied to determine the fluxes of NEE, GPP, Reco and methane, including eddy covariance, chambers and leaf cuvettes. Net carbon dioxide fluxes were high compared with other tundra sites, with NEE=−92 g C m−2 yr−1, which is composed of an Reco=+141 g C m−2 yr−1 and GPP=−232 g C m−2 yr−1. This large carbon dioxide sink may be explained by the continental climate, that is reflected in low winter soil temperatures (−14°C, reducing the respiration rates, and short, relatively warm summers, stimulating high photosynthesis rates. Interannual variability in GPP was dominated by the frequency of light limitation (Rg<200 W m−2, whereas Reco depends most directly on soil temperature and time in the growing season, which serves as a proxy of the combined effects of active layer depth, leaf area index, soil moisture and substrate availability. The methane flux, in units of global warming potential, was +28 g C-CO2e m−2 yr−1, so that the greenhouse gas balance was −64 g C-CO2e m−2 yr−1. Methane fluxes depended only slightly on soil temperature and were highly sensitive to hydrological conditions and vegetation composition.

  4. Automatic monitoring of the effective thermal conductivity of snow in a low Arctic shrub tundra

    Science.gov (United States)

    Domine, F.; Barrere, M.; Sarrazin, D.; Morin, S.

    2015-03-01

    The effective thermal conductivity of snow, keff, is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamorphism, the ground thermal regime, permafrost stability, nutrient recycling and vegetation growth. Yet, few data are available on the seasonal evolution of snow thermal conductivity in the Arctic. We have deployed heated needle probes on low Arctic shrub tundra near Umiujaq, Quebec, (56°34´ N; 76°29´ W) and monitored automatically the evolution of keff for two consecutive winters, 2012-2013 and 2013-2014, at 4 heights in the snowpack. Shrubs are 20 cm high dwarf birch. Here, we develop an algorithm for the automatic determination of keff from the heating curves and obtain 404 keff values. We evaluate possible errors and biases associated with the use of the heated needles. The time-evolution of keff is very different for both winters. This is explained by comparing the meteorological conditions in both winters, which induced different conditions for snow metamorphism. In particular, important melting events the second year increased snow hardness, impeding subsequent densification and increase in thermal conductivity. Shrubs are observed to have very important impacts on snow physical evolution: (1) shrubs absorb light and facilitate snow melt under intense radiation; (2) the dense twig network of dwarf birch prevents snow compaction and therefore keff increase; (3) the low density depth hoar that forms within shrubs collapsed in late winter, leaving a void that was not filled by snow.

  5. Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra

    Science.gov (United States)

    Domine, F.; Barrere, M.; Sarrazin, D.; Morin, S.; Arnaud, L.

    2015-06-01

    The effective thermal conductivity of snow, keff, is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamorphism, the ground thermal regime, permafrost stability, nutrient recycling and vegetation growth. Yet, few data are available on the seasonal evolution of snow thermal conductivity in the Arctic. We have deployed heated needle probes on low-Arctic shrub tundra near Umiujaq, Quebec, (N56°34'; W76°29') and monitored automatically the evolution of keff for two consecutive winters, 2012-2013 and 2013-2014, at four heights in the snowpack. Shrubs are 20 cm high dwarf birch. Here, we develop an algorithm for the automatic determination of keff from the heating curves and obtain 404 keff values. We evaluate possible errors and biases associated with the use of the heated needles. The time evolution of keff is very different for both winters. This is explained by comparing the meteorological conditions in both winters, which induced different conditions for snow metamorphism. In particular, important melting events in the second year increased snow hardness, impeding subsequent densification and increase in thermal conductivity. We conclude that shrubs have very important impacts on snow physical evolution: (1) shrubs absorb light and facilitate snow melt under intense radiation; (2) the dense twig network of dwarf birch prevent snow compaction, and therefore keff increase; (3) the low density depth hoar that forms within shrubs collapsed in late winter, leaving a void that was not filled by snow.

  6. A model of the CO2 exchanges between biosphere and atmosphere in the tundra

    Science.gov (United States)

    Labgaa, Rachid R.; Gautier, Catherine

    1992-01-01

    A physical model of the soil thermal regime in a permafrost terrain has been developed and validated with soil temperature measurements at Barrow, Alaska. The model calculates daily soil temperatures as a function of depth and average moisture contents of the organic and mineral layers using a set of five climatic variables, i.e., air temperature, precipitation, cloudiness, wind speed, and relative humidity. The model is not only designed to study the impact of climate change on the soil temperature and moisture regime, but also to provide the input to a decomposition and net primary production model. In this context, it is well known that CO2 exchanges between the terrestrial biosphere and the atmosphere are driven by soil temperature through decomposition of soil organic matter and root respiration. However, in tundra ecosystems, net CO2 exchange is extremely sensitive to soil moisture content; therefore it is necessary to predict variations in soil moisture in order to assess the impact of climate change on carbon fluxes. To this end, the present model includes the representation of the soil moisture response to changes in climatic conditions. The results presented in the foregoing demonstrate that large errors in soil temperature and permafrost depth estimates arise from neglecting the dependence of the soil thermal regime on soil moisture contents. Permafrost terrain is an example of a situation where soil moisture and temperature are particularly interrelated: drainage conditions improve when the depth of the permafrost increases; a decrease in soil moisture content leads to a decrease in the latent heat required for the phase transition so that the heat penetrates faster and deeper, and the maximum depth of thaw increases; and as excepted, soil thermal coefficients increase with moisture.

  7. Geomorphological and geochemistry changes in permafrost after the 2002 tundra wildfire in Kougarok, Seward Peninsula, Alaska

    Science.gov (United States)

    Iwahana, Go; Harada, Koichiro; Uchida, Masao; Tsuyuzaki, Shiro; Saito, Kazuyuki; Narita, Kenji; Kushida, Keiji; Hinzman, Larry D.

    2016-09-01

    Geomorphological and thermohydrological changes to tundra, caused by a wildfire in 2002 on the central Seward Peninsula of Alaska, were investigated as a case study for understanding the response from ice-rich permafrost terrain to surface disturbance. Frozen and unfrozen soil samples were collected at burned and unburned areas, and then water isotope geochemistry and cryostratigraphy of the active layer and near-surface permafrost were analyzed to investigate past hydrological and freeze/thaw conditions and how this information could be recorded within the permafrost. The development of thermokarst subsidence due to ice wedge melting after the fire was clear from analyses of historical submeter-resolution remote sensing imagery, long-term monitoring of thermohydrological conditions within the active layer, in situ surveys of microrelief, and geochemical signals recorded in the near-surface permafrost. The resulting polygonal relief coincided with depression lines along an underground ice wedge network, and cumulative subsidence to 2013 was estimated as at least 10.1 to 12.1 cm (0.9-1.1 cm/year 11 year average). Profiles of water geochemistry in the ground indicated mixing or replenishment of older permafrost water with newer meteoric water, as a consequence of the increase in active layer thickness due to wildfire or past thaw event. Our geocryological analysis of cores suggests that permafrost could be used to reconstruct the permafrost degradation history for the study site. Distinct hydrogen and oxygen isotopic compositions above the Global Meteoric Water Line were found for water from these sites where permafrost degradation with geomorphological change and prolonged surface inundation were suggested.

  8. Distribution of global fallouts cesium-137 in taiga and tundra catenae at the Ob River basin

    Science.gov (United States)

    Semenkov, I. N.; Usacheva, A. A.; Miroshnikov, A. Yu.

    2015-03-01

    The classification of soil catenae at the Ob River basin is developed and applied. This classification reflects the diverse geochemical conditions that led to the formation of certain soil bodies, their combinations and the migration fields of chemical elements. The soil and geochemical diversity of the Ob River basin catenae was analyzed. The vertical and lateral distribution of global fallouts cesium-137 was studied using the example of the four most common catenae types in Western Siberia tundra and taiga. In landscapes of dwarf birches and dark coniferous forests on gleysols, cryosols, podzols, and cryic-stagnosols, the highest 137Cs activity density and specific activity are characteristic of the upper soil layer of over 30% ash, while the moss-grass-shrub cover is characterized by low 137Cs activity density and specific activity. In landscapes of dwarf birches and pine woods on podzols, the maximum specific activity of cesium-137 is typical for moss-grass-shrub cover, while the maximum reserves are concentrated in the upper soil layer of over 30% ash. Bog landscapes and moss-grass-shrub cover are characterized by a minimum activity of 137Cs, and its reserves in soil generally decrease exponentially with depth. The cesium-137 penetration depth increases in oligotrophic histosols from northern to middle taiga landscapes from 10-15 to 40 cm. 137Cs is accumulated in oligotrophic histosols for increases in pH from 3.3 to 4.0 and in concretionary interlayers of pisoplinthic-cryic-histic-stagnosols. Cryogenic movement, on the one hand, leads to burying organic layers enriched in 137Cs and, on the other hand, to deducing specific activity when mixed with low-active material from lower soil layers.

  9. Inter-annual Variability in Tundra Phenology Captured with Digital Photography

    Science.gov (United States)

    Melendez, M.; Vargas, S. A.; Tweedie, C. E.

    2012-12-01

    The need to improve multi-scale phenological monitoring of arctic terrestrial ecosystems has been a persistent research challenge. Although there has been a range of advances in remote sensing capacities over the past decade, these present costly, and sometimes logistically challenging and technically demanding solutions for arctic terrestrial ecosystems. In this poster and undergraduate research project, we demonstrate how seasonal and inter-annual variability in landscape phenology can be derived for multiple tundra ecosystems using a low-cost and low-tech kite aerial photography (KAP) system that has been developed as a contribution to the US Arctic Observing Network. Seasonal landscape phenology was observed over the Networked Info-Mechanical Systems (NIMS) grids (2 x 50 meters) located in Barrow and Atqasuk, Alaska using imagery acquired with KAP and analyzed for a range of greenness indices. Preliminary results showed that the 2G-RB greenness index correlated the best with NDVI values calculated from ground based hyperspectral reflectance measurements. 2012 had the highest 2G-RB greenness index values for both Barrow and Atqasuk sites, which correlated well with NDVI values acquired from ground-based hyperspectral reflectance measurements. Wet vegetation types showed the most interannual variability at the Atqasuk site based on the 2G-RB greenness index while in Barrow the moist vegetation types showed the most interannual variability. These results show that vegetation indices similar to those acquired from hyperspectral remote sensing platforms can be derived using low-cost and low-tech techniques. Further analysis using these same techniques is required in order to link relatively small scale vegetation dynamics measured with KAP with those documented at large scales using satellite imagery.

  10. Assessing Seasonal Backscatter Variations with Respect to Uncertainties in Soil Moisture Retrieval in Siberian Tundra Regions

    Directory of Open Access Journals (Sweden)

    Elin Högström

    2014-09-01

    Full Text Available Knowledge of surface hydrology is essential for many applications, including studies that aim to understand permafrost response to changing climate and the associated feedback mechanisms. Advanced remote sensing techniques make it possible to retrieve a range of land-surface variables, including radar retrieved soil moisture (SSM. It has been pointed out before that soil moisture retrieval from satellite data can be challenging at high latitudes, which correspond to remote areas where ground data are scarce and the applicability of satellite data of this type is essential. This study investigates backscatter variability other than associated with changing soil moisture in order to examine the possible impact on soil moisture retrieval. It focuses on issues specific to SSM retrieval in the Arctic, notably variations related to tundra lakes. ENVISAT Advanced Synthetic Aperture Radar (ASAR Wide Swath (WS, 120 m data are used to understand and quantify impacts on Metop (AAdvanced Scatterometer (ASCAT, 25 km soil moisture retrieval during the snow free period. Sites of interest are chosen according to ASAR WS availability, high or low agreement between output from the land surface model ORCHIDEE and ASCAT derived SSM. Backscatter variations are analyzed with respect to the ASCAT footprint area. It can be shown that the low model agreement is related to water fraction in most cases. No difference could be detected between periods with floating ice (in snow off situation and ice free periods at the chosen sites. The mean footprint backscatter is however impacted by partial short term surface roughness change. The water fraction correlates with backscatter deviations (relative to a smooth water surface reference image within the ASCAT footprint areas (R = 0.91

  11. Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra

    Directory of Open Access Journals (Sweden)

    Igor V. Polyakov

    2013-08-01

    Full Text Available Vegetation productivity trends for the Arctic tundra are updated for the 1982–2011 period and examined in the context of land surface temperatures and coastal sea ice. Understanding mechanistic links between vegetation and climate parameters contributes to model advancements that are necessary for improving climate projections. This study employs remote sensing data: Global Inventory Modeling and Mapping Studies (GIMMS Maximum Normalized Difference Vegetation Index (MaxNDVI, Special Sensor Microwave Imager (SSM/I sea-ice concentrations, and Advanced Very High Resolution Radiometer (AVHRR radiometric surface temperatures. Spring sea ice is declining everywhere except in the Bering Sea, while summer open water area is increasing throughout the Arctic. Summer Warmth Index (SWI—sum of degree months above freezing trends from 1982 to 2011 are positive around Beringia but are negative over Eurasia from the Barents to the Laptev Seas and in parts of northern Canada. Eastern North America continues to show increased summer warmth and a corresponding steady increase in MaxNDVI. Positive MaxNDVI trends from 1982 to 2011 are generally weaker compared to trends from 1982–2008. So to better understand the changing trends, break points in the time series were quantified using the Breakfit algorithm. The most notable break points identify declines in SWI since 2003 in Eurasia and 1998 in Western North America. The Time Integrated NDVI (TI-NDVI, sum of the biweekly growing season values of MaxNDVI has declined since 2005 in Eurasia, consistent with SWI declines. Summer (June–August sea level pressure (slp averages from 1999–2011 were compared to those from 1982–1998 to reveal higher slp over Greenland and the western Arctic and generally lower pressure over the continental Arctic in the recent period. This suggests that the large-scale circulation is likely a key contributor to the cooler temperatures over Eurasia through increased summer cloud

  12. Interference in the tundra predator guild studied using local ecological knowledge.

    Science.gov (United States)

    Ehrich, Dorothee; Strømeng, Marita A; Killengreen, Siw T

    2016-04-01

    The decline or recolonization of apex predators such as wolves and lynx, often driven by management decisions, and the expansion of smaller generalist predators such as red foxes, can have important ecosystem impacts. The mesopredator release hypothesis proposes that apex predators control medium-sized predator populations through competition and/or intraguild predation. The decline of apex predators thus leads to an increase in mesopredators, possibly with a negative impact on prey populations. Information about the abundance of mammalian tundra predators, wolf (Canis lupus), wolverine (Gulo gulo), lynx (Lynx lynx), red fox (Vulpes vulpes) and arctic fox (Vulpes lagopus) was collected from local active outdoors people during semi-structured interviews in 14 low arctic or sub-arctic settlements in western Eurasia. The perceived abundance of red fox decreased with higher wolf abundance and in more arctic areas, but the negative effect of wolves decreased in more arctic and therefore less productive ecosystems. The perceived abundance of arctic fox increased towards the arctic and in areas with colder winters. Although there was a negative correlation between the two fox species, red fox was not included in the model for perceived arctic fox abundance, which received most support. Our results support the mesopredator release hypothesis regarding the expansion of red foxes in subarctic areas and indicate that top-down control by apex predators is weaker in less productive and more arctic ecosystems. We showed that local ecological knowledge is a valuable source of information about large-scale processes, which are difficult to study through direct biological investigations.

  13. Rough-legged buzzards, Arctic foxes and red foxes in a tundra ecosystem without rodents.

    Directory of Open Access Journals (Sweden)

    Ivan Pokrovsky

    Full Text Available Small rodents with multi-annual population cycles strongly influence the dynamics of food webs, and in particular predator-prey interactions, across most of the tundra biome. Rodents are however absent from some arctic islands, and studies on performance of arctic predators under such circumstances may be very instructive since rodent cycles have been predicted to collapse in a warming Arctic. Here we document for the first time how three normally rodent-dependent predator species-rough-legged buzzard, arctic fox and red fox - perform in a low-arctic ecosystem with no rodents. During six years (in 2006-2008 and 2011-2013 we studied diet and breeding performance of these predators in the rodent-free Kolguev Island in Arctic Russia. The rough-legged buzzards, previously known to be a small rodent specialist, have only during the last two decades become established on Kolguev Island. The buzzards successfully breed on the island at stable low density, but with high productivity based on goslings and willow ptarmigan as their main prey - altogether representing a novel ecological situation for this species. Breeding density of arctic fox varied from year to year, but with stable productivity based on mainly geese as prey. The density dynamic of the arctic fox appeared to be correlated with the date of spring arrival of the geese. Red foxes breed regularly on the island but in very low numbers that appear to have been unchanged over a long period - a situation that resemble what has been recently documented from Arctic America. Our study suggests that the three predators found breeding on Kolguev Island possess capacities for shifting to changing circumstances in low-arctic ecosystem as long as other small - medium sized terrestrial herbivores are present in good numbers.

  14. Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.

    Science.gov (United States)

    Abbott, Benjamin W; Jones, Jeremy B

    2015-12-01

    Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20-50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active-layer detachment slides, thermo-erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off-site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2 O concentration. Elevated N2 O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the

  15. The Impact of Different Habitat Conditions on the Variability of Wild Populations of a Medicinal Plant Betonica officinalis L.

    Directory of Open Access Journals (Sweden)

    Kinga Kostrakiewicz-Gierałt

    2015-06-01

    Full Text Available Plants are important source of beneficial bioactive compounds which may find various applications as functional ingredients, such as components of food supplements, cosmetics, and pharmaceuticals. One such medicinal plant is Betonica officinalis, populations of which were investigated in 2012‒13. The studies were conducted in patches of Molinietum caeruleae dominated by: small meadow taxa (patch I; the shrub willow Salix repens ssp. rosmarinifolia (patch II; large tussock grasses Deschampsia caespitosa and Molinia caerulaea (patch III; tall-growing macroforbs Filipendula ulmaria and Solidago canadensis (patch IV. Over successive patches, the average height of plant cover increased, as did soil moisture, while light availability at ground level decreased. Much greater abundance and density of the Betonica officinalis population were found in patches I, III and IV, while lower values for these parameters were noted in patch II. Individuals in pre-reproductive stages were absent during whole study period in all study plots, vegetative ramet clusters were observed in plots situated in patches I and III in the first year of observations, while only generative ramet clusters occurred in plots set in patches II and IV. The number of rosettes per ramet cluster, number and dimensions of rosette leaves, height of flowering stems, number of cauline leaves, length of inflorescences, as well as number and length of flowers increased gradually over successive patches, whereas the number of generative stems per ramet cluster did not differ remarkably among populations. On the basis of the performed studies it might be concluded that the condition of populations deteriorated from patches overgrown by large-tussock grasses and characterized by considerable share of native and alien tall-growing macroforbs, via patch dominated by small meadow taxa, to patch prevailed by shrub willows.

  16. Effects of soil warming on CO2 efflux in tundra soil: Response to a 2015 episodic event

    Science.gov (United States)

    Kim, Y.; Park, S. J.; Kim, B. M.; Cho, M. H.; Suzuki, R.; Lee, B. Y.; Walsh, J. E.

    2016-12-01

    Soil carbon emission is vulnerable to changes in temperature, moisture, and the organic carbon stored in tundra soil. Emissions can therefore be affected by recent Arctic climate change and warming. Here, we conducted soil CO2 efflux measurements in the tundra ecosystem of western Alaska, during the growing seasons of 2014 and 2015, in order to assess the effect of soil warming on soil carbon emission from a 2015 episodic warming event. Soil carbon emissions were greater in 2015 than in 2014, resulting from 1) a dry growing season and lower soil moisture, 2) increases in TDDs (total degree days of above 0 °C) for soil temperature at deeper active layers of 50, 70, and 80-cm depths, 3) deeper thaw depth of the active layer, and 4) stronger PAR (photosynthetically active radiation) during the growing season of 2015. These findings demonstrate the response from the decomposability of old-aged organic carbon matter from naturally occurring increased soil temperature at a deeper active layer, and subsequently, enhanced soil carbon emission to the atmosphere (e.g., 9 % higher in 2015 than in 2014) during the growing season. The findings also imply that soil warming-induced soil carbon emissions contribute an additional atmospheric carbon source and an accelerating positive feedback to climate change in the Arctic during the growing season.

  17. Spatially explicit fire-climate history of the boreal forest-tundra (Eastern Canada) over the last 2000 years.

    Science.gov (United States)

    Payette, Serge; Filion, Louise; Delwaide, Ann

    2008-07-12

    Across the boreal forest, fire is the main disturbance factor and driver of ecosystem changes. In this study, we reconstructed a long-term, spatially explicit fire history of a forest-tundra region in northeastern Canada. We hypothesized that current occupation of similar topographic and edaphic sites by tundra and forest was the consequence of cumulative regression with time of forest cover due to compounding fire and climate disturbances. All fires were mapped and dated per 100 year intervals over the last 2,000 years using several fire dating techniques. Past fire occurrences and post-fire regeneration at the northern forest limit indicate 70% reduction of forest cover since 1800 yr BP and nearly complete cessation of forest regeneration since 900 yr BP. Regression of forest cover was particularly important between 1500s-1700s and possibly since 900 yr BP. Although fire frequency was very low over the last 100 years, each fire event was followed by drastic removal of spruce cover. Contrary to widespread belief of northward boreal forest expansion due to recent warming, lack of post-fire recovery during the last centuries, in comparison with active tree regeneration more than 1,000 years ago, indicates that the current climate does not favour such expansion.

