WorldWideScience

Sample records for tussock tundra plant

  1. Inter-annual variability of NDVI in response to long-term warming and fertilization in wet sedge and tussock tundra.

    Science.gov (United States)

    Boelman, Natalie T; Stieglitz, Marc; Griffin, Kevin L; Shaver, Gaius R

    2005-05-01

    This study explores the relationship between the normalized difference vegetation index (NDVI) and aboveground plant biomass for tussock tundra vegetation and compares it to a previously established NDVI-biomass relationship for wet sedge tundra vegetation. In addition, we explore inter-annual variation in NDVI in both these contrasting vegetation communities. All measurements were taken across long-term experimental treatments in wet sedge and tussock tundra communities at the Toolik Lake Long Term Ecological Research (LTER) site, in northern Alaska. Over 15 years (for wet sedge tundra) and 14 years (for tussock tundra), N and P were applied in factorial experiments (N, P and N+P), air temperature was increased using greenhouses with and without N+P fertilizer, and light intensity was reduced by 50% using shade cloth. during the peak growing seasons of 2001, 2002, and 2003, NDVI measurements were made in both the wet sedge and tussock tundra experimental treatment plots, creating a 3-year time series of inter-annual variation in NDVI. We found that: (1) across all tussock experimental tundra treatments, NDVI is correlated with aboveground plant biomass (r2 = 0.59); (2) NDVI-biomass relationships for tussock and wet sedge tundra communities are community specific, and; (3) NDVI values for tussock tundra communities are typically, but not always, greater than for wet sedge tundra communities across all experimental treatments. We suggest that differences between the response of wet sedge and tussock tundra communities in the same experimental treatments result from the contrasting degree of heterogeneity in species and functional types that characterize each of these Arctic tundra vegetation communities.

  2. Competition for tracer 15N in tussock tundra ecosystems

    International Nuclear Information System (INIS)

    Marion, G.M.; Miller, P.C.; Black, C.H.

    1987-01-01

    The objectives of this study were to assess the roles of plant species, time, and site on competition for tracer 15 N (without carrier) in tussock tundra ecosystems. Six experimental sites were located in northern Alaska. After one year across the experimental sites, the recovery of 15 N by litter (11.3-16.3%) and mosses (5.4-16.4%) was significantly greater than for aboveground vascular plants (2.6-5.0%). 15 N recoveries by tundra vascular plants (2.6-5.0%) were low when compared to forest trees (9-25%) which suggst that competition for nitrogen is particularly severe in these colddominated tundra ecosystems. There were no significant differences among sites in 15 N recoveries by vascular plants, by mosses, or by litter. There was a statistically significant decline in 15 N recovery with time for Vaccinium vitis-idaea and Eriophoum vaginatum between the second and third year. The shallow rooted Vaccinium vitis-ideae was more highly labeled than the deep rooted Eriophorum vaginatum. Nearness to the source of the applied 15 N played a critical role in competition for surface applied nitrogen. (author)

  3. Shifting Foliar N:P Ratios with Experimental Soil Warming in Tussock Tundra

    Science.gov (United States)

    Jasinski, B.; Mack, M. C.; Schuur, E.; Mauritz, M.; Walker, X. J.

    2017-12-01

    Warming temperatures in the Arctic and boreal ecosystems are currently driving widespread permafrost thaw. Thermokarst is one form of thaw, in which a deepening active soil layer and associated hydrologic changes can lead to increased nutrient availability and shifts in plant community composition. Individual plant species often differ in their ability to access nutrients and adapt to new environmental conditions. While nitrogen (N) is often the nutrient most limiting to Arctic plant communities, the extent to which plant available phosphorus (P) from previously frozen mineral soil may increase as the active layer deepens is still uncertain. To understand the changing relationship between species' uptake of N and P in a thermokarst environment, we assessed foliar N:P ratios from 2015 in two species, a tussock sedge (Eriophorum vaginatum) and a dwarf shrub (Rubus chamaemorus), at a moist acidic tussock tundra experimental passive soil warming site. The passive soil warming treatment increased active layer depth in warmed plots by 35.4 cm (+/- 1.1 cm), an 80% increase over the control plots. E.vaginatum demonstrated a 16.9% decrease (p=0.012, 95% CI [-27.99%, -5.94%]) in foliar N:P ratios in warmed plots, driven mostly by an increase in foliar phosphorus. Foliar N:P ratios of R.chamaemorus showed no significant change. However, foliar samples of R.chamaemorus were significantly enriched in the isotope 15N in soil warming plots (9.9% increase (p=0.002, 95% CI [4.45%, 15.39%])), while the sedge E.vaginatum was slightly depleted. These results suggest that (1) in environments with thawing mineral soil plant available phosphorus may increase more quickly than nitrogen, and (2) that species' uptake strategies and responses to increasing N and P will vary, which has implications for future ecological shifts in thawing ecosystems.

  4. Environmental and vegetation controls on the spatial variability of CH4 emission from wet-sedge and tussock tundra ecosystems in the Arctic.

    Science.gov (United States)

    McEwing, Katherine Rose; Fisher, James Paul; Zona, Donatella

    Despite multiple studies investigating the environmental controls on CH 4 fluxes from arctic tundra ecosystems, the high spatial variability of CH 4 emissions is not fully understood. This makes the upscaling of CH 4 fluxes from plot to regional scale, particularly challenging. The goal of this study is to refine our knowledge of the spatial variability and controls on CH 4 emission from tundra ecosystems. CH 4 fluxes were measured in four sites across a variety of wet-sedge and tussock tundra ecosystems in Alaska using chambers and a Los Gatos CO 2 and CH 4 gas analyser. All sites were found to be sources of CH 4 , with northern sites (in Barrow) showing similar CH 4 emission rates to the southernmost site (ca. 300 km south, Ivotuk). Gross primary productivity (GPP), water level and soil temperature were the most important environmental controls on CH 4 emission. Greater vascular plant cover was linked with higher CH 4 emission, but this increased emission with increased vascular plant cover was much higher (86 %) in the drier sites, than the wettest sites (30 %), suggesting that transport and/or substrate availability were crucial limiting factors for CH 4 emission in these tundra ecosystems. Overall, this study provides an increased understanding of the fine scale spatial controls on CH 4 flux, in particular the key role that plant cover and GPP play in enhancing CH 4 emissions from tundra soils.

  5. Photosynthetic response of Eriophorum vaginatum to in situ shrub shading in tussock tundra of northern Alaska

    Science.gov (United States)

    Anderson-Smith, A.; Pattison, R.; Sullivan, P.; Welker, J. M.

    2009-12-01

    Eriophorum vaginatum (Cotton Grass) is an important component of moist acidic tussock tundra, a plant community that appears to be undergoing changes in species composition associated with climate warming. This species is one of the most abundant in the arctic tundra, and provides important forage for caribou in their calving grounds on the Arctic Coastal Plain and along their migratory route through the foothills of Alaska. Recently, remote sensing data, repeat photography and plot-level measurements have indicated that shrub abundance is increasing while Eriophorum abundance is either constant or decreasing. One possible explanation for the reduction of Eriophorum while Betula nana is increasing, is that lower light levels in the taller Betula canopy may be constraining Eriophorum photosynthesis and subsequently reducing plant growth. This study measured the effect of shading on the light response of Eriphorum leaf photosynthesis in four different sites near Toolik Lake Alaska during the summer of 2009. Measurements were taken in: 1) a shrub patch within the drift zone of the ITEX long term snow fence experiment, 2) an LTER shade house (50% shading) built in 1989, 3) water track site 1 and water track site 2 (i.e. control areas with no experimental manipulations) Average photosynthetic rates for Eriophorum at a light level of 800 PAR varied from 3.8 to 10.9 umol m-2 s-1 and were not significantly different in shaded and unshaded areas. This study indicates that shading by shrubs does not appear to be altering the light response of Eriophorum nor does long-term shading by itself eliminate Eriophorum from the community. An alternative explanation for the decline of Eriophorum while Betula increases in abundance under changing climates may be related to plant and soil mineral nutrition, plant water relations or biotic processes involving herbivores.

  6. Tundra vegetation effects on pan-Arctic albedo

    International Nuclear Information System (INIS)

    Loranty, Michael M; Goetz, Scott J; Beck, Pieter S A

    2011-01-01

    Recent field experiments in tundra ecosystems describe how increased shrub cover reduces winter albedo, and how subsequent changes in surface net radiation lead to altered rates of snowmelt. These findings imply that tundra vegetation change will alter regional energy budgets, but to date the effects have not been documented at regional or greater scales. Using satellite observations and a pan-Arctic vegetation map, we examined the effects of shrub vegetation on albedo across the terrestrial Arctic. We included vegetation classes dominated by low shrubs, dwarf shrubs, tussock-dominated graminoid tundra, and non-tussock graminoid tundra. Each class was further stratified by bioclimate subzones. Low-shrub tundra had higher normalized difference vegetation index values and earlier albedo decline in spring than dwarf-shrub tundra, but for tussock tundra, spring albedo declined earlier than for low-shrub tundra. Our results illustrate how relatively small changes in vegetation properties result in differences in albedo dynamics, regardless of shrub growth, that may lead to differences in net radiation upwards of 50 W m -2 at weekly time scales. Further, our findings imply that changes to the terrestrial Arctic energy budget during this important seasonal transition are under way regardless of whether recent satellite observed productivity trends are the result of shrub expansion. We conclude that a better understanding of changes in vegetation productivity and distribution in Arctic tundra is essential for accurately quantifying and predicting carbon and energy fluxes and associated climate feedbacks.

  7. Succession Stages of Tundra Plant Communities Following Wildfire Disturbance in Arctic Alaska

    Science.gov (United States)

    Breen, A. L.; Hollingsworth, T. N.; Mack, M. C.; Jones, B. M.

    2015-12-01

    Rapid climate change is affecting climate-sensitive disturbance regimes throughout the world. In particular, the impacts of climate change on Arctic disturbance regimes are poorly understood because landscape-scale disturbances are infrequent or occur in remote localities. Wildfire in Arctic Alaska is presently limited by ignition source and favorable burn weather. With rapid climate change, a lengthening growing season, and subsequent increase in plant biomass and productivity, wildfire frequency and annual area burned in tundra ecosystems is expected to increase over the next century. Yet, post-fire tundra vegetation succession is inadequately characterized except at a few point locations. We identify succession stages of tussock tundra communities following wildfire using a chronosequence of 65 relevés in 10 tundra fire scars (1971-2011) and nearby unburned tundra from sites on the Seward Peninsula and northern foothills of the Brooks Range. We used the Braun-Blanquét approach to classify plant communities, and applied nonmetric multidimentional scaling (NMDS) to identify ecological gradients underlying community differentiation. The ordination revealed a clear differentiation between unburned and burned tundra communities. Ecological gradients, reflected by ordination axes, correspond to fire history (e.g., time since last fire, number of times burned, burn severity) and a complex productivity gradient. Post-fire species richness is less than unburned tundra; primarily reflected as a decrease in lichen species and turnover of bryophyte species immediately post-fire. Species richness of grasses increases post-fire and is greatest in communities that burned more than once in the past 30 years. Shrub cover and total aboveground biomass are greatest in repeat burn sites. We review and discuss our results focusing on the implications of a changing tundra fire regime, its effect on vegetation succession trajectories, and subsequent rates of carbon sequestration and

  8. Predicting Changes in Arctic Tundra Vegetation: Towards an Understanding of Plant Trait Uncertainty

    Science.gov (United States)

    Euskirchen, E. S.; Serbin, S.; Carman, T.; Iversen, C. M.; Salmon, V.; Helene, G.; McGuire, A. D.

    2017-12-01

    Arctic tundra plant communities are currently undergoing unprecedented changes in both composition and distribution under a warming climate. Predicting how these dynamics may play out in the future is important since these vegetation shifts impact both biogeochemical and biogeophysical processes. More precise estimates of these future vegetation shifts is a key challenge due to both a scarcity of data with which to parameterize vegetation models, particularly in the Arctic, as well as a limited understanding of the importance of each of the model parameters and how they may vary over space and time. Here, we incorporate newly available field data from arctic Alaska into a dynamic vegetation model specifically developed to take into account a particularly wide array of plant species as well as the permafrost soils of the arctic tundra (the Terrestrial Ecosystem Model with Dynamic Vegetation and Dynamic Organic Soil, Terrestrial Ecosystem Model; DVM-DOS-TEM). We integrate the model within the Predicative Ecosystem Analyzer (PEcAn), an open-source integrated ecological bioinformatics toolbox that facilitates the flows of information into and out of process models and model-data integration. We use PEcAn to evaluate the plant functional traits that contribute most to model variability based on a sensitivity analysis. We perform this analysis for the dominant types of tundra in arctic Alaska, including heath, shrub, tussock and wet sedge tundra. The results from this analysis will help inform future data collection in arctic tundra and reduce model uncertainty, thereby improving our ability to simulate Arctic vegetation structure and function in response to global change.

  9. Photosynthesis, plant growth and nitrogen nutrition in Alaskan tussock tundra: Response to experimental warming

    Science.gov (United States)

    Dynes, E.; Welker, J. M.; Moore, D. J.; Sullivan, P.; Ebbs, L.; Pattison, R.

    2009-12-01

    Temperature is predicted to rise significantly in northern latitudes over the next century. The Arctic tundra is a fragile ecosystem with low rates of photosynthesis and low nutrient mineralisation. Rising temperatures may increase photosynthetic capacity in the short term through direct stimulation of photosynthetic rates and also in the longer term due to enhanced nutrient availability. Different species and plant functional types may have different responses to warming which may have an impact on plant community structure. As part of the International Tundra Experiment (ITEX) to investigate the effects of warming on arctic vegetation, a series of open top chambers (OTCs) have been established at the Toolik Field Station (68°38’N, 149°36’W, elevation 720 m). This study employs 12 plots; 6 control plots and 6 warming plots covered with OTCs which maintain a temperature on average +1.54 °C degrees higher than ambient temperatures. The response of photosynthesis to temperature was measured using an infra-red gas analyzer (IRGA) with a cooling adaptor to manipulate leaf temperature and determine AMAX in two contrasting species, Eriophorum vaginatum (sedge) and Betula nana (shrub). Temperature within the chamber head of the IRGA was manipulated from 10 through 25 °C. We also measured the leaf area index of plots using a Decagon Accupar Ceptometer to provide insights into potential differences in canopy cover. In both OTC and control plots the photosynthetic rate of B. nana was greater than that of E. vaginatum, with the AMAX of B. nana peaking at 20.08°C and E. vaginatum peaking slightly lower at 19.7°C in the control plots. There was no apparent difference in the temperature optimum of photosynthesis of either species when exposed to the warming treatment. Although there was no difference in temperature optimum there were differences in the peak values of AMAX between treatment and control plots. In the case of B. nana, AMAX was higher in the OTCs than in

  10. Seasonal patterns in soil N availability in the arctic tundra in response to accelerated snowmelt and warming

    Science.gov (United States)

    Darrouzet-Nardi, A.; Wallenstein, M. D.; Steltzer, H.; Sullivan, P.; Melle, C.; Segal, A.; Weintraub, M. N.

    2010-12-01

    Arctic soils contain large stocks of carbon (C) and may act as a significant CO2 source in response to climate warming. However, nitrogen (N) availability limits both plant growth and decomposition in many Arctic sites, and may thus be a key constraint on climate-carbon feedbacks. While current models of tundra ecosystems and their responses to climate change assume that N limits plant growth and C limits decomposition, there is strong evidence to the contrary showing that N can also limit decomposition. For example, the production of both new microbial biomass and enzymes that degrade organic matter appear to be limited by N during the summer. N availability is strongly seasonal: we have previously observed relatively high availability early in the growing season followed by a pronounced crash in tussock tundra soils. To investigate the drivers of N availability throughout the season, we used a field manipulation of tussock tundra growing season length (~4 days acceleration of snowmelt) and air temperature (open top chambers) and a laboratory soil N addition in both early and late season. Nutrient availability throughout the field season was measured at high temporal resolution (25 measurements from soil thaw through early plant senescence). Results from a laboratory experiment in which N was added to early season and late season soils suggests that soil respiration is in fact N limited at both times of the season, though this limitation is temperature dependent with effects most pronounced at 10°C. High-resolution measurements of nutrients in the soil solution and extractable N throughout the season showed that although a nutrient crash in N can be observed mid-season, N availability can still fluctuate later in the season. Finally, effects of the extended growing season and increased air temperature have so far had few effects on soil nutrient N dynamics throughout the summer growing season, suggesting either an insensitivity of N availability to these

  11. Alaska Tundra Travel Modeling Project and implications for seismic best management practices

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, G. [Alaska Dept. of Natural Resources, Anchorage, AK (United States)

    2007-07-01

    Much of the oil and gas exploration in the Alaskan North Slope depends on winter off-road travel to gain access to remote exploration areas. A study was conducted to relate vehicular off-road travel to tundra disturbance. Four types of vehicles were driven on the tundra on specific plots at various times throughout early to mid winter in an effort to determine if travel could occur earlier than current practice without impacting tundra integrity. Variables were measured the summer before travel, at the time of travel and the summers following travel. The results were used to develop a management tool to determine when conditions are adequate to allow winter vehicular off-road travel. It was determined that the soil temperature should be 5 degrees C or colder at a depth of 30 cm, with snow depths of 15 cm in coastal sedge tundra or 23 cm in foothills tussock tundra. This presentation also discussed the implications for managing off-road travel associated with seismic operations and recent changes in the types of vehicles used for these operations. figs.

  12. Douglas-Fir Tussock Moth

    Science.gov (United States)

    Boyd E. Wickman; Richard R. Mason; Galen C. Trostle

    1981-01-01

    The Douglas-fir tussock moth (Orgyia pseudotsugata McDunnough) is an important defoliator of true firs and Douglas-fir in Western North America. Severe tussock moth outbreaks have occurred in British Columbia, Idaho, Washington, Oregon, Nevada, California, Arizona, and New Mexico, but the area subject to attack is more extensive

  13. Arctic Tundra Soils: A Microbial Feast That Shrubs Will Cease

    Science.gov (United States)

    Machmuller, M.; Calderon, F.; Cotrufo, M. F.; Lynch, L.; Paul, E. A.; Wallenstein, M. D.

    2016-12-01

    Rapid climate warming may already be driving rapid decomposition of the vast stocks of carbon in Arctic tundra soils. However, stimulated decomposition may also release nitrogen and support increased plant productivity, potentially counteracting soil carbon losses. At the same time, these two processes interact, with plant derived carbon potentially fueling soil microbes to attack soil organic matter (SOM) to acquire nitrogen- a process known as priming. Thus, differences in the physiology, stoichiometry and microbial interactions among plant species could affect climate-carbon feedbacks. To reconcile these interactive mechanisms, we examined how vegetation type (Betula nana and Eriophorum vaginatum) and fertilization (short-term and long-term) influenced the decomposition of native SOM after labile carbon and nutrient addition. We hypothesized that labile carbon inputs would stimulate the loss of native SOM, but the magnitude of this effect would be indirectly related to soil nitrogen concentrations (e.g. SOM priming would be highest in N-limited soils). We added isotopically enriched (13C) glucose and ammonium nitrate to soils under shrub (B. nana) and tussock (E. vaginatum) vegetation. We found that nitrogen additions stimulated priming only in tussock soils, characterized by lower nutrient concentrations and microbial biomass (p20yrs. Rather, we found that long-term fertilization shifted SOM chemistry towards a greater abundance of recalcitrant SOM, lower microbial biomass, and decreased SOM respiration (p<0.05). Our results suggest that, in the short-term, the magnitude of SOM priming is dependent on vegetation and soil nitrogen concentrations, but this effect may not persist if shrubs increase in abundance under climate warming. Therefore, including nitrogen as a control on SOM decomposition and priming is critical to accurately model the effects of climate change on arctic carbon storage.

  14. Resistance and resilience of tundra plant communities to disturbance by winter seismic vehicles

    International Nuclear Information System (INIS)

    Felix, N.A.; Raynolds, M.K.; Jorgenson, J.C.; DuBois, K.E.

    1992-01-01

    Effects of winter seismic exploration on arctic tundra were evaluated on the coastal plain of the Arctic National Wildlife Refuge, four to five growing seasons after disturbance. Plant cover, active layer depths, and track depression were measured at plots representing major tundra plant communities and different levels of initial disturbance. Results are compared with the initial effects reported earlier. Little resilience was seen in any vegetation type, with no clearly decreasing trends in community dissimilarity. Active layer depths remained greater on plots in all nonriparian vegetation types, and most plots still had visible trails. Decreases in plant cover persisted on most plots, although a few species showed recovery or increases in cover above predisturbance level. Moist sedge-shrub tundra and dryas terraces had the largest community dissimilarities initially, showing the least resistance to high levels of winter vehicle disturbance. Community dissimilarity continued to increase for five seasons in moist sedge-shrub tundra, with species composition changing to higher sedge cover and lower shrub cover. The resilience amplitude may have been exceeded on four plots which had significant track depression

  15. NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra.

    Science.gov (United States)

    Sweet, Shannan K; Asmus, Ashley; Rich, Matthew E; Wingfield, John; Gough, Laura; Boelman, Natalie T

    2015-04-01

    The physical and biological responses to rapid arctic warming are proving acute, and as such, there is a need to monitor, understand, and predict ecological responses over large spatial and temporal scales. The use of the normalized difference vegetation index (NDVI) acquired from airborne and satellite sensors addresses this need, as it is widely used as a tool for detecting and quantifying spatial and temporal dynamics of tundra vegetation cover, productivity, and phenology. Such extensive use of the NDVI to quantify vegetation characteristics suggests that it may be similarly applied to characterizing primary and secondary consumer communities. Here, we develop empirical models to predict canopy arthropod biomass with canopy-level measurements of the NDVI both across and within distinct tundra vegetation communities over four growing seasons in the Arctic Foothills region of the Brooks Range, Alaska, USA. When canopy arthropod biomass is predicted with the NDVI across all four growing seasons, our overall model that includes all four vegetation communities explains 63% of the variance in canopy arthropod biomass, whereas our models specific to each of the four vegetation communities explain 74% (moist tussock tundra), 82% (erect shrub tundra), 84% (riparian shrub tundra), and 87% (dwarf shrub tundra) of the observed variation in canopy arthropod biomass. Our field-based study suggests that measurements of the NDVI made from air- and spaceborne sensors may be able to quantify spatial and temporal variation in canopy arthropod biomass at landscape to regional scales.

  16. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost

    Science.gov (United States)

    S.M. Natali; E.A.G. Schuur; R.L. Rubin

    2012-01-01

    The response of northern tundra plant communities to warming temperatures is of critical concern because permafrost ecosystems play a key role in global carbon (C) storage, and climate-induced ecological shifts in the plant community will affect the transfer of carbon-dioxide between biological and atmospheric pools. This study, which focuses on the response of tundra...

  17. Douglas-fir tussock moth: an annotated bibliography.

    Science.gov (United States)

    Robert W. Campbell; Lorna C. Youngs

    1978-01-01

    This annotated bibliography includes references to 338 papers. Each deals in some way with either the Douglas-fir tussock moth, Orgyia pseudotsugata (McDunnough), or a related species. Specifically, 210 publications and 82 unpublished documents make some reference, at least, to the Douglas-fir tussock moth; 55 are concerned with other species in...

  18. Examining the role of shrub expansion and fire in Arctic plant silica cycling

    Science.gov (United States)

    Carey, J.; Fetcher, N.; Parker, T.; Rocha, A. V.; Tang, J.

    2017-12-01

    All terrestrial plants accumulate silica (SiO2) to some degree, although the amount varies by species type, functional group, and environmental conditions. Silica improves overall plant fitness, providing protection from a variety of biotic and abiotic stressors. Plant silica uptake serves to retain silica in terrestrial landscapes, influencing silica export rates from terrestrial to marine systems. These export rates are important because silica is often the limiting nutrient for primary production by phytoplankton in coastal waters. Understanding how terrestrial plant processes influence silica export rates to oceanic systems is of interest on the global scale, but nowhere is this issue more important than in the Arctic, where marine diatoms rely on silica for production in large numbers and terrestrial runoff largely influences marine biogeochemistry. Moreover, the rapid rate of change occurring in the Arctic makes understanding plant silica dynamics timely, although knowledge of plant silica cycling in the region is in its infancy. This work specifically examines how shrub expansion, permafrost thaw, and fire regimes influence plant silica behavior in the Alaskan Arctic. We quantified silica accumulation in above and belowground portions of three main tundra types found in the Arctic (wet sedge, moist acidic, moist non-acidic tundra) and scaled these values to estimate how shrub expansion alters plant silica accumulation rates. Results indicate that shrub expansion via warming will increase silica storage in Arctic land plants due to the higher biomass associated with shrub tundra, whereas conversion of tussock to wet sedge tundra via permafrost thaw would produce the opposite effect in the terrestrial plant BSi pool. We also examined silica behavior in plants exposed to fire, finding that post-fire growth results in elevated plant silica uptake. Such changes in the size of the terrestrial vegetation silica reservoir could have direct consequences for the rates

  19. Alaska North Slope Tundra Travel Model and Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Harry R. Bader; Jacynthe Guimond

    2006-03-01

    The Alaska Department of Natural Resources (DNR), Division of Mining, Land, and Water manages cross-country travel, typically associated with hydrocarbon exploration and development, on Alaska's arctic North Slope. This project is intended to provide natural resource managers with objective, quantitative data to assist decision making regarding opening of the tundra to cross-country travel. DNR designed standardized, controlled field trials, with baseline data, to investigate the relationships present between winter exploration vehicle treatments and the independent variables of ground hardness, snow depth, and snow slab thickness, as they relate to the dependent variables of active layer depth, soil moisture, and photosynthetically active radiation (a proxy for plant disturbance). Changes in the dependent variables were used as indicators of tundra disturbance. Two main tundra community types were studied: Coastal Plain (wet graminoid/moist sedge shrub) and Foothills (tussock). DNR constructed four models to address physical soil properties: two models for each main community type, one predicting change in depth of active layer and a second predicting change in soil moisture. DNR also investigated the limited potential management utility in using soil temperature, the amount of photosynthetically active radiation (PAR) absorbed by plants, and changes in microphotography as tools for the identification of disturbance in the field. DNR operated under the assumption that changes in the abiotic factors of active layer depth and soil moisture drive alteration in tundra vegetation structure and composition. Statistically significant differences in depth of active layer, soil moisture at a 15 cm depth, soil temperature at a 15 cm depth, and the absorption of photosynthetically active radiation were found among treatment cells and among treatment types. The models were unable to thoroughly investigate the interacting role between snow depth and disturbance due to a

  20. Modeling dynamics of tundra plant communities on the Yamal Peninsula, Russia, in response to climate change and grazing pressure

    International Nuclear Information System (INIS)

    Yu, Q; Epstein, H E; Frost, G V; Walker, D A; Forbes, B C

    2011-01-01

    Understanding the responses of the arctic tundra biome to a changing climate requires knowledge of the complex interactions among the climate, soils and biological system. This study investigates the individual and interaction effects of climate change and reindeer grazing across a variety of climate zones and soil texture types on tundra vegetation community dynamics using an arctic vegetation model that incorporates the reindeer diet, where grazing is a function of both foliar nitrogen concentration and reindeer forage preference. We found that grazing is important, in addition to the latitudinal climate gradient, in controlling tundra plant community composition, explaining about 13% of the total variance in model simulations for all arctic tundra subzones. The decrease in biomass of lichen, deciduous shrub and graminoid plant functional types caused by grazing is potentially dampened by climate warming. Moss biomass had a nonlinear response to increased grazing intensity, and such responses were stronger when warming was present. Our results suggest that evergreen shrubs may benefit from increased grazing intensity due to their low palatability, yet a growth rate sensitivity analysis suggests that changes in nutrient uptake rates may result in different shrub responses to grazing pressure. Heavy grazing caused plant communities to shift from shrub tundra toward moss, graminoid-dominated tundra in subzones C and D when evergreen shrub growth rates were decreased in the model. The response of moss, lichen and forbs to warming varied across the different subzones. Initial vegetation responses to climate change during transient warming are different from the long term equilibrium responses due to shifts in the controlling mechanisms (nutrient limitation versus competition) within tundra plant communities.

  1. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska

    Science.gov (United States)

    Berner, Logan T.; Jantz, Patrick; Tape, Ken D.; Goetz, Scott J.

    2018-03-01

    Arctic tundra is becoming greener and shrubbier due to recent warming. This is impacting climate feedbacks and wildlife, yet the spatial distribution of plant biomass in tundra ecosystems is uncertain. In this study, we mapped plant and shrub above-ground biomass (AGB; kg m-2) and shrub dominance (%; shrub AGB/plant AGB) across the North Slope of Alaska by linking biomass harvests at 28 field sites with 30 m resolution Landsat satellite imagery. We first developed regression models (p plant AGB (r 2 = 0.79) and shrub AGB (r 2 = 0.82) based on the normalized difference vegetation index (NDVI) derived from imagery acquired by Landsat 5 and 7. We then predicted regional plant and shrub AGB by combining these regression models with a regional Landsat NDVI mosaic built from 1721 summer scenes acquired between 2007 and 2016. Our approach employed a Monte Carlo uncertainty analysis that propagated sampling and sensor calibration errors. We estimated that plant AGB averaged 0.74 (0.60, 0.88) kg m-2 (95% CI) and totaled 112 (91, 135) Tg across the region, with shrub AGB accounting for ~43% of regional plant AGB. The new maps capture landscape variation in plant AGB visible in high resolution satellite and aerial imagery, notably shrubby riparian corridors. Modeled shrub AGB was strongly correlated with field measurements of shrub canopy height at 25 sites (rs  = 0.88) and with a regional map of shrub cover (rs  = 0.76). Modeled plant AGB and shrub dominance were higher in shrub tundra than graminoid tundra and increased between areas with the coldest and warmest summer air temperatures, underscoring the fact that future warming has the potential to greatly increase plant AGB and shrub dominance in this region. These new biomass maps provide a unique source of ecological information for a region undergoing rapid environmental change.

  2. [Nitrogen bio-cycle in the alpine tundra ecosystem of Changbai Mountain and its comparison with arctic tundra].

    Science.gov (United States)

    Wei, Jing; Zhao, Jing-zhu; Deng, Hong-bing; Wu, Gang; Hao, Ying-jie; Shang, Wen-yan

    2005-03-01

    The nitrogen bio-cycle was discussed in the alpine tundra ecosystem of Changbai Mountain through compartment model. The alpine tundra of Changbai Mountain was compared with Arctic tundra by the common ratio of genus and species in this paper. It was found that the 89.3% of genus and 58.6% of species was the common between Changbai alpine tundra and Arctic tundra while 95.5% of lichen genus and 58.7% lichen species, 82.1% of moss genus and 76.3% of moss species, 93.1% of vascular bundle genus and 40.5% of vascular bundle species were the common, respectively, which made vegetation type or community to be similar between Changbai alpine tundra and Arctic tundra. The total storage of nitrogen was 65220.6 t in the vegetation-plant system of Changbai Mountain, of which soil pool amounted to 99.3%. The nitrogen storage of each compartment was as follows: the vegetation pool, litterfall pool and soil pool were 237.4 t, 145.3 t and 64837.9 t respectively. The transferable amounts of nitrogen were 131.7 t x a(-1), 58 t/a and 73.7 t x a(-1) in the aboveground plant, belowground root system and litterfall of alpine tundra ecosystem of Changbai Mountain.

  3. Interannual variability of plant phenology in tussock tundra: modelling interactions of plant productivity, plant phenology, snowmelt and soil thaw

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Laundre, J.A.; Shaver, G.R.

    2003-01-01

    We present a linked model of plant productivity, plant phenology, snowmelt and soil thaw in order to estimate interannual variability of arctic plant phenology and its effects on plant productivity. The model is tested using 8 years of soil temperature data, and three years of bud break data of

  4. Belowground Plant Dynamics Across an Arctic Landscape

    Science.gov (United States)

    Salmon, V. G.; Iversen, C. M.; Breen, A. L.; Thornton, P. E.; Wullschleger, S.

    2017-12-01

    High-latitude ecosystems are made up of a mosaic of different plant communities, all of which are exposed to warming at a rate double that observed in ecosystems at lower latitudes. Arctic regions are an important component of global Earth system models due to the large amounts of soil carbon (C) currently stored in permafrost as well their potential for increased plant C sequestration under warmer conditions. Losses of C from thawing and decomposing permafrost may be offset by increased plant productivity, but plant allocation to belowground structures and acquisition of limiting nutrients remain key sources of uncertainty in these ecosystems. The relationship between belowground plant traits and environmental conditions is not well understood, nor are tradeoffs between above- and belowground plant traits. To address these knowledge gaps, we sampled above- and belowground plant tissues along the Kougarok Hillslope on the Seward Peninsula, Alaska. The vegetation communities sampled included Alder shrubland, willow birch tundra, tussock tundra, dwarf shrub lichen tundra, and non-acidic mountain complex. Within each plant community, aboveground biomass was quantified and specific leaf area, leaf chemistry (%C, %N, %P and δ15N), and wood density were measured. Belowground fine-root biomass and rooting depth distribution were also determined at the community level. Fine roots from shrubs and graminoids were separated so that specific root area, diameter, and chemistry (%C, %N, %P and δ15N) could be assessed for these contrasting plant functional types. Initial findings indicate fine root biomass pools across the widely varying plant communities are constrained by soil depth, regardless of whether the rooting zone is restricted by permafrost or rock. The presence of Alnus viridis subspp. fruticosa, a deciduous shrub that facilitates nitrogen (N) fixation within its root nodules by Frankia bacteria, in Alder shrubland and willow birch tundra communities was associated

  5. Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development

    Science.gov (United States)

    Jason Vogel; Edward A.G. Schuur; Christian Trucco; Hanna. Lee

    2009-01-01

    Climate change in high latitudes can lead to permafrost thaw, which in ice-rich soils can result in ground subsidence, or thermokarst. In interior Alaska, we examined seasonal and annual ecosystem CO2 exchange using static and automatic chamber measurements in three areas of a moist acidic tundra ecosystem undergoing varying degrees of permafrost...

  6. Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation?

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Gough, L.; Hobbie, S.E.; Shaver, G.R.

    2003-01-01

    1 A field-experiment was used to determine how plant species might retain dominance in an arctic ecosystem receiving added nutrients. We both measured and modelled the above-ground and below-ground biomass allocation and root morphology of non-acidic tussock tundra near Toolik Lake, Alaska, after 4

  7. Herbivore Impact on Tundra Plant Community Dynamics Using Long-term Remote Sensing Observation

    Science.gov (United States)

    Yu, Q.; Engstrom, R.; Shiklomanov, N. I.

    2014-12-01

    Arctic tundra biome is now experiencing dramatic environmental changes accentuated by summer sea-ice decline, permafrost thaw, and shrub expansion. Multi-decadal time-series of the Normalized Difference Vegetation Index (NDVI, a spectral metric of vegetation productivity) shows an overall "greening" trend across the Arctic tundra biome. Regional trends in climate plausibly explain large-scale patterns of increasing plant productivity, as diminished summer sea-ice extent warms the adjacent land causing tundra vegetation to respond positively (increased photosynthetic aboveground biomass). However, at more local scales, there is a great deal of spatial variability in NDVI trends that likely reflects differences in hydrology and soil conditions, disturbance history, and use by wildlife and humans. Particularly, habitat use by large herbivores, such as reindeer and caribou, has large impacts on vegetation dynamics at local and regional scales, but the role of herbivores in modulating the response of vegetation to warming climate has received little attention. This study investigates regional tundra plant community dynamics within inhabits of different sizes of wild caribou/reindeer herds across the Arctic using GIMMS NDVI (Normalized Difference Vegetation Index) 3g data product. The Taimyr herd in Russia is one of the largest herds in the world with a population increase from 450,000 in 1975 to about 1 million animals in 2000. The population of the porcupine caribou herd has fluctuated in the past three decades between 100,000 and 180,000. Time-series of the maximum NDVI within the inhabit area of the Taimyr herd has increased about 2% per decade over the past three decades, while within the inhabit area of the Porcupine herd the maximum NDVI has increased about 5% per decade. Our results indicate that the impact of large herbivores can be detected from space and further analyses on seasonal dynamics of vegetation indices and herbivore behavior may provide more

  8. The Response of Tundra to Biophysical Changes Ten Years Following the Anaktuvuk River Fire, Arctic Foothills, Alaska.

    Science.gov (United States)

    Jones, B. M.; Miller, E. A.; Jandt, R.; Baughman, C. A.

    2017-12-01

    Ten years following a large and severe wildfire in the arctic foothills of the Brooks Range, Alaska, tundra is experiencing rapid biophysical changes. Plant communities are responding to primary disturbance by fire but also to ground-ice melt, terrain subsidence, and apparent increase in soil drainage or evapotranspiration.The Anaktuvuk River Fire burned about 104,000 ha in 2007, spreading over broad ranges in soils, topography, hydrography, and permafrost features. Fourteen marked transects were measured between 2008-2011 and again in 2017 for cover of ground-layer vegetation, tall shrub abundance, thaw depth, and soil properties. A complementary set of 11 reference transects surrounding the burn was also sampled.We observed much higher rates of thermokarst inside the burn than out. Even low severity burn areas experienced noticeable thaw subsidence. Mean annual ground temperature at 1 m depth has warmed 1.5°C relative to unburned tundra. In cases ice wedge troughs have deepened by more than 1 m in areas underlain by yedoma soils. Troughs were characterized by cracking soil and slumping tussocks, often into ponded water. Troughs and degraded ice features appear to be draining adjacent polygon centers leading to a general drying of the tundra. Tussockgrasses inside the burn continue to grow and flower vigorously, suggesting a continued flush of soil nutrients. Post-fire accumulation of organic material is generally fire greatly accelerates this succession. Records and observations suggest that lightning and ignitions are becoming more frequent north of the Brooks Range.Our monitoring of this burn over the last ten years reveals a story much more complicated than our team can tell, inviting involvement of other disciplines, particularly hydrology, soil and landform science, remote sensing, and wildlife and subsistence resource management.

  9. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic.

    Directory of Open Access Journals (Sweden)

    Grzegorz Skrzypek

    Full Text Available Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle. Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard. The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.

  10. Fire Effects at the Tundra-Boreal Ecotone in Interior Alaska

    Science.gov (United States)

    Howard, B. K.; Mack, M. C.; Johnstone, J. F.; Walker, X. J.; Roland, C.

    2016-12-01

    Climate warming in northern latitudes has led to an intensification of disturbance by wildfire. Little is known about the effects of fire on tundra vegetation. Changes in vegetation composition could have important implications for carbon cycling , and may feedback positively or negatively to future climate change (Randerson et al., 2006). Our study utilizes extensive pre-fire ecological data collected by the National Park Service (NPS) Inventory and Monitoring (I&M) program to assess the prefire conditions important in driving successional pathways within Denali National Park and Preserve. In 2013, the East Toklat fire burned 30,000 acres of tussock tundra and mixed white and black spruce forest at a high severity, which encompassed 50 NPS plots that were originally monitored in 2003. Our sampling occurred the summer of 2016 following the same NPS protocols to assess post-fire vegetation composition. In addition, we conducted a seeding experiment using locally collected white and black spruce seed to assess natural and potential tree regeneration in unburned and post fire environments. Seed traps were established along our transects to assess seed rain. A multivariate approach will be used to assess post-fire community dynamics and future field seasons will address tree germination and survival rates. These data will then be coupled with pre and post-fire ecological data to parse out important factors driving secondary succession.

  11. The Contribution of Old Carbon to Respiration from Alaskan Tundra Following Permafrost Thaw

    Science.gov (United States)

    Schuur, E. A.; Vogel, J. G.; Crummer, K. G.; Lee, H.; Sickman, J. O.; Dutta, K.

    2007-12-01

    More than 450 Pg of soil carbon (C) has accumulated in high latitude ecosystems after the retreat of the last major ice sheets. Recent studies suggest that, due to climate warming, these ecosystems may no longer be accumulating C, and in some cases may be losing stored C to the atmosphere. We used radiocarbon measurements of carbon dioxide to detect the age of C respired from tussock tundra near Denali National Park, Alaska. At this tundra site, permafrost has been observed to warm and thaw over the past several decades, causing the ground surface to subside as ice volume in the soil decreased. We established three sites within this area that differed in vegetation and surface topography; both characteristics varied in relation to the degree of permafrost thaw. We made radiocarbon measurements of ecosystem respiration, incubations of soil organic matter, and incubations of above and belowground plant biomass to determine the age and isotopic value of C respired from these sites. Over the study period from 2004 to 2006, ecosystem respiration radiocarbon values averaged from +35‰ to +95‰ in different months across sites. For soil incubations, surface soil radiocarbon was elevated relative both to ecosystem respiration and the current atmospheric radiocarbon value, demonstrating the significant contribution from C fixed over the past years to several decades. The deeper soil, in contrast, had respiration isotope values that averaged below zero, reflecting the significant effect of radioactive decay on the isotope content of deeper soil layers. The plant and soil incubations were combined in a multi- source mixing model to determine probable contributions from these different sources to ecosystem respiration. Deep soil respiration generally averaged between 5-15% of total ecosystem respiration, but reached as high as 40% in some months. When aggregated across the growing season, the two sites undergoing more disturbance from permafrost thaw had on average 2-3 times

  12. Response of tundra ecosystems to elevated atmospheric carbon dioxide. [Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.; Grulke, N.E.

    1988-12-31

    Our past research shows that arctic tussock tundra responds to elevated atmospheric CO{sub 2} with marked increases in net ecosystem carbon flux and photosynthetic rates. However, at ambient temperatures and nutrient availabilities, homeostatic adjustments result in net ecosystem flux rates dropping to those found a contemporary CO{sub 2} levels within three years. Evidence for ecosystem-level acclimation in the first season of elevated CO{sub 2} exposure was found in 1987. Photosynthetic rates of Eriophorum vaginatum, the dominant species, adjusts to elevated CO{sub 2} within three weeks. Past research also indicates other changes potentially important to ecosystem structure and function. Elevated CO{sub 2} treatment apparently delays senescence and increases the period of positive photosynthetic activity. Recent results from the 1987 field season verify the results obtained in the 1983--1986 field seasons: Elevated CO{sub 2} resulted in increased ecosystem-level flux rates. Regressions fitted to the seasonal flux rates indicate an apparent 10 d extension of positive CO{sub 2} uptake reflecting a delay of the onset of plant dormancy. This delay in senescence could increase the frost sensitivity of the system. Major end points proposed for this research include the effects of elevated CO{sub 2} and the interaction of elevated atmospheric CO{sub 2} with elevated soil temperature and increased nutrient availability on: (1) Net ecosystem CO{sub 2} flux; (2) Net photosynthetic rates; (3) Patterns and resource controls on homeostatic adjustment in the above processes to elevated CO{sub 2}; (4) Plant-nutrient status, litter quality, and forage quality; (5) Soil-nutrient status; (6) Plant-growth pattern and shoot demography.

  13. Can lemmings control the expansion of woody plants on tundra?

    Science.gov (United States)

    Oksanen, Lauri; Oksanen, Tarja; Olofsson, Johan; Virtanen, Risto; Hoset, Katrine; Tuomi, Maria; Kyrö, Kukka

    2013-04-01

    The ongoing expansion of woody vegetation in the arctic, due to global warming, creates a positive feed back loop. Increasing abundance of woody plants reduces surface albedo both directly and via speeding up snow melt. Thus a successively greater fraction of incoming solar radiation is absorbed and converted to heat. Browsing mammals - both big and small - can prevent this by consuming woody plants. However, the grazer/browser community of many tundra areas is dominated by brown/Norwegian lemmings (Lemmus spp.) which eat graminoids and mosses and cannot use woody plants as forage. It would seem a priori likely that in such areas, mammalian herbivores speed up the expansion of woody plants by improving the chances of their seedlings to get established. We studied the impact of lemmings on woody plants by constructing lemming proof exclosures within piece high-altitude tundra at Joatkanjávri, northernmost Norway. The exclosures were constructed in 1998, during a period of low lemming densities, in snow-beds, where Norwegian lemmings (L. lemmus) were the only ecologically significant herbivorous mammals. (Reindeer migrate through the area in May, when snow-beds are inaccessible for them; during the fall migration, the area represents a dead end and is therefore avoided.) We chose pairs of maximally similar vegetation patches of 0.5 by 0.5 m and randomly assigned one of each pair to become an exclosure while the other plot was left open. The initial state of the vegetation was documented by the point frequency method. In 2008, after the 2007 lemming outbreak, the same documentation was repeated; thereafter the plots were harvested, the vegetation was sorted to species, oven dried and weighed. Exclusion of lemmings resulted to pronounced increase in community level plant biomass. Evergreen woody plants were especially favored by the exclusion of lemming: their above-ground biomass in exclosures was 14 times as great as their biomass on open reference plots. The

  14. Can antibrowsing defense regulate the spread of woody vegetation in arctic tundra?

    Science.gov (United States)

    Bryant, John P.; Joly, Kyle; Chapin, F. Stuart; DeAngelis, Donald L.; Kielland, Knut

    2014-01-01

    Global climate warming is projected to promote the increase of woody plants, especially shrubs, in arctic tundra. Many factors may affect the extent of this increase, including browsing by mammals. We hypothesize that across the Arctic the effect of browsing will vary because of regional variation in antibrowsing chemical defense. Using birch (Betula) as a case study, we propose that browsing is unlikely to retard birch expansion in the region extending eastward from the Lena River in central Siberia across Beringia and the continental tundra of central and eastern Canada where the more effectively defended resin birches predominate. Browsing is more likely to retard birch expansion in tundra west of the Lena to Fennoscandia, Iceland, Greenland and South Baffin Island where the less effectively defended non-resin birches predominate. Evidence from the literature supports this hypothesis. We further suggest that the effect of warming on the supply of plant-available nitrogen will not significantly change either this pan-Arctic pattern of variation in antibrowsing defense or the resultant effect that browsing has on birch expansion in tundra. However, within central and east Beringia warming-caused increases in plant-available nitrogen combined with wildfire could initiate amplifying feedback loops that could accelerate shrubification of tundra by the more effectively defended resin birches. This accelerated shrubification of tundra by resin birch, if extensive, could reduce the food supply of caribou causing population declines. We conclude with a brief discussion of modeling methods that show promise in projecting invasion of tundra by woody plants.

  15. Where do the treeless tundra areas of northern highlands fit in the global biome system: toward an ecologically natural subdivision of the tundra biome.

    Science.gov (United States)

    Virtanen, Risto; Oksanen, Lauri; Oksanen, Tarja; Cohen, Juval; Forbes, Bruce C; Johansen, Bernt; Käyhkö, Jukka; Olofsson, Johan; Pulliainen, Jouni; Tømmervik, Hans

    2016-01-01

    According to some treatises, arctic and alpine sub-biomes are ecologically similar, whereas others find them highly dissimilar. Most peculiarly, large areas of northern tundra highlands fall outside of the two recent subdivisions of the tundra biome. We seek an ecologically natural resolution to this long-standing and far-reaching problem. We studied broad-scale patterns in climate and vegetation along the gradient from Siberian tundra via northernmost Fennoscandia to the alpine habitats of European middle-latitude mountains, as well as explored those patterns within Fennoscandian tundra based on climate-vegetation patterns obtained from a fine-scale vegetation map. Our analyses reveal that ecologically meaningful January-February snow and thermal conditions differ between different types of tundra. High precipitation and mild winter temperatures prevail on middle-latitude mountains, low precipitation and usually cold winters prevail on high-latitude tundra, and Scandinavian mountains show intermediate conditions. Similarly, heath-like plant communities differ clearly between middle latitude mountains (alpine) and high-latitude tundra vegetation, including its altitudinal extension on Scandinavian mountains. Conversely, high abundance of snowbeds and large differences in the composition of dwarf shrub heaths distinguish the Scandinavian mountain tundra from its counterparts in Russia and the north Fennoscandian inland. The European tundra areas fall into three ecologically rather homogeneous categories: the arctic tundra, the oroarctic tundra of northern heights and mountains, and the genuinely alpine tundra of middle-latitude mountains. Attempts to divide the tundra into two sub-biomes have resulted in major discrepancies and confusions, as the oroarctic areas are included in the arctic tundra in some biogeographic maps and in the alpine tundra in others. Our analyses based on climate and vegetation criteria thus seem to resolve the long-standing biome

  16. Observations on habitat use, breeding chronology and parental care in Bristle-thighed Curlews on the Seward Peninsula, Alaska

    Science.gov (United States)

    Gill, R.E.; Lanctot, Richard B.; Mason, J.D.; Handel, Colleen M.

    1991-01-01

    Results from an intensive survey in 1989 of one of the two known breeding localities of Bristle-thighed Curlews Numenius tahitiensis are reported. During the pre-nesting period birds confined most of their activity to two vegetation communities: shrub meadow tundra and low shrub/tussock tundra. During nesting more than half the Curlews seen were observed on shrub meadow tundra, whilst during brood rearing, use of low shrub/tussock tundra continued to decline in importance as birds attending young increased their use of sedge wet meadows. Despite extensive searches no nests were located; however, observations of broods indicated that nest initiation began around 25 May and that hatching occurred during the last week of June. Detailed observations are presented on the formation of four brood-groups, some of which held different combinations of unrelated adults or young. The adaptive significance of this unusual wader behaviour is discussed.

  17. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    Science.gov (United States)

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  18. Improving understanding of controls on spatial variability in methane fluxes in Arctic tundra

    Science.gov (United States)

    Davidson, Scott J.; Sloan, Victoria; Phoenix, Gareth; Wagner, Robert; Oechel, Walter; Zona, Donatella

    2015-04-01

    determining the direction and magnitude of methane flux, with methane emissions occurring in saturated micro-topographic locations and drier sites showing low rates of uptake. An interesting exception was in tussock sedge vegetation, which had a deep water table (approximately 20cm - 40cm below the soil surface) but which emitted methane in comparable quantities to saturated communities late in the growing season. This highlights the importance of plant transport and of understanding temporal variation in fluxes. Automated chamber measurements from peak and late growing season showed minimal diurnal trends in methane fluxes, indicating that short-term chamber measurements are representative of average diurnal CH4 fluxes. The breadth of environmental and vegetation variables measured across a wide spatial extent of arctic tundra vegetation communities within this study highlights the overriding controls on methane emissions and will significantly help with upscaling methane emissions from the plot scale to the landscape scale. Reference: IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi:10.1017/CBO97811074153

  19. Relationship of cyanobacterial and algal assemblages with vegetation in the high Arctic tundra (West Spitsbergen, Svalbard Archipelago

    Directory of Open Access Journals (Sweden)

    Richter Dorota

    2015-09-01

    Full Text Available The paper presents the results of a study of cyanobacteria and green algae assemblages occurring in various tundra types determined on the basis of mosses and vascular plants and habitat conditions. The research was carried out during summer in the years 2009-2013 on the north sea-coast of Hornsund fjord (West Spitsbergen, Svalbard Archipelago. 58 sites were studied in various tundra types differing in composition of vascular plants, mosses and in trophy and humidity. 141 cyanobacteria and green algae were noted in the research area in total. Cyanobacteria and green algae flora is a significant element of many tundra types and sometimes even dominate there. Despite its importance, it has not been hitherto taken into account in the description and classification of tundra. The aim of the present study was to demonstrate the legitimacy of using phycoflora in supplementing the descriptions of hitherto described tundra and distinguishing new tundra types. Numeric hierarchical-accumulative classification (MVSP 3.1 software methods were used to analyze the cyanobacterial and algal assemblages and their co-relations with particular tundra types. The analysis determined dominant and distinctive species in the communities in concordance with ecologically diverse types of tundra. The results show the importance of these organisms in the composition of the vegetation of tundra types and their role in the ecosystems of this part of the Arctic.

  20. The Bering Land Bridge: a moisture barrier to the dispersal of steppe-tundra biota?

    Science.gov (United States)

    Elias, Scott A.; Crocker, Barnaby

    2008-12-01

    The Bering Land Bridge (BLB) connected the two principal arctic biological refugia, Western and Eastern Beringia, during intervals of lowered sea level in the Pleistocene. Fossil evidence from lowland BLB organic deposits dating to the Last Glaciation indicates that this broad region was dominated by shrub tundra vegetation, and had a mesic climate. The dominant ecosystem in Western Beringia and the interior regions of Eastern Beringia was steppe-tundra, with herbaceous plant communities and arid climate. Although Western and Eastern Beringia shared many species in common during the Late Pleistocene, there were a number of species that were restricted to only one side of the BLB. Among the vertebrate fauna, the woolly rhinoceros was found only to the west of the BLB, North American camels, bonnet-horned musk-oxen and some horse species were found only to the east of the land bridge. These were all steppe-tundra inhabitants, adapted to grazing. The same phenomenon can be seen in the insect faunas of the Western and Eastern Beringia. The steppe-tundra beetle fauna of Western Beringia was dominated by weevils of the genus Stephanocleonus, a group that was virtually absent from Eastern Beringia. The dry-adapted weevils, Lepidophorus lineaticollis and Vitavitus thulius were important members of steppe-tundra communities in Eastern Beringia, but were either absent or rare in Western Beringia. The leaf beetles Chrysolina arctica, C. brunnicornis bermani, and Galeruca interrupta circumdata were typical members of the Pleistocene steppe-tundra communities of Western Beringia, but absent from Eastern Beringia. On the other hand, some steppe tundra-adapted leaf beetles managed to occupy both sides of the BLB, such as Phaedon armoraciae. Much of the BLB remains unstudied, but on biogeographic grounds, it appears that there was some kind of biological filter that blocked the movements of some steppe-tundra plants and animals across the BLB.

  1. Global assessment of experimental climate warming on tundra vegetation

    DEFF Research Database (Denmark)

    Elmendorf, Sarah C.; Henry, Gregory H.R.; Hollister, Robert D.

    2012-01-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations...... of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups...... to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed...

  2. Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in arctic tundra?

    Energy Technology Data Exchange (ETDEWEB)

    Boelman, Natalie T [Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964 (United States); Gough, Laura; McLaren, Jennie R [Department of Biology, University of Texas at Arlington, Arlington, TX 76019 (United States); Greaves, Heather, E-mail: nboelman@ldeo.columbia.edu [Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331 (United States)

    2011-07-15

    This study explores relationships between the normalized difference vegetation index (NDVI) and structural characteristics associated with deciduous shrub dominance in arctic tundra. Our structural measures of shrub dominance are stature, branch abundance, aerial per cent woody stem cover (deciduous and evergreen species), and per cent deciduous shrub canopy cover. All measurements were taken across a suite of transects that together represent a gradient of deciduous shrub height. The transects include tussock tundra shrub and riparian shrub tundra communities located in the northern foothills of the Brooks Range, in northern Alaska. Plot-level NDVI measurements were made in 2010 during the snow-free period prior to deciduous shrub leaf-out (early June, NDVI{sub pre-leaf}), at the point in the growing season when canopy NDVI has reached half of its maximum growing season value (mid-June, NDVI{sub demi-leaf}) and during the period of maximum leaf-out (late July, NDVI{sub peak-leaf}). We found that: (1) NDVI{sub pre-leaf} is best suited to capturing variation in the per cent woody stem cover, maximum shrub height, and branch abundance, particularly between 10 and 50 cm height in the canopy; (2) NDVI{sub peak-leaf} is best suited to capturing variation in deciduous canopy cover; and (3) NDVI{sub demi-leaf} does not capture variability in any of our measures of shrub dominance. These findings suggest that in situ NDVI measurements made prior to deciduous canopy leaf-out could be used to identify small differences in maximum shrub height, woody stem cover, and branch abundance (particularly between 10 and 50 cm height in the canopy). Because shrubs are increasing in size and regional extent in several regions of the Arctic, investigation into spectrally based tools for monitoring these changes are worthwhile as they provide a first step towards development of remotely sensed techniques for quantifying associated changes in regional carbon cycling, albedo, radiative

  3. Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in arctic tundra?

    International Nuclear Information System (INIS)

    Boelman, Natalie T; Gough, Laura; McLaren, Jennie R; Greaves, Heather

    2011-01-01

    This study explores relationships between the normalized difference vegetation index (NDVI) and structural characteristics associated with deciduous shrub dominance in arctic tundra. Our structural measures of shrub dominance are stature, branch abundance, aerial per cent woody stem cover (deciduous and evergreen species), and per cent deciduous shrub canopy cover. All measurements were taken across a suite of transects that together represent a gradient of deciduous shrub height. The transects include tussock tundra shrub and riparian shrub tundra communities located in the northern foothills of the Brooks Range, in northern Alaska. Plot-level NDVI measurements were made in 2010 during the snow-free period prior to deciduous shrub leaf-out (early June, NDVI pre-leaf ), at the point in the growing season when canopy NDVI has reached half of its maximum growing season value (mid-June, NDVI demi-leaf ) and during the period of maximum leaf-out (late July, NDVI peak-leaf ). We found that: (1) NDVI pre-leaf is best suited to capturing variation in the per cent woody stem cover, maximum shrub height, and branch abundance, particularly between 10 and 50 cm height in the canopy; (2) NDVI peak-leaf is best suited to capturing variation in deciduous canopy cover; and (3) NDVI demi-leaf does not capture variability in any of our measures of shrub dominance. These findings suggest that in situ NDVI measurements made prior to deciduous canopy leaf-out could be used to identify small differences in maximum shrub height, woody stem cover, and branch abundance (particularly between 10 and 50 cm height in the canopy). Because shrubs are increasing in size and regional extent in several regions of the Arctic, investigation into spectrally based tools for monitoring these changes are worthwhile as they provide a first step towards development of remotely sensed techniques for quantifying associated changes in regional carbon cycling, albedo, radiative energy balance, and wildlife

  4. Soils of Sub-Antarctic tundras: diversity and basic chemical characteristics

    Science.gov (United States)

    Abakumov, Evgeny; Vlasov, Dmitry; Mukhametova, Nadezhda

    2014-05-01

    Antarctic peninsula is known as specific part of Antarctica, which is characterizes by humid and relatively warm climate of so-called sub Antarctic (maritime) zone. Annual precipitation and long above zero period provides the possibility of sustainable tundra's ecosystem formation. Therefore, the soil diversity of these tundra landscapes is maximal in the whole Antarctic. Moreover, the thickness of parent material debris's is also highest and achieves a 1 or 2 meters as highest. The presence of higher vascular plants Deshampsia antarctica which is considered as one of the main edificators provides the development of humus accumulation in upper solum. Penguins activity provides an intensive soil fertilization and development of plant communities with increased density. All these factors leads to formation of specific and quite diverse soil cover in sub Antarctic tundra's. These ecosystems are presented by following permafrost affected soils: Leptosols, Lithoosols, Crysols, Gleysols, Peats and Ornhitosols. Also the post Ornhitosols are widely spreaded in subantarcic ecosystems, they forms on the penguin rockeries during the plant succession development, leaching of nutrients and organic matter mineralization. "Amphibious" soils are specific for seasonal lakes, which evaporates in the end if Australian summer. These soils have specific features of bio sediments and soils as well. Soil chemical characteristic as well as organic matter features discussed in comparison with Antacrtic continental soil in presentation.

  5. Carex sempervirens tussocks induce spatial heterogeneity in litter decomposition, but not in soil properties, in a subalpine grassland in the Central Alps

    Science.gov (United States)

    Fei-Hai Yu; Martin Schutz; Deborah S. Page-Dumroese; Bertil O. Krusi; Jakob Schneller; Otto Wildi; Anita C. Risch

    2011-01-01

    Tussocks of graminoids can induce spatial heterogeneity in soil properties in dry areas with discontinuous vegetation cover, but little is known about the situation in areas with continuous vegetation and no study has tested whether tussocks can induce spatial heterogeneity in litter decomposition. In a subalpine grassland in the Central Alps where vegetation cover is...

  6. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time.

    Science.gov (United States)

    Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Björk, Robert G; Bjorkman, Anne D; Callaghan, Terry V; Collier, Laura Siegwart; Cooper, Elisabeth J; Cornelissen, Johannes H C; Day, Thomas A; Fosaa, Anna Maria; Gould, William A; Grétarsdóttir, Járngerður; Harte, John; Hermanutz, Luise; Hik, David S; Hofgaard, Annika; Jarrad, Frith; Jónsdóttir, Ingibjörg Svala; Keuper, Frida; Klanderud, Kari; Klein, Julia A; Koh, Saewan; Kudo, Gaku; Lang, Simone I; Loewen, Val; May, Jeremy L; Mercado, Joel; Michelsen, Anders; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Pieper, Sara; Post, Eric; Rixen, Christian; Robinson, Clare H; Schmidt, Niels Martin; Shaver, Gaius R; Stenström, Anna; Tolvanen, Anne; Totland, Orjan; Troxler, Tiffany; Wahren, Carl-Henrik; Webber, Patrick J; Welker, Jeffery M; Wookey, Philip A

    2012-02-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date. © 2011 Blackwell Publishing Ltd/CNRS.

  7. Plant functional type affects nitrogen use efficiency in high-Arctic tundra

    Czech Academy of Sciences Publication Activity Database

    Oulehle, F.; Rowe, E. C.; Myška, Oldřich; Chuman, T.; Evans, C.D.

    2016-01-01

    Roč. 94, mar (2016), s. 19-28 ISSN 0038-0717 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : Arctic * Nitrogen * Isotope * Mineralization * Nitrification * Tundra Subject RIV: EH - Ecology, Behaviour Impact factor: 4.857, year: 2016

  8. Rhododendron aureum Georgi formed a special soil microbial community and competed with above-ground plants on the tundra of the Changbai Mountain, China.

    Science.gov (United States)

    Wang, Xiaolong; Li, Lin; Zhao, Wei; Zhao, Jiaxin; Chen, Xia

    2017-09-01

    Rhododendron aureum Georgi is a perennial evergreen dwarf shrub that grows at all elevations within the alpine tundra of northern China. Previous research has investigated the plant communities of R. aureum ; however, little information is available regarding interspecific competition and underground soil microbial community composition. The objective of our study was to determine whether the presence of R. aureum creates a unique soil microbiome and to investigate the relationship between R. aureum and other plant species. Our study site ranged from 1,800 to 2,600 m above sea level on the northern slope of the Changbai Mountain. The results show that the soil from sites with an R. aureum community had a higher abundance of nitrogen-fixing bacteria and a higher resistance to pathogens than soils from sites without R. aureum . We emphasize that R. aureum promotes a unique soil microbial community structure that is distinct from those associated with other plants. Elevation and microbial biomass were the main influencing factors for plant community structure. Analysis of interspecific relationships reveals that R. aureum is negatively associated with most other dominant shrubs and herbs, suggesting interspecific competition. It is necessary to focus on other dominant species if protection and restoration of the R. aureum competition is to occur. In the future, more is needed to prove whether R. aureum decreases species diversity in the tundra ecosystems of Changbai Mountain.

  9. Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, Walter C.

    1990-09-05

    OAK B188 Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}. Atmospheric CO{sub 2} is expected to double by the end of the next century. Global mean increases in surface air temperature of 1.5-4.5 C are anticipated with larger increases towards the poles predicted. Changes in CO{sub 2} levels and temperature could have major impacts on ecosystem functioning, including primary productivity, species composition, plant-animal interactions, and carbon storage. Until recently, there has been little direct information on the impact of changes in CO{sub 2} and temperature on native ecosystems. The study described here was undertaken to evaluate the effects of a 50 and 100% increase in atmospheric CO{sub 2}, and a 100% increase in atmospheric CO{sub 2} coupled with a 4 C summer air temperature rise on the structure and function of an arctic tussock tundra ecosystem. The arctic contains large stores of carbon as soil organic matter, much frozen in permafrost and currently not reactive or available for oxidation and release into the atmosphere. About 10-27% of the world's terrestrial carbon occurs in arctic and boreal regions, and carbon is accumulating in these regions at the rate of 0.19 GT y{sup -1}. Mean temperature increases of 11 C and summer temperature increases of 4 C have been suggested. Mean July temperatures on the arctic coastal plain and arctic foothills regions are 4-12 C, and mean annual temperatures are -7 to -13 C (Haugen, 1982). The projected temperature increases represent a substantial elevation above current temperatures which will have major impacts on physical processes such as permafrost development and development of the active layer, and on biological and ecosystem processes such as primary productivity, carbon storage, and species composition. Extreme nutrient and temperature limitation of this ecosystem raised questions of the responsiveness of arctic systems to elevated CO{sub 2}. Complex ecosystem interactions with the effects

  10. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    Science.gov (United States)

    Huemmrich, Karl Fred; Gamon, John A.; Tweedie, Craig E.; Campbell, Petya K. Entcheva; Landis, David R.; Middleton, Elizabeth M.

    2013-01-01

    Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow, AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013 plus or minus 0.0002, 0.0018 plus or minus 0.0002, and 0.0012 plus or minus 0.0001 mol C mol (exp -1) absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Along the transect, area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. The patch-level statistical discriminant functions applied to in situ hyperspectral reflectance data collected along the transect successfully unmixed cover fractions of the vegetation functional types. The unmixing functions, developed from the transect data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine variability in distribution of the vegetation functional types for an area near Barrow, AK. Spatial variability of LUE was derived from the observed functional type distributions. Across this landscape, a

  11. Major outbreaks of the Douglas-fir tussock moth in Oregon and California.

    Science.gov (United States)

    Boyd E. Wickman; Richard R. Mason; C.G. Thompson

    1973-01-01

    Case histories of five tussock moth outbreaks that occurred in California and Oregon between 1935 and 1965 are discussed. Information is given on the size and duration of the outbreaks, the presence of natural control agents and the damage caused. Most of the outbreaks were eventually treated with DDT. However, enough information was available from untreated portions...

  12. Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands.

    Science.gov (United States)

    Dedysh, Svetlana N; Berestovskaya, Yulia Y; Vasylieva, Lina V; Belova, Svetlana E; Khmelenina, Valentina N; Suzina, Natalia E; Trotsenko, Yuri A; Liesack, Werner; Zavarzin, George A

    2004-01-01

    A novel species, Methylocella tundrae, is proposed for three methanotrophic strains (T4T, TCh1 and TY1) isolated from acidic Sphagnum tundra peatlands. These strains are aerobic, Gram-negative, non-motile, dinitrogen-fixing rods that possess a soluble methane monooxygenase and utilize the serine pathway for carbon assimilation. Strains T4T, TCh1 and TY1 are moderately acidophilic organisms capable of growth between pH 4.2 and 7.5 (optimum 5.5-6.0) and between 5 and 30 degrees C (optimum 15 degrees C). The major phospholipid fatty acid is 18:1omega7c. The DNA G+C content of strain T4T is 63.3 mol%. The three strains possess almost identical 16S rRNA gene sequences and are most closely related to two previously identified species of Methylocella, Methylocella palustris (97% similarity) and Methylocella silvestris (97.5% similarity). DNA-DNA hybridization values of strain T4T with Methylocella palustris KT and Methylocella silvestris BL2T were respectively 27 and 36%. Thus, the tundra strains represent a novel species, for which the name Methylocella tundrae sp. nov. is proposed. Strain T4T (=DSM 15673T=NCIMB 13949T) is the type strain.

  13. Beaver herbivory on aquatic plants.

    Science.gov (United States)

    Parker, John D; Caudill, Christopher C; Hay, Mark E

    2007-04-01

    Herbivores have strong impacts on marine and terrestrial plant communities, but their impact is less well studied in benthic freshwater systems. For example, North American beavers (Castor canadensis) eat both woody and non-woody plants and focus almost exclusively on the latter in summer months, yet their impacts on non-woody plants are generally attributed to ecosystem engineering rather than herbivory. Here, we excluded beavers from areas of two beaver wetlands for over 2 years and demonstrated that beaver herbivory reduced aquatic plant biomass by 60%, plant litter by 75%, and dramatically shifted plant species composition. The perennial forb lizard's tail (Saururus cernuus) comprised less than 5% of plant biomass in areas open to beaver grazing but greater than 50% of plant biomass in beaver exclusions. This shift was likely due to direct herbivory, as beavers preferentially consumed lizard's tail over other plants in a field feeding assay. Beaver herbivory also reduced the abundance of the invasive aquatic plant Myriophyllum aquaticum by nearly 90%, consistent with recent evidence that native generalist herbivores provide biotic resistance against exotic plant invasions. Beaver herbivory also had indirect effects on plant interactions in this community. The palatable plant lizard's tail was 3 times more frequent and 10 times more abundant inside woolgrass (Scirpus cyperinus) tussocks than in spatially paired locations lacking tussocks. When the protective foliage of the woolgrass was removed without exclusion cages, beavers consumed nearly half of the lizard's tail leaves within 2 weeks. In contrast, leaf abundance increased by 73-93% in the treatments retaining woolgrass or protected by a cage. Thus, woolgrass tussocks were as effective as cages at excluding beaver foraging and provided lizard's tail plants an associational refuge from beaver herbivory. These results suggest that beaver herbivory has strong direct and indirect impacts on populations and

  14. Negative plant soil feedback explaining ring formation in clonal plants

    NARCIS (Netherlands)

    Carteni, F.; Marasco, A.; Bonanomi, G.; Mazzoleni, S.; Rietkerk, M.G.; Giannino, F.

    2012-01-01

    Ring shaped patches of clonal plants have been reported in different environments, but the mechanisms underlying such pattern formation are still poorly explained. Water depletion in the inner tussocks zone has been proposed as a possible cause, although ring patterns have been also observed in

  15. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    International Nuclear Information System (INIS)

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A. Mark; Press, Malcolm C.; Phoenix, Gareth K.

    2016-01-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem "1"5N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m"−"2 yr"−"1, applied as "1"5NH_4"1"5NO_3 in Svalbard (79"°N), during the summer. Separate applications of "1"5NO_3"− and "1"5NH_4"+ were also made to determine the importance of N form in their retention. More than 95% of the total "1"5N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of "1"5N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater "1"5NO_3"− than "1"5NH_4"+, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication. - Highlights: • High Arctic tundra demonstrated a

  16. Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra - coupling field observations with remote sensing data

    Science.gov (United States)

    Mikola, Juha; Virtanen, Tarmo; Linkosalmi, Maiju; Vähä, Emmi; Nyman, Johanna; Postanogova, Olga; Räsänen, Aleksi; Kotze, D. Johan; Laurila, Tuomas; Juutinen, Sari; Kondratyev, Vladimir; Aurela, Mika

    2018-05-01

    Arctic tundra ecosystems will play a key role in future climate change due to intensifying permafrost thawing, plant growth and ecosystem carbon exchange, but monitoring these changes may be challenging due to the heterogeneity of Arctic landscapes. We examined spatial variation and linkages of soil and plant attributes in a site of Siberian Arctic tundra in Tiksi, northeast Russia, and evaluated possibilities to capture this variation by remote sensing for the benefit of carbon exchange measurements and landscape extrapolation. We distinguished nine land cover types (LCTs) and to characterize them, sampled 92 study plots for plant and soil attributes in 2014. Moreover, to test if variation in plant and soil attributes can be detected using remote sensing, we produced a normalized difference vegetation index (NDVI) and topographical parameters for each study plot using three very high spatial resolution multispectral satellite images. We found that soils ranged from mineral soils in bare soil and lichen tundra LCTs to soils of high percentage of organic matter (OM) in graminoid tundra, bog, dry fen and wet fen. OM content of the top soil was on average 14 g dm-3 in bare soil and lichen tundra and 89 g dm-3 in other LCTs. Total moss biomass varied from 0 to 820 g m-2, total vascular shoot mass from 7 to 112 g m-2 and vascular leaf area index (LAI) from 0.04 to 0.95 among LCTs. In late summer, soil temperatures at 15 cm depth were on average 14 °C in bare soil and lichen tundra, and varied from 5 to 9 °C in other LCTs. On average, depth of the biologically active, unfrozen soil layer doubled from early July to mid-August. When contrasted across study plots, moss biomass was positively associated with soil OM % and OM content and negatively associated with soil temperature, explaining 14-34 % of variation. Vascular shoot mass and LAI were also positively associated with soil OM content, and LAI with active layer depth, but only explained 6-15 % of variation. NDVI

  17. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia.

    Science.gov (United States)

    Berner, Logan T; Beck, Pieter S A; Bunn, Andrew G; Goetz, Scott J

    2013-11-01

    Russia's boreal (taiga) biome will likely contract sharply and shift northward in response to 21st century climatic change, yet few studies have examined plant response to climatic variability along the northern margin. We quantified climate dynamics, trends in plant growth, and growth-climate relationships across the tundra shrublands and Cajander larch (Larix cajanderi Mayr.) woodlands of the Kolyma river basin (657 000 km(2) ) in northeastern Siberia using satellite-derived normalized difference vegetation indices (NDVI), tree ring-width measurements, and climate data. Mean summer temperatures (Ts ) increased 1.0 °C from 1938 to 2009, though there was no trend (P > 0.05) in growing year precipitation or climate moisture index (CMIgy ). Mean summer NDVI (NDVIs ) increased significantly from 1982 to 2010 across 20% of the watershed, primarily in cold, shrub-dominated areas. NDVIs positively correlated (P  0.05), which significantly correlated with NDVIs (r = 0.44, P < 0.05, 1982-2007). Both satellite and tree-ring analyses indicated that plant growth was constrained by both low temperatures and limited moisture availability and, furthermore, that warming enhanced growth. Impacts of future climatic change on forests near treeline in Arctic Russia will likely be influenced by shifts in both temperature and moisture, which implies that projections of future forest distribution and productivity in this area should take into account the interactions of energy and moisture limitations. © 2013 John Wiley & Sons Ltd.

  18. Simulating the effects of soil organic nitrogen and grazing on arctic tundra vegetation dynamics on the Yamal Peninsula, Russia

    International Nuclear Information System (INIS)

    Yu Qin; Epstein, Howard; Walker, Donald

    2009-01-01

    Sustainability of tundra vegetation under changing climate on the Yamal Peninsula, northwestern Siberia, home to the world's largest area of reindeer husbandry, is of crucial importance to the local native community. An integrated investigation is needed for better understanding of the effects of soils, climate change and grazing on tundra vegetation in the Yamal region. In this study we applied a nutrient-based plant community model-ArcVeg-to evaluate how two factors (soil organic nitrogen (SON) levels and grazing) interact to affect tundra responses to climate warming across a latitudinal climatic gradient on the Yamal Peninsula. Model simulations were driven by field-collected soil data and expected grazing patterns along the Yamal Arctic Transect (YAT), within bioclimate subzones C (high arctic), D (northern low arctic) and E (southern low arctic). Plant biomass and NPP (net primary productivity) were significantly increased with warmer bioclimate subzones, greater soil nutrient levels and temporal climate warming, while they declined with higher grazing frequency. Temporal climate warming of 2 deg. C caused an increase of 665 g m -2 in total biomass at the high SON site in subzone E, but only 298 g m -2 at the low SON site. When grazing frequency was also increased, total biomass increased by only 369 g m -2 at the high SON site in contrast to 184 g m -2 at the low SON site in subzone E. Our results suggest that high SON can support greater plant biomass and plant responses to climate warming, while low SON and grazing may limit plant response to climate change. In addition to the first order factors (SON, bioclimate subzones, grazing and temporal climate warming), interactions among these significantly affect plant biomass and productivity in the arctic tundra and should not be ignored in regional scale studies.

  19. Simulating the effects of soil organic nitrogen and grazing on arctic tundra vegetation dynamics on the Yamal Peninsula, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Yu Qin; Epstein, Howard [Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22903 (United States); Walker, Donald [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States)

    2009-10-15

    Sustainability of tundra vegetation under changing climate on the Yamal Peninsula, northwestern Siberia, home to the world's largest area of reindeer husbandry, is of crucial importance to the local native community. An integrated investigation is needed for better understanding of the effects of soils, climate change and grazing on tundra vegetation in the Yamal region. In this study we applied a nutrient-based plant community model-ArcVeg-to evaluate how two factors (soil organic nitrogen (SON) levels and grazing) interact to affect tundra responses to climate warming across a latitudinal climatic gradient on the Yamal Peninsula. Model simulations were driven by field-collected soil data and expected grazing patterns along the Yamal Arctic Transect (YAT), within bioclimate subzones C (high arctic), D (northern low arctic) and E (southern low arctic). Plant biomass and NPP (net primary productivity) were significantly increased with warmer bioclimate subzones, greater soil nutrient levels and temporal climate warming, while they declined with higher grazing frequency. Temporal climate warming of 2 deg. C caused an increase of 665 g m{sup -2} in total biomass at the high SON site in subzone E, but only 298 g m{sup -2} at the low SON site. When grazing frequency was also increased, total biomass increased by only 369 g m{sup -2} at the high SON site in contrast to 184 g m{sup -2} at the low SON site in subzone E. Our results suggest that high SON can support greater plant biomass and plant responses to climate warming, while low SON and grazing may limit plant response to climate change. In addition to the first order factors (SON, bioclimate subzones, grazing and temporal climate warming), interactions among these significantly affect plant biomass and productivity in the arctic tundra and should not be ignored in regional scale studies.

  20. Stratospheric ozone depletion: high arctic tundra plant species from Svalbard are not affected by enhanced UV-B after 7 years of UV-B supplementation in the field.

    NARCIS (Netherlands)

    Rozema, J.; Boelen, P.; Blokker, P.; Callaghan, T.V.; Solheim, B.; Zielke, M.

    2006-01-01

    The response of tundra plants to enhanced UV-B radiation simulating 15 and 30% ozone depletion was studied at two high arctic sites (Isdammen and Adventdalen, 78° N, Svalbard).The set-up of the UV-B supplementation systems is described, consisting of large and small UV lamp arrays, installed in 1996

  1. Douglas-Fir Tussock Moth- and Douglas-Fir Beetle-Caused Mortality in a Ponderosa Pine/Douglas-Fir Forest in the Colorado Front Range, USA

    Directory of Open Access Journals (Sweden)

    José F. Negrón

    2014-12-01

    Full Text Available An outbreak of the Douglas-fir tussock moth, Orgyia pseudotsugata McDunnough, occurred in the South Platte River drainage on the Pike-San Isabel National Forest in the Colorado Front Range attacking Douglas-fir, Pseudotsuga menziesii (Mirb. Franco. Stocking levels, species composition, and tree size in heavily and lightly defoliated stands were similar. Douglas-fir tussock moth defoliation resulted in significant Douglas-fir mortality in the heavily defoliated stands, leading to a change in dominance to ponderosa pine, Pinus ponderosa Lawson. Douglas-fir beetle, Dendroctonus pseudotsuqae Hopkins, populations increased following the defoliation event but caused less mortality, and did not differ between heavily and lightly defoliated stands. Douglas-fir tussock moth-related mortality was greatest in trees less than 15 cm dbh (diameter at 1.4 m above the ground that grew in suppressed and intermediate canopy positions. Douglas-fir beetle-related mortality was greatest in trees larger than 15 cm dbh that grew in the dominant and co-dominant crown positions. Although both insects utilize Douglas-fir as its primary host, stand response to infestation is different. The extensive outbreak of the Douglas-fir tussock moth followed by Douglas-fir beetle activity may be associated with a legacy of increased host type growing in overstocked conditions as a result of fire exclusion.

  2. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Sonal, E-mail: S.Choudhary@sheffield.ac.uk [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Management School, University of Sheffield, Conduit Road, Sheffield S10 1FL (United Kingdom); Blaud, Aimeric [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Osborn, A. Mark [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); School of Applied Sciences, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Press, Malcolm C. [School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Manchester Metropolitan University, Manchester, M15 6BH (United Kingdom); Phoenix, Gareth K. [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem {sup 15}N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m{sup −2} yr{sup −1}, applied as {sup 15}NH{sub 4}{sup 15}NO{sub 3} in Svalbard (79{sup °}N), during the summer. Separate applications of {sup 15}NO{sub 3}{sup −} and {sup 15}NH{sub 4}{sup +} were also made to determine the importance of N form in their retention. More than 95% of the total {sup 15}N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of {sup 15}N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater {sup 15}NO{sub 3}{sup −} than {sup 15}NH{sub 4}{sup +}, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events

  3. Climatic warming strengthens a positive feedback between alpine shrubs and fire.

    Science.gov (United States)

    Camac, James S; Williams, Richard J; Wahren, Carl-Henrik; Hoffmann, Ary A; Vesk, Peter A

    2017-08-01

    Climate change is expected to increase fire activity and woody plant encroachment in arctic and alpine landscapes. However, the extent to which these increases interact to affect the structure, function and composition of alpine ecosystems is largely unknown. Here we use field surveys and experimental manipulations to examine how warming and fire affect recruitment, seedling growth and seedling survival in four dominant Australian alpine shrubs. We found that fire increased establishment of shrub seedlings by as much as 33-fold. Experimental warming also doubled growth rates of tall shrub seedlings and could potentially increase their survival. By contrast, warming had no effect on shrub recruitment, postfire tussock regeneration, or how tussock grass affected shrub seedling growth and survival. These findings indicate that warming, coupled with more frequent or severe fires, will likely result in an increase in the cover and abundance of evergreen shrubs. Given that shrubs are one of the most flammable components in alpine and tundra environments, warming is likely to strengthen an existing feedback between woody species abundance and fire in these ecosystems. © 2017 John Wiley & Sons Ltd.

  4. Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra – coupling field observations with remote sensing data

    Directory of Open Access Journals (Sweden)

    J. Mikola

    2018-05-01

    Full Text Available Arctic tundra ecosystems will play a key role in future climate change due to intensifying permafrost thawing, plant growth and ecosystem carbon exchange, but monitoring these changes may be challenging due to the heterogeneity of Arctic landscapes. We examined spatial variation and linkages of soil and plant attributes in a site of Siberian Arctic tundra in Tiksi, northeast Russia, and evaluated possibilities to capture this variation by remote sensing for the benefit of carbon exchange measurements and landscape extrapolation. We distinguished nine land cover types (LCTs and to characterize them, sampled 92 study plots for plant and soil attributes in 2014. Moreover, to test if variation in plant and soil attributes can be detected using remote sensing, we produced a normalized difference vegetation index (NDVI and topographical parameters for each study plot using three very high spatial resolution multispectral satellite images. We found that soils ranged from mineral soils in bare soil and lichen tundra LCTs to soils of high percentage of organic matter (OM in graminoid tundra, bog, dry fen and wet fen. OM content of the top soil was on average 14 g dm−3 in bare soil and lichen tundra and 89 g dm−3 in other LCTs. Total moss biomass varied from 0 to 820 g m−2, total vascular shoot mass from 7 to 112 g m−2 and vascular leaf area index (LAI from 0.04 to 0.95 among LCTs. In late summer, soil temperatures at 15 cm depth were on average 14 °C in bare soil and lichen tundra, and varied from 5 to 9 °C in other LCTs. On average, depth of the biologically active, unfrozen soil layer doubled from early July to mid-August. When contrasted across study plots, moss biomass was positively associated with soil OM % and OM content and negatively associated with soil temperature, explaining 14–34 % of variation. Vascular shoot mass and LAI were also positively associated with soil OM content, and LAI with active layer

  5. 50 CFR 20.107 - Seasons, limits, and shooting hours for tundra swans.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Seasons, limits, and shooting hours for tundra swans. 20.107 Section 20.107 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS ...

  6. The need for a tundra treatment protocol

    International Nuclear Information System (INIS)

    Filler, D.M.

    2000-01-01

    Support services formed an integral part of the oil and natural gas industry in the Arctic. These services include the road transportation of petroleum fuels to supply pipeline pump station generators, work camps, fleet vehicles and others. At times, spill response in the tundra proves to be harmful to the environment. An incident occurred in November 1997. A tanker truck was hauling arctic-grade diesel fuel on Alaska's North Slope when it rolled over at a river crossing, spilling 20,800 liters on the frozen tundra. The in situ burning that followed polluted the subsurface soil-water matrix within the river basin. It was difficult to distinguish between petroleum pollutant and biogenic hydrocarbon contributions in the tundra. A tundra treatment manual was then developed for the proper management of land-based fuel and oil spills in the Arctic. This manual takes into account the sensitive environment of the region. 14 refs., 4 figs

  7. [The processes of methane formation and oxidation in the soils of the Russian arctic tundra].

    Science.gov (United States)

    Berestovskaia, Iu Iu; Rusanov, I I; Vasil'eva, L V; Pimenov, N V

    2005-01-01

    Methane emission from the following types of tundra soils was studied: coarse humic gleyey loamy cryo soil, peaty gley soil, and peaty gleyey midloamy cryo soil of the arctic tundra. All the soils studied were found to be potential sources of atmospheric methane. The highest values of methane emission were recorded in August at a soil temperature of 8-10 degrees C. Flooded parcels were the sources of atmospheric methane throughout the observation period. The rates of methane production and oxidation in tundra soils of various types at 5 and 15 degrees C were studied by the radioisotope method. Methane oxidation was found to occur in bog water, in the green part of peat moss, and in all the soil horizons studied. Methane formation was recorded in the horizons of peat, in clay with plant roots, and in peaty moss dust of the bogey parcels. At both temperatures, the methane oxidation rate exceeded the rate of methane formation in all the horizons of the mossy-lichen tundra and of the bumpy sinkhole complex. Methanogenesis prevailed only in a sedge-peat moss bog at 15 degrees C. Enrichment bacterial cultures oxidizing methane at 5 and 15 degrees C were obtained. Different types of methanotrophic bacteria were shown to be responsible for methane oxidation under these conditions. A representative of type I methylotrophs oxidized methane at 5 degrees C, and Methylocella tundrae, a psychroactive representative of an acidophilic methanotrophic genus Methylocella, at 15 degrees C.

  8. Calibration and Validation of Tundra Plant Functional Type Fractional Cover Mapping

    Science.gov (United States)

    Macander, M. J.; Nelson, P.; Frost, G. V., Jr.

    2017-12-01

    Fractional cover maps are being developed for selected tundra plant functional types (PFTs) across >500,000 sq. km of arctic Alaska and adjacent Canada at 30 m resolution. Training and validation data include a field-based training dataset based on point-intercept sampling method at hundreds of plots spanning bioclimatic and geomorphic gradients. We also compiled 50 blocks of 1-5 cm resolution RGB image mosaics in Alaska (White Mountains, North Slope, and Yukon-Kuskokwim Delta) and the Yukon Territory. The mosaics and associated surface and canopy height models were developed using a consumer drone and structure from motion processing. We summarized both the in situ measurements and drone imagery to determine cover of two PFTs: Low and Tall Deciduous Shrub, and Light Fruticose/Foliose Lichen. We applied these data to train 2 m (limited extent) and 30 m (wall to wall) maps of PFT fractional cover for shrubs and lichen. Predictors for 2 m models were commercial satellite imagery such as WorldView-2 and Worldview-3, analyzed on the ABoVE Science Cloud. Predictors for 30 m models were primarily reflectance composites and spectral metrics developed from Landsat imagery, using Google Earth Engine. We compared the performance of models developed from the in situ and drone-derived training data and identify best practices to improve the performance and efficiency of arctic PFT fractional cover mapping.

  9. Potential changes in arctic seasonality and plant communities may impact tundra soil chemistry and carbon dynamics

    Science.gov (United States)

    Crow, S.; Cooper, E.; Beilman, D.; Filley, T.; Reimer, P.

    2009-04-01

    On the Svalbard archipelago, as in other high Arctic regions, tundra soil organic matter (SOM) is primarily plant detritus that is largely stabilized by cold, moist conditions and low nitrogen availability. However, the resistance of SOM to decomposition is also influenced by the quality of organic matter inputs to soil. Different plant communities are likely to give different qualities to SOM, especially where lignin-rich woody species encroach into otherwise graminoid and bryophyte-dominated regions. Arctic woody plant species are particularly sensitive to changes in temperature, snow cover, and growing season length. In a changing environment, litter chemistry may emerge as an important control on tundra SOM stabilization. In summer 2007, we collected plant material and soil from the highly-organic upper horizon (appx. 0-5 cm) and the mineral-dominated lower horizon (appx. 5-10cm) from four locations in the southwest facing valleys of Svalbard, Norway. The central goal of the ongoing experiment is to determine whether a greater abundance of woody plants could provide a negative feedback to warming impacts on the carbon (C) balance of Arctic soils. Towards this, we used a combination of plant biopolymer analyses (cupric oxide oxidation and quantification of lignin-derived phenols and cutin/suberin-derived aliphatics) and radiocarbon-based estimates of C longevity and mean residence time (MRT) to characterize potential links between plant type and soil C pools. We found that graminoid species regenerate above- and belowground tissue each year, whereas woody species (Cassiope tetragona and Dryas octopetala) regenerated only leaves yearly. In contrast, C within live branches and roots persisted for 15-18 yr on average. Leaves from woody species remained nearly intact in surface litter for up to 20 yr without being incorporated into the upper soil horizon. Leaves from both graminoid and woody species were concentrated in lignin-derived phenols relative to roots, but

  10. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model

    Science.gov (United States)

    Euskirchen, E.S.; Carman, T.B.; McGuire, Anthony David

    2013-01-01

    The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over regional to global scales typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observations of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest, and perform model simulations for the years 1970 -2100. Over the course of the model simulations, we found changes in ecosystem composition under this new phenology algorithm compared to simulations with the previous phenology algorithm. These changes were the result of the differential timing of leaf-out, as well as the ability for the groupings of species to compete for nitrogen and light availability. Regionally, there were differences in the trends of the carbon pools and fluxes between the new phenology algorithm and the previous phenology algorithm, although these differences depended on the future climate scenario. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape, and that dynamic vegetation models should consider variation in leaf-out by groupings of species within these ecosystems to make more accurate projections of future plant distributions and carbon cycling in Arctic regions.

  11. Effects of alien woody plant invasion on the birds of Mountain ...

    African Journals Online (AJOL)

    The density, biomass, species richness and composition of birds in plots in two Mountain Fynbos plant-species assemblages (Tall Mixed Fynbos and Restionaceous Tussock Marsh), infested with alien woody plants (mainly Australian Acacia spp.) at the Cape of Good Hope Nature Reserve, South Africa, were compared ...

  12. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time

    Science.gov (United States)

    Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollister; Robert G. Björk; Anne D. Bjorkman; Terry V. Callaghan; [and others] NO-VALUE; William Gould; Joel Mercado

    2012-01-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty...

  13. Response of a tundra ecosytem to elevated atmospheric carbon dioxide and CO2-induced climate change. Final report

    International Nuclear Information System (INIS)

    Oechel, W.C.

    1996-11-01

    The overall objective of this research was to document current patterns of CO 2 flux in selected locations of the circumpolar arctic, and to develop the information necessary to predict how these fluxes may be affected by climate change. In fulfillment of these objectives, net CO 2 flux was measured at several sites on the North Slope of Alaska during the 1990-94 growing season (June-August) to determine the local and regional patterns, of seasonal CO 2 exchange. In addition, net CO 2 flux was measured in the Russian and Icelandic Arctic to determine if the patterns of CO 2 exchange observed in Arctic Alaska were representative of the circumpolar arctic, while cold-season CO 2 flux measurements were carried out during the 1993-94 winter season to determine the magnitude of CO 2 efflux not accounted for by the growing season measurements. Manipulations of soil water table depth and surface temperature, which were identified from the extensive measurements as being the most important variables in determining the magnitude and direction of net CO 2 exchange, were carried out during the 1993-94 growing seasons in tussock and wet sedge tundra ecosystems. Finally, measurements of CH 4 flux were also measured at several of the North Slope study sites during the 1990-91 growing seasons. Measurements were made on small (e.g. 0.5 m 2 ) plots using a portable gas-exchange system and cuvette. The sample design allowed frequent measurements of net CO 2 exchange and respiration over diurnal and seasonal cycles, and a large spatial extent that incorporated both locally and regionally diverse tundra surface types. Measurements both within and between ecosystem types typically extended over soil water table depth and temperature gradients, allowing for the indirect analysis of the effects of anticipated climate change scenarios on net CO 2 exchange. In situ experiments provided a direct means for testing hypotheses

  14. Arctic Tundra Greening and Browning at Circumpolar and Regional Scales

    Science.gov (United States)

    Epstein, H. E.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Yang, X.

    2017-12-01

    Remote sensing data have historically been used to assess the dynamics of arctic tundra vegetation. Until recently the scientific literature has largely described the "greening" of the Arctic; from a remote sensing perspective, an increase in the Normalized Difference Vegetation Index (NDVI), or a similar satellite-based vegetation index. Vegetation increases have been heterogeneous throughout the Arctic, and were reported to be up to 25% in certain areas over a 30-year timespan. However, more recently, arctic tundra vegetation dynamics have gotten more complex, with observations of more widespread tundra "browning" being reported. We used a combination of remote sensing data, including the Global Inventory Monitoring and Modeling System (GIMMS), as well as higher spatial resolution Landsat data, to evaluate the spatio-temporal patterns of arctic tundra vegetation dynamics (greening and browning) at circumpolar and regional scales over the past 3-4 decades. At the circumpolar scale, we focus on the spatial heterogeneity (by tundra subzone and continent) of tundra browning over the past 5-15 years, followed by a more recent recovery (greening since 2015). Landsat time series allow us to evaluate the landscape-scale heterogeneity of tundra greening and browning for northern Alaska and the Yamal Peninsula in northwestern Siberia, Russia. Multi-dataset analyses reveal that tundra greening and browning (i.e. increases or decreases in the NDVI respectively) are generated by different sets of processes. Tundra greening is largely a result of either climate warming, lengthening of the growing season, or responses to disturbances, such as fires, landslides, and freeze-thaw processes. Browning on the other hand tends to be more event-driven, such as the shorter-term decline in vegetation due to fire, insect defoliation, consumption by larger herbivores, or extreme weather events (e.g. winter warming or early summer frost damage). Browning can also be caused by local or

  15. Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest

    Science.gov (United States)

    Thompson, C.; Beringer, J.; Chapin, F. S.; McGuire, A.D.

    2004-01-01

    Question: Current climate changes in the Alaskan Arctic, which are characterized by increases in temperature and length of growing season, could alter vegetation structure, especially through increases in shrub cover or the movement of treeline. These changes in vegetation structure have consequences for the climate system. What is the relationship between structural complexity and partitioning of surface energy along a gradient from tundra through shrub tundra to closed canopy forest? Location: Arctic tundra-boreal forest transition in the Alaskan Arctic. Methods: Along this gradient of increasing canopy complexity, we measured key vegetation characteristics, including community composition, biomass, cover, height, leaf area index and stem area index. We relate these vegetation characteristics to albedo and the partitioning of net radiation into ground, latent, and sensible heating fluxes. Results: Canopy complexity increased along the sequence from tundra to forest due to the addition of new plant functional types. This led to non-linear changes in biomass, cover, and height in the understory. The increased canopy complexity resulted in reduced ground heat fluxes, relatively conserved latent heat fluxes and increased sensible heat fluxes. The localized warming associated with increased sensible heating over more complex canopies may amplify regional warming, causing further vegetation change in the Alaskan Arctic.

  16. Fractionation of Nitrogen Isotopes by Plants with Different Types of Mycorrhiza in Mountain Tundra Ecosystems

    Science.gov (United States)

    Buzin, Igor; Makarov, Mikhail; Maslov, Mikhail; Tiunov, Alexei

    2017-04-01

    We studied nitrogen concentration and nitrogen isotope composition in plants from four mountain tundra ecosystems in the Khibiny Mountains. The ecosystems consisted of a toposequence beginning with the shrub-lichen heath (SLH) on the ridge and upper slope, followed by the Betula nana dominated shrub heath (SH) on the middle slope, the cereal meadow (CM) on the lower slope and the sedge meadow (SM) at the bottom of the slope. The inorganic nitrogen concentration of the soils from the studied ecosystems were significantly different; the SLH soil was found to contain the minimum concentration of N-NH4+ and N-NO3- , while in the soils of the meadow ecosystems these concentrations were much higher. The concentration of nitrogen in leaves of the dominant plant species in all of the ecosystems is directly connected with the concentration of inorganic nitrogen in the soils, regardless of the plant's mycorrhizal symbiosis type. However, such a correlation is not apparent in the case of plant roots, especially for plant roots with ectomycorrhiza and ericoid mycorrhiza. The majority of plant species with these types of mycorrhiza in the SH and particularly in the CM were enriched in 15N in comparison with the SLH (such plants were not found within the SM). This could be due to several reasons: 1) the decreasing role of mycorrhiza in nitrogen consumption and therefore in the fractionation of isotopes in the relatively-N-enriched ecosystems; 2) the use of relatively-15N-enriched forms of nitrogen for plant nutrition in meadow ecosystems. This heavier nitrogen isotope composition in plant roots with ectomycorrhiza and ericoid mycorrhiza in ecosystems with available nitrogen enriched soils doesn't correspond to the classical idea of mycorrhiza decreasing participation in nitrogen plant nutrition. The analysis of the isotope composition of separate labile forms of nitrogen makes it possible to explain the phenomenon. Not all arbuscular mycorrhizal species within the sedge meadow

  17. Response of a tundra ecosytem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1996-11-01

    The overall objective of this research was to document current patterns of CO{sub 2} flux in selected locations of the circumpolar arctic, and to develop the information necessary to predict how these fluxes may be affected by climate change. In fulfillment of these objectives, net CO{sub 2} flux was measured at several sites on the North Slope of Alaska during the 1990-94 growing season (June-August) to determine the local and regional patterns, of seasonal CO{sub 2} exchange. In addition, net CO{sub 2} flux was measured in the Russian and Icelandic Arctic to determine if the patterns of CO{sub 2} exchange observed in Arctic Alaska were representative of the circumpolar arctic, while cold-season CO{sub 2} flux measurements were carried out during the 1993-94 winter season to determine the magnitude of CO{sub 2} efflux not accounted for by the growing season measurements. Manipulations of soil water table depth and surface temperature, which were identified from the extensive measurements as being the most important variables in determining the magnitude and direction of net CO{sub 2} exchange, were carried out during the 1993-94 growing seasons in tussock and wet sedge tundra ecosystems. Finally, measurements of CH{sub 4} flux were also measured at several of the North Slope study sites during the 1990-91 growing seasons. Measurements were made on small (e.g. 0.5 m{sup 2}) plots using a portable gas-exchange system and cuvette. The sample design allowed frequent measurements of net CO{sub 2} exchange and respiration over diurnal and seasonal cycles, and a large spatial extent that incorporated both locally and regionally diverse tundra surface types. Measurements both within and between ecosystem types typically extended over soil water table depth and temperature gradients, allowing for the indirect analysis of the effects of anticipated climate change scenarios on net CO{sub 2} exchange. In situ experiments provided a direct means for testing hypotheses.

  18. Quantification of upland thermokarst features with high resolution remote sensing

    International Nuclear Information System (INIS)

    Belshe, E F; Schuur, E A G; Grosse, G

    2013-01-01

    Climate-induced changes to permafrost are altering high latitude landscapes in ways that could increase the vulnerability of the vast soil carbon pools of the region. Permafrost thaw is temporally dynamic and spatially heterogeneous because, in addition to the thickening of the active layer, localized thermokarst features form when ice-rich permafrost thaws and the ground subsides. Thermokarst produces a diversity of landforms and alters the physical environment in dynamic ways. To estimate potential changes to the carbon cycle it is imperative to quantify the size and distribution of thermokarst landforms. By performing a supervised classification on a high resolution IKONOS image, we detected and mapped small, irregular thermokarst features occurring within an upland watershed in discontinuous permafrost of Interior Alaska. We found that 12% of the Eight Mile Lake (EML) watershed has undergone thermokarst, predominantly in valleys where tussock tundra resides. About 35% of the 3.7 km 2 tussock tundra class has likely transitioned to thermokarst. These landscape level changes created by permafrost thaw at EML have important implications for ecosystem carbon cycling because thermokarst features are forming in carbon-rich areas and are altering the hydrology in ways that increase seasonal thawing of the soil. (letter)

  19. Shifts in the phylogenetic structure and functional capacity of soil microbial communities follow alteration of native tussock grassland ecosystems

    NARCIS (Netherlands)

    Wakelin, Steven A.; Barratt, Barbara I.P.; Gerard, Emily; Gregg, Adrienne L.; Brodie, Eoin L.; Andersen, Gary L.; DeSantis, Todd Z.; Zhou, Jizhong; He, Zhili; Kowalchuk, George A.; O'Callaghan, Maureen

    Globally, tussock-based grasslands are being modified to increase productive capacity. The impacts of cultivation and over-sowing with exotic grass and legumes on soil microbiology were assessed at four sites in New Zealand which differed in soil type, climate and vegetation. Primary alteration of

  20. Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains.

    Science.gov (United States)

    Kaarlejärvi, Elina; Eskelinen, Anu; Olofsson, Johan

    2017-09-04

    Climate warming is altering the diversity of plant communities but it remains unknown which species will be lost or gained under warming, especially considering interactions with other factors such as herbivory and nutrient availability. Here, we experimentally test effects of warming, mammalian herbivory and fertilization on tundra species richness and investigate how plant functional traits affect losses and gains. We show that herbivory reverses the impact of warming on diversity: in the presence of herbivores warming increases species richness through higher species gains and lower losses, while in the absence of herbivores warming causes higher species losses and thus decreases species richness. Herbivores promote gains of short-statured species under warming, while herbivore removal and fertilization increase losses of short-statured and resource-conservative species through light limitation. Our results demonstrate that both rarity and traits forecast species losses and gains, and mammalian herbivores are essential for preventing trait-dependent extinctions and mitigate diversity loss under warming and eutrophication.Warming can reduce plant diversity but it is unclear which species will be lost or gained under interacting global changes. Kaarlejärvi et al. manipulate temperature, herbivory and nutrients in a tundra system and find that herbivory maintains diversity under warming by reducing species losses and promoting gains.

  1. Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1996-11-01

    The overall objective of this research was to document current patterns of CO{sub 2} flux in selected locations of the circumpolar arctic, and to develop the information necessary to predict how these fluxes may be affected by climate change. In fulfillment of these objectives, net CO{sub 2} flux was measured at several sites on the North Slope of Alaska during the 1990--94 growing season (June--August) to determine the local and regional patterns of seasonal CO{sub 2} exchange. In addition, net CO{sub 2} flux was measured in the Russian and Icelandic Arctic to determine if the patterns of CO{sub 2} exchange observed in Arctic Alaska were representative of the circumpolar Arctic, while cold-season CO{sub 2} flux measurements were carried out during the 1993--94 winter season to determine the magnitude of CO{sub 2} efflux not accounted for by the growing season measurements. Manipulations of soil water table depth and surface temperature, which were identified from the extensive measurements as being the most important variables in determining the magnitude and direction of net CO{sub 2} exchange, were carried out during the 1993--94 growing seasons in tussock and wet sedge tundra ecosystems. Finally, measurements of CH{sub 4} flux were also measured at several of the North Slope study sites during the 1990--91 growing seasons.

  2. Depth-based differentiation in nitrogen uptake between graminoids and shrubs in an Arctic tundra plant community

    NARCIS (Netherlands)

    Wang, Peng; Limpens, Juul; Nauta, Ake; Huissteden, van Corine; Rijssel, van Sophie Quirina; Mommer, Liesje; Kroon, de Hans; Maximov, Trofim C.; Heijmans, Monique M.P.D.

    2018-01-01

    Questions: The rapid climate warming in tundra ecosystems can increase nutrient availability in the soil, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co-determine whether Arctic warming is mitigated or accelerated, making the understanding

  3. Plant traits and trait-based vegetation modeling in the Arctic

    Science.gov (United States)

    Xu, C.; Sevanto, S.; Iversen, C. M.; Salmon, V. G.; Rogers, A.; Wullschleger, S.; Wilson, C. J.

    2017-12-01

    Arctic tundra environments are characterized by extremely cold temperatures, strong winds, short growing season and thin, nutrient-poor soil layer impacted by permafrost. To survive in this environment vascular plants have developed traits that simultaneously promote high productivity under favorable environments, and survival in harsh conditions. To improve representation of Arctic tundra vegetation in Earth System Models we surveyed plant trait data bases for key trait parameters that influence modeled ecosystem carbon balance, and compared the traits within plant families occurring in the boreal, temperate and arctic zones. The parameters include photosynthetic carbon uptake efficiency (Vcmax and Jmax), root:shoot ratio, and root and leaf nitrogen content, and we focused on woody shrubs. Our results suggest that root nitrogen content in non-nitrogen fixing tundra shrubs is lower than in representatives of the same families in the boreal or temperate zone. High tissue nitrogen concentrations have been related to high vulnerability to drought. The low root nitrogen concentrations in tundra shrubs may thus be an indication of acclimation to shallow soils, and frequent freezing that has a similar impact on the plant conductive tissue as drought. With current nitrogen availability, nitrogen limitation reduces the benefits of increased temperatures and longer growing seasons to the tundra ecosystem carbon balance. Thawing of permafrost will increase nitrogen availability, and promote plant growth and carbon uptake, but it could also make the shrubs more vulnerable to freeze-thaw cycles, with the overall result of reduced shrub coverage. The final outcome of warming temperatures and thawing of permafrost on tundra shrubs will thus depend on the relative speed of warming and plant acclimation.

  4. The origin of lead in the organic horizon of tundra soils: Atmospheric deposition, plant translocation from the mineral soil or soil mineral mixing?

    International Nuclear Information System (INIS)

    Klaminder, Jonatan; Farmer, John G.; MacKenzie, Angus B.

    2011-01-01

    Knowledge of the anthropogenic contribution to lead (Pb) concentrations in surface soils in high latitude ecosystems is central to our understanding of the extent of atmospheric Pb contamination. In this study, we reconstructed fallout of Pb at a remote sub-arctic region by using two ombrotrophic peat cores and assessed the extent to which this airborne Pb is able to explain the isotopic composition ( 206 Pb/ 207 Pb ratio) in the O-horizon of tundra soils. In the peat cores, long-range atmospheric fallout appeared to be the main source of Pb as indicated by temporal trends that followed the known European pollution history, i.e. accelerated fallout at the onset of industrialization and peak fallout around the 1960s-70s. The Pb isotopic composition of the O-horizon of podzolic tundra soil ( 206 Pb/ 207 Pb = 1.170 ± 0.002; mean ± SD) overlapped with that of the peat ( 206 Pb/ 207 Pb = 1.16 ± 0.01) representing a proxy for atmospheric aerosols, but was clearly different from that of the parent soil material ( 206 Pb/ 207 Pb = 1.22-1.30). This finding indicated that long-range fallout of atmospheric Pb is the main driver of Pb accumulation in podzolic tundra soil. In O-horizons of tundra soil weakly affected by cryoturbation (cryosols) however, the input of Pb from the underlying mineral soil increased as indicated by 206 Pb/ 207 Pb ratios of up to 1.20, a value closer to that of local soil minerals. Nevertheless, atmospheric Pb appeared to be the dominant source in this soil compartment. We conclude that Pb concentrations in the O-horizon of studied tundra soils - despite being much lower than in boreal soils and representative for one of the least exposed sites to atmospheric Pb contaminants in Europe - are mainly controlled by atmospheric inputs from distant anthropogenic sources. - Highlights: → We used Pb isotopic composition to aid interpretation of Pb profiles in tundra soils. → Ombrotrophic peat cores were used as records of atmospheric inputs of Pb.

  5. Tundra Rehabilitation in Alaska's Arctic

    Science.gov (United States)

    Lynn, L. A.

    2012-12-01

    Oil exploration in Alaska's Arctic has been conducted for more than 40 years, resulting in over 3,640 ha of gravel fill placed for roads, pads, and airstrips to support the industry. Likewise, tundra disturbance from burying power lines and by tundra vehicle travel are also common. Rehabilitation of disturbed sites began around 2002, with well over 150 ha that has been previously treated or is currently being rehabilitated. Two primary goals of rehabilitation efforts have been 1) revegetation by indigenous species, and 2) limiting thermokarst. Early efforts were concerned that removing gravel and having exposed bare ground would lead to extensive subsidence and eolian erosion. Native grass cultivars (e.g. Poa glauca, Arctagrostis latifolia, and Festuca rubra) were seeded to create vegetation cover quickly with the expectation that these grasses would survive only temporarily. The root masses and leaf litter were also expected to trap indigenous seed to enhance natural recolonization by indigenous plants. Due to the remote location of these sites, many of which are only accessible by helicopter, most are visited only two to three times following cultivation treatments, providing a limited data pool. At many sites, the total live seeded grass cover declined about 15% over the first 5¬-6 years (from around 30% to 15% cover), while total live indigenous vascular cover increased from no or trace cover to an average of 10% cover in that time. Cover of indigenous vascular plants at sites that were not seeded with native grass cultivars averaged just less than 10% after 10 years, showing no appreciable difference between the two approaches. Final surface elevations at the sites affect local hydrology and soil moisture. Other factors that influence the success of vegetation cover are proximity to the Arctic coast (salt effects), depth of remaining gravel, and changes in characteristics of the near-surface soil. Further development of rehabilitation techniques and the

  6. Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane, and nitrous oxide.

    Science.gov (United States)

    Voigt, Carolina; Lamprecht, Richard E; Marushchak, Maija E; Lind, Saara E; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J; Biasi, Christina

    2017-08-01

    Rapidly rising temperatures in the Arctic might cause a greater release of greenhouse gases (GHGs) to the atmosphere. To study the effect of warming on GHG dynamics, we deployed open-top chambers in a subarctic tundra site in Northeast European Russia. We determined carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) fluxes as well as the concentration of those gases, inorganic nitrogen (N) and dissolved organic carbon (DOC) along the soil profile. Studied tundra surfaces ranged from mineral to organic soils and from vegetated to unvegetated areas. As a result of air warming, the seasonal GHG budget of the vegetated tundra surfaces shifted from a GHG sink of -300 to -198 g CO 2 -eq m -2 to a source of 105 to 144 g CO 2 -eq m -2 . At bare peat surfaces, we observed increased release of all three GHGs. While the positive warming response was dominated by CO 2 , we provide here the first in situ evidence of increasing N 2 O emissions from tundra soils with warming. Warming promoted N 2 O release not only from bare peat, previously identified as a strong N 2 O source, but also from the abundant, vegetated peat surfaces that do not emit N 2 O under present climate. At these surfaces, elevated temperatures had an adverse effect on plant growth, resulting in lower plant N uptake and, consequently, better N availability for soil microbes. Although the warming was limited to the soil surface and did not alter thaw depth, it increased concentrations of DOC, CO 2, and CH 4 in the soil down to the permafrost table. This can be attributed to downward DOC leaching, fueling microbial activity at depth. Taken together, our results emphasize the tight linkages between plant and soil processes, and different soil layers, which need to be taken into account when predicting the climate change feedback of the Arctic. © 2016 John Wiley & Sons Ltd.

  7. Tundra in the rain

    DEFF Research Database (Denmark)

    Keuper, Frida; Parmentier, Frans Jan W; Blok, Daan

    2012-01-01

    Precipitation amounts and patterns at high latitude sites have been predicted to change as a result of global climatic changes. We addressed vegetation responses to three years of experimentally increased summer precipitation in two previously unaddressed tundra types: Betula nana-dominated shrub...

  8. Exclusion of brown lemmings reduces vascular plant cover and biomass in Arctic coastal tundra: resampling of a 50 + year herbivore exclosure experiment near Barrow, Alaska

    International Nuclear Information System (INIS)

    Johnson, D R; Lara, M J; Tweedie, C E; Shaver, G R; Batzli, G O; Shaw, J D

    2011-01-01

    To determine the role lemmings play in structuring plant communities and their contribution to the 'greening of the Arctic', we measured plant cover and biomass in 50 + year old lemming exclosures and control plots in the coastal tundra near Barrow, Alaska. The response of plant functional types to herbivore exclusion varied among land cover types. In general, the abundance of lichens and bryophytes increased with the exclusion of lemmings, whereas graminoids decreased, although the magnitude of these responses varied among land cover types. These results suggest that sustained lemming activity promotes a higher biomass of vascular plant functional types than would be expected without their presence and highlights the importance of considering herbivory when interpreting patterns of greening in the Arctic. In light of the rapid environmental change ongoing in the Arctic and the potential regional to global implications of this change, further exploration regarding the long-term influence of arvicoline rodents on ecosystem function (e.g. carbon and energy balance) should be considered a research priority.

  9. How Will the Tundra-Taiga Interface Respond to Climate Change?

    Energy Technology Data Exchange (ETDEWEB)

    Skre, Oddvar [Norwegian Forest Research Inst., Fana (Norway); Baxter, Bob [Univ. of Durham (United Kingdom). School of Biological and Biomedical Sciences; Crawford, Robert M.M. [Univ. of St. Andrews (United Kingdom); Callaghan, Terry V. [Univ. of Sheffield (United Kingdom). Sheffield Centre for Arctic Ecology; Fedorkov, Aleksey [Russian Academy of Sciences, Syktyvkar (Russian Federation). Inst. of Biology

    2002-08-01

    The intuitive and logical answer to the question of how the tundra-taiga interface will react to global warming is that it should move north and this is mirrored by many models of potential treeline migration. Northward movement may be the eventual outcome if climatic warming persists over centuries or millennia. However, closer examination of the tundra-taiga interface across its circumpolar extent reveals a more complex situation. The regional climatic history of the tundra-taiga interface is highly varied, and consequently it is to be expected that the forest tundra boundary zone will respond differently to climate change depending on local variations in climate, evolutionary history, soil development, and hydrology. Investigations reveal considerable stability at present in the position of the treeline and while there may be a long-term advance northwards there are oceanic regions where climatic warming may result in a retreat southwards due to increased bog development. Reinforcing this trend is an increasing human impact, particularly in the forest tundra of Russia, which forces the limit of the forested areas southwards. Local variations will therefore require continued observation and research, as they will be of considerable importance economically as well as for ecology and conservation.

  10. Airborne Spectral Measurements of Surface-Atmosphere Anisotropy for Arctic Sea Ice and Tundra

    Science.gov (United States)

    Arnold, G. Thomas; Tsay, Si-Chee; King, Michael D.; Li, Jason Y.; Soulen, Peter F.

    1999-01-01

    Angular distributions of spectral reflectance for four common arctic surfaces: snow-covered sea ice, melt-season sea ice, snow-covered tundra, and tundra shortly after snowmelt were measured using an aircraft based, high angular resolution (1-degree) multispectral radiometer. Results indicate bidirectional reflectance is higher for snow-covered sea ice than melt-season sea ice at all wavelengths between 0.47 and 2.3 pm, with the difference increasing with wavelength. Bidirectional reflectance of snow-covered tundra is higher than for snow-free tundra for measurements less than 1.64 pm, with the difference decreasing with wavelength. Bidirectional reflectance patterns of all measured surfaces show maximum reflectance in the forward scattering direction of the principal plane, with identifiable specular reflection for the melt-season sea ice and snow-free tundra cases. The snow-free tundra had the most significant backscatter, and the melt-season sea ice the least. For sea ice, bidirectional reflectance changes due to snowmelt were more significant than differences among the different types of melt-season sea ice. Also the spectral-hemispherical (plane) albedo of each measured arctic surface was computed. Comparing measured nadir reflectance to albedo for sea ice and snow-covered tundra shows albedo underestimated 5-40%, with the largest bias at wavelengths beyond 1 pm. For snow-free tundra, nadir reflectance underestimates plane albedo by about 30-50%.

  11. The origin of lead in the organic horizon of tundra soils: Atmospheric deposition, plant translocation from the mineral soil or soil mineral mixing?

    Energy Technology Data Exchange (ETDEWEB)

    Klaminder, Jonatan, E-mail: jonatan.klaminder@emg.umu.se [Department of Ecology and Environmental Science, Umea University, 90187 Umea (Sweden); Farmer, John G. [School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JN, Scotland (United Kingdom); MacKenzie, Angus B. [Scottish Universities Environmental Research Centre, East Kilbride, G75 0QF, Scotland (United Kingdom)

    2011-09-15

    Knowledge of the anthropogenic contribution to lead (Pb) concentrations in surface soils in high latitude ecosystems is central to our understanding of the extent of atmospheric Pb contamination. In this study, we reconstructed fallout of Pb at a remote sub-arctic region by using two ombrotrophic peat cores and assessed the extent to which this airborne Pb is able to explain the isotopic composition ({sup 206}Pb/{sup 207}Pb ratio) in the O-horizon of tundra soils. In the peat cores, long-range atmospheric fallout appeared to be the main source of Pb as indicated by temporal trends that followed the known European pollution history, i.e. accelerated fallout at the onset of industrialization and peak fallout around the 1960s-70s. The Pb isotopic composition of the O-horizon of podzolic tundra soil ({sup 206}Pb/{sup 207}Pb = 1.170 {+-} 0.002; mean {+-} SD) overlapped with that of the peat ({sup 206}Pb/{sup 207}Pb = 1.16 {+-} 0.01) representing a proxy for atmospheric aerosols, but was clearly different from that of the parent soil material ({sup 206}Pb/{sup 207}Pb = 1.22-1.30). This finding indicated that long-range fallout of atmospheric Pb is the main driver of Pb accumulation in podzolic tundra soil. In O-horizons of tundra soil weakly affected by cryoturbation (cryosols) however, the input of Pb from the underlying mineral soil increased as indicated by {sup 206}Pb/{sup 207}Pb ratios of up to 1.20, a value closer to that of local soil minerals. Nevertheless, atmospheric Pb appeared to be the dominant source in this soil compartment. We conclude that Pb concentrations in the O-horizon of studied tundra soils - despite being much lower than in boreal soils and representative for one of the least exposed sites to atmospheric Pb contaminants in Europe - are mainly controlled by atmospheric inputs from distant anthropogenic sources. - Highlights: {yields} We used Pb isotopic composition to aid interpretation of Pb profiles in tundra soils. {yields} Ombrotrophic peat

  12. Seasonal changes and vertical distribution of root standing biomass of graminoids and shrubs at a Siberian tundra site

    NARCIS (Netherlands)

    Wang, Peng; Mommer, L.; Ruijven, van J.; Berendse, F.; Maximov, T.; Heijmans, M.M.P.D.

    2016-01-01

    Aims

    Shrub expansion is common in the tundra biome and has been linked to climate warming. However, the underlying mechanisms are still not fully understood. This study aimed to investigate the seasonal and vertical rooting patterns of different plant functional types, which is important

  13. Regional Quantitative Cover Mapping of Tundra Plant Functional Types in Arctic Alaska

    Directory of Open Access Journals (Sweden)

    Matthew J. Macander

    2017-10-01

    Full Text Available Ecosystem maps are foundational tools that support multi-disciplinary study design and applications including wildlife habitat assessment, monitoring and Earth-system modeling. Here, we present continuous-field cover maps for tundra plant functional types (PFTs across ~125,000 km2 of Alaska’s North Slope at 30-m resolution. To develop maps, we collected a field-based training dataset using a point-intercept sampling method at 225 plots spanning bioclimatic and geomorphic gradients. We stratified vegetation by nine PFTs (e.g., low deciduous shrub, dwarf evergreen shrub, sedge, lichen and summarized measurements of the PFTs, open water, bare ground and litter using the cover metrics total cover (areal cover including the understory and top cover (uppermost canopy or ground cover. We then developed 73 spectral predictors derived from Landsat satellite observations (surface reflectance composites for ~15-day periods from May–August and five gridded environmental predictors (e.g., summer temperature, climatological snow-free date to model cover of PFTs using the random forest data-mining algorithm. Model performance tended to be best for canopy-forming PFTs, particularly deciduous shrubs. Our assessment of predictor importance indicated that models for low-statured PFTs were improved through the use of seasonal composites from early and late in the growing season, particularly when similar PFTs were aggregated together (e.g., total deciduous shrub, herbaceous. Continuous-field maps have many advantages over traditional thematic maps, and the methods described here are well-suited to support periodic map updates in tandem with future field and Landsat observations.

  14. TUNDRA IN A CHANGING CLIMATE

    Directory of Open Access Journals (Sweden)

    Terry Callaghan

    2011-01-01

    Full Text Available Both palaeogeographical reconstructions and general circulation models indicate that global warming is especially strongly manifested in high latitudes. Under a 2°C increase in mean global temperature, almost the entire modern tundra zone would become potentially suitable for tree growth. Nevertheless, palaeobotanic data cannot be applied directly to estimating vegetation response to the global warming expected in the 21st century, as they characterize a quasi-equilibrium state of ecosystems, which takes several centuries to be achieved. Low migration rates of trees, damage caused by fires and insects, processes of soil drying or paludification, and influence of herbivorous animals and human activities may slow down considerably forest spread in tundra. Climate warming will probably cause a decline in the populations of Arctic species and expansion of ranges of some southern animal species into the Arctic.

  15. Synthesis of the Sex Pheromone of the Tea Tussock Moth Based on a Resource Chemistry Strategy

    Directory of Open Access Journals (Sweden)

    Hong-Li Zhang

    2018-06-01

    Full Text Available Synthesis of the sex pheromone of the tea tussock moth in 33% overall yield over 10 steps was achieved. Moreover, the chiral pool concept was applied in the asymmetric synthesis. The synthesis used a chemical available on a large-scale from recycling of wastewater from the steroid industry. The carbon skeleton was constructed using the C4+C5+C8 strategy. Based on this strategy, the original chiral center was totally retained.

  16. Energy partitioning at treeline forest and tundra sites and its sensitivity to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, P.M. [Trent Univ., Peterborough, ON (Canada); Rouse, W.R. [McMaster Univ., Hamilton, ON (Canada)

    1995-12-31

    A study was conducted to examine the inter-annual variability in energy fluxes of treeline tundra and forest and to investigate the sensitivity of forest and tundra energy balances to climatic changes. A five year record of energy balance data from contiguous wetland tundra and subarctic forest sites near Churchill, Manitoba was analyzed. The data included snow free periods only. Wind direction was used as an analogue for changing climatic conditions where onshore winds are cooler and moister than offshore winds. Sensible and latent heat fluxes at both sites varied significantly between onshore and offshore wind regimes. The differences between onshore and offshore fluxes at the tundra site were larger than for the forest. The tundra-to-forest Bowen ratios decreased with increasing vapour pressure deficit and increasing air temperature. Results suggest that energy partitioning in the wetland tundra is more sensitive to climate change than in the treeline forests. 22 refs., 1 tab., 6 figs.

  17. Soil nutrients, landscape age, and Sphagno-Eriophoretum vaginati plant communities in Arctic moist-acidic Tundra landscapes

    Science.gov (United States)

    Joel Mercado-Diaz; William Gould; Grizelle Gonzalez

    2014-01-01

    Most research exploring the relationship between soil chemistry and vegetation in Alaskan Arctic tundra landscapes has focused on describing differences in soil elemental concentrations (e.g. C, N and P) of areas with contrasting vegetation types or landscape age. In this work we assess the effect of landscape age on physico-chemical parameters in organic and mineral...

  18. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw.

    Science.gov (United States)

    Salmon, Verity G; Soucy, Patrick; Mauritz, Marguerite; Celis, Gerardo; Natali, Susan M; Mack, Michelle C; Schuur, Edward A G

    2016-05-01

    Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330-1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5 years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5 year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5 years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools. © 2015 John Wiley & Sons Ltd.

  19. The Contribution of Mosses to the Complex Pattern of Diurnal and Seasonal Metabolism the wet Coastal Tundra Ecosystems Near Barrow Alaska.

    Science.gov (United States)

    Zona, D.; Oechel, W.; Hastings, S.; Oberbauer, S.; Kopetz, I.; Ikawa, H.

    2006-12-01

    Despite the abundance and importance bryophytes in the Alaskan Arctic tundra there is relatively little information on the role of these plants in determining the CO2 fluxes of Arctic tundra and, in particular, the environmental controls and climate change sensitivities of current and future photosynthesis in Arctic mosses. Studies in the tundra biome during the IBP program implicated high light together with high temperature as causes of decreases in photosynthesis in arctic mosses. Several authors have reported midday depression of moss photosynthesis due to high irradiance, even under optimum temperature and fully hydrated conditions. The focus of this study is to understand the role of Sphagnum ssp. mosses of various species, the dominant moss in the Alaska coastal wet Tundra on the total ecosystem carbon exchange throughout the season and in particular soon after snowmelt when the ecosystem is a carbon source. Our hypothesis is that the ecosystem carbon source activity during this critical period may be a result of sensitivity of mosses to light and photoinhibition in the absence of the protective canopy layer of vascular plants. In this study we measured daily courses of photosynthesis and fluorescence in the moss layer and we compare it to the total ecosystem carbon fluxes determined by the eddy covariance technique. The measurements were conducted in wet coastal tundra from June 2006, right after the snow melt, to August 2006 in the Biological Experimental Observatory (BEO) in Barrow, Alaska. The photosynthesis in the moss layer was found to be strongly inhibited when the radiation exceeded 800 ìmol m-2 s-1. Mosses remained fully hydrated throughout the season, precluding drying as a cause of decreased photosynthesis. Dark-adapted fluorescence measurements (Fv/Fm) showed a relatively low value (0.6) right after the snow melt, and remained fairly stable throughout the season. This low value was previously reported as characteristic of photoinhibited

  20. Permafrost collapse after shrub removal shifts tundra ecosystem into methane source

    NARCIS (Netherlands)

    Nauta, A.L.; Heijmans, M.M.P.D.; Blok, D.; Limpens, J.; Elberling, B.; Gallagher, A.; Li, B.; Petrov, R.E.; Maximov, T.C.; van Huissteden, J.; Berendse, F.

    2015-01-01

    Arctic tundra ecosystems are warming almost twice as fast as the global average. Permafrost thaw and the resulting release of greenhouse gases from decomposing soil organic carbon have the potential to accelerate climate warming. In recent decades, Arctic tundra ecosystems have changed rapidly,

  1. Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades

    International Nuclear Information System (INIS)

    Epstein, Howard E; Raynolds, Martha K; Walker, Donald A; Bhatt, Uma S; Tucker, Compton J; Pinzon, Jorge E

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982–2010). We found that the southernmost tundra subzones (C–E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field. (letter)

  2. Dynamics of Aboveground Phytomass of the Circumpolar Arctic Tundra During the Past Three Decades

    Science.gov (United States)

    Epstein, Howard E.; Raynolds, Martha K.; Walker, Donald A.; Bhatt, Uma S.; Tucker, Compton J.; Pinzon, Jorge E.

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.

  3. Dynamics of the recovery of damaged tundra vegetation. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Amundsen, C.C.

    1976-01-01

    A study, begun in 1971, continues to document the environmental factors which affect the recovery of damaged tundra landscapes. A measurement technique was developed on Amchitka Island to allow the rapid acquisition of data on species presence and frequency across areas disturbed at various times and in various ways. Samples across all examples of aspect, slope steepness and exposure are taken. Studies now include Adak Island and the Point Barrow area. We have concluded that there was no directional secondary succession on the Aleutian tundra, although there was vigorous recovery on organic soils. Our study led to recommendations which resulted in less intensive reclamation management at a considerable financial saving and without further biological perturbation. Because of the increasing activity on tundra landscapes, for energy extraction, transportation or production, military or other reasons, we have expanded our sampling to other tundra areas where landscape disruption is occurring or is predicted.

  4. Landuse effects on runoff generating processes in tussock grassland indicated by mean transit time estimation using tritium

    OpenAIRE

    M. K. Stewart; B. D. Fahey

    2010-01-01

    The east Otago uplands of New Zealand's South Island have long been studied because of the environmental consequences of converting native tussock grasslands to other land covers, notably forestry and pasture for stock grazing. Early studies showed that afforestation substantially reduced annual water yield, stream peak flows, and 7-day low flows, mainly as a consequence of increased interception. Tritium measurements have indicated that surprisingly old water is present in catchments GH1 and...

  5. A Microwave Radiance Assimilation Study for a Tundra Snowpack

    Science.gov (United States)

    Kim, Edward; Durand, Michael; Margulis, Steve; England, Anthony

    2010-01-01

    Recent studies have begun exploring the assimilation of microwave radiances for the modeling and retrieval of snow properties. At a point scale, and for short durations (i week), radiance assimilation (RA) results are encouraging. However, in order to determine how practical RA might be for snow retrievals when applied over longer durations, larger spatial scales, and/or different snow types, we must expand the scope of the tests. In this paper we use coincident microwave radiance measurements and station data from a tundra site on the North Slope of Alaska. The field data are from the 3rd Radio-brightness Energy Balance Experiment (REBEX-3) carried out in 1994-95 by the University of Michigan. This dataset will provide a test of RA over months instead of one week, and for a very different type of snow than previous snow RA studies. We will address the following questions: flow well can a snowpack physical model (SM), forced with local weather, match measured conditions for a tundra snowpack?; How well can a microwave emission model, driven by the snowpack model, match measured microwave brightnesses for a tundra snowpack?; How well does RA increase or decrease the fidelity of estimates of snow depth and temperatures for a tundra snowpack?

  6. The tundra - a threat to global climate?

    International Nuclear Information System (INIS)

    Roejle Christensen, T.

    1997-01-01

    The tundra biome has an important direct influence on the global climate through its exchange of radiatively active 'greenhouse gases', carbon dioxide and methane. A number of suggestions have been raised as to how a changing climate may alter the natural state of this exchange causing significant feedback effects in a changing climate. This paper provides a brief discussion of three different issues relating to the interaction between tundra and climate. It is concluded that release of methane hydrates, permafrost degradation and major biome changes are processes which in the long term may have important effects on further development of the global climate. (au) 32 refs

  7. Dynamics of the recovery of damaged tundra vegetation. Annual progress report

    International Nuclear Information System (INIS)

    Amundsen, C.C.

    1975-01-01

    A study, begun in 1971, has been undertaken to determine the environmental factors which affect the recovery of damaged tundra vegetation. A sampling technique was developed on Amchitka Island to allow the rapid acquisition of data on species presence and frequency across areas disturbed at various times and in various ways. Attempts were made to sample across all examples of aspect, slope steepness and exposure. The data were analyzed and we concluded that there was no directional secondary succession on the Amchitka tundra, although there was vigorous recovery on organic soils. The study led to recommendations which resulted in a smaller effort than planned to reclaim damaged areas by seeding and fertilizing at a considerable financial saving and without further biological perturbation. Because of the increasing activity on tundra landscape, whether for energy production, or military or other reasons, we are expanding our sampling to other tundra areas. Immediate plans include sampling at Adak Island and Barrow, Alaska. (U.S.)

  8. Forest dynamics in a forest-tundra ecotone, Medicine Bow Mountains, Wyoming

    Science.gov (United States)

    Christopher J. Earle

    1993-01-01

    The alpine timberline in much of western North America is characterized by a structurally complex transition from subalpine forest to alpine tundra, the forest-tundra ecotone. Trees within the ecotone are typically arrayed across the landscape within clumps or "ribbon forests," elongated strips oriented perpendicular to the prevailing winds. This study...

  9. Tundra a boreální lesy Kanady. 3. Sukcese na pingu a rozhraní les-tundra

    Czech Academy of Sciences Publication Activity Database

    Rusek, Josef

    2007-01-01

    Roč. 55, č. 3 (2007), s. 121-123 ISSN 0044-4812 Institutional research plan: CEZ:AV0Z60660521 Keywords : Canadian tundra * boreal forests * succession on a pingo Subject RIV: EH - Ecology, Behaviour

  10. Emissions of biogenic sulfur gases from Alaskan tundra

    Science.gov (United States)

    Hines, Mark E.; Morrison, Michael C.

    1992-01-01

    Results of sulfur emission measurements made in freshwater and marine wetlands in Alaskan tundra during the Arctic Boundary Layer Expedition 2A (ABLE 3A) in July 1988 are presented. The data indicate that this type of tundra emits very small amounts of gaseous sulfur and, when extrapolated globally, accounts for a very small percentage of the global flux of biogenic sulfur to the atmosphere. Sulfur emissions from marine sites are up to 20-fold greater than fluxes from freshwater habitats and are dominated by dimethyl sulfide (DMS). Highest emissions, with a mean of 6.0 nmol/sq m/h, occurred in water-saturated wet meadow areas. In drier upland tundra sites, highest fluxes occurred in areas inhabited by mixed vegetation and labrador tea at 3.0 nmol/sq m/h and lowest fluxes were from lichen-dominated areas at 0.9 nmol/sq m/h. DMS was the dominant gas emitted from all these sites. Emissions of DMS were highest from intertidal soils inhabited by Carex subspathacea.

  11. Tundra biome research in Alaska: the structure and function of cold-dominated ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.; West, G.C.

    1970-11-01

    The objective of the Tundra Biome Program is to acquire a basic understanding of tundra, both alpine and arctic, and taiga. Collectively these are referred to as the cold-dominated ecosystems. The program's broad objectives are threefold: To develop a predictive understanding of how the wet arctic tundra ecosystem operates, particularly as exemplified in the Barrow, Alaska, area; to obtain the necessary data base from the variety of cold-dominated ecosystem types represented in the United States, so that their behavior can be modeled and simulated, and the results compared with similar studies underway in other circumpolar countries; to bring basic environmental knowledge to bear on problems of degradation, maintenance, and restoration of the temperature-sensitive and cold-dominated tundra/taiga ecosystems. (GRA)

  12. Carbon dioxide and methane dynamics in Russian tundra

    DEFF Research Database (Denmark)

    Johansson, Paul Torbjörn; Kiepe, Isabell; Herbst, Mathias

    Russia. The area is situated at 67°N in the European part of northeast Russia within the Pechora basin. The Russian tundra region is an area which has recently been subject to many speculations in relation to climatic change effects and greenhouse gas (GHG) exchange but still little scientific......, and discuss possible implications of climatic change on this lowland tundra ecosystem. This study have been conducted as a part of the CARBO-North project (2006-2010), a project within the EU 6th framework programme, aiming at quantifying the carbon budget in Northern Russia across temporal and spatial scales....

  13. Seasonal changes in the radiation balance of subarctic forest and tundra

    International Nuclear Information System (INIS)

    Lafleur, P.M.; Renzetti, A.V.; Bello, R.

    1993-01-01

    This paper examines the seasonal behavior of the components of the radiation budget of subarctic tundra and open forest near Churchill, Manitoba. Data were collected between late February and August 1990. The presence of the winter snowpack is the most important factor which affects the difference in radiation balances of tundra and forest. Overall, net radiation was about four to five times larger over the forest when snow covered the ground. Albedo differences were primarily responsible for this difference in net radiation; however, somewhat smaller net longwave losses were experienced at the tundra site. The step decrease in albedo from winter to summer (i.e. snow-covered to snow-free conditions) was significant at both sites. The forest albedo decreased by about three-fold while the tundra experienced a seven-fold decrease. Net radiation at both sites increased in direct response to the albedo change. Transmissivity of the atmosphere near Churchill also appeared to change at about the same time as the loss of the snow cover and may be related to changing air masses which bring about the final snow melt

  14. Alpine forest-tundra ecotone response to temperature change,Sayan Mountains, Siberia

    Science.gov (United States)

    Ranson, K Jon; Kharuk, Vyetcheslav I.

    2007-01-01

    Models of climate change predict shifts of vegetation zones. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. There is evidence of vegetation change on the northern treeline However, observations on alpine tree line response are controversial. In this NEESPI related study we show that during the past three decades in the forest-tundra ecotone of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure, regeneration propagation into the alpine tundra, and transformation of prostrate Siberian pine and fir into arboreal forms. We found that these changes occurred since the mid 1980s, and strongly correlates with positive temperature (and to a lesser extent, precipitation) trends. Improving climate for forest growth( i.e., warmer temperatures and increased precipitation) provides competitive advantages to Siberian pine in the alpine forest-tundra ecotone, as well as in areas typically dominated by larch, where it has been found to be forming a secondary canopy layer. Substitution of deciduous conifer, larch, for evergreen conifers, decreases albedo and provides positive feedback for temperature increase.

  15. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source

    NARCIS (Netherlands)

    Nauta, A.L.; Heijmans, M.M.P.D.; Blok, D.; Limpens, J.; Elberling, B.; Gallagher, A.; Li, B.; Petrov, R.E.; Maximov, T.C.; Huissteden, van J.; Berendse, F.

    2015-01-01

    Arctic tundra ecosystems are warming almost twice as fast as the global average1. Permafrost thaw and the resulting release of greenhouse gases from decomposing soil organic carbon have the potential to accelerate climate warming2, 3. In recent decades, Arctic tundra ecosystems have changed

  16. Plant nutrient acquisition strategies in tundra species: at which soil depth do species take up their nitrogen?

    Science.gov (United States)

    Limpens, Juul; Heijmans, Monique; Nauta, Ake; van Huissteden, Corine; van Rijssel, Sophie

    2016-04-01

    The Arctic is warming at unprecedented rates. Increased thawing of permafrost releases nutrients locked up in the previously frozen soils layers, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co-determine whether Arctic warming is mitigated or accelerated, making understanding successional trajectories urgent. One of the key factors influencing the competitive relationships between plant species is their access to nutrients, in particularly nitrogen (N). We assessed the depth at which plant species took up N by performing a 15N tracer study, injecting 15(NH4)2SO4 at three depths (5, 15, 20 cm) into the soil in arctic tundra in north-eastern Siberia in July. In addition we explored plant nutrient acquisition strategy by analyzing natural abundances of 15N in leaves. We found that vascular plants took up 15N at all injection depths, irrespective of species, but also that species showed a clear preference for specific soil layers that coincided with their functional group (graminoids, dwarf shrubs, cryptogams). Graminoids took up most 15N at 20 cm depth nearest to the thaw front, with grasses showing a more pronounced preference than sedges. Dwarf shrubs took up most 15N at 5 cm depth, with deciduous shrubs displaying more preference than evergreens. Cryptogams did not take up any of the supplied 15N . The natural 15N abundances confirmed the pattern of nutrient acquisition from deeper soil layers in graminoids and from shallow soil layers in both deciduous and evergreen dwarf shrubs. Our results prove that graminoids and shrubs differ in their N uptake strategies, with graminoids profiting from nutrients released at the thaw front, whereas shrubs forage in the upper soil layers. The above implies that graminoids, grasses in particular, will have a competitive advantage over shrubs as the thaw front proceeds and/or superficial soil layers dry out. Our results suggest that the vertical distribution of nutrients

  17. Influence of iron redox cycling on organo-mineral associations in arctic tundra soils

    Science.gov (United States)

    Herndon, E.; AlBashaireh, A.; Duroe, K.; Singer, D. M.

    2016-12-01

    Geochemical interactions between soil organic matter and minerals influence decomposition in many environments but remain poorly understood in arctic tundra systems. In tundra soils that are periodically to persistently saturated, the accumulation of iron oxyhydroxides and organo-iron precipitates at redox interfaces may inhibit decomposition by binding organic molecules and protecting them from microbial degradation. Here, we couple synchrotron-source spectroscopic techniques with chemical sequential extractions and physical density fractionations to evaluate the spatial distribution and speciation of Fe-bearing phases and associated organic matter in organic and mineral horizons of the seasonally thawed active layer in tundra soils from northern Alaska. Mineral-associated organic matter comprised 63 ± 9% of soil organic carbon stored in the active layer of ice wedge polygons. Ferrous iron produced in anoxic mineral horizons diffused upwards and precipitated as poorly-crystalline oxyhydroxides and organic-bound Fe(III) in the organic horizons. Ferrihydrite and goethite were present as coatings on mineral grains and plant debris and in aggregates with clays and particulate organic matter. Organic matter released through acid-dissolution of iron oxides may represent a small pool of readily-degradable organic molecules temporarily stabilized by sorption to iron oxyhydroxide surfaces, while larger quantities of particulate organic carbon and humic-like substances may be physically protected from decomposition by Fe-oxide coatings and aggregation. We conclude that formation of poorly-crystalline and crystalline iron oxides at redox interfaces contributes to mineral protection of organic matter through sorption, aggregation, and co-precipitation reactions. Further study of organo-mineral associations is necessary to determine the net impact of mineral-stabilization on carbon storage in rapidly warming arctic ecosystems.

  18. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution.

    Science.gov (United States)

    Obrist, Daniel; Agnan, Yannick; Jiskra, Martin; Olson, Christine L; Colegrove, Dominique P; Hueber, Jacques; Moore, Christopher W; Sonke, Jeroen E; Helmig, Detlev

    2017-07-12

    Anthropogenic activities have led to large-scale mercury (Hg) pollution in the Arctic. It has been suggested that sea-salt-induced chemical cycling of Hg (through 'atmospheric mercury depletion events', or AMDEs) and wet deposition via precipitation are sources of Hg to the Arctic in its oxidized form (Hg(ii)). However, there is little evidence for the occurrence of AMDEs outside of coastal regions, and their importance to net Hg deposition has been questioned. Furthermore, wet-deposition measurements in the Arctic showed some of the lowest levels of Hg deposition via precipitation worldwide, raising questions as to the sources of high Arctic Hg loading. Here we present a comprehensive Hg-deposition mass-balance study, and show that most of the Hg (about 70%) in the interior Arctic tundra is derived from gaseous elemental Hg (Hg(0)) deposition, with only minor contributions from the deposition of Hg(ii) via precipitation or AMDEs. We find that deposition of Hg(0)-the form ubiquitously present in the global atmosphere-occurs throughout the year, and that it is enhanced in summer through the uptake of Hg(0) by vegetation. Tundra uptake of gaseous Hg(0) leads to high soil Hg concentrations, with Hg masses greatly exceeding the levels found in temperate soils. Our concurrent Hg stable isotope measurements in the atmosphere, snowpack, vegetation and soils support our finding that Hg(0) dominates as a source to the tundra. Hg concentration and stable isotope data from an inland-to-coastal transect show high soil Hg concentrations consistently derived from Hg(0), suggesting that the Arctic tundra might be a globally important Hg sink. We suggest that the high tundra soil Hg concentrations might also explain why Arctic rivers annually transport large amounts of Hg to the Arctic Ocean.

  19. Metagenomics reveals pervasive bacterial populations and reduced community diversity across the Alaska tundra ecosystem

    Directory of Open Access Journals (Sweden)

    Eric Robert Johnston

    2016-04-01

    Full Text Available How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 grams are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth by sequencing, and the recovery of twenty-seven high-quality, almost complete (>80% completeness population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity. Collectively

  20. Methanogenesis at low temperatures by microflora of tundra wetland soil.

    Science.gov (United States)

    Kotsyurbenko, O R; Nozhevnikova, A N; Soloviova, T I; Zavarzin, G A

    1996-01-01

    Active methanogenesis from organic matter contained in soil samples from tundra wetland occurred even at 6 degrees C. Methane was the only end product in balanced microbial community with H2/CO2 as a substrate, besides acetate was produced as an intermediate at temperatures below 10 degrees C. The activity of different microbial groups of methanogenic community in the temperature range of 6-28 degrees C was investigated using 5% of tundra soil as inoculum. Anaerobic microflora of tundra wetland fermented different organic compounds with formation of hydrogen, volatile fatty acids (VFA) and alcohols. Methane was produced at the second step. Homoacetogenic and methanogenic bacteria competed for such substrates as hydrogen, formate, carbon monoxide and methanol. Acetogens out competed methanogens in an excess of substrate and low density of microbial population. Kinetic analysis of the results confirmed the prevalence of hydrogen acetogenesis on methanogenesis. Pure culture of acetogenic bacteria was isolated at 6 degrees C. Dilution of tundra soil and supply with the excess of substrate disbalanced the methanoigenic microbial community. It resulted in accumulation of acetate and other VFA. In balanced microbial community obviously autotrophic methanogens keep hydrogen concentration below a threshold for syntrophic degradation of VFA. Accumulation of acetate- and H2/CO2-utilising methanogens should be very important in methanogenic microbial community operating at low temperatures.

  1. Shrubs in the cold : interactions between vegetation, permafrost and climate in Siberian tundra

    NARCIS (Netherlands)

    Blok, D.

    2011-01-01

    The Arctic is experiencing strong increases in air temperature during the last decades. High-latitude tundra regions are very responsive to changes in temperature and may cause a shift in tundra vegetation composition towards greater dominance of deciduous shrubs. With increasing deciduous shrub

  2. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland

    DEFF Research Database (Denmark)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob

    2017-01-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere–atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt....... For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during...

  3. Cold season emissions dominate the Arctic tundra methane budget

    Science.gov (United States)

    Zona, Donatella; Gioli, Beniamino; Commane, Róisín; Lindaas, Jakob; Wofsy, Steven C.; Miller, Charles E.; Dinardo, Steven J.; Dengel, Sigrid; Sweeney, Colm; Karion, Anna; Chang, Rachel Y.-W.; Henderson, John M.; Murphy, Patrick C.; Goodrich, Jordan P.; Moreaux, Virginie; Liljedahl, Anna; Watts, Jennifer D.; Kimball, John S.; Lipson, David A.; Oechel, Walter C.

    2016-01-01

    Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y-1, ∼25% of global emissions from extratropical wetlands, or ∼6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.

  4. Fire-severity effects on plant-fungal interactions after a novel tundra wildfire disturbance: implications for arctic shrub and tree migration

    Science.gov (United States)

    Rebecca E. Hewitt; Teresa N. Hollingsworth; F. Stuart Chapin III; D. Lee Taylor

    2016-01-01

    Background: Vegetation change in high latitude tundra ecosystems is expected to accelerate due to increased wildfire activity. High-severity fires increase the availability of mineral soil seedbeds, which facilitates recruitment, yet fire also alters soil microbial composition, which could significantly impact seedling establishment.

  5. Douglas-fir tussock moth- and Douglas-fir beetle-caused mortality in a ponderosa pine/Douglas-fir forest in the Colorado Front Range, USA

    Science.gov (United States)

    Jose F. Negron; Ann M. Lynch; Willis C. Schaupp; Vladimir Bocharnikov

    2014-01-01

    An outbreak of the Douglas-fir tussock moth, Orgyia pseudotsugata McDunnough, occurred in the South Platte River drainage on the Pike-San Isabel National Forest in the Colorado Front Range attacking Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco. Stocking levels, species composition, and tree size in heavily and lightly defoliated stands were similar. Douglas-fir...

  6. Hg Storage and Mobility in Tundra Soils of Northern Alaska

    Science.gov (United States)

    Olson, C.; Obrist, D.

    2017-12-01

    Atmospheric mercury (Hg) can be transported over long distances to remote regions such as the Arctic where it can then deposit and temporarily be stored in soils. This research aims to improve the understanding of terrestrial Hg storage and mobility in the arctic tundra, a large receptor area for atmospheric deposition and a major source of Hg to the Arctic Ocean. We aim to characterize spatial Hg pool sizes across various tundra sites and to quantify the mobility of Hg from thawing tundra soils using laboratory mobility experiments. Active layer and permafrost soil samples were collected in the summer of 2014 and 2015 at the Toolik Field Station in northern Alaska (68° 38' N) and along a 200 km transect extending from Toolik to the Arctic Ocean. Soil samples were analyzed for total Hg concentration, bulk density, and major and trace elements. Hg pool sizes were estimated by scaling up Hg soil concentrations using soil bulk density measurements. Mobility of Hg in tundra soils was quantified by shaking soil samples with ultrapure Milli-Q® water as an extracting solution for 24 and 72 hours. Additionally, meltwater samples were collected for analysis when present. The extracted supernatant was analyzed for total Hg, dissolved organic carbon, cations and anions, redox, and ph. Mobility of Hg from soil was calculated using Hg concentrations determined in solid soil samples and in supernatant of soil solution samples. Results of this study show Hg levels in tundra mineral soils that are 2-5 times higher than those observed at temperate sites closer to pollution sources. Most of the soil Hg was located in mineral horizons where Hg mass accounted for 72% of the total soil pool. Soil Hg pool sizes across the tundra sites were highly variable (166 - 1,365 g ha-1; avg. 419 g ha-1) due to the heterogeneity in soil type, bulk density, depth to frozen layer, and soil Hg concentration. Preliminary results from the laboratory experiment show higher mobility of Hg in mineral

  7. Runoff generating processes in adjacent tussock grassland and pine plantation catchments as indicated by mean transit time estimation using tritium

    OpenAIRE

    M. K. Stewart; B. D. Fahey

    2010-01-01

    The east Otago uplands of New Zealand's South Island have long been studied because of the environmental consequences of converting native tussock grasslands to other land covers, notably forestry and pasture for stock grazing. Early studies showed that afforestation substantially reduced annual water yield, stream peak flows, and 7-day low flows, mainly as a consequence of increased interception. Tritium measurements have indicated that surprisingly old water is present in catchments GH1 and...

  8. Lead toxicosis in tundra swans near a mining and smelting complex in northern Idaho

    Science.gov (United States)

    Blus, L.J.; Henny, C.J.; Hoffman, D.J.; Grove, R.A.