  18. The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra

    NARCIS (Netherlands)

    Bingxi Li,; Heijmans, M.M.P.D.; Berendse, F.; Blok, D.; Maximov, T.; Sass-Klaassen, U.G.W.

    2016-01-01

    It is widely believed that deciduous tundrashrub
    dominance is increasing in the pan-Arctic region,
    mainly due to rising temperature. We sampled dwarf birch
    (Betula nana L.) at a northeastern Siberian tundra site and
    used dendrochronological methods to explore the relationship
    bet

  19. Detection and Segmentation of Small Trees in the Forest-Tundra Ecotone Using Airborne Laser Scanning

    Directory of Open Access Journals (Sweden)

    Marius Hauglin

    2016-05-01

    Full Text Available Due to expected climate change and increased focus on forests as a potential carbon sink, it is of interest to map and monitor even marginal forests where trees exist close to their tolerance limits, such as small pioneer trees in the forest-tundra ecotone. Such small trees might indicate tree line migrations and expansion of the forests into treeless areas. Airborne laser scanning (ALS has been suggested and tested as a tool for this purpose and in the present study a novel procedure for identification and segmentation of small trees is proposed. The study was carried out in the Rollag municipality in southeastern Norway, where ALS data and field measurements of individual trees were acquired. The point density of the ALS data was eight points per m2, and the field tree heights ranged from 0.04 to 6.3 m, with a mean of 1.4 m. The proposed method is based on an allometric model relating field-measured tree height to crown diameter, and another model relating field-measured tree height to ALS-derived height. These models are calibrated with local field data. Using these simple models, every positive above-ground height derived from the ALS data can be related to a crown diameter, and by assuming a circular crown shape, this crown diameter can be extended to a crown segment. Applying this model to all ALS echoes with a positive above-ground height value yields an initial map of possible circular crown segments. The final crown segments were then derived by applying a set of simple rules to this initial “map” of segments. The resulting segments were validated by comparison with field-measured crown segments. Overall, 46% of the field-measured trees were successfully detected. The detection rate increased with tree size. For trees with height >3 m the detection rate was 80%. The relatively large detection errors were partly due to the inherent limitations in the ALS data; a substantial fraction of the smaller trees was hit by no or just a few

  20. Holocene evolution of lakes in the forest-tundra biome of northern Manitoba, Canada

    Science.gov (United States)

    Hobbs, William O.; Edlund, Mark B.; Umbanhowar, Charles E.; Camill, Philip; Lynch, Jason A.; Geiss, Christoph; Stefanova, Vania

    2017-03-01

    The late-Quaternary paleoenvironmental history of the western Hudson Bay region of Subarctic Canada is poorly constrained. Here, we present a regional overview of the post-glacial history of eight lakes which span the forest-tundra biome in northern Manitoba. We show that during the penultimate drainage phase of Lake Agassiz the lake water had an estimated pH of ∼6.0, with abundant quillwort (Isöetes spp.) along the lakeshore and littoral zone and some floating green algae (Botryococcus spp. and Pediastrum sp.). Based on multiple sediment proxies, modern lake ontogeny in the region commenced at ∼7500 cal yrs BP. Pioneering diatom communities were shaped by the turbid, higher alkalinity lake waters which were influenced by base cation weathering of the surrounding till following Lake Agassiz drainage. By ∼7000 cal yrs BP, soil development and Picea spp. establish and the lakes began a slow trajectory of acidification over the remaining Holocene epoch. The natural acidification of the lakes in this region is slow, on the order of several millennia for one pH unit. Each of the study lakes exhibit relatively stable aquatic communities during the Holocene Thermal Maximum, suggesting this period is a poor analogue for modern climatic changes. During the Neoglacial, the beginning of the post-Little Ice Age period represents the most significant climatic event to impact the lakes of N. Manitoba. In the context of regional lake histories, the rate of diatom floristic change in the last 200-300 years is unprecedented, with the exception of post-glacial lake ontogeny in some of the lakes. For nearly the entire history of the lakes in this region, there is a strong linkage between landscape development and the aquatic ecosystems; however this relationship appears to become decoupled or less strong in the post-LIA period. Significant 20th century changes in the aquatic ecosystem cannot be explained wholly by changes in the terrestrial ecosystem, suggesting that future

  1. The southernmost Andean Mountain soils: a toposequence from Nothofagus Forest to Sub Antarctic Tundra at Ushuaia, Tierra del Fuego

    Science.gov (United States)

    Firme Sá, Mariana M.; Schaefer, Carlos E.; Loureiro, Diego C.; Simas, Felipe N.; Francelino, Marcio R.; Senra, Eduardo O.

    2015-04-01

    Located at the southern tip of the Fuegian Andes Cordilhera, the Martial glacier witnessed a rapid process of retreat in the last century. Up to now little is known about the development and genesis of soils of this region. A toposequence of six soils, ranging from 430-925 m a.s.l, was investigated, with emphasis on genesis, chemical and mineralogical properties. The highest, youngest soil is located just below the Martial Glacier Martial Sur sector, and the lowest soils occur on sloping moraines under Nothofagus pumilio forests. Based on chemical, physical and mineralogical characteristics, the soils were classified according to the Soil taxonomy, being keyed out as Inceptisols and Entisols. Soil parent material of the soil is basically moraines, in which the predominant lithic components dominated by metamorphic rocks, with allochthonous contributions of wind-blown materials (very small fragments of volcanic glass) observed by hand lens in all horizons, except the highest profile under Tundra. In Nothofagus Deciduous Forests at the lowest part of the toposequence, poorly developed Inceptisols occur with Folistic horizons, with mixed "andic" and "spodic" characters, but with a predominance of andosolization (Andic Drystrocryepts). Under Tundra vegetation, Inceptisols are formed under hydromorphism and andosolization processes (Oxiaquic Dystrocrepts and Typic Dystrocrepts). On highland periglacial environments, soils without B horizon with strong evidence of cryoturbation and cryogenesis occur, without present-day permafrost down to 2 meters (Typic Cryorthents and Lithic Haploturbels). The mountain soils of Martial glacier generalize young, stony and rich in organic matter, with the exception of barely vegetated Tundra soils at higher altitudes. The forest soils are more acidic and have higher Al3+activity. All soils are dystrophic, except for the highest profile of the local periglacial environment. The organic carbon amounts are higher in forest soils and

  2. Plant traits mediate consumer and nutrient control on plant community productivity and diversity.

    Science.gov (United States)

    Eskelinen, Anu; Harrison, Susan; Tuomi, Maria

    2012-12-01

    The interactive effects of consumers and nutrients on terrestrial plant communities, and the role of plant functional traits in mediating these responses, are poorly known. We carried out a six-year full-factorial field experiment using mammalian herbivore exclusion and fertilization in two habitat types (fertile and infertile alpine tundra heaths) that differed in plant functional traits related to resource acquisition and palatability. Infertile habitats were dominated by species with traits indicative of a slow-growing strategy: high C:N ratio, low specific leaf area, and high condensed tannins. We found that herbivory counteracted the effect of fertilization on biomass, and that this response differed between the two habitats and was correlated with plant functional traits. Live biomass dominated the treatment responses in infertile habitats, whereas litter accumulation dominated the treatment responses in fertile habitats and was strongly negatively associated with resident community tannin concentration. Species richness declined under herbivore exclusion and fertilization in fertile habitats, where litter accumulation was greatest. Community means of plant C:N ratio predicted treatment effects on diversity: fertilization decreased and herbivory increased dominance in communities originally dominated by plants with high C:N, while fertilization increased and herbivory diminished dominance in communities where low C:N species were abundant. Our results highlight the close interdependence between consumer effects, soil nutrients, and plant functional traits and suggest that plant traits may provide an improved understanding of how consumers and nutrients influence plant community productivity and diversity.

  3. Highly Pathogenic Avian Influenza H5N1 Virus Surveillance for Tundra Swans and Wood Ducks on Pocosin Lakes National Wildlife Refuge: Batches 651NC and 670NC Summaries.

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Batch summaries from the National Wildlife Health Center of test results from oral-pharyngeal and cloacal swabs collected on Tundra Swans and Wood Ducks on Pocosin...

  4. Highly Pathogenic Avian Influenza H5N1 Virus Surveillance for Tundra Swans and Wood Ducks on Pocosin Lakes National Wildlife Refuge: Batches 651NC and 670NC Summaries.

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Batch summaries from the National Wildlife Health Center of test results from oral-pharyngeal and cloacal swabs collected on Tundra Swans and Wood Ducks on Pocosin...

  5. A sampling method for tundra swans summering in the Bristol Bay lowlands, northern Alaska Peninsula: A summary of a presentation given at the second Alaska Bird Conference, Juneau, Alaska 3-4 April 1987

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A "census" of tundra swans occurring in the northern Alaska Peninsula was collected over 1984-1985, with supplemental information provided from preliminary surveys...

  6. Plant volatiles in extreme terrestrial and marine environments.

    Science.gov (United States)

    Rinnan, Riikka; Steinke, Michael; McGenity, Terry; Loreto, Francesco

    2014-08-01

    This review summarizes the current understanding on plant and algal volatile organic compound (VOC) production and emission in extreme environments, where temperature, water availability, salinity or other environmental factors pose stress on vegetation. Here, the extreme environments include terrestrial systems, such as arctic tundra, deserts, CO₂ springs and wetlands, and marine systems such as sea ice, tidal rock pools and hypersaline environments, with mangroves and salt marshes at the land-sea interface. The emission potentials at fixed temperature and light level or actual emission rates for phototrophs in extreme environments are frequently higher than for organisms from less stressful environments. For example, plants from the arctic tundra appear to have higher emission potentials for isoprenoids than temperate species, and hypersaline marine habitats contribute to global dimethyl sulphide (DMS) emissions in significant amounts. DMS emissions are more widespread than previously considered, for example, in salt marshes and some desert plants. The reason for widespread VOC, especially isoprenoid, emissions from different extreme environments deserves further attention, as these compounds may have important roles in stress resistance and adaptation to extremes. Climate warming is likely to significantly increase VOC emissions from extreme environments both by direct effects on VOC production and volatility, and indirectly by altering the composition of the vegetation.

  7. Long-term warming alters richness and composition of taxonomic and functional groups of arctic fungi.

    Science.gov (United States)

    Geml, József; Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik

    2015-08-01

    Fungi, including symbionts, pathogens and decomposers, play crucial roles in community dynamics and nutrient cycling in terrestrial ecosystems. Despite their ecological importance, the response of most arctic fungi to climate warming is unknown, so are their potential roles in driving the observed and predicted changes in tundra communities. We carried out deep DNA sequencing of soil samples to study the long-term effects of experimental warming on fungal communities in dry heath and moist tussock tundra in Arctic Alaska. The data presented here indicate that fungal community composition responds strongly to warming in the moist tundra, but not in the dry tundra. While total fungal richness was not significantly affected by warming, there were clear correlations among operational taxonomic unit richness of various ecological and taxonomic groups and long-term warming. Richness of ectomycorrhizal, ericoid mycorrhizal and lichenized fungi generally decreased with warming, while richness of saprotrophic, plant and animal pathogenic, and root endophytic fungi tended to increase in the warmed plots. More importantly, various taxa within these functional guilds followed opposing trends that highlight the importance of species-specific responses to warming. We recommend that species-level ecological differences be taken into account in climate change and nutrient cycling studies that involve arctic fungi. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Occurrence of matrix-bound phosphine in polar ornithogenic tundra ecosystems: effects of alkaline phosphatase activity and environmental variables.

    Science.gov (United States)

    Zhu, Renbin; Ma, Dawei; Ding, Wei; Bai, Bo; Liu, Yashu; Sun, Jianjun

    2011-09-01

    Phosphine (PH(3)), a reduced phosphorus compound, is a highly toxic and reactive atmospheric trace gas. In this study, a total of ten ornithogenic soil/sediment profiles were collected from tundra ecosystems of east Antarctica and Arctic, and matrix-bound phosphine (MBP), the phosphorus fractions and alkaline phosphatase activity (APA) were analyzed. High MBP concentrations were found in these profiles with the range from 39.59 ng kg(-1) dw to 11.77 μg kg(-1) dw. MBP showed a consistent vertical distribution pattern in almost all the soil profiles, and its concentrations increased at soil surface layers and then decreased with depths. MBP levels in the ornithogenic soils were two to three orders of magnitude lower than those in ornithogenic sediments. The yield of PH(3) as a fraction of total P in all the profiles ranged from 10(-5) to 10(-9) mgPH(3) mg(-1)P with higher mean PH(3) yield in the ornithogenic sediments. The ornithogenic soils showed high concentrations of total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (IP) and metal elements (Cu, Zn, Mn, Fe, Al and Ca) but low MBP levels, vice versa for the ornithogenic sediments. No correlation had been obtained between MBP concentrations and IP, OP and TP. There existed an exponential correlation (r=0.67, psoil/sediment moisture. MBP concentrations showed a significant positive correlation with APA (r=0.668, psoils/sediments. Our results indicated that MBP is an important gaseous link in the phosphorus biogeochemical cycles of ornithogenic tundra ecosystems in Antarctica and Arctic.

  9. InSAR Detection and Field Evidence for Thermokarst after a Tundra Wildfire, Using ALOS-PALSAR

    Directory of Open Access Journals (Sweden)

    Go Iwahana

    2016-03-01

    Full Text Available Thermokarst is the process of ground subsidence caused by either the thawing of ice-rich permafrost or the melting of massive ground ice. The consequences of permafrost degradation associated with thermokarst for surface ecology, landscape evolution, and hydrological processes have been of great scientific interest and social concern. Part of a tundra patch affected by wildfire in northern Alaska (27.5 km2 was investigated here, using remote sensing and in situ surveys to quantify and understand permafrost thaw dynamics after surface disturbances. A two-pass differential InSAR technique using L-band ALOS-PALSAR has been shown capable of capturing thermokarst subsidence triggered by a tundra fire at a spatial resolution of tens of meters, with supporting evidence from field data and optical satellite images. We have introduced a calibration procedure, comparing burned and unburned areas for InSAR subsidence signals, to remove the noise due to seasonal surface movement. In the first year after the fire, an average subsidence rate of 6.2 cm/year (vertical was measured. Subsidence in the burned area continued over the following two years, with decreased rates. The mean rate of subsidence observed in our interferograms (from 24 July 2008 to 14 September 2010 was 3.3 cm/year, a value comparable to that estimated from field surveys at two plots on average (2.2 cm/year for the six years after the fire. These results suggest that this InSAR-measured ground subsidence is caused by the development of thermokarst, a thawing process supported by surface change observations from high-resolution optical images and in situ ground level surveys.

  10. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra.

    Science.gov (United States)

    Christiansen, Casper T; Haugwitz, Merian S; Priemé, Anders; Nielsen, Cecilie S; Elberling, Bo; Michelsen, Anders; Grogan, Paul; Blok, Daan

    2017-01-01

    Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface-incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open-top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by

  11. Permafrost and surface energy balance of a polygonal tundra site in Northern Siberia – Part 2: Winter

    Directory of Open Access Journals (Sweden)

    M. Langer

    2010-08-01

    Full Text Available Permafrost is largely determined by the surface energy balance. Its vulnerability to degradation due to climate warming depends on complex soil-atmosphere interactions. This article is the second part of a comprehensive surface energy balance study at a polygonal tundra site in Northern Siberia. It comprises two consecutive winter periods from October 2007 to May 2008 and from October 2008 to January 2009. The surface energy balance is obtained by independent measurements of the radiation budget, the sensible heat flux and the ground heat flux, whereas the latent heat flux is inferred from measurements of the atmospheric turbulence characteristics and a model approach. The measurements reveal that the long-wave radiation is the dominant factor in the surface energy balance. The radiative losses are balanced to about 60% by the ground heat flux and almost 40% by the sensible heat fluxes, whereas the contribution of the latent heat flux is found to be relatively small. The main controlling factors of the surface energy budget are the snow cover, the cloudiness and the soil temperature gradient. Significant spatial differences in the surface energy balance are observed between the tundra soils and a small pond. The heat flux released from the subsurface heat storage is by a factor of two increased at the freezing pond during the entire winter period, whereas differences in the radiation budget are only observed at the end of winter. Inter-annual differences in the surface energy balance are related to differences in snow depth, which substantially affect the temperature evolution at the investigated pond. The obtained results demonstrate the importance of the ground heat flux for the soil-atmosphere energy exchange and reveal high spatial and temporal variabilities in the subsurface heat budget during winter.

  12. Spatial and temporal variation of bulk snow properties in northern boreal and tundra environments based on extensive field measurements

    Science.gov (United States)

    Hannula, Henna-Reetta; Lemmetyinen, Juha; Kontu, Anna; Derksen, Chris; Pulliainen, Jouni

    2016-08-01

    An extensive in situ data set of snow depth, snow water equivalent (SWE), and snow density collected in support of the European Space Agency (ESA) SnowSAR-2 airborne campaigns in northern Finland during the winter of 2011-2012 is presented (ESA Earth Observation Campaigns data 2000-2016). The suitability of the in situ measurement protocol to provide an accurate reference for the simultaneous airborne SAR (synthetic aperture radar) data products over different land cover types was analysed in the context of spatial scale, sample spacing, and uncertainty. The analysis was executed by applying autocorrelation analysis and root mean square difference (RMSD) error estimations. The results showed overall higher variability for all the three bulk snow parameters over tundra, open bogs and lakes (due to wind processes); however, snow depth tended to vary over shorter distances in forests (due to snow-vegetation interactions). Sample spacing/sample size had a statistically significant effect on the mean snow depth over all land cover types. Analysis executed for 50, 100, and 200 m transects revealed that in most cases less than five samples were adequate to describe the snow depth mean with RMSD < 5 %, but for land cover with high overall variability an indication of increased sample size of 1.5-3 times larger was gained depending on the scale and the desired maximum RMSD. Errors for most of the land cover types reached ˜ 10 % if only three measurements were considered. The collected measurements, which are available via the ESA website upon registration, compose an exceptionally large manually collected snow data set in Scandinavian taiga and tundra environments. This information represents a valuable contribution to the snow research community and can be applied to various snow studies.

  13. Cultural Resilience of Nenets Social-Ecological Systems in Arctic Russia: A Focus on Reindeer Nomads of the Tundra

    Science.gov (United States)

    Forbes, B. C.

    2013-12-01

    Empirical data on resilience in social-ecological systems (SESs) are reviewed from local and regional scale case studies among full-time nomads in the neighbouring Nenets and Yamal-Nenets Autonomous Okrugs, Russia. The focus is on critical cultural factors contributing to SES resilience. In particular, this work presents an integrated view of people situated in specific tundra landscapes that face significantly different prospects for adaptation depending on existing or planned infrastructure associated with oil and gas development. Factors contributing to general resilience are compared to those that are adapted to certain spatial and temporal contexts. Environmental factors include ample space and an abundance of resources, such as fish and game (e.g. geese), to augment the diet of not only the migratory herders, but also residents from coastal settlements. In contrast to other regions, such as the Nenets Okrug, Yamal Nenets households consist of intact nuclear families with high retention among youth in the nomadic tundra population. Accepting attitudes toward exogenous drivers such as climate change and industrial development appear to play a significant role in how people react to both extreme weather events and piecemeal confiscation or degradation of territory. Consciousness of their role as responsible stewards of the territories they occupy has likely been a factor in maintaining viable wildlife populations over centuries. Institutions administering reindeer herding have remained flexible, especially on Yamal, and so accommodate decision-making that is sensitive to herders' needs and timetables. This affects factors such as herd demography, mobility and energetics. Resilience is further facilitated within the existing governance regimes by herders' own agency, most recently in the post-Soviet shift to smaller, privately managed herds that can better utilize available pastures in a highly dynamic environment experiencing rapid socio-economic, climate and

  14. Integrating Research and Education in a Study of Biocomplexity in Arctic Tundra Ecosystems: Costs, Results, and Benefits to the Research Agenda

    Science.gov (United States)

    Gould, W. A.; González, G.; Walker, D. A.

    2006-12-01

    The integration of research and education is one of the fundamental goals of our national science policy. There is strong interest to improve this integration at the graduate and undergraduate levels, with the general public, and with local and indigenous people. Efforts expended in integrating research and education can occur at the expense of research productivity and represent a cost. Results may include number of personnel involved, activities accomplished, research or other products produced. Benefits are difficult to quantify and may be short term and tangible, e.g. education-research projects enhancing research productivity with publications, or long-term and include intangibles such as personal interactions and experiences influencing career choices, the perception of research activities, enhanced communication, and direct or indirect influence on related research and educational projects. We have integrated the University field course Arctic Field Ecology with an interdisciplinary research project investigating the interactions of climate, vegetation, and permafrost in the study Biocomplexity of Arctic Tundra Ecosystems. The integration is designed to give students background in regional ecology; introduce students to the project objectives, methods, and personnel; provide for interaction with participating scientists; conduct research initiated by the class and instructors; and provide the opportunity to interact with indigenous people with interests in traditional ecological knowledge and land management. Our costs included increased logistical complexity and time-demands on the researchers and staff managing the integration. The educational component increased the size of the research group with the addition of 55 participants over the 4 field seasons of the study. Participants came from 7 countries and included 20 enrolled university students, 18 Inuit non student participants, 9 Inuit students, 3 visiting scientists, 3 staff, and 2 scientist

  15. Characterizing Low Molecular Weight Organic Matter in Arctic Polygonal Tundra Soils to Identify Biogeochemical Hotspots Using a Dual-Separation, High-Resolution Mass Spectrometry Approach

    Science.gov (United States)

    Ladd, M.; Wullschleger, S. D.; Iversen, C. M.; Hettich, R.

    2016-12-01

    Reliably modeling biogeochemical processes (e.g. decomposition, plant-microbial competition for nutrients) across spatial or temporal scales requires elucidating the chemical composition of low molecular weight (LMW) dissolved soil organic matter (DOM). Our understanding is limited, however, by the wide-ranging physicochemical properties and high fluxes of these compounds, posing major challenges in detection, isolation, and quantification. Here, we developed and evaluated a sensitive, non-targeted approach to characterize LMW DOM in the Arctic, a unique system that is warming at a rate twice that of the global average and may have significant feedbacks to global C and N cycles. Soil cores were collected from a continuous permafrost, polygonal tundra landscape near Barrow, Alaska (71° 16' N) and sectioned into 5 cm increments. Water and salt extracts from each section were filtered and injected onto C18 reversed-phase or zwitterionic-type hydrophilic interaction chromatography (ZIC-pHILIC) columns for separation. LMW DOM profiles were obtained using high-resolution mass spectrometry (HRMS), and unique features, known and unknown, were characterized by LC retention time, accurate mass (m/z), and molecular fragmentation pattern. Coupling two orthogonal chromatographic separations with HRMS enabled the characterization of hundreds of analytes in a single measurement providing enhanced, high-throughput coverage of LMW DOM from soil extracts. The complexity and relative/absolute intensities of LMW DOM features (e.g. organic acids, amino sugars, peptides) varied across polygon type (high- or low-centered), extract condition, and with depth, providing an information-rich, molecular signal of LMW DOM availability across scales. Comprehensively profiling this complex mixture of small molecules of both biotic and abiotic origin provides a chemical signature of biological function, allowing for more reliable predictions of how discrete, molecular-scale processes may control

  16. Spatial and Temporal Variability of Methane Mole Fractions and Exchanges in and Between Soil, Snow, and the Atmosphere in a Tundra System in Northern Alaska

    Science.gov (United States)

    Agnan, Y.; Obrist, D.; Edwards, G. C.; Moore, C.; Hedge, C.; Helmig, D.; Paxton, D.; Jacques, H.

    2015-12-01

    An important global source of atmospheric methane (CH4) is production in tundra soils (an important global source). To place constraints on the potential role that tundra soils play in global CH4 cycling, we have been continuously measuring mole the air space in soils, snow, and the atmosphere as gradient-based surface-atmosphere fluxes for arctic tundra at Toolik Field Station (68° 38' N) starting in October 2014. We have found that atmospheric CH4 mole fractions were, on average, relatively constant during the first 9 months of sampling (averaging 1.93 µmol mol-1), with pronounced diel patterns starting in May and nighttime exceeding daytime mole fractions. However, gradients measured within the soil profile showed high variability in air withdrawn from different locations of these tundra soils (Typic Aquiturbels), with one soil profile indicating a CH4 sink during fall until January; mole fractions were similar to the atmospheric measurements during winter indicating no source or sink (average 1.89 µmol mol-1). A second soil profile 5 m away showed production of CH4 (average 2.48 µmol mol-1, two-times higher than atmospheric levels), even during mid-winter when soil temperatures were below -10 °C. Measurements of CH4 in interstitial snowpack air also exhibited a similar combination of sources and sinks. We used micrometeorological gradient surface flux measurements to confirm that the area was a net source of CH4 in fall, winter, and spring, with emissions averaging 26.6, 25.2, and 16.8 mg m-2 d-1, respectively. In the summer months, we saw strong diel flux patterns with deposition during day and emission at night, corresponding with observed diel variability in CH4 snowpack mole fractions. Our results indicated a high variability of tundra landscape CH4 fluxes, which locally shift from sources to sinks with high temporal variability. CH4 oxidation by methanotrophic bacteria probably occurs in tundra soils, confirming observations in one soil, snowpack, and

  17. Large CO 2 and CH 4 emissions from polygonal tundra during spring thaw in northern Alaska: Spring Pulse Emission

    Energy Technology Data Exchange (ETDEWEB)

    Raz-Yaseef, Naama [Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley California USA; Torn, Margaret S. [Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley California USA; Energy and Resources Group, University of California, Berkeley California USA; Wu, Yuxin [Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley California USA; Billesbach, Dave P. [Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln Nebraska USA; Liljedahl, Anna K. [Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks Alaska USA; Kneafsey, Timothy J. [Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley California USA; Romanovsky, Vladimir E. [Geophysical Institute, University of Alaska Fairbanks, Fairbanks Alaska USA; Cook, David R. [Environmental Science Division, Argonne National Laboratory, Lemont Illinois USA; Wullschleger, Stan D. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge Tennessee USA

    2017-01-10

    The few prethaw observations of tundra carbon fluxes suggest that there may be large spring releases, but little Is lmown about the scale and underlying mechanisms of this phenomenon. To address these questions, we combined ecosystem eddy flux measurements from two towers near Barrow, Alaska, with mechanistic soil-core thawing experiment During a 2week period prior to snowmelt In 2014, large fluxes were measured, reducing net summer uptake of CO2 by 46% and adding 6% to cumulative CH4 emissions. Emission pulses were linked to unique rain-on-snow events enhancing soli cracking. Controlled laboratory experiment revealed that as surface Ice thaws, an immediate, large pulse of trapped gases Is emitted. These results suggest that the Arctic C02 and CH4 spring pulse is a delayed release of biogenic gas production from the previous fall and that the pulse can be large enough to offset a significant fraction of the moderate Arctic tundra carbon sink.

  18. The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra

    DEFF Research Database (Denmark)

    Li, Bingxi; Heijmans, Monique M P D; Berendse, Frank;

    2016-01-01

    It is widely believed that deciduous tundra-shrub dominance is increasing in the pan-Arctic region, mainly due to rising temperature. We sampled dwarf birch (Betula nana L.) at a northeastern Siberian tundra site and used dendrochronological methods to explore the relationship between climatic...... variables and local shrub dominance. We found that establishment of shrub ramets was positively related to summer precipitation, which implies that the current high dominance of B. nana at our study site could be related to high summer precipitation in the period from 1960 to 1990. The results confirmed...... that early summer temperature is most influential to annual growth rates of B. nana. In addition, summer precipitation stimulated shrub growth in years with warm summers, suggesting that B. nana growth may be co-limited by summer moisture supply. The dual controlling role of temperature and summer...

  19. The Role of Explicitly Modeling Bryophytes in Simulating Carbon Exchange and Permafrost Dynamics of an Arctic Coastal Tundra at Barrow, Alaska

    Science.gov (United States)

    Yuan, F.; Thornton, P. E.; McGuire, A. D.; Oechel, W. C.; Yang, B.; Tweedie, C. E.; Rogers, A.; Norby, R. J.

    2013-12-01

    Bryophyte cover is greater than 50% in many Arctic tundra ecosystems. In regions of the Arctic where shrubs are expanding it is expected that bryophyte cover will be substantially reduced. Such a loss in cover could influence the hydrological, biogeochemical, and permafrost dynamics of Arctic tundra ecosystems. The explicit representation of bryophyte physiological and biophysical processes in large-scale ecological and land surface models is rare, and we hypothesize that the representation of bryophytes has consequences for estimates of the exchange of water, energy, and carbon by these models. This study explicitly represents the effects of bryophyte function and structure on the exchange of carbon (e.g., summer photosynthesis effects) and energy (e.g., summer insulation effects) with the atmosphere in the Community Land Model (CLM-CN). The modified model was evaluated for its ability to simulate C exchange, soil temperature, and soil moisture since the 1970s at Barrow, Alaska through comparison with data from AmeriFlux sites, USDA Soil Climate Networks observation sites at Barrow, and other sources. We also compare the outputs of the CLM-CN simulations with those of the recently developed Dynamical Organic Soil coupled Terrestrial Ecosystem Model (DOS-TEM). Overall, our evaluation indicates that bryophytes are important contributors to land-atmospheric C exchanges in Arctic tundra and that they play an important role to permafrost thermal and hydrological processes which are critical to permafrost stability. Our next step in this study is to examine the climate system effects of explicitly representing bryophyte dynamics in the land surface model. Key Words: Bryophytes, Arctic coastal tundra, Vegetation composition, Net Ecosystem Exchange, Permafrost, Land Surface Model, Terrestrial Ecosystem Model

  20. The exchange of energy, water and carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Kutzbach, L.

    2006-07-01

    The ecosystem-scale exchange fluxes of energy, water and carbon dioxide between wet arctic tundra and the atmosphere were investigated by the micrometeorological eddy covariance method. The investigation site was the centre of the Lena River Delta in Northern Siberia characterised by a polar and distinctly continental climate, very cold and ice-rich permafrost and its position at the interface between the Eurasian continent and the Arctic Ocean. The measurements were performed on the surface of a Holocene river terrace characterised by wet polygonal tundra. The soils at the site are characterised by high organic matter content, low nutrient availability and pronounced water logging. The vegetation is dominated by sedges and mosses. The fluctuations of the H{sub 2}O and CO{sub 2} concentrations were measured with a closed-path infrared gas analyser. The fast-response eddy covariance measurements were supplemented by a set of slow-response meteorological and soil-meteorological measurements. The combined datasets of the two campaigns 2003 and 2004 were used to characterise the seasonal course of the energy, water and CO{sub 2} fluxes and the underlying processes for the synthetic measurement period May 28..October 21 2004/2003 including the period of snow and soil thawing as well as the beginning of refreezing. The synthetic measurement period 2004/2003 was characterised by a long snow ablation period and a late start of the growing season. On the other hand, the growing season ended also late due to high temperatures and snow-free conditions in September. The cumulative summer energy partitioning was characterised by low net radiation, large ground heat flux, low latent heat flux and very low sensible heat flux compared to other tundra sites. These findings point out the major importance of the very cold permafrost for the summer energy budget of the tundra in Northern Siberia. (orig./SR)

  1. Distance and environmental difference in alpine plant communities

    Science.gov (United States)

    Malanson, George P.; Zimmerman, Dale L.; Fagre, Daniel B.

    2017-01-01

    Differences in plant communities are a response to the abiotic environment, species interactions, and dispersal. The role of geographic distance relative to the abiotic environment is explored for alpine tundra vegetation from 319 plots of four regions along the Rocky Mountain cordillera in the USA. The site by species data were ordinated using nonmetric multidimensional scaling to produce dependent variables for use in best-subsets regression. For independent variables, observations of local topography and microtopography were used as environmental indicators. Two methods of including distance in studies of vegetation and environment are used and contrasted. The relative importance of geographic distance in accounting for the pattern of alpine tundra similarity indicates that location is a factor in plant community composition. Mantel tests provide direct correlations between difference and distance but have known weaknesses. Moran spatial eigenvectors used in regression based approaches have greater geographic specificity, but require another step, ordination, in creating a vegetation variable. While the spatial eigenvectors are generally preferable, where species–environment relations are weak, as seems to be the case for the alpine sites studied here, the fewer abstractions of the Mantel test may be useful.

  2. Moving Uphill: Microbial Facilitation at the Leading Edge of Plant Species Distributional Shifts

    Science.gov (United States)

    Suding, K.; Farrer, E.; Spasojevic, M.; Porazinska, D.; Bueno de Mesquita, C.; Schmidt, S. K.

    2016-12-01

    Climate change is expected to influence species distributions and reshuffle patterns of biodiversity. A key challenge to our understanding of these effects is that biotic interactions - new species to compete with, new stressors that increase dependence on facilitation, new prey or predators - will likely affect the ability of species to track climate at the leading edges of their distributional range. While it is well established that soil biota strongly influence plant abundance and diversity, it has been difficult to quantify the key belowground dynamics. This presentation will investigate the influence of one key biotic interaction, between plants and soil microbiota, on the ability of plant species to track climate change and expand their range uphill in a high montane system in the Front Range of Colorado. High-resolution photography from 1972 and 2008 indicate colonization of tundra vegetation in formerly unvegetated areas. Observational work on the distributions patterns of both plants and soil microbiota (bacteria, fungi and nematodes) in a spatially-explicit grid at the upper edge of plant distributions indicate strong, mostly positive, associations between plant species and soil taxa. Abiotic factors, while important, consistently underpredicted the occurrence of plant species and, in nine of the 12 most common tundra plants, co-occurring microbial taxa were important predictors of plant occurrence. Comparison of plant and microbial distributional patterns in 2007 and 2015 indicate the influence of microbial community composition on assembly and beta-diversity of the plant community over time. Plant colonization patterns in this region previously devoid of vegetation will likely influence carbon, nitrogen and phosphorus dynamics, with downstream consequences on nutrient limitation and phytoplankton composition in alpine lakes.

  3. Variation in xylem structure from tropics to tundra: Evidence from vestured pits

    NARCIS (Netherlands)

    Jansen, S.; Baas, P.; Gasson, P.; Lens, F.; Smets, E.

    2004-01-01

    Bordered pits play an important role in permitting water flow among adjacent tracheary elements in flowering plants. Variation in the bordered pit structure is suggested to be adaptive in optimally balancing the conflict between hydraulic efficiency (conductivity) and safety from air entry at the

  4. Longer growing seasons do not increase net carbon uptake in Northeastern Siberian tundra

    NARCIS (Netherlands)

    Parmentier, F.J.W.; Molen, van der M.K.; Huissteden, van J.; Karsanaev, S.; Kononov, A.V.; Suzdalov, D.; Maximov, T.C.; Dolman, A.J.

    2011-01-01

    With global warming, snowmelt is occurring earlier and growing seasons are becoming longer around the Arctic. It has been suggested that this would lead to more uptake of carbon due to a lengthening of the period in which plants photosynthesize. To investigate this suggestion, 8 consecutive years of

  5. Apparent Contradiction: Psychrotolerant Bacteria from Hydrocarbon-Contaminated Arctic Tundra Soils That Degrade Diterpenoids Synthesized by Trees

    Science.gov (United States)

    Yu, Zhongtang; Stewart, Gordon R.; Mohn, William W.

    2000-01-01

    Resin acids are tricyclic terpenoids occurring naturally in trees. We investigated the occurrence of resin acid-degrading bacteria on the Arctic tundra near the northern coast of Ellesmere Island (82°N, 62°W). According to most-probable-number assays, resin acid degraders were abundant (103 to 104 propagules/g of soil) in hydrocarbon-contaminated soils, but they were undetectable (contaminated and the pristine soils had similar populations of heterotrophs (106 to 107 propagules/g of soil). Eleven resin acid-degrading bacteria belonging to four phylogenetically distinct groups were enriched and isolated from the contaminated soils, and representative isolates of each group were further characterized. Strains DhA-91, IpA-92, and IpA-93 are members of the genus Pseudomonas. Strain DhA-95 is a member of the genus Sphingomonas. All four strains are psychrotolerant, with growth temperature ranges of 4°C to 30°C (DhA-91 and DhA-95) or 4°C to 22°C (IpA-92 and IpA-93) and with optimum temperatures of 15 to 22°C. Strains DhA-91 and DhA-95 grew on the abietanes, dehydroabietic and abietic acids, but not on the pimaranes, isopimaric and pimaric acids. Strains IpA-92 and IpA-93 grew on the pimaranes but not the abietanes. All four strains grew on either aliphatic or aromatic hydrocarbons, which is unusual for described resin acid degraders. Eleven mesophilic resin acid degraders did not use hydrocarbons, with the exception of two Mycobacterium sp. strains that used aliphatic hydrocarbons. We conclude that hydrocarbon contamination in Arctic tundra soil indirectly selected for resin acid degraders, selecting for hydrocarbon degraders that coincidentally use resin acids. Psychrotolerant resin acid degraders are likely important in the global carbon cycle and may have applications in biotreatment of pulp and paper mill effluents. PMID:11097882

  6. National Wetland Plant List Indicator Rating Definitions

    Science.gov (United States)

    2012-07-01

    cut grass), Acorus americanus (sweetflag), Carex aquatilis (leafy tussock sedge ), and Toxicodendron vernix (poison sumac). FACW (Facultative Wetland...where water saturates the soils or floods the soil surface at least seasonally. Examples include Carex scoparia (broom sedge ), Aconitum columbianum...Ambrosia artemisifolia (annual ragweed), Betula papyrifera (paper birch), Carex eburnea (bristle-leaf sedge ), Carya ovata (shag-bark hickory), Elymus

  7. IMPACT OF CRITICAL ANION SOIL SOLUTION CONCENTRATION ON ALUMINUM ACTIVITY IN ALPINE TUNDRA SOIL Andrew Evans, Jr.1 , Michael B. Jacobs2, and Jason R. Janke1, (1) Metropolitan State University of Denver, Dept. of Earth and Atmospheric Sciences, (2) Dept. of Chemistry, Denver, CO, United States.

    Science.gov (United States)

    Evans, A.

    2015-12-01

    Soil solution anionic composition can impact both plant and microbial activity in alpine tundra soils by altering biochemical cycling within the soil, either through base cation leaching, or shifts in aluminum controlling solid phases. Although anions play a critical role in the aqueous speciation of metals, relatively few high altitude field studies have examined their impact on aluminum controlling solid phases and aluminum speciation in soil water. For this study, thirty sampling sites were selected on Trail Ridge Road in Rocky Mountain National Park, Estes Park, CO, and sampled during July, the middle of the growing season. Sampling elevations ranged from approximately 3560 - 3710 m. Soil samples were collected to a depth of 15.24 cm, and the anions were extracted using a 2:1 D.I. water to soil ratio. Filtered extracts were analyzed using IC and ICP-MS. Soil solution NO3- concentrations were significantly higher for sampling locations east of Iceberg Pass (EIBP) (mean = 86.94 ± 119.8 mg/L) compared to locations west of Iceberg Pass (WIBP) (mean 1.481 ± 2.444 mg/L). Both F- and PO43- soil solution concentrations, 0.533 and 0.440 mg/L, respectively, were substantially lower, for sampling sites located EIBP, while locations WIBP averaged 0.773 and 0.829 mg/L respectively, for F- and PO43-. Sulfate concentration averaged 3.869 ± 3.059 mg/L for locations EIBP, and 3.891 ± 3.1970 for locations WIBP. Geochemical modeling of Al3+ in the soil solution indicated that a suite of aluminum hydroxyl sulfate minerals controlled Al3+ activity in the alpine tundra soil, with shifts between controlling solid phases occurring in the presence of elevated F- concentrations.

  8. Complete genome sequence of Terriglobus saanensis type strain SP1PR4T, an Acidobacteria from tundra soil

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, Suman R. [Rutgers University; Mannisto, Minna [Finnish Forest Research Institute, Parkano, Finland; Starovoytov, Valentin [Rutgers University; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Davenport, Karen W. [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Haggblom, Max [Rutgers University

    2012-01-01

    Terriglobus saanensis SP1PR4T is a novel species of the genus Terriglobus. T. saanensis is of ecological interest because it is a representative of the phylum Acidobacteria, which are dominant members of bacterial soil microbiota in Arctic ecosystems. T. saanensis is a cold-adapted acidophile and a versatile heterotroph utilizing a suite of simple sugars and complex polysaccharides. The genome contained an abundance of genes assigned to metabolism and transport of carbohydrates including gene modules encoding for carbohydrate-active enzyme (CAZyme) family involved in breakdown, utilization and biosynthesis of diverse structural and storage polysaccharides. T. saanensis SP1PR4T represents the first member of genus Terriglobus with a completed genome sequence, consisting of a single replicon of 5,095,226 base pairs (bp), 54 RNA genes and 4,279 protein-coding genes. We infer that the physiology and metabolic potential of T. saanensis is adapted to allow for resilience to the nutrient-deficient conditions and fluctuating temperatures of Arctic tundra soils.

  9. Environmental factors influencing soil testate amoebae in herbaceous and shrubby vegetation along an altitudinal gradient in subarctic tundra (Abisko, Sweden).