    1991-01-01

    Die-offs of waterfowl have occurred in the Coeur d`Alene River system in northern Idaho since at least the early 1900`s. We investigated causes of mortality and lead and cadmium contamination of 46 tundra swans (Cygnus columbianus) from 1987 to 1989; an additional 22 swans found dead in 1990 were not examined. We necropsied 43 of the 46 birds found from 1987 to 1989; 38 of these were from the Coeur d`Alene River system, which has been contaminated with mining and smelting wastes for a century, and the other 5 were from a nearby, relatively uncontaminated area. Of the 36 livers of swans from the contaminated area that were analyzed, 32 contained lethal levels of lead (6 to 40 micrograms/g, wet weight) and all birds exhibited several symptoms of lead poisoning, notably enlarged gall bladders containing viscous, darkgreen bile. Only 13% of the lead-poisoned birds (10% when data were included from other studies of swans in the area) contained shot, compared to 95% of lead-poisoning swans in studies outside northern Idaho. Lead concentrations in blood samples from 16 apparently healthy swans (0.5 to 2.3 micrograms/g, and 4 leadpoisoned birds found moribund (1.3 to 9.6 micrograms/g) indicating that tundra swans accumulated high levels of lead from ingestion of sediment that contained up to 8,700 micrograms/g of lead and plants that contained up to 400 micrograms/g. The swans spend only a few weeks in the area staging during the spring migration. The five tundra swans from the uncontaminated area had low levels of lead and essentially no symptoms of lead poisoning.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Trends in NDVI and tundra community composition in the Arctic of NE Alaska between 1984 and 2009

    Science.gov (United States)

    Robert R. Pattison; Janet C. Jorgenson; Martha K. Raynolds; Jeffery M. Welker

    2015-01-01

    As Arctic ecosystems experience increases in surface air temperatures, plot-level analyses of tundra vegetation composition suggest that there are important changes occurring in tundra communities that are typified by increases in shrubs and declines in non-vascular species. At the same time analyses of NDVI indicate that the Arctic tundra is greening. Few studies have...

  10. Developing a savanna burning emissions abatement methodology for tussock grasslands in high rainfall regions of northern Australia

    Directory of Open Access Journals (Sweden)

    Jeremy Russell-Smith

    2014-06-01

    Full Text Available Fire-prone tropical savanna and grassland systems are a significant source of atmospheric emissions of greenhouse gases.  In recent years, substantial research has been directed towards developing accounting methodologies for savanna burning emissions to be applied in Australia’s National Greenhouse Gas Inventory, as well as for commercial carbon trading purposes.  That work has focused on woody savanna systems.  Here, we extend the methodological approach to include tussock grasslands and associated Melaleuca-dominated open woodlands (<10% foliage cover in higher rainfall (>1,000 mm/annum regions of northern Australia.  Field assessments under dry season conditions focused on deriving fuel accumulation, fire patchiness and combustion relationships for key fuel types: fine fuels − grass and litter; coarse woody fuels − twigs <6 mm diameter; heavy woody fuels − >6 mm diameter; and shrubs.  In contrast with previous savanna burning assessments, fire treatments undertaken under early dry season burning conditions resulted in negligible patchiness and very substantial consumption of fine fuels.  In effect, burning in the early dry season provides no benefits in greenhouse gas emissions and emissions reductions in tussock grasslands can be achieved only through reducing the extent of burning.  The practical implications of reduced burning in higher rainfall northern Australian grassland systems are discussed, indicating that there are significant constraints, including infrastructural, cultural and woody thickening issues.  Similar opportunities and constraints are observed in other international contexts, but especially project implementation challenges associated with legislative, political and governance issues.

  11. Landuse effects on runoff generating processes in tussock grassland indicated by mean transit time estimation using tritium

    Science.gov (United States)

    Stewart, M. K.; Fahey, B. D.

    2010-02-01

    The east Otago uplands of New Zealand's South Island have long been studied because of the environmental consequences of converting native tussock grasslands to other land covers, notably forestry and pasture for stock grazing. Early studies showed that afforestation substantially reduced annual water yield, stream peak flows, and 7-day low flows, mainly as a consequence of increased interception. Tritium measurements have indicated that surprisingly old water is present in catchments GH1 and GH2, and the small headwater wetland and catchment (GH5). The old water contributes strongly to baseflow (and therefore also to quickflow). The data have been simulated assuming the presence of two types of water in the baseflow, young water from shallow aquifers connecting hillside regolith with the stream, and old water from deep bedrock aquifers, respectively. The mean transit time of the young water is of the order of months, while that of the old water is 25-26 years as revealed by the presence of tritium originating from the bomb-peak in NZ rainfall in late 1960s and early 1970s. Such a long transit time indicates slow release from groundwater reservoirs within the bedrock, which constitute by far the larger of the water stores. Comparison of the results from catchments GH1 (tussock) and GH2 (pine forest) suggests that about equal quantities of water (85 mm annually) are contributed from the deep aquifers in the two catchments, although runoff from the shallow aquifers has been strongly reduced by afforestation in GH2.

  12. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory.

    Science.gov (United States)

    Yu, Qin; Epstein, Howard; Engstrom, Ryan; Walker, Donald

    2017-09-01

    Satellite remote sensing data have indicated a general 'greening' trend in the arctic tundra biome. However, the observed changes based on remote sensing are the result of multiple environmental drivers, and the effects of individual controls such as warming, herbivory, and other disturbances on changes in vegetation biomass, community structure, and ecosystem function remain unclear. We apply ArcVeg, an arctic tundra vegetation dynamics model, to estimate potential changes in vegetation biomass and net primary production (NPP) at the plant community and functional type levels. ArcVeg is driven by soil nitrogen output from the Terrestrial Ecosystem Model, existing densities of Rangifer populations, and projected summer temperature changes by the NCAR CCSM4.0 general circulation model across the Arctic. We quantified the changes in aboveground biomass and NPP resulting from (i) observed herbivory only; (ii) projected climate change only; and (iii) coupled effects of projected climate change and herbivory. We evaluated model outputs of the absolute and relative differences in biomass and NPP by country, bioclimate subzone, and floristic province. Estimated potential biomass increases resulting from temperature increase only are approximately 5% greater than the biomass modeled due to coupled warming and herbivory. Such potential increases are greater in areas currently occupied by large or dense Rangifer herds such as the Nenets-occupied regions in Russia (27% greater vegetation increase without herbivores). In addition, herbivory modulates shifts in plant community structure caused by warming. Plant functional types such as shrubs and mosses were affected to a greater degree than other functional types by either warming or herbivory or coupled effects of the two. © 2017 John Wiley & Sons Ltd.

  13. Plot-scale evidence of tundra vegetation change and links to recent summer warming

    Science.gov (United States)

    Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollister; Robert G. Bjork; Noemie Boulanger-Lapointe; Elisabeth J. Cooper; Johannes H.C. Cornelissen; Thomas A. Day; Ellen Dorrepaal; Tatiana G. Elumeeva; Mike Gill; William A. Gould; John Harte; David S. Hik; Annika Hofgaard; David R. Johnson; Jill F. Johnstone; Ingijorg Svala Jonsdottir; Janet C. Jorgenson; Kari Klanderud; Julia A. Klein; Saewan Koh; Gaku Kudo; Mark Lara; Esther Levesque; Borgthor Magnusson; Jeremy L. May; Joel A. Mercado; Anders Michelsen; Ulf Molau; Isla H. Myers-Smith; Steven F. Oberbauer; Vladimir G. Onipchenko; Christian Rixen; Niels Martin Schmidt; Gaius R. Shaver; Marko J. Spasojevic; Pora Ellen Porhallsdottir; Anne Tolvanen; Tiffany Troxler; Craig E. Tweedie; Sandra Villareal; Carl-Henrik Wahren; Xanthe Walker; Patrick J. Webber; Jeffrey M. Welker; Sonja Wipf

    2012-01-01

    Temperature is increasing at unprecedented rates across most of the tundra biome1. Remote-sensing data indicate that contemporary climate warming has already resulted in increased productivity over much of the Arctic2,3, but plot-based evidence for vegetation transformation is not widespread. We analysed change in tundra vegetation surveyed between 1980 and 2010 in 158...

  14. Vectors and transmission dynamics for Setaria tundra (Filarioidea; Onchocercidae, a parasite of reindeer in Finland

    Directory of Open Access Journals (Sweden)

    Kuusela Jussi

    2009-01-01

    Full Text Available Abstract Background Recent studies have revealed expansion by an array of Filarioid nematodes' into the northern boreal region of Finland. The vector-borne nematode, Setaria tundra, caused a serious disease outbreak in the Finnish reindeer population in 2003–05. The main aim of this study was to understand the outbreak dynamics and the rapid expansion of S. tundra in the sub arctic. We describe the vectors of S. tundra, and its development in vectors, for the first time. Finally we discuss the results in the context of the host-parasite ecology of S. tundra in Finland Results Development of S. tundra to the infective stage occurs in mosquitoes, (genera Aedes and Anopheles. We consider Aedes spp. the most important vectors. The prevalence of S. tundra naturally infected mosquitoes from Finland varied from 0.5 to 2.5%. The rate of development in mosquitoes was temperature-dependent. Infective larvae were present approximately 14 days after a blood meal in mosquitoes maintained at room temperature (mean 21 C, but did not develop in mosquitoes maintained outside for 22 days at a mean temperature of 14.1 C. The third-stage (infective larvae were elongated (mean length 1411 μm (SD 207, and width 28 μm (SD 2. The anterior end was blunt, and bore two liplike structures, the posterior end slight tapering with a prominent terminal papilla. Infective larvae were distributed anteriorly in the insect's body, the highest abundance being 70 larvae in one mosquito. A questionnaire survey revealed that the peak activity of Culicidae in the reindeer herding areas of Finland was from the middle of June to the end of July and that warm summer weather was associated with reindeer flocking behaviour on mosquito-rich wetlands. Conclusion In the present work, S. tundra vectors and larval development were identified and described for the first time. Aedes spp. mosquitoes likely serve as the most important and competent vectors for S. tundra in Finland. Warm summers

  15. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing

    International Nuclear Information System (INIS)

    Rocha, Adrian V; Loranty, Michael M; Higuera, Phil E; Mack, Michelle C; Hu Fengsheng; Jones, Benjamin M; Breen, Amy L; Rastetter, Edward B; Shaver, Gus R; Goetz, Scott J

    2012-01-01

    Recent large and frequent fires above the Alaskan arctic circle have forced a reassessment of the ecological and climatological importance of fire in arctic tundra ecosystems. Here we provide a general overview of the occurrence, distribution, and ecological and climate implications of Alaskan tundra fires over the past half-century using spatially explicit climate, fire, vegetation and remote sensing datasets for Alaska. Our analyses highlight the importance of vegetation biomass and environmental conditions in regulating tundra burning, and demonstrate that most tundra ecosystems are susceptible to burn, providing the environmental conditions are right. Over the past two decades, fire perimeters above the arctic circle have increased in size and importance, especially on the North Slope, indicating that future wildfire projections should account for fire regime changes in these regions. Remote sensing data and a literature review of thaw depths indicate that tundra fires have both positive and negative implications for climatic feedbacks including a decadal increase in albedo radiative forcing immediately after a fire, a stimulation of surface greenness and a persistent long-term (>10 year) increase in thaw depth. In order to address the future impact of tundra fires on climate, a better understanding of the control of tundra fire occurrence as well as the long-term impacts on ecosystem carbon cycling will be required. (letter)

  16. Monitoring larval populations of the Douglas-fir tussock moth and the western spruce budworm on permanent plots: sampling methods and statistical properties of data

    Science.gov (United States)

    A.R. Mason; H.G. Paul

    1994-01-01

    Procedures for monitoring larval populations of the Douglas-fir tussock moth and the western spruce budworm are recommended based on many years experience in sampling these species in eastern Oregon and Washington. It is shown that statistically reliable estimates of larval density can be made for a population by sampling host trees in a series of permanent plots in a...

  17. The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest-tundra heath ecotone.

    Science.gov (United States)

    Sjögersten, Sofie; Wookey, Philip A

    2009-02-01

    Changes in temperature and moisture resulting from climate change are likely to strongly modify the ecosystem carbon sequestration capacity in high-latitude areas, both through vegetation shifts and via direct warming effects on photosynthesis and decomposition. This paper offers a synthesis of research addressing the potential impacts of climate warming on soil processes and carbon fluxes at the forest-tundra ecotone in Scandinavia. Our results demonstrated higher rates of organic matter decomposition in mountain birch forest than in tundra heath soils, with markedly shallower organic matter horizons in the forest. Field and laboratory experiments suggest that increased temperatures are likely to increase CO2 efflux from both tundra and forest soil providing moisture availability does not become limiting for the decomposition process. Furthermore, colonization of tundra heath by mountain birch forest would increase rates of decomposition, and thus CO2 emissions, from the tundra heath soils, which currently store substantial amounts of potentially labile carbon. Mesic soils underlying both forest and tundra heath are currently weak sinks of atmospheric methane, but the strength of this sink could be increased with climate warming and/or drying.

  18. Decadal changes in tundra land cover on Yamal Peninsula, Northwest Siberia

    Science.gov (United States)

    Forbes, B. C.; Kumpula, T.; Macias-Fauria, M.

    2017-12-01

    The Yamal-Nenets Okrug in Russia has experienced significant changes in land use and climate in recent decades. Average year-round air temperatures have increased ca. 2°C since the 1970's, with much - but not all - of the warming taking place in winter. In association with ongoing summer warming, the annual growth of erect deciduous shrubs has been accelerating while growing season seasonality has diminished, characterized by shifts in the spatial patterns of key phenological parameters. We prepared LANDSAT-derived land cover classifications for 1988 and 2014 using change detection analysis, supported by extensive ground truthing bolstered with data from Very High-Resolution (VHR) imagery (e.g. Quickbird-2, Worldview-2/3). Research was conducted within summer reindeer pastures utilized by the Yarsalinksi sovhoz, whose animals are collectively owned, as well as many privately-owned herds. The area represents bioclimatic Subzone D of the Circumpolar Arctic Vegetation Map and covers about 8500 km2. This is a key subzone for several reasons: (1) it includes Bovanenkovo, the first and largest gas deposit on Yamal to be developed; (2) it is a zone of extremely active periglacial processes (e.g. active layer detachment slides, lake drainage and recent methane-mediated craters); and (3) it is characterized by steadily increasing growth of tall willow shrubs (Salix spp.), which comprise an important source of fodder by reindeer migrating through the area in summer. These results are unique as our dataset: (1) covers sizable inland regions lying entirely within the Russian tundra zone; (2) derives from extensive ground truthing; and (3) treats all plant taxonomic groups (vascular, bryophytes, lichens) at the plot scale. Here we present the first such classifications, based on LANDSAT images from 1988 and 2014. We identify 16 classes ranging from bare ground and drained lakes, anthropogenic disturbances, through several wetland types, to various dwarf and erect tundra shrub

  19. Water track distribution and effects on carbon dioxide flux in an eastern Siberian upland tundra landscape

    International Nuclear Information System (INIS)

    Curasi, Salvatore R; Loranty, Michael M; Natali, Susan M

    2016-01-01

    Shrub expansion in tundra ecosystems may act as a positive feedback to climate warming, the strength of which depends on its spatial extent. Recent studies have shown that shrub expansion is more likely to occur in areas with high soil moisture and nutrient availability, conditions typically found in sub-surface water channels known as water tracks. Water tracks are 5–15 m wide channels of subsurface water drainage in permafrost landscapes and are characterized by deeper seasonal thaw depth, warmer soil temperatures, and higher soil moisture and nutrient content relative to adjacent tundra. Consequently, enhanced vegetation productivity, and dominance by tall deciduous shrubs, are typical in water tracks. Quantifying the distribution of water tracks may inform investigations of the extent of shrub expansion and associated impacts on tundra ecosystem carbon cycling. Here, we quantify the distribution of water tracks and their contribution to growing season CO 2 dynamics for a Siberian tundra landscape using satellite observations, meteorological data, and field measurements. We find that water tracks occupy 7.4% of the 448 km 2 study area, and account for a slightly larger proportion of growing season carbon uptake relative to surrounding tundra. For areas inside water tracks dominated by shrubs, field observations revealed higher shrub biomass and higher ecosystem respiration and gross primary productivity relative to adjacent upland tundra. Conversely, a comparison of graminoid-dominated areas in water tracks and inter-track tundra revealed that water track locations dominated by graminoids had lower shrub biomass yet increased net uptake of CO 2 . Our results show water tracks are an important component of this landscape. Their distribution will influence ecosystem structural and functional responses to climate, and is therefore of importance for modeling. (letter)

  20. Human-animal agency in reindeer management: Sami herders' perspectives on Fennoscandian tundra vegetation dynamics under climate change

    Science.gov (United States)

    Forbes, B. C.; Horstkotte, T.; Utsi, T. A.; Larsson-Blind, Å.; Burgess, P.; Käyhkö, J.; Oksanen, L.; Johansen, B.

    2016-12-01

    Many primary livelihoods in Arctic and sub-Arctic regions are increasingly faced with accelerating effects of climate change and resource exploitation. The often close connection between indigenous populations and the dynamics of their respective territories allows them to make detailed observations of how these changes transform the landscapes where they practice their daily activities. Here, we report Sami reindeer herders' observations based on their long-term occupancy and use of contrasting pastoral landscapes in northern Fennoscandia. In particular, we focus on the capacity for various herd management regimes to prevent a potential transformation of open tundra vegetation to shrubland or woodland. Fennoscandian Sami herders did not confirm a substantial, rapid or large-scale transformation of treeless arctic-alpine areas into shrub- and/or woodlands as a consequence of climate change. However, where encroachment of open tundra landscapes has been observed, a range of drivers were deemed responsible. These included abiotic conditions, anthropogenic influences and the direct and indirect effects of reindeer. Mountain birch tree line advances were in some cases associated with reduced or discontinued grazing, depending on the seasonal significance of these particular areas. In the many places where tree line has risen, herding practices have by necessity adapted to these changes. Exploiting the capacity of reindeer grazing/browsing as a conservation tool offers new adaptive strategies of ecosystem management to counteract a potential encroachment of the tundra by woody plants. However, such novel solutions in environmental governance are confronted with difficult trade-offs involved in ecosystem management for ecologically reasonable, economically viable and socially desirable management strategies.

  1. Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra.

    Science.gov (United States)

    Blok, Daan; Faucherre, Samuel; Banyasz, Imre; Rinnan, Riikka; Michelsen, Anders; Elberling, Bo

    2017-12-13

    Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high-arctic tundra heath sites in NE-Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above- and belowground tundra carbon turnover, possibly governed by microbial resource availability. © 2017 John

  2. Identifying the tundra-forest border in the stomate record: an analysis of lake surface samples from the Yellowknife area, Northwest Territories, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, B.C.S. [Minnesota Univ., Minneapolis, MN (United States). Limnological Research Center; MacDonald, G.M. [California Univ., Los Angeles, CA (United States). Dept. of Botanical Sciences; Moser, K.A. [McMaster Univ., Hamilton, ON (Canada)

    1996-05-01

    The relationship between conifer stomata and existing vegetation across tundra, forest-tundra, and closed zones in the Yellowknife area of the Northwest Territories was studied. Conifer stomata were identified in surface samples from lakes in the treeline zone, but were absent in samples from tundra lakes. Stomate analysis was recorded and the results were presented in a concentration diagram plotting stomate concentrations according to vegetation zone. Conifer stomate analysis was not able to resolve differences between forest-tundra and closed forest. Nevertheless, it was suggested that stomate analysis will become an important technique supplementing pollen analysis for reconstructing past tree-line changes since the presence of stomata in lakes make it possible to separate the tundra from forest-tundra and closed forest. The limited dispersal of conifer stomata permitted a better resolution of tree-line boundaries than did pollen. 13 refs., 3 figs.

  3. Surface energy exchanges along a tundra-forest transition and feedbacks to climate

    Science.gov (United States)

    Beringer, J.; Chapin, F. S.; Thompson, Catharine Copass; McGuire, A.D.

    2005-01-01

    Surface energy exchanges were measured in a sequence of five sites representing the major vegetation types in the transition from arctic tundra to forest. This is the major transition in vegetation structure in northern high latitudes. We examined the influence of vegetation structure on the rates of sensible heating and evapotranspiration to assess the potential feedbacks to climate if high-latitude warming were to change the distribution of these vegetation types. Measurements were made at Council on the Seward Peninsula, Alaska, at representative tundra, low shrub, tall shrub, woodland (treeline), and boreal forest sites. Structural differences across the transition from tundra to forest included an increase in the leaf area index (LAI) from 0.52 to 2.76, an increase in canopy height from 0.1 to 6.1 m, and a general increase in canopy complexity. These changes in vegetation structure resulted in a decrease in albedo from 0.19 to 0.10 as well as changes to the partitioning of energy at the surface. Bulk surface resistance to water vapor flux remained virtually constant across sites, apparently because the combined soil and moss evaporation decreased while transpiration increased along the transect from tundra to forest. In general, sites became relatively warmer and drier along the transect with the convective fluxes being increasingly dominated by sensible heating, as evident by an increasing Bowen ratio from 0.94 to 1.22. The difference in growing season average daily sensible heating between tundra and forest was 21 W m-2. Fluxes changed non-linearly along the transition, with both shrubs and trees substantially enhancing heat transfer to the atmosphere. These changes in vegetation structure that increase sensible heating could feed back to enhance warming at local to regional scales. The magnitude of these vegetation effects on potential high-latitude warming is two to three times greater than suggested by previous modeling studies. ?? 2005 Elsevier B.V. All

  4. Quantifying Fire Impact on Alaskan Tundra from Satellite Observations and Field Measurements

    Science.gov (United States)

    Loboda, T. V.; Chen, D.; He, J.; Jenkins, L. K.

    2017-12-01

    Wildfire is a major disturbance agent in Alaskan tundra. The frequency and extent of fire events obtained from paleo, management, and satellite records may yet underestimate the scope of tundra fire impact. Field measurements, collected within the NASA's ABoVE campaign, revealed unexpectedly shallow organic soils ( 15 cm) across all sampled sites of the Noatak valley with no significant difference between recently burned and unburned sites. In typical small and medium-sized tundra burns vegetation recovers rapidly and scars are not discernable in 30 m optical satellite imagery by the end of the first post-fire season. However, field observations indicate that vegetation and subsurface characteristics within fire scars of different ages vary across the landscape. In this study we develop linkages between fire-induced changes to tundra and satellite-based observations from optical, thermal, and microwave imagers to enable extrapolation of in-situ observations to cover the full extent of Alaskan tundra. Our results show that recent ( 30 years) fire history can be reconstructed from optical observations (R2 0.65, pfire history can be determined for 4 years post fire primarily due to increased soil moisture at burned sites. Field measurements suggest that the relatively quick SAR signal dissipation results from more even distribution of surface moisture through the soil column with increases in Active Layer Thickness (ALT). Similar to previous long-term field studies we find an increase in shrub fraction and shrub height within burns over time at the landscape scale; however, the strength and significance of the relationship between shrub fraction and time since fire is governed by burn severity with more severe burns predictably (p post-fire shrub cover. Although reasonably well-correlated to each other when adjusted for topography (R2 0.35, p < 0.001), neither ALT nor soil temperature can be directly linked to optical or thermal brightness observations with acceptable

  5. Mountain Plant Community Sentinels: AWOL

    Science.gov (United States)

    Malanson, G. P.

    2017-12-01

    Mountain plant communities are thought to be sensitive to climate change. Because climatic gradients are steep on mountain slopes, the spatial response of plant communities to climate change should be compressed and easier to detect. These expectations have led to identifying mountain plant communities as sentinels for climate change. This idea has, however, been criticized. Two critiques, for alpine treeline and alpine tundra, are rehearsed and supplemented. The critique of alpine treeline as sentinel is bolstered with new model results on the confounding role of dispersal mechanisms and sensitivity to climatic volatility. In alpine tundra, for which background turnover rates have yet to be established, community composition may reflect environmental gradients only for extremes where effects of climate are most indirect. Both plant communities, while primarily determined by energy at broad scales, may respond to water as a proximate driver at local scales. These plant communities may not be in equilibrium with climate, and differently scaled time lags may mean that ongoing vegetation change may not signal ongoing climate change (or lack thereof). In both cases a double-whammy is created by scale dependence for time lags and for drivers leading to confusion, but these cases present opportunities for insights into basic ecology.

  6. Hematology, plasma chemistry, and bacteriology of wild Tundra Swans (Cygnus columbianus) in Alaska.

    Science.gov (United States)

    Milani, Juliana F; Wilson, Heather; Ziccardi, Michael; LeFebvre, Rance; Scott, Cheryl

    2012-01-01

    Blood and cloacal swabs were collected from 100 (66 female, 34 male) wild Tundra Swans (Cygnus columbianus) molting in northwestern Alaska, USA, 25-28 July 2008, to establish hematologic and serum chemistry reference values and to isolate enteric Salmonella spp. and Escherichia coli O157:H7. Plasma biochemistry and hematology values did not vary significantly by sex or age. Tundra swans had high levels of creatine kinase, lactate dehydrogenase, amylase, and alkaline phosphatase compared with some other avian species (values were up to 7 times greater), possibly indicating capture myopathy. However, concentrations were much lower (up to 8 times lower) than in other waterfowl exposed to similar or more intensive capture methods. White blood cell count and hematocrit values were similar to other waterfowl species, and enteric Salmonella spp. and E. coli O157:H7 were not present among birds sampled. Our data provide the first biochemical, hematologic, and bacteriologic reference values for wild Tundra Swans.

  7. Anurans in a Subarctic Tundra Landscape Near Cape Churchill, Manitoba

    Science.gov (United States)

    Reiter, M.E.; Boal, C.W.; Andersen, D.E.

    2008-01-01

    Distribution, abundance, and habitat relationships of anurans inhabiting subarctic regions are poorly understood, and anuran monitoring protocols developed for temperate regions may not be applicable across large roadless areas of northern landscapes. In addition, arctic and subarctic regions of North America are predicted to experience changes in climate and, in some areas, are experiencing habitat alteration due to high rates of herbivory by breeding and migrating waterfowl. To better understand subarctic anuran abundance, distribution, and habitat associations, we conducted anuran calling surveys in the Cape Churchill region of Wapusk National Park, Manitoba, Canada, in 2004 and 2005. We conducted surveys along ~l-km transects distributed across three landscape types (coastal tundra, interior sedge meadow-tundra, and boreal forest-tundra interface) to estimate densities and probabilities of detection of Boreal Chorus Frogs (Pseudacris maculata) and Wood Frogs (Lithobates sylvaticus). We detected a Wood Frog or Boreal Chorus Frog on 22 (87%) of 26 transects surveyed, but probability of detection varied between years and species and among landscape types. Estimated densities of both species increased from the coastal zone inland toward the boreal forest edge. Our results suggest anurans occur across all three landscape types in our study area, but that species-specific spatial patterns exist in their abundances. Considerations for both spatial and temporal variation in abundance and detection probability need to be incorporated into surveys and monitoring programs for subarctic anurans.

  8. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis.

    Science.gov (United States)

    Peterson, Megan L; Doak, Daniel F; Morris, William F

    2018-04-01

    Many predictions of how climate change will impact biodiversity have focused on range shifts using species-wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life-history plasticity vs. local adaptation to species-wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species' range-not only those at the trailing range edge-could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species' latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade-off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species' ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest

  9. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    Science.gov (United States)

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-01-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10–100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  10. Potential effects of ultraviolet radiation reduction on tundra nitrous oxide and methane fluxes in maritime Antarctica.

    Science.gov (United States)

    Bao, Tao; Zhu, Renbin; Wang, Pei; Ye, Wenjuan; Ma, Dawei; Xu, Hua

    2018-02-27

    Stratospheric ozone has begun to recover in Antarctica since the implementation of the Montreal Protocol. However, the effects of ultraviolet (UV) radiation on tundra greenhouse gas fluxes are rarely reported for Polar Regions. In the present study, tundra N 2 O and CH 4 fluxes were measured under the simulated reduction of UV radiation in maritime Antarctica over the last three-year summers. Significantly enhanced N 2 O and CH 4 emissions occurred at tundra sites under the simulated reduction of UV radiation. Compared with the ambient normal UV level, a 20% reduction in UV radiation increased tundra emissions by an average of 8 μg N 2 O m -2 h -1 and 93 μg CH 4 m -2 h -1 , whereas a 50% reduction in UV radiation increased their emissions by an average of 17 μg N 2 O m -2 h -1 and 128 μg CH 4 m -2 h -1 . No statistically significant correlation (P > 0.05) was found between N 2 O and CH 4 fluxes and soil temperature, soil moisture, total carbon, total nitrogen, NO 3 - -N and NH 4 + -N contents. Our results confirmed that UV radiation intensity is an important factor affecting tundra N 2 O and CH 4 fluxes in maritime Antarctica. Exclusion of the effects of reduced UV radiation might underestimate their budgets in Polar Regions with the recovery of stratospheric ozone.

  11. Snowmelt runoff from northern alpine tundra hillslopes: major processes and methods of simulation

    Directory of Open Access Journals (Sweden)

    W. L. Quinton

    2004-01-01

    Full Text Available In northern alpine tundra, large slope gradients, late-lying snow drifts and shallow soils overlying impermeable substrates all contribute to large hillslope runoff volumes during the spring freshet. Understanding the processes and pathways of hillslope runoff in this environment is, therefore, critical to understanding the water cycle within northern alpine tundra ecosystems. This study: (a presents the results of a field study on runoff from a sub-alpine tundra hillslope with a large snow drift during the spring melt period; (b identifies the major runoff processes that must be represented in simulations of snowmelt runoff from sub-alpine tundra hillslopes; (c describes how these processes can be represented in a numerical simulation model; and d compares field measurements with modelled output to validate or refute the conceptual understanding of runoff generation embodied in the process simulations. The study was conducted at Granger Creek catchment, 15 km south of Whitehorse, Yukon Territory, Canada, on a north-facing slope below a late-lying snow drift. For the freshet period, the major processes to be represented in a runoff model include the rate of meltwater release from the late-lying snowdrift, the elevation and thickness of the saturated layer, the magnitude of the soil permeability and its variation with depth. The daily cycle of net all-wave radiation was observed to drive the diurnal pulses of melt water from the drift; this, in turn, was found to control the daily pulses of flow through the hillslope subsurface and in the stream channel. The computed rate of frost table lowering fell within the observed values; however, there was wide variation among the measured frost table depths. Spatial variability in frost table depth would result in spatial variabilities in saturated layer depth and thickness, which would, in turn, produce variations in subsurface flow rates over the slope, including preferential flowpaths. Keywords

  12. CO2 dynamics of tundra ponds in the low-Arctic, Northwest Territories, Canada

    Science.gov (United States)

    Buell, Mary-Claire

    Extensive research has gone into measuring changes to the carbon storage capacity of Arctic terrestrial environments as well as large water bodies in order to determine a carbon budget for many regions across the Arctic. Inland Arctic waters such as small lakes and ponds are often excluded from these carbon budgets, however a handful of studies have demonstrated that they can often be significant sources of carbon to the atmosphere. This study investigated the CO2 cycling of tundra ponds in the Daring Lake area, Northwest Territories, Canada (64°52'N, 111°35'W), to determine the role ponds have in the local carbon cycle. Floating chambers, nondispersive infrared (NDIR) sensors and headspace samples were used to estimate carbon fluxes from four selected local ponds. Multiple environmental, chemical and meteorological parameters were also monitored for the duration of the study, which took place during the snow free season of 2013. Average CO2 emissions for the two-month growing season ranged from approximately -0.0035 g CO2-C m-2 d -1 to 0.12 g CO2-C m-2 d-1. The losses of CO2 from the water bodies in the Daring Lake area were approximately 2-7% of the CO2 uptake over vegetated terrestrial tundra during the same two-month period. Results from this study indicated that the production of CO2 in tundra ponds was positively influenced by both increases in air temperature, and the delivery of carbon from their catchments. The relationship found between temperature and carbon emissions suggests that warming Arctic temperatures have the potential to increase carbon emissions from ponds in the future. The findings in this study did not include ebullition gas emissions nor plant mediated transport, therefore these findings are likely underestimates of the total carbon emissions from water bodies in the Daring Lake area. This study emphasizes the need for more research on inland waters in order to improve our understanding of the total impact these waters may have on the

  13. Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River tundra fire, North Slope, Alaska

    Science.gov (United States)

    Benjamin M. Jones; Crystal A. Kolden; Randi Jandt; John T. Abatzoglu; Frank Urban; Christopher D. Arp

    2009-01-01

    In 2007, the Anaktuvuk River Fire (ARF) became the largest recorded tundra fire on the North Slope of Alaska. The ARF burned for nearly three months, consuming more than 100,000 ha. At its peak in early September, the ARF burned at a rate of 7000 ha d-1. The conditions potentially responsible for this large tundra fire include modeled record high...

  14. Changes in Nutrients and Primary Production in Barrow Tundra Ponds Over the Past 40 Years

    Science.gov (United States)

    Lougheed, V.; Andresen, C.; Hernandez, C.; Miller, N.; Reyes, F.

    2012-12-01

    The Arctic tundra ponds at the International Biological Program (IBP) site in Barrow, Alaska were studied extensively in the 1970's; however, very little research has occurred there since that time. Due to the sensitivity of this region to climate warming, understanding any changes in the ponds' structure and function over the past 40 years can help identify any potential climate-related impacts. The goal of this study was to determine if the structure and function of primary producers had changed through time, and the association between these changes, urban encroachment and nutrient limitation. Nutrient levels, as well as the biomass of aquatic graminoids (Carex aquatilis and Arctophila fulva), phytoplankton and periphyton were determined in the IBP tundra ponds in both 1971-3 and 2010-12, and in 2010-11 from nearby ponds along an anthropogenic disturbance gradient. Uptake of 14C was also used to measure algal primary production in both time periods and nutrient addition experiments were performed to identify the nutrients limiting algal growth. Similar methods were utilized in the past and present studies. Overall, biomass of graminoids, phytoplankton and periphyton was greater in 2010-12 than that observed in the 1970s. This increased biomass was coincident with warmer water temperatures, increased water column nutrients and deeper active layer depth. Biomass of plants and algae was highest in the ponds closest to the village of Barrow, but no effect of urban encroachment was observed at the IBP ponds. Laboratory incubations indicated that nutrient release from thawing permafrost can explain part of these increases in nutrients and has likely contributed to changes in the primary limiting nutrient. Further studies are necessary to better understand the implications of these trends in primary production to nutrient budgets in the Arctic. The Barrow IBP tundra ponds represent one of the very few locations in the Arctic where long-term data are available on

  15. Runoff generating processes in adjacent tussock grassland and pine plantation catchments as indicated by mean transit time estimation using tritium

    Directory of Open Access Journals (Sweden)

    M. K. Stewart

    2010-06-01

    Full Text Available The east Otago uplands of New Zealand's South Island have long been studied because of the environmental consequences of converting native tussock grasslands to other land covers, notably forestry and pasture for stock grazing. Early studies showed that afforestation substantially reduced annual water yield, stream peak flows, and 7-day low flows, mainly as a consequence of increased interception. Tritium measurements have indicated that surprisingly old water is present in catchments GH1 and GH2, and the small headwater wetland and catchment (GH5, and contributes strongly to baseflow. The data have been simulated assuming the presence of two types of water in the baseflow, young water from shallow aquifers connecting hillside regolith with the stream, and old water from deep bedrock aquifers, respectively. The mean transit time of the young water is approximately one month, while that of the old water is 25–26 years as revealed by the presence of tritium originating from the bomb-peak in NZ rainfall in late 1960s and early 1970s. Such a long transit time indicates slow release from groundwater reservoirs within the bedrock, which constitute by far the larger of the water stores. Comparison of the results from catchments GH1 (tussock and GH2 (pine forest suggests that about equal quantities of water (85 mm/a are contributed from the deep aquifers in the two catchments, although runoff from the shallow aquifers has been strongly reduced by afforestation in GH2. This study has revealed the presence of a long transit time component of water in runoff in a catchment with crystalline metamorphic bedrock.

  16. Runoff generating processes in adjacent tussock grassland and pine plantation catchments as indicated by mean transit time estimation using tritium

    Science.gov (United States)

    Stewart, M. K.; Fahey, B. D.

    2010-06-01

    The east Otago uplands of New Zealand's South Island have long been studied because of the environmental consequences of converting native tussock grasslands to other land covers, notably forestry and pasture for stock grazing. Early studies showed that afforestation substantially reduced annual water yield, stream peak flows, and 7-day low flows, mainly as a consequence of increased interception. Tritium measurements have indicated that surprisingly old water is present in catchments GH1 and GH2, and the small headwater wetland and catchment (GH5), and contributes strongly to baseflow. The data have been simulated assuming the presence of two types of water in the baseflow, young water from shallow aquifers connecting hillside regolith with the stream, and old water from deep bedrock aquifers, respectively. The mean transit time of the young water is approximately one month, while that of the old water is 25-26 years as revealed by the presence of tritium originating from the bomb-peak in NZ rainfall in late 1960s and early 1970s. Such a long transit time indicates slow release from groundwater reservoirs within the bedrock, which constitute by far the larger of the water stores. Comparison of the results from catchments GH1 (tussock) and GH2 (pine forest) suggests that about equal quantities of water (85 mm/a) are contributed from the deep aquifers in the two catchments, although runoff from the shallow aquifers has been strongly reduced by afforestation in GH2. This study has revealed the presence of a long transit time component of water in runoff in a catchment with crystalline metamorphic bedrock.

  17. Carbon loss from an unprecedented Arctic tundra wildfire

    Science.gov (United States)

    Michelle C. Mack; M. Syndonia Bret-Harte; Teresa N. Hollingsworth; Randi R. Jandt; Edward A.G. Schuur; Gaius R. Shaver; David L. Verbyla

    2011-01-01

    Arctic tundra soils store large amounts of carbon (C) in organic soil layers hundreds to thousands of years old that insulate, and in some cases maintain, permafrost soils. Fire has been largely absent from most of this biome since the early Holocene epoch, but its frequency and extent are increasing, probably in response to climate warming. The effect of fires on the...

  18. Geomorphic determinants of species composition of alpine tundra, Glacier National Park, U.S.A.

    Science.gov (United States)

    George P. Malanson,; Bengtson, Lindsey E.; Fagre, Daniel B.

    2012-01-01

    Because the distribution of alpine tundra is associated with spatially limited cold climates, global warming may threaten its local extent or existence. This notion has been challenged, however, based on observations of the diversity of alpine tundra in small areas primarily due to topographic variation. The importance of diversity in temperature or moisture conditions caused by topographic variation is an open question, and we extend this to geomorphology more generally. The extent to which geomorphic variation per se, based on relatively easily assessed indicators, can account for the variation in alpine tundra community composition is analyzed versus the inclusion of broad indicators of regional climate variation. Visual assessments of topography are quantified and reduced using principal components analysis (PCA). Observations of species cover are reduced using detrended correspondence analysis (DCA). A “best subsets” regression approach using the Akaike Information Criterion for selection of variables is compared to a simple stepwise regression with DCA scores as the dependent variable and scores on significant PCA axes plus more direct measures of topography as independent variables. Models with geographic coordinates (representing regional climate gradients) excluded explain almost as much variation in community composition as models with them included, although they are important contributors to the latter. The geomorphic variables in the model are those associated with local moisture differences such as snowbeds. The potential local variability of alpine tundra can be a buffer against climate change, but change in precipitation may be as important as change in temperature.

  19. Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants: a case study from a subarctic tundra heath

    Science.gov (United States)

    Tang, Jing; Schurgers, Guy; Valolahti, Hanna; Faubert, Patrick; Tiiva, Päivi; Michelsen, Anders; Rinnan, Riikka

    2016-12-01

    The Arctic is warming at twice the global average speed, and the warming-induced increases in biogenic volatile organic compounds (BVOCs) emissions from Arctic plants are expected to be drastic. The current global models' estimations of minimal BVOC emissions from the Arctic are based on very few observations and have been challenged increasingly by field data. This study applied a dynamic ecosystem model, LPJ-GUESS, as a platform to investigate short-term and long-term BVOC emission responses to Arctic climate warming. Field observations in a subarctic tundra heath with long-term (13-year) warming treatments were extensively used for parameterizing and evaluating BVOC-related processes (photosynthesis, emission responses to temperature and vegetation composition). We propose an adjusted temperature (T) response curve for Arctic plants with much stronger T sensitivity than the commonly used algorithms for large-scale modelling. The simulated emission responses to 2 °C warming between the adjusted and original T response curves were evaluated against the observed warming responses (WRs) at short-term scales. Moreover, the model responses to warming by 4 and 8 °C were also investigated as a sensitivity test. The model showed reasonable agreement to the observed vegetation CO2 fluxes in the main growing season as well as day-to-day variability of isoprene and monoterpene emissions. The observed relatively high WRs were better captured by the adjusted T response curve than by the common one. During 1999-2012, the modelled annual mean isoprene and monoterpene emissions were 20 and 8 mg C m-2 yr-1, with an increase by 55 and 57 % for 2 °C summertime warming, respectively. Warming by 4 and 8 °C for the same period further elevated isoprene emission for all years, but the impacts on monoterpene emissions levelled off during the last few years. At hour-day scale, the WRs seem to be strongly impacted by canopy air T, while at the day-year scale, the WRs are a combined

  20. Interannual Variability of Carbon Dioxide, Methane and Nitrous Oxide Fluxes in Subarctic European Russian Tundra

    Science.gov (United States)

    Marushchak, M. E.; Voigt, C.; Gil, J.; Lamprecht, R. E.; Trubnikova, T.; Virtanen, T.; Kaverin, D.; Martikainen, P. J.; Biasi, C.

    2017-12-01

    Southern tundra landscapes are particularly vulnerable to climate warming, permafrost thaw and associated landscape rearrangement due to near-zero permafrost temperatures. The large soil C and N stocks of subarctic tundra may create a positive feedback for warming if released to the atmosphere at increased rates. Subarctic tundra in European Russia is a mosaic of land cover types, which all play different roles in the regional greenhouse gas budget. Peat plateaus - massive upheaved permafrost peatlands - are large storehouses of soil carbon and nitrogen, but include also bare peat surfaces that act as hot-spots for both carbon dioxide and nitrous oxide emissions. Tundra wetlands are important for the regional greenhouse gas balance since they show high rates of methane emissions and carbon uptake. The most dominant land-form is upland tundra vegetated by shrubs, lichens and mosses, which displays a close-to-neutral balance with respect to all three greenhouse gases. The study site Seida (67°03'N, 62°56'E), located in the discontinuous permafrost zone of Northeast European Russia, incorporates all these land forms and has been an object for greenhouse gas investigations since 2007. Here, we summarize the growing season fluxes of carbon dioxide, methane and nitrous oxide measured by chamber techniques over the study years. We analyzed the flux time-series together with the local environmental data in order to understand the drivers of interannual variability. Detailed soil profile measurements of greenhouse gas concentrations, soil moisture and temperature provide insights into soil processes underlying the net emissions to the atmosphere. The multiannual time-series allows us to assess the importance of the different greenhouse gases and landforms to the overall climate forcing of the study region.

  1. Tundra shrub effects on growing season energy and carbon dioxide exchange

    Science.gov (United States)

    Lafleur, Peter M.; Humphreys, Elyn R.

    2018-05-01

    Increased shrub cover on the Arctic tundra is expected to impact ecosystem-atmosphere exchanges of carbon and energy resulting in feedbacks to the climate system, yet few direct measurements of shrub tundra-atmosphere exchanges are available to corroborate expectations. Here we present energy and carbon dioxide (CO2) fluxes measured using the eddy covariance technique over six growing seasons at three closely located tundra sites in Canada’s Low Arctic. The sites are dominated by the tundra shrub Betula glandulosa, but percent cover varies from 17%–60% and average shrub height ranges from 18–59 cm among sites. The site with greatest percent cover and height had greater snow accumulation, but contrary to some expectations, it had similar late-winter albedo and snow melt dates compared to the other two sites. Immediately after snowmelt latent heat fluxes increased more slowly at this site compared to the others. Yet by the end of the growing season there was little difference in cumulative latent heat flux among the sites, suggesting evapotranspiration was not increased with greater shrub cover. In contrast, lower albedo and less soil thaw contributed to greater summer sensible heat flux at the site with greatest shrub cover, resulting in greater total atmospheric heating. Net ecosystem exchange of CO2 revealed the potential for enhanced carbon cycling rates under greater shrub cover. Spring CO2 emissions were greatest at the site with greatest percent cover of shrubs, as was summer net uptake of CO2. The seasonal net sink for CO2 was ~2 times larger at the site with the greatest shrub cover compared to the site with the least shrub cover. These results largely agree with expectations that the growing season feedback to the atmosphere arising from shrub expansion in the Arctic has the potential to be negative for CO2 fluxes but positive for turbulent energy fluxes.

  2. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source

    DEFF Research Database (Denmark)

    Nauta, Ake L.; Heijmans, Monique P.D.; Blok, Daan

    2015-01-01

    , including expansion of woody vegetation5,6, in response to changing climate conditions. How such vegetation changes contribute to stabilization or destabilization of the permafrost is unknown. Here we present six years of field observations in a shrub removal experiment at a Siberian tundra site. Removing...... the shrub part of the vegetation initiated thawing of ice-rich permafrost, resulting in collapse of the originally elevated shrub patches into waterlogged depressions within five years. This thaw pond development shifted the plots from a methane sink into a methane source. The results of our field......-emitting wet depressions could become more abundant in the lowland tundra landscape, at the cost of permafrost-stabilizing low shrub vegetation....

  3. Molecular detection of hematozoa infections in tundra swans relative to migration patterns and ecological conditions at breeding grounds.

    Directory of Open Access Journals (Sweden)

    Andrew M Ramey

    Full Text Available Tundra swans (Cygnus columbianus are broadly distributed in North America, use a wide variety of habitats, and exhibit diverse migration strategies. We investigated patterns of hematozoa infection in three populations of tundra swans that breed in Alaska using satellite tracking to infer host movement and molecular techniques to assess the prevalence and genetic diversity of parasites. We evaluated whether migratory patterns and environmental conditions at breeding areas explain the prevalence of blood parasites in migratory birds by contrasting the fit of competing models formulated in an occupancy modeling framework and calculating the detection probability of the top model using Akaike Information Criterion (AIC. We described genetic diversity of blood parasites in each population of swans by calculating the number of unique parasite haplotypes observed. Blood parasite infection was significantly different between populations of Alaska tundra swans, with the highest estimated prevalence occurring among birds occupying breeding areas with lower mean daily wind speeds and higher daily summer temperatures. Models including covariates of wind speed and temperature during summer months at breeding grounds better predicted hematozoa prevalence than those that included annual migration distance or duration. Genetic diversity of blood parasites in populations of tundra swans appeared to be relative to hematozoa prevalence. Our results suggest ecological conditions at breeding grounds may explain differences of hematozoa infection among populations of tundra swans that breed in Alaska.

  4. Molecular detection of hematozoa infections in tundra swans relative to migration patterns and ecological conditions at breeding grounds.

    Science.gov (United States)

    Ramey, Andrew M; Ely, Craig R; Schmutz, Joel A; Pearce, John M; Heard, Darryl J

    2012-01-01

    Tundra swans (Cygnus columbianus) are broadly distributed in North America, use a wide variety of habitats, and exhibit diverse migration strategies. We investigated patterns of hematozoa infection in three populations of tundra swans that breed in Alaska using satellite tracking to infer host movement and molecular techniques to assess the prevalence and genetic diversity of parasites. We evaluated whether migratory patterns and environmental conditions at breeding areas explain the prevalence of blood parasites in migratory birds by contrasting the fit of competing models formulated in an occupancy modeling framework and calculating the detection probability of the top model using Akaike Information Criterion (AIC). We described genetic diversity of blood parasites in each population of swans by calculating the number of unique parasite haplotypes observed. Blood parasite infection was significantly different between populations of Alaska tundra swans, with the highest estimated prevalence occurring among birds occupying breeding areas with lower mean daily wind speeds and higher daily summer temperatures. Models including covariates of wind speed and temperature during summer months at breeding grounds better predicted hematozoa prevalence than those that included annual migration distance or duration. Genetic diversity of blood parasites in populations of tundra swans appeared to be relative to hematozoa prevalence. Our results suggest ecological conditions at breeding grounds may explain differences of hematozoa infection among populations of tundra swans that breed in Alaska.

  5. Molecular detection of hematozoa infections in tundra swans relative to migration patterns and ecological conditions at breeding grounds

    Science.gov (United States)

    Ramey, Andrew M.; Ely, Craig R.; Schmutz, Joel A.; Pearce, John M.; Heard, Darryl J.

    2012-01-01

    Tundra swans (Cygnus columbianus) are broadly distributed in North America, use a wide variety of habitats, and exhibit diverse migration strategies. We investigated patterns of hematozoa infection in three populations of tundra swans that breed in Alaska using satellite tracking to infer host movement and molecular techniques to assess the prevalence and genetic diversity of parasites. We evaluated whether migratory patterns and environmental conditions at breeding areas explain the prevalence of blood parasites in migratory birds by contrasting the fit of competing models formulated in an occupancy modeling framework and calculating the detection probability of the top model using Akaike Information Criterion (AIC). We described genetic diversity of blood parasites in each population of swans by calculating the number of unique parasite haplotypes observed. Blood parasite infection was significantly different between populations of Alaska tundra swans, with the highest estimated prevalence occurring among birds occupying breeding areas with lower mean daily wind speeds and higher daily summer temperatures. Models including covariates of wind speed and temperature during summer months at breeding grounds better predicted hematozoa prevalence than those that included annual migration distance or duration. Genetic diversity of blood parasites in populations of tundra swans appeared to be relative to hematozoa prevalence. Our results suggest ecological conditions at breeding grounds may explain differences of hematozoa infection among populations of tundra swans that breed in Alaska.

  6. Increasing Carbon Loss from Snow-Scoured Alpine Tundra in the Colorado Rocky Mountains: An Indicator of Climate Change?

    Science.gov (United States)

    Knowles, J. F.; Blanken, P.; Williams, M. W.; Lawrence, C. R.

    2015-12-01

    We used the eddy covariance method to continuously measure the net ecosystem exchange of carbon dioxide for seven years from a snow-scoured alpine tundra meadow on Niwot Ridge in Colorado, USA that may be underlain by sporadic permafrost. On average, the alpine tundra was a net annual source of 232 g C m-2 to the atmosphere, and the source strength of this ecosystem increased over the length of the seven year period due to both reduced carbon uptake during the growing season and increased respiration throughout the winter. To constrain the contribution of permafrost degradation to observed carbon emissions, we also measured the radiocarbon content of actively cycling, occluded, and mineral soil carbon pools across a meso-scale soil moisture and (possible) permafrost gradient within this meadow, as well as the seasonal radiocarbon content of soil respiration. These data suggest that wintertime soil respiration is limited to patches of wet meadow tundra that may be associated with permafrost. Furthermore, soil respiration from one of these locations indicates preferential turnover of a relatively slow cycling carbon pool during the winter. Given that summer air temperatures and positive degree days have been increasing on Niwot Ridge since the middle of the 20th century, this research suggests that an alpine tundra permafrost-respiration feedback to climate change, similar to that observed in arctic tundra ecosystems, may be currently underway.

  7. First report of Setaria tundra in roe deer (Capreolus capreolus) from the Iberian Peninsula inferred from molecular data: epidemiological implications.

    Science.gov (United States)

    Angelone-Alasaad, Samer; Jowers, Michael J; Panadero, Rosario; Pérez-Creo, Ana; Pajares, Gerardo; Díez-Baños, Pablo; Soriguer, Ramón C; Morrondo, Patrocinio

    2016-09-29

    Filarioid nematode parasites are major health hazards with important medical, veterinary and economic implications. Recently, they have been considered as indicators of climate change. In this paper, we report the first record of Setaria tundra in roe deer from the Iberian Peninsula. Adult S. tundra were collected from the peritoneal cavity during the post-mortem examination of a 2 year-old male roe deer, which belonged to a private fenced estate in La Alcarria (Guadalajara, Spain). Since 2012, the area has suffered a high roe deer decline rate (75 %), for unknown reasons. Aiming to support the morphological identification and to determine the phylogenetic position of S. tundra recovered from the roe deer, a fragment of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene from the two morphologically identified parasites was amplified, sequenced and compared with corresponding sequences of other filarioid nematode species. Phylogenetic analyses revealed that the isolate of S. tundra recovered was basal to all other formely reported Setaria tundra sequences. The presence of all other haplotypes in Northern Europe may be indicative of a South to North outbreak in Europe. This is the first report of S. tundra in roe deer from the Iberian Peninsula, with interesting phylogenetic results, which may have further implications in the epidemiological and genetic studies of these filarioid parasites. More studies are needed to explore the reasons and dynamics behind the rapid host/geographic expansion of the filarioid parasites in Europe.

  8. Bird communities of the arctic shrub tundra of Yamal: habitat specialists and generalists.

    Directory of Open Access Journals (Sweden)

    Vasiliy Sokolov

    Full Text Available BACKGROUND: The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km(2. Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra. CONCLUSION/SIGNIFICANCE: If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone.

  9. Tundra swan habitat preferences during migration in North Dakota

    Science.gov (United States)

    Earnst, Susan L.

    1994-01-01

    I studied tundra swan (Cygnus columbianus columbianus) habitat preference in North Dakota during autumn migration, 1988-89. Many thousand tundra swans stop in the Prairie Pothole region during autumn migration, but swan resource use has not been quantified. I examined habitat preference in relation to an index of sago pondweed (Potamogeton pectinatus) presence, extent of open water, and wetland size. I compared habitat preference derived from counts of all swans to those derived from foraging swans only and cygnets only. Foraging swans preferred wetlands with sago pondweed (P = 0.03); the number of foraging swans per wetland was >4 times higher on wetlands with sago pondweed than on wetlands without sago. In contrast, nonforaging swans did not prefer wetlands with sago pondweed (P = 0.85) but preferred large wetlands (P = 0.02) and those with a high proportion of contiguous open water (P feeding than adults (P = 0.03) and occurred proportionately more often in smaller flocks (P = 0.04), but cygnets and adults had similar habitat preferences.

  10. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra

    International Nuclear Information System (INIS)

    Frost, Gerald V; Epstein, Howard E; Walker, Donald A

    2014-01-01

    Widespread increases in Arctic tundra productivity have been documented for decades using coarse-scale satellite observations, but finer-scale observations indicate that changes have been very uneven, with a high degree of landscape- and regional-scale heterogeneity. Here we analyze time-series of the Normalized Difference Vegetation Index (NDVI) observed by Landsat (1984–2012), to assess landscape- and regional-scale variability of tundra vegetation dynamics in the northwest Siberian Low Arctic, a little-studied region with varied soils, landscape histories, and permafrost attributes. We also estimate spatio-temporal rates of land-cover change associated with expansion of tall alder (Alnus) shrublands, by integrating Landsat time-series with very-high-resolution imagery dating to the mid-1960s. We compiled Landsat time-series for eleven widely-distributed landscapes, and performed linear regression of NDVI values on a per-pixel basis. We found positive net NDVI trends (‘greening’) in nine of eleven landscapes. Net greening occurred in alder shrublands in all landscapes, and strong greening tended to correspond to shrublands that developed since the 1960s. Much of the spatial variability of greening within landscapes was linked to landscape physiography and permafrost attributes, while between-landscape variability largely corresponded to differences in surficial geology. We conclude that continued increases in tundra productivity in the region are likely in upland tundra landscapes with fine-textured, cryoturbated soils; these areas currently tend to support discontinuous vegetation cover, but are highly susceptible to rapid increases in vegetation cover, as well as land-cover changes associated with the development of tall shrublands. (paper)

  11. Stem secondary growth of tundra shrubs

    DEFF Research Database (Denmark)

    Campioli, Matteo; Leblans, Niki; Michelsen, Anders

    2012-01-01

    Our knowledge of stem secondary growth of arctic shrubs (a key component of tundra net primary production, NPP) is very limited. Here, we investigated the impact of the physical elements of the environment on shrub secondary growth by comparing annual growth rates of model species from similar...... growth (stem apical growth, stem length, and apical growth of stem plus leaves), in some cases even with opposite responses. Thus caution should be taken when estimating the impact of the environment on shrub growth from apical growth only. Integration of our data set with the (very limited) previously...

  12. Amino acid production exceeds plant nitrogen demand in Siberian tundra

    Science.gov (United States)

    Wild, Birgit; Eloy Alves, Ricardo J.; Bárta, Jiři; Čapek, Petr; Gentsch, Norman; Guggenberger, Georg; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Prommer, Judith; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Richter, Andreas

    2018-03-01

    Arctic plant productivity is often limited by low soil N availability. This has been attributed to slow breakdown of N-containing polymers in litter and soil organic matter (SOM) into smaller, available units, and to shallow plant rooting constrained by permafrost and high soil moisture. Using 15N pool dilution assays, we here quantified gross amino acid and ammonium production rates in 97 active layer samples from four sites across the Siberian Arctic. We found that amino acid production in organic layers alone exceeded literature-based estimates of maximum plant N uptake 17-fold and therefore reject the hypothesis that arctic plant N limitation results from slow SOM breakdown. High microbial N use efficiency in organic layers rather suggests strong competition of microorganisms and plants in the dominant rooting zone. Deeper horizons showed lower amino acid production rates per volume, but also lower microbial N use efficiency. Permafrost thaw together with soil drainage might facilitate deeper plant rooting and uptake of previously inaccessible subsoil N, and thereby promote plant productivity in arctic ecosystems. We conclude that changes in microbial decomposer activity, microbial N utilization and plant root density with soil depth interactively control N availability for plants in the Arctic.

  13. Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: implications for aquatic systems

    Science.gov (United States)

    Baron, Jill S.; Ojima, Dennis S.; Holland, Elisabeth A.; Parton, William J.

    1994-01-01

    We employed grass and forest versions of the CENTURY model under a range of N deposition values (0.02–1.60 g N m−2 y−1) to explore the possibility that high observed lake and stream N was due to terrestrial N saturation of alpine tundra and subalpine forest in Loch Vale Watershed, Rocky Mountain National Park, Colorado. Model results suggest that N is limiting to subalpine forest productivity, but that excess leachate from alpine tundra is sufficient to account for the current observed stream N. Tundra leachate, combined with N leached from exposed rock surfaces, produce high N loads in aquatic ecosystems above treeline in the Colorado Front Range. A combination of terrestrial leaching, large N inputs from snowmelt, high watershed gradients, rapid hydrologic flushing and lake turnover times, and possibly other nutrient limitations of aquatic organisms constrain high elevation lakes and streams from assimilating even small increases in atmospheric N. CENTURY model simulations further suggest that, while increased N deposition will worsen the situation, nitrogen saturation is an ongoing phenomenon.

  14. Blood lead concentrations in Alaskan tundra swans: linking breeding and wintering areas with satellite telemetry.

    Science.gov (United States)

    Ely, Craig R; Franson, J Christian

    2014-04-01

    Tundra swans (Cygnus columbianus) like many waterfowl species are susceptible to lead (Pb) poisoning, and Pb-induced mortality has been reported from many areas of their wintering range. Little is known however about Pb levels throughout the annual cycle of tundra swans, especially during summer when birds are on remote northern breeding areas where they are less likely to be exposed to anthropogenic sources of Pb. Our objective was to document summer Pb levels in tundra swans throughout their breeding range in Alaska to determine if there were population-specific differences in blood Pb concentrations that might pose a threat to swans and to humans that may consume them. We measured blood Pb concentrations in tundra swans at five locations in Alaska, representing birds that winter in both the Pacific Flyway and Atlantic Flyway. We also marked swans at each location with satellite transmitters and coded neck bands, to identify staging and wintering sites and determine if winter site use correlated with summer Pb concentrations. Blood Pb levels were generally low (<0.2 μg/ml) in swans across all breeding areas. Pb levels were lower in cygnets than adults, suggesting that swans were likely exposed to Pb on wintering areas or on return migration to Alaska, rather than on the summer breeding grounds. Blood Pb levels varied significantly across the five breeding areas, with highest concentrations in birds on the North Slope of Alaska (wintering in the Atlantic Flyway), and lowest in birds from the lower Alaska Peninsula that rarely migrate south for winter.

  15. Microbial Iron Oxidation in the Arctic Tundra and Its Implications for Biogeochemical Cycling

    Science.gov (United States)

    Scott, Jarrod J.; Benes, Joshua; Bowden, William B.

    2015-01-01

    The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long −149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides. PMID:26386054

  16. Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a karst region.

    Science.gov (United States)

    Liang, Yueming; Pan, Fujing; He, Xunyang; Chen, Xiangbi; Su, Yirong

    2016-09-01

    Arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria play important roles in plant growth and recovery in degraded ecosystems. The desertification in karst regions has become more severe in recent decades. Evaluation of the fungal and bacterial diversity of such regions during vegetation restoration is required for effective protection and restoration in these regions. Therefore, we analyzed relationships among AM fungi and nitrogen-fixing bacteria abundances, plant species diversity, and soil properties in four typical ecosystems of vegetation restoration (tussock (TK), shrub (SB), secondary forest (SF), and primary forest (PF)) in a karst region of southwest China. Abundance of AM fungi and nitrogen-fixing bacteria, plant species diversity, and soil nutrient levels increased from the tussock to the primary forest. The AM fungus, nitrogen-fixing bacterium, and plant community composition differed significantly between vegetation types (p fungi and nitrogen-fixing bacteria, respectively. Available phosphorus, total nitrogen, and soil organic carbon levels and plant richness were positively correlated with the abundance of AM fungi and nitrogen-fixing bacteria (p fungi and nitrogen-fixing bacteria increased from the tussock to the primary forest and highlight the essentiality of these communities for vegetation restoration.

  17. An application of plot-scale NDVI in predicting carbon dioxide exchange and leaf area index in heterogeneous subarctic tundra

    Energy Technology Data Exchange (ETDEWEB)

    Dagg, J.; Lafleur, P.

    2010-07-01

    This paper reported on a study that examined the flow of carbon into and out of tundra ecosystems. It is necessary to accurately predict carbon dioxide (CO{sub 2}) exchange in the Tundra because of the impacts of climate change on carbon stored in permafrost. Understanding the relationships between the normalized difference vegetation index (NDVI) and vegetation and CO{sub 2} exchange may explain how small-scale variation in vegetation community extends to remotely sensed estimates of landscape characteristics. In this study, CO{sub 2} fluxes were measured with a portable chamber in a range of Tundra vegetation communities. Biomass and leaf area were measured with destructive harvest, and NDVI was obtained using a hand-held infrared camera. There was a weak correlation between NDVI and leaf area index in some vegetation communities, but a significant correlation between NDVI and biomass, including mosses. NDVI was found to be strongly related to photosynthetic activity and net CO{sub 2} uptake in all vegetation groups. However, NDVI related to ecosystem respiration only in wet sedge. It was concluded that at plot scale, the ability of NDVI to predict ecosystem properties and CO{sub 2} exchange in heterogeneous Tundra vegetation is variable.

  18. An application of plot-scale NDVI in predicting carbon dioxide exchange and leaf area index in heterogeneous subarctic tundra

    International Nuclear Information System (INIS)

    Dagg, J.; Lafleur, P.

    2010-01-01

    This paper reported on a study that examined the flow of carbon into and out of tundra ecosystems. It is necessary to accurately predict carbon dioxide (CO 2 ) exchange in the Tundra because of the impacts of climate change on carbon stored in permafrost. Understanding the relationships between the normalized difference vegetation index (NDVI) and vegetation and CO 2 exchange may explain how small-scale variation in vegetation community extends to remotely sensed estimates of landscape characteristics. In this study, CO 2 fluxes were measured with a portable chamber in a range of Tundra vegetation communities. Biomass and leaf area were measured with destructive harvest, and NDVI was obtained using a hand-held infrared camera. There was a weak correlation between NDVI and leaf area index in some vegetation communities, but a significant correlation between NDVI and biomass, including mosses. NDVI was found to be strongly related to photosynthetic activity and net CO 2 uptake in all vegetation groups. However, NDVI related to ecosystem respiration only in wet sedge. It was concluded that at plot scale, the ability of NDVI to predict ecosystem properties and CO 2 exchange in heterogeneous Tundra vegetation is variable.

  19. Detection and molecular characterization of the mosquito-borne filarial nematode Setaria tundra in Danish roe deer (Capreolus capreolus)

    DEFF Research Database (Denmark)

    Enemark, Heidi Larsen; Oksanen, Antti; Chriél, Mariann

    2017-01-01

    Setaria tundra is a mosquito-borne filarial nematode of cervids in Europe. It has recently been associated with an emerging epidemic disease causing severe morbidity and mortality in reindeer and moose in Finland. Here, we present the first report of S. tundra in six roe deer (Capreolus capreolus...... Europe. Roe deer are generally considered as asymptomatic carriers and their numbers in Denmark have increased significantly in recent decades. In light of climatic changes which result in warmer, more humid weather in Scandinavia greater numbers of mosquitoes and, especially, improved conditions...... for development of parasite larvae in the mosquito vectors are expected, which may lead to increasing prevalence of S. tundra. Monitoring of this vector-borne parasite may thus be needed in order to enhance the knowledge of factors promoting its expansion and prevalence as well as predicting disease outbreaks. (C...

  20. Organic N cycling in Arctic ecosystems: Quantifying root uptake kinetics and temporal variability of soil amino acids.

    Science.gov (United States)

    Homyak, P. M.; Iverson, S. L.; Slessarev, E.; Marchus, K.; Schimel, J.

    2017-12-01

    Arctic ecosystems are undergoing shifts in plant community composition with increased warming. How these changes may alter ecosystem function is not well constrained, owing in part to uncertainties on how plant-soil feedbacks influence nutrient cycling. For nitrogen (N), in particular, understanding how these feedbacks may alter cycling rates is challenging because i) Arctic plants take up organic N (i.e., amino acids; AA) when inorganic N is limiting, yet ii) it has never been quantified, for any plant species growing in the wild, how much of its N demand is actually met by taking up AA. To advance fundamental understanding of plant-soil feedbacks as the Arctic warms, we are integrating field measurements of AA availability in N-limited tussock tundra (E. vaginatum) and a comparably less N-limited birch shrub tundra (Betula nana and Salix spp.) with a root uptake model. We used soil microdialysis to determine available AA concentrations in the soil solution and potential rates of AA diffusion and mass flow to roots at the Toolik Field Station in Alaska. These measurements are being combined with AA root uptake kinetic experiments using E. vaginatum to establish actual AA root uptake rates. We found that in the early growing season (June), total AA concentrations in the soil solution averaged 104 µg N L-1 and were similar to NH4+ across sites. In the late growing season (August), AA were the dominant form of N averaging 75 µg N L-1 while NH4+ decreased to 13 µg N L-1. In the early growing season AA diffusion rates in the soil averaged 200 ng N cm-2 s-1 and declined to 150 ng N cm-2 s-1 in the late growing season. Lysine, serine, and arginine were the most abundant AA and differences in the N status of sites did not affect total AA concentrations. Amino acids made up at least half of the N diffusing through the soil solution, suggesting they can subsidize the N demand of arctic plants. Ongoing field experiments at Toolik will be used to constrain actual AA root

  1. Migration of Tundra Swans (Cygnus columbianus) Wintering in Japan Using Satellite Tracking: Identification of the Eastern Palearctic Flyway.

    Science.gov (United States)

    Chen, Wenbo; Doko, Tomoko; Fujita, Go; Hijikata, Naoya; Tokita, Ken-Ichi; Uchida, Kiyoshi; Konishi, Kan; Hiraoka, Emiko; Higuchi, Hiroyoshi

    2016-02-01

    Migration through the Eastern Palearctic (EP) flyway by tundra swans (Cygnus columbianus) has not been thoroughly documented. We satellite-tracked the migration of 16 tundra swans that winter in Japan. The objectives of this study were 1) to show the migration pattern of the EP flyway of tundra swans; 2) to compare this pattern with the migration pattern of whooper swans; and 3) to identify stopover sites that are important for these swans' conservation. Tundra swans were captured at Kutcharo Lake, Hokkaido, in 2009-2012 and satellite-tracked. A new method called the "MATCHED (Migratory Analytical Time Change Easy Detection) method" was developed. Based on median, the spring migration began on 18 April and ended on 27 May. Autumn migration began on 9 September and ended on 2 November. The median duration of the spring and autumn migrations were 48 and 50 days, respectively. The mean duration at one stopover site was 5.5 days and 6.8 days for the spring and autumn migrations, respectively. The number of stopover sites was 3.0 and 2.5 for the spring and autumn migrations, respectively. The mean travel distances for the spring and autumn migrations were 6471 and 6331 km, respectively. Seven migration routes passing Sakhalin, the Amur River, and/or Kamchatka were identified. There were 15, 32, and eight wintering, stopover, and breeding sites, respectively. The migration routes and staging areas of tundra swans partially overlap with those of whooper swans, whose migration patterns have been previously documented. The migration patterns of these two swan species that winter in Japan confirm the importance of the Amur River, Udyl' Lake, Shchastya Bay, Aniva Bay, zaliv Chayvo Lake, zal Piltun Lake, zaliv Baykal Lake, Kolyma River, Buyunda River, Sen-kyuyel' Lake, and northern coastal areas of the Sea of Okhotsk.

  2. Seasonal dynamics of permafrost carbon emissions: A passive, quasi-continuous 14CO2 sampler

    Science.gov (United States)

    Pedron, S.; Xu, X.; Walker, J. C.; Welker, J. M.; Klein, E. S.; Euskirchen, E. S.; Czimczik, C. I.

    2017-12-01

    Millennia of carbon (C) fixation by tundra vegetation, coupled with low rates of C mineralization by soil microorganisms and preservation in permafrost, have allowed Arctic soils to accumulate vast quantities of organic C (1672 Pg C total). Today, the Arctic is rapidly warming (0.48oC decade-1) and widespread degradation of permafrost may subject permafrost C to microbial mineralization and fluxes to the atmosphere, accelerating climate change. Loss of permafrost C can be quantified in situ by measuring the radiocarbon (14C) content of soil and ecosystem respiration, because permafrost C is older (depleted in 14C) than current plant products and soil C cycling operates on timescales of years to centuries. Here, we use 14C analysis of CO2 respired from graminoid tundra in Arctic Alaska to 1) apportion how plant and microbial respiration contribute to ecosystem respiration in spring, summer, and fall, and 2) elucidate the C sources of microbial respiration throughout the year. We used a novel, passive sampling system, capable of trapping diffusive CO2 throughout the active layer of tussock sedge tundra (n=4, from mineral soil to air) over periods of 2 days to 3 weeks in June 2017. CO2 was collected into various sizes of canisters, ranging from 0.5-32 L, and analyzed for its 14C content at UC Irvine's KCCAMS laboratory. To evaluate the system's efficiency, and quantify the temporal and spatial variability of ecosystem respiration sources, we co-deployed 3 Vaisala Carbocap [CO2] and temperature probes, and traditional chambers (n=6) and gas wells (n=10) for sampling of ecosystem- and soil-respired 14CO2 over 15 min-24 hours. A comparison of traditional methods with our new sampler indicates that the system accurately sampled the expected [CO2] depth gradient. The CO2 sampling rate was positively correlated to soil [CO2] (R2=0.963), equivalent to 1.4*10-3±1.6*10-3 mg C/L/month/ppm (n=8). Gas well and probe concentrations were of the same order of magnitude on the same

  3. Influence of iron redox cycling on organo-mineral associations in Arctic tundra soil

    Science.gov (United States)

    Herndon, Elizabeth; AlBashaireh, Amineh; Singer, David; Roy Chowdhury, Taniya; Gu, Baohua; Graham, David

    2017-06-01

    Arctic tundra stores large quantities of soil organic matter under varying redox conditions. As the climate warms, these carbon reservoirs are susceptible to increased rates of decomposition and release to the atmosphere as the greenhouse gases carbon dioxide (CO2) and methane (CH4). Geochemical interactions between soil organic matter and minerals influence decomposition in many environments but remain poorly understood in Arctic tundra systems and are not considered in decomposition models. The accumulation of iron (Fe) oxyhydroxides and organo-iron precipitates at redox interfaces may be particularly important for carbon cycling given that ferric iron [Fe(III)] species can enhance decomposition by serving as terminal electron acceptors in anoxic soils or inhibit microbial decomposition by binding organic molecules. Here, we examine chemical properties of solid-phase Fe and organic matter in organic and mineral horizons within the seasonally thawed active layer of Arctic tundra on the North Slope of Alaska. Spectroscopic techniques, including micro-X-ray fluorescence (μXRF) mapping, micro-X-ray absorption near-edge structure (μXANES) spectroscopy, and Fourier transform infrared spectroscopy (FTIR), were coupled with chemical sequential extractions and physical density fractionations to evaluate the spatial distribution and speciation of Fe-bearing phases and associated organic matter in soils. Organic horizons were enriched in poorly crystalline and crystalline iron oxides, and approximately 60% of total Fe stored in organic horizons was calculated to derive from upward translocation from anoxic mineral horizons. Ferrihydrite and goethite were present as coatings on mineral grains and plant debris, and in aggregates with clays and particulate organic matter. Minor amounts of ferrous iron [Fe(II)] were present in iron sulfides (i.e., pyrite and greigite) in mineral horizon soils and iron phosphates (vivianite) in organic horizons. Concentrations of organic

  4. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula.