    Science.gov (United States)

    Tsyganov, Andrey N; Milbau, Ann; Beyens, Louis

    2013-05-01

    Shifts in community composition of soil protozoa in response to climate change may substantially influence microbial activity and thereby decomposition processes. However, effects of climate and vegetation on soil protozoa remain poorly understood. We studied the distribution of soil testate amoebae in herbaceous and shrubby vegetation along an altitudinal gradient (from below the treeline at 500 m to the mid-alpine region at 900 m a.s.l.) in subarctic tundra. To explain patterns in abundance, species diversity and assemblage composition of testate amoebae, a data set of microclimate and soil chemical characteristics was collected. Both elevation and vegetation influenced the assemblage composition of testate amoebae. The variation was regulated by interactive effects of summer soil moisture, winter soil temperature, soil pH and nitrate ion concentrations. Besides, soil moisture regulated non-linear patterns in species richness across the gradient. This is the first study showing the effects of winter soil temperatures on species composition of soil protozoa. The effects could be explained by specific adaptations of testate amoebae such as frost-resistant cysts allowing them to survive low winter temperatures. We conclude that the microclimate and soil chemical characteristics are the main drivers of changes in protozoan assemblage composition in response to elevation and vegetation.

  10. Morphology and properties of the soils of permafrost peatlands in the southeast of the Bol'shezemel'skaya tundra

    Science.gov (United States)

    Kaverin, D. A.; Pastukhov, A. V.; Lapteva, E. M.; Biasi, C.; Marushchak, M.; Martikainen, P.

    2016-05-01

    The morphology and properties of the soils of permafrost peatlands in the southeast of the Bol'shezemel'skaya tundra are characterized. The soils developing in the areas of barren peat circles differ from oligotrophic permafrost-affected peat soils (Cryic Histosols) of vegetated peat mounds in a number of morphological and physicochemical parameters. The soils of barren circles are characterized by the wellstructured surface horizons, relatively low exchangeable acidity, and higher rates of decomposition and humification of organic matter. It is shown that the development of barren peat circles on tops of peat mounds is favored by the activation of erosional and cryogenic processes in the topsoil. The role of winter wind erosion in the destruction of the upper peat and litter horizons is demonstrated. A comparative analysis of the temperature regime of soils of vegetated peat mounds and barren peat circles is presented. The soil-geocryological complex of peat mounds is a system consisting of three major layers: seasonally thawing layer-upper permafrost-underlying permafrost. The upper permafrost horizons of peat mounds at the depth of 50-90 cm are morphologically similar to the underlying permafrost. However, these layers differ in their physicochemical properties, especially in the composition and properties of their organic matter.

  11. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes

    Directory of Open Access Journals (Sweden)

    A. Ekici

    2014-09-01

    Full Text Available Modelling soil thermal dynamics at high latitudes and altitudes requires representations of specific physical processes such as snow insulation, soil freezing/thawing, as well as subsurface conditions like soil water/ice content and soil texture type. We have compared six different land models (JSBACH, ORCHIDEE, JULES, COUP, HYBRID8, LPJ-GUESS at four different sites with distinct cold region landscape types (i.e. Schilthorn-Alpine, Bayelva-high Arctic, Samoylov-wet polygonal tundra, Nuuk-non permafrost Arctic to quantify the importance of physical processes in capturing observed temperature dynamics in soils. This work shows how a range of models can represent distinct soil temperature regimes in permafrost and non-permafrost soils. Snow insulation is of major importance for estimating topsoil conditions and must be combined with accurate subsoil temperature dynamics to correctly estimate active layer thicknesses. Analyses show that land models need more realistic surface processes (such as detailed snow dynamics and moss cover with changing thickness/wetness as well as better representations of subsoil thermal dynamics (i.e. soil heat transfer mechanism and correct parameterization of heat conductivity/capacities.

  12. Plant community and soil chemistry responses to long-term nitrogen inputs drive changes in alpine bacterial communities.

    Science.gov (United States)

    Yuan, Xia; Knelman, Joseph E; Gasarch, Eve; Wang, Deli; Nemergut, Diana R; Seastedt, Timothy R

    2016-06-01

    Bacterial community composition and diversity was studied in alpine tundra soils across a plant species and moisture gradient in 20 y-old experimental plots with four nutrient addition regimes (control, nitrogen (N), phosphorus (P) or both nutrients). Different bacterial communities inhabited different alpine meadows, reflecting differences in moisture, nutrients and plant species. Bacterial community alpha-diversity metrics were strongly correlated with plant richness and the production of forbs. After meadow type, N addition proved the strongest determinant of bacterial community structure. Structural Equation Modeling demonstrated that tundra bacterial community responses to N addition occur via changes in plant community composition and soil pH resulting from N inputs, thus disentangling the influence of direct (resource availability) vs. indirect (changes in plant community structure and soil pH) N effects that have remained unexplored in past work examining bacterial responses to long-term N inputs in these vulnerable environments. Across meadow types, the relative influence of these indirect N effects on bacterial community structure varied. In explicitly evaluating the relative importance of direct and indirect effects of long-term N addition on bacterial communities, this study provides new mechanistic understandings of the interaction between plant and microbial community responses to N inputs amidst environmental change.

  13. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model

    Science.gov (United States)

    Euskirchen, E.S.; Carman, T.B.; McGuire, Anthony David

    2013-01-01

    The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over regional to global scales typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observations of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest, and perform model simulations for the years 1970 -2100. Over the course of the model simulations, we found changes in ecosystem composition under this new phenology algorithm compared to simulations with the previous phenology algorithm. These changes were the result of the differential timing of leaf-out, as well as the ability for the groupings of species to compete for nitrogen and light availability. Regionally, there were differences in the trends of the carbon pools and fluxes between the new phenology algorithm and the previous phenology algorithm, although these differences depended on the future climate scenario. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape, and that dynamic vegetation models should consider variation in leaf-out by groupings of species within these ecosystems to make more accurate projections of future plant distributions and carbon cycling in Arctic regions.

  14. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model.

    Science.gov (United States)

    Euskirchen, Eugénie S; Carman, Tobey B; McGuire, A David

    2014-03-01

    The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over regional to global scales typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observations of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest, and perform model simulations for the years 1970-2100. Over the course of the model simulations, we found changes in ecosystem composition under this new phenology algorithm compared with simulations with the previous phenology algorithm. These changes were the result of the differential timing of leaf-out, as well as the ability for the groupings of species to compete for nitrogen and light availability. Regionally, there were differences in the trends of the carbon pools and fluxes between the new phenology algorithm and the previous phenology algorithm, although these differences depended on the future climate scenario. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape, and that dynamic vegetation models should consider variation in leaf-out by groupings of species within these ecosystems to make more accurate projections of future plant distributions and carbon cycling in Arctic regions. © 2013 John Wiley & Sons Ltd.

  15. Greater temperature sensitivity of plant phenology at colder sites

    DEFF Research Database (Denmark)

    Prevey, Janet; Vellend, Mark; Ruger, Nadja

    2017-01-01

    Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance...... at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high-latitude sites along a climatic gradient. Across all species, the timing of leaf emergence and flowering was more sensitive to a given increase in summer temperature at colder than...... warmer high-latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence...

  16. Monitoring ecosystem dynamics in an Arctic tundra ecosystem using hyperspectral reflectance and a robotic tram system

    Science.gov (United States)

    Goswami, Santonu

    Global change, which includes climate change and the impacts of human disturbance, is altering the provision and sustainability of ecosystem goods and services. These changes have the capacity to initiate cascading affects and complex feedbacks through physical, biological and human subsystems and interactions between them. Understanding the future state of the earth system requires improved knowledge of ecosystem dynamics and long term observations of how these are being impacted by global change. Improving remote sensing methods is essential for such advancement because satellite remote sensing is the only means by which landscape to continental-scale change can be observed. The Arctic appears to be impacted by climate change more than any other region on Earth. Arctic terrestrial ecosystems comprise only 6% of the land surface area on Earth yet contain an estimated 25% of global soil organic carbon, most of which is stored in permafrost. If projected increases in plant productivity do not offset forecast losses of soil carbon to the atmosphere as greenhouse gases, regional to global greenhouse warming could be enhanced. Soil moisture is an important control of land-atmosphere carbon exchange in arctic terrestrial ecosystems. However, few studies to date have examined using remote sensing, or developed remote sensing methods for observing the complex interplay between soil moisture and plant phenology and productivity in arctic landscapes. This study was motivated by this knowledge gap and addressed the following questions as a contribution to a large scale, multi investigator flooding and draining experiment funded by the National Science Foundation near Barrow, Alaska (71°17'01" N, 156°35'48" W): (1) How can optical remote sensing be used to monitor the surface hydrology of arctic landscapes? (2) What are the spatio-temporal dynamics of land-surface phenology (NDVI) in the study area and do hydrological treatment has any effect on inter-annual patterns? (3

  17. Persistence of high lead concentrations and associated effects in Tundra Swans captured near a mining and smelting complex in northern Idaho

    Science.gov (United States)

    Blus, L.J.; Henny, C.J.; Hoffman, D.J.; Sileo, L.; Audet, D.J.

    1999-01-01

    Lead poisoning of waterfowl, particularly tundra swans (Cygnus columbianus), has been documented in the Coeur d'Alene River Basin in northern Idaho for nearly a century. Over 90% of the lead-poisoned tundra swans in this area that were necropsied have no ingested lead shot. Spent lead shot from hunting activities over the years is therefore a minor source of lead in these swans. The migrating swans accumulated lethal burdens of lead from ingestion of sediments and aquatic vegetation during a short stopover in the spring. The lead originated from mining and smelting activities. Lead concentrations and physiological characteristics of blood were compared in swans captured in swim-in traps, with moribund swans caught by hand in the lead-contaminated area in 1987 and 1994-1995 and with birds captured by night-lighting in reference areas in 1994-1995. Blood lead concentrations in swans were highest in moribund birds (3.3 ?g g-1 in 1987 and 1995), intermediate in those trapped in the contaminated area (0.82 ?g g-1 in 1987 and 1.8 ?g g-1 in 1995), and lowest (0.11 ?g g-1) in those trapped in the reference areas. daminolevulinic acid dehydratase (ALAD) was significantly inhibited in swans from the contaminated area. Hematocrit and hemoglobin were significantly depressed only in moribund swans. Of the 19 swans found moribund and euthanized, 18 were classified as having lead toxicosis on the basis of lead levels in blood (1.3 to 9.6 ?g g-1) and livers (6 to 40 ?g g-1) and necropsy findings. The 19th swan had aspergillosis. There was no evidence that effects of lead on tundra swans had diminished from 1987 to 1995.

  18. Changes in the alpine forest-tundra ecotone commensurate with recent warming in southcentral Alaska: Evidence from orthophotos and field plots

    Science.gov (United States)

    Dial, Roman J.; Berg, Edward E.; Timm, Katriina; McMahon, Alissa; Geck, Jason

    2007-12-01

    The complex response of the forest-tundra ecotone (FT) to climate change may not generalize well geographically. We document FT changes in a nonpermafrost region of southcentral Alaska during a known warming period. Using 1951 and 1996 orthophotos overlain on digital elevation models across 800 km2 of the west Kenai Mountains, we identified cover classes and topography for 978 random points and the highest closed-canopy conifer patches along 205 random altitudinal gradients. Results show 29% of FT area increased in woodiness, with closed-canopy forest expanding 14%/decade and shrubs 4%/decade; unvegetated areas decreased 17.4%/decade and tundra 5%/decade. Area of open woodland remained constant but changed location. Timberline, estimated using both the 205 altitudinal gradients and the upper quartile elevations of closed-canopy forest among the 978 points, rose very little. Tree line, identified using upper quartiles of open woodland, rose ˜50 m on cool, northerly aspects, but not on other aspects. Dendrochronology on high-elevation seedlings showed a congruence between decadal recruitment and regional changes in climate from 1945 to 2005. Patterns observed in the climatic FT of the Kenai Mountains corroborate other studies that show regional and landscape specificity of the structural response of FT to climate change. FT shifted upwards on cooler, presumably more mesic aspects near seed sources; however, on warm aspects the density of shrubs and trees increased, but FT did not rise. If current conditions continue for the next 50-100 years, the Kenai FT will markedly change to a far woodier landscape with less tundra and more closed-canopy forest.

  19. Effects of warming on CO2, N2O and CH4 fluxes and underlying processes from subarctic tundra, Northwest Russia

    Science.gov (United States)

    Voigt, Carolina; Lamprecht, Richard E.; Marushchak, Maija E.; Biasi, Christina; Martikainen, Pertti J.

    2014-05-01

    Peatlands, especially those located in the highly sensitive arctic and subarctic latitudes, are known to play a major role in the global carbon cycle. Predicted climatic changes - entailing an increase in near-surface temperature and a change in precipitation patterns - will most likely have a serious yet uncertain impact on the greenhouse gas (GHG) balance of these ecosystems. Microbial processes are enhanced by warmer temperatures which may lead to increased trace gas fluxes to the atmosphere. However, the response of ecosystem processes and related GHG fluxes may differ largely across the landscape depending on soil type, vegetation cover, and moisture conditions. In this study we investigate how temperature increase potentially reflects on GHG fluxes (CO2, CH4 and N2O) from various tundra surfaces in the Russian Arctic. These surfaces include raised peat plateau complexes, mineral tundra soils, bare surfaces affected by frost action such as peat circles and thermokarst lake walls, as well as wetlands. Predicted temperature increase and climate change effects are simulated by means of open top chambers (OTCs), which are placed on different soil types for the whole snow-free period. GHG fluxes, gas and nutrient concentrations in the soil profile, as well as supporting environmental parameters are monitored for the full growing season. Aim of the study is not only the quantification of aboveground GHG fluxes from the study area, but the linking of those to underlying biogeochemical processes in permafrost soils. Special emphasis is placed on the interface between active layer and old permafrost and its response to warming, since little is known about the lability of old carbon stocks made available through an increase in active layer depth. Overall goal of the study is to gain a better understanding of C and N cycling in subarctic tundra soils and to deepen knowledge in respect to carbon-permafrost feedbacks in respect to climate.

  20. Effects of disturbance on ecosystem dynamics of tundra and riparian vegetation: A project in the R4D program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.F.

    1995-12-31

    Models were proposed as research tools to test the basic understanding of the structure and function of arctic ecosystems, as a means for providing initial management assessments of potential response to energy-related development, and as a vehicle for extrapolation of research results to other arctic sites and landscapes. This final summary report reviews progress made on models at a variety of scales from nutrient uptake by individual roots to nutrient availability within arctic landscapes, and examines potentials and critical limitations of these models for providing insight on patch and landscape level function in tundra regions.

  1. Frozen ponds: production and storage of methane during the Arctic winter in a lowland tundra landscape in northern Siberia, Lena River Delta

    Directory of Open Access Journals (Sweden)

    M. Langer

    2014-07-01

    Full Text Available Lakes and ponds play a key role in the carbon cycle of permafrost ecosystems, where they are considered to be hotspots of carbon dioxide CO2 and methane CH4 emission. The strength of these emissions is, however, controlled by a variety of physical and biogeochemical processes whose responses to a warming climate are complex and only poorly understood. Small waterbodies have been attracting an increasing amount of attention since recent studies demonstrated that ponds can make a significant contribution to the CO2 and CH4 emissions of tundra ecosystems. Waterbodies also have a marked effect on the thermal state of the surrounding permafrost; during the freezing period they prolong the period of time during which thawed soil material is available for microbial decomposition. This study presents net CH4 production rates during the freezing period from ponds within a typical lowland tundra landscape in northern Siberia. Rate estimations were based on CH4 concentrations measured in surface lake ice from a variety of waterbody types. Vertical profiles along ice blocks showed an exponential increase in CH4 concentration with depth. These CH4 profiles were reproduced by a 1-D mass balance model and the net CH4 production rates then inferred through inverse modeling. Results revealed marked differences in early winter net CH4 production among various ponds. Initial state ponds underlain by stable permafrost with little or no signs of degradation yielded low net production rates, of the order of 10–11 to 10–10 mol m−2 s−1 (0.01 to 0.14 mgCH4 m−2 d−1. In contrast, advanced state ponds exhibiting clear signs of thermal erosion yielded net CH4 production rates of the order of 10–7 mol m−2 s−1 (140 mgCH4 m−2 d−1. The net production rate per square meter of advanced state ponds exceeded the maximum summer CH4 emission rates per square meter which was measured for the average tundra landscape at the study site. Our results therefore

  2. Two Component Decomposition of Dual Polarimetric HH/VV SAR Data: Case Study for the Tundra Environment of the Mackenzie Delta Region, Canada

    Directory of Open Access Journals (Sweden)

    Tobias Ullmann

    2016-12-01

    Full Text Available This study investigates a two component decomposition technique for HH/VV-polarized PolSAR (Polarimetric Synthetic Aperture Radar data. The approach is a straight forward adaption of the Yamaguchi decomposition and decomposes the data into two scattering contributions: surface and double bounce under the assumption of a negligible vegetation scattering component in Tundra environments. The dependencies between the features of this two and the classical three component Yamaguchi decomposition were investigated for Radarsat-2 (quad and TerraSAR-X (HH/VV data for the Mackenzie Delta Region, Canada. In situ data on land cover were used to derive the scattering characteristics and to analyze the correlation among the PolSAR features. The double bounce and surface scattering features of the two and three component scattering model (derived from pseudo-HH/VV- and quad-polarized data showed similar scattering characteristics and positively correlated-R2 values of 0.60 (double bounce and 0.88 (surface scattering were observed. The presence of volume scattering led to differences between the features and these were minimized for land cover classes of low vegetation height that showed little volume scattering contribution. In terms of separability, the quad-polarized Radarsat-2 data offered the best separation of the examined tundra land cover types and will be best suited for the classification. This is anticipated as it represents the largest feature space of all tested ones. However; the classes “wetland” and “bare ground” showed clear positions in the feature spaces of the C- and X-Band HH/VV-polarized data and an accurate classification of these land cover types is promising. Among the possible dual-polarization modes of Radarsat-2 the HH/VV was found to be the favorable mode for the characterization of the aforementioned tundra land cover classes due to the coherent acquisition and the preserved co-pol. phase. Contrary, HH/HV-polarized and VV

  3. Coincident aboveground and belowground autonomous monitoring to quantify covariability in permafrost, soil, and vegetation properties in Arctic tundra

    Science.gov (United States)

    Dafflon, Baptiste; Oktem, Rusen; Peterson, John; Ulrich, Craig; Tran, Anh Phuong; Romanovsky, Vladimir; Hubbard, Susan S.

    2017-06-01

    Coincident monitoring of the spatiotemporal distribution of and interactions between land, soil, and permafrost properties is important for advancing our understanding of ecosystem dynamics. In this study, a novel monitoring strategy was developed to quantify complex Arctic ecosystem responses to the seasonal freeze-thaw-growing season conditions. The strategy exploited autonomous measurements obtained through electrical resistivity tomography to monitor soil properties, pole-mounted optical cameras to monitor vegetation dynamics, point probes to measure soil temperature, and periodic manual measurements of thaw layer thickness, snow thickness, and soil dielectric permittivity. The spatially and temporally dense monitoring data sets revealed several insights about tundra system behavior at a site located near Barrow, AK. In the active layer, the soil electrical conductivity (a proxy for soil water content) indicated an increasing positive correlation with the green chromatic coordinate (a proxy for vegetation vigor) over the growing season, with the strongest correlation (R = 0.89) near the typical peak of the growing season. Soil conductivity and green chromatic coordinate also showed significant positive correlations with thaw depth, which is influenced by soil and surface properties. In the permafrost, soil electrical conductivity revealed annual variations in solute concentration and unfrozen water content, even at temperatures well below 0°C in saline permafrost. These conditions may contribute to an acceleration of long-term thaw in Coastal permafrost regions. Demonstration of this first aboveground and belowground geophysical monitoring approach within an Arctic ecosystem illustrates its significant potential to remotely "visualize" permafrost, soil, and vegetation ecosystem codynamics in high resolution over field relevant scales.

  4. Spatial and Temporal Variation in Primary Productivity (NDVI) of Coastal Alaskan Tundra: Decreased Vegetation Growth Following Earlier Snowmelt

    Science.gov (United States)

    Gamon, John A.; Huemmrich, K. Fred; Stone, Robert S.; Tweedie, Craig E.

    2015-01-01

    In the Arctic, earlier snowmelt and longer growing seasons due to warming have been hypothesized to increase vegetation productivity. Using the Normalized Difference Vegetation Index (NDVI) from both field and satellite measurements as an indicator of vegetation phenology and productivity, we monitored spatial and temporal patterns of vegetation growth for a coastal wet sedge tundra site near Barrow, Alaska over three growing seasons (2000-2002). Contrary to expectation, earlier snowmelt did not lead to increased productivity. Instead, productivity was associated primarily with precipitation and soil moisture, and secondarily with growing degree days, which, during this period, led to reduced growth in years with earlier snowmelt. Additional moisture effects on productivity and species distribution, operating over a longer time scale, were evident in spatial NDVI patterns associated with microtopography. Lower, wetter regions dominated by graminoids were more productive than higher, drier locations having a higher percentage of lichens and mosses, despite the earlier snowmelt at the more elevated sites. These results call into question the oft-stated hypothesis that earlier arctic growing seasons will lead to greater vegetation productivity. Rather, they agree with an emerging body of evidence from recent field studies indicating that early-season, local environmental conditions, notably moisture and temperature, are primary factors determining arctic vegetation productivity. For this coastal arctic site, early growing season conditions are strongly influenced by microtopography, hydrology, and regional sea ice dynamics, and may not be easily predicted from snowmelt date or seasonal average air temperatures alone. Our comparison of field to satellite NDVI also highlights the value of in-situ monitoring of actual vegetation responses using field optical sampling to obtain detailed information on surface conditions not possible from satellite observations alone.

  5. Permafrost and surface energy balance of a polygonal tundra site in northern Siberia – Part 1: Spring to fall

    Directory of Open Access Journals (Sweden)

    M. Langer

    2010-07-01

    Full Text Available Permafrost thawing is essentially determined by the surface energy balance, which potentially triggers the activation of a massive carbon source, if previously frozen organic soils are exposed to microbial decomposition. In this article, we present the first part of a comprehensive annual surface energy balance study performed at a polygonal tundra landscape in northeast Siberia, realized between spring 2007 and winter 2009. This part of the study focuses on the half year period from April to September 2007–2008, during which the surface energy balance is obtained from independent measurements of the radiation budget, the turbulent heat fluxes and the ground heat flux at several sites. The short-wave radiation is the dominant factor in the surface energy balance during the entire observation period. About 50% of the available net radiation is consumed by latent heat flux, while the sensible and the ground heat flux are both on the order of 20 to 30%. The ground heat flux is mainly consumed by active layer thawing, where 60% of soil energy storage are attributed to. The remainder is used for soil warming down to a depth of 15 m. The controlling factors for the surface energy partitioning are in particular the snow cover, the cloud cover and the soil temperature gradient. Significant surface temperature differences of the heterogeneous landscape indicate spatial variabilities of sensible and latent heat fluxes, which are verified by measurements at different locations. However, differences in the partition between sensible and latent heat flux for the different sites only exist during conditions of high radiative forcing, which only occur occasionally.

  6. Long-term experimentally deepened snow decreases growing-season respiration in a low- and high-arctic tundra ecosystem

    Science.gov (United States)

    Semenchuk, Philipp R.; Christiansen, Casper T.; Grogan, Paul; Elberling, Bo; Cooper, Elisabeth J.

    2016-05-01

    Tundra soils store large amounts of carbon (C) that could be released through enhanced ecosystem respiration (ER) as the arctic warms. Over time, this may change the quantity and quality of available soil C pools, which in-turn may feedback and regulate ER responses to climate warming. Therefore, short-term increases in ER rates due to experimental warming may not be sustained over longer periods, as observed in other studies. One important aspect, which is often overlooked, is how climatic changes affecting ER in one season may carry-over and determine ER in following seasons. Using snow fences, we increased snow depth and thereby winter soil temperatures in a high-arctic site in Svalbard (78°N) and a low-arctic site in the Northwest Territories, Canada (64°N), for 5 and 9 years, respectively. Deepened snow enhanced winter ER while having negligible effect on growing-season soil temperatures and soil moisture. Growing-season ER at the high-arctic site was not affected by the snow treatment after 2 years. However, surprisingly, the deepened snow treatments significantly reduced growing-season ER rates after 5 years at the high-arctic site and after 8-9 years at the low-arctic site. We speculate that the reduction in ER rates, that became apparent only after several years of experimental manipulation, may, at least in part, be due to prolonged depletion of labile C substrate as a result of warmer soils over multiple cold seasons. Long-term changes in winter climate may therefore significantly influence annual net C balance not just because of increased wintertime C loss but also because of "legacy" effects on ER rates during the following growing seasons.

  7. Modeling different freeze/thaw processes in heterogeneous landscapes of the Arctic polygonal tundra using an ecosystem model

    Directory of Open Access Journals (Sweden)

    S. Yi

    2013-09-01

    Full Text Available Freeze/thaw (F/T processes can be quite different under the various land surface types found in the heterogeneous polygonal tundra of the Arctic. Proper simulation of these different processes is essential for accurate prediction of the release of greenhouse gases under a warming climate scenario. In this study we have modified the dynamic organic soil version of the Terrestrial Ecosystem Model (DOS-TEM to simulate F/T processes beneath the polygon rims, polygon centers (with and without water, and lakes that are common features in Arctic lowland regions. We first verified the F/T algorithm in the DOS-TEM against analytical solutions, and then compared the results with in situ measurements from Samoylov Island, Siberia. In the final stage, we examined the different responses of the F/T processes for different water levels at the various land surface types. The simulations revealed that (1 the DOS-TEM was very efficient and its results compared very well with analytical solutions for idealized cases, (2 the simulations compared reasonably well with in situ measurements although there were a number of model limitations and uncertainties, (3 the DOS-TEM was able to successfully simulate the differences in F/T dynamics under different land surface types, and (4 permafrost beneath water bodies was found to respond highly sensitive to changes in water depths between 1 and 2 m. Our results indicate that water is very important in the thermal processes simulated by the DOS-TEM; the heterogeneous nature of the landscape and different water depths therefore need to be taken into account when simulating methane emission responses to a warming climate.

  8. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra

    Science.gov (United States)

    Palmer, Katharina; Biasi, Christina; Horn, Marcus A

    2012-01-01

    Cryoturbated peat circles (that is, bare surface soil mixed by frost action; pH 3–4) in the Russian discontinuous permafrost tundra are nitrate-rich ‘hotspots' of nitrous oxide (N2O) emissions in arctic ecosystems, whereas adjacent unturbated peat areas are not. N2O was produced and subsequently consumed at pH 4 in unsupplemented anoxic microcosms with cryoturbated but not in those with unturbated peat soil. Nitrate, nitrite and acetylene stimulated net N2O production of both soils in anoxic microcosms, indicating denitrification as the source of N2O. Up to 500 and 10 μ nitrate stimulated denitrification in cryoturbated and unturbated peat soils, respectively. Apparent maximal reaction velocities of nitrite-dependent denitrification were 28 and 18 nmol N2O gDW−1 h−1, for cryoturbated and unturbated peat soils, respectively. Barcoded amplicon pyrosequencing of narG, nirK/nirS and nosZ (encoding nitrate, nitrite and N2O reductases, respectively) yielded ≈49 000 quality-filtered sequences with an average sequence length of 444 bp. Up to 19 species-level operational taxonomic units were detected per soil and gene, many of which were distantly related to cultured denitrifiers or environmental sequences. Denitrification-associated gene diversity in cryoturbated and in unturbated peat soils differed. Quantitative PCR (inhibition-corrected per DNA extract) revealed higher copy numbers of narG in cryoturbated than in unturbated peat soil. Copy numbers of nirS were up to 1000 × higher than those of nirK in both soils, and nirS nirK−1 copy number ratios in cryoturbated and unturbated peat soils differed. The collective data indicate that the contrasting N2O emission patterns of cryoturbated and unturbated peat soils are associated with contrasting denitrifier communities. PMID:22134649

  9. The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling.

    Science.gov (United States)

    Nemergut, Diana R; Townsend, Alan R; Sattin, Sarah R; Freeman, Kristen R; Fierer, Noah; Neff, Jason C; Bowman, William D; Schadt, Christopher W; Weintraub, Michael N; Schmidt, Steven K

    2008-11-01

    Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5 cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function.

  10. Microhabitat amelioration and reduced competition among understorey plants as drivers of facilitation across environmental gradients: towards a unifying framework

    Science.gov (United States)

    Soliveres, Santiago; Eldridge, David J.; Maestre, Fernando T.; Bowker, Matthew A.; Tighe, Matthew; Escudero, Adrián

    2015-01-01

    Studies of facilitative interactions as drivers of plant richness along environmental gradients often assume the existence of an overarching stress gradient equally affecting the performance of all the species in a given community. However, co-existing species differ in their ecophysiological adaptations, and do not experience the same stress level under particular environmental conditions. Moreover, these studies assume a unimodal richness-biomass curve, which is not as general as previously thought. We ignored these assumptions to assess changes in plant-plant interactions, and their effect on local species richness, across environmental gradients in semi-arid areas of Spain and Australia. We aimed to understand the relative importance of direct (microhabitat amelioration) and indirect (changes in the competitive relationships among the understorey species: niche segregation, competitive exclusion or intransitivity) mechanisms that might underlie the effects of nurse plants on local species richness. By jointly studying these direct and indirect mechanisms using a unifying framework, we were able to see how our nurse plants (trees, shrubs and tussock grasses) not only increased local richness by expanding the niche of neighbouring species, but also by increasing niche segregation among them, though the latter was not important in all cases. The outcome of the competition-facilitation continuum changed depending on the study area, likely because the different types of stress gradient considered. When driven by both rainfall and temperature, or rainfall alone, the community-wide importance of nurse plants remained constant (Spanish sites), or showed a unimodal relationship along the gradient (Australian sites). This study expands our understanding of the relative roles of plant-plant interactions and environmental conditions as drivers of local species richness in semi-arid environments. These results can also be used to refine predictions about the response of

  11. Soil Carbon Inputs and Ecosystem Respiration: a Field Priming Experiment in Arctic Coastal Tundra

    Science.gov (United States)

    Vaughn, L. S.; Zhu, B.; Bimueller, C.; Curtis, J. B.; Chafe, O.; Bill, M.; Abramoff, R. Z.; Torn, M. S.

    2016-12-01

    In Arctic ecosystems, climate change is expected to influence soil carbon stocks through changes in both plant carbon inputs and organic matter decomposition. This study addresses the potential for a priming effect, an interaction between these changes in which root-derived carbon inputs alter SOM decomposition rates via microbial biomass increases, co-metabolism of substrates, induced nitrogen limitation, or other possible mechanisms. The priming effect has been observed in numerous laboratory and greenhouse experiments, and is increasingly included in ecosystem models. Few studies, however, have evaluated the priming effect with in situ field manipulations. In a two-year field experiment in Barrow, Alaska, we tested for a priming effect under natural environmental variability. In September 2014 and August 2015, we added 6.1g of 13C-labeled glucose to 25cm diameter mesocosms, 15cm below the soil surface in the mineral soil layer. Over the following month, we quantified effects on the rate and temperature sensitivity of native (non-glucose) ecosystem respiration and GPP. Following the 2014 treatment, soil samples were collected at 1 and 3 weeks for microbial biomass carbon and 13C/12C analysis, and ion exchange membranes were buried for one week to assess nitrate and ammonium availability. In contrast with many laboratory incubation studies using soils from a broad range of ecosystems, we observed no significant priming effect. In spite of a clear signal of 13C-glucose decomposition in respired CO2 and microbial biomass, we detected no treatment effect on background ecosystem respiration or total microbial biomass carbon. Our findings suggest that glucose taken up by microbes was not used for production of additional SOM-decomposing enzymes, possibly due to stoichiometric limitations on enzyme production. To best inform models representing complex and dynamic ecosystems, this study calls for further research relating theory, laboratory findings, and field

  12. Plant mycorrhizal traits and carbon fates from plot to globe

    Science.gov (United States)

    Soudzilovskaia, N.; Cornelissen, H. H. C.

    2016-12-01

    Evidence is accumulating that plant traits related to mycorrhizal symbiosis, i.e. mycorrhizal type and the degree of plant root colonization by mycorrhizal fungi have important consequences for carbon pools and allocation in plants and soil. How plant and soil carbon pools vary among vegetation dominated by plants of different mycorrhizal types is a new and exciting research challenge. Absence of global databases on abundance of mycorrhizal fungi in soil and plant roots retards research aimed to understand involvement of mycorrhizas into soil carbon transformation processes. Using own data and published studies we have assembled currently world-largest database of plant species-per-site degrees root colonization by two most common types of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (EM). The database features records for plant root colonization degrees by AM and EM (above 8000 records in total). Using this database, we demonstrate that the degree of mycorrhizal fungal colonization has globally consistent patterns across plant species. This suggests that the level of plant species-specific root colonization can be used as a plant trait. I will discuss how combining plot-level field data, literature data and mycorrhizal infection trait data may help us to quantify the carbon consequences of relative dominance by arbuscular versus ectomycorrhizal symbiosis in vegetation from plot to global scale. To exemplify this method, I will present an assessment of the impacts of EM shrub encroachment on carbon stocks in sub-arctic tundra, and show how the plant trait data (root, leaf, stem and mycorrhizal colonization traits) could predict (1) impacts of AM and EM vegetation on soil carbon budget and (2) changes in soil carbon budget due to increase of EM plants in an AM-dominated ecosystem and visa versa. This approach may help to predict how global change-mediated vegetation shifts, via mycorrhizal carbon pools and dynamics, may affect terrestric and

  13. Two years with extreme and little snowfall: effects on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem

    Science.gov (United States)

    Stiegler, Christian; Lund, Magnus; Røjle Christensen, Torben; Mastepanov, Mikhail; Lindroth, Anders

    2016-07-01

    Snow cover is one of the key factors controlling Arctic ecosystem functioning and productivity. In this study we assess the impact of strong variability in snow accumulation during 2 subsequent years (2013-2014) on the land-atmosphere interactions and surface energy exchange in two high-Arctic tundra ecosystems (wet fen and dry heath) in Zackenberg, Northeast Greenland. We observed that record-low snow cover during the winter 2012/2013 resulted in a strong response of the heath ecosystem towards low evaporative capacity and substantial surface heat loss by sensible heat fluxes (H) during the subsequent snowmelt period and growing season. Above-average snow accumulation during the winter 2013/2014 promoted summertime ground heat fluxes (G) and latent heat fluxes (LE) at the cost of H. At the fen ecosystem a more muted response of LE, H and G was observed in response to the variability in snow accumulation. Overall, the differences in flux partitioning and in the length of the snowmelt periods and growing seasons during the 2 years had a strong impact on the total accumulation of the surface energy balance components. We suggest that in a changing climate with higher temperature and more precipitation the surface energy balance of this high-Arctic tundra ecosystem may experience a further increase in the variability of energy accumulation, partitioning and redistribution.

  14. Vertical distribution of bacterial community is associated with the degree of soil organic matter decomposition in the active layer of moist acidic tundra.

    Science.gov (United States)

    Kim, Hye Min; Lee, Min Jin; Jung, Ji Young; Hwang, Chung Yeon; Kim, Mincheol; Ro, Hee-Myong; Chun, Jongsik; Lee, Yoo Kyung

    2016-11-01

    The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.

  15. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    DEFF Research Database (Denmark)

    Blok, Daan; Weijers, Stef; Welker, Jeffrey M;

    2015-01-01

    out on C. tetragona individuals sampled from three tundra sites, each representing a distinct moisture regime (dry heath, meadow, moist meadow). Individuals were sampled along gradients of experimentally manipulated winter snow depths in a six-year old snow fence experiment: in ambient ( c . 20 cm...

  16. Spatial and Temporal Variability of Freeze back of Polygonal Tundra and Implications for Green House gas Emissions

    Science.gov (United States)

    Langer, M.; Westermann, S.; Piel, K.; Muster, S.; Abnizova, A.; Boike, J.

    2010-12-01

    Observations indicate a massive warming in the Arctic during the last decades and climate models predict an even increased warming trend in the following century. The changing climate conditions most likely degrade permafrost, which is often related to the formation of thermokarst lakes. The relevance of such larger water bodies for the emission of green house gases (GHG) in high latitude wetlands has been demonstrated by Walter et al. 2006. We investigate the physical processes and emission of GHG of small and shallow water bodies at our research site in the Lena Delta, Siberia. The polygonal land cover is characterized by thermokarst lakes (10%), wet depressed polygonal centers (31%), polygonal ponds (6%) and dry rims (53%). Using measured energy balance components, we compare the physical processes between the polygonal centers and ponds during 2007-2008. The physical measurements reveal a high inter-annual variability of time required for freezing of the ponds which can differ up to several months, whereas spring thawing appears to be a more constant process. The observed temporal variability is closely related to the snow cover evolution and the cloudiness, which both significantly alter the surface energy balance during the winter season. Different lengths of unfrozen periods of sediment and water favour microbial activity, which in turn could lead to inter-annual variability of green house gas production, and possibly to significant differences in green house gas emissions during the melt of ice cover. Due to the observed sensitivity of refreezing, future work on microbial activity and the energy balance of small water bodies in the arctic is highly desirable for understanding the emission potential of green house gases of permafrost regions. M Langer, S Westermann, S Muster, K Piel, J Boike. Permafrost and surface energy balance of a polygonal tundra site in Northern Siberia. Part 2: Winter. The Cryosphere. In review. KM Walter, SA Zimov, JP Chanton, D

  17. Spatial and Temporal Variation of Bulk Snow Properties in North Boreal and Tundra Environments Based on Extensive Field Measurements

    Science.gov (United States)

    Hannula, H. R.; Lemmetyinen, J.; Pulliainen, J.; Kontu, A.; Derksen, C.

    2015-12-01

    A large collection of in situ snow data was collected in a support of ESA SnowSAR airborne acquisitions in Northern Finland (Lemmetyinen et al., 2014). The purpose was to demonstrate the mission concept of the proposed ESA CoReH2O (Cold Regions Hydrology High-resolution Observatory, Rott et al., 2010) mission, a candidate in the ESA Earth Explorer series of Earth observing satellites. Around 21400 snow depth measurements, 600 SWE measurements and a number of distributed snow pit measurements were collected during 19 days between December 2011 and March 2012. In this study, these field measurements will be used to analyse the snow property variation within and between different land-cover types in North boreal and tundra environments. The wide heterogeneity of snow properties forms a challenge for remote snow information retrieval as even in flat areas the amount and type of heterogeneity vary in a number of different scales. Especially, information of hemispheric scale SWE variation is suffering from large uncertainties, although, assimilation of ground-based and space-borne information and algorithms specific for a land-cover type have lowered these remaining uncertainties (Takala et al., 2011). This study aims to contribute to this future work for more reliable SWE retrievals by statistically describing the snow parameter variation in these northern environments. Lemmetyinen, J., J. Pulliainen, A. Kontu, A. Wiesmann, C. Mätzler, H. Rott, K. Voglmeier, T. Nagler, A. Meta, A. Coccia, M. Schneebeli, M. Proksch, M. Davidson, D. Schüttemeyer, Chung-Chi Lin, and M. Kern, 2014. Observations of seasonal snow cover at X- and Ku bands during the NoSREx campaign. Proc. EUSAR 2014, 3-5 June 2014, Berlin. Rott, H., S.H. Yueh, D.W. Cline, C. Duguay, R. Essery et al., 2010. Cold Regions Hydrology High-resolution Observatory for Snow and Cold Land Processes. Proc. IEEE, 98(5), 752-765. Takala, M., K. Luojus, J. Pulliainen, C. Derksen, J. Lemmetyinen, J-P. Kärnä, J. Koskinen

  18. Demographic population structure and fungal associations of plants colonizing High Arctic glacier forelands, Petuniabukta, Svalbard

    Directory of Open Access Journals (Sweden)

    Jakub Těšitel

    2014-04-01

    Full Text Available The development of vegetation in Arctic glacier forelands has been described as unidirectional, non-replacement succession characterized by the gradual establishment of species typical for mature tundra with no species turnover. Our study focused on two early colonizers of High Arctic glacier forelands: Saxifraga oppositifolia (Saxifragaceae and Braya purpurascens (Brassicaceae. While the first species is a common generalist also found in mature old growth tundra communities, the second specializes on disturbed substrate. The demographic population structures of the two study species were investigated along four glacier forelands in Petuniabukta, north Billefjorden, in central Spitsbergen, Svalbard. Young plants of both species occurred exclusively on young substrate, implying that soil conditions are favourable for establishment only before soil crusts develop. We show that while S. oppositifolia persists from pioneer successional stages and is characterized by increased size and flowering, B. purpurascens specializes on disturbed young substrate and does not follow the typical unidirectional, non-replacement succession pattern. Plants at two of the forelands were examined for the presence of root-associated fungi. Fungal genus Olpidium (Fungus incertae sedis was found along a whole successional gradient in one of the forelands.

  19. Using Coarse Resolution Land Surface Temperature Time Series Data for Vegetation Analysis in the Taiga Tundra Transition Zone. a Case Study for Yamal, Krasnoyarsk Kray and Yakutia

    Science.gov (United States)

    Urban, M.; Schmullius, C. C.; Hese, S.; Herold, M.