    Science.gov (United States)

    Lara, Mark J; McGuire, A David; Euskirchen, Eugenie S; Tweedie, Craig E; Hinkel, Kenneth M; Skurikhin, Alexei N; Romanovsky, Vladimir E; Grosse, Guido; Bolton, W Robert; Genet, Helene

    2015-04-01

    The landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice-wedge polygonal tundra that spans drained thaw-lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw-lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30 × 30 m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our ~1800 km² study area composed of ten classes; drained slope, high center polygon, flat-center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land-atmosphere CO2 and CH4 flux data were collected for the summers of 2006-2010 at eighty-two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at -902.3 10(6) gC-CO2 day(-1) (uncertainty using 95% CI is between -438.3 and -1366 10(6) gC-CO2 day(-1)) and CH4 flux at 28.9 10(6) gC-CH4 day(-1) (uncertainty using 95% CI is between 12.9 and 44.9 10(6) gC-CH4 day(-1)), (ii) one century of future landscape change associated with the thaw-lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2 uptake (-166.9 10(6) gC-CO2 day(-1)) and CH4 flux (2.8 10(6) gC-CH4 day(-1)) with geomorphic change from low

  5. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula

    Science.gov (United States)

    Lara, Mark J.; McGuire, A. David; Euskirchen, Eugénie S.; Tweedie, Craig E.; Hinkel, Kenneth M.; Skurikhin, Alexei N.; Romanovsky, Vladimir E.; Grosse, Guido; Bolton, W. Robert; Genet, Helene

    2015-01-01

    The landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice-wedge polygonal tundra that spans drained thaw-lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw-lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30 × 30 m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our ~1800 km² study area composed of ten classes; drained slope, high center polygon, flat-center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land-atmosphere CO2 and CH4 flux data were collected for the summers of 2006–2010 at eighty-two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at -902.3 106gC-CO2 day−1(uncertainty using 95% CI is between −438.3 and −1366 106gC-CO2 day−1) and CH4 flux at 28.9 106gC-CH4 day−1(uncertainty using 95% CI is between 12.9 and 44.9 106gC-CH4 day−1), (ii) one century of future landscape change associated with the thaw-lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2uptake (−166.9 106gC-CO2 day−1) and CH4 flux (2.8 106gC-CH4 day−1) with geomorphic change from

  6. Landsat-based Analysis of Mountain Forest-tundra Ecotone Response to Climate Trends in Sayan Mountains

    Science.gov (United States)

    Kharuk, Viatcheslav I.; Im, Sergey T.; Ranson, K. Jon

    2007-01-01

    observations of temperatures Siberia has shown a several degree warming over the past 30 years. It is expected that forest will respond to warming at high latitudes through increased tree growth and northward or upward slope migration. migration. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. Making repeated satellite observations over several decades provides an opportunity to track vegetation response to climate change. Based on Landsat data of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure and an upward tree-line shift in the of the forest-tundra ecotone during the last quarter of the 2oth century,. On-ground observations, supporting these results, also showed regeneration of Siberian pine in the alpine tundra, and the transformation of prostrate Siberian pine and fir into arboreal (upright) forms. During this time period sparse stands transformed into closed stands, with existing closed stands increasing in area at a rate of approx. 1 %/yr, and advancing their upper border at a vertical rate of approx. 1.0 m/yr. In addition, the vertical rate of regeneration propagation is approx. 5 m/yr. It was also found that these changes correlated positively with temperature trends

  7. Modeling the Observed Microwave Emission from Shallow Multi-Layer Tundra Snow Using DMRT-ML

    Directory of Open Access Journals (Sweden)

    Nastaran Saberi

    2017-12-01

    Full Text Available The observed brightness temperatures (Tb at 37 GHz from typical moderate density dry snow in mid-latitudes decreases with increasing snow water equivalent (SWE due to volume scattering of the ground emissions by the overlying snow. At a certain point, however, as SWE increases, the emission from the snowpack offsets the scattering of the sub-nivean emission. In tundra snow, the Tb slope reversal occurs at shallower snow thicknesses. While it has been postulated that the inflection point in the seasonal time series of observed Tb V 37 GHz of tundra snow is controlled by the formation of a thick wind slab layer, the simulation of this effect has yet to be confirmed. Therefore, the Dense Media Radiative Transfer Theory for Multi Layered (DMRT-ML snowpack is used to predict the passive microwave response from airborne observations over shallow, dense, slab-layered tundra snow. Airborne radiometer observations coordinated with ground-based in situ snow measurements were acquired in the Canadian high Arctic near Eureka, NT, in April 2011. The DMRT-ML was parameterized with the in situ snow measurements using a two-layer snowpack and run in two configurations: a depth hoar and a wind slab dominated pack. With these two configurations, the calibrated DMRT-ML successfully predicted the Tb V 37 GHz response (R correlation of 0.83 when compared with the observed airborne Tb footprints containing snow pits measurements. Using this calibrated model, the DMRT-ML was applied to the whole study region. At the satellite observation scale, observations from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E over the study area reflected seasonal differences between Tb V 37 GHz and Tb V 19 GHz that supports the hypothesis of the development of an early season volume scattering depth hoar layer, followed by the growth of the late season emission-dominated wind slab layer. This research highlights the necessity to consider the two

  8. Plant volatiles in extreme terrestrial and marine environments.

    Science.gov (United States)

    Rinnan, Riikka; Steinke, Michael; McGenity, Terry; Loreto, Francesco

    2014-08-01

    This review summarizes the current understanding on plant and algal volatile organic compound (VOC) production and emission in extreme environments, where temperature, water availability, salinity or other environmental factors pose stress on vegetation. Here, the extreme environments include terrestrial systems, such as arctic tundra, deserts, CO₂ springs and wetlands, and marine systems such as sea ice, tidal rock pools and hypersaline environments, with mangroves and salt marshes at the land-sea interface. The emission potentials at fixed temperature and light level or actual emission rates for phototrophs in extreme environments are frequently higher than for organisms from less stressful environments. For example, plants from the arctic tundra appear to have higher emission potentials for isoprenoids than temperate species, and hypersaline marine habitats contribute to global dimethyl sulphide (DMS) emissions in significant amounts. DMS emissions are more widespread than previously considered, for example, in salt marshes and some desert plants. The reason for widespread VOC, especially isoprenoid, emissions from different extreme environments deserves further attention, as these compounds may have important roles in stress resistance and adaptation to extremes. Climate warming is likely to significantly increase VOC emissions from extreme environments both by direct effects on VOC production and volatility, and indirectly by altering the composition of the vegetation. © 2014 John Wiley & Sons Ltd.

  9. Analysis on inter-annual variability of CO2 exchange in Arctic tundra: a model-data approach

    Science.gov (United States)

    López Blanco, E.; Lund, M.; Christensen, T. R.; Smallman, T. L.; Slevin, D.; Westergaard-Nielsen, A.; Tamstorf, M. P.; Williams, M.

    2017-12-01

    Arctic ecosystems are exposed to rapid changes triggered by the climate variability, thus there is a growing concern about how the carbon (C) exchange balance will respond to climate change. There is a lack of knowledge about the mechanisms that drive the interactions between photosynthesis and ecological respiration with changes in C stocks in the Arctic tundra across full annual cycles. The reduction of uncertainties can be addressed through process-based modelling efforts. Here, we report the independent predictions of net ecosystem exchange (NEE), gross primary production (GPP) and ecosystem respiration (Reco) calculated from the soil-plant-atmosphere (SPA) model across eight years. The model products are validated with observational data obtained from the Greenland Ecosystem Monitoring (GEM) program in West Greenland tundra (64° N). Overall, the model results explain 71%, 73% and 51% of the variance in NEE, GPP and Reco respectively using data on meteorology and local vegetation and soil structure. The estimated leaf area index (LAI) is able to explain 80% of the plant greenness variation, which was used as a plant phenology proxy. The full annual cumulated NEE during the 2008-2015 period was -0.13 g C m-2 on average (range -30.6 to 34.1 g C m-2), while GPP was -214.6 g C m-2 (-126.2 to -332.8 g C m-2) and Reco was 214.4 g C m-2 (213.9 to 302.2 g C m-2). We found that the model supports the main finding from our previous analysis on flux responses to meteorological variations and biological disturbance. Here, large inter-annual variations in GPP and Reco are also compensatory, and so NEE remains stable across climatically diverse snow-free seasons. Further, we note evidence that leaf maintenance and root growth respiration are highly correlated with GPP (R2 = 0.92 and 0.83, p < 0.001), concluding that these relations likely drive the insensitivity of NEE. Interestingly, the model quantifies the contribution of the larvae outbreak occurred in 2011 in about 27

  10. Restoration potential of sedge meadows in hand-cultivated soybean fields in northeastern China

    Science.gov (United States)

    Wang, Guodong; Middleton, Beth; Jiang, Ming

    2013-01-01

    Sedge meadows can be difficult to restore from farmed fields if key structural dominants are missing from propagule banks. In hand-cultivated soybean fields in northeastern China, we asked if tussock-forming Carex and other wetland species were present as seed or asexual propagules. In the Sanjiang Plain, China, we compared the seed banks, vegetative propagules (below-ground) and standing vegetation of natural and restored sedge meadows, and hand-cultivated soybean fields in drained and flooded conditions. We found that important wetland species survived cultivation as seeds for some time (e.g. Calamogrostis angustifolia and Potamogeton crispus) and as field weeds (e.g. C. angustifolia and Phragmites australis). Key structural species were missing in these fields, for example, Carex meyeriana. We also observed that sedge meadows restored without planting or seeding lacked tussock-forming sedges. The structure of the seed bank was related to experimental water regime, and field environments of tussock height, thatch depth, and presence of burning as based on Nonmetric Multidimensional Scaling analysis. To re-establish the structure imposed by tussock sedges, specific technologies might be developed to encourage the development of tussocks in restored sedge meadows.

  11. InSAR detects increase in surface subsidence caused by an Arctic tundra fire

    Science.gov (United States)

    Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun

    2014-01-01

    Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.

  12. Movement of foraging Tundra Swans explained by spatial pattern in cryptic food densities

    NARCIS (Netherlands)

    Klaassen, R.H.G.; Nolet, B.A.; Bankert, D.

    2006-01-01

    We tested whether Tundra Swans use information on the spatial distribution of cryptic food items (belowground Sago pondweed tubers) to shape their movement paths. In a continuous environment, swans create their own food patches by digging craters, which they exploit in several feeding bouts. Series

  13. Isoprene emissions from a tundra ecosystem

    Directory of Open Access Journals (Sweden)

    M. J. Potosnak

    2013-02-01

    Full Text Available Whole-system fluxes of isoprene from a moist acidic tundra ecosystem and leaf-level emission rates of isoprene from a common species (Salix pulchra in that same ecosystem were measured during three separate field campaigns. The field campaigns were conducted during the summers of 2005, 2010 and 2011 and took place at the Toolik Field Station (68.6° N, 149.6° W on the north slope of the Brooks Range in Alaska, USA. The maximum rate of whole-system isoprene flux measured was over 1.2 mg C m−2 h−1 with an air temperature of 22 °C and a PAR level over 1500 μmol m−2 s−1. Leaf-level isoprene emission rates for S. pulchra averaged 12.4 nmol m−2 s−1 (27.4 μg C gdw−1 h−1 extrapolated to standard conditions (PAR = 1000 μmol m−2 s−1 and leaf temperature = 30 °C. Leaf-level isoprene emission rates were well characterized by the Guenther algorithm for temperature with published coefficients, but less so for light. Chamber measurements from a nearby moist acidic tundra ecosystem with little S. pulchra emitted significant amounts of isoprene, but at lower rates (0.45 mg C m−2 h−1 suggesting other significant isoprene emitters. Comparison of our results to predictions from a global model found broad agreement, but a detailed analysis revealed some significant discrepancies. An atmospheric chemistry box model predicts that the observed isoprene emissions have a significant impact on Arctic atmospheric chemistry, including a reduction of hydroxyl radical (OH concentrations. Our results support the prediction that isoprene emissions from Arctic ecosystems will increase with global climate change.

  14. Vegetation shift from deciduous to evergreen dwarf shrubs in response to selective herbivory offsets carbon losses: evidence from 19 years of warming and simulated herbivory in the subarctic tundra.

    Science.gov (United States)

    Ylänne, Henni; Stark, Sari; Tolvanen, Anne

    2015-10-01

    Selective herbivory of palatable plant species provides a competitive advantage for unpalatable plant species, which often have slow growth rates and produce slowly decomposable litter. We hypothesized that through a shift in the vegetation community from palatable, deciduous dwarf shrubs to unpalatable, evergreen dwarf shrubs, selective herbivory may counteract the increased shrub abundance that is otherwise found in tundra ecosystems, in turn interacting with the responses of ecosystem carbon (C) stocks and CO2 balance to climatic warming. We tested this hypothesis in a 19-year field experiment with factorial treatments of warming and simulated herbivory on the dominant deciduous dwarf shrub Vaccinium myrtillus. Warming was associated with a significantly increased vegetation abundance, with the strongest effect on deciduous dwarf shrubs, resulting in greater rates of both gross ecosystem production (GEP) and ecosystem respiration (ER) as well as increased C stocks. Simulated herbivory increased the abundance of evergreen dwarf shrubs, most importantly Empetrum nigrum ssp. hermaphroditum, which led to a recent shift in the dominant vegetation from deciduous to evergreen dwarf shrubs. Simulated herbivory caused no effect on GEP and ER or the total ecosystem C stocks, indicating that the vegetation shift counteracted the herbivore-induced C loss from the system. A larger proportion of the total ecosystem C stock was found aboveground, rather than belowground, in plots treated with simulated herbivory. We conclude that by providing a competitive advantage to unpalatable plant species with slow growth rates and long life spans, selective herbivory may promote aboveground C stocks in a warming tundra ecosystem and, through this mechanism, counteract C losses that result from plant biomass consumption. © 2015 John Wiley & Sons Ltd.

  15. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Directory of Open Access Journals (Sweden)

    John-André Henden

    Full Text Available The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation

  16. Cesium-137 inventories in Alaskan Tundra, lake and marine sediments: An indicator of recent organic material transport?

    International Nuclear Information System (INIS)

    Grebmeier, J.M.; Cooper, L.W.; Larsen, I.L.; Solis, C.; Olsen, C.R.

    1993-01-01

    Tundra sampling was accomplished in 1989--1990 at Imnavait Creek, Alaska (68 degree 37' N, 149 degree 17' W). Inventories of 137 Cs (102--162 mBq/cm 2 ) are close to expectations, based upon measured atmospheric deposition for this latitude. Accumulated inventories of 137 Cs in tundra decrease by up to 50% along a transect to Prudhoe Bay (70 degree 13' N, 148 degree 30' W). Atmospheric deposition of 137 Cs decreased with latitude in the Arctic, but declines in deposition would have been relatively small over this distance (200 km). This suggests a recent loss of 137 Cs and possibly associated organic matter from tundra over the northern portions of the transect between Imnavait Creek and Prudhoe Bay. Sediments from Toolik Lake (68 degree 38' N, 149 degree 38' W) showed widely varying 137 Cs inventories, from a low of 22 mBq/cm 2 away from the lake inlet, to a high between 140 to >200 mBq/cm 2 near the main stream inflow. This was indicative of recent accumulation of cesium and possibly organic material associated with it in arctic lakes, although additional sampling is needed

  17. The effect of nutrient deposition on bacterial communities in Arctic tundra soil

    Science.gov (United States)

    Barbara J. Campbell; Shawn W. Polson; Thomas E. Hanson; Michelle C. Mack; Edward A.G. Schuur

    2010-01-01

    The microbial communities of high-latitude ecosystems are expected to experience rapid changes over the next century due to climate warming and increased deposition of reactive nitrogen, changes that will likely affect microbial community structure and function. In moist acidic tundra (MAT) soils on the North Slope of the Brooks Range, Alaska, substantial losses of C...

  18. Linkages Among Climate, Fire, and Thermoerosion in Alaskan Tundra Over the Past Three Millennia

    Science.gov (United States)

    Chipman, M. L.; Hu, F. S.

    2017-12-01

    Amplified Arctic warming may facilitate novel tundra disturbance regimes, as suggested by recent increases in the rate and extent of thermoerosion and fires in some tundra areas. Thermoerosion and wildfire can exacerbate warming by releasing large permafrost carbon stocks, and interactions between disturbance regimes can lead to complex ecosystem feedbacks. We conducted geochemical and charcoal analyses of lake sediments from an Alaskan lake to identify thermoerosion and fire events over the past 3,000 years. Thermoerosion was inferred from lake sediments in the context of modern soil data from retrogressive thaw slumps (RTS). Magnetic susceptibility (MS), Ca:K, and Ca:Sr increased with depth in modern RTS soils and were higher on recently exposed than older slump surfaces. Peaks in bulk density, % CaCO3, Ca:K, Ca:Sr, and MS values in the sediments suggest at least 18 thermoerosion events in the Loon Lake watershed over the past 3,000 years. Charcoal analysis identifies 22 fires over the same period at this site. Temporal variability in these records suggests climate-driven responses of both thermoerosion and fire disturbance regimes, with fewer RTS episodes and fire events during the Little Ice Age than the Medieval Climate Anomaly. Moreover, RTS activity lagged behind catchment fires by 20-30 years (>90% confidence interval), implying that fires facilitated thermoerosion on decadal time scales, possibly because of prolonged active-layer deepening following fire and postfire proliferation of insulative shrub cover. These results highlight the potential for complex interactions between climate, vegetation, and tundra disturbance in response to ongoing warming.

  19. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw

    NARCIS (Netherlands)

    Kolk, van der Henk-Jan; Heijmans, M.M.P.D.; Huissteden, van J.; Pullens, J.W.M.; Berendse, F.

    2016-01-01

    Over the past decades, vegetation and climate have changed significantly in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid-dominated

  20. Humic substances elemental composition of selected taiga and tundra soils from Russian European North-East

    Directory of Open Access Journals (Sweden)

    Lodygin Evgeny

    2017-06-01

    Full Text Available Soils of Russian European North were investigated in terms of stability and quality of organic matter as well as in terms of soils organic matter elemental composi­tion. Therefore, soil humic acids (HAs, extracted from soils of different natural zones of Russian North-East were studied to characterize the degree of soil organic matter stabilization along a zonal gradient. HAs were extracted from soil of different zonal environments of the Komi Republic: south, middle and north taiga as well as south tundra. Data on elemental composition of humic acids and fulvic acids (FAs extracted from different soil types were obtained to assess humus formation mechanisms in the soils of taiga and tundra of the European North-East of Russia. The specificity of HAs elemental composition are discussed in relation to environmental conditions. The higher moisture degree of taiga soils results in the higher H/C ratio in humic substances. This reflects the reduced microbiologic activity in Albeluvisols sods and subsequent conser­vation of carbohydrate and amino acid fragments in HAs. HAs of tundra soils, shows the H/C values decreasing within the depth of the soils, which reflects increasing of aromatic compounds in HA structure of mineral soil horizons. FAs were more oxidized and contains less carbon while compared with the HAs. Humic acids, extracted from soil of different polar and boreal environments differ in terms of elemental composition winch reflects the climatic and hydrological regimes of humification.

  1. A Subpixel Classification of Multispectral Satellite Imagery for Interpetation of Tundra-Taiga Ecotone Vegetation (Case Study on Tuliok River Valley, Khibiny, Russia)

    Science.gov (United States)

    Mikheeva, A. I.; Tutubalina, O. V.; Zimin, M. V.; Golubeva, E. I.

    2017-12-01

    The tundra-taiga ecotone plays significant role in northern ecosystems. Due to global climatic changes, the vegetation of the ecotone is the key object of many remote-sensing studies. The interpretation of vegetation and nonvegetation objects of the tundra-taiga ecotone on satellite imageries of a moderate resolution is complicated by the difficulty of extracting these objects from the spectral and spatial mixtures within a pixel. This article describes a method for the subpixel classification of Terra ASTER satellite image for vegetation mapping of the tundra-taiga ecotone in the Tuliok River, Khibiny Mountains, Russia. It was demonstrated that this method allows to determine the position of the boundaries of ecotone objects and their abundance on the basis of quantitative criteria, which provides a more accurate characteristic of ecotone vegetation when compared to the per-pixel approach of automatic imagery interpretation.

  2. [Methanotrophs of the psychrophilic microbial community of the Russian Arctic tundra].

    Science.gov (United States)

    Berestovskaia, Iu Iu; Vasil'eva, L V; Chestnykh, O V; Zavarzin, G A

    2002-01-01

    In tundra, at a low temperature, there exists a slowly developing methanotrophic community. Methane-oxidizing bacteria are associated with plants growing at high humidity, such as sedge and sphagnum; no methonotrophs were found in polytrichous and aulacomnious mosses and lichens, typical of more arid areas. The methanotrophic bacterial community inhabits definite soil horizons, from moss dust to peat formed from it. Potential ability of the methanotrophic community to oxidize methane at 5 degrees C enhances with the depth of the soil profile in spite of the decreasing soil temperature. The methanotrophic community was found to gradually adapt to various temperatures due to the presence of different methane-oxidizing bacteria in its composition. Depending on the temperature and pH, different methanotrophs occupy different econiches. Within a temperature range from 5 to 15 degrees C, three morphologically distinct groups of methanotrophs could be distinguished. At pH 5-7 and 5-15 degrees C, forms morphologically similar to Methylobacter psychrophilus predominated, whereas at the acidic pH 4-6 and 10-15 degrees C, bipolar cells typical of Methylocella palustris were mostly found. The third group of methanotrophic bacteria growing at pH 5-7 and 5-10 degrees C was represented by a novel methanotroph whole large coccoid cells had a thick mucous capsule.

  3. The role of deep nitrogen and dynamic rooting profiles on vegetation dynamics and productivity in response to permafrost thaw and climate change in Arctic tundra

    Science.gov (United States)

    Hewitt, R. E.; Helene, G.; Taylor, D. L.; McGuire, A. D.; Mack, M. C.

    2017-12-01

    The release of permafrost-derived nitrogen (N) has the potential to fertilize tundra vegetation, modulating plant competition, stimulating productivity, and offsetting carbon losses from thawing permafrost. Dynamic rooting, mycorrhizal interactions, and coupling of N availability and root N uptake have been identified as gaps in ecosystem models. As a first step towards understanding whether Arctic plants can access deep permafrost-derived N, we characterized rooting profiles and quantified acquisition of 15N tracer applied at the permafrost boundary by moist acidic tundra plants subjected to almost three decades of warming at Toolik Lake, Alaska. In the ambient control plots the vegetation biomass is distributed between five plant functional types (PFTs): sedges, evergreen and deciduous shrubs, mosses and in lower abundance, forbs. The warming treatment has resulted in the increase of deciduous shrub biomass and the loss of sedges, evergreen shrubs, and mosses. We harvested roots by depth increment down to the top of the permafrost. Roots were classified by size class and PFT. The average thaw depth in the warmed plots was 58.3 cm ± 6.4 S.E., close to 18 cm deeper than the average thaw depth in the ambient plots (40.8 cm ± 1.8 S.E.). Across treatments the deepest rooting species was Rubus chamaemorus (ambient 40.8 cm ± 1.8 S.E., warmed 50.3 cm ± 9.8 S.E.), a non-mycorrhizal forb, followed by Eriophorum vaginatum, a non-mycorrhizal sedge. Ectomycorrhizal deciduous and ericoid mycorrhizal evergreen shrubs were rooted at more shallow depths. Deeply rooted non-mycorrhizal species had the greatest uptake of 15N tracer within 24 hours across treatments. Tracer uptake was greatest for roots of E. vaginatum in ambient plots and R. chamaemorus in warmed plots. Root profiles were integrated into a process-based ecosystem model coupled with a dynamic vegetation model. Functions modeling dynamic rooting profile relative to thaw depth were implemented for each PFT. The

  4. Physicochemical and Microbiological Characteristics of Tundra Soils on the Rybachii Peninsula

    Science.gov (United States)

    Evdokimova, G. A.; Mozgova, N. P.; Myazin, V. A.

    2018-01-01

    The Rybachii Peninsula is composed of Proterozoic sedimentary rocks and differs sharply from the rest of the Kola Peninsula in its geological structure, topographic forms, and parent rocks. It is dominated by Al-Fe-humus soils formed on moraines with an admixture of local rock fragments, including slates. Organic horizons of tundra soils in the peninsula are less acid than those on granitoids of adjacent mainland of the Kola Peninsula. The content of exchangeable calcium in the organic horizons varies from 17.4 to 68.0 cmolc/kg, and the content of water-soluble carbon reaches 400 mg/100 g amounting to 1-2% of the total soil organic matter content. The total number of bacteria in the organic horizons of tundra soils varies from 3.5 × 109 to 4.8 × 109 cells/g; and bacterial biomass varies from 0.14 to 0.19 mg/g. The length of fungal mycelium and its biomass in the organic horizons are significant (>1000 m/g soil). The biomass of fungal mycelium in the organic horizons exceeds the bacterial biomass by seven times in podzols (Albic Podzols) and by ten times in podbur (Entic Podzol), dry-peat soil (Folic Histosol), and low-moor peat soil (Sapric Histosol).

  5. Reduced arctic tundra productivity linked with landform and climate change interactions

    Science.gov (United States)

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; Martin, Philip; McGuire, A. David

    2018-01-01

    Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive (1999–2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.

  6. Organic matter composition and stabilization in a polygonal tundra soil of the Lena Delta

    Directory of Open Access Journals (Sweden)

    S. Höfle

    2013-05-01

    Full Text Available This study investigated soil organic matter (OM composition of differently stabilized soil OM fractions in the active layer of a polygonal tundra soil in the Lena Delta, Russia, by applying density and particle size fractionation combined with qualitative OM analysis using solid state 13C nuclear magnetic resonance spectroscopy, and lipid analysis combined with 14C analysis. Bulk soil OM was mainly composed of plant-derived, little-decomposed material with surprisingly high and strongly increasing apparent 14C ages with active layer depth suggesting slow microbial OM transformation in cold climate. Most soil organic carbon was stored in clay and fine-silt fractions (n-alkane and n-fatty acid compounds and low alkyl/O-alkyl C ratios. Organo-mineral associations, which are suggested to be a key mechanism of OM stabilization in temperate soils, seem to be less important in the active layer as the mainly plant-derived clay- and fine-silt-sized OM was surprisingly "young", with 14C contents similar to the bulk soil values. Furthermore, these fractions contained less organic carbon compared to density fractionated OM occluded in soil aggregates – a further important OM stabilization mechanism in temperate soils restricting accessibility of microorganisms. This process seems to be important at greater active layer depth where particulate OM, occluded in soil aggregates, was "older" than free particulate OM.

  7. Seasonal variability of leaf area index and foliar nitrogen in contrasting dry-mesic tundras

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Lemeur, Raoul

    2009-01-01

    Assimilation and exchange of carbon for arctic ecosystems depend strongly on leaf area index (LAI) and total foliar nitrogen (TFN). For dry-mesic tundras, the seasonality of these characteristics is unexplored. We addressed this knowledge gap by measuring variations of LAI and TFN at five contras...

  8. A Bayesian random effects discrete-choice model for resource selection: Population-level selection inference

    Science.gov (United States)

    Thomas, D.L.; Johnson, D.; Griffith, B.

    2006-01-01

    Modeling the probability of use of land units characterized by discrete and continuous measures, we present a Bayesian random-effects model to assess resource selection. This model provides simultaneous estimation of both individual- and population-level selection. Deviance information criterion (DIC), a Bayesian alternative to AIC that is sample-size specific, is used for model selection. Aerial radiolocation data from 76 adult female caribou (Rangifer tarandus) and calf pairs during 1 year on an Arctic coastal plain calving ground were used to illustrate models and assess population-level selection of landscape attributes, as well as individual heterogeneity of selection. Landscape attributes included elevation, NDVI (a measure of forage greenness), and land cover-type classification. Results from the first of a 2-stage model-selection procedure indicated that there is substantial heterogeneity among cow-calf pairs with respect to selection of the landscape attributes. In the second stage, selection of models with heterogeneity included indicated that at the population-level, NDVI and land cover class were significant attributes for selection of different landscapes by pairs on the calving ground. Population-level selection coefficients indicate that the pairs generally select landscapes with higher levels of NDVI, but the relationship is quadratic. The highest rate of selection occurs at values of NDVI less than the maximum observed. Results for land cover-class selections coefficients indicate that wet sedge, moist sedge, herbaceous tussock tundra, and shrub tussock tundra are selected at approximately the same rate, while alpine and sparsely vegetated landscapes are selected at a lower rate. Furthermore, the variability in selection by individual caribou for moist sedge and sparsely vegetated landscapes is large relative to the variability in selection of other land cover types. The example analysis illustrates that, while sometimes computationally intense, a

  9. Changes in tundra pond limnology: re-sampling Alaskan ponds after 40 years.

    Science.gov (United States)

    Lougheed, Vanessa L; Butler, Malcolm G; McEwen, Daniel C; Hobbie, John E

    2011-09-01

    The arctic tundra ponds at the International Biological Program (IBP) site in Barrow, AK, were studied extensively in the 1970s; however, very little aquatic research has been conducted there for over three decades. Due to the rapid climate changes already occurring in northern Alaska, identifying any changes in the ponds' structure and function over the past 30-40 years can help identify any potential climate-related impacts. Current research on the IBP ponds has revealed significant changes in the physical, chemical, and biological characteristics of these ponds over time. These changes include increased water temperatures, increased water column nutrient concentrations, the presence of at least one new chironomid species, and increased macrophyte cover. However, we have also observed significant annual variation in many measured variables and caution that this variation must be taken into account when attempting to make statements about longer-term change. The Barrow IBP tundra ponds represent one of the very few locations in the Arctic where long-term data are available on freshwater ecosystem structure and function. Continued monitoring and protection of these invaluable sites is required to help understand the implications of climate change on freshwater ecosystems in the Arctic.

  10. Delineation of Tundra Swan Cygnus c. columbianus populations in North America: geographic boundaries and interchange

    Science.gov (United States)

    Ely, Craig R.; Sladen, William J. L.; Wilson, Heather M.; Savage, Susan E.; Sowl, Kristine M.; Henry, Bill; Schwitters, Mike; Snowden, James

    2014-01-01

    North American Tundra Swans Cygnus c. columbianus are composed of two wellrecognised populations: an Eastern Population (EP) that breeds across northern Canada and north of the Brooks Range in Alaska, which migrates to the eastern seaboard of the United States, and a Western Population (WP) that breeds in coastal regions of Alaska south of the Brooks Range and migrates to western North America. We present results of a recent major ringing effort from across the breeding range in Alaska to provide a better definition of the geographic extent of the migratory divide in Alaska. We also reassess the staging and winter distributions of these populations based on locations of birds tracked using satellite transmitters, and recent recoveries and sightings of neck-collared birds. Summer sympatry of EP and WP Tundra Swans is very limited, and largely confined to a small area in northwest Alaska. Autumn migration pathways of EP and WP Tundra swans abut in southwest Saskatchewan, a region where migrating WP birds turn west, and EP birds deviate abruptly eastward. Overall, from 1989 to 2013 inclusive, 2.6% of recoveries or resightings reported to the USGS Bird Banding Laboratory were of birds that moved from the domain of the population in which they were initially captured to within the range of the other population; a proportion roughly comparable to the results of Limpert et al. (1991) for years before 1990. Of the 70 cross-boundary movements reported since 1989, 39% were of birds marked on breeding areas and 61% were of birds marked on wintering areas. Dispersing swans (i.e. those that made crossboundary movements) did not differ with respect to age or sex from those that did not move between populations. The Brooks Range in northern Alaska effectively separates the two populations within Alaska, but climate-induced changes in tundra breeding habitats and losses of wetlands on staging areas may alter the distribution for both of these populations.

  11. Herbaceous Legume Encroachment Reduces Grass Productivity and Density in Arid Rangelands.

    Directory of Open Access Journals (Sweden)

    Thomas C Wagner

    Full Text Available Worldwide savannas and arid grasslands are mainly used for livestock grazing, providing livelihood to over a billion people. While normally dominated by perennial C4 grasses, these rangelands are increasingly affected by the massive spread of native, mainly woody legumes. The consequences are often a repression of grass cover and productivity, leading to a reduced carrying capacity. While such encroachment by woody plants has been extensively researched, studies on similar processes involving herbaceous species are rare. We studied the impact of a sustained and massive spread of the native herbaceous legume Crotalaria podocarpa in Namibia's escarpment region on the locally dominant fodder grasses Stipagrostis ciliata and Stipagrostis uniplumis. We measured tussock densities, biomass production of individual tussocks and tussock dormancy state of Stipagrostis on ten 10 m x 10 m plots affected and ten similarly-sized plots unaffected by C. podocarpa over eight consecutive years and under different seasonal rainfalls and estimated the potential relative productivity of the land. We found the percentage of active Stipagrostis tussocks and the biomass production of individual tussocks to increase asymptotically with higher seasonal rainfall reaching a maximum around 300 mm while the land's relative productivity under average local rainfall conditions reached only 40% of its potential. Crotalaria podocarpa encroachment had no effect on the proportion of productive grass tussocks, but reduced he productivity of individual Stipagrostis tussocks by a third. This effect of C. podocarpa on grass productivity was immediate and direct and was not compensated for by above-average rainfall. Besides this immediate effect, over time, the density of grass tussocks declined by more than 50% in areas encroached by C. podocarpa further and lastingly reducing the lands carrying capacity. The effects of C. podocarpa on grass productivity hereby resemble those of woody

  12. The Impact of Different Habitat Conditions on the Variability of Wild Populations of a Medicinal Plant Betonica officinalis L.

    Directory of Open Access Journals (Sweden)

    Kinga Kostrakiewicz-Gierałt

    2015-06-01

    Full Text Available Plants are important source of beneficial bioactive compounds which may find various applications as functional ingredients, such as components of food supplements, cosmetics, and pharmaceuticals. One such medicinal plant is Betonica officinalis, populations of which were investigated in 2012‒13. The studies were conducted in patches of Molinietum caeruleae dominated by: small meadow taxa (patch I; the shrub willow Salix repens ssp. rosmarinifolia (patch II; large tussock grasses Deschampsia caespitosa and Molinia caerulaea (patch III; tall-growing macroforbs Filipendula ulmaria and Solidago canadensis (patch IV. Over successive patches, the average height of plant cover increased, as did soil moisture, while light availability at ground level decreased. Much greater abundance and density of the Betonica officinalis population were found in patches I, III and IV, while lower values for these parameters were noted in patch II. Individuals in pre-reproductive stages were absent during whole study period in all study plots, vegetative ramet clusters were observed in plots situated in patches I and III in the first year of observations, while only generative ramet clusters occurred in plots set in patches II and IV. The number of rosettes per ramet cluster, number and dimensions of rosette leaves, height of flowering stems, number of cauline leaves, length of inflorescences, as well as number and length of flowers increased gradually over successive patches, whereas the number of generative stems per ramet cluster did not differ remarkably among populations. On the basis of the performed studies it might be concluded that the condition of populations deteriorated from patches overgrown by large-tussock grasses and characterized by considerable share of native and alien tall-growing macroforbs, via patch dominated by small meadow taxa, to patch prevailed by shrub willows.

  13. Detection of tundra trail damage near Barrow, Alaska using remote imagery

    Science.gov (United States)

    Hinkel, K. M.; Eisner, W. R.; Kim, C. J.

    2017-09-01

    In the past several decades, the use of all-terrain vehicles (ATVs) has proliferated in many Arctic communities in North America. One example is the village of Barrow, Alaska. This coastal community has only local roads, so all access to the interior utilizes off-road machines. These 4-wheel vehicles are the primary means of tundra traverse and transport in summer by hunters and berry-pickers, and by village residents accessing summer camps. Traveling cross-country is difficult due to the large number of thermokarst lakes, wetlands, and streams, and tundra trails tend to follow dryer higher ground while avoiding areas of high microrelief such as high-centered ice-wedge polygons. Thus, modern ATV trails tend to follow the margins of drained or partially drained thermokarst lake basins where it is flat and relatively dry, and these trails are heavily used. The deeply-ribbed tires of the heavy and powerful ATVs cause damage by destroying the vegetation and disturbing the underlying organic soil. Exposure of the dark soil enhances summer thaw and leads to local thermokarst of the ice-rich upper permafrost. The damage increases over time as vehicles continue to follow the same track, and sections eventually become unusable; this is especially true where the trail crosses ice-wedge troughs. Deep subsidence in the ponded troughs results in ATV users veering to avoid the wettest area, which leads to a widening of the damaged area. Helicopter surveys, site visits, and collection of ground penetrating radar data were combined with time series analysis of high-resolution aerial and satellite imagery for the period 1955-2014. The analysis reveals that there are 507 km of off-road trails on the Barrow Peninsula. About 50% of the total trail length was developed before 1955 in association with resource extraction, and an additional 40% were formed between 1979 and 2005 by ATVs. Segments of the more modern trail are up to 100 m wide. Damage to the tundra is especially pronounced

  14. Award Letter: Tundra nesting bird data rescue for the Canning River Delta long-term ecological monitoring site

    Data.gov (United States)

    Department of the Interior — Award letter in response to Alaska Region Inventory and Monitoring 2017 request for proposals. Issued to Arctic NWR for project “Tundra nesting bird data rescue for...

  15. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau

    Science.gov (United States)

    Mu, C.

    2017-12-01

    Important unknowns remain about how abrupt permafrost collapse (thermokarst) affects carbon balance and greenhouse gas flux, limiting our ability to predict the magnitude and timing of the permafrost carbon feedback. We measured monthly, growing-season fluxes of CO2, CH4, and N2O at a large thermokarst feature in alpine tundra on the northern Qinghai-Tibetan Plateau (QTP). Thermokarst formation disrupted plant growth and soil hydrology, shifting the ecosystem from a growing-season carbon sink to a weak source, but decreasing feature-level CH4 and N2O flux. Temperature-corrected ecosystem respiration from decomposing permafrost soil was 2.7 to 9.5-fold higher than in similar features from Arctic and Boreal regions, suggesting that warmer and dryer conditions on the northern QTP could accelerate carbon decomposition following permafrost collapse. N2O flux was similar to the highest values reported for Arctic ecosystems, and was 60% higher from exposed mineral soil on the feature floor, confirming Arctic observations of coupled nitrification and denitrification in collapsed soils. Q10 values for respiration were typically over 4, suggesting high temperature sensitivity of thawed carbon. Taken together, these results suggest that QTP permafrost carbon in alpine tundra is highly vulnerable to mineralization following thaw, and that N2O production could be an important non-carbon permafrost climate feedback.

  16. The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia

    Directory of Open Access Journals (Sweden)

    M. K. van der Molen

    2007-11-01

    Full Text Available Carbon dioxide and methane fluxes were measured at a tundra site near Chokurdakh, in the lowlands of the Indigirka river in north-east Siberia. This site is one of the few stations on Russian tundra and it is different from most other tundra flux stations in its continentality. A suite of methods was applied to determine the fluxes of NEE, GPP, Reco and methane, including eddy covariance, chambers and leaf cuvettes. Net carbon dioxide fluxes were high compared with other tundra sites, with NEE=−92 g C m−2 yr−1, which is composed of an Reco=+141 g C m−2 yr−1 and GPP=−232 g C m−2 yr−1. This large carbon dioxide sink may be explained by the continental climate, that is reflected in low winter soil temperatures (−14°C, reducing the respiration rates, and short, relatively warm summers, stimulating high photosynthesis rates. Interannual variability in GPP was dominated by the frequency of light limitation (Rg<200 W m−2, whereas Reco depends most directly on soil temperature and time in the growing season, which serves as a proxy of the combined effects of active layer depth, leaf area index, soil moisture and substrate availability. The methane flux, in units of global warming potential, was +28 g C-CO2e m−2 yr−1, so that the greenhouse gas balance was −64 g C-CO2e m−2 yr−1. Methane fluxes depended only slightly on soil temperature and were highly sensitive to hydrological conditions and vegetation composition.

  17. Spring feeding by pink-footed geese reduces carbon stocks and sink strength in tundra ecosystems

    NARCIS (Netherlands)

    van der Wal, Rene; Sjogersten, Sofie; Woodin, Sarah J.; Cooper, Elisabeth J.; Jonsdottir, Ingibjorg S.; Kuijper, Dries; Fox, Tony A. D.; Huiskes, A. D.

    Tundra ecosystems are widely recognized as precious areas and globally important carbon (C) sinks, yet our understanding of potential threats to these habitats and their large soil C store is limited. Land-use changes and conservation measures in temperate regions have led to a dramatic expansion of

  18. Spring feeding by pink-footed geese reduces carbon stocks and sink strength in tundra ecosystems

    NARCIS (Netherlands)

    Van der Wal, R.; Sjögersten, S.; Woodin, S.J.; Cooper, E.J.; Jónsdóttir, I.S.; Kuijper, D.; Fox, A.D.; Huiskes, A.H.L.

    2007-01-01

    Tundra ecosystems are widely recognized as precious areas and globally important carbon (C) sinks, yet our understanding of potential threats to these habitats and their large soil C store is limited. Land-use changes and conservation measures in temperate regions have led to a dramatic expansion of

  19. First Record of Setaria Tundra in Danish Roe Deer (Capreolus Capreolus)

    DEFF Research Database (Denmark)

    Enemark, Heidi L.; Harslund, Jakob le Fèvre; Oksanen, A.

    2011-01-01

    No previous finds of the mosquito-borne filarioid nematode Setaria tundra have been reported from Denmark, although it was described decades ago in Swedish and Norwegian reindeer as well as in roe deer from Germany, Bulgaria and more recently also from Italy and Finland. Setaria spp. are usually...... and thereby larger numbers of mosquitoes, it is important to monitor this vector-borne parasite. This will not only increase the understanding of factors promoting its expansion but also help to predict disease outbreaks....

  20. Evolutionary relationships can be more important than abiotic conditions in predicting the outcome of plant-plant interactions

    Science.gov (United States)

    Soliveres, Santiago; Torices, Rubén; Maestre, Fernando T.

    2015-01-01

    Positive and negative plant-plant interactions are major processes shaping plant communities. They are affected by environmental conditions and evolutionary relationships among the interacting plants. However, the generality of these factors as drivers of pairwise plant interactions and their combined effects remain virtually unknown. We conducted an observational study to assess how environmental conditions (altitude, temperature, irradiance and rainfall), the dispersal mechanism of beneficiary species and evolutionary relationships affected the co-occurrence of pairwise interactions in 11 Stipa tenacissima steppes located along an environmental gradient in Spain. We studied 197 pairwise plant-plant interactions involving the two major nurse plants (the resprouting shrub Quercus coccifera and the tussock grass S. tenacissima) found in these communities. The relative importance of the studied factors varied with the nurse species considered. None of the factors studied were good predictors of the co-ocurrence between S. tenacissima and its neighbours. However, both the dispersal mechanism of the beneficiary species and the phylogenetic distance between interacting species were crucial factors affecting the co-occurrence between Q. coccifera and its neighbours, while climatic conditions (irradiance) played a secondary role. Values of phylogenetic distance between 207-272.8 Myr led to competition, while values outside this range or fleshy-fruitness in the beneficiary species led to positive interactions. The low importance of environmental conditions as a general driver of pairwise interactions was caused by the species-specific response to changes in either rainfall or radiation. This result suggests that factors other than climatic conditions must be included in theoretical models aimed to generally predict the outcome of plant-plant interactions. Our study helps to improve current theory on plant-plant interactions and to understand how these interactions can

  1. Is the Invasive Species Listronotus bonariensis (Kuschel) (Coleoptera: Curculionidae) (Argentine Stem Weevil) a Threat to New Zealand Natural Grassland Ecosystems?

    Science.gov (United States)

    Barratt, Barbara I P; Barton, Diane M; Philip, Bruce A; Ferguson, Colin M; Goldson, Stephen L

    2016-01-01

    Listronotus bonariensis (Argentine stem weevil) is a stem-boring weevil that has become a major pasture pest in New Zealand, and cool climate turf grass in Australia. This species is also frequently found in native tussock grassland in New Zealand. Laboratory and field trials were established to determine the risk posed to both seedlings and established plants of three native grass species compared to what happens with a common host of this species, hybrid ryegrass (L. perenne X L. multiflorum). Adult weevil feeding damage scores were higher on Poa colensoi and Festuca novae-zelandiae than Chionochloa rigida. Oviposition was lower on P. colensoi than hybrid ryegrass, and no eggs were laid on F. novae-zelandiae. In field trials using the same four species established as spaced plants L. bonariensis laid more eggs per tiller in ryegrass in a low altitude pasture site than in ryegrass in a higher altitude site. No eggs were found on the three native grass species at the tussock sites, and only low numbers were found on other grasses at the low altitude pasture site. Despite this, numbers of adult weevils were extracted from the plants in the field trials. These may have comprised survivors of the original weevils added to the plants, together with new generation weevils that had emerged during the experiment. Irrespective, higher numbers were recovered from the tussock site plants than from those from the pasture site. It was concluded that L. bonariensis is likely to have little overall impact, but a greater impact on native grass seedling survival than on established plants.

  2. Indicators of reproduction of the tundra vole (microtus oeconomus pallas, 1776) in Palesse state radiation-ecological reserve

    International Nuclear Information System (INIS)

    Kuchmel', S.V.

    2010-01-01

    In 2003-2007 reproductive indicators of the tundra vole in territory of Palesse state radiation-ecological reserve have been caused by factors of an inhabitancy and are peculiar to this kind on other sites of dwelling. (authors)

  3. Incident radiation and the allocation of nitrogen within Arctic plant canopies: implications for predicting gross primary productivity

    NARCIS (Netherlands)

    Street, L.E.; Shaver, G.R.; Rastetter, E.B.; Wijk, van M.T.; Kaye, B.A.; Williams, M.

    2012-01-01

    Arctic vegetation is characterized by high spatial variability in plant functional type (PFT) composition and gross primary productivity (P). Despite this variability, the two main drivers of P in sub-Arctic tundra are leaf area index (LT) and total foliar nitrogen (NT). LT and NT have been shown to

  4. Comparative Analysis of the Number and Structure of the Complexes of Microscopic Fungi in Tundra and Taiga Soils in the North of the Kola Peninsula

    Science.gov (United States)

    Korneikova, M. V.

    2018-01-01

    The number, biomass, length of fungal mycelium, and species diversity of microscopic fungi have been studied in soils of the tundra and taiga zones in the northern part of the Kola Peninsula: Al-Fe-humus podzols (Albic Podzols), podburs (Entic Podzols), dry peaty soils (Folic Histosols), low-moor peat soils (Sapric Histosols), and soils of frost bare spots (Cryosols). The number of cultivated microscopic fungi in tundra soils varied from 8 to 328 thousand CFU/g, their biomass averaged 1.81 ± 0.19 mg/g, and the length of fungal mycelium averaged 245 ± 25 m/g. The number of micromycetes in taiga soils varied from 80 to 350 thousand CFU/g, the number of fungal propagules in some years reached 600 thousand CFU/g; the fungal biomass varied from 0.23 to 6.2 mg/g, and the length of fungal mycelium varied from 32 to 3900 m/g. Overall, 36 species of fungi belonging to 16 genera, 13 families, and 8 orders were isolated from tundra soils. The species diversity of microscopic fungi in taiga soils was significantly higher: 87 species belonging to 31 genera, 21 families, and 11 orders. Fungi from the Penicillium genus predominated in both natural zones and constituted 38-50% of the total number of isolated species. The soils of tundra and taiga zones were characterized by their own complexes of micromycetes; the similarity of their species composition was about 40%. In soils of the tundra zone, Mortierella longicollis, Penicillium melinii, P. raistrickii, and P. simplicissimum predominated; dominant fungal species in soils of the taiga zone were represented by M. longicollis, P. decumbens, P. implicatum, and Umbelopsis isabellina.

  5. Female-specific wing degeneration caused by ecdysteroid in the Tussock Moth, Orgyia recens: Hormonal and developmental regulation of sexual dimorphism

    Directory of Open Access Journals (Sweden)

    Saori Lobbia

    2003-04-01

    Full Text Available Females of the tussock moth Orgyia recens have vestigial wings, whereas the males have normal wings. During early pupal development, female wings degenerate drastically compared with those of males. To examine whether ecdysteroid is involved in this sex-specific wing development, we cultured pupal wings just after pupation with ecdysteroid (20-hydroxyecdysone, 20E. In the presence of 20E, the female wings degenerated to about one-fifth their original size. In contrast, the male wings cultured with 20E showed only peripheral degeneration just outside the bordering lacuna, as in other butterflies and moths. TUNEL analysis showed that apoptotic signals were induced by 20E over the entire region of female wings, but only in the peripheral region of male wings. Semi-thin sections of the wings cultured with ecdysteroid showed that phagocytotic hemocytes were observed abundantly throughout the female wings, but in only peripheral regions of male wings. These observations indicate that both apoptotic events and phagocytotic activation are triggered by ecdysteroid, in sex-specific and region-specific manners.

  6. Effects of Unsaturated Microtopography on Nitrate Concentrations in Tundra Ecosystems: Examples from Polygonal Terrain and Degraded Peat Plateaus

    Science.gov (United States)

    Heikoop, J. M.; Arendt, C. A.; Newman, B. D.; Charsley-Groffman, L.; Perkins, G.; Wilson, C. J.; Wullschleger, S.

    2017-12-01

    Under the auspices of the Next Generation Ecosystem Experiment - Arctic, we have been studying hydrogeochemical signals in Alaskan tundra ecosystems underlain by continuous permafrost (Barrow Environmental Observatory (BEO)) and discontinuous permafrost (Seward Peninsula). The Barrow site comprises largely saturated tundra associated with the low gradient Arctic Coastal Plain. Polygonal microtopography, however, can result in slightly raised areas that are unsaturated. In these areas we have previously demonstrated production and accumulation of nitrate, which, based on nitrate isotopic analysis, derives from microbial degradation. Our Seward Peninsula site is located in a much steeper and generally well-drained watershed. In lower-gradient areas at the top and bottom of the watershed, however, the tundra is generally saturated, likely because of the presence of underlying discontinuous permafrost inhibiting infiltration. These settings also contain microtopographic features, though in the form of degraded peat plateaus surrounded by wet graminoid sag ponds. Despite being very different microtopographic features in a very different setting with distinct vegetation, qualitatively similar nitrate accumulation patterns as seen in polygonal terrain were observed. The highest nitrate pore water concentration observed in an unsaturated peat plateau was approximately 5 mg/L, whereas subsurface pore water concentrations in surrounding sag ponds were generally below the limit of detection. Nitrate isotopes indicate this nitrate results from microbial mineralization and nitrification based on comparison to the nitrate isotopic composition of reduced nitrogen sources in the environment and the oxygen isotope composition of site pore water. Nitrate concentrations were most similar to those found in low-center polygon rims and flat-centered polygon centers at the BEO, but were significantly lower than the maximum concentrations seen in the highest and driest polygonal features

  7. Net Primary Production and Carbon Stocks for Subarctic Mesic-Dry Tundras with Contrasting Microtopography, Altitude, and Dominant Species

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Demey, A

    2009-01-01

    Mesic-dry tundras are widespread in the Arctic but detailed assessments of net primary production (NPP) and ecosystem carbon (C) stocks are lacking. We addressed this lack of knowledge by determining the seasonal dynamics of aboveground vascular NPP, annual NPP, and whole-ecosystem C stocks in five...... mesic-dry tundras in Northern Sweden with contrasting microtopography, altitude, and dominant species. Those measurements were paralleled by the stock assessments of nitrogen (N), the limiting nutrient. The vascular production was determined by harvest or in situ growing units, whereas the nonvascular...... hermaphroditum is more productive than Cassiope tetragona vegetation. Although the large majority of the apical NPP occurred in early-mid season (85%), production of stems and evergreen leaves proceeded until about 2 weeks before senescence. Most of the vascular vegetation was belowground (80%), whereas most...

  8. Age-specific survival of tundra swans on the lower Alaska Peninsula

    Science.gov (United States)

    Meixell, Brandt W.; Lindberg, Mark S.; Conn, Paul B.; Dau, Christian P.; Sarvis, John E.; Sowl, Kristine M.

    2013-01-01

    The population of Tundra Swans (Cygnus columbianus columbianus) breeding on the lower Alaska Peninsula represents the southern extremity of the species' range and is uniquely nonmigratory. We used data on recaptures, resightings, and recoveries of neck-collared Tundra Swans on the lower Alaska Peninsula to estimate collar loss, annual apparent survival, and other demographic parameters for the years 1978–1989. Annual collar loss was greater for adult males fitted with either the thinner collar type (0.34) or the thicker collar type (0.15) than for other age/sex classes (thinner: 0.10, thicker: 0.04). The apparent mean probability of survival of adults (0.61) was higher than that of immatures (0.41) and for both age classes varied considerably by year (adult range: 0.44–0.95, immature range: 0.25–0.90). To assess effects of permanent emigration by age and breeding class, we analyzed post hoc the encounter histories of swans known to breed in our study area. The apparent mean survival of known breeders (0.65) was generally higher than that of the entire marked sample but still varied considerably by year (range 0.26–1.00) and indicated that permanent emigration of breeding swans was likely. We suggest that reductions in apparent survival probability were influenced primarily by high and variable rates of permanent emigration and that immigration by swans from elsewhere may be important in sustaining a breeding population at and near Izembek National Wildlife Refuge.

  9. The Russian-Swedish tundra radioecology expedition 1994

    International Nuclear Information System (INIS)

    Persson, B.R.; Holm, E.; Carlsson, K.Aa.; Josefsson, D.; Roos, P.

    1995-01-01

    The expedition investigated the ecology of the anthropogenic radio nuclides 137 Cs, 90 Sr, and 239,240 Pu in the Northern Sea to explain the origin from different sources. It had been shown from an earlier expedition that the levels of 137 Cs are higher in the central Arctic Ocean than further south in Barents Sea. The question was if this was due to inflow from the Atlantic or is due to other origin. The expedition also examined the outflow of 90 Sr from the rivers along the Siberian coast in order to investigate if the permafrost enhances the run-off of radionuclides from tundra. Study of anthropogenic radionuclides in the mixing zone between fresh and salt water at the different river systems along the Siberian coast was of particular interest. Some of the results from the expedition are presented in the present paper. 3 refs., 3 figs., 3 tabs

  10. Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra.

    Science.gov (United States)

    Boelman, Natalie T; Stieglitz, Marc; Rueth, Heather M; Sommerkorn, Martin; Griffin, Kevin L; Shaver, Gaius R; Gamon, John A

    2003-05-01

    This study explores the relationship between the normalized difference vegetation index (NDVI), aboveground plant biomass, and ecosystem C fluxes including gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem production. We measured NDVI across long-term experimental treatments in wet sedge tundra at the Toolik Lake LTER site, in northern Alaska. Over 13 years, N and P were applied in factorial experiments (N, P and N + P), air temperature was increased using greenhouses with and without N + P fertilizer, and light intensity (photosynthetically active photon flux density) was reduced by 50% using shade cloth. Within each treatment plot, NDVI, aboveground biomass and whole-system CO(2) flux measurements were made at the same sampling points during the peak-growing season of 2001. We found that across all treatments, NDVI is correlated with aboveground biomass ( r(2)=0.84), GEP ( r(2)=0.75) and ER ( r(2)=0.71), providing a basis for linking remotely sensed NDVI to aboveground biomass and ecosystem carbon flux.

  11. Nesting ecology of tundra swans on the coastal Yukon-Kuskokwim Delta, Alaska

    Science.gov (United States)

    Babcock, C.A.; Fowler, A.C.; Ely, Craig R.

    2002-01-01

    Nesting ecology of Tundra Swans (Cygnus columbianus columbianus) was studies the Kashunuk River near Old Chevak (61A?26a??N, 165A?27a??W), on the Yukon-Kuskokwim Delta of western Alaska from 1988-2000. Annual variation in snow-melt chronology, nesting phenology, nesting density, clutch size and nest success was examined. The same area (approximately 23 kmA?) was searched each year and nests were found as early as possible in the laying period. Laying initiation dates ranged from 1-27 May and hatch dates from 12 June a?? 4 July among pairs and years of study. The peak arrival of Tundra Swans and the phenology of nest initiation and hatch were highly correlated with the progression of ice and snow melt in spring. Nest density averaged 0.71 kmA? and 89% of nesting pairs hatched at least one egg. Incubation period ranged from 26 to 33 days with a median of 30 days. Clutch size varied significantly among years, driven by a low mean value of 3.4 eggs in 1999. Clutch sizes were generally larger than found in previous investigations on the Yukon-Kuskokwim Delta, and nearly one egg larger than reported for clutches from Alaskaa??s North Slope (=70A?N). There was no indication of reduced clutch size in years of late spring snow melt, although nesting density tended to be lower.

  12. Thaw pond development and initial vegetation succession in experimental plots at a Siberian lowland tundra site

    NARCIS (Netherlands)

    Li, Bingxi; Heijmans, Monique M.P.D.; Blok, Daan; Wang, Peng; Karsanaev, Sergey V.; Maximov, Trofim C.; Huissteden, van Jacobus; Berendse, Frank

    2017-01-01

    Background and aims: Permafrost degradation has the potential to change the Arctic tundra landscape. We observed rapid local thawing of ice-rich permafrost resulting in thaw pond formation, which was triggered by removal of the shrub cover in a field experiment. This study aimed to examine the

  13. Thaw pond development and initial vegetation succession in experimental plots at a Siberian lowland tundra site

    NARCIS (Netherlands)

    Li, Bingxi; Heijmans, Monique M.P.D.; Blok, Daan; Wang, Guang-Peng; Karsanaev, Sergey V.; Maximov, Trofim C.; van Huissteden, Jacobus; Berendse, Frank

    2017-01-01

    Background and aims: Permafrost degradation has the potential to change the Arctic tundra landscape. We observed rapid local thawing of ice-rich permafrost resulting in thaw pond formation, which was triggered by removal of the shrub cover in a field experiment. This study aimed to examine the rate

  14. Light-stress avoidance mechanisms in a Sphagnum-dominated wet coastal Arctic tundra ecosystem in Alaska.

    Science.gov (United States)

    Zona, D; Oechel, Walter C; Richards, James H; Hastings, Steven; Kopetz, Irene; Ikawa, Hiroki; Oberbauer, Steven

    2011-03-01

    The Arctic experiences a high-radiation environment in the summer with 24-hour daylight for more than two months. Damage to plants and ecosystem metabolism can be muted by overcast conditions common in much of the Arctic. However, with climate change, extreme dry years and clearer skies could lead to the risk of increased photoxidation and photoinhibition in Arctic primary producers. Mosses, which often exceed the NPP of vascular plants in Arctic areas, are often understudied. As a result, the effect of specific environmental factors, including light, on these growth forms is poorly understood. Here, we investigated net ecosystem exchange (NEE) at the ecosystem scale, net Sphagnum CO2 exchange (NSE), and photoinhibition to better understand the impact of light on carbon exchange from a moss-dominated coastal tundra ecosystem during the summer season 2006. Sphagnum photosynthesis showed photoinhibition early in the season coupled with low ecosystem NEE. However, later in the season, Sphagnum maintained a significant CO2 uptake, probably for the development of subsurface moss layers protected from strong radiation. We suggest that the compact canopy structure of Sphagnum reduces light penetration to the subsurface layers of the moss mat and thereby protects the active photosynthetic tissues from damage. This stress avoidance mechanism allowed Sphagnum to constitute a significant percentage (up to 60%) of the ecosystem net daytime CO2 uptake at the end of the growing season despite the high levels of radiation experienced.

  15. Digital Necrobacillosis in Norwegian Wild Tundra Reindeer (Rangifer tarandus tarandus)

    DEFF Research Database (Denmark)

    Handeland, K.; Boye, Mette; Bergsjø, B.

    2010-01-01

    Outbreaks of digital necrobacillosis in Norwegian wild tundra reindeer (Rangifer tarandus tarandus) are described. The outbreaks occurred in late summer and autumn 2007 and 2008, subsequent to periods with an unusually high number of days with precipitation and high air temperature. Lesions were....... necrophorum was cultured from the foot lesions of six animals. Five of these isolates were examined by 16S rRNA sequencing. The sequences were identical and differed from all other strains listed in GenBank. These results are consistent with circulation of a reindeer-adapted pathogenic strain of F....... necrophorum in the wild reindeer population, causing outbreaks of digital necrobacillosis following warm and humid summers....

  16. Exchange of CO2 in Arctic tundra: impacts of meteorological variations and biological disturbance

    Science.gov (United States)

    López-Blanco, Efrén; Lund, Magnus; Williams, Mathew; Tamstorf, Mikkel P.; Westergaard-Nielsen, Andreas; Exbrayat, Jean-François; Hansen, Birger U.; Christensen, Torben R.

    2017-10-01

    An improvement in our process-based understanding of carbon (C) exchange in the Arctic and its climate sensitivity is critically needed for understanding the response of tundra ecosystems to a changing climate. In this context, we analysed the net ecosystem exchange (NEE) of CO2 in West Greenland tundra (64° N) across eight snow-free periods in 8 consecutive years, and characterized the key processes of net ecosystem exchange and its two main modulating components: gross primary production (GPP) and ecosystem respiration (Reco). Overall, the ecosystem acted as a consistent sink of CO2, accumulating -30 g C m-2 on average (range of -17 to -41 g C m-2) during the years 2008-2015, except 2011 (source of 41 g C m-2), which was associated with a major pest outbreak. The results do not reveal a marked meteorological effect on the net CO2 uptake despite the high interannual variability in the timing of snowmelt and the start and duration of the growing season. The ranges in annual GPP (-182 to -316 g C m-2) and Reco (144 to 279 g C m-2) were > 5 fold larger than the range in NEE. Gross fluxes were also more variable (coefficients of variation are 3.6 and 4.1 % respectively) than for NEE (0.7 %). GPP and Reco were sensitive to insolation and temperature, and there was a tendency towards larger GPP and Reco during warmer and wetter years. The relative lack of sensitivity of NEE to meteorology was a result of the correlated response of GPP and Reco. During the snow-free season of the anomalous year of 2011, a biological disturbance related to a larvae outbreak reduced GPP more strongly than Reco. With continued warming temperatures and longer growing seasons, tundra systems will increase rates of C cycling. However, shifts in sink strength will likely be triggered by factors such as biological disturbances, events that will challenge our forecasting of C states.

  17. Hybrid image classification technique for land-cover mapping in the Arctic tundra, North Slope, Alaska

    Science.gov (United States)

    Chaudhuri, Debasish

    Remotely sensed image classification techniques are very useful to understand vegetation patterns and species combination in the vast and mostly inaccessible arctic region. Previous researches that were done for mapping of land cover and vegetation in the remote areas of northern Alaska have considerably low accuracies compared to other biomes. The unique arctic tundra environment with short growing season length, cloud cover, low sun angles, snow and ice cover hinders the effectiveness of remote sensing studies. The majority of image classification research done in this area as reported in the literature used traditional unsupervised clustering technique with Landsat MSS data. It was also emphasized by previous researchers that SPOT/HRV-XS data lacked the spectral resolution to identify the small arctic tundra vegetation parcels. Thus, there is a motivation and research need to apply a new classification technique to develop an updated, detailed and accurate vegetation map at a higher spatial resolution i.e. SPOT-5 data. Traditional classification techniques in remotely sensed image interpretation are based on spectral reflectance values with an assumption of the training data being normally distributed. Hence it is difficult to add ancillary data in classification procedures to improve accuracy. The purpose of this dissertation was to develop a hybrid image classification approach that effectively integrates ancillary information into the classification process and combines ISODATA clustering, rule-based classifier and the Multilayer Perceptron (MLP) classifier which uses artificial neural network (ANN). The main goal was to find out the best possible combination or sequence of classifiers for typically classifying tundra type vegetation that yields higher accuracy than the existing classified vegetation map from SPOT data. Unsupervised ISODATA clustering and rule-based classification techniques were combined to produce an intermediate classified map which was

  18. CAR LEADEX Level 1C Artic Sea Ice and Tundra Radiation Measurements (CAR_LEADEX_L1C) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — CAR LEADEX mission measured bidirectional reflectance functions for four common arctic surfaces: snow covered sea ice, melt season sea ice, snow covered tundra, and...

  19. Different parts, different stories: climate sensitivity of growth is stronger in root collars vs. stems in tundra shrubs.

    Science.gov (United States)

    Ropars, Pascale; Angers-Blondin, Sandra; Gagnon, Marianne; Myers-Smith, Isla H; Lévesque, Esther; Boudreau, Stéphane

    2017-08-01

    Shrub densification has been widely reported across the circumpolar arctic and subarctic biomes in recent years. Long-term analyses based on dendrochronological techniques applied to shrubs have linked this phenomenon to climate change. However, the multi-stemmed structure of shrubs makes them difficult to sample and therefore leads to non-uniform sampling protocols among shrub ecologists, who will favor either root collars or stems to conduct dendrochronological analyses. Through a comparative study of the use of root collars and stems of Betula glandulosa, a common North American shrub species, we evaluated the relative sensitivity of each plant part to climate variables and assessed whether this sensitivity is consistent across three different types of environments in northwestern Québec, Canada (terrace, hilltop and snowbed). We found that root collars had greater sensitivity to climate than stems and that these differences were maintained across the three types of environments. Growth at the root collar was best explained by spring precipitation and summer temperature, whereas stem growth showed weak and inconsistent responses to climate variables. Moreover, sensitivity to climate was not consistent among plant parts, as individuals having climate-sensitive root collars did not tend to have climate-sensitive stems. These differences in sensitivity of shrub parts to climate highlight the complexity of resource allocation in multi-stemmed plants. Whereas stem initiation and growth are driven by microenvironmental variables such as light availability and competition, root collars integrate the growth of all plant parts instead, rendering them less affected by mechanisms such as competition and more responsive to signals of global change. Although further investigations are required to determine the degree to which these findings are generalizable across the tundra biome, our results indicate that consistency and caution in the choice of plant parts are a key

  20. Demographic outcomes of diverse migration strategies assessed in a metapopulation of tundra swans.

    Science.gov (United States)

    Ely, Craig R; Meixell, Brandt W

    2016-01-01

    Migration is a prominent aspect of the life history of many avian species, but the demographic consequences of variable migration strategies have only infrequently been investigated, and rarely when using modern technological and analytical methods for assessing survival, movement patterns, and long-term productivity in the context of life history theory. We monitored the fates of 50 satellite-implanted tundra swans (Cygnus columbianus) over 4 years from five disparate breeding areas in Alaska, and used known-fate analyses to estimate monthly survival probability relative to migration distance, breeding area, migratory flyway, breeding status, and age. We specifically tested whether migratory birds face a trade-off, whereby long-distance migrants realize higher survival rates at the cost of lower productivity because of reduced time on breeding areas relative to birds that migrate shorter distances and spend more time on breeding areas. Annual migration distances varied significantly among breeding areas (1020 to 12720 km), and were strongly negatively correlated with time spent on breeding areas (r = -0.986). Estimates of annual survival probability varied by wintering area (Pacific coast, Alaska Peninsula, and Eastern seaboard) and ranged from 0.79 (95%CI: 0.70-0.88) to 1.0, depending on criteria used to discern mortalities from radio failures. We did not find evidence for a linear relationship between migration distance and survival as swans from the breeding areas with the shortest and longest migration distances had the highest survival probabilities. Survival was lower in the first year post-marking than in subsequent years, but there was not support for seasonal differences in survival. Productivity varied among breeding populations and was generally inversely correlated to survival, but not migration distance or time spent on breeding areas. Tundra swans conformed to a major tenet of life history theory, as populations with the highest survival

  1. Understanding Pan-Arctic Tundra Vegetation Change Through Long-term Remotely Sensed Data

    Science.gov (United States)

    Bhatt, U.; Walker, D. A.; Bieniek, P.; Raynolds, M. K.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2012-12-01

    The goal of this paper is to present an analysis of the seasonality of tundra vegetation variability and change using long-term remotely sensed data as well as ground based measurements and reanalyses. An increase of Pan-Arctic tundra vegetation greenness has been documented using the remotely sensed Normalized Difference Vegetation Index (NDVI). Coherent variability between NDVI, springtime coastal sea ice (passive microwave) and land surface temperatures (AVHRR) has also been established. Satellite based snow and cloud cover data sets are being incorporated into this analysis. The Arctic tundra is divided into domains based on Treshnikov divisions that are modified based on floristic provinces. There is notable heterogeneity in Pan-Arctic vegetation and climate trends, which necessitates a regional analysis. This study uses remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2010. The GIMMS NDVI3g data has been corrected for biases during the spring and fall, with special focus on the Arctic. Trends of Maximum NDVI (MaxNDVI), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), and open water area are calculated for the Pan Arctic. Remotely sensed snow data trends suggest varying patterns throughout the Arctic and may in part explain the heterogeneous MaxNDVI trends. Standard climate data (station, reanalysis, and model data) and ground observations are used in the analysis to provide additional support for hypothesized mechanisms. Overall, we find that trends over the 30-year record are changing as evidenced by the following examples from recent years. The sea ice decline has increased in Eurasia and slowed in North America. The weekly AVHRR landsurface temperatures reveal that there has been summer cooling over Eurasia and that the warming over North America has slowed. The MaxNDVI rates of change have diverged between N. America and Eurasia

  2. Molecular detection of Setaria tundra (Nematoda: Filarioidea and an unidentified filarial species in mosquitoes in Germany

    Directory of Open Access Journals (Sweden)

    Czajka Christina

    2012-01-01

    Full Text Available Abstract Background Knowledge of the potential vector role of Culicidae mosquitoes in Germany is very scanty, and until recently it was generally assumed that they are not involved in the transmission of anthroponotic or zoonotic pathogens in this country. However, anticipated changes in the course of global warming and globalization may alter their status. Methods We conducted a molecular mass screening of mosquitoes for filarial parasites using mitochondrial 12S rRNA-based real-time PCR. Results No parasites causing disease in humans such as Dirofilaria spp. were detected in about 83,000 mosquitoes tested, which had been collected in 2009 and 2010 in 16 locations throughout Germany. However, minimum infection rates of up to 24 per 1000 mosquitoes were revealed, which could be attributed to mosquito infection with Setaria tundra and a yet unidentified second parasite. Setaria tundra was found to be widespread in southern Germany in various mosquito species, except Culex spp. In contrast, the unidentified filarial species was exclusively found in Culex spp. in northern Baden-Württemberg, and is likely to be a bird parasite. Conclusions Although dirofilariasis appears to be emerging and spreading in Europe, the absence of Dirofilaria spp. or other zoonotic filariae in our sample allows the conclusion that the risk of autochthonous infection in Germany is still very low. Potential vectors of S. tundra in Germany are Ochlerotatus sticticus, Oc. cantans, Aedes vexans and Anopheles claviger. Technically, the synergism between entomologists, virologists and parasitologists, combined with state-of-the-art methods allows a very efficient near-real-time monitoring of a wide spectrum of both human and veterinary pathogens, including new distribution records of parasite species and the incrimination of their potential vectors.

  3. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra

    Directory of Open Access Journals (Sweden)

    Congcong eShen

    2015-06-01

    Full Text Available The elevational diversity pattern for microorganisms has received great attention recently but is still understudied, and phylogenetic relatedness is rarely studied for microbial elevational distributions. Using a bar-coded pyrosequencing technique, we examined the biodiversity patterns for soil bacterial communities of tundra ecosystem along 2000–2500 m elevations on Changbai Mountain in China. Bacterial taxonomic richness displayed a linear decreasing trend with increasing elevation. Phylogenetic diversity and mean nearest taxon distance (MNTD exhibited a unimodal pattern with elevation. Bacterial communities were more phylogenetically clustered than expected by chance at all elevations based on the standardized effect size of MNTD metric. The bacterial communities differed dramatically among elevations, and the community composition was significantly correlated with soil total carbon, total nitrogen, C:N ratio, and dissolved organic carbon. Multiple ordinary least squares regression analysis showed that the observed biodiversity patterns strongly correlated with soil total carbon and C:N ratio. Taken together, this is the first time that a significant bacterial diversity pattern has been observed across a small-scale elevational gradient. Our results indicated that soil carbon and nitrogen contents were the critical environmental factors affecting bacterial elevational distribution in Changbai Mountain tundra. This suggested that ecological niche-based environmental filtering processes related to soil carbon and nitrogen contents could play a dominant role in structuring bacterial communities along the elevational gradient.

  4. Size and mass of grit in gizzards of sandhill cranes, tundra swans, and mute swans

    Science.gov (United States)

    Franson, J. Christian; Hansen, Scott P.; Duerr, Adam E.; DeStefano, Stephen

    2001-01-01

    Because it has been suggested that waterbirds may ingest lost or discarded lead fishing weights as grit, we examined grit in the gizzards of Sandhill Cranes (Grus canadensis), Tundra Swans (Cygnus columbianus), and Mute Swans (Cygnus olor), three species where individuals have been poisoned by the ingestion of lead fishing weights. The greatest proportion (by mass) of grit in gizzards of Sandhill Cranes consisted of particles with a minimum dimension of 2.36-4.75 mm. Grit particles in swans were much smaller, with the most prevalent (by mass) being 0.6-1.18 mm. The greatest dimension of the largest grit particle found in cranes and swans was 17.4 mm and 14.0 mm, respectively. The U.S. Environmental Protection Agency has proposed a ban on lead fishing weights of ≤25.4 mm in any dimension. Based on the size of grit particles that we found in gizzards of Sandhill Cranes, Mute Swans, and Tundra Swans, we believe it is unlikely that individuals of those species would ingest, as grit, lead fishing weights larger than 25.4 mm in any dimension.

  5. Invertebrate communities of Arctic tundra ponds as related to proximity to drill site reserve pits

    International Nuclear Information System (INIS)

    Byron, E.; Williams, N.; Hoffman, R.; Elder, B.

    1994-01-01

    Aquatic invertebrate communities were assessed for diversity and abundance in North Slope tundra ponds of Prudhoe Bay, Alaska during the summer of 1992 as part of an evaluation of potential effects of exposure to petroleum drill site reserve pits (previously used for storing drill site wastes). The invertebrate communities of these shallow, tundra ponds provide abundant food for migratory, aquatic birds that use this area during the summer breeding season. The study was designed to compare abundance and diversity estimates of invertebrates in ponds surrounding the drill sites that differed in distance (and presumed exposure) to drill site reserve pits. The pits, themselves, were not sampled as part of this study. Invertebrate abundance and diversity estimates, assessed as standard biological criteria, were evaluated relative to water chemistry of the ponds, distance to the gravel pads or reserve pits, and pond morphometry. The results indicated the importance of pond morphometry in determining the structure of the invertebrate community. Shallow, exposed ponds tended to be dominated by different invertebrate communities than deeper, narrow ponds at the margins of frost polygons. In contrast, pond chemistry and relative exposure to drill sites were not predictive of invertebrate abundance or diversity

  6. Prevalence, transmission, and genetic diversity of blood parasites infecting tundra-nesting geese in Alaska

    Science.gov (United States)

    Ramey, Andy M.; Reed, John A.; Schmutz, Joel A.; Fondell, Tom F.; Meixell, Brandt W.; Hupp, Jerry W.; Ward, David H.; Terenzi, John; Ely, Craig R.

    2014-01-01

    A total of 842 blood samples collected from five species of tundra-nesting geese in Alaska was screened for haemosporidian parasites using molecular techniques. Parasites of the generaLeucocytozoon Danilewsky, 1890, Haemoproteus Kruse, 1890, and Plasmodium Marchiafava and Celli, 1885 were detected in 169 (20%), 3 (parasites and assess variation relative to species, age, sex, geographic area, year, and decade. Species, age, and decade were identified as important in explaining differences in prevalence of Leucocytozoonparasites. Leucocytozoon parasites were detected in goslings sampled along the Arctic Coastal Plain using both historic and contemporary samples, which provided support for transmission in the North American Arctic. In contrast, lack of detection of Haemoproteus and Plasmodiumparasites in goslings (n = 238) provided evidence to suggest that the transmission of parasites of these genera may not occur among waterfowl using tundra habitats in Alaska, or alternatively, may only occur at low levels. Five haemosporidian genetic lineages shared among different species of geese sampled from two geographic areas were indicative of interspecies parasite transmission and supported broad parasite or vector distributions. However, identicalLeucocytozoon and Haemoproteus lineages on public databases were limited to waterfowl hosts suggesting constraints in the range of parasite hosts.