    2011-12-01

    Predictions from Global Climate Models have shown increasing trends of global temperature for the 21th century. Since the arctic regions are highly vulnerable to global climate changes, rising temperatures will lead to an intensification of vegetation activity which benefits the extension of the boreal forest into tundra areas. Especially the recruitment of trees into the northern regions, which were controlled by summer temperature and the length of the growing season, is of high importance for the Global Climate System. The tree line movement will lead to a positive feedback in climate conditions since dark forest areas will reduce the albedo which leads to higher warming rates. A multi scale concept for the monitoring of the arctic tree line and changes in vegetation structure in the taiga tundra transition zone of Siberia using Earth Observation data and products on coarse, medium and high spatial resolution is presented. On coarse scale, global land surface temperature data from TERRA, AQUA, ERS and ENVISAT as well as land cover, biomass and phenological information will be integrated to analyze the vegetation composition within the taiga tundra transition zone. On medium spatial resolution, optical and SAR remote sensing data with a pixel size of approx. 30 m will be used to analyze the vegetation structure at the tree line. On very high spatial scale recent Rapideye and Corona imagery from the 1960s will be used to identify vegetation changes and the movement of trees within this 40-50 year time period. As this is a multi-scale approach, the findings on all spatial scales can be connected to each other to verify the results. The first results at coarse scale level have shown the relation between the mean summer temperature and the location of the arctic tree line, which was extracted from the Circumpolar Arctic Vegetation Map (CAVM) by Walker et al. (2005). The assumption is that trees have their optimal growing conditions at a mean summer temperature of 10

  20. Ground measurements of the hemispherical-directional reflectance of Arctic snow covered tundra for the validation of satellite remote sensing products

    Science.gov (United States)

    Ball, C. P.; Marks, A. A.; Green, P.; Mac Arthur, A.; Fox, N.; King, M. D.

    2013-12-01

    Surface albedo is the hemispherical and wavelength integrated reflectance over the visible, near infrared and shortwave infrared regions of the solar spectrum. The albedo of Arctic snow can be in excess of 0.8 and it is a critical component in the global radiation budget because it determines the proportion of solar radiation absorbed, and reflected, over a large part of the Earth's surface. We present here our first results of the angularly resolved surface reflectance of Arctic snow at high solar zenith angles (~80°) suitable for the validation of satellite remote sensing products. The hemispherical directional reflectance factor (HDRF) of Arctic snow covered tundra was measured using the GonioRAdiometric Spectrometer System (GRASS) during a three-week field campaign in Ny-Ålesund, Svalbard, in March/April 2013. The measurements provide one of few existing HDRF datasets at high solar zenith angles for wind-blown Arctic snow covered tundra (conditions typical of the Arctic region), and the first ground-based measure of HDRF at Ny-Ålesund. The HDRF was recorded under clear sky conditions with 10° intervals in view zenith, and 30° intervals in view azimuth, for several typical sites over a wavelength range of 400-1500 nm at 1 nm resolution. Satellite sensors such as MODIS, AVHRR and VIIRS offer a method to monitor the surface albedo with high spatial and temporal resolution. However, snow reflectance is anisotropic and is dependent on view and illumination angle and the wavelength of the incident light. Spaceborne sensors subtend a discrete angle to the target surface and measure radiance over a limited number of narrow spectral bands. Therefore, the derivation of the surface albedo requires accurate knowledge of the surfaces bidirectional reflectance as a function of wavelength. The ultimate accuracy to which satellite sensors are able to measure snow surface properties such as albedo is dependant on the accuracy of the BRDF model, which can only be assessed

  1. Landscape- and decadal-scale changes in the composition and structure of plant communities in the northern foothills of the Brooks Range of Arctic Alaska

    Science.gov (United States)

    Mercado-Díaz, J. A.; Gould, W. A.

    2010-12-01

    Scientists have predicted an increase in vascular plant cover in some tundra ecosystems as a result of global climate change. In Arctic Alaska, observational studies have documented increases in shrub cover for some regions; however, only a few studies have provided detailed quantitative evidence supporting the existence such changes. To address these shortcomings, we analyzed plant community data from 156 1m2 vegetation plots located at two 1km2 grids in Toolik Lake, Alaska. This data covered the time period from 1989-2008. After 18 years, we found that the relative abundance of vascular vegetation have increased by 16%, while the relative abundance of nonvascular vegetation decreased by 19%. Mean plant canopy height has experienced an increase from 4.4 cm in 1990 to 6.5 cm in 2008 and the extent and complexity of the canopy have increased over time from about 60% to 80%. Species diversity was also significantly reduced. While major vegetation changes in other tundra regions have been attributed to gradual increases in surface air temperature, changes documented in this study were apparently promoted by increasing soil moisture conditions that resulted from increased summer rainfall in our region. These results support the idea that tundra ecosystems in this region of the Alaskan Arctic are experiencing significant increases in aboveground standing crop and a shift in carbon allocation to vascular plants vs. bryophytes. These changes will likely affect important ecosystem processes like snow re-deposition, winter biological activities, nutrient cycling and could ultimately result in significant feedbacks to climate.

  2. A sampling method for tundra swans in the Bristol Bay lowlands of the northern Alaska Peninsula: A summary of a presentation given at the Refuges and Wildlife Project Leaders' meeting, U.S. Fish and Wildlife Service, December 8-11, 1986

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A "census" of tundra swans occurring in the northern Alaska Peninsula was collected over 1984-1985, with supplemental information provided from preliminary surveys...

  3. Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils

    Science.gov (United States)

    Treat, C.C.; Jones, Miriam C.; Camill, P.; Gallego-Sala, A.; Garneau, M.; Harden, Jennifer W.; Hugelius, G.; Klein, E.S.; Kokfelt, U.; Kuhry, P.; Loisel, J.; Mathijssen, J.H.; O'Donnell, J.A.; Oksanen, P.O.; Ronkainen, T.M.; Sannel, A.B.K.; Talbot, J. J.; Tarnocal, C.M.; Valiranta, M.

    2016-01-01

    Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, and thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, and C/N ratio) and C accumulation rates among vegetation types and environmental classes. Consequences of permafrost aggradation differed between boreal and tundra biomes, including differences in vegetation composition, C/N ratios, and N content. The vegetation composition of tundra permafrost peatlands was similar to permafrost-free fens, while boreal permafrost peatlands more closely resembled permafrost-free bogs. Nitrogen content in boreal permafrost and thawed permafrost peatlands was significantly lower than in permafrost-free bogs despite similar vegetation types (0.9% versus 1.5% N). Median long-term C accumulation rates were higher in fens (23 g C m−2 yr−1) than in permafrost-free bogs (18 g C m−2 yr−1) and were lowest in boreal permafrost peatlands (14 g C m−2 yr−1). The plant macrofossil record demonstrated transitions from fens to bogs to permafrost peatlands, bogs to fens, permafrost aggradation within fens, and permafrost thaw and reaggradation. Using data synthesis, we have identified predominant peatland successional pathways, changes in vegetation type, peat properties, and C accumulation rates associated with permafrost aggradation.

  4. Cultural Resilience of Social-ecological Systems in the Nenets and Yamal-Nenets Autonomous Okrugs, Russia: A Focus on Reindeer Nomads of the Tundra

    Directory of Open Access Journals (Sweden)

    Bruce C. Forbes

    2013-12-01

    Full Text Available Empirical data on resilience in social-ecological systems (SESs are reviewed from local and regional scale case studies among full-time nomads in the neighboring Nenets and Yamal-Nenets Autonomous Okrugs, Russia. The focus is on critical cultural factors contributing to SES resilience. In particular, this work presents an integrated view of people situated in specific tundra landscapes that face significantly different prospects for adaptation depending on existing or planned infrastructure associated with oil and gas development. Factors contributing to general resilience are compared to those that are adapted to certain spatial and temporal contexts. Environmental factors include ample space and an abundance of resources, such as fish and game (e.g., geese, to augment the diet of not only the migratory herders, but also residents from coastal settlements. In contrast to other regions, such as the Nenets Okrug, Yamal Nenets households consist of intact nuclear families with high retention among youth in the nomadic tundra population. Accepting attitudes toward exogenous drivers such as climate change and industrial development appear to play a significant role in how people react to both extreme weather events and piecemeal confiscation or degradation of territory. Consciousness of their role as responsible stewards of the territories they occupy has likely been a factor in maintaining viable wildlife populations over centuries. Institutions administering reindeer herding have remained flexible, especially on Yamal, and so accommodate decision-making that is sensitive to herders' needs and timetables. This affects factors such as herd demography, mobility and energetics. Resilience is further facilitated within the existing governance regimes by herders' own agency, most recently in the post-Soviet shift to smaller, privately managed herds that can better utilize available pastures in a highly dynamic environment experiencing rapid socio

  5. Tracing the catchment-scale hydrology of polygonal tundra and implications for lateral fluxes of carbon and nitrogen, Lena River Delta, Siberia

    Science.gov (United States)

    Runkle, Benjamin R. K.; Helbig, Manuel; Knoblauch, Christian; Kutzbach, Lars

    2014-05-01

    Surface-water hydrology changes the thermal regime of permafrost, carries varying amounts of nutrients depending on its flowpath, and provides a fuel for biogeochemical reactions, including the biological production of methane and carbon dioxide by soil microbes. In this work we present the findings of hydrological investigations in the ice-wedge polygon tundra of the Samoylov Research Island in Russia's Lena River Delta. We compare the catchment-scale behaviour of two adjacent watersheds through stable isotope analysis conducted over two years of sampling (2012-13). This work also incorporates the use of conservative natural tracers such as silica concentration and sheds light on mechanisms for the transport of dissolved organic carbon into the Lena River system. Hydrological discharge measurements taken over three years (2011-13) reveal generally similar patterns in rainfall response and permafrost thaw between two adjacent watersheds - one smaller (0.02 km2) and dominantly comprised of the characteristic polygonal tundra and the second larger one (0.6 km2) also containing two large surface-water reservoirs, namely a degraded ice-wedge network and a lake. However, stable isotope measurements of hydrogen (δD) and oxygen (δ18O) reveal that the latter watershed maintains a significant surface-water isotopic signature throughout the summer period, with greater influence of evaporation on watershed dynamics. The smaller, characteristic polygon catchment shows ever-increasing influence of deeper flow paths as the thaw depth increases over the season. These small catchments release low amounts of dissolved organic carbon and nitrogen both in terms of concentration (carbon budget (water, carbon, and energy cycles. Furthermore, modeling strategies will benefit from simpler process-based representations of landscape processes when upscaling to examine regional landscape-atmosphere interactions.

  6. Modeling hydrology and silicon-carbon interactions in taiga and tundra biomes from a landscape perspective: Implications for global warming feedbacks

    Science.gov (United States)

    Smedberg, Erik; MöRth, Carl-Magnus; Swaney, Dennis P.; Humborg, Christoph

    2006-06-01

    We used a simple hydrological-biogeochemical mixing model to test the hypothesis that export of total organic carbon occurring mainly during spring in taiga and tundra watersheds might be compensated by production and export of bicarbonate (HCO3-) from groundwater during the rest of the year. The investigated watersheds are located in northern Sweden close to the Arctic Circle. An elevated spring flow peak due to snowmelt characterizes the hydrology of boreal and arctic river systems. During this snowmelt, total organic carbon (TOC), previously stored as soil carbon, is flushed and exported from the watersheds, and can be released to the atmosphere via heterotrophic remineralization during riverine transport to the sea, thereby contributing to atmospheric CO2. The TOC yields of the watersheds investigated increased with vegetation and peat cover and ranged across watersheds from 0.5 to 2.8 tons km-2 yr-1. During frozen periods, streamflow is dominated by "old" groundwater. This water has percolated through the soils and is rich in DSi and bicarbonate; that is, atmospheric carbon that has been "consumed" in chemical weathering processes is partly exported as bicarbonate to the sea, where carbon is stored as CaCO3 for geological time. The bicarbonate export of the watersheds investigated was between 0.4 and 1.2 tons C km-2 yr-1 corresponding to 15-73% of the TOC export. Very likely, global warming will affect water flow through the soils in taiga and tundra ecosystems and thus will have an effect on watershed carbon budgets. This bicarbonate export may compensate for significant amounts of the exported TOC, thereby reducing the positive feedback to atmospheric CO2.

  7. Estimating Spatially Heterogeneous Contributions to Ecosystem Scale Fluxes Directly From Eddy Covariance Measurements: A Case Study in Siberian wet Polygonal Tundra on Samoylov Island, Lena River Delta

    Science.gov (United States)

    Sachs, T.; Eugster, W.

    2008-12-01

    The eddy covariance method is used widely to measure the turbulent exchange fluxes of climate relevant gases such as carbon dioxide and methane. One important assumption in eddy covariance theory is homogeneity of the surface over which measurements are conducted. However, in reality the method is often applied in very heterogeneous areas and the effect of that heterogeneity on the measurement time series is not fully agreed on in the scientific community. Since the eddy covariance method relies on the time-for- space substitution concept (Taylor's frozen turbulence field assumption), spatial disturbance of the assumed homogeneity should leave similar traces in the time series data that could be detected with state-of-the-art times series statistics approaches, primarily frequency analysis. This should be easiest to detect where the observed heterogeneity is characterized by the steepest possible small-scale spatial contrast of fluxes while also exhibiting certain regularity. Thus, polygonal tundra with its regular micro-relief of very wet polygon depressions with high rates of photosynthesis and methane emission on the one hand and relatively "dry" elevated polygon rims with lower rates of photosynthesis, higher rates of respiration, and extremely low methane emissions on the other hand is considered well-suited to explore the performance of this technique of flux footprint separation. We present a case study using eddy covariance data of water vapour, carbon dioxide and methane from the Lena River Delta, Siberia, and high-resolution aerial photography to demonstrate that spatial heterogeneity correlates with deviations in eddy covariance co-spectra from the idealized co-spectra. This new method - if successful beyond a single case study - could become widely used wherever fluxes are measured over spatially heterogeneous surfaces. It would be especially helpful to move towards more accurate upscaling in areas where emission rates and processes vary greatly on

  8. Thysanoptera: plantas visitadas e hospedeiras no Parque Estadual de Itapuã, Viamão, RS, Brasil Thysanoptera: visited and host plants at Parque Estadual de Itapuã, Viamão, RS, Brazil

    Directory of Open Access Journals (Sweden)

    Silvia M. J. Pinent

    2005-03-01

    Full Text Available O conhecimento científico sobre a associação de Thysanoptera com plantas nativas ou cultivadas na região Neotropical é praticamente inexistente. Este trabalho objetivou identificar as espécies de tripes e as plantas por eles visitadas ou utilizadas como hospedeiras em uma unidade de conservação, o Parque Estadual de Itapuã (30°22'S 51°02'W, Viamão, Rio Grande do Sul, Brasil. Entre junho de 1999 e maio de 2001, ramos (n=1.274, flores (n=774 e touceiras de gramíneas (n=596 foram sistematicamente amostradas em 20 pontos em quatro transectos estandardizados. O total de 72 espécies de plantas pertencentes a 26 famílias foram identificadas, 60 das quais foram registradas como hospedeiras. Do total de 9.602 espécimes de tripes, 4.900 (50% foram registrados em flores, 3.764 (39% em ramos e 938 (10% nas touceiras de gramíneas. Para 6.533 dos espécimes (4.480 imaturos e 2.053 adultos, foi possível identificar a planta na qual foram coletados. De uma riqueza total de 61 espécies de tripes, 35 foram registradas em flores, 36 em ramos e 14 em touceiras de gramíneas. As espécies de tripes mais abundantes e as plantas que apresentaram a mais alta diversidade de tripes são comentadas.The scientific knowledge about the association of Thysanoptera with native or cultivated plants in the Neotropical region is practically nonentity. This work aimed at identifying the thrips species and the plants visited by them or used as hosts in a Conservation Unit, the "Parque Estadual de Itapuã" (30°22'S 51°02'W, Viamão, Rio Grande do Sul, Southern Brazil. Between June 1999 and May 2001, branches (n=1,274, flowers (n=774 and grass tussocks (n=596 were systematically sampled at 20 points in four standardized transects. A total of 72 plant species belonging to 26 families were identified, 60 of those were registered as host plants. From a total of 9,602 thrips specimens, 4,900 (50% were registered in flowers, 3,764 (39% in branches and 938 (10% in

  9. Soil nitrogen dynamics and productivity of snowpack Sanguisorba sitchensis community in alpine tundra of Changbai Mountain, China%长白山高山苔原雪斑大白花地榆群落土壤氮素动态与生产力的关系

    Institute of Scientific and Technical Information of China (English)

    徐倩倩; 刘琪璟; 张国春

    2011-01-01

    Aims Snowpack plant communities in alpine tundra are active in comparison with surrounding vegetation, despite the short growing season due to thick snow cover. Our objective was to understand the growth mechanism of snowpack communities.Methods The nutrient dynamics and primary productivity of snowpack Sanguisorba sitchensis community in alpine tundra of Changbai Mountain was investigated in different seasons.Important findings Soil temperature under snowpack during winter was warmer than snow-free areas, and the minimum temperature was significantly higher. Litter decomposition and nitrogen mineralization under snowpack were active even in winter, and nitrogen content was high with rapid mineralization. Annual net primary productivity was 4 046 kg·hm-2·a-1. The unique hydro-thermo conditions, nutrient cycling features and high leaf area index were key factors maintaining community structure and primary productivity.%在高山苔原冬季积雪覆盖的群落生长季短,但明显比周围群落生长茂盛.为了说明雪斑地段群落生长机理,对长白山苔原雪斑土壤氮素动态以及大白花地榆(Sanguisorba sitchensis)群落生产力进行了连续测定.雪斑群落土壤冬季相对温暖,最低日平均温度-1.4℃,裸露地段-16.9℃,全年水分条件充足;积雪期凋落物分解和氮矿化均在进行,土壤具有很高的氮素含量及矿化速率.大白花地榆地上部分净初级生产力为4 046 kg·hm·a.正是独特的水热条件和养分条件,以及具有很大的叶面积同化器官,高山苔原雪斑地段的大白花地榆群落才得以维持生存并表现出很高的生产力水平.

  10. Plant Pb Contents in Elevation Zones of the Changbai Mountain National Nature Reserve, China

    Institute of Scientific and Technical Information of China (English)

    BAI Jun-Hong; CUI Bao-Shan; DENG Wei; WANG Qing-Gai; DING Qiu-Yi

    2007-01-01

    Typical plants and soils of four elevation zones,mountain tundra(Zone A),Betula ermanii forest(Zone B),mountain dark coniferous forest(Zone C),and mountain coniferous and broad-leaf forest(Zone D),along the vertical gradient of the northern mountain slope of the Changbai Mountain National Nature Reserve,Jilin Province,China,were sampled to study the relationship between plant and soil Pb,and to compare the Pb levels in typical plant types within the same elevation zone.The Pb contents in the soil and plant samples were measured by using a flame atomic absorption spectrophotometer.The results showed that the average plant Pb contents of the four plant elevation zones were lower than the average worldwide level.except for Zone B,Compared with the average level in China or the average worldwide level,the soil Pb levels of the four plant zones were higher,with Zones D and B having the lowest and highest averages,respectively.Plant Pb levels fluctuated from the upper to the lower zones,in a pattern of low-high-low-high,which was the same as that of the soils in the four zones.Furthermore.plant Pb was closely related to soll Pb.Depending on the plant species and plant parts,large differences were found in the Pb levels of typical plants within each zone.In Zone A,Vaccinium uliginosum and Rhododendron redowskianum had higher Pb levels than the other plants.In Zone C,the Pb levels in the branches of both plant species were higher than those in the leaves,which was contrary to Zone D.In Zone B,the Pb levels in the plant parts varied greatly with plant species.

  11. Methane dynamics in Northern Wetlands: Significance of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Joabsson, Anna

    2001-09-01

    The studies presented illustrate several different aspects of the impact of vascular plants on methane emissions from northern natural wetlands. The subject has been approached on different scales, ranging from the study of microbial substrates in the vicinity of a single plant root, to an attempt to extrapolate some of the results to the entire northern hemisphere north of 50 meridian. The main overall conclusions from the papers are that vascular plants affect net methane emissions 1) by offering an efficient route of transport to the atmosphere so that methane oxidation in oxic surface soils is avoided, and 2) by being sources of methanogenic substrate. The degree to which vascular wetland plants affect methane emissions seems to be dependent on species-specific differences in both the capacity to act as gas conduits and the exudation of labile carbon compounds to the soil. An intimate coupling between vascular plant production and methane emission was found in an Arctic tundra wetland, although other environmental variables (water table, temperature) also contributed significantly to the explained variation in methane exchange. Studies of vascular plant extidation of organic acids suggest that the available pool of methanogenic substrates is both qualitatively and quantitatively correlated to vascular plant production (photosynthetic rate). On global scales, vascular plant production as a single factor does not seem to be sufficient to explain the majority of variation in methane flux patterns. Based on comparable experiments at five different sites in the northwestern Eurasian and Greenlandic North, we suggest that mean seasonal soil temperature is the best predictor of methane exchange on broad spatial and temporal scales.

  12. Enhancement of local species richness in tundra by seed dispersal through guts of muskox and barnacle goose

    DEFF Research Database (Denmark)

    Bruun, Hans Henrik; Lundgren, Rebekka; Philipp, Marianne

    2008-01-01

    The potential contribution of vertebrate-mediated seed rain to the maintenance of plant community richness in a High Arctic ecosystem was investigated. We analyzed viable seed content in dung of the four numerically most important terrestrial vertebrates in Northeast Greenland - muskox (Ovibos...... moschatus), barnacle goose (Branta leucopsis), Arctic fox (Alopex lagopus) and Arctic hare (Lepus arcticus). High numbers of plant propagules were found in the dung of muskox and barnacle goose. Seeds of many plant species were found in the faeces of one vertebrate species only. Propagule composition...... indices), and dung deposition, especially by muskox, often brought new species to the receiving community. The results suggest that endozoochorous propagule dispersal in the Arctic has a great potential in the generation and maintenance of local species richness, albeit being little specialized...

  13. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms

    DEFF Research Database (Denmark)

    Grogan, P.; Michelsen, A.; Ambus, P.;

    2004-01-01

    Freeze-thaw fluctuations in soil temperature may be critical events in the annual pattern of nutrient mobilisation that supplies plant growth requirements in some temperate, and most high latitude and high altitude ecosystems. We investigated the effects of two differing freeze-thaw regimes, each...

  14. Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming.

    Science.gov (United States)

    Rousk, Kathrin; Michelsen, Anders

    2017-04-01

    Nitrogen (N) fixation in moss-associated cyanobacteria is one of the main sources of available N for N-limited ecosystems such as subarctic tundra. Yet, N2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low-frequency in situ measurements to several weeks, months or even the entire growing season without taking into account changes in abiotic conditions cannot capture the variation in moss-associated N2 fixation. We therefore aimed to estimate moss-associated N2 fixation throughout the snow-free period in subarctic tundra in field experiments simulating climate change: willow (Salix myrsinifolia) and birch (Betula pubescens spp. tortuosa) litter addition, and warming. To achieve this, we established relationships between measured in situ N2 fixation rates and soil moisture and soil temperature and used high-resolution measurements of soil moisture and soil temperature (hourly from May to October) to model N2 fixation. The modelled N2 fixation rates were highest in the warmed (2.8 ± 0.3 kg N ha(-1) ) and birch litter addition plots (2.8 ± 0.2 kg N ha(-1) ), and lowest in the plots receiving willow litter (1.6 ± 0.2 kg N ha(-1) ). The control plots had intermediate rates (2.2 ± 0.2 kg N ha(-1) ). Further, N2 fixation was highest during the summer in the warmed plots, but was lowest in the litter addition plots during the same period. The temperature and moisture dependence of N2 fixation was different between the climate change treatments, indicating a shift in the N2 fixer community. Our findings, using a combined empirical and modelling approach, suggest that a longer snow-free period and increased temperatures in a future climate will likely lead to higher N2 fixation rates in mosses. Yet, the consequences of increased litter fall on moss-associated N2 fixation due to shrub expansion in the Arctic will depend on the shrub species' litter traits.

  15. Assessment of a modern pollen-climate calibration set for Arctic tundra and northern taiga biomes from Yakutia (eastern Siberia) and its applicability to a Holocene record

    Science.gov (United States)

    Klemm, Juliane; Herzschuh, Ulrike

    2013-04-01

    The Arctic is expected to respond stronger and earlier to future global warming than other regions world-wide. This region is of particular importance because, on the one hand, even humble climate oscillations can be amplified through complex terrestrial ecosystem reactions. On the other hand, Arctic changes may feedback globally via atmospheric and oceanic circulations or variation of greenhouse gas concentrations. Past variations need to be documented with high confidence to gain important insights in constraints and magnitude of predicted Arctic changes. Documentation beyond instrumental records uses long-term proxy information obtained by analyses of sedimentary archives such as pollen records of lacustrine sediment cores. Reliable climate reconstruction from the warming-sensitive Arctic region are hitherto lacking because a) modern pollen spectra were rarely collected from sedimentary origin, and b) because the obtained reconstructions were not rigorously evaluated. This investigation aims to establish, evaluate, and apply a modern pollen-climate data set from the transition zone between arctic tundra and light taiga in Arctic Siberia. Our study area is located in the Northern Siberian Lowlands of Yakutia. Lacustrine samples (n=96) were collected along four north-to-south transects, which cover the major vegetation types and span a broad temperature and precipitation gradient (TJuly: 7.5-18.8°C; Pann: 114-315mm). Redundancy analyses indicated the relationship between modern pollen signal and their corresponding vegetation types and climate. Performance of transfer functions for TJuly and Pann were validated and tested on spatial-autocorrelation effects. They were applied to the one lake pollen record, which covers the last 12,000 years and was retrieved in the Siberian Arctic. The validation of the calibration set resulted in root mean square errors of prediction of 1.67°C for TJuly and 40mm for Pann, which equal 14.8% (TJuly) and 19.9% (Pann) of the

  16. Substrate Geochemistry and Soil Development in Boreal Forest and Tundra Ecosystems in the Yukon-Tanana Upland and Seward Peninsula, Alaska

    Science.gov (United States)

    Gough, L.P.; Crock, J.G.; Wang, B.; Day, W.C.; Eberl, D.D.; Sanzolone, R.F.; Lamothe, P.J.

    2008-01-01

    We report on soil development as a function of bedrock type and the presence of loess in two high latitude ecosystems (boreal forest and tundra) and from two regions in Alaska?the Yukon-Tanana Upland (YTU, east-central Alaska) and the Seward Peninsula (SP, far-west coastal Alaska). This approach to the study of 'cold soils' is fundamental to the quantification of regional geochemical landscape patterns. Of the five state factors in this study, bedrock and biota (ecosystem; vegetation zone) vary whereas climate (within each area) and topography are controlled. The influence of time is assumed to be controlled, as these soils are thousands of years old (late Quaternary to Holocene). The primary minerals in soils from YTU, developed over loess and crystalline bedrock (metamorphic and intrusive), are quartz, plagioclase, and 2:1 clays; whereas in the SP, where loess and metasedimentary bedrock (schist and quartzite) predominate, they are quartz and muscovite. The A horizon of both regions is rich in peat. Examination of the ratio of mobile (K2O, CaO, and Fe2O3) to immobile (TiO2) major oxides, within each region, shows that very little difference exists in the chemical weathering of soils developed between the two ecosystems examined. Differences were observed between tundra soils developed in the two regions. These differences are most probably due to the dissimilarity in the geochemical importance of both loess and bedrock. A minimal loss of cadmium with soil depth is seen for soils developed over YTU crystalline bedrock in the boreal forest environments. This trend is related to the mobility of cadmium in these soils as well as to its biogenic cycling. Major differences were observed in the proportion of cadmium and zinc among the A, B, and C horizon material sequestered in various soil fractions as measured by sequential soil extractions. These trends followed such variables as the decrease with depth in organic matter, the change in clay minerals, and the change

  17. Poisonous Plants

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH POISONOUS PLANTS Recommend on Facebook Tweet Share Compartir Photo courtesy ... U.S. Department of Agriculture Many native and exotic plants are poisonous to humans when ingested or if ...

  18. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water....

  19. Manufacturing Plants

    Institute of Scientific and Technical Information of China (English)

    TANG YUANKAI

    2010-01-01

    @@ Sunshine, air and soil are indispensable for green plants. This might be axi-omatic but not in a plant factory. By creating a plant factory, scientists are trying to grow plants where natural elements are deficient or absent, such as deserts,islands, water surfaces, South and North poles and space, as well as in human habi-tats such as skyscrapers in modern cities.

  20. Manufacturing Plants

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    China starts to produce vegetables and fruits in a factory sunshine,air and soil are indispensable for green plants. This might be axiomatic but not in a plant factory. By creating a plant factory,scientists are trying to grow plants where natural elements are deficient or absent,such as deserts, islands,water surfaces,South and North poles and space,as well as in human habitats such as skyscrapers in modern cities.

  1. Medicinal Plants.

    Science.gov (United States)

    Phillipson, J. David

    1997-01-01

    Highlights the demand for medicinal plants as pharmaceuticals and the demand for health care treatments worldwide and the issues that arise from this. Discusses new drugs from plants, anticancer drugs, antiviral drugs, antimalarial drugs, herbal remedies, quality, safety, efficacy, and conservation of plants. Contains 30 references. (JRH)

  2. Autoluminescent plants.

    Directory of Open Access Journals (Sweden)

    Alexander Krichevsky

    Full Text Available Prospects of obtaining plants glowing in the dark have captivated the imagination of scientists and layman alike. While light emission has been developed into a useful marker of gene expression, bioluminescence in plants remained dependent on externally supplied substrate. Evolutionary conservation of the prokaryotic gene expression machinery enabled expression of the six genes of the lux operon in chloroplasts yielding plants that are capable of autonomous light emission. This work demonstrates that complex metabolic pathways of prokaryotes can be reconstructed and function in plant chloroplasts and that transplastomic plants can emit light that is visible by naked eye.

  3. Plant volatiles.

    Science.gov (United States)

    Baldwin, Ian T

    2010-05-11

    Plant volatiles are the metabolites that plants release into the air. The quantities released are not trivial. Almost one-fifth of the atmospheric CO2 fixed by land plants is released back into the air each day as volatiles. Plants are champion synthetic chemists; they take advantage of their anabolic prowess to produce volatiles, which they use to protect themselves against biotic and abiotic stresses and to provide information - and potentially disinformation - to mutualists and competitors alike. As transferors of information, volatiles have provided plants with solutions to the challenges associated with being rooted in the ground and immobile.

  4. A reduced-order modeling approach to represent subgrid-scale hydrological dynamics for land-surface simulations: application in a polygonal tundra landscape

    Science.gov (United States)

    Pau, G. S. H.; Bisht, G.; Riley, W. J.

    2014-09-01

    Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO2, CH4) exchanges with the atmosphere range from the molecular scale (pore-scale O2 consumption) to tens of kilometers (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a reduced-order modeling (ROM) technique known as "proper orthogonal decomposition mapping method" that reconstructs temporally resolved fine-resolution solutions based on coarse-resolution solutions. We developed four different methods and applied them to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface-subsurface isothermal simulations were performed for summer months (June-September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998-2000) to build ROMs of the 4-D soil moisture field for the study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 103) with very small relative approximation error (constructed at different scales together hierarchically, this method has the potential to efficiently increase the resolution of land models for coupled climate simulations to spatial scales consistent with mechanistic physical process representation.

  5. [Plant hormones, plant growth regulators].

    Science.gov (United States)

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.

  6. Electronic plants

    Science.gov (United States)

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T.; Berggren, Magnus

    2015-01-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  7. Spatial variations of Pb in the vertical zone of the soil-plant system in the Changbai Mountain National Nature Reserve

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The characteristics of vertical and horizontal variations of lead element(Pb) in soil-plant system of vertical zone in Changbai Mountain National Nature Reserve(CNNR) were studied.The results showed that Pb concentrations in soils of vertical zone are all above 25 mg/kg,and the average Pb concentration of each soil zone negatively correlates its degree of variation,i.e.brown coniferous forest soil zone has the lowest average Pb concentration of four soil zones,and the highest horizontal variation; however,mountain soddy forest soil has the highest average Pb concentration,and the lowest horizontal variation; the average concentration of plant Pb of each plant zone is lower than the worldwide average level of Pb in plant( Clarke),respectively,and plant Pb content order is consistent with soil Pb content order,but their horizontal variations are different from those in soil zones,the variation of mountain tundra forest zone is highest,but Betula ermanii forest zone the lowest.Vertical variation of plant Pb is obviously higher than that in soils with variation coefficient of 89.76%; the enrichment capability of plant for Pb is depended on the plant types and the different organs of plant; parent material and parent rock,pH values,soil organic matter and soil particle fraction etc.are the main factors influencing variations of Pb content in soil-plant system of vertical zone in CNNR.

  8. Plant Behavior

    Science.gov (United States)

    Liu, Dennis W. C.

    2014-01-01

    Plants are a huge and diverse group of organisms, ranging from microscopic marine phytoplankton to enormous terrestrial trees epitomized by the giant sequoia: 300 feet tall, living 3000 years, and weighing as much as 3000 tons. For this plant issue of "CBE-Life Sciences Education," the author focuses on a botanical topic that most…

  9. Plant Behavior

    Science.gov (United States)

    Liu, Dennis W. C.

    2014-01-01

    Plants are a huge and diverse group of organisms, ranging from microscopic marine phytoplankton to enormous terrestrial trees epitomized by the giant sequoia: 300 feet tall, living 3000 years, and weighing as much as 3000 tons. For this plant issue of "CBE-Life Sciences Education," the author focuses on a botanical topic that most…

  10. Plant minichromosomes.

    Science.gov (United States)

    Birchler, James A; Graham, Nathaniel D; Swyers, Nathan C; Cody, Jon P; McCaw, Morgan E

    2016-02-01

    Plant minichromosomes have the potential for stacking multiple traits on a separate entity from the remainder of the genome. Transgenes carried on an independent chromosome would facilitate conferring many new properties to plants and using minichromosomes as genetic tools. The favored method for producing plant minichromosomes is telomere-mediated chromosomal truncation because the epigenetic nature of centromere function prevents using centromere sequences to confer the ability to organize a kinetochore when reintroduced into plant cells. Because haploid induction procedures are not always complete in eliminating one parental genome, chromosomes from the inducer lines are often present in plants that are otherwise haploid. This fact suggests that minichromosomes could be combined with doubled haploid breeding to transfer stacked traits more easily to multiple lines and to use minichromosomes for massive scale genome editing.

  11. Spatial variation in landscape-level CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle.

    Science.gov (United States)

    Sturtevant, Cove S; Oechel, Walter C

    2013-09-01

    Regional quantification of arctic CO2 and CH4 fluxes remains difficult due to high landscape heterogeneity coupled with a sparse measurement network. Most of the arctic coastal tundra near Barrow, Alaska is part of the thaw lake cycle, which includes current thaw lakes and a 5500-year chronosequence of vegetated thaw lake basins. However, spatial variability in carbon fluxes from these features remains grossly understudied. Here, we present an analysis of whole-ecosystem CO2 and CH4 fluxes from 20 thaw lake cycle features during the 2011 growing season. We found that the thaw lake cycle was largely responsible for spatial variation in CO2 flux, mostly due to its control on gross primary productivity (GPP). Current lakes were significant CO2 sources that varied little. Vegetated basins showed declining GPP and CO2 sink with age (R(2) = 67% and 57%, respectively). CH4 fluxes measured from a subset of 12 vegetated basins showed no relationship with age or CO2 flux components. Instead, higher CH4 fluxes were related to greater landscape wetness (R(2) = 57%) and thaw depth (additional R(2) = 28%). Spatial variation in CO2 and CH4 fluxes had good satellite remote sensing indicators, and we estimated the region to be a small CO2 sink of -4.9 ± 2.4 (SE) g C m(-2) between 11 June and 25 August, which was countered by a CH4 source of 2.1 ± 0.2 (SE) g C m(-2) . Results from our scaling exercise showed that developing or validating regional estimates based on single tower sites can result in significant bias, on average by a factor 4 for CO2 flux and 30% for CH4 flux. Although our results are specific to the Arctic Coastal Plain of Alaska, the degree of landscape-scale variability, large-scale controls on carbon exchange, and implications for regional estimation seen here likely have wide relevance to other arctic landscapes.

  12. Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia)

    Science.gov (United States)

    Hildegard Zimmermann, Heike; Raschke, Elena; Saskia Epp, Laura; Rosmarie Stoof-Leichsenring, Kathleen; Schwamborn, Georg; Schirrmeister, Lutz; Overduin, Pier Paul; Herzschuh, Ulrike

    2017-02-01

    Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions.

  13. Plant Macrofossils

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past vegetation and environmental change derived from plant remains large enough to be seen without a microscope (macrofossils), such as leaves, needles,...

  14. Seed planting

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes prairie seed plantings on Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge) between 1992 and 2009.

  15. T Plant

    Data.gov (United States)

    Federal Laboratory Consortium — Arguably the second most historic building at Hanford is the T Plant.This facility is historic in that it's the oldest remaining nuclear facility in the country that...

  16. TRANSGENIC PLANTS

    African Journals Online (AJOL)

    MANAGEMENT OF INSECT PEST RESISTANCE WHILE USING ... Stratégies to delay the development of résistance while using Bt engineered plants are many and would need to be ..... training, pesticide use patterns change, and the.

  17. Effects of Experimental Warming of the Deep Soil and Permafrost on Ecosystem Carbon Balance in Alaskan Tundra (Invited)

    Science.gov (United States)

    Schuur, E. A.; Natali, S.; Trucco, C.; Hicks, C. E.; Crummer, K. G.; Baron Lopez, A. F.

    2010-12-01

    Approximately 1670 Pg (billion tons) of soil carbon are stored in the northern circumpolar permafrost zone, more than twice as much carbon than currently contained in the atmosphere. Permafrost thaw, and the microbial decomposition of previously frozen organic carbon, is considered one of the most likely positive feedbacks from terrestrial ecosystems to the atmosphere in a warmer world. Yet, the rate and form of release is highly uncertain but crucial for predicting the strength and timing of this carbon cycle feedback this century and beyond. Here we report results from a new ecosystem warming manipulation —the Carbon in Permafrost Experimental Heating Research (CiPEHR) project—where we increased air and soil temperature, and degraded the surface permafrost. We used snow fences coupled with spring snow removal to increase deep soil temperatures and thaw depth (winter warming) and open top chambers to increase growing season air temperatures (summer warming). Winter warming increased depth-integrated soil temperature by 1.5 degrees C, which resulted in a 10% increase thaw depth that persisted into the following winter. Surprisingly, the 2 kg C m-2 contained in the additional thawed soil in the winter warming plots did not result in significant changes in cumulative growing season respiration, which may have been inhibited by soil saturation at the base of the active layer. However, the limited effect of deep soil warming during the growing season contrasted with the large increase in winter respiration, which in sum doubled the net loss of carbon dioxide to the atmosphere on an annual basis. While most changes to the abiotic environment at CiPEHR were driven by winter warming, summer warming (mainly air) effects on plant and soil processes resulted in 20 percent increases in both gross primary productivity and growing season ecosystem respiration and significantly altered the age and sources of carbon dioxide respired from this ecosystem. These results

  18. Land Cover Characterization and Classification of Arctic Tundra Environments by Means of Polarized Synthetic Aperture X- and C-Band Radar (PolSAR and Landsat 8 Multispectral Imagery — Richards Island, Canada

    Directory of Open Access Journals (Sweden)

    Tobias Ullmann

    2014-09-01

    Full Text Available In this work the potential of polarimetric Synthetic Aperture Radar (PolSAR data of dual-polarized TerraSAR-X (HH/VV and quad-polarized Radarsat-2 was examined in combination with multispectral Landsat 8 data for unsupervised and supervised classification of tundra land cover types of Richards Island, Canada. The classification accuracies as well as the backscatter and reflectance characteristics were analyzed using reference data collected during three field work campaigns and include in situ data and high resolution airborne photography. The optical data offered an acceptable initial accuracy for the land cover classification. The overall accuracy was increased by the combination of PolSAR and optical data and was up to 71% for unsupervised (Landsat 8 and TerraSAR-X and up to 87% for supervised classification (Landsat 8 and Radarsat-2 for five tundra land cover types. The decomposition features of the dual and quad-polarized data showed a high sensitivity for the non-vegetated substrate (dominant surface scattering and wetland vegetation (dominant double bounce and volume scattering. These classes had high potential to be automatically detected with unsupervised classification techniques.

  19. Mapping plant functional type distributions in Arctic ecosystems using WorldView-2 satellite imagery and unsupervised clustering

    Science.gov (United States)

    Langford, Z.; Kumar, J.; Hoffman, F. M.; Sloan, V. L.; Norby, R. J.; Wullschleger, S. D.