  7. The exchange of energy, water and carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Kutzbach, L.

    2006-07-01

    The ecosystem-scale exchange fluxes of energy, water and carbon dioxide between wet arctic tundra and the atmosphere were investigated by the micrometeorological eddy covariance method. The investigation site was the centre of the Lena River Delta in Northern Siberia characterised by a polar and distinctly continental climate, very cold and ice-rich permafrost and its position at the interface between the Eurasian continent and the Arctic Ocean. The measurements were performed on the surface of a Holocene river terrace characterised by wet polygonal tundra. The soils at the site are characterised by high organic matter content, low nutrient availability and pronounced water logging. The vegetation is dominated by sedges and mosses. The fluctuations of the H{sub 2}O and CO{sub 2} concentrations were measured with a closed-path infrared gas analyser. The fast-response eddy covariance measurements were supplemented by a set of slow-response meteorological and soil-meteorological measurements. The combined datasets of the two campaigns 2003 and 2004 were used to characterise the seasonal course of the energy, water and CO{sub 2} fluxes and the underlying processes for the synthetic measurement period May 28..October 21 2004/2003 including the period of snow and soil thawing as well as the beginning of refreezing. The synthetic measurement period 2004/2003 was characterised by a long snow ablation period and a late start of the growing season. On the other hand, the growing season ended also late due to high temperatures and snow-free conditions in September. The cumulative summer energy partitioning was characterised by low net radiation, large ground heat flux, low latent heat flux and very low sensible heat flux compared to other tundra sites. These findings point out the major importance of the very cold permafrost for the summer energy budget of the tundra in Northern Siberia. (orig./SR)

  8. Flock size, diet composition, and habitat characteristics of the ...

    African Journals Online (AJOL)

    gla- cial history (Magin 2001). Some of the plant species endemic to SMNP are stonecrop. Rosularia simiensis and tussock grass Festuca gilbertiana. SMNP is home to 22 species. Flock size, diet composition, and habitat characteristics of ...

  9. Observing Arctic Ecology using Networked Infomechanical Systems

    Science.gov (United States)

    Healey, N. C.; Oberbauer, S. F.; Hollister, R. D.; Tweedie, C. E.; Welker, J. M.; Gould, W. A.

    2012-12-01

    Understanding ecological dynamics is important for investigation into the potential impacts of climate change in the Arctic. Established in the early 1990's, the International Tundra Experiment (ITEX) began observational inquiry of plant phenology, plant growth, community composition, and ecosystem properties as part of a greater effort to study changes across the Arctic. Unfortunately, these observations are labor intensive and time consuming, greatly limiting their frequency and spatial coverage. We have expanded the capability of ITEX to analyze ecological phenomenon with improved spatial and temporal resolution through the use of Networked Infomechanical Systems (NIMS) as part of the Arctic Observing Network (AON) program. The systems exhibit customizable infrastructure that supports a high level of versatility in sensor arrays in combination with information technology that allows for adaptable configurations to numerous environmental observation applications. We observe stereo and static time-lapse photography, air and surface temperature, incoming and outgoing long and short wave radiation, net radiation, and hyperspectral reflectance that provides critical information to understanding how vegetation in the Arctic is responding to ambient climate conditions. These measurements are conducted concurrent with ongoing manual measurements using ITEX protocols. Our NIMS travels at a rate of three centimeters per second while suspended on steel cables that are ~1 m from the surface spanning transects ~50 m in length. The transects are located to span soil moisture gradients across a variety of land cover types including dry heath, moist acidic tussock tundra, shrub tundra, wet meadows, dry meadows, and water tracks. We have deployed NIMS at four locations on the North Slope of Alaska, USA associated with 1 km2 ARCSS vegetation study grids including Barrow, Atqasuk, Toolik Lake, and Imnavait Creek. A fifth system has been deployed in Thule, Greenland beginning in

  10. Enhanced biological degradation of crude oil in a Spitsbergen tundra site

    International Nuclear Information System (INIS)

    Sveum, P.; Faksness, L.-G.

    1993-01-01

    A series of oil-contaminated tundra plots on Spitsbergen was treated with combinations of five different fertilizer additives. Both organic and mineral nutrient sources were used, alone or in combination. Biological degradation of oil was recorded in all of the plots. The extent of degradation depended on the type of fertilizer added. The local conditions influence oil degradation significantly, as well as the effect of the fertilizer. Urea, SkogAN (a slow releasing fertilizer), and a blend of fish meals all give high degrees of oil degradation. Both the microbial parameters and the total heterotrophic respiration are influenced by the addition of fertilizers. 6 refs., 13 figs., 3 tabs

  11. Redistribution of natural radioactive elements resulting from animal and plant life activity in regions with high radioactivity

    International Nuclear Information System (INIS)

    Malslov, V.I.; Maslova, K.I.; Alexakhin, R.M.

    1980-01-01

    A quantitative assessment is made of the influence of plant and animal life on the migration and redistribution of naturally occurring radionuclides in several localized areas with unusually high soil concentrations of 226 Ra, 238 U, or 232 Th. In the taiga and tundra zones examined, the effects of radionuclide accumulation in certain plant species and of the feeding and burrowing habits of small mammals were particularly significant. The observed regularities have predictive applications in assessing the redistribution of radionuclides in regions of high radioactivity

  12. Climate sensitivity of shrub growth across the tundra biome

    DEFF Research Database (Denmark)

    Myers-Smith, Isla H.; Elmendorf, Sarah C.; Beck, Pieter S.A.

    2015-01-01

    Rapid climate warming in the tundra biome has been linked to increasing shrub dominance1–4. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost2,5–8, yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting...... of multi-decadal time series of annual shrub growth provide an underused resource to explore climate–growth relationships. Here, we analyse circumpolar data from 37 Arctic and alpine sites in 9 countries, including 25 species, and 42,000 annual growth records from 1,821 individuals. Our analyses...... demonstrate that the sensitivity of shrub growth to climate was: (1) heterogeneous, with European sites showing greater summer temperature sensitivity than North American sites, and (2) higher at sites with greater soil moisture and for taller shrubs (for example, alders and willows) growing at their northern...

  13. Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils

    Science.gov (United States)

    Treat, C.C.; Jones, Miriam C.; Camill, P.; Gallego-Sala, A.; Garneau, M.; Harden, Jennifer W.; Hugelius, G.; Klein, E.S.; Kokfelt, U.; Kuhry, P.; Loisel, Julie; Mathijssen, J.H.; O'Donnell, J.A.; Oksanen, P.O.; Ronkainen, T.M.; Sannel, A.B.K.; Talbot, J. J.; Tarnocal, C.M.; Valiranta, M.

    2016-01-01

    Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, and thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, and C/N ratio) and C accumulation rates among vegetation types and environmental classes. Consequences of permafrost aggradation differed between boreal and tundra biomes, including differences in vegetation composition, C/N ratios, and N content. The vegetation composition of tundra permafrost peatlands was similar to permafrost-free fens, while boreal permafrost peatlands more closely resembled permafrost-free bogs. Nitrogen content in boreal permafrost and thawed permafrost peatlands was significantly lower than in permafrost-free bogs despite similar vegetation types (0.9% versus 1.5% N). Median long-term C accumulation rates were higher in fens (23 g C m−2 yr−1) than in permafrost-free bogs (18 g C m−2 yr−1) and were lowest in boreal permafrost peatlands (14 g C m−2 yr−1). The plant macrofossil record demonstrated transitions from fens to bogs to permafrost peatlands, bogs to fens, permafrost aggradation within fens, and permafrost thaw and reaggradation. Using data synthesis, we have identified predominant peatland successional pathways, changes in vegetation type, peat properties, and C accumulation rates associated with permafrost aggradation.

  14. Snow depth manipulation experiments in a dry and a moist tundra

    Science.gov (United States)

    Kwon, M. J.; Czimczik, C. I.; Jung, J. Y.; Kim, M.; Lee, Y. K.; Nam, S.; Wagner, I.

    2017-12-01

    As a result of global warming, precipitation in the Arctic is expected to increase by 25-50% by the end of this century, mostly in the form of snow. However, precipitation patterns vary considerable in space and time, and future precipitation patterns are highly uncertain at local and regional scales. The amount of snowfall (or snow depth) influences a number of ecosystem properties in Arctic ecosystems, such as soil temperature over winter and soil moisture in the following growing season. These modifications then affect rates of carbon-related soil processes and photosynthesis, thus CO2 exchange rates between terrestrial ecosystems and the atmosphere. In this study, we investigate the effects of snow depth on the magnitude, sources and temporal dynamics of CO2 fluxes. We installed snow fences in a dry dwarf-shrub (Cambridge Bay, Canada; 69° N, 105° W) and a moist low-shrub (Council, Alaska, USA; 64° N, 165° W) tundra in summer 2017, and established control, and increased and reduced snow depth plots at each snow fence. Summertime CO2 flux rates (net ecosystem exchange, ecosystem respiration, gross primary production) and the fractions of autotrophic and heterotrophic respiration to ecosystem respiration were measured using manual chambers and radiocarbon signatures. Wintertime CO2 flux rates will be measured using soda lime adsorption technique and forced diffusion chambers. Soil temperature and moisture at multiple depths, as well as changes in soil properties and microbial communities will be also observed, to research whether these changes affect CO2 flux rates or patterns. Our study will elucidate how future snow depth and its impact on soil physical and biogeochemical properties influence the magnitude and sources of tundra-atmosphere CO2 exchange in the rapidly warming Arctic.

  15. Apparent Contradiction: Psychrotolerant Bacteria from Hydrocarbon-Contaminated Arctic Tundra Soils That Degrade Diterpenoids Synthesized by Trees

    Science.gov (United States)

    Yu, Zhongtang; Stewart, Gordon R.; Mohn, William W.

    2000-01-01

    Resin acids are tricyclic terpenoids occurring naturally in trees. We investigated the occurrence of resin acid-degrading bacteria on the Arctic tundra near the northern coast of Ellesmere Island (82°N, 62°W). According to most-probable-number assays, resin acid degraders were abundant (103 to 104 propagules/g of soil) in hydrocarbon-contaminated soils, but they were undetectable (soil) in pristine soils from the nearby tundra. Plate counts indicated that the contaminated and the pristine soils had similar populations of heterotrophs (106 to 107 propagules/g of soil). Eleven resin acid-degrading bacteria belonging to four phylogenetically distinct groups were enriched and isolated from the contaminated soils, and representative isolates of each group were further characterized. Strains DhA-91, IpA-92, and IpA-93 are members of the genus Pseudomonas. Strain DhA-95 is a member of the genus Sphingomonas. All four strains are psychrotolerant, with growth temperature ranges of 4°C to 30°C (DhA-91 and DhA-95) or 4°C to 22°C (IpA-92 and IpA-93) and with optimum temperatures of 15 to 22°C. Strains DhA-91 and DhA-95 grew on the abietanes, dehydroabietic and abietic acids, but not on the pimaranes, isopimaric and pimaric acids. Strains IpA-92 and IpA-93 grew on the pimaranes but not the abietanes. All four strains grew on either aliphatic or aromatic hydrocarbons, which is unusual for described resin acid degraders. Eleven mesophilic resin acid degraders did not use hydrocarbons, with the exception of two Mycobacterium sp. strains that used aliphatic hydrocarbons. We conclude that hydrocarbon contamination in Arctic tundra soil indirectly selected for resin acid degraders, selecting for hydrocarbon degraders that coincidentally use resin acids. Psychrotolerant resin acid degraders are likely important in the global carbon cycle and may have applications in biotreatment of pulp and paper mill effluents. PMID:11097882

  16. Two Component Decomposition of Dual Polarimetric HH/VV SAR Data: Case Study for the Tundra Environment of the Mackenzie Delta Region, Canada

    Directory of Open Access Journals (Sweden)

    Tobias Ullmann

    2016-12-01

    Full Text Available This study investigates a two component decomposition technique for HH/VV-polarized PolSAR (Polarimetric Synthetic Aperture Radar data. The approach is a straight forward adaption of the Yamaguchi decomposition and decomposes the data into two scattering contributions: surface and double bounce under the assumption of a negligible vegetation scattering component in Tundra environments. The dependencies between the features of this two and the classical three component Yamaguchi decomposition were investigated for Radarsat-2 (quad and TerraSAR-X (HH/VV data for the Mackenzie Delta Region, Canada. In situ data on land cover were used to derive the scattering characteristics and to analyze the correlation among the PolSAR features. The double bounce and surface scattering features of the two and three component scattering model (derived from pseudo-HH/VV- and quad-polarized data showed similar scattering characteristics and positively correlated-R2 values of 0.60 (double bounce and 0.88 (surface scattering were observed. The presence of volume scattering led to differences between the features and these were minimized for land cover classes of low vegetation height that showed little volume scattering contribution. In terms of separability, the quad-polarized Radarsat-2 data offered the best separation of the examined tundra land cover types and will be best suited for the classification. This is anticipated as it represents the largest feature space of all tested ones. However; the classes “wetland” and “bare ground” showed clear positions in the feature spaces of the C- and X-Band HH/VV-polarized data and an accurate classification of these land cover types is promising. Among the possible dual-polarization modes of Radarsat-2 the HH/VV was found to be the favorable mode for the characterization of the aforementioned tundra land cover classes due to the coherent acquisition and the preserved co-pol. phase. Contrary, HH/HV-polarized and VV

  17. Plot-size for 15N-fertilizer recovery studies by tanzania-grass

    International Nuclear Information System (INIS)

    Martha Junior, Geraldo Bueno; Trivelin, Paulo Cesar Ocheuze; Corsi, Moacyr

    2009-01-01

    The understanding of the N dynamics in pasture ecosystems can be improved by studies using the 15 N tracer technique. However, in these experiments it must be ensured that the lateral movement of the labeled fertilizer does not interfere with the results. In this study the plot-size requirements for 15 N-fertilizer recovery experiments with irrigated Panicum maximum cv. Tanzania was determined. Three grazing intensities (light, moderate and intensive grazing) in the winter, spring and summer seasons were considered. A 1 m 2 plot-size, with a grass tussock in the center, was adequate, irrespective of the grazing intensity or season of the year. Increasing the distance from the area fertilized with 15 N negatively affected the N derived from fertilizer (Npfm) recovered in herbage.The lowest decline in Npfm values were observed for moderate and light grazing intensities. This fact might be explained by the vigorous growth characteristics of these plants. Increasing the grazing intensity decreased the tussock mass and, the smaller the tussock mass, the greater was the dependence on fertilizer nitrogen. (author)

  18. Plot-size for {sup 15}N-fertilizer recovery studies by tanzania-grass; Tamanho da parcela para estudos de recuperacao de fertilizante-{sup 15}N por capim-tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Martha Junior, Geraldo Bueno [EMBRAPA Cerrados, Planaltina, DF (Brazil)], e-mail: gbmartha@cpac.embrapa.br; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis], e-mail: pcotrive@cena.usp.br; Corsi, Moacyr [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Zootecnia], e-mail: moa@esalq.usp.br

    2009-07-01

    The understanding of the N dynamics in pasture ecosystems can be improved by studies using the {sup 15}N tracer technique. However, in these experiments it must be ensured that the lateral movement of the labeled fertilizer does not interfere with the results. In this study the plot-size requirements for {sup 15}N-fertilizer recovery experiments with irrigated Panicum maximum cv. Tanzania was determined. Three grazing intensities (light, moderate and intensive grazing) in the winter, spring and summer seasons were considered. A 1 m{sup 2} plot-size, with a grass tussock in the center, was adequate, irrespective of the grazing intensity or season of the year. Increasing the distance from the area fertilized with {sup 15}N negatively affected the N derived from fertilizer (Npfm) recovered in herbage.The lowest decline in Npfm values were observed for moderate and light grazing intensities. This fact might be explained by the vigorous growth characteristics of these plants. Increasing the grazing intensity decreased the tussock mass and, the smaller the tussock mass, the greater was the dependence on fertilizer nitrogen. (author)

  19. The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra

    DEFF Research Database (Denmark)

    Li, Bingxi; Heijmans, Monique M P D; Berendse, Frank

    2016-01-01

    It is widely believed that deciduous tundra-shrub dominance is increasing in the pan-Arctic region, mainly due to rising temperature. We sampled dwarf birch (Betula nana L.) at a northeastern Siberian tundra site and used dendrochronological methods to explore the relationship between climatic...... variables and local shrub dominance. We found that establishment of shrub ramets was positively related to summer precipitation, which implies that the current high dominance of B. nana at our study site could be related to high summer precipitation in the period from 1960 to 1990. The results confirmed...... that early summer temperature is most influential to annual growth rates of B. nana. In addition, summer precipitation stimulated shrub growth in years with warm summers, suggesting that B. nana growth may be co-limited by summer moisture supply. The dual controlling role of temperature and summer...

  20. Nitrogen Uptake During Fall, Winter and Spring Differs Among Plant Functional Groups in a Subarctic Heath Ecosystem

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Michelsen, Anders; Jonasson, Sven

    2012-01-01

    Nitrogen (N) is a critical resource for plant growth in tundra ecosystems, and species differences in the timing of N uptake may be an important feature regulating community composition and ecosystem productivity. We added 15N-labelled glycine to a subarctic heath tundra dominated by dwarf shrubs...... to 37 ± 7% by April indicating significant microbial N turnover prior to spring thaw. Only the evergreen dwarf shrubs showed active 15N acquisition before early May indicating that they had the highest potential of all functional groups for acquiring nutrients that became available in early spring....... The faster-growing deciduous shrubs did not resume 15N acquisition until after early May indicating that they relied more on nitrogen made available later during the spring/early summer. The graminoids and mosses had no significant increases in 15N tracer recovery or tissue 15N tracer concentrations after...

  1. Carbon dioxide exchange in three tundra sites show a dissimilar response to environmental variables

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe; Lund, Magnus; Christensen, Torben Røjle

    2015-01-01

    variability. An improved understanding of the control of ancillary variables on net ecosystem exchange (NEE), gross primary production (GPP) and ecosystem respiration (Re) will improve the accuracy with which CO2 exchange seasonality in Arctic tundra ecosystems is modelled. Fluxes were measured with the eddy...... Lake. Growing season NEE correlated mainly to cumulative radiation and temperature-related variables at Zackenberg, while at Daring Lake the same variables showed significant correlations with the partitioned fluxes (GPP and Re). Stordalen was temperature dependent during the growing season. This study...

  2. Carbon storage in permafrost and soils of the mammoth tundra-steppe biome: role in the global carbon budget

    Science.gov (United States)

    N.S. Zimov; S.A. Zimov; A.E. Zimova; G.M. Zimova; V.I. Chuprynin; F.S. Chapin

    2009-01-01

    During the Last Glacial Maximum (LGM), atmospheric CO2 concentration was 80-100 ppmv lower than in preindustrial times. At that time steppe-tundra was the most extensive biome on Earth. Some authors assume that C storage in that biome was very small, similar to today's deserts, and that the terrestrial carbon (C) reservoir increased at the...

  3. Physical and biological effects of experimental crude oil spills on Low Artic tundra in the vicinity of Tuktoyaktuk, N. W. T. , Canada

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, W.; Hutchinson, T.C.

    1976-10-01

    Data are presented on the effects of simulated crude oil spills on two Low Arctic terrestrial tundra plant communities near Tuktoyaktuk, Northwest Territories. Spills of fresh, unweathered crude oil had a general herbicidal effect, resulting in rapid damage to, and subsequent death of, all aboveground actively growing foliage coming in contact with the oil. Most species were defoliated. Mosses and lichens were especially susceptible and killed. However, within several weeks of the summer oil spillages, a limited number of relatively tolerant vascular plant species began to develop regrowth shoots. Summer spills were markedly more damaging than were equivalent spills made in winter. No increases were seen in active layer depth from spills made in summer. However, winter spills on one of the two sites did show consistent and statistically significant (P > 0.01) increases in depth of thaw. Examination of several key energy budget parameters at these field sites indicated consistently lower albedos and evapotranspiration and consistently higher soil surface temperatures and soil heat flux at all oil spill sites, relative to their controls. However, except for a winter spill on one site, the recorded differences were not sufficiently large in magnitude to produce significant increases in active layer thaw depths.

  4. Microbial Community and Functional Gene Changes in Arctic Tundra Soils in a Microcosm Warming Experiment

    Directory of Open Access Journals (Sweden)

    Ziming Yang

    2017-09-01

    Full Text Available Microbial decomposition of soil organic carbon (SOC in thawing Arctic permafrost is important in determining greenhouse gas feedbacks of tundra ecosystems to climate. However, the changes in microbial community structure during SOC decomposition are poorly known. Here we examine these changes using frozen soils from Barrow, Alaska, USA, in anoxic microcosm incubation at −2 and 8°C for 122 days. The functional gene array GeoChip was used to determine microbial community structure and the functional genes associated with SOC degradation, methanogenesis, and Fe(III reduction. Results show that soil incubation after 122 days at 8°C significantly decreased functional gene abundance (P < 0.05 associated with SOC degradation, fermentation, methanogenesis, and iron cycling, particularly in organic-rich soil. These observations correspond well with decreases in labile SOC content (e.g., reducing sugar and ethanol, methane and CO2 production, and Fe(III reduction. In contrast, the community functional structure was largely unchanged in the −2°C incubation. Soil type (i.e., organic vs. mineral and the availability of labile SOC were among the most significant factors impacting microbial community structure. These results demonstrate the important roles of microbial community in SOC degradation and support previous findings that SOC in organic-rich Arctic tundra is highly vulnerable to microbial degradation under warming.

  5. Thaw pond dynamics and carbon emissions in a Siberian lowland tundra landscape

    Science.gov (United States)

    van Huissteden, Ko; Heijmans, Monique; Dean, Josh; Meisel, Ove; Goovaerts, Arne; Parmentier, Frans-Jan; Schaepman-Strub, Gabriela; Belelli Marchesini, Luca; Kononov, Alexander; Maximov, Trofim; Borges, Alberto; Bouillon, Steven

    2017-04-01

    Arctic climate change induces drastic changes in permafrost surface wetness. As a result of thawing ground ice bodies, ice wedge troughs and thaw ponds are formed. Alternatively, ongoing thaw may enhance drainage as a result of increased interconnectedness of thawing ice wedge troughs, as inferred from a model study (Liljedahl et al., 2016, Nature Geoscience, DOI: 10.1038/NGEO2674). However, a recent review highlighted the limited predictability of consequences of thawing permafrost on hydrology (Walvoord and Kurylyk, 2016, Vadose Zone J., DOI:10.2136/vzj2016.01.0010). Overall, these changes in tundra wetness modify carbon cycling in the Arctic and in particular the emissions of CO2 and CH4 to the atmosphere, providing a possibly positive feedback on climate change. Here we present the results of a combined remote sensing, geomorphological, vegetation and biogechemical study of thaw ponds in Arctic Siberian tundra, at Kytalyk research station near Chokurdakh, Indigirka lowlands. The station is located in an area dominated by Pleistocene ice-rich 'yedoma' sediments and drained thaw lake bottoms of Holocene age. The development of three types of ponds in the Kytalyk area (polygon centre ponds, ice wedge troughs and thaw ponds) has been traced with high resolution satellite and aerial imagery. The remote sensing data show net areal expansion of all types of ponds. Next to formation of new ponds, local vegetation change from dry vegetation types to wet, sedge-dominated vegetation is common. Thawing ice wedges and thaw ponds show an increase in area and number at most studied locations. In particular the area of polygon centre ponds increased strongly between 2010 and 2015, but this is highly sensitive to antecedent precipitation conditions. Despite a nearly 60% increase of the area of thawing ice wedge troughs, there is no evidence of decreasing water surfaces by increasing drainage through connected ice wedge troughs. The number of thaw ponds shows an equilibrium

  6. Monitoring the numbers and productivity of Tundra Swans in relation to potential natural gas development in the Mackenzie River Delta, western Canadian Arctic, 2001-2003

    Energy Technology Data Exchange (ETDEWEB)

    Swystun, H.A. [Northern British Columbia Univ., Prince George, BC (Canada); Hines, J.E. [Canadian Wildlife Service, Ottawa, ON (Canada); Dawson, R.D. [Northern British Columbia Univ., Prince George, BC (Canada)

    2005-03-01

    A study was conducted in which tundra swans were used as an indicator species to monitor the environmental change and effects of oil and gas development in the Mackenzie Delta. The objectives were to monitor consistent study plots for tundra swans at development and non development sites and to document nesting success and brood survival. Environmental protection and maintenance of harvestable populations of wildlife are part of land claim agreement for two Aboriginal groups with settled land claims in the Mackenzie Delta. This study also evaluated the possible factors such as habitat and climate, which limit the reproductive success of tundra swans. Their nesting biology was examined along with how they use their habitat. Researchers established 48 plots near exploratory well sites, existing camps, sites of recent seismic exploration and gas fields of known importance. Air surveillance was used to count and observe the swans on a yearly basis, along with their nests and offspring. Plots were located both where development is proposed and where development is not likely to occur. The important spring staging, summer moulting and fall staging areas were identified along with spring migration patterns, behaviour and feeding areas. The 3 proposed drilling sites include Niglingtak (Kendall Island Bird Sanctuary), Taglu, and Parsons Lake. The concerns regarding future development in tundra swan habitat include: (1) areas where drilling and pipeline structures are built may prompt swans to move away from their traditional nesting and feeding areas, (2) human activity will increase due to gas drilling and pipeline construction, which may reduce nesting success, (3) wastes associated with construction sites may attract predators and increase predation on nesting birds, (4) increased air traffic would disturb geese and swan hunting areas, and (5) waterfowl habitat could be lost if spring staging, summer moulting and fall staging areas are not considered when planning

  7. Twinflower (Linnaea borealis L. – plant species of potential medicinal properties

    Directory of Open Access Journals (Sweden)

    Thiem Barbara

    2017-09-01

    Full Text Available Twinflower (Linnaea borealis L. is a widespread circumboreal plant species belonging to Linnaeaceae family (previously Caprifoliaceae. L. borealis commonly grows in taiga and tundra. In some countries in Europe, including Poland, twinflower is protected as a glacial relict. Chemical composition of this species is not well known, however in folk medicine of Scandinavian countries, L. borealis has a long tradition as a cure for skin diseases and rheumatism. It is suggested that twinflower has potential medicinal properties. The new study on lead secondary metabolites responsible for biological activity are necessary. This short review summarizes very sparse knowledge on twinflower: its biology, distribution, conservation status, chemical constituents, and describes the role of this plant in folk tradition of Scandinavian countries.

  8. Matrix matters: differences of grand skink metapopulation parameters in native tussock grasslands and exotic pasture grasslands.

    Directory of Open Access Journals (Sweden)

    Konstanze Gebauer

    Full Text Available Modelling metapopulation dynamics is a potentially very powerful tool for conservation biologists. In recent years, scientists have broadened the range of variables incorporated into metapopulation modelling from using almost exclusively habitat patch size and isolation, to the inclusion of attributes of the matrix and habitat patch quality. We investigated the influence of habitat patch and matrix characteristics on the metapopulation parameters of a highly endangered lizard species, the New Zealand endemic grand skink (Oligosoma grande taking into account incomplete detectability. The predictive ability of the developed zxmetapopulation model was assessed through cross-validation of the data and with an independent data-set. Grand skinks occur on scattered rock-outcrops surrounded by indigenous tussock (bunch and pasture grasslands therefore implying a metapopulation structure. We found that the type of matrix surrounding the habitat patch was equally as important as the size of habitat patch for estimating occupancy, colonisation and extinction probabilities. Additionally, the type of matrix was more important than the physical distance between habitat patches for colonisation probabilities. Detection probability differed between habitat patches in the two matrix types and between habitat patches with different attributes such as habitat patch composition and abundance of vegetation on the outcrop. The developed metapopulation models can now be used for management decisions on area protection, monitoring, and the selection of translocation sites for the grand skink. Our study showed that it is important to incorporate not only habitat patch size and distance between habitat patches, but also those matrix type and habitat patch attributes which are vital in the ecology of the target species.

  9. The sign, magnitude and potential drivers of change in surface water extent in Canadian tundra

    Science.gov (United States)

    Carroll, Mark L.; Loboda, Tatiana V.

    2018-04-01

    The accelerated rate of warming in the Arctic has considerable implications for all components of ecosystem functioning in the High Northern Latitudes. Changes to hydrological cycle in the Arctic are particularly complex as the observed and projected warming directly impacts permafrost and leads to variable responses in surface water extent which is currently poorly characterized at the regional scale. In this study we take advantage of the 30 plus years of medium resolution (30 m) Landsat data to quantify the spatial patterns of change in the extent of water bodies in the Arctic tundra in Nunavut, Canada. Our results show a divergent pattern of change—growing surface water extent in the north-west and shrinking in the south-east—which is not a function of the overall distribution of surface water in the region. The observed changes cannot be explained by latitudinal stratification, nor is it explained by available temperature and precipitation records. However, the sign of change appears to be consistent within the boundaries of individual watersheds defined by the Canada National Hydro Network based on the random forest analysis. Using land cover maps as a proxy for ecological function we were able to link shrinking tundra water bodies to substrates with shallow soil layers (i.e. bedrock and barren landscapes) with a moderate correlation (R 2 = 0.46, p evaporation as an important driver of surface water decrease in these cases.

  10. The effects of climate changes on soil methane oxidation in a dry Arctic tundra

    Science.gov (United States)

    D'Imperio, Ludovica

    2014-05-01

    The effects of climate changes on soil methane oxidation in a dry Arctic tundra. Ludovica D'Imperio1, Anders Michelsen1, Christian J. Jørgensen1, Bo Elberling1 1Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark At Northern latitudes climatic changes are predicted to be most pronounced resulting in increasing active layer depth and changes in growing season length, vegetation cover and nutrient cycling. As a consequence of increased temperature, large stocks of carbon stored in the permafrost-affected soils could become available for microbial transformations and under anoxic conditions result in increasing methane production affecting net methane (CH4) budget. Arctic tundra soils also serves as an important sink of atmospheric CH4 by microbial oxidation under aerobic conditions. While several process studies have documented the mechanisms behind both production and emissions of CH4 in arctic ecosystems, an important knowledge gap exists with respect to the in situ dynamics of microbial-driven uptake of CH4 in arctic dry lands which may be enhanced as a consequence of global warming and thereby counterbalancing CH4 emissions from Arctic wetlands. In-situ methane measurements were made in a dry Arctic tundra in Disko Island, Western Greenland, during the summer 2013 to assess the role of seasonal and inter-annual variations in temperatures and snow cover. The experimental set-up included snow fences installed in 2012, allowed investigations of the emissions of GHGs from soil under increased winter snow deposition and ambient field conditions. The soil fluxes of CH4 and CO2 were measured using closed chambers in manipulated plots with increased summer temperatures and shrub removal with or without increased winter precipitation. At the control plots, the averaged seasonal CH4 oxidation rates ranged between -0.05 mg CH4 m-2 hr-1 (end of August) and -0.32 mg CH4 m-2 hr-1 (end of June). In the

  11. Impacts of introduced Rangifer on ecosystem processes of maritime tundra on subarctic islands

    Science.gov (United States)

    Ricca, Mark; Miles, A. Keith; Van Vuren, Dirk H.; Eviner, Valerie T.

    2016-01-01

    Introductions of mammalian herbivores to remote islands without predators provide a natural experiment to ask how temporal and spatial variation in herbivory intensity alter feedbacks between plant and soil processes. We investigated ecosystem effects resulting from introductions of Rangifer tarandus (hereafter “Rangifer”) to native mammalian predator- and herbivore-free islands in the Aleutian archipelago of Alaska. We hypothesized that the maritime tundra of these islands would experience either: (1) accelerated ecosystem processes mediated by positive feedbacks between increased graminoid production and rapid nitrogen cycling; or (2) decelerated processes mediated by herbivory that stimulated shrub domination and lowered soil fertility. We measured summer plant and soil properties across three islands representing a chronosequence of elapsed time post-Rangifer introduction (Atka: ~100 yr; Adak: ~50; Kagalaska: ~0), with distinct stages of irruptive population dynamics of Rangifer nested within each island (Atka: irruption, K-overshoot, decline, K-re-equilibration; Adak: irruption, K-overshoot; Kagalaska: initial introduction). We also measured Rangifer spatial use within islands (indexed by pellet group counts) to determine how ecosystem processes responded to spatial variation in herbivory. Vegetation community response to herbivory varied with temporal and spatial scale. When comparing temporal effects using the island chronosequence, increased time since herbivore introduction led to more graminoids and fewer dwarf-shrubs, lichens, and mosses. Slow-growingCladonia lichens that are highly preferred winter forage were decimated on both long-termRangifer-occupied islands. In addition, linear relations between more concentrated Rangifer spatial use and reductions in graminoid and forb biomass within islands added spatial heterogeneity to long-term patterns identified by the chronosequence. These results support, in part, the hypothesis that

  12. Is pollen morphology of Salix polaris affected by enhanced UV-B irradiation? Results from a field experiment in high Arctic tundra

    NARCIS (Netherlands)

    Yeloff, Dan; Blokker, Peter; Boelen, Peter; Rozema, Jelte

    2008-01-01

    This study tested the hypothesis that the thickness of the pollen wall will increase in response to enhanced UV-B irradiation, by examining, the effect of enhanced UV-B irradiance on the pollen morphology of Sali-v polaris Wahlem. grown in a Field experiment on the Arctic tundra of Svalbard.

  13. Object-Based Mapping of the Circumpolar Taiga-Tundra Ecotone with MODIS Tree Cover

    Science.gov (United States)

    Ranson, K. J.; Montesano, P. M.; Nelson, R.

    2011-01-01

    The circumpolar taiga tundra ecotone was delineated using an image-segmentation-based mapping approach with multi-annual MODIS Vegetation Continuous Fields (VCF) tree cover data. Circumpolar tree canopy cover (TCC) throughout the ecotone was derived by averaging MODIS VCF data from 2000 to 2005 and adjusting the averaged values using linear equations relating MODIS TCC to Quickbird-derived tree cover estimates. The adjustment helped mitigate VCF's overestimation of tree cover in lightly forested regions. An image segmentation procedure was used to group pixels representing similar tree cover into polygonal features (segmentation objects) that form the map of the transition zone. Each polygon represents an area much larger than the 500 m MODIS pixel and characterizes the patterns of sparse forest patches on a regional scale. Those polygons near the boreal/tundra interface with either (1) mean adjusted TCC values from5 to 20%, or (2) mean adjusted TCC values greater than 5% but with a standard deviation less than 5% were used to identify the ecotone. Comparisons of the adjusted average tree cover data were made with (1) two existing tree line definitions aggregated for each 1 degree longitudinal interval in North America and Eurasia, (2) Landsat-derived Canadian proportion of forest cover for Canada, and (3) with canopy cover estimates extracted from airborne profiling lidar data that transected 1238 of the TCC polygons. The adjusted TCC from MODIS VCF shows, on average, less than 12% TCC for all but one regional zone at the intersection with independently delineated tree lines. Adjusted values track closely with Canadian proportion of forest cover data in areas of low tree cover. A comparison of the 1238 TCC polygons with profiling lidar measurements yielded an overall accuracy of 67.7%.

  14. Implications of a lightning-rich tundra biome for permafrost carbon and vegetation dynamics

    Science.gov (United States)

    Chen, Y.; Veraverbeke, S.; Randerson, J. T.

    2017-12-01

    Lightning is a major ignition source of wildfires in circumpolar boreal forests but rarely occurs in arctic tundra. While theoretical and empirical work suggests that climate change will increase lightning strikes in temperate regions, much less is known about future changes in lightning across terrestrial ecosystems at high northern latitudes. Here we analyzed the spatial and temporal patterns of lightning flash rate (FR) from the satellite observations and surface detection networks. Regression models between the observed FR from the Optical Transient Detector on the MicroLab-1 satellite (later renamed OV-1) and meteorological parameters, including surface temperature (T), convective available potential energy (CAPE), and convective precipitation (CP) from ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-interim reanalysis, were established and assessed. We found that FR had significant linear correlations with CAPE and CP, and a strong non-linear relationship with T. The statistical model based on T and CP can reproduce most of the spatial and temporal variability in FR in the circumpolar region. By using the regression model and meteorological predictions from 24 earth system models in the Coupled Model Intercomparison Project Phase 5 (CMIP5), we estimated the spatial distribution of FR by the end of the 21st century. Due to increases in surface temperature and convection, modeled FR shows substantial increase in northern biomes, including a 338% change in arctic tundra and a 185% change in regions with permafrost soil carbon reservoirs. These changes highlight a new mechanism by which permafrost carbon is vulnerable to the sustained impacts of climate warming. Increased fire in a warmer and lightning-rich future near the treeline has the potential to accelerate the northward migration of trees, which may further enhance warming and the abundance of lightning strikes.

  15. On the influence of the tundra on the EnEV

    International Nuclear Information System (INIS)

    Genath, B.

    2004-01-01

    This extensive article discusses the European General Energy-Efficiency Guidelines for Buildings that are to be implemented in national legislation by 2006. This extensive article looks at questions concerning the implementation of these guidelines, which not only limit the amount of primary energy used for heating, but also that used for air-conditioning and lighting. The new regulations are compared with the existing German EnEV energy-efficiency regulations. The advantages and the weak points of the latter are discussed. Several special cases are quoted and improvements are suggested, including the adoption of the best part-implementations from existing national regulations. The interdisciplinary approach necessary is discussed. Also the effects of the EU-EnEV on emissions trading is looked at. The situation concerning CO 2 and global warming in Russia is examined in the light of emissions-trading efforts - and even the climatic pros and cons of letting the permafrost of the tundra melt are discussed

  16. What Does Matter?: Idols and Icons in the Nenets Tundra

    Directory of Open Access Journals (Sweden)

    Laur Vallikivi

    2011-08-01

    Full Text Available This paper examines a mission encounter in the Nenets reindeer herders’ tundra. In post-Soviet Arctic Russia, Pentecostal and Baptist missionaries of Russian and Ukrainian origin have been fighting against idolatry and trying to persuade the Nenets to burn their sacred images or khekhe’’. They claim that among the indigenous Siberians idolatry exists in its quintessential or prototypical form, as it is described in the Bible. I shall suggest that this encounter takes place in a gap, in which the Nenets and Protestant have different understandings of language and materiality. Missionaries rely simultaneously on the ‘modern’ ideology of signification and the ‘non-modern’ magic of the material. They argue that idols, which are ‘nothing’ according to the scriptures, dangerously bind the ‘pagans’’ minds. For reindeer herders, for whom sacred items occupy an important place in the family wellbeing, the main issue is how to sever the link with the spirits without doing any damage.

  17. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model

    Science.gov (United States)

    Zhang, Wenxin; Miller, Paul A.; Smith, Benjamin; Wania, Rita; Koenigk, Torben; Döscher, Ralf

    2013-09-01

    One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model-downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961-1990) agreed well with a composite map of actual arctic vegetation. In the future (2051-2080), a poleward advance of the forest-tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH4, may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux.

  18. Lead poisoning in whooper and tundra swans.

    Science.gov (United States)

    Nakade, Tetsuya; Tomura, Yoshihiro; Jin, Kazuo; Taniyama, Hiroyuki; Yamamoto, Mutsuki; Kikkawa, Aya; Miyagi, Kunitaro; Uchida, Eiji; Asakawa, Mitsuhiko; Mukai, Takeshi; Shirasawa, Masahiko; Yamaguchi, Mamoru

    2005-01-01

    Six weak whooper swans (Cygnus cygnus) and two weak tundra swans (Cygnus columbianus) were found at Swamp Miyajima (Hokkaido, Japan) in May 1998. Anorexia, depression, green watery feces, pale conjunctiva, and anemia were observed. Radiographs showed from six to 38 suspected lead pellets in the gizzard. Blood lead concentrations were 2.5-6.7 microg/g (mean+/-SD=4.6+/-1.14 microg/g) on day 1. After blood collection, the birds were treated with calcium disodium ethylenediaminetetraacetate (CaEDTA) given intravenously and force fed. Despite treatment, seven birds died the next day. Green, bile-stained livers and pale or green kidneys were observed on necropsy. Microscopically, bile pigment was widespread in the liver and acid-fast intranuclear inclusion bodies were observed in renal tubular epithelium. Lead concentrations in livers and kidneys were 14.0-30.4 microg/g and 30.2-122 microg/g wet weight, respectively. Only one bird survived and this whooper swan continued to be treated with CaEDTA and activated charcoal. No lead shot was observed in the proventriculus and gizzard by radiography on day 64 and the blood lead concentration decreased from 2.9 microg/g to 0.09 microg/g during that same period. After 4 mo of rehabilitation, the whooper swan was returned to the wild. Lead intoxication continues to be a problem at Swamp Miyajima.

  19. Soil bacterial community and functional shifts in response to altered snowpack in moist acidic tundra of northern Alaska

    Science.gov (United States)

    Ricketts, Michael P.; Poretsky, Rachel S.; Welker, Jeffrey M.; Gonzalez-Meler, Miquel A.

    2016-09-01

    Soil microbial communities play a central role in the cycling of carbon (C) in Arctic tundra ecosystems, which contain a large portion of the global C pool. Climate change predictions for Arctic regions include increased temperature and precipitation (i.e. more snow), resulting in increased winter soil insulation, increased soil temperature and moisture, and shifting plant community composition. We utilized an 18-year snow fence study site designed to examine the effects of increased winter precipitation on Arctic tundra soil bacterial communities within the context of expected ecosystem response to climate change. Soil was collected from three pre-established treatment zones representing varying degrees of snow accumulation, where deep snow ˜ 100 % and intermediate snow ˜ 50 % increased snowpack relative to the control, and low snow ˜ 25 % decreased snowpack relative to the control. Soil physical properties (temperature, moisture, active layer thaw depth) were measured, and samples were analysed for C concentration, nitrogen (N) concentration, and pH. Soil microbial community DNA was extracted and the 16S rRNA gene was sequenced to reveal phylogenetic community differences between samples and determine how soil bacterial communities might respond (structurally and functionally) to changes in winter precipitation and soil chemistry. We analysed relative abundance changes of the six most abundant phyla (ranging from 82 to 96 % of total detected phyla per sample) and found four (Acidobacteria, Actinobacteria, Verrucomicrobia, and Chloroflexi) responded to deepened snow. All six phyla correlated with at least one of the soil chemical properties (% C, % N, C : N, pH); however, a single predictor was not identified, suggesting that each bacterial phylum responds differently to soil characteristics. Overall, bacterial community structure (beta diversity) was found to be associated with snow accumulation treatment and all soil chemical properties. Bacterial

  20. Shifting the Arctic Carbon Balance: Effects of a Long-Term Fertilization Experiment and Anomalously Warm Temperatures on Net Ecosystem Exchange in the Alaskan Tundra

    Science.gov (United States)

    Ludwig, S.; Natali, S.; Rastetter, E. B.; Shaver, G. R.; Graham, L. M.; Jastrow, J. D.

    2017-12-01

    The arctic is warming at an accelerated rate relative to the globe. Among the predicted consequences of warming temperatures in the arctic are increased gross primary productivity (GPP), ecosystem respiration (ER), and nutrient availability. The net effect of these changes on the carbon (C) cycle and resulting C balance and feedback to climate change remain unclear. Historically the Arctic has been a C sink, but evidence from recent years suggests some regions in the Arctic are becoming C sources. To predict the role of the Arctic in global C cycling, the mechanisms affecting arctic C balances need to be better resolved. We measured net ecosystem exchange (NEE) in a long-term, multi-level, fertilization experiment at Toolik Lake, AK during an anomalously warm summer. We modeled NEE, ER, and GPP using a Bayesian network model. The best-fit model included Q10 temperature functions and linear fertilization functions for both ER and GPP. ER was more strongly affected by temperature and GPP was driven more by fertilization level. As a result, fertilization increased the C sink capacity, but only at moderate and low temperatures. At high temperatures (>28 °C) the NEE modeled for the highest level of fertilization was not significantly different from zero. In contrast, at ambient nutrient levels modeled NEE was significantly below zero (net uptake) until 35 °C, when it becomes neutral. Regardless of the level of fertilization, NEE never decreased with warming. Temperature in low ranges (5-15°C) had no net effect on NEE, whereas NEE began to increase exponentially with temperature after a threshold of 15°C until becoming a net source to the atmosphere at 37°C. Our results indicate that the C sink strength of tundra ecosystems can be increased with small increases in nutrient availability, but that large increase in nutrient availability can switch tundra ecosystems into C sources under warm conditions. Warming temperatures in tundra ecosystems will only decrease C

  1. Large CO 2 and CH 4 emissions from polygonal tundra during spring thaw in northern Alaska: Spring Pulse Emission

    Energy Technology Data Exchange (ETDEWEB)

    Raz-Yaseef, Naama [Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley California USA; Torn, Margaret S. [Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley California USA; Energy and Resources Group, University of California, Berkeley California USA; Wu, Yuxin [Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley California USA; Billesbach, Dave P. [Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln Nebraska USA; Liljedahl, Anna K. [Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks Alaska USA; Kneafsey, Timothy J. [Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley California USA; Romanovsky, Vladimir E. [Geophysical Institute, University of Alaska Fairbanks, Fairbanks Alaska USA; Cook, David R. [Environmental Science Division, Argonne National Laboratory, Lemont Illinois USA; Wullschleger, Stan D. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge Tennessee USA

    2017-01-10

    The few prethaw observations of tundra carbon fluxes suggest that there may be large spring releases, but little Is lmown about the scale and underlying mechanisms of this phenomenon. To address these questions, we combined ecosystem eddy flux measurements from two towers near Barrow, Alaska, with mechanistic soil-core thawing experiment During a 2week period prior to snowmelt In 2014, large fluxes were measured, reducing net summer uptake of CO2 by 46% and adding 6% to cumulative CH4 emissions. Emission pulses were linked to unique rain-on-snow events enhancing soli cracking. Controlled laboratory experiment revealed that as surface Ice thaws, an immediate, large pulse of trapped gases Is emitted. These results suggest that the Arctic C02 and CH4 spring pulse is a delayed release of biogenic gas production from the previous fall and that the pulse can be large enough to offset a significant fraction of the moderate Arctic tundra carbon sink.

  2. Long-Term Drainage Reduces CO2 Uptake and CH4 Emissions in a Siberian Permafrost Ecosystem

    Science.gov (United States)

    Kittler, Fanny; Heimann, Martin; Kolle, Olaf; Zimov, Nikita; Zimov, Sergei; Göckede, Mathias

    2017-12-01

    Permafrost landscapes in northern high latitudes with their massive organic carbon stocks are an important, poorly known, component of the global carbon cycle. However, in light of future Arctic warming, the sustainability of these carbon pools is uncertain. To a large part, this is due to a limited understanding of the carbon cycle processes because of sparse observations in Arctic permafrost ecosystems. Here we present an eddy covariance data set covering more than 3 years of continuous CO2 and CH4 flux observations within a moist tussock tundra ecosystem near Chersky in north-eastern Siberia. Through parallel observations of a disturbed (drained) area and a control area nearby, we aim to evaluate the long-term effects of a persistently lowered water table on the net vertical carbon exchange budgets and the dominating biogeochemical mechanisms. Persistently drier soils trigger systematic shifts in the tundra ecosystem carbon cycle patterns. Both, uptake rates of CO2 and emissions of CH4 decreased. Year-round measurements emphasize the importance of the non-growing season—in particular the "zero-curtain" period in the fall—to the annual budget. Approximately 60% of the CO2 uptake in the growing season is lost during the cold seasons, while CH4 emissions during the non-growing season account for 30% of the annual budget. Year-to-year variability in temperature conditions during the late growing season was identified as the primary control of the interannual variability observed in the CO2 and CH4 fluxes.

  3. Recognition and characterization of networks of water bodies in the Arctic ice-wedge polygonal tundra using high-resolution satellite imagery

    Science.gov (United States)

    Skurikhin, A. N.; Gangodagamage, C.; Rowland, J. C.; Wilson, C. J.

    2013-12-01

    Arctic lowland landscapes underlain by permafrost are often characterized by polygon-like patterns such as ice-wedge polygons outlined by networks of ice wedges and complemented with polygon rims, troughs, shallow ponds and thermokarst lakes. Polygonal patterns and corresponding features are relatively easy to recognize in high spatial resolution satellite imagery by a human, but their automated recognition is challenging due to the variability in their spectral appearance, the irregularity of individual trough spacing and orientation within the patterns, and a lack of unique spectral response attributable to troughs with widths commonly between 1 m and 2 m. Accurate identification of fine scale elements of ice-wedge polygonal tundra is important as their imprecise recognition may bias estimates of water, heat and carbon fluxes in large-scale climate models. Our focus is on the problem of identification of Arctic polygonal tundra fine-scale landscape elements (as small as 1 m - 2 m width). The challenge of the considered problem is that while large water bodies (e.g. lakes and rivers) can be recognized based on spectral response, reliable recognition of troughs is more difficult. Troughs do not have unique spectral signature, their appearance is noisy (edges are not strong), their width is small, and they often form connected networks with ponds and lakes, and thus they have overlapping spectral response with other water bodies and surrounding non-water bodies. We present a semi-automated approach to identify and classify Arctic polygonal tundra landscape components across the range of spatial scales, such as troughs, ponds, river- and lake-like objects, using high spatial resolution satellite imagery. The novelty of the approach lies in: (1) the combined use of segmentation and shape-based classification to identify a broad range of water bodies, including troughs, and (2) the use of high-resolution WorldView-2 satellite imagery (with resolution of 0.6 m) for this

  4. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model

    International Nuclear Information System (INIS)

    Zhang Wenxin; Miller, Paul A; Smith, Benjamin; Wania, Rita; Koenigk, Torben; Döscher, Ralf

    2013-01-01

    One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model–downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961–1990) agreed well with a composite map of actual arctic vegetation. In the future (2051–2080), a poleward advance of the forest–tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH 4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH 4 , may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux. (letter)

  5. The employment of weather satellite imagery in an effort to identify and locate the forest-tundra ecotone in Canada

    Science.gov (United States)

    Aldrich, S. A.; Aldrich, F. T.; Rudd, R. D.

    1969-01-01

    Weather satellite imagery provides the only routinely available orbital imagery depicting the high latitudes. Although resolution is low on this imagery, it is believed that a major natural feature, notably linear in expression, should be mappable on it. The transition zone from forest to tundra, the ecotone, is such a feature. Locational correlation is herein established between a linear signature on the imagery and several ground truth positions of the ecotone in Canada.

  6. Shrub Abundance Mapping in Arctic Tundra with Misr

    Science.gov (United States)

    Duchesne, R.; Chopping, M. J.; Wang, Z.; Schaaf, C.; Tape, K. D.

    2013-12-01

    Over the last 60 years an increase in shrub abundance has been observed in the Arctic tundra in connection with a rapid surface warming trend. Rapid shrub expansion may have consequences in terms of ecosystem structure and function, albedo, and feedbacks to climate; however, its rate is not yet known. The goal of this research effort is thus to map large scale changes in Arctic tundra vegetation by exploiting the structural signal in moderate resolution satellite remote sensing images from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped onto a 250m Albers Conic Equal Area grid. We present here large area shrub mapping supported by reference data collated using extensive field inventory data and high resolution panchromatic imagery. MISR Level 1B2 Terrain radiance scenes from the Terra satellite from 15 June-31 July, 2000 - 2010 were converted to surface bidirectional reflectance factors (BRF) using MISR Toolkit routines and the MISR 1 km LAND product BRFs. The red band data in all available cameras were used to invert the RossThick-LiSparse-Reciprocal BRDF model to retrieve kernel weights, model-fitting RMSE, and Weights of Determination. The reference database was constructed using aerial survey, three field campaigns (field inventory for shrub count, cover, mean radius and height), and high resolution imagery. Tall shrub number, mean crown radius, cover, and mean height estimates were obtained from QuickBird and GeoEye panchromatic image chips using the CANAPI algorithm, and calibrated using field-based estimates, thus extending the database to over eight hundred locations. Tall shrub fractional cover maps for the North Slope of Alaska were constructed using the bootstrap forest machine learning algorithm that exploits the surface information provided by MISR. The reference database was divided into two datasets for training and validation. The model derived used a set of 19 independent variables(the three kernel weights, ratios and interaction terms

  7. Differential Utilization of Carbon Substrates by Bacteria and Fungi in Tundra Soil

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Bååth, Erland

    2009-01-01

    Little is known about the contribution of bacteria and fungi to decomposition of different carbon compounds in arctic soils, which are an important carbon store and possibly vulnerable to climate warming. Soil samples from a subarctic tundra heath were incubated with 13C-labeled glucose, acetic...... at concentrations low enough not to affect the total amount of PLFA. The label of glucose and acetic acid was rapidly incorporated into the PLFA in a pattern largely corresponding to the fatty acid concentration profile, while glycine and especially starch were mainly taken up by bacteria and not fungi, showing......, the allocation decreased over time, indicating use of the storage products, whereas for vanillin incorporation into fungal NLFA increased during the incubation. In addition to providing information on functioning of the microbial communities in an arctic soil, our study showed that the combination of PLFA...

  8. Arctic tundra shrub invasion and soot deposition: Consequences for spring snowmelt and near-surface air temperatures

    Science.gov (United States)

    Strack, John E.; Pielke, Roger A.; Liston, Glen E.

    2007-12-01

    Invasive shrubs and soot pollution both have the potential to alter the surface energy balance and timing of snow melt in the Arctic. Shrubs reduce the amount of snow lost to sublimation on the tundra during the winter leading to a deeper end-of-winter snowpack. The shrubs also enhance the absorption of energy by the snowpack during the melt season by converting incoming solar radiation to longwave radiation and sensible heat. Soot deposition lowers the albedo of the snow, allowing it to more effectively absorb incoming solar radiation and thus melt faster. This study uses the Colorado State University Regional Atmospheric Modeling System version 4.4 (CSU-RAMS 4.4), equipped with an enhanced snow model, to investigate the effects of shrub encroachment and soot deposition on the atmosphere and snowpack in the Kuparuk Basin of Alaska during the May-June melt period. The results of the simulations suggest that a complete invasion of the tundra by shrubs leads to a 2.2°C warming of 3 m air temperatures and a 108 m increase in boundary layer depth during the melt period. The snow-free date also occurred 11 d earlier despite having a larger initial snowpack. The results also show that a decrease in the snow albedo of 0.1, owing to soot pollution, caused the snow-free date to occur 5 d earlier. The soot pollution caused a 1.0°C warming of 3 m air temperatures and a 25 m average deepening of the boundary layer.

  9. Plant community composition and species richness in the High Arctic tundra: from the present to the future

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Normand, Signe; Hui, Francis K.C.

    2017-01-01

    of these conditions is limited due to the scarcity of studies, especially in the High Arctic. 2. We investigated variations in vascular plant community composition and species richness based on 288 plots distributed on three sites along a coast-inland gradient in Northeast Greenland using a stratified random design......1. Arctic plant communities are altered by climate changes. The magnitude of these alterations depends on whether species distributions are determined by macroclimatic conditions, by factors related to local topography, or by biotic interactions. Our current understanding of the relative importance....... We used an information theoretic approach to determine whether variations in species richness were best explained by macroclimate, by factors related to local topography (including soil water) or by plant-plant interactions. Latent variable models were used to explain patterns in plant community...

  10. Parental care in Tundra Swans during the pre-fledgling period

    Science.gov (United States)

    Earnst, Susan L.

    2002-01-01

    Among studies that have quantified the care of precocial young, few have investigated forms of parental care other than vigilance. During the pre-fledging period, Tundra Swan (Cygnus columbianus columbianus) parents provided simultaneous biparental care by foraging near each other and their cygnets, and cygnets spent more time foraging during bouts in which both parents were foraging nearby than when only one parent was foraging nearby. Parents spent nearly twice as much foraging time on land than did non-parents, a habitat in which cygnets foraged more intensely than parents (i.e., spent more time foraging during foraging bouts) and could graze on protein-rich sedges rather than use more difficult below-water foraging methods. Parents also spent more than twice as much time being vigilant and more than three times as much time defending their territory than non-parents, behaviors that presumably benefited cygents by decreasing predation risk and indirect foraging competition, respectively. Parents therefore incurred the costs of foraging less intensely during foraging bouts, spending more time interacting, more time in vigilance, and less time sleeping/preening than non-parents.

  11. Nitrogen kinetics in aquatic plants in arctic Alaska

    International Nuclear Information System (INIS)

    McRoy, C.P.; Alexander, V.

    1975-01-01

    The kinetics of nitrogen in terms of ammonia uptake was measured for Carex aquatilis in arctic tundra ponds using 15 N tracer techniques. Nitrogen content of the leaves and primary productivity were measured throughout a growing season. The maximum uptake velocity for ammonia was 2.75 x 10 -2 % N/g dry weight per h with a Ksub(t) of 8.4-12.5 μgatoms/l. A second estimate of nitrogen uptake was made from the increase in nitrogen content throughout the season and from this a rate of 1.85 x 10 -2 % N/g dry weight per day was obtained for Carex aquatilis and 3.6 x 10 -2 % N/g dry weight per day for Arctophylla fulva. The total nitrogen concentration in the leaves was closely related to productivity, possible providing a new approach to productivity measurements for emergent vascular plants. Emergent vascular plants absorb ammonia across and translocate it to all portions of the plant. The ecological significance of this is considerable, since in many waters inorganic nitrogen content of sediment is much higher than that of the water surrounding the leaves and stems, and can provide a source of nitrogen

  12. Are low altitude alpine tundra ecosystems under threat? A case study from the Parc National de la Gaspésie, Québec

    International Nuclear Information System (INIS)

    Dumais, Catherine; Ropars, Pascale; Denis, Marie-Pier; Dufour-Tremblay, Geneviève; Boudreau, Stéphane

    2014-01-01

    According to the 2007 IPCC report, the alpine tundra ecosystems found on low mountains of the northern hemisphere are amongst the most threatened by climate change. A treeline advance or a significant erect shrub expansion could result in increased competition for the arctic-alpine species usually found on mountaintops and eventually lead to their local extinction. The objectives of our study were to identify recent changes in the cover and growth of erect woody vegetation in the alpine tundra of Mont de la Passe, in the Parc National de la Gaspésie (Québec, Canada). The comparison of two orthorectified aerial photos revealed no significant shift of the treeline between 1975 and 2004. During the same period however, shrub species cover increased from 20.2% to 30.4% in the lower alpine zone. Dendrochronological analyses conducted on Betula glandulosa Michx. sampled at three different positions along an altitudinal gradient (low, intermediate and high alpine zone) revealed that the climatic determinants of B. glandulosa radial growth become more complex with increasing altitude. In the lower alpine zone, B. glandulosa radial growth is only significantly associated positively to July temperature. In the intermediate alpine zone, radial growth is associated positively to July temperature but negatively to March temperature. In the high alpine zone, radial growth is positively associated to January, July and August temperature but negatively to March temperature. The positive association between summer temperatures and radial growth suggests that B. glandulosa could potentially benefit from warmer temperatures, a phenomenon that could lead to an increase in its cover over the next few decades. Although alpine tundra vegetation is not threatened in the short-term in the Parc National de la Gaspésie, erect shrub cover, especially B. glandulosa, could likely increase in the near future, threatening the local arctic-alpine flora. (letter)

  13. Consequences of artic ground squirrels on soil carbon loss from Siberian tundra

    Science.gov (United States)

    Golden, N. A.; Natali, S.; Zimov, N.

    2014-12-01

    A large pool of organic carbon (C) has been accumulating in the Arctic for thousands of years. Much of this C has been frozen in permafrost and unavailable for microbial decomposition. As the climate warms and permafrost thaws, the fate of this large C pool will be driven not only by climatic conditions, but also by ecosystem changes brought about by arctic animal populations. In this project we studied arctic ground squirrels (Spermophilus parryii), which are widely-distributed throughout the Arctic. These social mammals create subterranean burrows that mix soil layers, increase aeration, alter soil moisture and temperature, and redistribute soil nutrients, all of which may impact microbial decomposition. We examined the effects of arctic ground squirrel activity on soil C mineralization in dry heath tundra underlain by continuous permafrost in the Kolyma River watershed in northeast Siberia, Russia. Vegetation cover was greatly reduced on the ground squirrel burrows (80% of ground un-vegetated), compared to undisturbed sites (35% of ground un-vegetated). Soils from ground squirrel burrows were also significantly dryer and warmer. To examine effects of ground squirrel activity on microbial respiration, we conducted an 8-day incubation of soil fromburrows and from adjacent undisturbed tundra. In addition, we assessed the impact of nutrient addition by including treatments with low and high levels of nitrogen addition. Microbial respiration (per gram soil) was three-fold higher in incubated soils from the undisturbed sites compared to soils collected from the burrows. The lower rates of respiration from the disturbed soils may have been a result of lower carbon quality or low soil moisture. High nitrogen addition significantly increased respiration in the undisturbed soils, but not in the disturbed burrow soils, which suggests that microbial respiration in the burrow soils was not primarily limited by nitrogen. These results demonstrate the importance of wildlife

  14. Evidence for stagnation of the Harvard sublobe (Lake Michigan lobe) in Northeastern Illinois, U.S.A., from 24 000 to 17 600 BP and subsequent tundra-like ice-marginal paleoenvironments from 17 600 to 15 700 BP

    Science.gov (United States)

    Curry, B. Brandon; Yansa, C.H.

    2004-01-01

    Glacial deposits of the last glaciation associated with the Harvard sublobe (Lake Michigan lobe) in northeastern Illinois, U.S.A., occur between sediment with dateable organics. The lower organics include fragments of Picea sp. as young as 24 000 ?? 270 BP. The supraglacial organics occur sparsely in laminated silt and fine sand in landforms that are positioned relatively high on the landscape, such as deposits from ice-walled lakes. These terrestrial organics yield ages that are 2500 to 1300 14C years older than organics at the base of sediment successions in nearby kettle basins. Basal 14C ages from four upland sites range from 17 610 ?? 270 to 16 120 ?? 80 BP. Our revised time-distance diagram of the Harvard sublobe now reflects a period of stagnation from 24 000 to about 17 600 BP. The supraglacial lacustrine silt yielded plant macrofossil assemblages of primarily tundra plants, including Salix herbacea and Dryas integrifolia. These plants likely grew in supraglacial and ice-marginal environments. The ostracode fauna include Cytherissa lacustris and Limnocythere friabilis. Geomorphic relations and ostracode ecology indicate that more than 17 m of ice buttressed some of the supraglacial lakes.

  15. Biological soil crusts exhibit a dynamic response to seasonal rain and release from grazing with implications for soil stability

    Science.gov (United States)

    Jimenez, Aguilar A.; Huber-Sannwald, E.; Belnap, J.; Smart, D.R.; Arredondo, Moreno J.T.

    2009-01-01

    In Northern Mexico, long-term grazing has substantially degraded semiarid landscapes. In semiarid systems, ecological and hydrological processes are strongly coupled by patchy plant distribution and biological soil crust (BSC) cover in plant-free interspaces. In this study, we asked: 1) how responsive are BSC cover/composition to a drying/wetting cycle and two-year grazing removal, and 2) what are the implications for soil erosion? We characterized BSC morphotypes and their influence on soil stability under grazed/non-grazed conditions during a dry and wet season. Light- and dark-colored cyanobacteria were dominant at the plant tussock and community level. Cover changes in these two groups differed after a rainy season and in response to grazing removal. Lichens with continuous thalli were more vulnerable to grazing than those with semi-continuous/discontinuous thalli after the dry season. Microsites around tussocks facilitated BSC colonization compared to interspaces. Lichen and cyanobacteria morphotypes differentially enhanced resistance to soil erosion; consequently, surface soil stability depends on the spatial distribution of BSC morphotypes, suggesting soil stability may be as dynamic as changes in the type of BSC cover. Longer-term spatially detailed studies are necessary to elicit spatiotemporal dynamics of BSC communities and their functional role in biotically and abiotically variable environments. ?? 2009 Elsevier Ltd.

  16. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach

    Science.gov (United States)

    Martin, Andrew C.; Jeffers, Elizabeth S.; Petrokofsky, Gillian; Myers-Smith, Isla; Macias-Fauria, Marc

    2017-08-01

    Woody shrubs have increased in biomass and expanded into new areas throughout the Pan-Arctic tundra biome in recent decades, which has been linked to a biome-wide observed increase in productivity. Experimental, observational, and socio-ecological research suggests that air temperature—and to a lesser degree precipitation—trends have been the predominant drivers of this change. However, a progressive decoupling of these drivers from Arctic vegetation productivity has been reported, and since 2010, vegetation productivity has also been declining. We created a protocol to (a) identify the suite of controls that may be operating on shrub growth and expansion, and (b) characterise the evidence base for controls on Arctic shrub growth and expansion. We found evidence for a suite of 23 proximal controls that operate directly on shrub growth and expansion; the evidence base focused predominantly on just four controls (air temperature, soil moisture, herbivory, and snow dynamics). 65% of evidence was generated in the warmest tundra climes, while 24% was from only one of 28 floristic sectors. Temporal limitations beyond 10 years existed for most controls, while the use of space-for-time approaches was high, with 14% of the evidence derived via experimental approaches. The findings suggest the current evidence base is not sufficiently robust or comprehensive at present to answer key questions of Pan-Arctic shrub change. We suggest future directions that could strengthen the evidence, and lead to an understanding of the key mechanisms driving changes in Arctic shrub environments.

  17. Conifer seedling recruitment across a gradient from forest to alpine tundra: effects of species, provenance, and site

    Science.gov (United States)

    Castanha, C.; Torn, M.S.; Germino, M.J.; Weibel, Bettina; Kueppers, L.M.

    2013-01-01

    Background: Seedling germination and survival is a critical control on forest ecosystem boundaries, such as at the alpine–treeline ecotone. In addition, while it is known that species respond individualistically to the same suite of environmental drivers, the potential additional effect of local adaptation on seedling success has not been evaluated. Aims: To determine whether local adaptation may influence the position and movement of forest ecosystem boundaries, we quantified conifer seedling recruitment in common gardens across a subalpine forest to alpine tundra gradient at Niwot Ridge, Colorado, USA. Methods: We studied Pinus flexilis and Picea engelmannii grown from seed collected locally at High (3400 m a.s.l.) and Low (3060 m a.s.l.) elevations. We monitored emergence and survival of seeds sown directly into plots and survival of seedlings germinated indoors and transplanted after snowmelt. Results: Emergence and survival through the first growing season was greater for P. flexilis than P. engelmannii and for Low compared with High provenances. Yet survival through the second growing season was similar for both species and provenances. Seedling emergence and survival tended to be greatest in the subalpine forest and lowest in the alpine tundra. Survival was greater for transplants than for field-germinated seedlings. Conclusions: These results suggest that survival through the first few weeks is critical to the establishment of natural germinants. In addition, even small distances between seed sources can have a significant effect on early demographic performance – a factor that has rarely been considered in previous studies of tree recruitment and species range shifts.

  18. Year-round Regional CO2 Fluxes from Boreal and Tundra Ecosystems in Alaska

    Science.gov (United States)

    Commane, R.; Lindaas, J.; Benmergui, J. S.; Luus, K. A.; Chang, R. Y. W.; Daube, B. C.; Euskirchen, E. S.; Henderson, J.; Karion, A.; Miller, J. B.; Miller, S. M.; Parazoo, N.; Randerson, J. T.; Sweeney, C.; Tans, P. P.; Thoning, K. W.; Veraverbeke, S.; Miller, C. E.; Wofsy, S. C.

    2016-12-01

    High-latitude ecosystems could release large amounts of carbon dioxide (CO2) to the atmosphere in a warmer climate. We derive temporally and spatially resolved year-round CO2 fluxes in Alaska from a synthesis of airborne and tower CO2 observations in 2012-2014. We find that tundra ecosystems were net sources of atmospheric CO2. We discuss these flux estimates in the context of long-term CO2 measurements at Barrow, AK, to asses the long term trend in carbon fluxes in the Arctic. Many Earth System Models incorrectly simulate net carbon uptake in Alaska presently. Our results imply that annual net emission of CO2 to the atmosphere may have increased markedly in this region of the Arctic in response to warming climate, supporting the view that climate-carbon feedback is strongly positive in the high Arctic.

  19. Complex effects of mammalian grazing on extramatrical mycelial biomass in the Scandes forest-tundra ecotone.

    Science.gov (United States)

    Vowles, Tage; Lindwall, Frida; Ekblad, Alf; Bahram, Mohammad; Furneaux, Brendan R; Ryberg, Martin; Björk, Robert G

    2018-01-01

    Mycorrhizal associations are widespread in high-latitude ecosystems and are potentially of great importance for global carbon dynamics. Although large herbivores play a key part in shaping subarctic plant communities, their impact on mycorrhizal dynamics is largely unknown. We measured extramatrical mycelial (EMM) biomass during one growing season in 16-year-old herbivore exclosures and unenclosed control plots (ambient), at three mountain birch forests and two shrub heath sites, in the Scandes forest-tundra ecotone. We also used high-throughput amplicon sequencing for taxonomic identification to investigate differences in fungal species composition. At the birch forest sites, EMM biomass was significantly higher in exclosures (1.36 ± 0.43 g C/m 2 ) than in ambient conditions (0.66 ± 0.17 g C/m 2 ) and was positively influenced by soil thawing degree-days. At the shrub heath sites, there was no significant effect on EMM biomass (exclosures: 0.72 ± 0.09 g C/m 2 ; ambient plots: 1.43 ± 0.94). However, EMM biomass was negatively related to Betula nana abundance, which was greater in exclosures, suggesting that grazing affected EMM biomass positively. We found no significant treatment effects on fungal diversity but the most abundant ectomycorrhizal lineage/cortinarius, showed a near-significant positive effect of herbivore exclusion ( p  = .08), indicating that herbivory also affects fungal community composition. These results suggest that herbivory can influence fungal biomass in highly context-dependent ways in subarctic ecosystems. Considering the importance of root-associated fungi for ecosystem carbon balance, these findings could have far-reaching implications.

  20. Annual survival rates of adult and immature eastern population tundra swans

    Science.gov (United States)

    Nichols, J.D.; Bart, J.; Limpert, R.J.; Sladen, William J. L.; Hines, J.E.

    1992-01-01

    Tundra swans (Cygnus columbianus ) of the eastern population were neckbanded in Maryland, North Carolina, and Alaska from 1966 through 1990. These swans were resighted and recaptured during autumn, winter, and spring, 1966-1990. Although the original motivation for this study involved swan movements, we wanted to use the resulting data to test hypotheses about sources of variation in swan survival rates. Recaptures of legbanded and neckbanded swans permitted us to estimate neckband loss rates, which were found to vary with age and sex of swans, and number of years since initial application. Estimates of annual neckband retention rate ranged from about 0.50 for adult male swans greater than or equal to 2 years after initial neckbanding to > 0.96 for immature swans and adult females the first year following neckbanding. This variation in neckband loss rates prevented the simple correction of survival estimates to account for such loss. Consequently, we developed a series of multinomial models parameterized with survival, sighting, and neckband retention probabilities for use with the recapture and resighting data.

  1. Microhabitat amelioration and reduced competition among understorey plants as drivers of facilitation across environmental gradients: towards a unifying framework

    Science.gov (United States)

    Soliveres, Santiago; Eldridge, David J.; Maestre, Fernando T.; Bowker, Matthew A.; Tighe, Matthew; Escudero, Adrián

    2015-01-01

    Studies of facilitative interactions as drivers of plant richness along environmental gradients often assume the existence of an overarching stress gradient equally affecting the performance of all the species in a given community. However, co-existing species differ in their ecophysiological adaptations, and do not experience the same stress level under particular environmental conditions. Moreover, these studies assume a unimodal richness-biomass curve, which is not as general as previously thought. We ignored these assumptions to assess changes in plant-plant interactions, and their effect on local species richness, across environmental gradients in semi-arid areas of Spain and Australia. We aimed to understand the relative importance of direct (microhabitat amelioration) and indirect (changes in the competitive relationships among the understorey species: niche segregation, competitive exclusion or intransitivity) mechanisms that might underlie the effects of nurse plants on local species richness. By jointly studying these direct and indirect mechanisms using a unifying framework, we were able to see how our nurse plants (trees, shrubs and tussock grasses) not only increased local richness by expanding the niche of neighbouring species, but also by increasing niche segregation among them, though the latter was not important in all cases. The outcome of the competition-facilitation continuum changed depending on the study area, likely because the different types of stress gradient considered. When driven by both rainfall and temperature, or rainfall alone, the community-wide importance of nurse plants remained constant (Spanish sites), or showed a unimodal relationship along the gradient (Australian sites). This study expands our understanding of the relative roles of plant-plant interactions and environmental conditions as drivers of local species richness in semi-arid environments. These results can also be used to refine predictions about the response of

  2. Microhabitat amelioration and reduced competition among understorey plants as drivers of facilitation across environmental gradients: towards a unifying framework.

    Science.gov (United States)

    Soliveres, Santiago; Eldridge, David J; Maestre, Fernando T; Bowker, Matthew A; Tighe, Matthew; Escudero, Adrián

    2011-11-20

    Studies of facilitative interactions as drivers of plant richness along environmental gradients often assume the existence of an overarching stress gradient equally affecting the performance of all the species in a given community. However, co-existing species differ in their ecophysiological adaptations, and do not experience the same stress level under particular environmental conditions. Moreover, these studies assume a unimodal richness-biomass curve, which is not as general as previously thought. We ignored these assumptions to assess changes in plant-plant interactions, and their effect on local species richness, across environmental gradients in semi-arid areas of Spain and Australia. We aimed to understand the relative importance of direct (microhabitat amelioration) and indirect (changes in the competitive relationships among the understorey species: niche segregation, competitive exclusion or intransitivity) mechanisms that might underlie the effects of nurse plants on local species richness. By jointly studying these direct and indirect mechanisms using a unifying framework, we were able to see how our nurse plants (trees, shrubs and tussock grasses) not only increased local richness by expanding the niche of neighbouring species, but also by increasing niche segregation among them, though the latter was not important in all cases. The outcome of the competition-facilitation continuum changed depending on the study area, likely because the different types of stress gradient considered. When driven by both rainfall and temperature, or rainfall alone, the community-wide importance of nurse plants remained constant (Spanish sites), or showed a unimodal relationship along the gradient (Australian sites). This study expands our understanding of the relative roles of plant-plant interactions and environmental conditions as drivers of local species richness in semi-arid environments. These results can also be used to refine predictions about the response of

  3. Teasing apart plant community responses to N enrichment: the roles of resource limitation, competition and soil microbes.

    Science.gov (United States)

    Farrer, Emily C; Suding, Katharine N

    2016-10-01

    Although ecologists have documented the effects of nitrogen enrichment on productivity, diversity and species composition, we know little about the relative importance of the mechanisms driving these effects. We propose that distinct aspects of environmental change associated with N enrichment (resource limitation, asymmetric competition, and interactions with soil microbes) drive different aspects of plant response. We test this in greenhouse mesocosms, experimentally manipulating each factor across three ecosystems: tallgrass prairie, alpine tundra and desert grassland. We found that resource limitation controlled productivity responses to N enrichment in all systems. Asymmetric competition was responsible for diversity declines in two systems. Plant community composition was impacted by both asymmetric competition and altered soil microbes, with some contributions from resource limitation. Results suggest there may be generality in the mechanisms of plant community change with N enrichment. Understanding these links can help us better predict N response across a wide range of ecosystems. © 2016 John Wiley & Sons Ltd/CNRS.

  4. Multi-decadal changes in tundra environments and ecosystems: Synthesis of the International Polar Year-Back to the Future Project (IPY-BTF)

    DEFF Research Database (Denmark)

    Callaghan, Terry V.; Tweedie, Craig E.; Åkerman, Jonas

    2011-01-01

    , and to dramatic increases in shrub and tree density on Herschel Island, and in sub-arctic Sweden. The population of geese tripled at one site in northeast Greenland where biomass in non-grazed plots doubled. A model parameterized using results from a BTF study forecasts substantial declines in all snowbeds...... and increases in shrub tundra on Niwot Ridge, Colorado over the next century. In general, results support and provide improved capacities for validating experimental manipulation, remote sensing, and modeling studies....

  5. Tundra water budget and implications of precipitation underestimation.

    Science.gov (United States)

    Liljedahl, Anna K; Hinzman, Larry D; Kane, Douglas L; Oechel, Walter C; Tweedie, Craig E; Zona, Donatella

    2017-08-01

    Difficulties in obtaining accurate precipitation measurements have limited meaningful hydrologic assessment for over a century due to performance challenges of conventional snowfall and rainfall gauges in windy environments. Here, we compare snowfall observations and bias adjusted snowfall to end-of-winter snow accumulation measurements on the ground for 16 years (1999-2014) and assess the implication of precipitation underestimation on the water balance for a low-gradient tundra wetland near Utqiagvik (formerly Barrow), Alaska (2007-2009). In agreement with other studies, and not accounting for sublimation, conventional snowfall gauges captured 23-56% of end-of-winter snow accumulation. Once snowfall and rainfall are bias adjusted, long-term annual precipitation estimates more than double (from 123 to 274 mm), highlighting the risk of studies using conventional or unadjusted precipitation that dramatically under-represent water balance components. Applying conventional precipitation information to the water balance analysis produced consistent storage deficits (79 to 152 mm) that were all larger than the largest actual deficit (75 mm), which was observed in the unusually low rainfall summer of 2007. Year-to-year variability in adjusted rainfall (±33 mm) was larger than evapotranspiration (±13 mm). Measured interannual variability in partitioning of snow into runoff (29% in 2008 to 68% in 2009) in years with similar end-of-winter snow accumulation (180 and 164 mm, respectively) highlights the importance of the previous summer's rainfall (25 and 60 mm, respectively) on spring runoff production. Incorrect representation of precipitation can therefore have major implications for Arctic water budget descriptions that in turn can alter estimates of carbon and energy fluxes.

  6. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems.

    Science.gov (United States)

    Hicks Pries, Caitlin E; van Logtestijn, Richard S P; Schuur, Edward A G; Natali, Susan M; Cornelissen, Johannes H C; Aerts, Rien; Dorrepaal, Ellen

    2015-12-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (permafrost ecosystems. © 2015 John Wiley & Sons Ltd.

  7. [Wood transformation in dead-standing trees in the forest-tundra of Central Siberia].

    Science.gov (United States)

    Mukhortova, L V; Kirdianov, A V; Myglan, V S; Guggenberger, G

    2009-01-01

    Changes in the composition of wood organic matter in dead-standing spruce and larch trees depending on the period after their death have been studied in the north of Central Siberia. The period after tree death has been estimated by means of cross-dating. The results show that changes in the composition of wood organic matter in 63% of cases are contingent on tree species. Wood decomposition in dead-standing trees is accompanied by an increase in the contents of alkali-soluble organic compounds. Lignin oxidation in larch begins approximately 80 years after tree death, whereas its transformation in spruce begins not earlier than after 100 years. In the forest-tundra of Central Siberia, the rate of wood organic matter transformation in dead-standing trees is one to two orders of magnitude lower than in fallen wood, which accounts for their role as a long-term store of carbon and mineral elements in these ecosystems.

  8. Methane dynamics in Northern Wetlands: Significance of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Joabsson, Anna

    2001-09-01

    The studies presented illustrate several different aspects of the impact of vascular plants on methane emissions from northern natural wetlands. The subject has been approached on different scales, ranging from the study of microbial substrates in the vicinity of a single plant root, to an attempt to extrapolate some of the results to the entire northern hemisphere north of 50 meridian. The main overall conclusions from the papers are that vascular plants affect net methane emissions 1) by offering an efficient route of transport to the atmosphere so that methane oxidation in oxic surface soils is avoided, and 2) by being sources of methanogenic substrate. The degree to which vascular wetland plants affect methane emissions seems to be dependent on species-specific differences in both the capacity to act as gas conduits and the exudation of labile carbon compounds to the soil. An intimate coupling between vascular plant production and methane emission was found in an Arctic tundra wetland, although other environmental variables (water table, temperature) also contributed significantly to the explained variation in methane exchange. Studies of vascular plant extidation of organic acids suggest that the available pool of methanogenic substrates is both qualitatively and quantitatively correlated to vascular plant production (photosynthetic rate). On global scales, vascular plant production as a single factor does not seem to be sufficient to explain the majority of variation in methane flux patterns. Based on comparable experiments at five different sites in the northwestern Eurasian and Greenlandic North, we suggest that mean seasonal soil temperature is the best predictor of methane exchange on broad spatial and temporal scales.

  9. Climate change in Eastern Taimyr over the last 80 years and the warming impact on biodiversity and ecosystem processes in its territory

    Directory of Open Access Journals (Sweden)

    Elena B. Pospelova

    2017-10-01

    Full Text Available The analysis of long-term changes of mean annual temperatures and the active temperature sum over 80 years was carried out using data of the Khatanga meteorological station. Since the 1990s, an essential warming was observed, especially after 2000. The warming influence on vegetation takes place immediately (the ecosystem composition changes due to the degradation of cryogenic processes as well as directly by increasing the time of the vegetation period and the total amount of heat on plants. As a result, in the last few years, the lead of phenological phenomena terms is observed – the time of foliage expansion and efflorescence of plants-indicators, geese arriving, mosquitos appearance, ice thawing. By long term monitoring data, the moving of some north-taiga plant species to forest tundra and tundra is observed, as well as their establishing in vegetation communities. However, at this moment, the character of the vegetation is stable. The occurrence of taiga animals is increased in tundra and forest tundra. An active revival of larch is observed in forest tundra and north sparse forests. A removing forest border to the north is not observed, but in the southern mountains of Taimyr its replacing on higher levels could be seen. A decreasing summer precipitation quantity increases the possibility of forest fires, spring and bog drying. It influences negatively on bog flora and near-water fauna. It is possible, that the main reason of the local climate change at the East of Taimyr is less connected to the global planet change, but much more to pulsations of the strong Siberian anticyclone.

  10. A survey of beetles (Coleoptera from the tundra surrounding the Nunalleq archaeological site, Quinhagak, southwestern Alaska

    Directory of Open Access Journals (Sweden)

    Véronique Forbes

    2018-03-01

    Full Text Available This paper presents the results of a survey of beetles conducted in the vicinity of the archaeological site of Nunalleq, a pre-contact (16th-17th century AD indigenous forager settlement located near the modern Yup’ik village of Quinhagak, in the Yukon-Kuskokwim delta, southwestern Alaska. Records and habitat data are reported for 74 beetle taxa collected in tundra, riparian, aquatic and anthropogenic environments from a region of Alaska that has been poorly studied by entomologists. This includes the first mainland Alaskan record for the byrrhid Simplocaria metallica (Sturm. Beyond improving our knowledge of the local beetle fauna’s diversity and ecology, this survey provides the basis for comparisons between modern and sub-fossil beetle assemblages from Nunalleq and Quinhagak.

  11. Sea Ice, Hydrocarbon Extraction, Rain-on-Snow and Tundra Reindeer Nomadism in Arctic Russia

    Science.gov (United States)

    Forbes, B. C.; Kumpula, T.; Meschtyb, N.; Laptander, R.; Macias-Fauria, M.; Zetterberg, P.; Verdonen, M.

    2015-12-01

    It is assumed that retreating sea ice in the Eurasian Arctic will accelerate hydrocarbon development and associated tanker traffic along Russia's Northern Sea Route. However, oil and gas extraction along the Kara and Barents Sea coasts will likely keep developing rapidly regardless of whether the Northwest Eurasian climate continues to warm. Less certain are the real and potential linkages to regional biota and social-ecological systems. Reindeer nomadism continues to be a vitally important livelihood for indigenous tundra Nenets and their large herds of semi-domestic reindeer. Warming summer air temperatures over the NW Russian Arctic have been linked to increases in tundra productivity, longer growing seasons, and accelerated growth of tall deciduous shrubs. These temperature increases have, in turn, been linked to more frequent and sustained summer high-pressure systems over West Siberia, but not to sea ice retreat. At the same time, winters have been warming and rain-on-snow (ROS) events have become more frequent and intense, leading to record-breaking winter and spring mortality of reindeer. What is driving this increase in ROS frequency and intensity is not clear. Recent modelling and simulation have found statistically significant near-surface atmospheric warming and precipitation increases during autumn and winter over Arctic coastal lands in proximity to regions of sea-ice loss. During the winter of 2013-14 an extensive and lasting ROS event led to the starvation of 61,000 reindeer out of a population of ca. 300,000 animals on Yamal Peninsula, West Siberia. Historically, this is the region's largest recorded mortality episode. More than a year later, participatory fieldwork with nomadic herders during spring-summer 2015 revealed that the ecological and socio-economic impacts from this extreme event will unfold for years to come. There is an urgent need to understand whether and how ongoing Barents and Kara Sea ice retreat may affect the region's ancient

  12. Patterned-ground facilitates shrub expansion in Low Arctic tundra

    International Nuclear Information System (INIS)

    Frost, Gerald V; Epstein, Howard E; Walker, Donald A; Matyshak, Georgiy; Ermokhina, Ksenia

    2013-01-01

    Recent expansion of tall shrubs in Low Arctic tundra is widely seen as a response to climate warming, but shrubification is not occurring as a simple function of regional climate trends. We show that establishment of tall alder (Alnus) is strongly facilitated by small, widely distributed cryogenic disturbances associated with patterned-ground landscapes. We identified expanding and newly established shrub stands at two northwest Siberian sites and observed that virtually all new shrubs occurred on bare microsites (‘circles’) that were disturbed by frost-heave. Frost-heave associated with circles is a widespread, annual phenomenon that maintains mosaics of mineral seedbeds with warm soils and few competitors that are immediately available to shrubs during favorable climatic periods. Circle facilitation of alder recruitment also plausibly explains the development of shrublands in which alders are regularly spaced. We conclude that alder abundance and extent have increased rapidly in the northwest Siberian Low Arctic since at least the mid-20th century, despite a lack of summer warming in recent decades. Our results are consistent with findings in the North American Arctic which emphasize that the responsiveness of Low Arctic landscapes to climate change is largely determined by the frequency and extent of disturbance processes that create mineral-rich seedbeds favorable for tall shrub recruitment. Northwest Siberia has high potential for continued expansion of tall shrubs and concomitant changes to ecosystem function, due to the widespread distribution of patterned-ground landscapes. (letter)

  13. Effect of Freeze-Thaw Cycles on Soil Nitrogen Reactive Transport in a Polygonal Arctic Tundra Ecosystem at Barrow AK Using 3-D Coupled ALM-PFLOTRAN

    Science.gov (United States)

    Yuan, F.; Wang, G.; Painter, S. L.; Tang, G.; Xu, X.; Kumar, J.; Bisht, G.; Hammond, G. E.; Mills, R. T.; Thornton, P. E.; Wullschleger, S. D.

    2017-12-01

    In Arctic tundra ecosystem soil freezing-thawing is one of dominant physical processes through which biogeochemical (e.g., carbon and nitrogen) cycles are tightly coupled. Besides hydraulic transport, freezing-thawing can cause pore water movement and aqueous species gradients, which are additional mechanisms for soil nitrogen (N) reactive-transport in Tundra ecosystem. In this study, we have fully coupled an in-development ESM(i.e., Advanced Climate Model for Energy, ACME)'s Land Model (ALM) aboveground processes with a state-of-the-art massively parallel 3-D subsurface thermal-hydrology and reactive transport code, PFLOTRAN. The resulting coupled ALM-PFLOTRAN model is a Land Surface Model (LSM) capable of resolving 3-D soil thermal-hydrological-biogeochemical cycles. This specific version of PFLOTRAN has incorporated CLM-CN Converging Trophic Cascade (CTC) model and a full and simple but robust soil N cycle. It includes absorption-desorption for soil NH4+ and gas dissolving-degasing process as well. It also implements thermal-hydrology mode codes with three newly-modified freezing-thawing algorithms which can greatly improve computing performance in regarding to numerical stiffness at freezing-point. Here we tested the model in fully 3-D coupled mode at the Next Generation Ecosystem Experiment-Arctic (NGEE-Arctic) field intensive study site at the Barrow Environmental Observatory (BEO), AK. The simulations show that: (1) synchronous coupling of soil thermal-hydrology and biogeochemistry in 3-D can greatly impact ecosystem dynamics across polygonal tundra landscape; and (2) freezing-thawing cycles can add more complexity to the system, resulting in greater mobility of soil N vertically and laterally, depending upon local micro-topography. As a preliminary experiment, the model is also implemented for Pan-Arctic region in 1-D column mode (i.e. no lateral connection), showing significant differences compared to stand-alone ALM. The developed ALM-PFLOTRAN coupling

  14. Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model

    Science.gov (United States)

    Krogh, Sebastian A.; Pomeroy, John W.; Marsh, Philip

    2017-07-01

    A better understanding of cold regions hydrological processes and regimes in transitional environments is critical for predicting future Arctic freshwater fluxes under climate and vegetation change. A physically based hydrological model using the Cold Regions Hydrological Model platform was created for a small Arctic basin in the tundra-taiga transition region. The model represents snow redistribution and sublimation by wind and vegetation, snowmelt energy budget, evapotranspiration, subsurface flow through organic terrain, infiltration to frozen soils, freezing and thawing of soils, permafrost and streamflow routing. The model was used to reconstruct the basin water cycle over 28 years to understand and quantify the mass fluxes controlling its hydrological regime. Model structure and parameters were set from the current understanding of Arctic hydrology, remote sensing, field research in the basin and region, and calibration against streamflow observations. Calibration was restricted to subsurface hydraulic and storage parameters. Multi-objective evaluation of the model using observed streamflow, snow accumulation and ground freeze/thaw state showed adequate simulation. Significant spatial variability in the winter mass fluxes was found between tundra, shrubs and forested sites, particularly due to the substantial blowing snow redistribution and sublimation from the wind-swept upper basin, as well as sublimation of canopy intercepted snow from the forest (about 17% of snowfall). At the basin scale, the model showed that evapotranspiration is the largest loss of water (47%), followed by streamflow (39%) and sublimation (14%). The models streamflow performance sensitivity to a set of parameter was analysed, as well as the mean annual mass balance uncertainty associated with these parameters.

  15. Cultural Resilience of Nenets Social-Ecological Systems in Arctic Russia: A Focus on Reindeer Nomads of the Tundra

    Science.gov (United States)

    Forbes, B. C.

    2013-12-01

    Empirical data on resilience in social-ecological systems (SESs) are reviewed from local and regional scale case studies among full-time nomads in the neighbouring Nenets and Yamal-Nenets Autonomous Okrugs, Russia. The focus is on critical cultural factors contributing to SES resilience. In particular, this work presents an integrated view of people situated in specific tundra landscapes that face significantly different prospects for adaptation depending on existing or planned infrastructure associated with oil and gas development. Factors contributing to general resilience are compared to those that are adapted to certain spatial and temporal contexts. Environmental factors include ample space and an abundance of resources, such as fish and game (e.g. geese), to augment the diet of not only the migratory herders, but also residents from coastal settlements. In contrast to other regions, such as the Nenets Okrug, Yamal Nenets households consist of intact nuclear families with high retention among youth in the nomadic tundra population. Accepting attitudes toward exogenous drivers such as climate change and industrial development appear to play a significant role in how people react to both extreme weather events and piecemeal confiscation or degradation of territory. Consciousness of their role as responsible stewards of the territories they occupy has likely been a factor in maintaining viable wildlife populations over centuries. Institutions administering reindeer herding have remained flexible, especially on Yamal, and so accommodate decision-making that is sensitive to herders' needs and timetables. This affects factors such as herd demography, mobility and energetics. Resilience is further facilitated within the existing governance regimes by herders' own agency, most recently in the post-Soviet shift to smaller, privately managed herds that can better utilize available pastures in a highly dynamic environment experiencing rapid socio-economic, climate and

  16. Biological methanol production by immobilized Methylocella tundrae using simulated biohythane as a feed.

    Science.gov (United States)

    Patel, Sanjay K S; Singh, Raushan K; Kumar, Ashok; Jeong, Jae-Hoon; Jeong, Seong Hun; Kalia, Vipin C; Kim, In-Won; Lee, Jung-Kul

    2017-10-01

    Biohythane may be used as an alternative feed for methanol production instead of costly pure methane. In this study, methanol production potential of Methylocella tundrae immobilized through covalent immobilization, adsorption, and encapsulation was evaluated. Cells covalently immobilized on groundnut shells and chitosan showed a relative methanol production potential of 83.9 and 91.6%, respectively, compared to that of free cells. The maximum methanol production by free cells and cells covalently immobilized on groundnut shells and chitosan was 6.73, 6.20, and 7.23mM, respectively, using simulated biohythane as a feed. Under repeated batch conditions of eight cycles, cells covalently immobilized on chitosan and groundnut shells, and cells encapsulated in sodium-alginate resulted in significantly higher cumulative methanol production of 37.76, 31.80, and 25.58mM, respectively, than free cells (18.57mM). This is the first report on immobilization of methanotrophs on groundnut shells and its application in methanol production using biohythane as a feed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Revegetation and soil development on anthropogenic disturbances in shrub tundra, 50 years following construction of the CANOL No. 1 pipeline, N.W.T

    International Nuclear Information System (INIS)

    Harper, K.A.

    1994-01-01

    An intensive study of long-term revegetation patterns of erect deciduous shrub tundra on anthropogenic disturbances was conducted in the summer of 1993 within the CANOL pipeline corridor, Northwest Territories. Soil development, primary and secondary succession were investigated on 10 m by 20 m sites in vehicle tracks and borrow pits. Data were collected on the cover of all vascular and non-vascular species. Soil temperature, pH, organic matter, moisture and particle size composition were determined. Patterns in plant species composition and soil characteristics among disturbance types were examined using detrended correspondence analysis. The importance of the measured abiotic factors in explaining the differences in species composition was revealed by canonical correspondence analysis. Significant differences in species composition were evident among disturbance types. Different taxonomic groups exhibited different responses to disturbance. Soil samples in linear disturbances were analogous to those in undisturbed areas. Warmer, drier and less acidic soils in borrow pits contained less organic matter and fine particles than undisturbed soils. Soil temperature was considered the most important measured environmental variable in accounting for the revegetation patterns on disturbance with the microclimate stations. Comparison with a similar study on revegetation in the CANOL corridor in 1978 suggest that revegetation and soil development are proceeding faster on linear disturbances than borrow pits. 150 figs., 37 figs., 28 tabs

  18. Plant mycorrhizal traits in Europe in relation to climatic and edaphic gradients

    Science.gov (United States)

    Guillermo Bueno, C.; Gerz, Maret; Zobel, Martin; Moora, Mari

    2017-04-01

    Around 90% of plant species associate with mycorrhizal fungi. The symbiosis is known to provide plants with soil N, P and water, and fungi with plant photosynthesized carbohydrates. However, not all mycorrhizal symbioses are identical. The identity of associated plant and fungal species differs, as does the effect of the symbiosis on nutrient cycling and ecosystems more generally. In this study, we analysed the European distribution of two plant mycorrhizal traits in relation to climatic and edaphic drivers. We used the European distribution of the frequency of mycorrhizal colonization (plant mycorrhizal status); whether mycorrhizal fungi either always (obligately mycorrhizal, OM), or sometimes (facultatively mycorrhizal, FM) colonize plant roots, and the four main plant mycorrhizal types; arbuscular (AM), ecto-(ECM), ericoid (ERM), and non-mycorrhizal (NM) plants. We expected AM species to predominate in ecosystems where most soil nutrients occur in inorganic forms (lower latitudes) and those with higher soil pH. By contrast, due to the saprophytic abilities of ECM and ERM fungi, we expected ECM and ERM plants to predominate in ecosystems where nutrients are bound to organic compounds (higher latitudes) and those with lower soil pH. NM plant species are known to be common in disturbed habitats or in extremely phosphorus poor ecosystems, such as the Arctic tundra. Our results showed that the distribution of mycorrhizal types was driven by temperature and soil pH, with increases of NM, ECM and ERM, and decreases of AM, with latitude. FM predominated over OM species and this difference increased with latitude and was dependent on temperature drivers only. These results represent the first evidence at a European scale of plant mycorrhizal distribution patterns linked with climatic and edaphic gradients, supporting the idea of a tight relationship between the mycorrhizal symbiosis and nutrient cycling.

  19. Vegetation

    DEFF Research Database (Denmark)

    Epstein, H.E.; Walker, D.A.; Bhatt, U.S.

    2012-01-01

    increased 20-26%. • Increasing shrub growth and range extension throughout the Low Arctic are related to winter and early growing season temperature increases. Growth of other tundra plant types, including graminoids and forbs, is increasing, while growth of mosses and lichens is decreasing. • Increases...... in vegetation (including shrub tundra expansion) and thunderstorm activity, each a result of Arctic warming, have created conditions that favor a more active Arctic fire regime....

  20. Effects of disturbance on ecosystem dynamics of tundra and riparian vegetation: A project in the R4D program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.F.

    1995-12-31

    Models were proposed as research tools to test the basic understanding of the structure and function of arctic ecosystems, as a means for providing initial management assessments of potential response to energy-related development, and as a vehicle for extrapolation of research results to other arctic sites and landscapes. This final summary report reviews progress made on models at a variety of scales from nutrient uptake by individual roots to nutrient availability within arctic landscapes, and examines potentials and critical limitations of these models for providing insight on patch and landscape level function in tundra regions.

  1. Estimating Net Primary Productivity Beneath Snowpack Using Snowpack Radiative Transfer Modeling and Global Satellite Data

    Science.gov (United States)

    Barber, D. E.; Peterson, M. C.

    2002-05-01

    Sufficient photosynthetically active radiation (PAR) penetrates snow for plants to grow beneath snowpack during late winter or early spring in tundra ecosystems. During the spring in this ecosystem, the snowpack creates an environment with higher humidity and less variable and milder temperatures than on the snow-free land. Under these conditions, the amount of PAR available is likely to be the limiting factor for plant growth. Current methods for determining net primary productivity (NPP) of tundra ecosystems do not account for this plant growth beneath snowpack, apparently resulting in underestimating plant production there. We are currently in the process of estimating the magnitude of this early growth beneath snow for tundra ecosystems. Our method includes a radiative transfer model that simulates diffuse and direct PAR penetrating snowpack based on downwelling PAR values and snow depth data from global satellite databases. These PAR levels are convolved with plant growth for vegetation that thrives beneath snowpacks, such as lichen. We expect to present the net primary production for Cladonia species (a common Arctic lichen) that has the capability of photosynthesizing at low temperatures beneath snowpack. This method may also be used to study photosynthesis beneath snowpacks in other hardy plants. Lichens are used here as they are common in snow-covered regions, flourish under snowpack, and provide an important food source for tundra herbivores (e.g. caribou). In addition, lichens are common in arctic-alpine environments and our results can be applied to these ecosystems as well. Finally, the NPP of lichen beneath snowpack is relatively well understood compared to other plants, making it ideal vegetation for this first effort at estimating the potential importance of photosynthesis at large scales. We are examining other candidate plants for their photosynthetic potential beneath snowpack at this time; however, little research has been done on this topic. We

  2. SRXRF determination of the multielement composition of the hair and blood of the children of Tundra Nenetz population

    International Nuclear Information System (INIS)

    Chankina, O.V.; Kovalskaya, G.A.; Koutzenogii, K.P.; Osipova, L.P.; Savchenko, T.I.

    2001-01-01

    SRXRF has been used to determine the multielement composition of the hair and blood of Tundra Nenetz children. The method allows one to simultaneously determine 21 elements in the blood and 22 elements in the hair. Individual differences have been revealed in the element composition of the hair and blood. Sexual and age changes have been revealed in the content of some elements in the hair. A technique has been developed to prepare blood and hair samples for measuring the element composition by the SRXRF method. The blood samples were prepared by spreading 20 μl over the 1 cm 2 Whatman filter. The hair samples were obtained by pressing in the form of tablets of 1 cm in diameter and a mass of 10-40 mg

  3. Spectral estimation of soil properties in siberian tundra soils and relations with plant species composition

    DEFF Research Database (Denmark)

    Bartholomeus, Harm; Schaepman-Strub, Gabriela; Blok, Daan

    2012-01-01

    yields a good prediction model for K and a moderate model for pH. Using these models, soil properties are determined for a larger number of samples, and soil properties are related to plant species composition. This analysis shows that variation of soil properties is large within vegetation classes......Predicted global warming will be most pronounced in the Arctic and will severely affect permafrost environments. Due to its large spatial extent and large stocks of soil organic carbon, changes to organic matter decomposition rates and associated carbon fluxes in Arctic permafrost soils...

  4. Arctic plants are capable of sustained responses to long-term warming

    Directory of Open Access Journals (Sweden)

    Robert T. Barrett

    2016-05-01

    Full Text Available Previous studies have shown that Arctic plants typically respond to warming with increased growth and reproductive effort and accelerated phenology, and that the magnitude of these responses is likely to change over time. We investigated the effects of long-term experimental warming on plant growth (leaf length and reproduction (inflorescence height, reproductive phenology and reproductive effort using 17–19 years of measurements collected as part of the International Tundra Experiment (ITEX at sites near Barrow and Atqasuk, Alaska. During the study period, linear regressions indicated non-significant tendencies towards warming air temperatures at our study sites. Results of our meta-analyses on the effect size of experimental warming (calculated as Hedges’ d indicated species generally responded to warming by increasing inflorescence height, increasing leaf length and flowering earlier, while reproductive effort did not respond consistently. Using weighted least-squares regressions on effect sizes, we found a significant trend towards dampened response to experimental warming over time for reproductive phenology. This tendency was consistent, though non-significant, across all traits. A separate analysis revealed significant trends towards reduced responses to experimental warming during warmer summers for all traits. We therefore propose that tendencies towards dampened plant responses to experimental warming over time are the result of regional warming. These results show that Arctic plants are capable of sustained responses to warming over long periods of time but also suggest that, as the region continues to warm, factors such as nutrient availability, competition and herbivory will become more limiting to plant growth and reproduction than temperature.

  5. Calibration and Validation of Landsat Tree Cover in the Taiga−Tundra Ecotone

    Directory of Open Access Journals (Sweden)

    Paul Mannix Montesano

    2016-06-01

    Full Text Available Monitoring current forest characteristics in the taiga−tundra ecotone (TTE at multiple scales is critical for understanding its vulnerability to structural changes. A 30 m spatial resolution Landsat-based tree canopy cover map has been calibrated and validated in the TTE with reference tree cover data from airborne LiDAR and high resolution spaceborne images across the full range of boreal forest tree cover. This domain-specific calibration model used estimates of forest height to determine reference forest cover that best matched Landsat estimates. The model removed the systematic under-estimation of tree canopy cover >80% and indicated that Landsat estimates of tree canopy cover more closely matched canopies at least 2 m in height rather than 5 m. The validation improved estimates of uncertainty in tree canopy cover in discontinuous TTE forests for three temporal epochs (2000, 2005, and 2010 by reducing systematic errors, leading to increases in tree canopy cover uncertainty. Average pixel-level uncertainties in tree canopy cover were 29.0%, 27.1% and 31.1% for the 2000, 2005 and 2010 epochs, respectively. Maps from these calibrated data improve the uncertainty associated with Landsat tree canopy cover estimates in the discontinuous forests of the circumpolar TTE.

  6. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming.

    Science.gov (United States)

    Faubert, Patrick; Tiiva, Päivi; Rinnan, Asmund; Michelsen, Anders; Holopainen, Jarmo K; Rinnan, Riikka

    2010-07-01

    *Biogenic volatile organic compound (BVOC) emissions from arctic ecosystems are important in view of their role in global atmospheric chemistry and unknown feedbacks to global warming. These cold ecosystems are hotspots of climate warming, which will be more severe here than averaged over the globe. We assess the effects of climatic warming on non-methane BVOC emissions from a subarctic heath. *We performed ecosystem-based chamber measurements and gas chromatography-mass spectrometry (GC-MS) analyses of the BVOCs collected on adsorbent over two growing seasons at a wet subarctic tundra heath hosting a long-term warming and mountain birch (Betula pubescens ssp. czerepanovii) litter addition experiment. *The relatively low emissions of monoterpenes and sesquiterpenes were doubled in response to an air temperature increment of only 1.9-2.5 degrees C, while litter addition had a minor influence. BVOC emissions were seasonal, and warming combined with litter addition triggered emissions of specific compounds. *The unexpectedly high rate of release of BVOCs measured in this conservative warming scenario is far above the estimates produced by the current models, which underlines the importance of a focus on BVOC emissions during climate change. The observed changes have implications for ecological interactions and feedback effects on climate change via impacts on aerosol formation and indirect greenhouse effects.

  7. A global comparison of the nutritive values of forage plants grown in contrasting environments.

    Science.gov (United States)

    Lee, Mark A

    2018-03-17

    Forage plants are valuable because they maintain wild and domesticated herbivores, and sustain the delivery of meat, milk and other commodities. Forage plants contain different quantities of fibre, lignin, minerals and protein, and vary in the proportion of their tissue that can be digested by herbivores. These nutritive components are important determinants of consumer growth rates, reproductive success and behaviour. A dataset was compiled to quantify variation in forage plant nutritive values within- and between-plant species, and to assess variation between plant functional groups and bioclimatic zones. 1255 geo-located records containing 3774 measurements of nutritive values for 136 forage plant species grown in 30 countries were obtained from published articles. Spatial variability in forage nutritive values indicated that climate modified plant nutritive values. Forage plants grown in arid and equatorial regions generally contained less digestible material than those grown in temperate and tundra regions; containing more fibre and lignin, and less protein. These patterns may reveal why herbivore body sizes, digestion and migration strategies are different in warmer and drier regions. This dataset also revealed the capacity for variation in the nutrition provided by forage plants, which may drive consumer species coexistence. The proportion of the plant tissue that was digestible ranged between species from 2 to 91%. The amount of fibre contained within plant material ranged by 23-90%, protein by 2-36%, lignin by 1-21% and minerals by 2-22%. On average, grasses and tree foliage contained the most fibre, whilst herbaceous legumes contained the most protein and tree foliage contained the most lignin. However, there were individual species within each functional group that were highly nutritious. This dataset may be used to identify forage plant species or mixtures of species from different functional groups with useful nutritional traits which can be cultivated

  8. Sphingomonas antarctica sp. nov., isolated from Antarctic tundra soil.

    Science.gov (United States)

    Huang, Yao; Wei, Ziyan; Danzeng, Wangmu; Kim, Myong Chol; Zhu, Guoxin; Zhang, Yumin; Liu, Zuobing; Peng, Fang

    2017-10-01

    Strain 200 T , isolated from a soil sample taken from Antarctic tundra soil around Zhongshan Station, was found to be a Gram-stain-negative, yellow-pigmented, catalase-positive, oxidase-negative, non-motile, non-spore-forming, rod-shaped and aerobic bacterium. Strain 200 T grew optimally at pH 7.0 and in the absence of NaCl on R2A. Its optimum growth temperature was 20 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 200 T belonged to the genus Sphingomonas. Strain 200 T showed the highest sequence similarities to Sphingomonas kyeonggiense THG-DT81 T (95.1 %) and Sphingomonas molluscorum KMM 3882 T (95.1 %). Chemotaxonomic analysis showed that strain 200 T had characteristics typical of members of the genus Sphingomonas. Ubiquinone 10 was the predominant respiratory quinone and sym-homospermidine was the polyamine. The major polar lipids were sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylcholine. The G+C content of the genomic DNA was determined to be 60.9 mol%. Strain 200 T contained C16 : 0 (31.6 %), summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c, 22.7 %), summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c, 11.2 %), C18 : 0 (7.8 %) and C14 : 0 2OH (6.7 %) as the major cellular fatty acids. On the basis of phylogenetic analysis, and physiological and biochemical characterization, strain 200 T should be classified as representing a novel species of the genus Sphingomonas, for which the name Sphingomonasantarctica sp. nov. is proposed. The type strain is 200 T (=CCTCC AB 2016064 T =KCTC 52488 T ).

  9. Humidification of the Arctic: Effects of more open ocean water on land temperatures and tundra productivity along continental and maritime bioclimate transects

    Science.gov (United States)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Epstein, H. E.

    2017-12-01

    Amplified Arctic warming linked to declining sea-ice extent led to generally enhanced productivity of the tundra biome during the period 1982-2008. After about 2002, coinciding with a recent precipitous decline in sea ice, large areas of the Arctic began showing reversals of previous positive productivity trends. To better understand these recent vegetation productivity declines and whether they are associated with differences in a general humidification of portions of the Arctic, we focus analysis on two transects with ground information: the more continental North America Arctic Transect (NAAT) and the more maritime Eurasia Arctic Transect (EAT). We compare ground information with satellite-derived trends in open water, summer terrestrial temperatures, and vegetation greenness and changes in continentality of the two transects, as indicated by the differences in the annual maximum and minimum mean monthly temperatures. Areas adjacent to perennial sea ice along in the northern parts of the NAAT exhibit climates with positive trends in summer warmth, but negative greening trends, possibly due to soil drying. Southern parts of the NAAT in the vicinity of more open water show positive greenness trends. Along the EAT, cooling midsummer conditions and reduced greenness appear to be caused by cloudier conditions, and possibly later snow melt during the period of maximum potential photosynthesis. Ground-based environmental and vegetation data indicate that biomass, particularly moss biomass is much greater along the more maritime EAT, indicating a buffering effect of the vegetation that will act to damp productivity as humidification of the Arctic proceeds. This multi-scale analysis is one step in the direction of understanding the drivers of tundra vegetation productivity in the Arctic.

  10. Relocation of major ions in snow along the tundra-taiga ecotone

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, J.W.; Marsh, P. (Environment Canada, Saskatoon (Canada)); Lesack, L. (Simon Fraser Univeristy, Burnaby, (Canada))

    1993-01-01

    The chemistry of seasonal snowcovers north of Unuvik, Northwest Territories, Canada was stratified by biophysical landscape. In this region, deposition of ions in winter occurs largely through the redistribution of wind-blown snow with accumulations in forest-edges and valley sides 8 to 12 times that of the open tundra. While dominated by this snow redistribution, the loading of most ions, except for SO[sub 4][sup 2-], does not scale exactly with that of snow, there being several mechanisms by which ion concentrations become relatively enriched or depleted in various landscape units. Vaporisation during temperature-gradient metamorphism in shallow-snow and uptake during either photochemical reactions or gaseous scavenging to well-exposed snow transformed concentrations of NO[sub 3][sup -] by 50%. Dry deposition of aerosols to forested terrain and valley bottoms enriched Cl[sup -], Na[sup +], Mg[sup 2]-[sup +], K[sup +] and Ca[sup 2+] concentrations up to more than two-fold, however scavenging of aerosols to blowing snow particles contributed an additional 40% to the sea-salt enrichment and 20% to the Ca[sup 2+] enrichment in wind-blown treeline forests. It is concluded that central measurements of snow chemistry in the Arctic cannot be reliably extrapolated without reference to changes caused by over-winter physical and chemical metamorphic processes. Associating the physical/chemical changes with readily identifiable Arctic landscape units suggests a simple and robust method for spatial extrapolation. (au) (26 refs.)

  11. Diet Switching by Mammalian Herbivores in Response to Exotic Grass Invasion.

    Directory of Open Access Journals (Sweden)

    Carolina Bremm

    Full Text Available Invasion by exotic grasses is a severe threat to the integrity of grassland ecosystems all over the world. Because grasslands are typically grazed by livestock and wildlife, the invasion is a community process modulated by herbivory. We hypothesized that the invasion of native South American grasslands by Eragrostis plana Nees, an exotic tussock-forming grass from Africa, could be deterred by grazing if grazers switched dietary preferences and included the invasive grass as a large proportion of their diets. Bos taurus (heifers and Ovis aries (ewes grazed plots with varying degrees of invasion by E. plana in a replicated manipulative experiment. Animal positions and species grazed were observed every minute in 45-min grazing session. Proportion of bites and steps in and out of E. plana tussocks were measured and used to calculate several indices of selectivity. Both heifers and ewes exhibited increasing probability of grazing E. plana as the proportion of area covered by tussocks increased, but they behaved differently. In agreement with expectations based on the allometry of dietary preferences and morphology, ewes consumed a low proportion of E. plana, except in areas that had more than 90% E. plana cover. Heifers consumed proportionally more E. plana than ewes. Contrary to our hypothesis, herbivores did not exhibit dietary switching towards the invasive grass. Moreover, they exhibited avoidance of the invasive grass and preference for short-statured native species, both of which should tend to enhance invasion. Unless invasive plants are highly palatable to livestock, the effect of grazing to deter the invasion is limited, due to the inherent avoidance of the invasive grass by the main grazers in the ecosystem, particularly sheep.

  12. A reduced-order modeling approach to represent subgrid-scale hydrological dynamics for land-surface simulations: application in a polygonal tundra landscape

    Science.gov (United States)

    Pau, G. S. H.; Bisht, G.; Riley, W. J.

    2014-09-01

    Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO2, CH4) exchanges with the atmosphere range from the molecular scale (pore-scale O2 consumption) to tens of kilometers (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a reduced-order modeling (ROM) technique known as "proper orthogonal decomposition mapping method" that reconstructs temporally resolved fine-resolution solutions based on coarse-resolution solutions. We developed four different methods and applied them to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface-subsurface isothermal simulations were performed for summer months (June-September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998-2000) to build ROMs of the 4-D soil moisture field for the study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 103) with very small relative approximation error (training the ROM. We also demonstrate that our approach: (1) efficiently corrects for coarse-resolution model bias and (2) can be used for polygonal tundra sites not included in the training data set with relatively good accuracy (< 1.7% relative error), thereby allowing for the possibility of applying these ROMs across a much larger landscape. By coupling the ROMs constructed at different scales together hierarchically, this method has the potential to efficiently increase the resolution of land models for coupled climate simulations to spatial scales consistent with

  13. Short-Term Impacts of the Air Temperature on Greening and Senescence in Alaskan Arctic Plant Tundra Habitats

    Directory of Open Access Journals (Sweden)

    Jeremy L. May

    2017-12-01

    Full Text Available Climate change is warming the temperatures and lengthening the Arctic growing season with potentially important effects on plant phenology. The ability of plant species to acclimate to changing climatic conditions will dictate the level to which their spatial coverage and habitat-type dominance is different in the future. While the effect of changes in temperature on phenology and species composition have been observed at the plot and at the regional scale, a systematic assessment at medium spatial scales using new noninvasive sensor techniques has not been performed yet. At four sites across the North Slope of Alaska, changes in the Normalized Difference Vegetation Index (NDVI signal were observed by Mobile Instrumented Sensor Platforms (MISP that are suspended over 50 m transects spanning local moisture gradients. The rates of greening (measured in June and senescence (measured in August in response to the air temperature was estimated by changes in NDVI measured as the difference between the NDVI on a specific date and three days later. In June, graminoid- and shrub-dominated habitats showed the greatest rates of NDVI increase in response to the high air temperatures, while forb- and lichen-dominated habitats were less responsive. In August, the NDVI was more responsive to variations in the daily average temperature than spring greening at all sites. For graminoid- and shrub-dominated habitats, we observed a delayed decrease of the NDVI, reflecting a prolonged growing season, in response to high August temperatures. Consequently, the annual C assimilation capacity of these habitats is increased, which in turn may be partially responsible for shrub expansion and further increases in net summer CO2 fixation. Strong interannual differences highlight that long-term and noninvasive measurements of such complex feedback mechanisms in arctic ecosystems are critical to fully articulate the net effects of climate variability and climate change on

  14. Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane.

    Science.gov (United States)

    Mardina, Primata; Li, Jinglin; Patel, Sanjay K S; Kim, In-Won; Lee, Jung-Kul; Selvaraj, Chandrabose

    2016-07-28

    Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30°C, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions.

  15. Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948-2013)

    Science.gov (United States)

    Andresen, Christian G.; Lougheed, Vanessa L.

    2015-03-01

    Long-term fine-scale dynamics of surface hydrology in Arctic tundra ponds (less than 1 ha) are largely unknown; however, these small water bodies may contribute substantially to carbon fluxes, energy balance, and biodiversity in the Arctic system. Change in pond area and abundance across the upper Barrow Peninsula, Alaska, was assessed by comparing historic aerial imagery (1948) and modern submeter resolution satellite imagery (2002, 2008, and 2010). This was complemented by photogrammetric analysis of low-altitude kite-borne imagery in combination with field observations (2010-2013) of pond water and thaw depth transects in seven ponds of the International Biological Program historic research site. Over 2800 ponds in 22 drained thaw lake basins (DTLB) with different geological ages were analyzed. We observed a net decrease of 30.3% in area and 17.1% in number of ponds over the 62 year period. The inclusion of field observations of pond areas in 1972 from a historic research site confirms the linear downward trend in area. Pond area and number were dependent on the age of DTLB; however, changes through time were independent of DTLB age, with potential long-term implications for the hypothesized geomorphologic landscape succession of the thaw lake cycle. These losses were coincident with increases in air temperature, active layer, and density and cover of aquatic emergent plants in ponds. Increased evaporation due to warmer and longer summers, permafrost degradation, and transpiration from encroaching aquatic emergent macrophytes are likely the factors contributing to the decline in surface area and number of ponds.

  16. Movement of foraging Tundra Swans explained by spatial pattern in cryptic food densities.

    Science.gov (United States)

    Klaassen, Raymond H G; Nolet, Bart A; Bankert, Daniëlle

    2006-09-01

    We tested whether Tundra Swans use information on the spatial distribution of cryptic food items (below ground Sago pondweed tubers) to shape their movement paths. In a continuous environment, swans create their own food patches by digging craters, which they exploit in several feeding bouts. Series of short (1 m). Tuber biomass densities showed a positive spatial auto-correlation at a short distance (25 g/m2) and to a more distant patch (at 7-8 m) if the food density in the current patch had been low (3 m) from a low-density patch and a short distance (<3 m) from a high-density patch. The quantitative agreement between prediction and observation was greater for swans feeding in pairs than for solitary swans. The result of this movement strategy is that swans visit high-density patches at a higher frequency than on offer and, consequently, achieve a 38% higher long-term gain rate. Swans also take advantage of spatial variance in food abundance by regulating the time in patches, staying longer and consuming more food from rich than from poor patches. We can conclude that the shape of the foraging path is a reflection of the spatial pattern in the distribution of tuber densities and can be understood from an optimal foraging perspective.

  17. Fungi benefit from two decades of increased nutrient availability in tundra heath soil.

    Science.gov (United States)

    Rinnan, Riikka; Michelsen, Anders; Bååth, Erland

    2013-01-01

    If microbial degradation of carbon substrates in arctic soil is stimulated by climatic warming, this would be a significant positive feedback on global change. With data from a climate change experiment in Northern Sweden we show that warming and enhanced soil nutrient availability, which is a predicted long-term consequence of climatic warming and mimicked by fertilization, both increase soil microbial biomass. However, while fertilization increased the relative abundance of fungi, warming caused only a minimal shift in the microbial community composition based on the phospholipid fatty acid (PLFA) and neutral lipid fatty acid (NLFA) profiles. The function of the microbial community was also differently affected, as indicated by stable isotope probing of PLFA and NLFA. We demonstrate that two decades of fertilization have favored fungi relative to bacteria, and increased the turnover of complex organic compounds such as vanillin, while warming has had no such effects. Furthermore, the NLFA-to-PLFA ratio for (13)C-incorporation from acetate increased in warmed plots but not in fertilized ones. Thus, fertilization cannot be used as a proxy for effects on warming in arctic tundra soils. Furthermore, the different functional responses suggest that the biomass increase found in both fertilized and warmed plots was mediated via different mechanisms.

  18. A zero-power warming chamber for investigating plant responses to rising temperature

    Directory of Open Access Journals (Sweden)

    K. F. Lewin

    2017-09-01

    Full Text Available Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by  ∼  1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be  ∼  2–3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming

  19. A zero-power warming chamber for investigating plant responses to rising temperature

    Science.gov (United States)

    Lewin, Keith F.; McMahon, Andrew M.; Ely, Kim S.; Serbin, Shawn P.; Rogers, Alistair

    2017-09-01

    Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by ˜ 1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ˜ 2-3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.

  20. Reflectance spectra of subarctic lichens

    International Nuclear Information System (INIS)

    Petzold, D.E.; Goward, S.N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the mid latitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 μm, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future. (author)

  1. Reflectance spectra of subarctic lichens

    Science.gov (United States)

    Petzold, Donald E.; Goward, Samuel N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.

  2. δ13C signal of earthworm calcite granules: A new proxy for palaeoprecipitation reconstructions during the Last Glacial in western Europe

    Science.gov (United States)

    Prud'homme, Charlotte; Lécuyer, Christophe; Antoine, Pierre; Hatté, Christine; Moine, Olivier; Fourel, François; Amiot, Romain; Martineau, François; Rousseau, Denis-Didier

    2018-01-01

    Quantification of paleoprecipitation during the Last Glacial is a key element to reconstruct palaeoclimates. Recently, fossil calcite granules have been identified in loess sequences with high contents in specific horizons. In this study, we explored for the first time the potential of this new bio-indicator as a climatic proxy for precipitation in western Europe during the Last Glacial. We extracted 30 granules from eleven samples belonging to three tundra gleys and two brown soils from the Nussloch loess sequence previously dated between 50 and 20 ka. Stable carbon isotope measurements were performed on each granule and duplicated. Throughout the studied section, δ13C values range from -15.4 to -10.3‰ for tundra gleys and from -14.9 to -9.5‰ for brown soils. By taking into account the fractionation factor between the carbon ingested by the earthworm and the carbon output of the granules, the δ13C values of these granules reflect the composition of the C3 plant vegetation cover. Thus, we estimated the δ13C of the plants with a mean value of -24.3 ± 0.9‰ for tundra gleys and -24.1 ± 0.9‰ for brown soils, which are in agreement with values obtained from organic matter preserved in sediments. Palaeoprecipitation range over both tundra gley horizons and brown soils were estimated at about 333[159-574] mm/yr by using an empirical relationship determined between present-day plant leaf isotopic discrimination and the mean annual precipitation. This original preliminary study highlights the potential of earthworm calcite granule δ13C measurements as a new proxy for paleoprecipitation during the Last Glacial interstadials in continental environments.

  3. Getting to the root of the matter: Landscape implications of plant-fungal interactions for tree migration in Alaska

    Science.gov (United States)

    Hewitt, R. E.; Bennett, A.; Breen, A. L.; Hollingsworth, T. N.; Taylor, D. L.; Chapin, T.; Rupp, S. T.

    2015-12-01

    Forecasting change in forest cover across Alaska tundra is critical to predicting regional ecosystem services, including climate feedbacks such as carbon storage. Controls over seedling establishment govern forest development and migration potential. Ectomycorrhizal fungi (EMF), obligate symbionts of all Alaskan tree species, are particularly important to seedling establishment, yet their significance to landscape vegetation change is largely unknown. We used ALFRESCO, a landscape model of wildfire and vegetation dynamics, to explore whether EMF inoculum potential influences patterns of tundra afforestation and associated flammability. Using two downscaled CMIP3 General Circulation Models (ECHAM5 and CCCMA) and a mid-range emissions scenario (A1B) at a 1 km2 resolution, we compared simulated tundra afforestation rates and flammability from four parameterizations of EMF effects on seedling establishment and growth from 2000-2100. Modeling predicted an 8.8-18.2% increase in forest cover from 2000 to 2100. Simulations that explicitly represented landscape variability in EMF inoculum potential showed up to a 2.8% reduction in afforestation due to low inoculum potential limiting seedling growth. This reduction limited fuel availability and thus, cumulative area burned. Regardless of inclusion of EMF effects in simulations, landscape flammability was lower for simulations driven by the wetter and cooler CCCMA model than the warmer and drier ECHAM5 model, while tundra conversion to forest was greater. Results suggest abiotic factors are the primary driver of tree migration. Simulations including EMF effects, a biotic factor, yielded more conservative estimates of landcover change across Alaska that better-matched empirical estimates from the previous century.

  4. Evidence of Facilitation Cascade Processes as Drivers of Successional Patterns of Ecosystem Engineers at the Upper Altitudinal Limit of the Dry Puna.

    Science.gov (United States)

    Malatesta, Luca; Tardella, Federico Maria; Piermarteri, Karina; Catorci, Andrea

    2016-01-01

    Facilitation processes constitute basic elements of vegetation dynamics in harsh systems. Recent studies in tropical alpine environments demonstrated how pioneer plant species defined as "ecosystem engineers" are capable of enhancing landscape-level richness by adding new species to the community through the modification of microhabitats, and also provided hints about the alternation of different ecosystem engineers over time. Nevertheless, most of the existing works analysed different ecosystem engineers separately, without considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant communities by facilitation cascades involving different ecosystem engineers, determining the evolution of the microhabitat patches in terms of abiotic resources and beneficiary species hosted. To analyze successional mechanisms, we used a "space-for-time" substitution to account for changes over time, and analyzed data on soil texture, composition, and temperature, facilitated species and their interaction with nurse species, and surface area of engineered patches by means of chemical analyses, indicator species analysis, and rarefaction curves. A successional process, resulting from the dynamic interaction of different ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g. nitrogen and organic matter content, and temperature), was the main driver of species assemblage at the community scale, enhancing species richness. Cushion plants act as pioneers, by starting the successional processes that continue with shrubs and tussocks. Tussock grasses have sometimes been found to be capable of creating microhabitat patches independently. The dynamics of species assemblage seem to follow the nested assemblage mechanism, in which the first foundation species to colonize a habitat provides a novel substrate for colonization by other

  5. Spaceborne potential for examining taiga-tundra ecotone form and vulnerability

    Science.gov (United States)

    Montesano, Paul M.; Sun, Guoqing; Dubayah, Ralph O.; Ranson, K. Jon

    2016-07-01

    In the taiga-tundra ecotone (TTE), site-dependent forest structure characteristics can influence the subtle and heterogeneous structural changes that occur across the broad circumpolar extent. Such changes may be related to ecotone form, described by the horizontal and vertical patterns of forest structure (e.g., tree cover, density, and height) within TTE forest patches, driven by local site conditions, and linked to ecotone dynamics. The unique circumstance of subtle, variable, and widespread vegetation change warrants the application of spaceborne data including high-resolution (ecotone form. We demonstrate the potential of spaceborne data for integrating forest height and density to assess TTE form at the scale of forest patches across the circumpolar biome by (1) mapping forest patches in study sites along the TTE in northern Siberia with a multi-resolution suite of spaceborne data and (2) examining the uncertainty of forest patch height from this suite of data across sites of primarily diffuse TTE forms. Results demonstrate the opportunities for improving patch-scale spaceborne estimates of forest height, the vertical component of TTE form, with HRSI. The distribution of relative maximum height uncertainty based on prediction intervals is centered at ˜ 40 %, constraining the use of height for discerning differences in forest patches. We discuss this uncertainty in light of a conceptual model of general ecotone forms and highlight how the uncertainty of spaceborne estimates of height can contribute to the uncertainty in identifying TTE forms. A focus on reducing the uncertainty of height estimates in forest patches may improve depiction of TTE form, which may help explain variable forest responses in the TTE to climate change and the vulnerability of portions of the TTE to forest structure change.

  6. Treeline advances and associated shifts in the ground vegetation alter fine root dynamics and mycelia production in the South and Polar Urals.

    Science.gov (United States)

    Solly, Emily F; Djukic, Ika; Moiseev, Pavel A; Andreyashkina, Nelly I; Devi, Nadezhda M; Göransson, Hans; Mazepa, Valeriy S; Shiyatov, Stepan G; Trubina, Marina R; Schweingruber, Fritz H; Wilmking, Martin; Hagedorn, Frank

    2017-02-01

    Climate warming is shifting the elevational boundary between forests and tundra upwards, but the related belowground responses are poorly understood. In the pristine South and Polar Urals with shifts of the treeline ecotone documented by historical photographs, we investigated fine root dynamics and production of extramatrical mycorrhizal mycelia (EMM) along four elevational transects reaching from the closed forest to the treeless tundra. In addition, we analysed elevational differences in climate and vegetation structure, and excavated trees to estimate related changes in the partitioning between below- and aboveground biomass. Fine root biomass of trees (<2 mm) increased by 13-79% with elevation, paralleled by a 35-72% increase in ground vegetation fine roots from the closed forest to the tundra. During the first year of decomposition, mass loss of fine root litter from different vegetation types was greater at lower elevations in the forest-tundra ecotone. The ratio between fine roots of trees and stem biomass largely increased with elevation in both regions, but these increases were not accompanied by a distinct production of EMM. Production of EMM, however, increased with the presence of ectomycorrhizal trees at the transition from the tundra to the forest. Our results imply that the recorded upward expansion of forest into former tundra in the Ural Mountains by 4-8 m per decade is decreasing the partitioning of plant biomass to fine roots. They further suggest that climate-driven forest advances will alter EMM production rates with potential feedbacks on soil carbon and nutrient cycling in these ecosystems.

  7. Cultural Resilience of Social-ecological Systems in the Nenets and Yamal-Nenets Autonomous Okrugs, Russia: A Focus on Reindeer Nomads of the Tundra

    Directory of Open Access Journals (Sweden)

    Bruce C. Forbes

    2013-12-01

    Full Text Available Empirical data on resilience in social-ecological systems (SESs are reviewed from local and regional scale case studies among full-time nomads in the neighboring Nenets and Yamal-Nenets Autonomous Okrugs, Russia. The focus is on critical cultural factors contributing to SES resilience. In particular, this work presents an integrated view of people situated in specific tundra landscapes that face significantly different prospects for adaptation depending on existing or planned infrastructure associated with oil and gas development. Factors contributing to general resilience are compared to those that are adapted to certain spatial and temporal contexts. Environmental factors include ample space and an abundance of resources, such as fish and game (e.g., geese, to augment the diet of not only the migratory herders, but also residents from coastal settlements. In contrast to other regions, such as the Nenets Okrug, Yamal Nenets households consist of intact nuclear families with high retention among youth in the nomadic tundra population. Accepting attitudes toward exogenous drivers such as climate change and industrial development appear to play a significant role in how people react to both extreme weather events and piecemeal confiscation or degradation of territory. Consciousness of their role as responsible stewards of the territories they occupy has likely been a factor in maintaining viable wildlife populations over centuries. Institutions administering reindeer herding have remained flexible, especially on Yamal, and so accommodate decision-making that is sensitive to herders' needs and timetables. This affects factors such as herd demography, mobility and energetics. Resilience is further facilitated within the existing governance regimes by herders' own agency, most recently in the post-Soviet shift to smaller, privately managed herds that can better utilize available pastures in a highly dynamic environment experiencing rapid socio

  8. Master function for the solid:solution equilibrium of DOC in taiga and tundra soils of N. Russia: experimental and modeling results

    Science.gov (United States)

    Oosterwoud, M. R.; van der Zee, S. E. A. T. M.; Meeussen, J. C. L.; Temminghoff, E. J. M.

    2012-04-01

    The formation and degradation of Dissolved Organic Carbon (DOC) in arctic environments is intensively investigated, in the context of DOC loading of arctic rivers and seas as well as climate change. However, chemical interaction studies are more scarce, in particular those involving modeling. We investigated DOC interactions in N. Russian taiga and tundra soils, and found that water extractable organic carbon (WEOC) comprises only a small fraction of total organic carbon, whereas DOC is again a small fraction of WEOC. The chemical composition of DOC in terms of humic, fulvic, and hydrophilic acids, the concentrations of dominant cations such as Ca and Al, and the solid iron oxide contents appear to differ profoundly for different soil horizons, as well as between taiga and tundra soils. To reconcile these differences, we processed the data with a simple Freundlich model and with advanced LCD (Ligand and Charge Distribution) modeling of DOC interactions. In the LCD modeling, a combination is made of advances such as CD-MUSIC, and Nica-Donnan approaches, that are implemented in the software ORCHESTRA (though adjusted for computational stability by us). To avoid fitting without good foundation, use is made of the generic parameterization of LCD in combination with measured, site-specific chemical data such as concentrations. We observe that the soil samples from both regions, soil types and horizons can be described with a single DOC sorption Freundlich isotherm. More interestingly, for the same set of samples, the LCD modeling enables us to cast DOC sorption into a single Master Function, that takes iron oxide content and Al and Ca concentrations of soil samples into account in a purely predictive way. Based on this Master Function, it is feasible to assess how DOC is sorbed onto the solid surface. In combination with DOC production and degradation models, our results provide a more balanced instrument to address changes in DOC loading to surface waters due to

  9. Warming Effects on Enzyme Activities are Predominant in Sub-surface Soils of an Arctic Tundra Ecosystem over 6-Year Field Manipulation

    Science.gov (United States)

    Kang, H.; Seo, J.; Kim, M.; Jung, J. Y.; Lee, Y. K.

    2017-12-01

    Arctic tundra ecosystems are of great importance because they store a large amount of carbon as un-decomposed organic matter. Global climate change is expected to affect enzyme activities and heterotrophic respiration in Arctic soils, which may accelerate greenhouse gas (GHG) emission through positive biological feedbacks. Unlike laboratory-based incubation experiments, field measurements often show different warming effects on decomposition of organic carbon and releases of GHGs. In the present study, we conducted a field-based warming experiment in Cambridge Bay, Canada (69°07'48″N, 105°03'36″W) by employing passive chambers during growing seasons over 6 years. A suite of enzyme activities (ß-glucosidase, cellobiohydrolase, N-acetylglucosaminidase, leucine aminopeptidase and phenol oxidase), microbial community structure (NGS), microbial abundances (gene copy numbers of bacteria and fungi), and soil chemical properties have been monitored in two depths (0-5 cm and 5-10 cm) of tundra soils, which were exposed to four different treatments (`control', `warming-only', `water-addition only', and both `warming and water-addition'). Phenol oxidase activity increased substantially, and bacterial community structure and abundance changed in the early stage (after 1 year's warming manipulation), but these changes disappeared afterwards. Most hydrolases were enhanced in surface soils by `water-addition only' over the period. However, the long-term effects of warming appeared in sub-surface soils where both `warming only' and `warming and water addition' increased hydrolase activities. Overall results of this study indicate that the warming effects on enzyme activities in surface soils are only short-term (phenol oxidase) or masked by water-limitation (hydrolases). However, hydrolases activities in sub-surface soils are more strongly enhanced than surface soils by warming, probably due to the lack of water limitation. Meanwhile, negative correlations between hydrolase

  10. Ecosystem partitioning of 15N-glycine after long-term climate and nutrient manipulations, plant clipping and addition of labile carbon in a subarctic heath tundra

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Michelsen, Anders; Jonasson, Sven Evert

    2008-01-01

    of nitrogen (N). Here, we studied 15N label incorporation into microbes, plants and soil N pools after both long-term (12 years) climate manipulation and nutrient addition, plant clipping and a pulse-addition of labile C to the soil, in order to gain information on interactions among soil N and C pools...... addition. However, plants exerted control on the soil inorganic N concentrations and recovery of total dissolved 15N (TD15N), and likewise the microbes reduced these soil pools, but only when fed with labile C. Soil microbes in clipped plots were primarily C limited, and the findings of reduced N...... availability, both in the presence of plants and with the combined treatment of plant clipping and addition of sugar, suggest that the plant control of soil N pools was not solely due to plant uptake of soil N, but also partially caused by plants feeding labile C to the soil microbes, which enhanced...

  11. Vegetation history of central Chukotka deduced from permafrost paleoenvironmental records of the El'gygytgyn Impact Crater

    Directory of Open Access Journals (Sweden)

    A. A. Andreev

    2012-08-01

    Full Text Available Frozen sediments from three cores bored in the permafrost surrounding the El'gygytgyn Impact Crater Lake have been studied for pollen, non-pollen palynomorphs, plant macrofossils and rhizopods. The palynological study of these cores contributes to a higher resolution of time intervals presented in a poor temporal resolution in the lacustrine sediments; namely the Allerød and succeeding periods. Moreover, the permafrost records better reflect local environmental changes, allowing a more reliable reconstruction of the local paleoenvironments. The new data confirm that shrub tundra with dwarf birch, shrub alder and willow dominated the lake surroundings during the Allerød warming. Younger Dryas pollen assemblages reflect abrupt changes to grass-sedge-herb dominated environments reflecting significantly drier and cooler climate. Low shrub tundra with dwarf birch and willow dominate the lake vicinity at the onset of the Holocene. The find of larch seeds indicate its local presence around 11 000 cal yr BP and, thus a northward shift of treeline by about 100 km during the early Holocene thermal optimum. Forest tundra with larch and shrub alder stands grew in the area during the early Holocene. After ca. 3500 cal yr BP similar-to-modern plant communities became common in the lake vicinity.

  12. Towards lidar-based mapping of tree age at the Arctic forest tundra ecotone.

    Science.gov (United States)

    Jensen, J.; Maguire, A.; Oelkers, R.; Andreu-Hayles, L.; Boelman, N.; D'Arrigo, R.; Griffin, K. L.; Jennewein, J. S.; Hiers, E.; Meddens, A. J.; Russell, M.; Vierling, L. A.; Eitel, J.

    2017-12-01

    Climate change may cause spatial shifts in the forest-tundra ecotone (FTE). To improve our ability to study these spatial shifts, information on tree demography along the FTE is needed. The objective of this study was to assess the suitability of lidar derived tree heights as a surrogate for tree age. We calculated individual tree age from 48 tree cores collected at basal height from white spruce (Picea glauca) within the FTE in northern Alaska. Tree height was obtained from terrestrial lidar scans (= 3 m), yielding strong predictive relationships between height and age (R2 = 0.86, RMSE 12.21 years, and R2 = 0.93, RMSE = 25.16 years, respectively). The slope coefficient for small and large tree models (16.83 and 12.98 years/m, respectively) indicate that small trees grow 1.3 times faster than large trees at these FTE study sites. Although a strong, predictive relationship between age and height is uncommon in light-limited forest environments, our findings suggest that the sparseness of trees within the FTE may explain the strong tree height-age relationships found herein. Further analysis of 36 additional tree cores recently collected within the FTE near Inuvik, Canada will be performed. Our preliminary analysis suggests that lidar derived tree height could be a reliable proxy for tree age at the FTE, thereby establishing a new technique for scaling tree structure and demographics across larger portions of this sensitive ecotone.

  13. Paleolimnologic and modeling perspectives on the physical and ecological sensitivity of Arctic tundra lakes to temperature changes

    Science.gov (United States)

    Daniels, W.; Russel, J.; Giblin, A. E.; Longo, W. M.; Morrill, C.; Holland-Stergar, P.; Rose, R.; Huang, Y.

    2016-12-01

    Temperatures are warming rapidly across the Arctic, with the potential to substantially alter freshwater ecosystem structure and functioning. Some important processes, such as allochthonous loading or carbon burial, may respond too slowly to observe in modern monitoring efforts, and therefore require alternative approaches to accurately assess. Here we analyze the physical and ecological sensitivity of Alaska tundra lakes to climate change through the lenses of paleolimnology and lake thermal modeling. We compare a 10,000 year long record of biomarker-inferred temperature change (leaf wax hydrogen isotopes) to independent indicators of lake primary production (chlorophyll a), algal community structure (diatom assemblages), and allochthonous inputs (XRF chemistry) from Lake E5 and Upper Capsule Lake near the Toolik Field Station in Alaska (69 °N, 150 °W). Temperatures varied on the order of 2-5 °C over the last 10,000 years, and warmed 1-2 °C during the post-industrial period. Shifts in diatom communities in both lakes reflect increased lake stratification and lake pH during warmer intervals of the Holocene. While lake stratification is a direct response to temperature, we propose that the pH response is due to a combination of two factors. First, an increase in the length of the ice-free season promotes ventilation of respired CO2 out of the lakes. Thermal modeling suggests that lake ice coverage changes by approximately 6-8 days/°C, and so we expect that ice-cover changed by as much as 3-4 weeks throughout the Holocene. Secondarily, sediment core calcium concentrations suggest increased base cation and alkalinity inputs during warmer periods, most likely due to the thermal-induced deepening of the soil active layer and enhanced carbonate rock weathering. Carbon and chlorophyll concentrations appear negatively correlated with temperature over most the Holocene, attributable to the temperature effect on organic matter respiration, although periods of enhanced

  14. Characteristics of summer-time energy exchange in a high Arctic tundra heath 2000–2010

    Directory of Open Access Journals (Sweden)

    Magnus Lund

    2014-07-01

    Full Text Available Global warming will bring about changes in surface energy balance of Arctic ecosystems, which will have implications for ecosystem structure and functioning, as well as for climate system feedback mechanisms. In this study, we present a unique, long-term (2000–2010 record of summer-time energy balance components (net radiation, R n; sensible heat flux, H; latent heat flux, LE; and soil heat flux, G from a high Arctic tundra heath in Zackenberg, Northeast Greenland. This area has been subjected to strong summer-time warming with increasing active layer depths (ALD during the last decades. We observe high energy partitioning into H, low partitioning into LE and high Bowen ratio (β=H/LE compared with other Arctic sites, associated with local climatic conditions dominated by onshore winds, slender vegetation with low transpiration activity and relatively dry soils. Surface saturation vapour pressure deficit (D s was found to be an important variable controlling within-year surface energy partitioning. Throughout the study period, we observe increasing H/R n and LE/R n and decreasing G/R n and β, related to increasing ALD and decreasing soil wetness. Thus, changes in summer-time surface energy balance partitioning in Arctic ecosystems may be of importance for the climate system.

  15. Tundra vegetation change near Barrow, Alaska (1972–2010)

    International Nuclear Information System (INIS)

    Villarreal, S; Johnson, D R; Lara, M J; Tweedie, C E; Hollister, R D; Webber, P J

    2012-01-01

    Knowledge of how arctic plant communities will respond to change has been largely derived from plot level experimental manipulation, not from trends of decade time scale environmental observations. This study documents plant community change in 330 marked plots at 33 sites established during the International Biological Program near Barrow, Alaska in 1972. Plots were resampled in 1999, 2008 and 2010 for species cover and presence. Cluster analysis identified nine plant communities in 1972. Non-metric multidimensional scaling (NMS) indicates that plant communities have changed in different ways over time, and that wet communities have changed more than dry communities. The relative cover of lichens increased over time, while the response of other plant functional groups varied. Species richness and diversity also increased over time. The most dramatic changes in the cover of bryophytes, graminoids and bare ground coincided with a lemming high in 2008. (letter)

  16. Evidence of Facilitation Cascade Processes as Drivers of Successional Patterns of Ecosystem Engineers at the Upper Altitudinal Limit of the Dry Puna.

    Directory of Open Access Journals (Sweden)

    Luca Malatesta

    Full Text Available Facilitation processes constitute basic elements of vegetation dynamics in harsh systems. Recent studies in tropical alpine environments demonstrated how pioneer plant species defined as "ecosystem engineers" are capable of enhancing landscape-level richness by adding new species to the community through the modification of microhabitats, and also provided hints about the alternation of different ecosystem engineers over time. Nevertheless, most of the existing works analysed different ecosystem engineers separately, without considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant communities by facilitation cascades involving different ecosystem engineers, determining the evolution of the microhabitat patches in terms of abiotic resources and beneficiary species hosted. To analyze successional mechanisms, we used a "space-for-time" substitution to account for changes over time, and analyzed data on soil texture, composition, and temperature, facilitated species and their interaction with nurse species, and surface area of engineered patches by means of chemical analyses, indicator species analysis, and rarefaction curves. A successional process, resulting from the dynamic interaction of different ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g. nitrogen and organic matter content, and temperature, was the main driver of species assemblage at the community scale, enhancing species richness. Cushion plants act as pioneers, by starting the successional processes that continue with shrubs and tussocks. Tussock grasses have sometimes been found to be capable of creating microhabitat patches independently. The dynamics of species assemblage seem to follow the nested assemblage mechanism, in which the first foundation species to colonize a habitat provides a novel substrate for

  17. Spaceborne Potential for Examining Taiga-Tundra Ecotone Form and Vulnerability

    Science.gov (United States)

    Montesano, Paul M.; Sun, Guoqing; Dubayah, Ralph O.; Ranson, K. Jon

    2016-01-01

    In the taiga-tundra ecotone (TTE), site-dependent forest structure characteristics can influence the subtle and heterogeneous structural changes that occur across the broad circumpolar extent. Such changes may be related to ecotone form, described by the horizontal and vertical patterns of forest structure (e.g., tree cover, density and height) within TTE forest patches, driven by local site conditions, and linked to ecotone dynamics. The unique circumstance of subtle, variable and widespread vegetation change warrants the application of spaceborne data including high-resolution (less than 5m) spaceborne imagery (HRSI) across broad scales for examining TTE form and predicting dynamics. This study analyzes forest structure at the patch-scale in the TTE to provide a means to examine both vertical and horizontal components of ecotone form. We demonstrate the potential of spaceborne data for integrating forest height and density to assess TTE form at the scale of forest patches across the circumpolar biome by (1) mapping forest patches in study sites along the TTE in northern Siberia with a multi-resolution suite of spaceborne data, and (2) examining the uncertainty of forest patch height from this suite of data across sites of primarily diffuse TTE forms. Results demonstrate the opportunities for improving patch-scale spaceborne estimates of forest height, the vertical component of TTE form, with HRSI. The distribution of relative maximum height uncertainty based on prediction intervals is centered at approximately 40%, constraining the use of height for discerning differences in forest patches. We discuss this uncertainty in light of a conceptual model of general ecotone forms, and highlight how the uncertainty of spaceborne estimates of height can contribute to the uncertainty in identifying TTE forms. A focus on reducing the uncertainty of height estimates in forest patches may improve depiction of TTE form, which may help explain variable forest responses in the

  18. Plant effects on soil carbon storage and turnover in montane beech (Nothofagus) forest and adjacent tussock grassland in New Zealand

    International Nuclear Information System (INIS)

    Tate, K.R.; Scott, N.A.; Ross, D.J.; Parshotam, A.; Claydon, J.J.

    2000-01-01

    Land cover is a critical factor that influences, and is influenced by, atmospheric chemistry and potential climate changes. As considerable uncertainty exists about the effects of differences in land cover on below-ground carbon (C) storage, we have compared soil C contents and turnover at adjacent, unmanaged, indigenous forest (Nothofagus solandri var. cliffortiodes) and grassland (Chionochloa pallens) sites near the timberline in the same climo-edaphic environment in Craigieburn Forest Park, Canterbury, New Zealand. Total soil profile C was 13% higher in the grassland than in the forest ( 19.9 v. 16.7 kg/m 2 ), and based on bomb 14 C measurements, the differences mainly resulted from more recalcitrant soil C in the grassland (5.3 v. 3.0 kg/m 2 ). Estimated annual net primary production was about 0.4 kg C/m 2 for the forest and 0.5 kg C/m 2 for the grassland; estimated annual root production was about 0.2 and 0.4 kg C/m 2 , respectively. In situ soil surface CO 2 -C production was similar in the grassland and the forest. The accumulation of recalcitrant soil C was unrelated to differences in mineral weathering or soil texture, but was apparently enhanced by greater soil water retention in the grassland ecosystem. Thus, contrary to model (ROTHC) predictions, this soil C fraction could be expected to respond to the effects of climate change on precipitation patterns. Overall, our results suggest that the different patterns of soil C accumulation in these ecosystems have resulted from differences in plant C inputs, soil aluminium, and soil physical characteristics, rather than from differences in soil mineral weathering or texture. Copyright (2000) CSIRO Australia

  19. Antarctotrechus balli sp. n. (Carabidae, Trechini: the first ground beetle from Antarctica

    Directory of Open Access Journals (Sweden)

    Allan C. Ashworth

    2016-11-01

    Full Text Available Fossil elytra of a small trechine carabid are reported from the Oliver Bluffs on the Beardmore Glacier at lat. 85°S. They were compared with counterparts from the extant genera Trechisibus, Tasmanorites, Oxytrechus and Pseudocnides. The fossils share some characters but are sufficiently different to be described as a new genus and species. We named the new species Antarctotrechus balli in honour of George E. Ball who made major contributions to the study of carabids through his own research and the training of students while at the University of Alberta, Edmonton, Alberta, Canada. The closest extant relatives to the extinct A. balli are species of Trechisibus, which inhabit South America, the Falkland Islands and South Georgia, and Tasmanorites, which inhabit Tasmania, Australia. Plant fossils associated with A. balli included Nothofagus (southern beech, Ranunculus (buttercup, moss mats and cushion plants that were part of a tundra biome. Collectively, the stratigraphic relationships and the growth characteristics of the fossil plants indicate that A. balli inhabited the sparsely-vegetated banks of a stream that was part of an outwash plain at the head of a fjord in the Transantarctic Mountains. Other insects represented by fossils in the tundra biome include a listroderine weevil and a cyclorrhaphan fly. The age of the fossils, based on comparison of associated pollen with 40Ar/39Ar dated pollen assemblages from the McMurdo Dry Valleys, is probably Early to Mid-Miocene in the range 14–20 Ma. The tundra biome, including A. balli, became extinct in the interior of Antarctica about 14 Ma and on the margins of the continent by 10–13 Ma. A. balli confirms that trechines were once widely distributed in Gondwana. For A. balli and other elements of the tundra biome it appears they continued to inhabit a warmer Antarctica for many millions of years after rifting of Tasmania (45 Ma and southern South America (31 Ma.

  20. Future of Plant Functional Types in Terrestrial Biosphere Models

    Science.gov (United States)

    Wullschleger, S. D.; Euskirchen, E. S.; Iversen, C. M.; Rogers, A.; Serbin, S.

    2015-12-01

    Earth system models describe the physical, chemical, and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Plant functional types (PFTs) have been adopted by modelers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current, and future distribution of vegetation. Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration, and shrub expansion. However, representation of above- and especially belowground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait-environment relationships. Surprisingly, despite being important to land-atmosphere interactions of carbon, water, and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology, and remote sensing will be

  1. The response of tundra springtails (Collembola, Hexapoda) to human activity on the Murman coast of the Kola Penisula, Russia

    Science.gov (United States)

    Olejniczak, Izabella; Boniecki, Paweł; Kaliszewicz, Anita; Panteleeva, Ninel

    2018-03-01

    This study was carried out in the Dalne Zelentsy settlement (69°07‧N, 36°03‧E) on the Barents Sea of the Kola Penisula in Russia. Three transects were established: the 'new garden transect'; the 'old garden transect'; and the 'settlement transect'. Overall, the number of springtails increased with distance from the 'settlement' and decreased from the 'old garden' towards the tundra. However, in the case of the 'new garden transect' there were no clear trends in springtail abundance. Eleven species of springtail were found, with Parisotoma notabilis being found at each of the studied areas along the transects. Trends in the species diversity of the springtail communities were not clear, and the values of H‧ ranged from 1.36 to 2.08. The springtail communities located 10 m from the 'new garden' and the 'old garden' were characterized by low species diversity compared with the other sites along the transects (H‧ values of 1.36 and 1.67, respectively). There were no differences in species diversity among the springtail communities along the 'settlement transect'.

  2. The impact of fire on nitrogen availability in the Yukon Kuskokwim Delta, Alaska

    Science.gov (United States)

    Jardine, L.; Natali, S.; Schade, J. D.; Holmes, R. M.; Mann, P. J.; Pena, H., III

    2017-12-01

    Rising temperatures and changing precipitation patterns in the Arctic are increasing the severity and frequency of fires, resulting in direct and indirect changes to permafrost ecosystems. Due to slow rates of decomposition, nitrogen (N) is a highly limiting resource in tundra. The availability of N can be substantially altered following fire as a direct result of combustion of organic matter and also due to long-term changes in ecosystem structure and function. It is critical to understand both the short- (years) and long (decades)-term effects of fire on N availability because of the role of N in arctic ecosystems. In order to better understand the availability of N following fire, we collected active layer and permafrost soil and vegetation samples from unburned, 2015 burn scars, and 1972 burn scars in peat plateau tundra in the Yukon Kuskokwim Delta, Alaska. We measured carbon (C) and nitrogen (N) concentrations and pools in plants and soils, and soil organic matter content, extractable inorganic N and potentially mineralizable N in active layer (0-30 cm) and surface permafrost (to 100 cm). We found that active layer N concentrations were significantly lower in the two-year burn, but N concentrations in the 45-year burn were comparable to that of unburned tundra. The levels of ammonium in the active layer were nearly three times higher in both the two- and in the 45-year-old burns, while extractable nitrate was low (disturbance by fire, there is still a large potential for N assimilation, nitrification, or nitrous oxide production in tundra ecosystems. These findings are especially relevant as fire regimes intensify across the Arctic, which may have long-term consequences for plant and soil communities and ecosystem C and N storage.

  3. Effect of climate changes in the holocene on the distribution of humic substances in the profile of forest-tundra peat mounds

    Science.gov (United States)

    Vasilevich, R. S.; Beznosikov, V. A.

    2017-11-01

    The molecular composition of humic substances in permafrost peatlands of the forest-tundra zone in northeastern European Russia has been characterized for the first time on the basis of systematic studies. Changes in the molar x(H): x(C) ratio along the peat profiles have been revealed, which is due to the activation of cryogenic processes in the upper part of the seasonally thawing layer, the natural selection of condensed humic molecules, and the botanical composition and degree of degradation of peat, which reflect the climatic features of the area in the Holocene. Dry-peat soils of mounds are worse heated during the summer period because of the buffering effect of moss litter, which results in a lower degree of condensation of humic and fulvic acid molecules in the peat horizons down to the permafrost table. Transformation of quantitative and qualitative parameters of specific organic compounds occurs at the permafrost boundary of peatlands, which can serve as an indicator of recent climate changes in high latitudes.

  4. Abiotic and biotic controls of spatial pattern at alpine treeline

    Science.gov (United States)

    Malanson, George P.; Xiao, Ningchuan; Alftine, K.J.; Bekker, Mathew; Butler, David R.; Brown, Daniel G.; Cairns, David M.; Fagre, Daniel; Walsh, Stephen J.

    2000-01-01

    At alpine treeline, trees and krummholz forms affect the environment in ways that increase their growth and reproduction. We assess the way in which these positive feedbacks combine in spatial patterns to alter the environment in the neighborhood of existing plants. The research is significant because areas of alpine tundra are susceptible to encroachment by woody species as climate changes. Moreover, understanding the general processes of plant invasion is important. The importance of spatial pattern has been recognized, but the spatial pattern of positive feedbacks per se has not been explored in depth. We present a linked set of models of vegetation change at an alpine forest-tundra ecotone. Our aim is to create models that are as simple as possible in order to test specific hypotheses. We present results from a model of the resource averaging hypothesis and the positive feedback switch hypothesis of treelines. We compare the patterns generated by the models to patterns observed in fine scale remotely sensed data.

  5. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks

    Science.gov (United States)

    Euskirchen, Eugénie S.; McGuire, Anthony David; Chapin, F. Stuart; Yi, S.; Thompson, Catharine Copass

    2009-01-01

    Assessing potential future changes in arctic and boreal plant species productivity, ecosystem composition, and canopy complexity is essential for understanding environmental responses under expected altered climate forcing. We examined potential changes in the dominant plant functional types (PFTs) of the sedge tundra, shrub tundra, and boreal forest ecosystems in ecotonal northern Alaska, USA, for the years 2003–2100. We compared energy feedbacks associated with increases in biomass to energy feedbacks associated with changes in the duration of the snow-free season. We based our simulations on nine input climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) and a new version of the Terrestrial Ecosystem Model (TEM) that incorporates biogeochemistry, vegetation dynamics for multiple PFTs (e.g., trees, shrubs, grasses, sedges, mosses), multiple vegetation pools, and soil thermal regimes. We found mean increases in net primary productivity (NPP) in all PFTs. Most notably, birch (Betula spp.) in the shrub tundra showed increases that were at least three times larger than any other PFT. Increases in NPP were positively related to increases in growing-season length in the sedge tundra, but PFTs in boreal forest and shrub tundra showed a significant response to changes in light availability as well as growing-season length. Significant NPP responses to changes in vegetation uptake of nitrogen by PFT indicated that some PFTs were better competitors for nitrogen than other PFTs. While NPP increased, heterotrophic respiration (RH) also increased, resulting in decreases or no change in net ecosystem carbon uptake. Greater aboveground biomass from increased NPP produced a decrease in summer albedo, greater regional heat absorption (0.34 ± 0.23 W·m−2·10 yr−1 [mean ± SD]), and a positive feedback to climate warming. However, the decrease in albedo due to a shorter snow season (−5.1 ± 1.6 d/10 yr) resulted in much greater regional heat

  6. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    Science.gov (United States)

    Thompson, Catharine Copass; McGuire, A.D.; Clein, Joy S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  7. Floristic and vegetation structure of a grassland plant community on shallow basalt in southern Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Fett Pinto

    2013-03-01

    Full Text Available Few studies have adequately described the floristic and structural features of natural grasslands associated with shallow basalt soils in southern Brazil. This study was carried out on natural grazing land used for livestock production in the municipality of Santana do Livramento, in the Campanha region of the state of Rio Grande do Sul, Brazil. The aim of the study was to describe the floristic and structural diversity of the area. The floristic list obtained comprises 229 plant taxa from 40 botanical families, with a predominance of the families Poaceae (62, Asteraceae (28, Fabaceae (16 and Cyperaceae (12. The estimated diversity and evenness in the community were 3.00 and 0.874, respectively. Bare soil and rock outcrops accounted for 19.3% of the area, resulting in limited forage availability. Multivariate analysis revealed two well-defined groups among the sampling units. One group showed a high degree of internal aggregation, associated with deep soils, and was characterized by the presence of tussocks, whereas the other was less aggregate and was characterized by prostrate species growing on shallow soil. Ordination analysis indicated a gradient of moisture and of soil depth in the study area, resulting in different vegetation patterns. These patterns were analogous to the vegetation physiognomies described for Uruguayan grasslands. Overall, the grassland community studied is similar to others found throughout southern Brazil, although it harbors more winter forage species. In addition, the rare grass Paspalum indecorum Mez is locally dominant in some patches, behaving similarly to P. notatum Fl., a widespread grass that dominates extensive grassland areas in southern Brazil.

  8. Water balance along a chain of tundra lakes: A 20-year isotopic perspective

    Science.gov (United States)

    Gibson, J. J.; Reid, R.

    2014-11-01

    Stable isotope measurements and isotope mass balance (IMB) calculations are presented in support of an unprecedented 20-year water balance assessment for a tailings pond and a chain of downstream lakes at the Salmita-Tundra mine site, situated near Courageous Lake, Northwest Territories, Canada (65°03‧N; 111°11‧W). The method is shown to provide a comprehensive annual and interannual perspective of water balance fluxes along a chain of lakes during the period 1991-2010, without the need for continuous streamflow gauging, and reveals important lake-order-dependent patterns of land-surface runoff, discharge accumulation, and several key diagnostic ratios, i.e., evaporation/inflow, evaporation/evapotranspiration, land-surface-runoff/precipitation and discharge/ precipitation. Lake evaporation is found to be a significant component of the water balance, accounting for between 26% and 32% of inflow to natural lakes and between 72% and 100% of inflow to mine-tailings ponds. Evaporation/evapotranspiration averages between 7% and 22% and is found to be higher in low-precipitation years, and in watersheds with a higher proportion of lakes. Runoff ratios for land-surface drainages and runoff ratios for watersheds (including lakes) ranged between 14-47% and 20-47%, respectively, and were higher in low precipitation years, in watersheds with a higher proportion of lakes, and in watersheds less affected by mining development. We propose that in general these two runoff ratios will likely converge as lake order increases and as land cover conditions become regionally representative. Notably, the study demonstrates application of IMB, validated with streamflow measurements, to constrain local water balance in a remote low-arctic region. For IMB chain-of-lakes applications, it underlines the importance of accounting for evaporatively-enriched upstream sources to avoid overestimation of evaporation losses.

  9. Improving Classification of Airborne Laser Scanning Echoes in the Forest-Tundra Ecotone Using Geostatistical and Statistical Measures

    Directory of Open Access Journals (Sweden)

    Nadja Stumberg

    2014-05-01

    Full Text Available The vegetation in the forest-tundra ecotone zone is expected to be highly affected by climate change and requires effective monitoring techniques. Airborne laser scanning (ALS has been proposed as a tool for the detection of small pioneer trees for such vast areas using laser height and intensity data. The main objective of the present study was to assess a possible improvement in the performance of classifying tree and nontree laser echoes from high-density ALS data. The data were collected along a 1000 km long transect stretching from southern to northern Norway. Different geostatistical and statistical measures derived from laser height and intensity values were used to extent and potentially improve more simple models ignoring the spatial context. Generalised linear models (GLM and support vector machines (SVM were employed as classification methods. Total accuracies and Cohen’s kappa coefficients were calculated and compared to those of simpler models from a previous study. For both classification methods, all models revealed total accuracies similar to the results of the simpler models. Concerning classification performance, however, the comparison of the kappa coefficients indicated a significant improvement for some models both using GLM and SVM, with classification accuracies >94%.

  10. Biogeochemical controls on microbial CH4 and CO2 production in Arctic polygon tundra

    Science.gov (United States)

    Zheng, J.

    2016-12-01

    Accurately simulating methane (CH4) and carbon dioxide (CO2) emissions from high latitude soils is critically important for reducing uncertainties in soil carbon-climate feedback predictions. The signature polygonal ground of Arctic tundra generates high level of heterogeneity in soil thermal regime, hydrology and oxygen availability, which limits the application of current land surface models with simple moisture response functions. We synthesized CH4 and CO2 production measurements from soil microcosm experiments across a wet-to dry permafrost degradation gradient from low-centered (LCP) to flat-centered (FCP), and high-centered polygons (HCP) to evaluate the relative importance of biogeochemical processes and their response to warming. More degraded polygon (HCP) showed much less carbon loss as CO2 or CH4, while the total CO2 production from FCP is comparable to that from LCP. Maximum CH4 production from the active layer of LCP was nearly 10 times that of permafrost and FCP. Multivariate analyses identifies gravimetric water content and organic carbon content as key predictors for CH4 production, and iron reduction as a key regulator of pH. The synthesized data are used to validate the geochemical model PHREEQC with extended anaerobic organic substrate turnover, fermentation, iron reduction, and methanogenesis reactions. Sensitivity analyses demonstrate that better representations of anaerobic processes and their pH dependency could significantly improve estimates of CH4 and CO2 production. The synthesized data suggest local decreases in CH4 production along the polygon degradation gradient, which is consistent with previous surface flux measurements. Methane oxidation occurring through the soil column of degraded polygons contributes to their low CH4 emissions as well.

  11. Behaviour of wintering Tundra Swans Cygnus columbianus columbianus at the Eel River delta and Humboldt Bay, California, USA

    Science.gov (United States)

    Black, Jeffrey M.; Gress, Carol; Byers, Jacob W.; Jennings, Emily; Ely, Craig R.

    2010-01-01

    Tundra Swan Cygnus columbianus columbinanus phenology and behaviour at the Eel River delta and southern Humboldt Bay in northern California, USA, is described. Counts made each January from 1963 onwards peaked at 1,502 swans in 1988. Monthly counts recorded during the 2006/07 and 2008/09 winters peaked in February, at 1,033 and 772 swans respectively. Swans roosted on ephemeral ponds at the Humboldt Bay National Wildlife Refuge, on ephemeral ponds within grassland pastures in the vicinity of the Refuge, and perhaps also used the Eel River as a roost. Flights between Refuge roosts and the pastures and ponds occurred in the two hours after sunrise and before dark. In winters 2008/09 and 2009/10, the percentage of cygnets in the flocks was 10.6% and 21.4% respectively, and increased to =31% cygnets each year after most swans had departed from the area in March. Average brood size in 2009/10 was 2.1 cygnets. Daily activities consisted of foraging (44.9% of activities recorded), comfort behaviour (22.1%), locomotion (16.2%) and vigilance (15.5%). Eight neck-collared swans identified in the wintering flock were marked at four locations in different parts of Alaska, up to 1,300 km apart.

  12. Definition of sampling units begets conclusions in ecology: the case of habitats for plant communities

    Directory of Open Access Journals (Sweden)

    Martin A. Mörsdorf

    2015-03-01

    Full Text Available In ecology, expert knowledge on habitat characteristics is often used to define sampling units such as study sites. Ecologists are especially prone to such approaches when prior sampling frames are not accessible. Here we ask to what extent can different approaches to the definition of sampling units influence the conclusions that are drawn from an ecological study? We do this by comparing a formal versus a subjective definition of sampling units within a study design which is based on well-articulated objectives and proper methodology. Both approaches are applied to tundra plant communities in mesic and snowbed habitats. For the formal approach, sampling units were first defined for each habitat in concave terrain of suitable slope using GIS. In the field, these units were only accepted as the targeted habitats if additional criteria for vegetation cover were fulfilled. For the subjective approach, sampling units were defined visually in the field, based on typical plant communities of mesic and snowbed habitats. For each approach, we collected information about plant community characteristics within a total of 11 mesic and seven snowbed units distributed between two herding districts of contrasting reindeer density. Results from the two approaches differed significantly in several plant community characteristics in both mesic and snowbed habitats. Furthermore, differences between the two approaches were not consistent because their magnitude and direction differed both between the two habitats and the two reindeer herding districts. Consequently, we could draw different conclusions on how plant diversity and relative abundance of functional groups are differentiated between the two habitats depending on the approach used. We therefore challenge ecologists to formalize the expert knowledge applied to define sampling units through a set of well-articulated rules, rather than applying it subjectively. We see this as instrumental for progress in

  13. Definition of sampling units begets conclusions in ecology: the case of habitats for plant communities.

    Science.gov (United States)

    Mörsdorf, Martin A; Ravolainen, Virve T; Støvern, Leif Einar; Yoccoz, Nigel G; Jónsdóttir, Ingibjörg Svala; Bråthen, Kari Anne

    2015-01-01

    In ecology, expert knowledge on habitat characteristics is often used to define sampling units such as study sites. Ecologists are especially prone to such approaches when prior sampling frames are not accessible. Here we ask to what extent can different approaches to the definition of sampling units influence the conclusions that are drawn from an ecological study? We do this by comparing a formal versus a subjective definition of sampling units within a study design which is based on well-articulated objectives and proper methodology. Both approaches are applied to tundra plant communities in mesic and snowbed habitats. For the formal approach, sampling units were first defined for each habitat in concave terrain of suitable slope using GIS. In the field, these units were only accepted as the targeted habitats if additional criteria for vegetation cover were fulfilled. For the subjective approach, sampling units were defined visually in the field, based on typical plant communities of mesic and snowbed habitats. For each approach, we collected information about plant community characteristics within a total of 11 mesic and seven snowbed units distributed between two herding districts of contrasting reindeer density. Results from the two approaches differed significantly in several plant community characteristics in both mesic and snowbed habitats. Furthermore, differences between the two approaches were not consistent because their magnitude and direction differed both between the two habitats and the two reindeer herding districts. Consequently, we could draw different conclusions on how plant diversity and relative abundance of functional groups are differentiated between the two habitats depending on the approach used. We therefore challenge ecologists to formalize the expert knowledge applied to define sampling units through a set of well-articulated rules, rather than applying it subjectively. We see this as instrumental for progress in ecology as only rules

  14. Hydrological patterns in warming permafrost: comparing results from a control and drained site on a floodplain tundra near Chersky, Northeast Siberia

    Science.gov (United States)

    Boelck, Sandra; Goeckede, Mathias; Hildebrandt, Anke; Vonk, Jorien; Heimann, Martin

    2017-04-01

    Permafrost areas represent a major reservoir for organic carbon. At the same time, permafrost ecosystems are very susceptible to changing climate conditions. The stability of this reservoir, i.e. changes in lateral and vertical carbon fluxes in permafrost ecosystems, largely depends on groundwater level, temperature and vegetation community. Particularly during summer when the soil thaws and a so-called active layer develops, fluctuations in carbon flux rates are often dominantly driven by water availability. Such dry soil conditions are expected to become more frequent in the future due to deepening active layers as a consequence of climate change. This could result in degradation of polygonal tundra landscape properties with channelled water transport pathways. Therefore, water table depth and the associated groundwater fluxes are crucial to understand transport patterns and to quantify the lateral export of carbon through an aquatic system. Consequently, a fundamental understanding of hydrological patterns on ecosystem structure and function is required to close the carbon balance of permafrost ecosystems. This study focuses on small-scale hydrological patterns and its influencing factors, such as topography and precipitation events. Near Chersky, Northeast Siberia, we monitored (i) a control site of floodplain tundra, and (ii) a drained site, characterised by a drainage ring which was constructed in 2004, to study the effects of water availability on the carbon cycle. This experimental disturbance simulates drainage effects following the degradation of ice-rich permafrost ecosystems under future climate change. Continuous monitoring of water table depth in drained and control areas revealed small-scale water table variations. At several key locations, we collected water samples to determine the isotopic composition (δ18O, δD) of surface water, suprapermafrost groundwater and precipitation. Furthermore, a weir at the drainage ditch was constructed to directly

  15. Rough-legged buzzards, Arctic foxes and red foxes in a tundra ecosystem without rodents.

    Directory of Open Access Journals (Sweden)

    Ivan Pokrovsky

    Full Text Available Small rodents with multi-annual population cycles strongly influence the dynamics of food webs, and in particular predator-prey interactions, across most of the tundra biome. Rodents are however absent from some arctic islands, and studies on performance of arctic predators under such circumstances may be very instructive since rodent cycles have been predicted to collapse in a warming Arctic. Here we document for the first time how three normally rodent-dependent predator species-rough-legged buzzard, arctic fox and red fox - perform in a low-arctic ecosystem with no rodents. During six years (in 2006-2008 and 2011-2013 we studied diet and breeding performance of these predators in the rodent-free Kolguev Island in Arctic Russia. The rough-legged buzzards, previously known to be a small rodent specialist, have only during the last two decades become established on Kolguev Island. The buzzards successfully breed on the island at stable low density, but with high productivity based on goslings and willow ptarmigan as their main prey - altogether representing a novel ecological situation for this species. Breeding density of arctic fox varied from year to year, but with stable productivity based on mainly geese as prey. The density dynamic of the arctic fox appeared to be correlated with the date of spring arrival of the geese. Red foxes breed regularly on the island but in very low numbers that appear to have been unchanged over a long period - a situation that resemble what has been recently documented from Arctic America. Our study suggests that the three predators found breeding on Kolguev Island possess capacities for shifting to changing circumstances in low-arctic ecosystem as long as other small - medium sized terrestrial herbivores are present in good numbers.

  16. Identifying Factors Causing Variability in Greenhouse Gas (GHG) Fluxes in a Polygonal Tundra Landscape

    Science.gov (United States)

    Arora, B.; Wainwright, H. M.; Vaughn, L. S.; Curtis, J. B.; Torn, M. S.; Dafflon, B.; Hubbard, S. S.

    2017-12-01

    Greenhouse gas (GHG) flux variations in Arctic tundra environments are important to understand because of the vast amount of soil carbon stored in these regions and the potential of these regions to convert from a global carbon sink to a source under warmer conditions. Multiple factors potentially contribute to GHG flux variations observed in these environments, including snowmelt timing, growing season length, active layer thickness, water table variations, and temperature fluctuations. The objectives of this study are to investigate temporal variability in CO2 and CH4 fluxes at Barrow, AK over three successive growing seasons (2012-14) and to determine the factors influencing this variability using a novel entropy-based classification scheme. We analyzed soil, vegetation, and climate parameters as well as GHG fluxes at multiple locations within low-, flat- and high-centered polygons at Barrow, AK as part of the Next Generation Ecosystem Experiment (NGEE) Arctic project. Entropy results indicate that different environmental factors govern variability in GHG fluxes under different spatiotemporal settings. In particular, flat-centered polygons are more likely to become significant sources of CO2 during warm and dry years as opposed to high-centered polygons that contribute considerably to CO2 emissions during cold and wet years. In contrast, the highest CH4 emissions were always associated with low-centered polygons. Temporal variability in CO2 fluxes was primarily associated with factors affecting soil temperature and/or vegetation dynamics during early and late season periods. Temporal variability in CH4 fluxes was primarily associated with changes in vegetation cover and its covariability with primary controls such as seasonal thaw—rather than direct response to changes in soil moisture. Overall, entropy results document which factors became important under different spatiotemporal settings, thus providing clues concerning the manner in which ecosystem

  17. Getting to the root of the matter: landscape implications of plant-fungal interactions for tree migration in Alaska

    Science.gov (United States)

    Rebecca E. Hewitt; Alec P. Bennett; Amy L. Breen; Teresa N. Hollingsworth; D. Lee Taylor; F. Stuart Chapin; T. Scott Rupp

    2016-01-01

    Context   Forecasting the expansion of forest into Alaska tundra is critical to predicting regional ecosystem services, including climate feedbacks such as carbon storage. Controls over seedling establishment govern forest development and migration potential. Ectomycorrhizal fungi (EMF), obligate symbionts of all Alaskan tree species, are...

  18. Holocene evolution of lakes in the forest-tundra biome of northern Manitoba, Canada

    Science.gov (United States)

    Hobbs, William O.; Edlund, Mark B.; Umbanhowar, Charles E.; Camill, Philip; Lynch, Jason A.; Geiss, Christoph; Stefanova, Vania

    2017-03-01

    The late-Quaternary paleoenvironmental history of the western Hudson Bay region of Subarctic Canada is poorly constrained. Here, we present a regional overview of the post-glacial history of eight lakes which span the forest-tundra biome in northern Manitoba. We show that during the penultimate drainage phase of Lake Agassiz the lake water had an estimated pH of ∼6.0, with abundant quillwort (Isöetes spp.) along the lakeshore and littoral zone and some floating green algae (Botryococcus spp. and Pediastrum sp.). Based on multiple sediment proxies, modern lake ontogeny in the region commenced at ∼7500 cal yrs BP. Pioneering diatom communities were shaped by the turbid, higher alkalinity lake waters which were influenced by base cation weathering of the surrounding till following Lake Agassiz drainage. By ∼7000 cal yrs BP, soil development and Picea spp. establish and the lakes began a slow trajectory of acidification over the remaining Holocene epoch. The natural acidification of the lakes in this region is slow, on the order of several millennia for one pH unit. Each of the study lakes exhibit relatively stable aquatic communities during the Holocene Thermal Maximum, suggesting this period is a poor analogue for modern climatic changes. During the Neoglacial, the beginning of the post-Little Ice Age period represents the most significant climatic event to impact the lakes of N. Manitoba. In the context of regional lake histories, the rate of diatom floristic change in the last 200-300 years is unprecedented, with the exception of post-glacial lake ontogeny in some of the lakes. For nearly the entire history of the lakes in this region, there is a strong linkage between landscape development and the aquatic ecosystems; however this relationship appears to become decoupled or less strong in the post-LIA period. Significant 20th century changes in the aquatic ecosystem cannot be explained wholly by changes in the terrestrial ecosystem, suggesting that future

  19. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections

    Science.gov (United States)

    Kaplan, J.O.; Bigelow, N.H.; Prentice, I.C.; Harrison, S.P.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Matveyeva, N.V.; McGuire, A.D.; Murray, D.F.; Razzhivin, V.Y.; Smith, B.; Walker, D.A.; Anderson, P.M.; Andreev, A.A.; Brubaker, L.B.; Edwards, M.E.; Lozhkin, A.V.

    2003-01-01

    Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55??N, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to > 700 ppm) at high latitudes were slight compared with the effects of the change in climate.

  20. Beringian paleoecology inferred from permafrost-preserved fungal DNA

    DEFF Research Database (Denmark)

    Lydolph, Magnus C; Jacobsen, Jonas; Arctander, Peter

    2005-01-01

    of eukaryotic DNA sequences that were 510 bp long, including sequences of various fungi, plants, and invertebrates, could be obtained reproducibly from samples that were up to 300,000 to 400,000 years old. The sequences revealed that ancient fungal communities included a diversity of cold-adapted yeasts, dark......-pigmented fungi, plant-parasitic fungi, and lichen mycobionts. DNA traces of tree-associated macrofungi in a modern tundra sample indicated that there was a shift in fungal diversity following the last ice age and supported recent results showing that there was a severe change in the plant composition...

  1. Temperature-induced recruitment pulses of Arctic dwarf shrub communities

    Czech Academy of Sciences Publication Activity Database

    Büntgen, Ulf; Hellmann, L.; Tegel, W.; Normand, S.; Myers-Smith, I.; Kirdyanov, A. V.; Nievergelt, D.; Schweingruber, F. H.

    2015-01-01

    Roč. 103, č. 2 (2015), s. 489-501 ISSN 0022-0477 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : recent climate-change * tree-line * environmental-change * forest limit * northern siberia * pinus-sylvestris * kola-peninsula * carbon-cycle * picea-abies * polar urals * Arctic tundra * cambial activity * climate change * dendroecology * dwarf shrubs * East Greenland * plant longevity * plant population and community dynamics * vegetation dynamics * wood anatomy Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 6.180, year: 2015

  2. Density and Habitat Relationships of the Endemic White Mountain Fritillary (Boloria chariclea montinus (Lepidoptera: Nymphalidae

    Directory of Open Access Journals (Sweden)

    Kent P. McFarland

    2017-06-01

    Full Text Available We conducted point counts in the alpine zone of the Presidential Range of the White Mountains, New Hampshire, USA, to estimate the distribution and density of the rare endemic White Mountain Fritillary (Boloria chariclea montinus. Incidence of occurrence and density of the endemic White Mountain Fritillary during surveys in 2012 and 2013 were greatest in the herbaceous-snowbank plant community. Densities at points in the heath-shrub-rush plant community were lower, but because this plant community is more widespread in the alpine zone, it likely supports the bulk of adult fritillaries. White Mountain Fritillary used cushion-tussock, the other alpine plant community suspected of providing habitat, only sparingly. Detectability of White Mountain Fritillaries varied as a consequence of weather conditions during the survey and among observers, suggesting that raw counts yield biased estimates of density and abundance. Point counts, commonly used to study and monitor populations of birds, were an effective means of sampling White Mountain Fritillary in the alpine environment where patches of habitat are small, irregularly shaped, and widely spaced, rendering line-transect methods inefficient and difficult to implement.

  3. Host and geographic structure of endophytic and endolichenic fungi at a continental scale.

    Science.gov (United States)

    U'Ren, Jana M; Lutzoni, François; Miadlikowska, Jolanta; Laetsch, Alexander D; Arnold, A Elizabeth

    2012-05-01

    Endophytic and endolichenic fungi occur in healthy tissues of plants and lichens, respectively, playing potentially important roles in the ecology and evolution of their hosts. However, previous sampling has not comprehensively evaluated the biotic, biogeographic, and abiotic factors that structure their communities. Using molecular data we examined the diversity, composition, and distributions of 4154 endophytic and endolichenic Ascomycota cultured from replicate surveys of ca. 20 plant and lichen species in each of five North American sites (Madrean coniferous forest, Arizona; montane semideciduous forest, North Carolina; scrub forest, Florida; Beringian tundra and forest, western Alaska; subalpine tundra, eastern central Alaska). Endolichenic fungi were more abundant and diverse per host species than endophytes, but communities of endophytes were more diverse overall, reflecting high diversity in mosses and lycophytes. Endophytes of vascular plants were largely distinct from fungal communities that inhabit mosses and lichens. Fungi from closely related hosts from different regions were similar in higher taxonomy, but differed at shallow taxonomic levels. These differences reflected climate factors more strongly than geographic distance alone. Our study provides a first evaluation of endophytic and endolichenic fungal associations with their hosts at a continental scale. Both plants and lichens harbor abundant and diverse fungal communities whose incidence, diversity, and composition reflect the interplay of climatic patterns, geographic separation, host type, and host lineage. Although culture-free methods will inform future work, our study sets the stage for empirical assessments of ecological specificity, metabolic capability, and comparative genomics.

  4. Arctic Small Rodents Have Diverse Diets and Flexible Food Selection.

    Directory of Open Access Journals (Sweden)

    Eeva M Soininen

    Full Text Available The ecology of small rodent food selection is poorly understood, as mammalian herbivore food selection theory has mainly been developed by studying ungulates. Especially, the effect of food availability on food selection in natural habitats where a range of food items are available is unknown. We studied diets and selectivity of grey-sided voles (Myodes rufocanus and tundra voles (Microtus oeconomus, key herbivores in European tundra ecosystems, using DNA metabarcoding, a novel method enabling taxonomically detailed diet studies. In order to cover the range of food availabilities present in the wild, we employed a large-scale study design for sampling data on food availability and vole diets. Both vole species had ingested a range of plant species and selected particularly forbs and grasses. Grey-sided voles also selected ericoid shrubs and tundra voles willows. Availability of a food item rarely affected its utilization directly, although seasonal changes of diets and selection suggest that these are positively correlated with availability. Moreover, diets and selectivity were affected by availability of alternative food items. These results show that the focal sub-arctic voles have diverse diets and flexible food preferences and rarely compensate low availability of a food item with increased searching effort. Diet diversity itself is likely to be an important trait and has previously been underrated owing to methodological constraints. We suggest that the roles of alternative food item availability and search time limitations for small rodent feeding ecology should be investigated.Annotated Checklist of the Panarctic Flora (PAF, Vascular plants. Available at: http://nhm2.uio.no/paf/, accessed 15.6.2012.

  5. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Blok, Daan; Heijmans, Monique M P D; Berendse, Frank [Nature Conservation and Plant Ecology Group, Wageningen University, PO Box 47, 6700 AA, Wageningen (Netherlands); Schaepman-Strub, Gabriela [Institute of Evolutionary Biology and Environmental Studies, University of Zuerich, Winterthurerstrasse 190, 8057 Zuerich (Switzerland); Bartholomeus, Harm [Centre for Geo-Information, Wageningen University, PO Box 47, 6700 AA, Wageningen (Netherlands); Maximov, Trofim C, E-mail: daan.blok@wur.nl [Biological Problems of the Cryolithozone, Russian Academy of Sciences, Siberian Division, 41, Lenin Prospekt, Yakutsk, The Republic of Sakha, Yakutia 677980 (Russian Federation)

    2011-07-15

    Recently observed Arctic greening trends from normalized difference vegetation index (NDVI) data suggest that shrub growth is increasing in response to increasing summer temperature. An increase in shrub cover is expected to decrease summer albedo and thus positively feed back to climate warming. However, it is unknown how albedo and NDVI are affected by shrub cover and inter-annual variations in the summer climate. Here, we examine the relationship between deciduous shrub fractional cover, NDVI and albedo using field data collected at a tundra site in NE Siberia. Field data showed that NDVI increased and albedo decreased with increasing deciduous shrub cover. We then selected four Arctic tundra study areas and compiled annual growing season maximum NDVI and minimum albedo maps from MODIS satellite data (2000-10) and related these satellite products to tundra vegetation types (shrub, graminoid, barren and wetland tundra) and regional summer temperature. We observed that maximum NDVI was greatest in shrub tundra and that inter-annual variation was negatively related to summer minimum albedo but showed no consistent relationship with summer temperature. Shrub tundra showed higher albedo than wetland and barren tundra in all four study areas. These results suggest that a northwards shift of shrub tundra might not lead to a decrease in summer minimum albedo during the snow-free season when replacing wetland tundra. A fully integrative study is however needed to link results from satellite data with in situ observations across the Arctic to test the effect of increasing shrub cover on summer albedo in different tundra vegetation types.

  6. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature

    International Nuclear Information System (INIS)

    Blok, Daan; Heijmans, Monique M P D; Berendse, Frank; Schaepman-Strub, Gabriela; Bartholomeus, Harm; Maximov, Trofim C

    2011-01-01

    Recently observed Arctic greening trends from normalized difference vegetation index (NDVI) data suggest that shrub growth is increasing in response to increasing summer temperature. An increase in shrub cover is expected to decrease summer albedo and thus positively feed back to climate warming. However, it is unknown how albedo and NDVI are affected by shrub cover and inter-annual variations in the summer climate. Here, we examine the relationship between deciduous shrub fractional cover, NDVI and albedo using field data collected at a tundra site in NE Siberia. Field data showed that NDVI increased and albedo decreased with increasing deciduous shrub cover. We then selected four Arctic tundra study areas and compiled annual growing season maximum NDVI and minimum albedo maps from MODIS satellite data (2000-10) and related these satellite products to tundra vegetation types (shrub, graminoid, barren and wetland tundra) and regional summer temperature. We observed that maximum NDVI was greatest in shrub tundra and that inter-annual variation was negatively related to summer minimum albedo but showed no consistent relationship with summer temperature. Shrub tundra showed higher albedo than wetland and barren tundra in all four study areas. These results suggest that a northwards shift of shrub tundra might not lead to a decrease in summer minimum albedo during the snow-free season when replacing wetland tundra. A fully integrative study is however needed to link results from satellite data with in situ observations across the Arctic to test the effect of increasing shrub cover on summer albedo in different tundra vegetation types.

  7. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline.

    Science.gov (United States)

    Parker, Thomas C; Subke, Jens-Arne; Wookey, Philip A

    2015-05-01

    Climate warming at high northern latitudes has caused substantial increases in plant productivity of tundra vegetation and an expansion of the range of deciduous shrub species. However significant the increase in carbon (C) contained within above-ground shrub biomass, it is modest in comparison with the amount of C stored in the soil in tundra ecosystems. Here, we use a 'space-for-time' approach to test the hypothesis that a shift from lower-productivity tundra heath to higher-productivity deciduous shrub vegetation in the sub-Arctic may lead to a loss of soil C that out-weighs the increase in above-ground shrub biomass. We further hypothesize that a shift from ericoid to ectomycorrhizal systems coincident with this vegetation change provides a mechanism for the loss of soil C. We sampled soil C stocks, soil surface CO2 flux rates and fungal growth rates along replicated natural transitions from birch forest (Betula pubescens), through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near Abisko, Swedish Lapland. We demonstrate that organic horizon soil organic C (SOCorg ) is significantly lower at shrub (2.98 ± 0.48 kg m(-2) ) and forest (2.04 ± 0.25 kg m(-2) ) plots than at heath plots (7.03 ± 0.79 kg m(-2) ). Shrub vegetation had the highest respiration rates, suggesting that despite higher rates of C assimilation, C turnover was also very high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae increased across the transition from heath to shrub, suggesting that the action of ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an important pathway by which soil C is made available to microbial degradation. The expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores of C could therefore represent a significant positive feedback to the climate system. © 2014 John Wiley & Sons Ltd.

  8. Pollen evidence for late pleistocene bering land bridge environments from Norton Sound, Northeastern Bering Sea, Alaska

    Science.gov (United States)

    Ager, T.A.; Phillips, R.L.

    2008-01-01

    After more than half a century of paleoenvironmental investigations, disagreements persist as to the nature of vegetation type and climate of the Bering land bridge (BLB) during the late Wisconsin (Sartan) glacial interval. Few data exist from sites on the former land bridge, now submerged under the Bering and Chukchi Seas. Two hypotheses have emerged during the past decade. The first, based on pollen data from Bering Sea islands and adjacent mainlands of western Alaska and Northeast Siberia, represents the likely predominant vegetation on the Bering land bridge during full-glacial conditions: graminoid-herb-willow tundra vegetation associated with cold, dry winters and cool, dry summer climate. The second hypothesis suggests that dwarf birch-shrub-herb tundra formed a broad belt across the BLB, and that mesic vegetation was associated with cold, snowier winters and moist, cool summers. As a step towards resolving this controversy, a sediment core from Norton Sound, northeastern Bering Sea was radiocarbon dated and analyzed for pollen content. Two pollen zones were identified. The older, bracketed by radiocarbon ages of 29,500 and 11,515 14C yr BP, contains pollen assemblages composed of grass, sedge, wormwood, willow, and a variety of herb (forb) taxa. These assemblages are interpreted to represent graminoid-herb-willow tundra vegetation that developed under an arid, cool climate regime. The younger pollen zone sediments were deposited about 11,515 14C yr BP, when rising sea level had begun to flood the BLB. This younger pollen zone contains pollen of birch, willow, heaths, aquatic plants, and spores of sphagnum moss. This is interpreted to represent a Lateglacial dwarf birch-heath-willow-herb tundra vegetation, likely associated with a wetter climate with deeper winter snows, and moist, cool summers. This record supports the first hypothesis, that graminoid-herb-willow tundra vegetation extended into the lowlands of the BLB during full glacial conditions of the

  9. Relating structural growth environment to white spruce sapling establishment at the Forest-Tundra Ecotone

    Science.gov (United States)

    Maguire, A.; Boelman, N.; Griffin, K. L.; Jensen, J.; Hiers, E.; Johnson, D. M.; Vierling, L. A.; Eitel, J.

    2017-12-01

    The effect of climate change on treeline position at the latitudinal Forest-Tundra ecotone (FTE) is poorly understood. While the FTE is expansive (stretching 13,000 km acros the panarctic), understanding relationships between climate and tree function may depend on very fine scale processes. High resolution tools are therefore needed to appropriately characterize the leading (northernmost) edge of the FTE. We hypothesized that microstructural metrics obtainable from lidar remote sensing may explain variation in the physical growth environment that governs sapling establishment. To test our hypothesis, we used terrestrial laser scanning (TLS) to collect highly spatially resolved 3-D structural information of white spruce (Picea glauca) saplings and their aboveground growth environment at the leading edge of a FTE in northern Alaska and Northwest Territories, Canada. Coordinates of sapling locations were extracted from the 3-D TLS data. Within each sampling plot, 20 sets of coordinates were randomly selected from regions where no saplings were present. Ground roughness, canopy roughness, average aspect, average slope, average curvature, wind shelter index, and wetness indexwere extracted from point clouds within a variable radius from all coordinates. Generalized linear models (GLM) were fit to determine which microstructural metrics were most strongly associated with sapling establishment. Preliminary analyses of three plots suggest that vegetation roughness, wetness index, ground roughness, and slope were the most important terrain metrics governing sapling presence (Figure 1). Comprehensive analyses will include eight plots and GLMs optimized for scale at which structural parameters affect sapling establishment. Spatial autocorrelation of sample locations will be accounted for in models. Because these analyses address how the physical growth environment affects sapling establishment, model outputs will provide information for improving understanding of the

  10. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    International Nuclear Information System (INIS)

    Blok, Daan; Michelsen, Anders; Elberling, Bo; Weijers, Stef; Löffler, Jörg; Welker, Jeffrey M; Cooper, Elisabeth J

    2015-01-01

    Deeper winter snow is hypothesized to favor shrub growth and may partly explain the shrub expansion observed in many parts of the arctic during the last decades, potentially triggering biophysical feedbacks including regional warming and permafrost thawing. We experimentally tested the effects of winter snow depth on shrub growth and ecophysiology by measuring stem length and stem hydrogen (δ 2 H), carbon (δ 13 C), nitrogen (δ 15 N) and oxygen (δ 18 O) isotopic composition of the circumarctic evergreen dwarf shrub Cassiope tetragona growing in high-arctic Svalbard, Norway. Measurements were carried out on C. tetragona individuals sampled from three tundra sites, each representing a distinct moisture regime (dry heath, meadow, moist meadow). Individuals were sampled along gradients of experimentally manipulated winter snow depths in a six-year old snow fence experiment: in ambient (c. 20 cm), medium (c. 100 cm), and deep snow (c. 150 cm) plots. The deep-snow treatment consistently and significantly increased C. tetragona growth during the 2008–2011 manipulation period compared to growth in ambient-snow plots. Stem δ 15 N and stem N concentration values were significantly higher in deep-snow individuals compared to individuals growing in ambient-snow plots during the course of the experiment, suggesting that soil N-availability was increased in deep-snow plots as a result of increased soil winter N mineralization. Although inter-annual growing season-precipitation δ 2 H and stem δ 2 H records closely matched, snow depth did not change stem δ 2 H or δ 18 O, suggesting that water source usage by C. tetragona was unaltered. Instead, the deep insulating snowpack may have protected C. tetragona shrubs against frost damage, potentially compensating the detrimental effects of a shortened growing season and associated phenological delay on growth. Our findings suggest that an increase in winter precipitation in the High Arctic, as predicted by climate models, has

  11. Application of fungistatics in soil reduces N uptake by an arctic ericoid shrub (Vaccinium vitis-idaea)

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.F.; Johnson, L.; Simpson, N.B.; Bill, M.; Jumpponen, A.

    2009-11-01

    In arctic tundra soil N is highly limiting, N mineralization is slow and organic N greatly exceeds inorganic N. We studied the effects of fungistatics (azoxystrobin [Quadris{reg_sign}] or propiconazole [Tilt{reg_sign}]) on the fungi isolated from ericaceous plant roots in vitro. In addition to testing the phytotoxicity of the two fungistatics we also tested their effects on growth and nitrogen uptake of an ericaceous plant (Vaccinium uliginosum) in a closed Petri plate system without root-associated fungi. Finally, to evaluate the fungistatic effects in an in vivo experiment we applied fungistatics and nitrogen isotopes to intact tundra soil cores from Toolik Lake, Alaska, and examined the ammonium-N and glycine-N use by Vaccinium vitis-idaea with and without fungistatics. The experiments on fungal pure cultures showed that Tilt{reg_sign} was more effective in reducing fungal colony growth in vitro than Quadris{reg_sign}, which was highly variable among the fungal strains. Laboratory experiments aiming to test the fungistatic effects on plant performance in vitro showed that neither Quadris{reg_sign} nor Tilt{reg_sign} affected V. uliginosum growth or N uptake. In this experiment V. uliginosum assimilated more than an order of magnitude more ammonium-N than glycine-N. The intact tundra core experiment provided contrasting results. After 10 wk of fungistatic application in the growth chamber V. vitis-idaea leaf %N was 10% lower and the amount of leaf {sup 15}N acquired was reduced from labeled ammonium (33%) and glycine (40%) during the 4 d isotope treatment. In contrast to the in vitro experiment leaf {sup 15}N assimilation from glycine was three times higher than from {sup 15}NH{sub 4} in the treatments that received no-fungistatics. We conclude that the function of the fungal communities is essential to the acquisition of N from organic sources and speculate that N acquisition from inorganic sources is mainly inhibited by competition with complex soil microbial

  12. Loess ecosystems of northern Alaska: Regional gradient and toposequence at Prudhoe Bay

    International Nuclear Information System (INIS)

    Walker, D.A.; Everett, K.R.

    1991-01-01

    Loess-dominated ecosystems cover ∼ 14% (11,000 km 2 ) of the Arctic Coastal Plain and much of the northern portion of the Arctic Foothills. Knowledge of this poorly known ecosystem is important for sound land-use planning of the expanding developments in the region and for understanding the paleoecological dynamics of eolian systems that once dominated much of northern Alaska. A conceptual alkaline-tundra toposequence includes eight common vegetation types and associated soils and vegetation downwind of the Sagavanirktok River. Properties of loess tundra important for land-use planning include: (1) its high ice content, which contributes to its susceptibility to thermokarst; (2) high salinities, which hamper revegetation efforts; and (3) presence of certain plant species such as Dryas intergrifolia, which are particularly sensitive to disturbance. The loess gradient provides a natural analogue for road dust, and extensive disturbance associated with oil-field development

  13. Snowmelt in a High Latitude Mountain Catchment: Effect of Vegetation Cover and Elevation

    Science.gov (United States)

    Pomeroy, J. W.; Essery, R. L.; Ellis, C. R.; Hedstrom, N. R.; Janowicz, R.; Granger, R. J.

    2004-12-01

    The energetics and mass balance of snowpacks in the premelt and melt period were compared from three elevation bands in a high latitude mountain catchment, Wolf Creek Research Basin, Yukon. Elevation is strongly correlated with vegetation cover and in this case the three elevation bands (low, middle, high) correspond to mature spruce forest, dense shrub tundra and sparse tundra (alpine). Measurements of radiation, ground heat flux, snow depth, snowfall, air temperature, wind speed were made on a half-hourly basis at the three elevations for a 10 year period. Sondes provided vertical gradients of air temperature, humidity, wind speed and air pressure. Snow depth and density surveys were conducted monthly. Comparisons of wind speed, air temperature and humidity at three elevations show that the expected elevational gradients in the free atmosphere were slightly enhanced just above the surface canopies, but that the climate at the snow surface was further influenced by complex canopy effects. Premelt snow accumulation was strongly affected by intercepted snow in the forest and blowing snow sublimation in the sparse tundra but not by the small elevational gradients in snowfall. As a result the maximum premelt SWE was found in the mid-elevation shrub tundra and was roughly double that of the sparse tundra or forest. Minimum variability of SWE was observed in the forest and shrub tundra (CV=0.25) while in the sparse tundra variability doubled (CV=0.5). Snowmelt was influenced by differences in premelt accumulation as well as differences in the net energy fluxes to snow. Elevation had a strong effect on the initiation of melt with the forest melt starting on average 16 days before the shrub tundra and 19 days before the sparse tundra. Mean melt rates showed a maximum in middle elevations and increased from 860 kJ/day in the forest to 1460 kJ/day in the sparse tundra and 2730 kJ/day in the shrub tundra. The forest canopy reduced melt while the shrub canopy enhanced it

  14. Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.

    Science.gov (United States)

    Abbott, Benjamin W; Jones, Jeremy B

    2015-12-01

    Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20-50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active-layer detachment slides, thermo-erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off-site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2 O concentration. Elevated N2 O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the

  15. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic

    Science.gov (United States)

    Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  16. The pollen complex from postglacial sediments of the Laptev Sea as a bioindicator

    Science.gov (United States)

    Naidina, O. D.

    2014-05-01

    The first results of comparison of palynological analysis (pollen of terrestrial plants), SEM analysis of pollen morphology, and radiocarbon age dating (AMS14C) of sediments of the eastern shelf of the Laptev Sea show that the diverse taxonomic composition of pollen spectra provides an integrated idea of the vegetation and climate of the region over 11.2 calendar kiloyears. It is found that phases of the tree and shrub vegetation development (maxima of pollen of Betula sect. Nanae and Pinus s/g Haploxylon) correspond to the warm epochs in the Holocene. It is obvious that birch phytocoenoses first settled in the southern tundra subzone with increasing temperature, and then coniferous communities of forest tundra. An occurrence of pollen of shrubby birches (Nanae) suggests compliance of permafrost landscapes with cold climate conditions, i.e., with an annual average temperature of -2°C and amount of precipitation of less than 500 mm. Owing to a progressive increase in summer temperatures, dwarf cedar and pine communities advanced toward the seashore. The SEM analysis results show that a significant proportion of regional coniferous pollen belongs to representatives of Pinus pumila (Pall.) and P. sylvestris L. In addition, the SEM study of the exine of Pinus sylvestris L. and P. pumila (Pall.) Regel pollen grains confirmed polymorphism in coniferous pollen. According to the inverse relationship between climate and vegetation, frequent climate fluctuations that are typical of progressive and differential postglacial transgression were revealed. An increase in arboreal pollen transfer onto the shelf later than 9.1 cal. ka coincides with the time of forest boundary migration to the north due to the warming of the Earth's climate. At that time, the tundra vegetation was replaced by forest-tundra vegetation, the maximum stage of sea transgression began, and there appeared a trend of increasing temperature and moisture.

  17. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Directory of Open Access Journals (Sweden)

    David D Gustine

    Full Text Available Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs, and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21% than the Central Arctic herd that wintered primarily in the arctic tundra (-11%. Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  18. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Science.gov (United States)

    Gustine, David D; Brinkman, Todd J; Lindgren, Michael A; Schmidt, Jennifer I; Rupp, T Scott; Adams, Layne G

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  19. Ecosystem respiration, methane and nitrous oxide fluxes from ecotopes in a rewetted extracted peatland in Sweden

    Directory of Open Access Journals (Sweden)

    S. Jordan

    2016-09-01

    Full Text Available Ecosystem respiration (carbon dioxide; CO2, methane (CH4 and nitrous oxide (N2O fluxes to the atmosphere were determined using an opaque closed chamber method within various ecotopes (vegetation covered, bare peat and open water in a rewetted extracted peatland and within an adjacent open poor fen in Sweden. Ecotopes had a significant impact on CO2 and CH4 fluxes to the atmosphere. Ecosystem respiration and CH4 emissions from the bare peat site, the constructed shallow lake and the open poor fen were low but were much higher from ecotopes with Eriophorum vaginatum tussocks and Eriophorum angustifolium. A combination of vascular plant cover and high soil temperatures enhanced ecosystem respiration, while a combination of vascular plant cover, high water table levels and high soil temperatures enhanced CH4 emissions. N2O emissions contributed little to total greenhouse gas (GHG fluxes from the soil-plant-water systems to the atmosphere. However, the overall climate impact of CH4 emissions from the study area did not exceed the impact of soil and plant respiration. With regard to management of extracted peatlands, the construction of a nutrient-poor shallow lake showed great potential for lowering GHG fluxes to the atmosphere.

  20. Videographic Analysis of Eriophorum Vaginatum Spatial Coverage in an Ombotrophic Bog

    Directory of Open Access Journals (Sweden)

    Margaret Kalacska

    2013-12-01

    Full Text Available The use of Remotely Piloted Aircraft Systems (RPAS as well as newer automated unmanned aerial vehicles is becoming a standard method in remote sensing studies requiring high spatial resolution (<1 m and very precise temporal data to capture phenological events. In this study we use a low cost rotorcraft to map Eriophorum vaginatum at Mer Bleue, an ombrotrophic bog located east of Ottawa, ON, Canada. We focus on E. vaginatum because this sedge plays an important role in methane (CH4 gas exchange in peatlands. Using the remote controlled rotorcraft we were able to record, process, and mosaic 11.1 hectares of 4.5 cm spatial resolution imagery extracted from individual frames of video recordings (post georegistration RMSE 4.90 ± 4.95 cm. Our results, based on a supervised classification (96% accuracy of the red, green, blue image planes, indicate a total tussock cover of 2,417 m2. Because the basal area of the plant is more relevant for calculating its contribution to the CH4 flux, the tussock area was related to the basal area from field data (R2 = 0.88, p < 0.0001. Our final results indicate a total basal area of 1,786 ± 62.8 m2. Based on temporal measurements of CH4 flux from the peatland as a whole that vary over the growing season, we estimate the E. vaginatum contribution to range from 3.0% to 17.3% of that total. Overall, our low cost approach was an effective non-destructive way to derive E. vaginatum coverage and estimate CH4 exchange over the growing season.

  1. Application of a coupled ecosystem-chemical equilibrium model, DayCent-Chem, to stream and soil chemistry in a Rocky Mountain watershed

    Science.gov (United States)

    Hartman, M.D.; Baron, Jill S.; Ojima, D.S.

    2007-01-01

    Atmospheric deposition of sulfur and nitrogen species have the potential to acidify terrestrial and aquatic ecosystems, but nitrate and ammonium are also critical nutrients for plant and microbial productivity. Both the ecological response and the hydrochemical response to atmospheric deposition are of interest to regulatory and land management agencies. We developed a non-spatial biogeochemical model to simulate soil and surface water chemistry by linking the daily version of the CENTURY ecosystem model (DayCent) with a low temperature aqueous geochemical model, PHREEQC. The coupled model, DayCent-Chem, simulates the daily dynamics of plant production, soil organic matter, cation exchange, mineral weathering, elution, stream discharge, and solute concentrations in soil water and stream flow. By aerially weighting the contributions of separate bedrock/talus and tundra simulations, the model was able to replicate the measured seasonal and annual stream chemistry for most solutes for Andrews Creek in Loch Vale watershed, Rocky Mountain National Park. Simulated soil chemistry, net primary production, live biomass, and soil organic matter for forest and tundra matched well with measurements. This model is appropriate for accurately describing ecosystem and surface water chemical response to atmospheric deposition and climate change. ?? 2006 Elsevier B.V. All rights reserved.

  2. Soil fungal effects on floral signals, rewards, and aboveground interactions in an alpine pollination web.

    Science.gov (United States)

    Becklin, Katie M; Gamez, Guadalupe; Uelk, Bryan; Raguso, Robert A; Galen, Candace

    2011-08-01

    Plants interact with above- and belowground organisms; the combined effects of these interactions determine plant fitness and trait evolution. To better understand the ecological and evolutionary implications of multispecies interactions, we explored linkages between soil fungi, pollinators, and floral larcenists in Polemonium viscosum (Polemoniaceae). Using a fungicide, we experimentally reduced fungal colonization of krummholz and tundra P. viscosum in 2008-2009. We monitored floral signals and rewards, interactions with pollinators and larcenists, and seed set for fungicide-treated and control plants. Fungicide effects varied among traits, between interactions, and with environmental context. Treatment effects were negligible in 2008, but stronger in 2009, especially in the less-fertile krummholz habitat. There, fungicide increased nectar sugar content and damage by larcenist ants, but did not affect pollination. Surprisingly, fungicide also enhanced seed set, suggesting that direct resource costs of soil fungi exceed indirect benefits from reduced larceny. In the tundra, fungicide effects were negligible in both years. However, pooled across treatments, colonization by mycorrhizal fungi in 2009 correlated negatively with the intensity and diversity of floral volatile organic compounds, suggesting integrated above- and belowground signaling pathways. Fungicide effects on floral rewards in P. viscosum link soil fungi to ecological costs of pollinator attraction. Trait-specific linkages to soil fungi should decouple expression of sensitive and buffered floral phenotypes in P. viscosum. Overall, this study demonstrates how multitrophic linkages may lead to shifting selection pressures on interaction traits, restricting the evolution of specialization.

  3. Coupled Monitoring and Inverse Modeling to Investigate Surface - Subsurface Hydrological and Thermal Dynamics in the Arctic Tundra

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S. S.; Bisht, G.; Peterson, J.; Ulrich, C.; Romanovsky, V. E.; Kneafsey, T. J.; Wu, Y.

    2015-12-01

    Quantitative characterization of the soil surface-subsurface hydrological and thermal processes is essential as they are primary factors that control the biogeochemical processes, ecological landscapes and greenhouse gas fluxes. In the Artic region, the surface-subsurface hydrological and thermal regimes co-interact and are both largely influenced by soil texture and soil organic content. In this study, we present a coupled inversion scheme that jointly inverts hydrological, thermal and geophysical data to estimate the vertical profiles of clay, sand and organic contents. Within this inversion scheme, the Community Land Model (CLM4.5) serves as a forward model to simulate the land-surface energy balance and subsurface hydrological-thermal processes. Soil electrical conductivity (from electrical resistivity tomography), temperature and water content are linked together via petrophysical and geophysical models. Particularly, the inversion scheme accounts for the influences of the soil organic and mineral content on both of the hydrological-thermal dynamics and the petrophysical relationship. We applied the inversion scheme to the Next Generation Ecosystem Experiments (NGEE) intensive site in Barrow, AK, which is characterized by polygonal-shaped arctic tundra. The monitoring system autonomously provides a suite of above-ground measurements (e.g., precipitation, air temperature, wind speed, short-long wave radiation, canopy greenness and eddy covariance) as well as below-ground measurements (soil moisture, soil temperature, thaw layer thickness, snow thickness and soil electrical conductivity), which complement other periodic, manually collected measurements. The preliminary results indicate that the model can well reproduce the spatiotemporal dynamics of the soil temperature, and therefore, accurately predict the active layer thickness. The hydrological and thermal dynamics are closely linked to the polygon types and polygon features. The results also enable the

  4. Vascular plant biodiversity of the lower Coppermine River valley and vicinity (Nunavut, Canada: an annotated checklist of an Arctic flora

    Directory of Open Access Journals (Sweden)

    Jeffery M. Saarela

    2017-01-01

    Full Text Available The Coppermine River in western Nunavut is one of Canada’s great Arctic rivers, yet its vascular plant flora is poorly known. Here, we report the results of a floristic inventory of the lower Coppermine River valley and vicinity, including Kugluk (Bloody Falls Territorial Park and the hamlet of Kugluktuk. The study area is approximately 1,200 km2, extending from the forest-tundra south of the treeline to the Arctic coast. Vascular plant floristic data are based on a review of all previous collections from the area and more than 1,200 new collections made in 2014. Results are presented in an annotated checklist, including citation of all specimens examined, comments on taxonomy and distribution, and photographs for a subset of taxa. The vascular plant flora comprises 300 species (311 taxa, a 36.6% increase from the 190 species documented by previous collections made in the area over the last century, and is considerably more diverse than other local floras on mainland Nunavut. We document 207 taxa for Kugluk (Bloody Falls Territorial Park, an important protected area for plants on mainland Nunavut. A total of 190 taxa are newly recorded for the study area. Of these, 14 taxa (13 species and one additional variety are newly recorded for Nunavut (Allium schoenoprasum, Carex capitata, Draba lonchocarpa, Eremogone capillaris subsp. capillaris, Sabulina elegans, Eleocharis quinqueflora, Epilobium cf. anagallidifolium, Botrychium neolunaria, Botrychium tunux, Festuca altaica, Polygonum aviculare, Salix ovalifolia var. arctolitoralis, Salix ovalifolia var. ovalifolia and Stuckenia pectinata, seven species are newly recorded for mainland Nunavut (Carex gynocrates, Carex livida, Cryptogramma stelleri, Draba simmonsii, Festuca viviparoidea subsp. viviparoidea, Juncus alpinoarticulatus subsp. americanus and Salix pseudomyrsinites and 56 range extensions are reported. The psbA-trnH and rbcL DNA sequence data were used to help identify the three Botrychium

  5. Can a fake fir tell the truth about Swiss needle cast?

    Science.gov (United States)

    A key question in dendrochronology to reconstruct forest disturbance history is how to distinguish between the effects of Swiss needle cast (SNC) and other forest disturbance agents (e.g., Douglas-fir beetle, tussock moth, western spruce budworm, laminated root rot, Armillaria ro...

  6. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Amtorp, Cecilie

    2015-01-01

    season. Changing nutrient availability may be reflected in plant N and chlorophyll content and lead to increased photosynthetic capacity, plant growth, and ultimately carbon (C) assimilation by plants. In this study, we increased snow depth and thereby cold-season soil temperatures in high Arctic...... Svalbard in two vegetation types spanning three moisture regimes. We measured growing-season availability of ammonium (NH4 (+)), nitrate (NO3 (-)), total dissolved organic carbon (DOC) and nitrogen (TON) in soil; C, N, delta N-15 and chlorophyll content in Salix polaris leaves; and leaf sizes of Salix...

  7. Extreme nitrogen deposition can change methane oxidation rate in moist acidic tundra soil in Arctic regions

    Science.gov (United States)

    Lee, J.; Kim, J.; Kang, H.

    2017-12-01

    Recently, extreme nitrogen(N) deposition events are observed in Arctic regions where over 90% of the annual N deposition occurred in just a few days. Since Arctic ecosystems are typically N-limited, input of extremely high amount of N could substantially affect ecosystem processes. CH4 is a potent greenhouse gas that has 25 times greater global warming potential than CO2 over a 100-year time frame. Ammonium is known as an inhibitor of methane oxidation and nitrate also shows inhibitory effect on it in temperate ecosystems. However, effects of N addition on Arctic ecosystems are still elusive. We conducted a lab-scale incubation experiment with moist acidic tundra (MAT) soil from Council, Alaska to investigate the effect of extreme N deposition events on methane oxidation. Zero point five % methane was added to the head space to determine the potential methane oxidation rate of MAT soil. Three treatments (NH4NO3-AN, (NH4)2SO4-AS, KNO3-PN) were used to compare effects of ammonium, nitrate and salts. All treatments were added in 3 levels: 10μg N gd.w-1(10), 50μg N gd.w-1(50) and 100μg N gd.w-1(100). AN10 and AN50 increased methane oxidation rate 1.7, 6% respectively. However, AN100 shows -8.5% of inhibitory effect. In AS added samples, all 3 concentrations (AN10, AN50, AN100) stimulated methane oxidation rate with 4.7, 8.9, 4%, respectively. On the contrary, PN50 (-9%) and PN100 (-59.5%) exhibited a significant inhibitory effect. We also analyzed the microbial gene abundance and community structures of methane oxidizing bacteria using a DNA-based fingerprinting method (T-RFLP) Our study results suggest that NH4+ can stimulate methane oxidation in Arctic MAT soil, while NO3- can inhibit methane oxidation significantly.

  8. Roots affect the response of heterotrophic soil respiration to temperature in tussock grass microcosms.

    Science.gov (United States)

    Graham, Scott L; Millard, Peter; Hunt, John E; Rogers, Graeme N D; Whitehead, David

    2012-07-01

    While the temperature response of soil respiration (R(S)) has been well studied, the partitioning of heterotrophic respiration (R(H)) by soil microbes from autotrophic respiration (R(A)) by roots, known to have distinct temperature sensitivities, has been problematic. Further complexity stems from the presence of roots affecting R(H), the rhizosphere priming effect. In this study the short-term temperature responses of R(A) and R(H) in relation to rhizosphere priming are investigated. Temperature responses of R(A), R(H) and rhizosphere priming were assessed in microcosms of Poa cita using a natural abundance δ(13)C discrimination approach. The temperature response of R(S) was found to be regulated primarily by R(A), which accounted for 70 % of total soil respiration. Heterotrophic respiration was less sensitive to temperature in the presence of plant roots, resulting in negative priming effects with increasing temperature. The results emphasize the importance of roots in regulating the temperature response of R(S), and a framework is presented for further investigation into temperature effects on heterotrophic respiration and rhizosphere priming, which could be applied to other soil and vegetation types to improve models of soil carbon turnover.

  9. Phosphorus availability and microbial respiration across biomes :  from plantation forest to tundra

    OpenAIRE

    Esberg, Camilla

    2010-01-01

    Phosphorus is the main limiting nutrient for plant growth in large areas of the world and the availability of phosphorus to plants and microbes can be strongly affected by soil properties. Even though the phosphorus cycle has been studied extensively, much remains unknown about the key processes governing phosphorus availability in different environments. In this thesis the complex dynamics of soil phosphorus and its availability were studied by relating various phosphorus fractions and soil ...

  10. Spatial and Temporal Variation in Primary Productivity (NDVI) of Coastal Alaskan Tundra: Decreased Vegetation Growth Following Earlier Snowmelt

    Science.gov (United States)

    Gamon, John A.; Huemmrich, K. Fred; Stone, Robert S.; Tweedie, Craig E.

    2015-01-01

    In the Arctic, earlier snowmelt and longer growing seasons due to warming have been hypothesized to increase vegetation productivity. Using the Normalized Difference Vegetation Index (NDVI) from both field and satellite measurements as an indicator of vegetation phenology and productivity, we monitored spatial and temporal patterns of vegetation growth for a coastal wet sedge tundra site near Barrow, Alaska over three growing seasons (2000-2002). Contrary to expectation, earlier snowmelt did not lead to increased productivity. Instead, productivity was associated primarily with precipitation and soil moisture, and secondarily with growing degree days, which, during this period, led to reduced growth in years with earlier snowmelt. Additional moisture effects on productivity and species distribution, operating over a longer time scale, were evident in spatial NDVI patterns associated with microtopography. Lower, wetter regions dominated by graminoids were more productive than higher, drier locations having a higher percentage of lichens and mosses, despite the earlier snowmelt at the more elevated sites. These results call into question the oft-stated hypothesis that earlier arctic growing seasons will lead to greater vegetation productivity. Rather, they agree with an emerging body of evidence from recent field studies indicating that early-season, local environmental conditions, notably moisture and temperature, are primary factors determining arctic vegetation productivity. For this coastal arctic site, early growing season conditions are strongly influenced by microtopography, hydrology, and regional sea ice dynamics, and may not be easily predicted from snowmelt date or seasonal average air temperatures alone. Our comparison of field to satellite NDVI also highlights the value of in-situ monitoring of actual vegetation responses using field optical sampling to obtain detailed information on surface conditions not possible from satellite observations alone.

  11. Seasonal and Downslope Changes in the Pore Water Geochemistry of Tundra Soils Near Nome, Alaska

    Science.gov (United States)

    Philben, M. J.; Zheng, J.; Wullschleger, S. D.; Graham, D. E.; Gu, B.

    2017-12-01

    Thawing permafrost is exposing vast stores of organic matter to decomposition in previously frozen tundra soils. In low-relief and poorly drained areas, the complexity of microbial metabolism under anaerobic conditions complicates the prediction of resulting CO2 and CH4 emissions. To improve this understanding, we investigated the dissolved gas and major ion concentrations and DOM composition in depth profiles of soil pore water collected from the Teller Road site near Nome, AK, as part of the Next Generation Ecosystem Experiment (NGEE)-Arctic. Pathways of anaerobic organic matter degradation were inferred based on two complementary approaches: first, we compared the composition of soil pore waters of saturated areas in the peat plateau and the base of the hillslope, collected early and late in the thaw season (July and September) to assess seasonal changes in the soil solution chemistry. CH4 and low molecular weight organic acids (e.g., acetate, formate, and propionate) were both near or below the detection limit in July but accumulated later in the season. In contrast, SO42- and Fe(III) concentrations were high in July and low in September, while Fe(II) was higher in September. These results suggest SO42- and Fe(III) reduction were the primary pathways for anaerobic respiration early in the thaw season, while methanogenesis increased in September as labile organic acids accumulated. Second, we assessed the change in DOM composition in a transect of piezometers, capturing the degradation of organic matter during transport down a hillslope. The DOC concentration did not change, but SUVA254 declined and the organic acid concentration increased downslope. In addition, Fourier-transform infrared spectroscopy indicated the ratio of carboxyl to amide and aromatic functional groups increased downslope. These parameters show that although there was no net loss of DOC along the transect, it was transformed to less aromatic and potentially more labile forms. Together, these

  12. Forage quality and reindeer productivity: multiplier effects amplified by climate change

    Science.gov (United States)

    Merben R. Cebrian; Knut Kielland; Greg Finstad

    2008-01-01

    We investigated the effects of experimental manipulations of snowmelt on the flowering phenology and forage chemistry (digestibility and nitrogen concentration) of tussock cottongrass (Eriophonun vaginauoni) on the Seward Peninsula, Alaska. Early snowmelt accelerated reproductive phenology by 11 days, and resulted in higher floral digestibility...

  13. Chilling- and Freezing-Induced Alterations in Cytosine Methylation and Its Association with the Cold Tolerance of an Alpine Subnival Plant, Chorispora bungeana.

    Directory of Open Access Journals (Sweden)

    Yuan Song

    Full Text Available Chilling (0-18°C and freezing (<0°C are two distinct types of cold stresses. Epigenetic regulation can play an important role in plant adaptation to abiotic stresses. However, it is not yet clear whether and how epigenetic modification (i.e., DNA methylation mediates the adaptation to cold stresses in nature (e.g., in alpine regions. Especially, whether the adaptation to chilling and freezing is involved in differential epigenetic regulations in plants is largely unknown. Chorispora bungeana is an alpine subnival plant that is distributed in the freeze-thaw tundra in Asia, where chilling and freezing frequently fluctuate daily (24 h. To disentangle how C. bungeana copes with these intricate cold stresses through epigenetic modifications, plants of C. bungeana were treated at 4°C (chilling and -4°C (freezing over five periods of time (0-24 h. Methylation-sensitive amplified fragment-length polymorphism markers were used to investigate the variation in DNA methylation of C. bungeana in response to chilling and freezing. It was found that the alterations in DNA methylation of C. bungeana largely occurred over the period of chilling and freezing. Moreover, chilling and freezing appeared to gradually induce distinct DNA methylation variations, as the treatment went on (e.g., after 12 h. Forty-three cold-induced polymorphic fragments were randomly selected and further analyzed, and three of the cloned fragments were homologous to genes encoding alcohol dehydrogenase, UDP-glucosyltransferase and polygalacturonase-inhibiting protein. These candidate genes verified the existence of different expressive patterns between chilling and freezing. Our results showed that C. bungeana responded to cold stresses rapidly through the alterations of DNA methylation, and that chilling and freezing induced different DNA methylation changes. Therefore, we conclude that epigenetic modifications can potentially serve as a rapid and flexible mechanism for C. bungeana

  14. Detecting Arctic Climate Change Using Koeppen Climate Classification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. [Joint Institute for the Study of Atmosphere and Oceans, University of Washington, Seattle, Washington (United States); Overland, J.E. [NOAA/Pacific Marine Environmental Laboratory, Sand Point Way NE, Seattle, Washington (United States)

    2004-11-01

    Ecological impacts of the recent warming trend in the Arctic are already noted as changes in tree line and a decrease in tundra area with the replacement of ground cover by shrubs in northern Alaska and several locations in northern Eurasia. The potential impact of vegetation changes to feedbacks on the atmospheric climate system is substantial because of the large land area impacted and the multi-year persistence of the vegetation cover. Satellite NDVI estimates beginning in 1981 and the Koeppen climate classification, which relates surface types to monthly mean air temperatures from 1901 onward, track these changes on an Arctic-wide basis. Temperature fields from the NCEP/NCAR reanalysis and CRU analysis serve as proxy for vegetation cover over the century. A downward trend in the coverage of tundra group for the first 40 yr of the twentieth century was followed by two increases during 1940s and early 1960s, and then a rapid decrease in the last 20 yr. The decrease of tundra group in the 1920-40 period was localized, mostly over Scandinavia; whereas the decrease since 1990 is primarily pan-Arctic, but largest in NW Canada, and eastern and coastal Siberia. The decrease in inferred tundra coverage from 1980 to 2000 was 1.4 x 106 km{sup 2}, or about a 20% reduction in tundra area based on the CRU analyses. This rate of decrease is confirmed by the NDVI data. These tundra group changes in the last 20 yr are accompanied by increase in the area of both the boreal and temperate groups. During the tundra group decrease in the first half of the century boreal group area also decreased while temperate group area increased. The calculated minimum coverage of tundra group from both the Koeppen classification and NDVI indicates that the impact of warming on the spatial coverage of the tundra group in the 1990s is the strongest in the century, and will have multi-decadal consequences for the Arctic.

  15. Analysis of Spatiotemporal Dynamic and Bifurcation in a Wetland Ecosystem

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2015-01-01

    Full Text Available A wetland ecosystem is studied theoretically and numerically to reveal the rules of dynamics which can be quite accurate to better describe the observed spatial regularity of tussock vegetation. Mathematical theoretical works mainly investigate the stability of constant steady states, the existence of nonconstant steady states, and bifurcation, which can deduce a standard parameter control relation and in return can provide a theoretical basis for the numerical simulation. Numerical analysis indicates that the theoretical works are correct and the wetland ecosystem can show rich dynamical behaviors not only regular spatial patterns. Our results further deepen and expand the study of dynamics in the wetland ecosystem. In addition, it is successful to display tussock formation in the wetland ecosystem may have important consequences for aquatic community structure, especially for species interactions and biodiversity. All these results are expected to be useful in the study of the dynamic complexity of wetland ecosystems.

  16. Changing Arctic ecosystems: resilience of caribou to climatic shifts in the Arctic

    Science.gov (United States)

    Gustine, David D.; Adams, Layne G.; Whalen, Mary E.; Pearce, John M.

    2014-01-01

    The U.S. Geological Survey (USGS) Changing Arctic Ecosystems (CAE) initiative strives to inform key resource management decisions for Arctic Alaska by providing scientific information and forecasts for current and future ecosystem response to a warming climate. Over the past 5 years, a focal area for the USGS CAE initiative has been the North Slope of Alaska. This region has experienced a warming trend over the past 60 years, yet the rate of change has been varied across the North Slope, leading scientists to question the future response and resilience of wildlife populations, such as caribou (Rangifer tarandus), that rely on tundra habitats for forage. Future changes in temperature and precipitation to coastal wet sedge and upland low shrub tundra are expected, with unknown consequences for caribou that rely on these plant communities for food. Understanding how future environmental change may affect caribou migration, nutrition, and reproduction is a focal question being addressed by the USGS CAE research. Results will inform management agencies in Alaska and people that rely on caribou for food.

  17. Behaviour of carbon dioxide and water vapour flux densities from a disturbed raised peat bog

    NARCIS (Netherlands)

    Nieveen, J.P.; Jacobs, A.F.G.

    2002-01-01

    Measurements of carbon dioxide and water vapour flux densities were carried out for a disturbed raised peat bog in the north of the Netherlands during an 18 month continuous experiment. Tussock grass (sp. Molinea caerulae) mainly dominated the vegetation of the bog area. The maximum leaf area index

  18. Monitoring small pioneer trees in the forest-tundra ecotone: using multi-temporal airborne laser scanning data to model height growth.

    Science.gov (United States)

    Hauglin, Marius; Bollandsås, Ole Martin; Gobakken, Terje; Næsset, Erik

    2017-12-08

    Monitoring of forest resources through national forest inventory programmes is carried out in many countries. The expected climate changes will affect trees and forests and might cause an expansion of trees into presently treeless areas, such as above the current alpine tree line. It is therefore a need to develop methods that enable the inclusion of also these areas into monitoring programmes. Airborne laser scanning (ALS) is an established tool in operational forest inventories, and could be a viable option for monitoring tasks. In the present study, we used multi-temporal ALS data with point density of 8-15 points per m 2 , together with field measurements from single trees in the forest-tundra ecotone along a 1500-km-long transect in Norway. The material comprised 262 small trees with an average height of 1.78 m. The field-measured height growth was derived from height measurements at two points in time. The elapsed time between the two measurements was 4 years. Regression models were then used to model the relationship between ALS-derived variables and tree heights as well as the height growth. Strong relationships between ALS-derived variables and tree heights were found, with R 2 values of 0.93 and 0.97 for the two points in time. The relationship between the ALS data and the field-derived height growth was weaker, with R 2 values of 0.36-0.42. A cross-validation gave corresponding results, with root mean square errors of 19 and 11% for the ALS height models and 60% for the model relating ALS data to single-tree height growth.

  19. Digging Deeper: Development and evaluation of an untargeted metabolomics approach to identify biogeochemical hotspots with depth and by vegetation type in Arctic tundra soils

    Science.gov (United States)

    Ladd, M.; Wullschleger, S.; Hettich, R.

    2017-12-01

    Elucidating the chemical composition of low molecular weight (LMW) dissolved organic matter (DOM), and monitoring how this bioavailable pool varies over space and time, is critical to understanding the controlling mechanisms that underlie carbon release and storage in Arctic systems. Due to analytical challenges however, relatively little is known about how this complex mixture of small molecules varies with soil depth or how it may be influenced by vegetation. In this study, we evaluated an untargeted metabolomics approach for the characterization of LMW DOM in water extracts, and applied this approach in soil cores (10-cm diam., 30-cm depth), obtained near Barrow, Alaska (71° 16' N) from the organic-rich active layer where the aboveground vegetation was primarily either Carex aquatilis or Eriophorum angustifolium, two species commonly found in tundra systems. We hypothesized that by using a discovery-based approach, spatial patterns of chemical diversity could be identified, enabling the detection of biogeochemical hotspots across scales. LMW DOM profiles from triplicate water extracts were characterized using dual-separation, nano-liquid chromatography (LC) coupled to an electrospray Orbitrap mass spectrometer in positive and negative ion modes. Both LC separations—reversed-phase and hydrophilic interaction chromatography—were achieved with gradient elutions in 15 minutes. Using a precursor and fragment mass measurement accuracy of nutrients) impact carbon fluxes in the Arctic at the landscape-scale.

  20. Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw.

    Science.gov (United States)

    Mauritz, Marguerite; Bracho, Rosvel; Celis, Gerardo; Hutchings, Jack; Natali, Susan M; Pegoraro, Elaine; Salmon, Verity G; Schädel, Christina; Webb, Elizabeth E; Schuur, Edward A G

    2017-09-01

    Rapid Arctic warming is expected to increase global greenhouse gas concentrations as permafrost thaw exposes immense stores of frozen carbon (C) to microbial decomposition. Permafrost thaw also stimulates plant growth, which could offset C loss. Using data from 7 years of experimental Air and Soil warming in moist acidic tundra, we show that Soil warming had a much stronger effect on CO 2 flux than Air warming. Soil warming caused rapid permafrost thaw and increased ecosystem respiration (R eco ), gross primary productivity (GPP), and net summer CO 2 storage (NEE). Over 7 years R eco , GPP, and NEE also increased in Control (i.e., ambient plots), but this change could be explained by slow thaw in Control areas. In the initial stages of thaw, R eco , GPP, and NEE increased linearly with thaw across all treatments, despite different rates of thaw. As thaw in Soil warming continued to increase linearly, ground surface subsidence created saturated microsites and suppressed R eco , GPP, and NEE. However R eco and GPP remained high in areas with large Eriophorum vaginatum biomass. In general NEE increased with thaw, but was more strongly correlated with plant biomass than thaw, indicating that higher R eco in deeply thawed areas during summer months was balanced by GPP. Summer CO 2 flux across treatments fit a single quadratic relationship that captured the functional response of CO 2 flux to thaw, water table depth, and plant biomass. These results demonstrate the importance of indirect thaw effects on CO 2 flux: plant growth and water table dynamics. Nonsummer R eco models estimated that the area was an annual CO 2 source during all years of observation. Nonsummer CO 2 loss in warmer, more deeply thawed soils exceeded the increases in summer GPP, and thawed tundra was a net annual CO 2 source. © 2017 John Wiley & Sons Ltd.

  1. Sea-ice induced growth decline in Arctic shrubs.

    Science.gov (United States)

    Forchhammer, Mads

    2017-08-01

    Measures of increased tundra plant productivity have been associated with the accelerating retreat of the Arctic sea-ice. Emerging studies document opposite effects, advocating for a more complex relationship between the shrinking sea-ice and terrestrial plant productivity. I introduce an autoregressive plant growth model integrating effects of biological and climatic conditions for analysing individual ring-width growth time series. Using 128 specimens of Salix arctica , S. glauca and Betula nana sampled across Greenland to Svalbard, an overall negative effect of the retreating June sea-ice extent was found on the annual growth. The negative effect of the retreating June sea-ice was observed for younger individuals with large annual growth allocations and with little or no trade-off between previous and current year's growth. © 2017 The Author(s).

  2. Soil plus root respiration and microbial biomass following water, nitrogen, and phosphorus application at a high arctic semi desert

    DEFF Research Database (Denmark)

    Illeris, Lotte; Michelsen, Anders; Jonasson, Sven Evert

    2003-01-01

    CO2 emmision, Decomposition, Microbial biomass carbon, Soil organic matter, Tundra, Water and nutrient limitation......CO2 emmision, Decomposition, Microbial biomass carbon, Soil organic matter, Tundra, Water and nutrient limitation...

  3. Influence of human development and predators on nest survival of tundra birds, Arctic Coastal Plain, Alaska.

    Science.gov (United States)

    Liebezeit, J R; Kendall, S J; Brown, S; Johnson, C B; Martin, P; McDonald, T L; Payer, D C; Rea, C L; Streever, B; Wildman, A M; Zack, S

    2009-09-01

    Nest predation may influence population dynamics of birds on the Arctic Coastal Plain (ACP) of Alaska, USA. Anthropogenic development on the ACP is increasing, which may attract nest predators by providing artificial sources of food, perches, den sites, and nest sites. Enhanced populations or concentrations of human-subsidized predators may reduce nest survival for tundra-nesting birds. In this study, we tested the hypothesis that nest survival decreases in proximity to human infrastructure. We monitored 1257 nests of 13 shorebird species and 619 nests of four passerine species at seven sites on the ACP from 2002 to 2005. Study sites were chosen to represent a range of distances to infrastructure from 100 m to 80 km. We used Cox proportional hazards regression models to evaluate the effects of background (i.e., natural) factors and infrastructure on nest survival. We documented high spatial and temporal variability in nest survival, and site and year were both included in the best background model. We did not detect an effect of human infrastructure on nest survival for shorebirds as a group. In contrast, we found evidence that risk of predation for passerine nests increased within 5 km of infrastructure. This finding provides quantitative evidence of a relationship between infrastructure and nest survival for breeding passerines on the ACP. A posteriori finer-scale analyses (within oil field sites and individual species) suggested that Red and Red-necked Phalaropes combined (Phalaropus fulicarius, P. lobatus) had lower productivity closer to infrastructure and in areas with higher abundance of subsidized predators. However, we did not detect such a relationship between infrastructure and nest survival for Semipalmated and Pectoral Sandpipers (Calidris pusilla, C. melanotos), the two most abundant shorebirds. High variability in environmental conditions, nest survival, and predator numbers between sites and years may have contributed to these inconsistent results

  4. Landscape Controls of CH4 Fluxes in a Catchment of the Forest Tundra in Northern Siberia

    Science.gov (United States)

    Flessa, H.; Rodionov, A.; Guggenberger, G.; Fuchs, H.; Magdon, P.; Shibistova, O.; Zrazhevskaya, G.; Kasansky, O.; Blodau, C.

    2007-12-01

    Soils have the capacity to both produce and consume atmospheric methane. The direction and the size of net- CH4 exchange between soils and atmosphere is mainly controlled by the soil aeration, temperature and the amount of bioavailable organic matter. All these factors are strongly influenced by distribution and seasonal dynamics of permafrost. Thus, distribution of permafrost and the thickness of the active layer can exert strong influence on CH4 dynamics in artic and northern boreal ecosystems. We analyzed the spatial and temporal variability of net-CH4 exchange within a catchment located in the Siberian forest tundra at the eastern shore of the lower Yenissej River to constrain the current function of this region as a sink or source of atmospheric CH4 and to gain insight into the potential for climatic change to alter the rate and form of carbon cycling and CH4 fluxes in this region. Net-fluxes of CH4 were measured from July to November 2003 and from August 2006 to July 2007 on representative soils of the catchment (mineral soils with different thawing depth, soils of bog plateaux) and on a thermokarst pond. In addition, dissolved CH4 in the stream draining the catchment was determined. Field observations, classification of landscape structures from satellite images and flux measurements were combined to estimate total catchment CH4 exchange. Nearly all soils of the catchment were net-sinks of atmospheric CH4 with annual CH4-C uptake rates ranging between 1.2 and 0.2 kg ha-1 yr-1. The active layer depth was the main factor determining the size of CH4 uptake. Total net-exchange of CH4 from the catchment was dominated by ponds that covered only about 2% of the catchment area. Due to high CH4 emission from these aquatic systems, the catchment was a net source of atmospheric CH4 with a mean annual emission of approximately 170 kg CH4-C ha-1. CH4 concentration in streams draining the catchment can help to identify areas with high CH4 production. The results suggest

  5. Spatial patterns of goose grubbing suggest elevated grubbing in dry habitats linked to early snowmelt

    Directory of Open Access Journals (Sweden)

    Åshild Ø. Pedersen

    2013-05-01

    Full Text Available The western Palaearctic tundra is a breeding habitat for large populations of European geese. After their arrival in spring, pink-footed geese (Anser brachyrhynchus forage extensively on below-ground plant parts, using a feeding technique called grubbing that has substantial impact on the tundra vegetation. Previous studies have shown a high frequency of grubbing in lowland fen vegetation. In the present study, we examined the occurrence of grubbing in other habitat types on Spitsbergen, in the Arctic archipelago of Svalbard. Goose grubbing was surveyed along 19 altitudinal transects, going from the valley bottom to altitudes dominated by scree. Grubbing was more frequent in the wet habitat type at low altitudes compared to the drier habitat type at higher altitudes. For the dry habitat type, a higher frequency of grubbing was found in study plots with a south-east facing exposure where snowmelt is expected to be early. This suggests that pink-footed geese primarily use dry vegetation types for grubbing when they are snow-free in early spring and the availability of snow-free patches of the preferred wet vegetation types in the lowlands is limited. Dry vegetation types have poorer recovery rates from disturbance than wet ones. Sites with early snowmelt and dry vegetation types may therefore be at greater risk of long-term habitat degradation. We conclude that the high growth rate of the Svalbard-breeding pink-footed goose population suggests that increasing impacts of grubbing can be expected and argue that a responsible monitoring of the effects on the tundra ecosystem is crucial.

  6. Mammalian herbivores confer resilience of Arctic shrub-dominated ecosystems to changing climate.

    Science.gov (United States)

    Kaarlejärvi, Elina; Hoset, Katrine S; Olofsson, Johan

    2015-09-01

    Climate change is resulting in a rapid expansion of shrubs in the Arctic. This expansion has been shown to be reinforced by positive feedbacks, and it could thus set the ecosystem on a trajectory toward an alternate, more productive regime. Herbivores, on the other hand, are known to counteract the effects of simultaneous climate warming on shrub biomass. However, little is known about the impact of herbivores on resilience of these ecosystems, that is, the capacity of a system to absorb disturbance and still remain in the same regime, retaining the same function, structure, and feedbacks. Here, we investigated how herbivores affect resilience of shrub-dominated systems to warming by studying the change of shrub biomass after a cessation of long-term experimental warming in a forest-tundra ecotone. As predicted, warming increased the biomass of shrubs, and in the absence of herbivores, shrub biomass in tundra continued to increase 4 years after cessation of the artificial warming, indicating that positive effects of warming on plant growth may persist even over a subsequent colder period. Herbivores contributed to the resilience of these systems by returning them back to the original low-biomass regime in both forest and tundra habitats. These results support the prediction that higher shrub biomass triggers positive feedbacks on soil processes and microclimate, which enable maintaining the rapid shrub growth even in colder climates. Furthermore, the results show that in our system, herbivores facilitate the resilience of shrub-dominated ecosystems to climate warming. © 2015 John Wiley & Sons Ltd.

  7. Modern pollen and stomate deposition in lake surface sediments from across the treeline on the Kola Peninsula, Russia.

    Science.gov (United States)

    Gervais, B R.; MacDonald, G M.

    2001-04-01

    We sampled and analyzed surface sediments from 31 lakes along a latitudinal transect crossing the coniferous treeline on the Kola Peninsula, Russia. The major vegetation zones along the transect were tundra, birch-forest tundra, pine-forest tundra, and forest. The results indicate that the major vegetation types in our study area have distinct pollen spectra. Sum-of-squares cluster analysis and principal components analysis (PCA) groupings of pollen sites correspond to the major vegetation zones. PCA ordination of taxa indicates that the first axis separates taxa typical of the forest zone (Pinus, Picea) from taxa typical of tundra and forest-tundra zones (Polypodiaceae, Ericaceae, and Betula). The current position of the coniferous treeline, defined in our region by Pinus sylvestris, occurs roughly where Pinus pollen values reach 35% or greater. Arboreal pollen (AP)/non-arboreal pollen (NAP) ratios were calculated for each site and plotted against geographic distance along the transect. AP/NAP ratios of 7 or greater are found within pine-forest tundra and forest vegetation zones. Pinus stomates (dispersed stomatal guard cells) are absent from sites north of the coniferous treeline and all but two samples from the forested sites contain stomates. Stomate concentrations among the samples are highly variable and range from 10 to 458 per ml and positively correlate with the changing Pinus pollen values.

  8. Dissimilar responses of larch stands in northern Siberia to increasing temperatures-a field and simulation based study.

    Science.gov (United States)

    Wieczorek, Mareike; Kruse, Stefan; Epp, Laura S; Kolmogorov, Alexei; Nikolaev, Anatoly N; Heinrich, Ingo; Jeltsch, Florian; Pestryakova, Lyudmila A; Zibulski, Romy; Herzschuh, Ulrike

    2017-09-01

    Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field- and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least ~240 yr. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra, however, a change in growth form from krummholz to erect trees, beginning ~130 yr ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore

  9. Mathematical Modelling of Arctic Polygonal Tundra with Ecosys: 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation

    Science.gov (United States)

    Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; Wainwright, H. M.; Graham, D.; Torn, M. S.

    2017-12-01

    Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. In this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snow and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.

  10. Tundrisphaera lichenicola gen. nov., sp. nov., a psychrotolerant representative of the family Isosphaeraceae from lichen-dominated tundra soils.

    Science.gov (United States)

    Kulichevskaya, Irina S; Ivanova, Anastasia A; Detkova, Ekaterina N; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S; Dedysh, Svetlana N

    2017-09-01

    Two strains of aerobic, budding, pink-pigmented bacteria, P12T and P515, were isolated from a lichen-dominated peatland and a forested tundra soil of north-western Siberia, respectively. Cells of these isolates were represented by non-motile spheres that occurred singly or were arranged in short chains and aggregates. While growing on solid media, cells of strains P12T and P515 attached to the surface by means of holdfast-like appendages. These isolates were mildly acidophilic (optimum growth at pH 5.5-6.0), psychrotolerant bacteria, which displayed tolerance of low temperatures (4-15 °C), grew optimally at 15-22 °C and did not grow at temperatures above 28 °C. The preferred growth substrates were sugars and some heteropolysaccharides. The major fatty acids were C18 : 1ω9c, C16 : 0 and C14 : 0. Trimethylornithine lipid was the major polar lipid. The only quinone was MK-6, and the G+C content of the DNA was 61.2-62.2 mol%. Strains P12T and P515 possessed identical 16S rRNA gene sequences, which affiliated them with the family Isosphaeraceae, order Planctomycetales, and these displayed the highest similarity (93-94 %) to 16S rRNA gene sequences from members of the genus Singulisphaera. However, the signature fatty acid of species of the genus Singulisphaera, i.e. C18 : 2ω6c,12c, was absent in cells of strains P12T and P515. They also differed from members of the genus Singulisphaera by substrate utilization pattern and a number of physiological characteristics. Based on these data, the novel isolates should be considered as representing a novel genus and species of planctomycetes, for which the name Tundrisphaera lichenicola gen. nov., sp. nov, is proposed. The type strain is P12T (=LMG 29571T=VKM B-3044T).

  11. Variation in xylem structure from tropics to tundra: Evidence from vestured pits

    NARCIS (Netherlands)

    Jansen, S.; Baas, P.; Gasson, P.; Lens, F.; Smets, E.

    2004-01-01

    Bordered pits play an important role in permitting water flow among adjacent tracheary elements in flowering plants. Variation in the bordered pit structure is suggested to be adaptive in optimally balancing the conflict between hydraulic efficiency (conductivity) and safety from air entry at the

  12. ANURA: RANIDAE

    African Journals Online (AJOL)

    response to auditory rather than visual cues. In situations where closely spaced calling males were separated by a dense grass tussock and thereby effectively screened from one another, the call was believed to be aurally elicited. Outright aggression has not been observed in this species. The can type here designated as ...

  13. Plant host finding by parasitic plants: a new perspective on plant to plant communication.

    Science.gov (United States)

    Mescher, Mark C; Runyon, Justin B; De Moraes, Consuelo M

    2006-11-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-documented examples of plant-to-plant communication via volatiles, and the ecological significance of such interactions has been much debated. To date, nearly all studies of volatile-mediated interactions among plant species have focused on the reception of herbivore-induced volatiles by neighboring plants. We recently documented volatile effects in another system, demonstrating that the parasitic plant Cuscuta pentagona uses volatile cues to locate its hosts. This finding may broaden the discussion regarding plant-to-plant communication, and suggests that new classes of volatile-meditated interactions among plant species await discovery.

  14. Red fox takeover of arctic fox breeding den : an observation from Yamal Peninsula, Russia

    OpenAIRE

    Rodnikova, Anna; Ims, Rolf Anker; Sokolov, Alexander; Skogstad, Gunhild; Sokolov, Vasily; Shtro, Victor; Fuglei, Eva

    2011-01-01

    Here, we report from the first direct observation of a red fox (Vulpes vulpes) intrusion on an arctic fox (Vulpes lagopus) breeding den from the southern Arctic tundra of Yamal Peninsula, Russia in 2007. At the same time, as a current range retraction of the original inhabitant of the circumpolar tundra zone the arctic fox is going on, the red fox is expanding their range from the south into arctic habitats. Thus, within large parts of the northern tundra areas the two species are sympatric w...

  15. Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems.

    Science.gov (United States)

    Wullschleger, Stan D; Epstein, Howard E; Box, Elgene O; Euskirchen, Eugénie S; Goswami, Santonu; Iversen, Colleen M; Kattge, Jens; Norby, Richard J; van Bodegom, Peter M; Xu, Xiaofeng

    2014-07-01

    Earth system models describe the physical, chemical and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Plant functional types (PFTs) have been adopted by modellers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review, the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current and future distribution of vegetation. Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration and shrub expansion. However, representation of above- and especially below-ground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait-environment relationships. Surprisingly, despite being important to land-atmosphere interactions of carbon, water and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology and remote sensing will be

  16. The transformation of vegetation vertical zonality affected by anthropogenic impact in East Fennoscandia (Russia)

    Science.gov (United States)

    Sidorik, Vadim; Miulgauzen, Daria

    2017-04-01

    Ecosystems of East Fennoscandia have been affected by intensive anthropogenic influence that resulted in their significant transformation. Study of ecosystems in the framework of vegetation vertical zonality disturbance as well as its recovery allows to understand the trends of anthropogenically induced changes. The aim of the present research is the comparative analysis of vegetation vertical zonality of the two uplands in East Fennoscandia which may be considered as unaffected and affected by anthropogenic impact. The objects of key studies carried out in the north-west of Kola Peninsula in the vicinity of the Pechenganikel Mining and Metallurgical Plant are represented by ecosystems of Kalkupya (h 357 m) and Hangaslachdenvara (h 284 m) uplands. They are characterized by the similarity in sequence of altitudinal belts due to the position on the northern taiga - forest-tundra boundary. Plant communities of Kalkupya upland have no visible signs of anthropogenic influence, therefore, they can be considered as model ecosystems of the area. The sequence of altitudinal belts is the following: - up to 200 m - pine subshrub and green moss ("zonal") forest replaced by mixed pine and birch forest near the upper boundary; - 200-300 m - birch crooked subshrub wood; - above 300 m - tundra subshrub and lichen communities. Ecosystems of Hangaslachdenvara upland have been damaged by air pollution (SO2, Ni, Cu emissions) of the Pechenganikel Plant. This impact has led to plant community suppression and formation of barren lands. Besides the soil cover was significantly disturbed, especially upper horizons. Burying of soil profiles, represented by Podzols (WRB, 2015), also manifested itself in the exploited part of the area. The vegetation cover of Hangaslachdenvara upland is the following: - up to 130 m - birch and aspen subshrub and grass forest instead of pine forest ("zonal"); - 130-200 m - barren lands instead of pine forest ("zonal"); - above 200 m - barren lands instead of

  17. Plant Host Finding by Parasitic Plants: A New Perspective on Plant to Plant Communication

    OpenAIRE

    Mescher, Mark C; Runyon, Justin B; De Moraes, Consuelo M

    2006-01-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-documented examples of plant-to-plant communication via volatiles, and the ecological significance of such interactions has been much d...

  18. A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline.

    Science.gov (United States)

    Niemeyer, Bastian; Epp, Laura S; Stoof-Leichsenring, Kathleen R; Pestryakova, Luidmila A; Herzschuh, Ulrike

    2017-11-01

    Reliable information on past and present vegetation is important to project future changes, especially for rapidly transitioning areas such as the boreal treeline. To study past vegetation, pollen analysis is common, while current vegetation is usually assessed by field surveys. Application of detailed sedimentary DNA (sedDNA) records has the potential to enhance our understanding of vegetation changes, but studies systematically investigating the power of this proxy are rare to date. This study compares sedDNA metabarcoding and pollen records from surface sediments of 31 lakes along a north-south gradient of increasing forest cover in northern Siberia (Taymyr peninsula) with data from field surveys in the surroundings of the lakes. sedDNA metabarcoding recorded 114 plant taxa, about half of them to species level, while pollen analyses identified 43 taxa, both exceeding the 31 taxa found by vegetation field surveys. Increasing Larix percentages from north to south were consistently recorded by all three methods and principal component analyses based on percentage data of vegetation surveys and DNA sequences separated tundra from forested sites. Comparisons of the ordinations using procrustes and protest analyses show a significant fit among all compared pairs of records. Despite similarities of sedDNA and pollen records, certain idiosyncrasies, such as high percentages of Alnus and Betula in all pollen and high percentages of Salix in all sedDNA spectra, are observable. Our results from the tundra to single-tree tundra transition zone show that sedDNA analyses perform better than pollen in recording site-specific richness (i.e., presence/absence of taxa in the vicinity of the lake) and perform as well as pollen in tracing vegetation composition. © 2017 John Wiley & Sons Ltd.

  19. Detection and Segmentation of Small Trees in the Forest-Tundra Ecotone Using Airborne Laser Scanning

    Directory of Open Access Journals (Sweden)

    Marius Hauglin

    2016-05-01

    Full Text Available Due to expected climate change and increased focus on forests as a potential carbon sink, it is of interest to map and monitor even marginal forests where trees exist close to their tolerance limits, such as small pioneer trees in the forest-tundra ecotone. Such small trees might indicate tree line migrations and expansion of the forests into treeless areas. Airborne laser scanning (ALS has been suggested and tested as a tool for this purpose and in the present study a novel procedure for identification and segmentation of small trees is proposed. The study was carried out in the Rollag municipality in southeastern Norway, where ALS data and field measurements of individual trees were acquired. The point density of the ALS data was eight points per m2, and the field tree heights ranged from 0.04 to 6.3 m, with a mean of 1.4 m. The proposed method is based on an allometric model relating field-measured tree height to crown diameter, and another model relating field-measured tree height to ALS-derived height. These models are calibrated with local field data. Using these simple models, every positive above-ground height derived from the ALS data can be related to a crown diameter, and by assuming a circular crown shape, this crown diameter can be extended to a crown segment. Applying this model to all ALS echoes with a positive above-ground height value yields an initial map of possible circular crown segments. The final crown segments were then derived by applying a set of simple rules to this initial “map” of segments. The resulting segments were validated by comparison with field-measured crown segments. Overall, 46% of the field-measured trees were successfully detected. The detection rate increased with tree size. For trees with height >3 m the detection rate was 80%. The relatively large detection errors were partly due to the inherent limitations in the ALS data; a substantial fraction of the smaller trees was hit by no or just a few

  20. Plant host finding by parasitic plants: A new perspective on plant to plant communication

    Science.gov (United States)

    Mark C. Mescher; Justin B. Runyon; Consuelo M. De Moraes

    2006-01-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-...

  1. When Winners Become Losers: Predicted Nonlinear Responses of Arctic Birds to Increasing Woody Vegetation.

    Directory of Open Access Journals (Sweden)

    Sarah J Thompson

    Full Text Available Climate change is facilitating rapid changes in the composition and distribution of vegetation at northern latitudes, raising questions about the responses of wildlife that rely on arctic ecosystems. One widely observed change occurring in arctic tundra ecosystems is an increasing dominance of deciduous shrub vegetation. Our goals were to examine the tolerance of arctic-nesting bird species to existing gradients of vegetation along the boreal forest-tundra ecotone, to predict the abundance of species across different heights and densities of shrubs, and to identify species that will be most or least responsive to ongoing expansion of shrubs in tundra ecosystems. We conducted 1,208 point counts on 12 study blocks from 2012-2014 in northwestern Alaska, using repeated surveys to account for imperfect detection of birds. We considered the importance of shrub height, density of low and tall shrubs (i.e. shrubs >0.5 m tall, percent of ground cover attributed to shrubs (including dwarf shrubs <0.5 m tall, and percent of herbaceous plant cover in predicting bird abundance. Among 17 species considered, only gray-cheeked thrush (Catharus minimus abundance was associated with the highest values of all shrub metrics in its top predictive model. All other species either declined in abundance in response to one or more shrub metrics or reached a threshold where further increases in shrubs did not contribute to greater abundance. In many instances the relationship between avian abundance and shrubs was nonlinear, with predicted abundance peaking at moderate values of the covariate, then declining at high values. In particular, a large number of species were responsive to increasing values of average shrub height with six species having highest abundance at near-zero values of shrub height and abundance of four other species decreasing once heights reached moderate values (≤ 33 cm. Our findings suggest that increases in shrub cover and density will negatively

  2. Subalpine Conifer Seedling Demographics: Species Responses to Climate Manipulations Across an Elevational Gradient at Niwot Ridge, Colorado

    Science.gov (United States)

    Castanha, C.; Germino, M. J.; Torn, M. S.; Ferrenberg, S.; Harte, J.; Kueppers, L. M.

    2010-12-01

    The effect of climate change on future ranges of treeline species is poorly understood. For example, it is not known whether trees will recruit into the alpine, above the current treeline, and whether population-level differences in trees will mediate range shifts. At Niwot Ridge, Colorado, we used common gardens and climate manipulations to test predictions that warming will lead to greater recruitment at and beyond the cold edge of these species ranges, and will reduce recruitment at the warm edge. Seed from local populations of limber pine and Englemann spruce was harvested and reciprocally planted in 3 experimental sites spanning an elevation gradient from lower subalpine forest (10,000’), to the upper subalpine treeline ecotone (11,000’), to the alpine tundra (11,300’). In Fall 2009 seeds were sown into 20 plots at each site. Overhead infrared heaters targeted increases in growing season surface soil temperature of 4-5°C. The heating treatment, which began in October 2009, was crossed with manual watering, which was initiated following snowmelt in 2010. Over the 2010 growing season, we surveyed seedling germination and mortality weekly. Germination began in early May at the forest site, in early June at the krummholz site, and in early July at the alpine site. Depending on the site and plot, heating accelerated germination by 1 to 4 weeks. Seed source elevation, species, and site all affected germination, with effects for the two species also depending on site. At all sites, lower elevation, warm-edge populations had higher germination rates than high-elevation, cool-edge populations, indicating a potential bottleneck for germination of the high elevation seed sources in the adjacent alpine tundra. At all sites, survival was generally higher for pine than for spruce. Watering tended to enhance pine germinant survival while heating tended to depress spruce germinant survival. Our results indicate that the alpine tundra, generally considered an

  3. Multiple Nonconformities in Ice-Walled Lake Successions Indicate Periods with Cold Summers (24.4 - 22.5 ka, 21.1 - 19.2 ka, 18.5 - 18.1 ka) during the Last Deglaciation in Northeastern Illinois, USA

    Science.gov (United States)

    Curry, B. B.

    2014-12-01

    Unprecedented age control on many last glacial stratigraphic units and morainal ice-margin positions are interpreted from AMS radiocarbon ages of tundra plant macrofossils archived in low-relief ice-walled lake plain (IWLP) deposits the Lake Michigan Lobe (south-central Laurentide Ice Sheet). IWLPs are periglacial features that formed on morainal dead-ice permafrost. Lacustrine sediment, and the fossils contained therein, had physical and temporal proximity to the glacier which formed the underlying moraine. In modern ice-walled lakes, as the lake's ice cover begins to melt, moats form which allows access of sloughing tundra-mantled active layer sediment (soil) into the lakes. Multiple AMS ages from two sites with proglacial sediment buried by glacial max LIS diamicton, and IWLPs reveal evidence of episodic plant growth and sedimentation including ca. 24.0 to 24.4 ka (post Shelby Phase), 22.5 to 21.1 ka (post Livingston Phase), 18.1 to 17.4 ka (post Woodstock Phase). Although presently based on negative evidence, the associated nonconformities (listed in title) indicate periods when cold conditions did not promote development of the estival moat. Although the evidence does not preclude tundra growth during the cold summers, there was little landscape modification due to limited thawing of the active layer. At approximately the onset of the 19.2-18.5 "warm" period, at least two large deglacial discharge events flooded the Fox and Kankakee tributary valleys of the Illinois River. The latter, known as the Kankakee Torrent, occurred at 19.05 - 18.85 ka (σ1 range) at the Oswego channel complex. The temporal coincidence of the torrents and sedimentation in ice-walled lakes suggests that the post-Livingston Phase nonconformity (21.1 - 19.2 ka) was a period of lessened meltwater discharge through subglacial conduits (tunnel valleys) as the frozen toe promoted formation of subglacial lakes, buildup of pore-water pressures, and the release of subglacial water as "torrents

  4. The impact of shrubbification on soil organic matter accumulation

    Science.gov (United States)

    Street, L.; Wookey, P. A.; Subke, J. A.; Baxter, R.; Garnett, M.

    2017-12-01

    The degree to which increasing vegetation productivity in the Arctic can offset permafrost carbon emissions under a warming climate is highly uncertain. Most ecosystem or earth system models predict that plant C inputs to permafrost soils will balance or exceed losses with warming, at least until about mid-century. Observations on the ground however, question whether vegetation change in Arctic ecosystems will result in even a transient net C sink. In the European Arctic, for example, rhizosphere processes associated with ectomycorrhizal (ECM) fungi have been implicated in driving rapid cycling - and thus lower storage - of soil organic C (SOC) under deciduous shrubs. Short-term incubation studies also show that decomposition of SOC can be stimulated or "primed" by new inputs of labile plant C. The implication is that as Arctic vegetation shifts towards a greater abundance of productive, and mostly ECM, deciduous trees and shrubs, net C losses from soils may result. Over decadal timescales however, the impact of changing vegetation and associated rhizosphere processes on C stock trajectories is complex - shifts in productivity and mycorrhizal status will be accompanied by other biological and physical changes that can impact decomposition. Encroachment of shrubs will likely influence both litter quality and quantity, as well as soil temperature and moisture regimes due to altered transpiration rates, shading and snow accumulation. Short-term studies, and those based on instantaneous flux measurements, can provide only limited information as to what the impact of shrubbification on SOC stocks will be. Here we use radiocarbon data, in combination with a vertically-resolved isotopic model, to examine how and why SOC accumulation in tundra soils differs between vegetation types over decades to centuries. We compare soil profiles under ECM birch, N-fixing alder, and ericaceous/lichen heath tundra in the Canadian Arctic. Early model results suggest that under alder

  5. Plant stress signalling: understanding and exploiting plant-plant interactions.

    Science.gov (United States)

    Pickett, J A; Rasmussen, H B; Woodcock, C M; Matthes, M; Napier, J A

    2003-02-01

    When plants are attacked by insects, volatile chemical signals can be released, not only from the damaged parts, but also systemically from other parts of the plant and this continues after cessation of feeding by the insect. These signals are perceived by olfactory sensory mechanisms in both the herbivorous insects and their parasites. Molecular structures involved can be characterized by means of electrophysiological assays, using the insect sensory system linked to chemical analysis. Evidence is mounting that such signals can also affect neighbouring intact plants, which initiate defence by the induction of further signalling systems, such as those that increase parasitoid foraging. Furthermore, insect electrophysiology can be used in the identification of plant compounds having effects on the plants themselves. It has been found recently that certain plants can release stress signals even when undamaged, and that these can cause defence responses in intact plants. These discoveries provide the basis for new crop protection strategies, that are either delivered by genetic modification of plants or by conventionally produced plants to which the signal is externally applied. Delivery can also be made by means of mixed seed strategies in which the provoking and recipient plants are grown together. Related signalling discoveries within the rhizosphere seem set to extend these approaches into new ways of controlling weeds, by exploiting the elusive potential of allelopathy, but through signalling rather than by direct physiological effects.

  6. Plant-soil feedbacks: role of plant functional group and plant traits

    NARCIS (Netherlands)

    Cortois, R.; Schröder-Georgi, T.; Weigelt, A.; van der Putten, W.H.; De Deyn, G.B.

    2016-01-01

    Plant-soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew

  7. Quantifying Permafrost Characteristics with DCR-ERT

    Science.gov (United States)

    Schnabel, W.; Trochim, E.; Munk, J.; Kanevskiy, M. Z.; Shur, Y.; Fortier, R.

    2012-12-01

    Geophysical methods are an efficient method for quantifying permafrost characteristics for Arctic road design and engineering. In the Alaskan Arctic construction and maintenance of roads requires integration of permafrost; ground that is below 0 degrees C for two or more years. Features such as ice content and temperature are critical for understanding current and future ground conditions for planning, design and evaluation of engineering applications. This study focused on the proposed Foothills West Transportation Access project corridor where the purpose is to construct a new all-season road connecting the Dalton Highway to Umiat. Four major areas were chosen that represented a range of conditions including gravel bars, alluvial plains, tussock tundra (both unburned and burned conditions), high and low centered ice-wedge polygons and an active thermokarst feature. Direct-current resistivity using galvanic contact (DCR-ERT) was applied over transects. In conjunction complimentary site data including boreholes, active layer depths, vegetation descriptions and site photographs was obtained. The boreholes provided information on soil morphology, ice texture and gravimetric moisture content. Horizontal and vertical resolutions in the DCR-ERT were varied to determine the presence or absence of ground ice; subsurface heterogeneity; and the depth to groundwater (if present). The four main DCR-ERT methods used were: 84 electrodes with 2 m spacing; 42 electrodes with 0.5 m spacing; 42 electrodes with 2 m spacing; and 84 electrodes with 1 m spacing. In terms of identifying the ground ice characteristics the higher horizontal resolution DCR-ERT transects with either 42 or 84 electrodes and 0.5 or 1 m spacing were best able to differentiate wedge-ice. This evaluation is based on a combination of both borehole stratigraphy and surface characteristics. Simulated apparent resistivity values for permafrost areas varied from a low of 4582 Ω m to a high of 10034 Ω m. Previous

  8. High-resolution coproecology: using coprolites to reconstruct the habits and habitats of New Zealand's extinct upland moa (Megalapteryx didinus.

    Directory of Open Access Journals (Sweden)

    Jamie R Wood

    Full Text Available Knowledge about the diet and ecology of extinct herbivores has important implications for understanding the evolution of plant defence structures, establishing the influences of herbivory on past plant community structure and composition, and identifying pollination and seed dispersal syndromes. The flightless ratite moa (Aves: Dinornithiformes were New Zealand's largest herbivores prior to their extinction soon after initial human settlement. Here we contribute to the knowledge of moa diet and ecology by reporting the results of a multidisciplinary study of 35 coprolites from a subalpine cave (Euphrates Cave on the South Island of New Zealand. Ancient DNA analysis and radiocarbon dating revealed the coprolites were deposited by the extinct upland moa (Megalapteryx didinus, and span from at least 6,368±31 until 694±30 (14C years BP; the approximate time of their extinction. Using pollen, plant macrofossil, and ancient DNA analyses, we identified at least 67 plant taxa from the coprolites, including the first evidence that moa fed on the nectar-rich flowers of New Zealand flax (Phormium and tree fuchsia (Fuchsia excorticata. The plant assemblage from the coprolites reflects a highly-generalist feeding ecology for upland moa, including browsing and grazing across the full range of locally available habitats (spanning southern beech (Nothofagus forest to tussock (Chionochloa grassland. Intact seeds in the coprolites indicate that upland moa may have been important dispersal agents for several plant taxa. Plant taxa with putative anti-browse adaptations were also identified in the coprolites. Clusters of coprolites (based on pollen assemblages, moa haplotypes, and radiocarbon dates, probably reflect specimens deposited at the same time by individual birds, and reveal the necessity of suitably large sample sizes in coprolite studies to overcome potential biases in diet interpretation.

  9. LNG plant combined with power plant

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, I; Kikkawa, Y [Chiyoda Chemical Engineering and Construction Co. Ltd., Tokyo (Japan)

    1997-06-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs.

  10. LNG plant combined with power plant

    International Nuclear Information System (INIS)

    Aoki, I.; Kikkawa, Y.

    1997-01-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs

  11. The quality of the forage eaten by Norwegian reindeer on South Georgia in summer

    Directory of Open Access Journals (Sweden)

    Svein D. Mathiesen

    2000-03-01

    Full Text Available The chemical composition and digestibility of plants selected by Norwegian reindeer (Rangifer t. tarandus on the sub-Antarctic island of South Georgia (SG were investigated in the austral summer and compared with two qualities of standard grasses of Phleum pratense of European origin. Paridiochola flabellata, Poa pratense, Poa annua, Deschampsia antarctka, and Phleum alpinum collected on SG contained 14.8, 17.6, 22.8, 16.1 and 10.1% respectively of crude protein of dry matter (DM. Aceana magellanica also collected on SG contained 19.8% of crude protein and 18.8% of water-soluble carbohydrates (WSC of DM, while the tussock grass P. flabellata, contained as much as 29-3% of WSC of DM. Total plant cell-wall contents (CWC, including cellulose, hemi-cellulose and lignin in P. flabellata, P. pratense, P. annua and P. alpinum were 53.2, 49.6, 41.7 and 40.4% of DM respectively, while A. magellanica contained only 17.5% of DM CWC. The lignin concentrations of plants analysed varied between 1.2 and 3.2% of DM. Mean in vitro dry matter digestibility (IVDMD of selected plants ranged from 70% in P. flabellata to 83% in P. alpinum after 48 h incubation in rumen fluid from these reindeer. In contrast, the IVDMD of the poor and high quality standard grass Phleum pratense were 54% and 73% of DM, respectively. The forage eaten by reindeer on SG in summer was of high quality, with low lignin content, moderate protein concentration and high degradability in rumen fluid.

  12. Modeling the location of the forest line in northeast European Russia with remotely sensed vegetation and GIS-based climate and terrain data

    DEFF Research Database (Denmark)

    Virtanen, Tarmo; Mikkola, Kari; Nikula, Ari

    2004-01-01

    GIS-based data sets were used to analyze the structure of the forest line at the landscape level in the lowlands of the Usa River Basin, in northeast European Russia. Vegetation zones in the area range from taiga in the south to forest-tundra and tundra in the north. We constructed logistic...

  13. Fire in the range of the Western Arctic Caribou Herd

    Science.gov (United States)

    Kyle Joly; T. Scott Rupp; Randi R. Jandt; F. Stuart Chapin

    2009-01-01

    Wildfire is the dominant ecological driver in boreal forest ecosystems. Although much less is known, it also affects tundra ecosystems. Fires effectively consume fruticose lichens, the primary winter forage for caribou, in both boreal and tundra ecosystems. We summarize 1950-2007 fire regime data for northwestern Alaska and subregions. We also identified meteorological...

  14. Enhancement of local species richness in tundra by seed dispersal through guts of muskox and barnacle goose

    DEFF Research Database (Denmark)

    Bruun, Hans Henrik; Lundgren, Rebekka; Philipp, Marianne

    2008-01-01

    The potential contribution of vertebrate-mediated seed rain to the maintenance of plant community richness in a High Arctic ecosystem was investigated. We analyzed viable seed content in dung of the four numerically most important terrestrial vertebrates in Northeast Greenland - muskox (Ovibos...... moschatus), barnacle goose (Branta leucopsis), Arctic fox (Alopex lagopus) and Arctic hare (Lepus arcticus). High numbers of plant propagules were found in the dung of muskox and barnacle goose. Seeds of many plant species were found in the faeces of one vertebrate species only. Propagule composition...... in barnacle goose droppings was relatively uniform over samples, with a high abundance of the nutritious bulbils of Polygonum viviparum (Bistorta vivipara), suggesting that geese have a narrow habitat preference and feed selectively. Propagule composition in muskox dung was diverse and heterogeneous among...

  15. New data on the natural environment of the Middle and Late Neopleistocene interglacial periods in the east of the European Subarctic Region of Russia

    Science.gov (United States)

    Andreicheva, L. N.; Marchenko-Vagapova, T. I.

    2017-11-01

    The data obtained from investigation of the Middle and Late Neopleistocene lake sediments in the European Subarctic Region of Russia are reported. Chirva, Rodionovo (Scklov), Sula (Mikulino), and Byzovaya (Leningrad) sediments were subject to palynological analysis and investigation of particle size distribution and mineral composition. The spore-pollen spectra of the Chirva sediments demonstrate two climatic optima: the lower optimum is dominated by the pollen of Pinus sylvestris and broad-leaved species (up to 10%); the upper optimum is dominated by Picea sp. and Pinus sylvestris, while the pollen of Picea sect. Omorica and broad-leaved species are sporadic. The Rodionovo flora is characterized by a more xerophilous composition relative to the Chirva flora and a higher pollen content of pine, birch, wormseed plants, and wormwood. The climatic optimum of the Sula interglacial is distinguished by boreal vegetation, including spruce, birch, and birch-spruce forests with sparse broad-leaved species. The Byzovaya interstadial is marked by seven stages of changes in the vegetation: from tundra and forest-tundra communities to taiga forests with some broad-leaved species. The natural climatic sedimentation conditions in the Middle and Late Neopleistocene interglacial periods are reconstructed. The mineral composition of sediments was largely formed owing to underlying deposits.

  16. Simulating carbon and water fluxes at Arctic and boreal ecosystems in Alaska by optimizing the modified BIOME-BGC with eddy covariance data

    Science.gov (United States)

    Ueyama, M.; Kondo, M.; Ichii, K.; Iwata, H.; Euskirchen, E. S.; Zona, D.; Rocha, A. V.; Harazono, Y.; Nakai, T.; Oechel, W. C.

    2013-12-01

    To better predict carbon and water cycles in Arctic ecosystems, we modified a process-based ecosystem model, BIOME-BGC, by introducing new processes: change in active layer depth on permafrost and phenology of tundra vegetation. The modified BIOME-BGC was optimized using an optimization method. The model was constrained using gross primary productivity (GPP) and net ecosystem exchange (NEE) at 23 eddy covariance sites in Alaska, and vegetation/soil carbon from a literature survey. The model was used to simulate regional carbon and water fluxes of Alaska from 1900 to 2011. Simulated regional fluxes were validated with upscaled GPP, ecosystem respiration (RE), and NEE based on two methods: (1) a machine learning technique and (2) a top-down model. Our initial simulation suggests that the original BIOME-BGC with default ecophysiological parameters substantially underestimated GPP and RE for tundra and overestimated those fluxes for boreal forests. We will discuss how optimization using the eddy covariance data impacts the historical simulation by comparing the new version of the model with simulated results from the original BIOME-BGC with default ecophysiological parameters. This suggests that the incorporation of the active layer depth and plant phenology processes is important to include when simulating carbon and water fluxes in Arctic ecosystems.

  17. Growth regulators in reducing the size of orchid Fire-of-Star for commercialization in vase

    Directory of Open Access Journals (Sweden)

    Patricia Reiners Carvalho

    2016-05-01

    Full Text Available Fire-of-star (Epidendrum radicans Pav. ex Lindl. is a terrestrial orchid, native to Brazil, tussocks with leafy stems, always with many adventitious roots, releasing its long inflorescence with about 1.0 m from the apex of the stem, showing great potential in floriculture, but long flowering stem complicates their marketing vase. The objective of this study was to evaluate the effect of paclobutrazol (PBZ and mepiquat chloride (CLM the reduction of the size of the orchid E. radicans. Plants with an average height of 15 cm were cultivated in a greenhouse with 50% shading. The growth regulators used were PBZ at doses of 0; 5; 10; 15 and 20 mg L-1, and the CLM at doses of 0; 1; 2; 3; 4 and 5 mg L-1. The frequency of application was fortnightly, totaling ten applications. The experiment was installed on a randomized complete blocks, one block to the PBZ with 5 treatments and 10 replications and another block to the CLM, with 6 treatments and 10 replications. Data were submitted to analysis of variance at 5% probability and significance when seen performed regression analysis. The variables evaluated were number shoots, plant height (cm, number of flower stems and leaf area. The results indicated that E. radicans treated with 5 mg L-1 PBZ were 50% lower in height than the control plants. When CLM treated with a dose of 1 mg L-1 plants were 25% lower in height than the control plants, maintaining its aesthetic characteristics suitable for marketing in vases. Growth regulators in the applied doses did not affect the number of shoots and flower stems. PBZ treated plants had 50% of their leaf area compared to control while those treated with CLM doses remained with the same average leaf area of control.

  18. Spring photosynthetic onset and net CO2 uptake in Alaska triggered by landscape thawing.

    Science.gov (United States)

    Parazoo, Nicholas C; Arneth, Almut; Pugh, Thomas A M; Smith, Ben; Steiner, Nicholas; Luus, Kristina; Commane, Roisin; Benmergui, Josh; Stofferahn, Eric; Liu, Junjie; Rödenbeck, Christian; Kawa, Randy; Euskirchen, Eugenie; Zona, Donatella; Arndt, Kyle; Oechel, Walt; Miller, Charles

    2018-04-24

    The springtime transition to regional-scale onset of photosynthesis and net ecosystem carbon uptake in boreal and tundra ecosystems are linked to the soil freeze-thaw state. We present evidence from diagnostic and inversion models constrained by satellite fluorescence and airborne CO 2 from 2012 to 2014 indicating the timing and magnitude of spring carbon uptake in Alaska correlates with landscape thaw and ecoregion. Landscape thaw in boreal forests typically occurs in late April (DOY 111 ± 7) with a 29 ± 6 day lag until photosynthetic onset. North Slope tundra thaws 3 weeks later (DOY 133 ± 5) but experiences only a 20 ± 5 day lag until photosynthetic onset. These time lag differences reflect efficient cold season adaptation in tundra shrub and the longer dehardening period for boreal evergreens. Despite the short transition from thaw to photosynthetic onset in tundra, synchrony of tundra respiration with snow melt and landscape thaw delays the transition from net carbon loss (at photosynthetic onset) to net uptake by 13 ± 7 days, thus reducing the tundra net carbon uptake period. Two global CO 2 inversions using a CASA-GFED model prior estimate earlier northern high latitude net carbon uptake compared to our regional inversion, which we attribute to (i) early photosynthetic-onset model prior bias, (ii) inverse method (scaling factor + optimization window), and (iii) sparsity of available Alaskan CO 2 observations. Another global inversion with zero prior estimates the same timing for net carbon uptake as the regional model but smaller seasonal amplitude. The analysis of Alaskan eddy covariance observations confirms regional scale findings for tundra, but indicates that photosynthesis and net carbon uptake occur up to 1 month earlier in evergreens than captured by models or CO 2 inversions, with better correlation to above-freezing air temperature than date of primary thaw. Further collection and analysis of boreal evergreen species over

  19. Limnological characteristics of 56 lakes in the Central Canadian Arctic Treeline Region

    Directory of Open Access Journals (Sweden)

    John P. SMOL

    2003-02-01

    Full Text Available Measured environmental variables from 56 lakes across the Central Canadian Treeline Region exhibited clear limnological differences among subpolar ecozones, reflecting strong latitudinal changes in biome characteristics (e.g. vegetation, permafrost, climate. Principal Components Analysis (PCA clearly separated forested sites from tundra sites based on distinct differences in limnological characteristics. Increases in major ions and related variables (e.g. dissolved inorganic carbon, DIC were higher in boreal forest sites in comparison to arctic tundra sites. The higher values recorded in the boreal forest lakes may be indirectly related to differences in climatic factors in these zones, such as the degree of permafrost development, higher precipitation and runoff, duration of ice-cover on the lakes, and thicker and better soil development. Similar to trends observed in DIC, substantially higher values for dissolved organic carbon (DOC were measured in boreal forest lakes than in arctic tundra lakes. This was likely due to higher amounts of catchment-derived DOC entering the lakes from coniferous leaf litter sources. Relative to arctic tundra lakes, boreal forest lakes had higher nutrient concentrations, particularly total nitrogen (TN, likely due to warmer conditions, a longer growing season, and higher precipitation, which would enhance nutrient cycling and primary productivity. Results suggest that modern aquatic environments at opposite sides of the central Canadian arctic treeline (i.e. boreal forest and arctic tundra exhibit distinct differences in water chemistry and physical conditions. These limnological trends may provide important information on possible future changes with additional warming.

  20. Soil microbial respiration beneath Stipa tenacissima L. and in surrounding bare soil

    Directory of Open Access Journals (Sweden)

    Irena Novosádová

    2011-01-01

    Full Text Available Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa. Ecosystem functioning of these steppes is strongly related to the spatial pattern of grass tussocks. Soils beneath Stipa tenacissima L. grass show different fertility and different microclimatic conditions than in surrounding bare soil. The objective of this study was to assess the effect of Stipa tenacissima L. on the key soil microbial activities under controlled incubation conditions (basal and potential respiration. Basal and potential microbial respirations in the soils beneath Stipa tenacissima L. were, in general, not significantly different from the bare soils. The differences were less than 10%. Significantly less ethylene produced by microbial activity in soils beneath Stipa tenacissima L. after the addition of glucose could indicate the dependence of rhizospheric microbial communities on available carbon compounds. It can be concluded, that the soil respiration in semi-arid Mediterranean ecosystems is not necessarily associated with the patchy plant distribution and that some microbial activities characteristics can be unexpectedly homogenous.

  1. Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community.

    Science.gov (United States)

    Hortal, S; Lozano, Y M; Bastida, F; Armas, C; Moreno, J L; Garcia, C; Pugnaire, F I

    2017-12-19

    Competition is a key process that determines plant community structure and dynamics, often mediated by nutrients and water availability. However, the role of soil microorganisms on plant competition, and the links between above- and belowground processes, are not well understood. Here we show that the effects of interspecific plant competition on plant performance are mediated by feedbacks between plants and soil bacterial communities. Each plant species selects a singular community of soil microorganisms in its rhizosphere with a specific species composition, abundance and activity. When two plant species interact, the resulting soil bacterial community matches that of the most competitive plant species, suggesting strong competitive interactions between soil bacterial communities as well. We propose a novel mechanism by which changes in belowground bacterial communities promoted by the most competitive plant species influence plant performance and competition outcome. These findings emphasise the strong links between plant and soil communities, paving the way to a better understanding of plant community dynamics and the effects of soil bacterial communities on ecosystem functioning and services.

  2. Advancing High Spatial and Spectral Resolution Remote Sensing for Observing Plant Community Response to Environmental Variability and Change in the Alaskan Arctic

    Science.gov (United States)

    Vargas Zesati, Sergio A.

    The Arctic is being impacted by climate change more than any other region on Earth. Impacts to terrestrial ecosystems have the potential to manifest through feedbacks with other components of the Earth System. Of particular concern is the potential for the massive store of soil organic carbon to be released from arctic permafrost to the atmosphere where it could exacerbate greenhouse warming and impact global climate and biogeochemical cycles. Even though substantial gains to our understanding of the changing Arctic have been made, especially over the past decade, linking research results from plot to regional scales remains a challenge due to the lack of adequate low/mid-altitude sampling platforms, logistic constraints, and the lack of cross-scale validation of research methodologies. The prime motivation of this study is to advance observational capacities suitable for documenting multi-scale environmental change in arctic terrestrial landscapes through the development and testing of novel ground-based and low altitude remote sensing methods. Specifically this study addressed the following questions: • How well can low-cost kite aerial photography and advanced computer vision techniques model the microtopographic heterogeneity of changing tundra surfaces? • How does imagery from kite aerial photography and fixed time-lapse digital cameras (pheno-cams) compare in their capacity to monitor plot-level phenological dynamics of arctic vegetation communities? • Can the use of multi-scale digital imaging systems be scaled to improve measurements of ecosystem properties and processes at the landscape level? • How do results from ground-based and low altitude digital remote sensing of the spatiotemporal variability in ecosystem processes compare with those from satellite remote sensing platforms? Key findings from this study suggest that cost-effective alternative digital imaging and remote sensing methods are suitable for monitoring and quantifying plot to

  3. Apoplastic interactions between plants and plant root intruders

    Directory of Open Access Journals (Sweden)

    Kanako eMitsumasu

    2015-08-01

    Full Text Available Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root-parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones (SLs, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  4. Apoplastic interactions between plants and plant root intruders.

    Science.gov (United States)

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  5. Carbon monoxide and methane in the North American Arctic and Subarctic troposphere - July-August 1988

    Science.gov (United States)

    Harriss, Robert C.; Sachse, Glen W.; Hill, Gerald F.; Wade, Larry; Bartlett, Karen B.; Collins, James E.; Steele, L. P.; Novelli, Paul C.

    1992-01-01

    Enhanced concentrations of CH4 in the unpolluted atmospheric mixed layer over both Arctic and subarctic tundra landscapes are documented here using data from the NASA Arctic Boundary Layer Expedition (ABLE 3A). The CH4 concentration gradients were determined mainly by interactions of biogenic emission from wet tundra and turbulent mixing proceses. The gradient were most frequently associated with intrusion of upper tropospheric or stratospheric air into the midtroposphere, emissions from forest and tundra fires, and long-range transport of enhanced concentration of these gases from unidentified sources. Summertime haze layers exhibited midtropospheric enhancements of CH4 similar to those measured in winter Arctic events. The observations confirm the importance of Arctic and Subarctic wetland environments as a regional source of global atmospheric CH4.

  6. Effect of Hummock-Forming Vegetation on Methane Emissions from a Temperate Sedge-Grass Marsh

    Czech Academy of Sciences Publication Activity Database

    Vítková, J.; Dušek, Jiří; Stellner, Stanislav; Moulisová, L.; Čížková, H.

    2017-01-01

    Roč. 37, č. 4 (2017), s. 675-686 ISSN 0277-5212 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LM2015061; GA ČR(CZ) GAP504/11/1151 Institutional support: RVO:86652079 Keywords : Methane emissions * Chamber method * Carex acuta * Tussock * Water level * Wetland Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 1.573, year: 2016

  7. Chemical signaling between plants and plant-pathogenic bacteria.

    Science.gov (United States)

    Venturi, Vittorio; Fuqua, Clay

    2013-01-01

    Studies of chemical signaling between plants and bacteria in the past have been largely confined to two models: the rhizobial-legume symbiotic association and pathogenesis between agrobacteria and their host plants. Recent studies are beginning to provide evidence that many plant-associated bacteria undergo chemical signaling with the plant host via low-molecular-weight compounds. Plant-produced compounds interact with bacterial regulatory proteins that then affect gene expression. Similarly, bacterial quorum-sensing signals result in a range of functional responses in plants. This review attempts to highlight current knowledge in chemical signaling that takes place between pathogenic bacteria and plants. This chemical communication between plant and bacteria, also referred to as interkingdom signaling, will likely become a major research field in the future, as it allows the design of specific strategies to create plants that are resistant to plant pathogens.

  8. Danngarrd-Oscar events recorded in a terrestrial sequence in central British Columbia, Canada

    Science.gov (United States)

    Ward, B. C.; Geertsema, M.; Telka, A.; Mathewes, R.

    2012-12-01

    The Indianpoint section, 90 km southeast of Prince George, presents a >25 ka record of paleoenvironmental changes from non-glacial MIS 3 time to just before Late Wisconsinan (MIS2) ice from the Cordilleran Ice Sheet overran the site. Detailed plant and insect macrofossil and pollen analyses were carried out on a 5-6 m thick fine-grained unit. It represents a small lake, based on aquatic plants and insects, and taxa indicative of riparian or shoreline environments. A total of 11 radiocarbon ages, most obtained on willow (Salix) twigs provide chronological control for 8 levels. Radiocarbon ages of >44 ka (CAMS-96170) and 46.5 ka (CAMS 93938) were obtained near the base and are associated with spruce macrofossils (abundant needles, seeds and seed wings) and high spruce pollen. Between 37.0 ka (CAMS115785) and 25.9 ka (CAMS117312) alternations between open spruce forest and tundra with minor willow and birch occur. In the upper 2.5 m of the section, between 24.5 ka (CAMS 93940) and 20.4 ka (CAMS 93939), the vegetation changes to dry shrub tundra, dominated again by willow with minor birch. Most pollen from this interval comes from herbs such as sedges, grasses and Artemisia. Also present are characteristic insects such as the weevil Vitavitus thulius and the ground beetles Trichocellus mannerheimi, Pteriostichus (Cryobius) nivalis, and Amara alpina that are presently only found in dry tundra habitats. The decrease in the occurrence of willow and birch in the upper 40-50 cm reflects increasingly harsh conditions as glaciers approached the site. An age of 19.9 ka (AA44045) has been obtained on a willow twig 20-30 cm below where the unit is truncated by a Late Wisconsinan till. The lacustrine unit of the Indianpoint section spans >25 ka and records climatic variation during MIS 3 and deterioration associated with the growth of the Cordilleran Ice Sheet during the Late Wisconsinan (MIS 2). The alternations in the middle portion of the record are thought to represent

  9. Effects on the function of Arctic ecosystems in the short- and long-term perspectives.

    Science.gov (United States)

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus

    2004-11-01

    Historically, the function of Arctic ecosystems in terms of cycles of nutrients and carbon has led to low levels of primary production and exchanges of energy, water and greenhouse gases have led to low local and regional cooling. Sequestration of carbon from atmospheric CO2, in extensive, cold organic soils and the high albedo from low, snow-covered vegetation have had impacts on regional climate. However, many aspects of the functioning of Arctic ecosystems are sensitive to changes in climate and its impacts on biodiversity. The current Arctic climate results in slow rates of organic matter decomposition. Arctic ecosystems therefore tend to accumulate organic matter and elements despite low inputs. As a result, soil-available elements like nitrogen and phosphorus are key limitations to increases in carbon fixation and further biomass and organic matter accumulation. Climate warming is expected to increase carbon and element turnover, particularly in soils, which may lead to initial losses of elements but eventual, slow recovery. Individual species and species diversity have clear impacts on element inputs and retention in Arctic ecosystems. Effects of increased CO2 and UV-B on whole ecosystems, on the other hand, are likely to be small although effects on plant tissue chemisty, decomposition and nitrogen fixation may become important in the long-term. Cycling of carbon in trace gas form is mainly as CO2 and CH4. Most carbon loss is in the form of CO2, produced by both plants and soil biota. Carbon emissions as methane from wet and moist tundra ecosystems are about 5% of emissions as CO2 and are responsive to warming in the absence of any other changes. Winter processes and vegetation type also affect CH4 emissions as well as exchanges of energy between biosphere and atmosphere. Arctic ecosystems exhibit the largest seasonal changes in energy exchange of any terrestrial ecosystem because of the large changes in albedo from late winter, when snow reflects most

  10. Four planting devices for planting no-till maize

    Directory of Open Access Journals (Sweden)

    Osei Bonsu Patterson

    2015-05-01

    Full Text Available An experiment was conducted at the CSIR-Crops Research Institute (CSIR-CRI Experimental station at Ejura in Ghana to compare the efficiency of four devices for planting no-till maize: Tractor drawn seeder, Chinese made jab planter, Locally made jab planter and a Cutlass. It took two (2 hours 48 minutes to plant one hectare of maize with the tractor drawn seeder, which was significantly (p less than 1% faster than all the planting methods. Cutlass was the slowest planting device lasting more than 14 hours per hectare. There was no significant difference in planting time between the Chinese planter and local planter. Economic analysis showed that cutlass planting produced the highest net benefit, whilst tractor drawn seeder produced the least benefit. In this study cutlass planting was done with precision by collaborating farmers. In actual farm situation however, hired laborers (planting gangs often plant in haste which often results in poor plant population leading to low yields. Tractor drawn seeders or jab planters could reduce drudgery in planting and encourage farm expansion.

  11. Sublimation From Snow in Northern Environments

    Science.gov (United States)

    Pomeroy, J. W.

    2002-12-01

    Sublimation from snow is an often neglected component of water and energy balances. Research under the Mackenzie GEWEX Study has attempted to understand the snow and atmospheric processes controlling sublimation and to estimate the magnitude of sublimation in high latitude catchments. Eddy correlation units were used to measure vertical water vapour fluxes from a high latitude boreal forest, snow-covered tundra and shrub-covered tundra in Wolf Creek Research Basin, near Whitehorse Yukon, Territory Canada. Over Jan-Apr. water vapour fluxes from the forest canopy amounted to 18.3 mm, a significant loss from winter snowfall of 54 mm. Most of this loss occurred when the canopy was snow-covered. The weight of snow measured on a suspended, weighed tree indicates that this flux is dominated by sublimation of intercepted snow. In the melt period (April), water vapour fluxes were uniformly small ranging from 0.21 mm/day on the tundra slope, 0.23 mm/day for the forest and 0.27 mm/day for the shrub-tundra. During the melt period the forest and shrub canopies was snow-free and roots were frozen, so the primary source of water vapour from all sites was the surface snow.

  12. Plant aquaporins: roles in plant physiology.

    Science.gov (United States)

    Li, Guowei; Santoni, Véronique; Maurel, Christophe

    2014-05-01

    Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. Here, we present comprehensive insights made on plant aquaporins in recent years, pointing to their molecular and physiological specificities with respect to animal or microbial counterparts. In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations and various physiological substrates in addition to water. Of particular relevance for plants is the transport by aquaporins of dissolved gases such as carbon dioxide or metalloids such as boric or silicic acid. The mechanisms that determine the gating and subcellular localization of plant aquaporins are extensively studied. They allow aquaporin regulation in response to multiple environmental and hormonal stimuli. Thus, aquaporins play key roles in hydraulic regulation and nutrient transport in roots and leaves. They contribute to several plant growth and developmental processes such as seed germination or emergence of lateral roots. Plants with genetically altered aquaporin functions are now tested for their ability to improve plant resistance to stresses. This article is part of a Special Issue entitled Aquaporins. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Isoprenoids emission in Stipa tenacissima L.: Photosynthetic control and the effect of UV light

    International Nuclear Information System (INIS)

    Guidolotti, Gabriele; Rey, Ana; Medori, Mauro; Calfapietra, Carlo

    2016-01-01

    Fluxes of CO_2 and isoprenoids were measured for the first time in Stipa tenacissima L (alfa grass), a perennial tussock grass dominant in the driest areas of Europe. In addition, we studied how those fluxes were influenced by environmental conditions, leaf ontogeny and UV radiation and compared emission rates in two contrasting seasons: summer when plants are mostly inactive and autumn, the growing season in this region. Leaf ontogeny significantly affected both photosynthesis and isoprenoids emission. Isoprene emission was positively correlated with photosynthesis, although a low isoprene emission was detected in brown leaves with a net carbon loss. Moreover, leaves with a significant lower photosynthesis emitted only monoterpenes, while at higher photosynthetic rates also isoprene was produced. Ambient UV radiation uncoupled photosynthesis and isoprene emission. It is speculated that alfa grass represent an exception from the general rules governing plant isoprenoid emitters. - Highlights: • Stipa tenacissima L. is a grass emitting either monoterpenes and isoprene. • The emission has reasonable rates even in senescent leaves. • Isoprene emission is positively correlated with CO_2 assimilation. • Ambient UV radiation uncouples photosynthesis and isoprene emission. • Leaves with lower photosynthetic rates emit only monoterpenes. - We proved for the first time that alfa grass emit both isoprene and monoterpene, and we provide some innovative aspects about the UV effect and the behavior of Stipa tenacissima.

  14. Integrated Gasification SOFC Plant with a Steam Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Pierobon, Leonardo

    2011-01-01

    A hybrid Solid Oxide Fuel Cell (SOFC) and Steam Turbine (ST) plant is integrated with a gasification plant. Wood chips are fed to the gasification plant to produce biogas and then this gas is fed into the anode side of a SOFC cycle to produce electricity and heat. The gases from the SOFC stacks...... enter into a burner to burn the rest of the fuel. The offgases after the burner are now used to generate steam in a Heat Recovery Steam Generator (HRSG). The generated steam is expanded in a ST to produce additional power. Thus a triple hybrid plant based on a gasification plant, a SOFC plant...... and a steam plant is presented and studied. The plant is called as IGSS (Integrated Gasification SOFC Steam plant). Different systems layouts are presented and investigated. Electrical efficiencies up to 56% are achieved which is considerably higher than the conventional integrated gasification combined...

  15. DNA-based and culture-based characterization of a hydrocarbon-degrading consortium enriched from Arctic soil

    Energy Technology Data Exchange (ETDEWEB)

    Thomassin-Lacroix, E. J. M.; Reimer, K. J. [Royal Military College, Dept. of Chemistry and Chemical Engineering, Kingston, On (Canada); Yu, Z.; Mohn, W. W. [British Columbia Univ., Dept. of Microbiology and Immunology, Vancouver, BC (Canada); Eriksson, M. [Royal Inst. of Technology, Dept. of Biotechnology, Stockholm (Sweden)

    2001-12-01

    Oil spills are fairly common in polar tundra regions, including remote locations, and are a threat to the relatively fragile ecosystem. Remediation must be done economically and with minimum additional damage. Bioremediation is considered to be the appropriate technology, although its application in polar tundra regions is not well documented. Most studies of hydrocarbon remediation in polar regions have concerned marine oil spills, while a few studies have demonstrated on-site polar tundra soil remediation. A few of these demonstrated the presence of psychrotolerant hydrocarbon-degrading bacteria in polar tundra soils. Because fuels are complex mixtures of hydrocarbons, microbial consortia rather than pure cultures may be the most effective agents in degrading fuels. Despite their potential advantages for bioaugmentation applications, consortia are difficult to characterize and monitor. Molecular methods based on DNA analysis partially address these difficulties. One such approach is to randomly clone rRNA gene (rDNA) fragments and to sequence as a set of clones. The relative abundance of individual sequences in the clone library is related to the relative abundance of the corresponding organism in the community. In this study a psychrotolerant, fuel-degrading consortium was enriched with Arctic tundra soil. The enrichment substrate for the consortium was Jet A-1 fuel, which is very similar to Arctic diesel fuel, a common contaminant in the region. The objectives of the study were to (1) characterize thr consortium by DNA- and culture-based methods, (2) develop quantitative polymerase chain reaction assays for populations of predominant consortium members, and (3) determine the dynamics of those populations during incubation of the consortium. Result showed that is possible to quantitatively monitor members of a microbial consortium, with potential application for bioremediation of Arctic tundra soil. The relative abundance of consortium members was found to vary

  16. Carbon monoxide and methane in the North American Arctic and Subarctic troposphere - July-August 1988

    Energy Technology Data Exchange (ETDEWEB)

    Harriss, R.C.; Sachse, G.W.; Hill, G.F.; Wade, L.; Bartlett, K.B.; Collins, J.E.; Steele, L.P.; Novelli, P.C. (New Hampshire Univ., Durham (United States) NASA, Langley Research Center, Hampton, VA (United States) Lockheed Engineering Sciences Co., Hampton, VA (United States) Science and Technology Corp., Hampton, VA (United States) Cooperative Inst. for Research in Environmental Sciences, Boulder, CO (United States))

    1992-10-01

    Enhanced concentrations of CH4 in the unpolluted atmospheric mixed layer over both Arctic and subarctic tundra landscapes are documented here using data from the NASA Arctic Boundary Layer Expedition (ABLE 3A). The CH4 concentration gradients were determined mainly by interactions of biogenic emission from wet tundra and turbulent mixing proceses. The gradient were most frequently associated with intrusion of upper tropospheric or stratospheric air into the midtroposphere, emissions from forest and tundra fires, and long-range transport of enhanced concentration of these gases from unidentified sources. Summertime haze layers exhibited midtropospheric enhancements of CH4 similar to those measured in winter Arctic events. The observations confirm the importance of Arctic and Subarctic wetland environments as a regional source of global atmospheric CH4. 33 refs.

  17. Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones.

    Science.gov (United States)

    Tarkowská, Danuše; Strnad, Miroslav

    2016-09-01

    The present review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones. Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28-29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones.

  18. Plant toxicity, adaptive herbivory, and plant community dynamics

    Science.gov (United States)

    Feng, Z.; Liu, R.; DeAngelis, D.L.; Bryant, J.P.; Kielland, K.; Stuart, Chapin F.; Swihart, R.K.

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of its effort to whichever plant species is more common and accessible. In contrast, toxin-determined selective herbivory can drive plant succession toward dominance by the more toxic species, as previously documented in boreal forests and prairies. When the toxin concentrations in different plant species are similar, but species have different toxins with nonadditive effects, herbivores tend to diversify foraging efforts to avoid high intakes of any one toxin. This diversification leads the herbivore to focus more feeding on the less common plant species. Thus, uncommon plants may experience depensatory mortality from herbivory, reducing local species diversity. The depensatory effect of herbivory may inhibit the invasion of other plant species that are more palatable or have different toxins. These predictions were tested and confirmed in the Alaskan boreal forest. ?? 2009 Springer Science+Business Media, LLC.

  19. Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra

    Science.gov (United States)

    S.M. Natali; E.A.G. Schuur; C. Trucco; C.E. Hicks Pries; K.G. Crummer; A.F. Baron Lopez

    2011-01-01

    The carbon (C) storage capacity of northern latitude ecosystems may diminish as warming air temperatures increase permafrost thaw and stimulate decomposition of previously frozen soil organic C. However, warming may also enhance plant growth so that photosynthetic carbon dioxide (C02) uptake may, in part, offset respiratory losses. To determine...

  20. [Development of Plant Metabolomics and Medicinal Plant Genomics].

    Science.gov (United States)

    Saito, Kazuki

    2018-01-01

     A variety of chemicals produced by plants, often referred to as 'phytochemicals', have been used as medicines, food, fuels and industrial raw materials. Recent advances in the study of genomics and metabolomics in plant science have accelerated our understanding of the mechanisms, regulation and evolution of the biosynthesis of specialized plant products. We can now address such questions as how the metabolomic diversity of plants is originated at the levels of genome, and how we should apply this knowledge to drug discovery, industry and agriculture. Our research group has focused on metabolomics-based functional genomics over the last 15 years and we have developed a new research area called 'Phytochemical Genomics'. In this review, the development of a research platform for plant metabolomics is discussed first, to provide a better understanding of the chemical diversity of plants. Then, representative applications of metabolomics to functional genomics in a model plant, Arabidopsis thaliana, are described. The extension of integrated multi-omics analyses to non-model specialized plants, e.g., medicinal plants, is presented, including the identification of novel genes, metabolites and networks for the biosynthesis of flavonoids, alkaloids, sulfur-containing metabolites and terpenoids. Further, functional genomics studies on a variety of medicinal plants is presented. I also discuss future trends in pharmacognosy and related sciences.

  1. 7 CFR 302.2 - Movement of plants and plant products.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of plants and plant products. 302.2 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DISTRICT OF COLUMBIA; MOVEMENT OF PLANTS AND PLANT PRODUCTS § 302.2 Movement of plants and plant products. Inspection or documentation of the plant health status of...

  2. PLANT BIOPRINTING: NOVEL PERSPECTIVE FOR PLANT BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Adhityo WICAKSONO

    2015-12-01

    Full Text Available Bioprinting is a technical innovation that has revolutionized tissue engineering. Using conventional printer cartridges filled with cells as well as a suitable scaffold, major advances have been made in the biomedical field, and it is now possible to print skin, bones, blood vessels, and even organs. Unlike animal systems, the application of bioprinting in simple plant tissue cells is still in a nascent phase and has yet to be studied. One major advantage of plants is that all living parts are reprogrammable in the form of totipotent cells. Plant bioprinting may improve scientists’understanding of plant shape and morphogenesis, and could serve for the mass production of desired tissues or plants, or even the production of plant-based biomaterial for industrial uses. This perspectives paper explores these possibilities using knowledge on what is known about bioprinting in other biosystems.

  3. Plant responses to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Loon, L.C. van

    2007-01-01

    Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant.

  4. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Science.gov (United States)

    Goff, Stephen A.; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E.; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H.; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B. S.; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M.; Cranston, Karen A.; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J.; White, Jeffery W.; Leebens-Mack, James; Donoghue, Michael J.; Spalding, Edgar P.; Vision, Todd J.; Myers, Christopher R.; Lowenthal, David; Enquist, Brian J.; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services. PMID:22645531

  5. The iPlant Collaborative: Cyberinfrastructure for Plant Biology.

    Science.gov (United States)

    Goff, Stephen A; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B S; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M; Cranston, Karen A; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J; White, Jeffery W; Leebens-Mack, James; Donoghue, Michael J; Spalding, Edgar P; Vision, Todd