    2014-12-01

    The Arctic has emerged as an important focal point for the study of climate change. Arctic vegetation is particularly sensitive to warming conditions and likely to exhibit shifts in species composition, phenology and productivity under changing climate. Modeling of Arctic tundra vegetation requires representation of the heterogeneous tundra landscape, which includes representation of individual plant functional types (PFT). Vegetation exhibits unique spectral characteristics that can be harnessed to discriminate plant types and develop quantitative vegetation indices, such as the Normalized Difference Vegetation Index. We have combined high resolution multi-spectral remote sensing from the WorldView-2 satellite with LiDAR-derived digital elevation models to characterize the tundra landscape in four 100m X 100m sites within the Barrow Environmental Observatory, a 3021 hectare research reserve located at the northern most location on the Alaskan Arctic Coastal Plain. Classification of landscape PFT's using spectral and topographic characteristics yields spatial regions with expectedly similar vegetation characteristics. A field campaign was conducted during peak growing season (June - August) to collect vegetation surveys from a number of 1m x 1m plots in the study region, which were then analyzed for distribution of vegetation types in the plots. Statistical relationships were developed between spectral and topographic characteristics and vegetation type distributions at the vegetation plots. These derived relationships were employed to statistically upscale the vegetation distributions for the landscape based on spectral characteristics. We will describe two versions of PFT upscaling from WorldView-2 imagery: 1) a version computed from multiple imagery through the growing season and 2) a version computed from a single image in the middle of the growing season. This approach allowed us to test the degree to which including phenology helps predict PFT distribution

  20. A zero-power warming chamber for investigating plant responses to rising temperature

    Directory of Open Access Journals (Sweden)

    K. F. Lewin

    2017-09-01

    Full Text Available Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by  ∼  1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be  ∼  2–3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming

  1. The influence of habitat on the evolution of plants: a case study across Saxifragales.

    Science.gov (United States)

    de Casas, Rafael Rubio; Mort, Mark E; Soltis, Douglas E

    2016-12-01

    Organismal evolution tends to be closely associated with ecological conditions. However, the extent to which this association constrains adaptation or diversification into new habitats remains unclear. We studied habitat evolution in the hyper-diverse angiosperm clade Saxifragales. We used species-level phylogenies for approx. 950 species to analyse the evolution of habitat shifts as well as their influence on plant diversification. We combined habitat characterization based on floristic assignments and state-of-the art phylogenetic comparative methods to estimate within- and across-habitat diversification patterns. Our analyses showed that Saxifragales diversified into multiple habitats from a forest-inhabiting ancestor and that this diversification is governed by relatively rare habitat shifts. Lineages are likely to stay within inferred ancestral ecological conditions. Adaptation to some habitat types (e.g. aquatic, desert) may be canalizing events that lineages do not escape. Although associations between increased diversification rates and shifts in habitat preferences are occasionally observed, extreme macroevolutionary rates are closely associated with specific habitats. Lineages occurring in shrubland, and especially tundra and rock cliffs, exhibit comparatively high diversification, whereas forest, grassland, desert and aquatic habitats are associated with low diversification. The likelihood of occupation of new habitats appears to be asymmetric. Shifts to aquatic and desert habitats may be canalizing events. Other habitats, such as tundra, might act as evolutionary sources, while forests provide the only habitat seemingly colonized easily by lineages originating elsewhere. However, habitat shifts are very rare, and any major environmental alteration is expected to have dramatic evolutionary consequences. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  2. Toxic plants

    Science.gov (United States)

    Reproductive performance is the single most important economic animal trait to the livestock industry and is reported to be 5 and 10 times more significant than carcass quality and growth traits respectively. Poisonous plants impact livestock reproductive function in a major way and have been shown...

  3. Nonindigenous Plant Advantage in Native and Exotic Australian Grasses under Experimental Drought, Warming, and Atmospheric CO2 Enrichment

    Directory of Open Access Journals (Sweden)

    Brendan J. Lepschi

    2013-03-01

    Full Text Available A general prediction of ecological theory is that climate change will favor invasive nonindigenous plant species (NIPS over native species. However, the relative fitness advantage enjoyed by NIPS is often affected by resource limitation and potentially by extreme climatic events such as drought. Genetic constraints may also limit the ability of NIPS to adapt to changing climatic conditions. In this study, we investigated evidence for potential NIPS advantage under climate change in two sympatric perennial stipoid grasses from southeast Australia, the NIPS Nassella neesiana and the native Austrostipa bigeniculata. We compared the growth and reproduction of both species under current and year 2050 drought, temperature and CO2 regimes in a multifactor outdoor climate simulation experiment, hypothesizing that NIPS advantage would be higher under more favorable growing conditions. We also compared the quantitative variation and heritability of growth traits in populations of both species collected along a 200 km climatic transect. In contrast to our hypothesis we found that the NIPS N. neesiana was less responsive than A. bigeniculata to winter warming but maintained higher reproductive output during spring drought. However, overall tussock expansion was far more rapid in N. neesiana, and so it maintained an overall fitness advantage over A. bigeniculata in all climate regimes. N. neesiana also exhibited similar or lower quantitative variation and growth trait heritability than A. bigeniculata within populations but greater variability among populations, probably reflecting a complex past introduction history. We found some evidence that additional spring warmth increases the impact of drought on reproduction but not that elevated atmospheric CO2 ameliorates drought severity. Overall, we conclude that NIPS advantage under climate change may be limited by a lack of responsiveness to key climatic drivers, reduced genetic variability in range

  4. Future of Plant Functional Types in Terrestrial Biosphere Models

    Science.gov (United States)

    Wullschleger, S. D.; Euskirchen, E. S.; Iversen, C. M.; Rogers, A.; Serbin, S.

    2015-12-01

    Earth system models describe the physical, chemical, and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Plant functional types (PFTs) have been adopted by modelers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current, and future distribution of vegetation. Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration, and shrub expansion. However, representation of above- and especially belowground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait-environment relationships. Surprisingly, despite being important to land-atmosphere interactions of carbon, water, and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology, and remote sensing will be

  5. Audubon Plant Study Program.

    Science.gov (United States)

    National Audubon Society, New York, NY.

    Included are an illustrated student reader, "The Story of Plants and Flowers," an adult leaders' guide, and a large wall chart picturing 37 wildflowers and describing 23 major plant families. The student reader presents these main topics: The Plant Kingdom, The Wonderful World of Plants, Plants Without Flowers, Flowering Plants, Plants Make Food…

  6. Winter forage selection by barren-ground caribou: Effects of fire and snow

    OpenAIRE

    Lisa Saperstein

    1996-01-01

    Both long- and short-term consequences should be considered when examining the effects of fire on the foraging behavior of caribou. Post-fire increases in protein content, digestibility, and availability of E. vaginatum make burned tussock tundra an attractive feeding area for caribou in late winter. These benefits are likely short-lived, however. Lowered availability of lichens and increased relative frequency of bryophytes will persist for a much longer period.

  7. Winter forage selection by barren-ground caribou: Effects of fire and snow

    Directory of Open Access Journals (Sweden)

    Lisa Saperstein

    1996-01-01

    Full Text Available Both long- and short-term consequences should be considered when examining the effects of fire on the foraging behavior of caribou. Post-fire increases in protein content, digestibility, and availability of E. vaginatum make burned tussock tundra an attractive feeding area for caribou in late winter. These benefits are likely short-lived, however. Lowered availability of lichens and increased relative frequency of bryophytes will persist for a much longer period.

  8. Impacts of climate change on plant productivity in the Cajander larch woodlands of northeastern Eurasia

    Science.gov (United States)

    Berner, L. T.; Beck, P.; Bunn, A. G.; Goetz, S. J.

    2013-12-01

    Climate change in Northern Eurasia is driving shifts in the productivity and extent of forest ecosystems, which can in turn feedback on the climate system. Few studies have examined plant response to climate change near latitudinal treeline in northeastern Siberia. We therefore quantified trends in climate and plant productivity, as well as productivity-climate relationships, in the Cajander larch (Larix cajanderi Mayr.) woodlands of the Kolyma River watershed using satellite-derived normalized difference vegetation indices (NDVI), tree ring measurements, and climate data. Averaged across the watershed there was a 1.0°C increase in mean summer temperature (T) from 1938 to 2009, but no systematic change in precipitation or climate moisture index (CMI). Plant productivity, as indicated by mean summer NDVI (NDVIs), was widely correlated with T and exhibited positive trends across 20% of the watershed, primarily in the climatically coolest area. In the climatically warmest areas NDVIs was positively associated with CMI instead of T and positive trends in NDVIs were uncommon. Annual larch basal area increment was positively correlated with NDVIs (r=0.44, Plimited increases in productivity. Unless there is a concomitant increase in moisture availability with future warming, it is possible that increased moisture stress could progressively limit forest productivity and perhaps slow the rate of forest expansion into the tundra, which could have significant climate feedback implications dues to impacts on carbon storage and surface energy balance.

  9. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic.

    Science.gov (United States)

    Cooper, Elisabeth J; Dullinger, Stefan; Semenchuk, Philipp

    2011-01-01

    In tundra areas where the growing season is short, any delay in the start of summer may have a considerable effect on plant development, growth and reproductive success. Climate models suggest long-term changes in winter precipitation in the Arctic, which may lead to deeper snow cover and a resultant delay in date of snow melt. In this paper, we investigated the role of snow depth and melt out date on the phenological development and reproductive success of vascular plants in Adventdalen, Svalbard (78° 10'N, 16° 06'E). Effects of natural variations in snow accumulation were demonstrated using two vegetation types (snow depth: meadow 21 cm, heath 32 cm), and fences were used to experimentally increase snow depth by over 1m. Phenological delay was greatest directly after snowmelt in the earlier phenological phases, and had the largest effect on the early development of those species which normally green-up early (i.e. Dryas, Papaver, Salix, Saxifraga). Compressed growing seasons and length of the reproductive period led to a reduced reproductive success in some of the study species. There were fewer flowers, fewer plots with dispersing seeds, and lower germination rates. This can have consequences for plant establishment and community composition in the long-term.

  10. Effects of neighboring vascular plants on the abundance of bryophytes in different vegetation types

    Science.gov (United States)

    Jägerbrand, Annika K.; Kudo, Gaku; Alatalo, Juha M.; Molau, Ulf

    2012-07-01

    Due to the climate change, vegetation of tundra ecosystems is predicted to shift toward shrub and tree dominance, and this change may influence bryophytes. To estimate how changes in growing environment and the dominance of vascular plants influence bryophyte abundance, we compared the relationship of occurrence of bryophytes among other plant types in a five-year experiment of warming (T), fertilization (F) and T + F in two vegetation types, heath and meadow, in a subarctic-alpine ecosystem. We compared individual leaf area among shrub species to confirm that deciduous shrubs might cause severe shading effect. Effects of neighboring functional types on the performance of Hylocomium splendens was also analyzed. Results show that F and T + F treatments significantly influenced bryophyte abundance negatively. Under natural conditions, bryophytes in the heath site were negatively related to the abundance of shrubs and lichens and the relationship between lichens and bryophytes strengthened after the experimental period. After five years of experimental treatments in the meadow, a positive abundance relationship emerged between bryophytes and deciduous shrubs, evergreen shrubs and forbs. This relationship was not found in the heath site. Our study therefore shows that the abundance relationships between bryophytes and plants in two vegetation types within the same area can be different. Deciduous shrubs had larger leaf area than evergreen shrubs but did not show any shading effect on H. splendens.

  11. Plant adaptogens.

    Science.gov (United States)

    Wagner, H; Nörr, H; Winterhoff, H

    1994-06-01

    The term adaptogen has not yet been accepted in medicine. This is probably due to the difficulties in discriminating adaptogenic drugs from immunostimulators, anabolic drugs, nootropic drugs, and tonics. There can be not doubt, however, that, at least in animal experiments, there are plant drugs capable of modulating distinct phases of the adaptation syndrome as defined by Seyle. These drugs either reduce stress reactions in the alarm phase or retard / prevent the exhaustion phase and thus provide a certain degree of protection against long-term stress. The small number of drugs the antistress activity of which has been proven or reported includes, among others, the plant drugs Ginseng, Eleutherococcus, Withania, Ocimum, Rhodiola, and Codonopsis. This review summarizes the major findings of pharmacological tests and human studies carried out with these drugs. Currently used assay systems allowing detection of antistress activities are also reported. At present the most likely candidates responsible for the putative antistress activity of plant drugs are special steroids, phenylprogane compounds and lignanes, respectively. Apart from influencing activities of the pituitary-adrenal axis and inducing stress proteins, many adaptogens also possess immunomodulatory and / or anabolic activities. Copyright © 1994 Gustav Fischer Verlag, Stuttgart · Jena · New York. Published by Elsevier GmbH.. All rights reserved.

  12. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    DEFF Research Database (Denmark)

    Blok, Daan; Weijers, Stef; Welker, Jeffrey M

    2015-01-01

    of winter snow depth on shrub growth and ecophysiology by measuring stem length and stem hydrogen ( δ2H), carbon ( δ13C), nitrogen ( δ15N) and oxygen ( δ18O) isotopic composition of the circumarctic evergreen dwarf shrub Cassiope tetragona growing in high-arctic Svalbard, Norway. Measurements were carried...... out on C. tetragona individuals sampled from three tundra sites, each representing a distinct moisture regime (dry heath, meadow, moist meadow). Individuals were sampled along gradients of experimentally manipulated winter snow depths in a six-year old snow fence experiment: in ambient ( c . 20 cm......-snow individuals compared to individuals growing in ambient-snow plots during the course of the experiment, suggesting that soil N-availability was increased in deep-snow plots as a result of increased soil winter N mineralization. Although inter-annual growing season-precipitation δ 2 H and stem δ 2 H records...

  13. Stress tolerant plants

    OpenAIRE

    2014-01-01

    [EN] The invention relates to transgenic plants and methods for modulating abscisic acid (ABA) perception and signal transduction in plants. The plants find use in increasing yield in plants, particularly under abiotic stress.

  14. Plant fertilizer poisoning

    Science.gov (United States)

    Plant fertilizers and household plant foods are used to improve plant growth. Poisoning can occur if someone swallows these products. Plant fertilizers are mildly poisonous if small amounts are swallowed. ...

  15. Stress tolerant plants

    OpenAIRE

    Rubio, Vicente; Iniesto Sánchez, Elisa; Irigoyen Miguel, María Luisa

    2014-01-01

    [EN] The invention relates to transgenic plants and methods for modulating abscisic acid (ABA) perception and signal transduction in plants. The plants find use in increasing yield in plants, particularly under abiotic stress.

  16. Definition of sampling units begets conclusions in ecology: the case of habitats for plant communities

    Directory of Open Access Journals (Sweden)

    Martin A. Mörsdorf

    2015-03-01

    Full Text Available In ecology, expert knowledge on habitat characteristics is often used to define sampling units such as study sites. Ecologists are especially prone to such approaches when prior sampling frames are not accessible. Here we ask to what extent can different approaches to the definition of sampling units influence the conclusions that are drawn from an ecological study? We do this by comparing a formal versus a subjective definition of sampling units within a study design which is based on well-articulated objectives and proper methodology. Both approaches are applied to tundra plant communities in mesic and snowbed habitats. For the formal approach, sampling units were first defined for each habitat in concave terrain of suitable slope using GIS. In the field, these units were only accepted as the targeted habitats if additional criteria for vegetation cover were fulfilled. For the subjective approach, sampling units were defined visually in the field, based on typical plant communities of mesic and snowbed habitats. For each approach, we collected information about plant community characteristics within a total of 11 mesic and seven snowbed units distributed between two herding districts of contrasting reindeer density. Results from the two approaches differed significantly in several plant community characteristics in both mesic and snowbed habitats. Furthermore, differences between the two approaches were not consistent because their magnitude and direction differed both between the two habitats and the two reindeer herding districts. Consequently, we could draw different conclusions on how plant diversity and relative abundance of functional groups are differentiated between the two habitats depending on the approach used. We therefore challenge ecologists to formalize the expert knowledge applied to define sampling units through a set of well-articulated rules, rather than applying it subjectively. We see this as instrumental for progress in

  17. Effects of increased snow on growth response and allocation patterns of arctic plants

    Science.gov (United States)

    Addis, C. E.; Bret-Harte, M. S.

    2013-12-01

    Warming in the Arctic has led to an increase in shrub cover on the tundra that has been well documented in arctic Alaska. Fall and winter precipitation are also predicted to increase in arctic regions under continued climate change, resulting in greater snow depths and insulating winter soil, thus facilitating overwinter nitrogen mineralization by microbes. We predict that this increased microbial activity will enhance plant growth because more nutrients will be available for plant uptake at spring thaw. We studied the effect of increased snow on plant growth and nutrient allocation patterns using snow fences located across a gradient of shrub height and density at Toolik Field Station on the north slope of Alaska's Brooks Range. We compared growth and nutrient content of deciduous shrubs, evergreen shrubs, and graminoids on either side of the fences. Species behaved individualistically, with some showing increased growth with snow addition, others showing decreased growth, and some showing no effect of snow at all. The biggest increases in growth were seen in deciduous shrubs, particularly Salix pulchra, due to increases in secondary, or radial, growth which allowed plants to support more branches and thus more leaves. This provides a preliminary mechanistic explanation for the widespread increase in shrub cover across the northern latitudes. In addition, species that experienced increases in biomass due to snow also generally displayed increased nitrogen and carbon content in both leaves and stems, indicating that plants which got bigger were also better able to capture available resources. We conclude that faster growing species with the ability to respond rapidly to changes in nutrient availability will likely dominate under continued climate change, and may alter important ecosystem processes such as carbon and nitrogen storage.

  18. Plant host finding by parasitic plants: A new perspective on plant to plant communication

    Science.gov (United States)

    Mark C. Mescher; Justin B. Runyon; Consuelo M. De Moraes

    2006-01-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-...

  19. Poinsettia plant exposure

    Science.gov (United States)

    Christmas flower poisoning; Lobster plant poisoning; Painted leaf poisoning ... Leaves, stem, sap of the poinsettia plant ... Poinsettia plant exposure can affect many parts of the body. EYES (IF DIRECT CONTACT OCCURS) Burning Redness STOMACH AND ...

  20. Teaching Plant Reproduction.

    Science.gov (United States)

    Tolman, Marvin N., Ed.; Hardy, Garry R., Ed.

    2000-01-01

    Recommends using Amaryllis hippeastrum to teach young children about plant reproduction. Provides tips for growing these plants, discusses the fast growing rate of the plant, and explains the anatomy. (YDS)

  1. Kansas Power Plants

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Power Plants database depicts, as point features, the locations of the various types of power plant locations in Kansas. The locations of the power plants...

  2. Circumpolar Arctic vegetation: a hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data

    Science.gov (United States)

    Walker, D. A.; Daniëls, F. J. A.; Alsos, I.; Bhatt, U. S.; Breen, A. L.; Buchhorn, M.; Bültmann, H.; Druckenmiller, L. A.; Edwards, M. E.; Ehrich, D.; Epstein, H. E.; Gould, W. A.; Ims, R. A.; Meltofte, H.; Raynolds, M. K.; Sibik, J.; Talbot, S. S.; Webber, P. J.

    2016-05-01

    Satellite-derived remote-sensing products are providing a modern circumpolar perspective of Arctic vegetation and its changes, but this new view is dependent on a long heritage of ground-based observations in the Arctic. Several products of the Conservation of Arctic Flora and Fauna are key to our current understanding. We review aspects of the PanArctic Flora, the Circumpolar Arctic Vegetation Map, the Arctic Biodiversity Assessment, and the Arctic Vegetation Archive (AVA) as they relate to efforts to describe and map the vegetation, plant biomass, and biodiversity of the Arctic at circumpolar, regional, landscape and plot scales. Cornerstones for all these tools are ground-based plant-species and plant-community surveys. The AVA is in progress and will store plot-based vegetation observations in a public-accessible database for vegetation classification, modeling, diversity studies, and other applications. We present the current status of the Alaska Arctic Vegetation Archive (AVA-AK), as a regional example for the panarctic archive, and with a roadmap for a coordinated international approach to survey, archive and classify Arctic vegetation. We note the need for more consistent standards of plot-based observations, and make several recommendations to improve the linkage between plot-based observations biodiversity studies and satellite-based observations of Arctic vegetation.

  3. Interactions of polychlorinated biphenyls and organochlorine pesticides with sedimentary organic matter of retrogressive thaw slump-affected lakes in the tundra uplands adjacent to the Mackenzie Delta, NT, Canada

    Science.gov (United States)

    Eickmeyer, David C.; Kimpe, Linda E.; Kokelj, Steve V.; Pisaric, Michael F. J.; Smol, John P.; Sanei, Hamed; Thienpont, Joshua R.; Blais, Jules M.

    2016-02-01

    Using a comparative spatial analysis of sediment cores from eight lakes in tundra uplands adjacent to the Mackenzie Delta, NT, we examined how the presence of retrogressive thaw slumps on lake shores affected persistent organic pollutant (POPs, including polychlorinated biphenyls and organochlorine pesticides) accumulation in lake sediments. Sediments of slump-affected lakes contained higher total organic carbon (TOC)-normalized POP concentrations than nearby reference lakes that were unaffected by thaw slumps. Mean focus-corrected inorganic sedimentation rates were positively related to TOC-normalized contaminant concentrations, explaining 58-94% of the variation in POP concentrations in sediment, suggesting that reduced organic carbon in slump-affected lake water results in higher concentrations of POPs on sedimentary organic matter. This explanation was corroborated by an inverse relationship between sedimentary POP concentrations and TOC content of the lake water. Inferred chlorophyll a, S2, and S3 carbon fluxes to sediment were not significantly correlated to POP fluxes. Higher POP concentrations observed in sediment of slump-affected lakes are best explained by simple solvent switching processes of hydrophobic organic contaminants onto a smaller pool of available organic carbon when compared to neighboring lakes unaffected by thaw slump development.

  4. Plant Growth Regulators.

    Science.gov (United States)

    Nickell, Louis G.

    1978-01-01

    Describes the effect of "plant growth regulators" on plants, such as controlling the flowering, fruit development, plant size, and increasing crop yields. Provides a list of plant growth regulators which includes their chemical, common, and trade names, as well as their different use(s). (GA)

  5. Ethylene insensitive plants

    Science.gov (United States)

    Ecker, Joseph R.; Nehring, Ramlah; McGrath, Robert B.

    2007-05-22

    Nucleic acid and polypeptide sequences are described which relate to an EIN6 gene, a gene involved in the plant ethylene response. Plant transformation vectors and transgenic plants are described which display an altered ethylene-dependent phenotype due to altered expression of EIN6 in transformed plants.

  6. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  7. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning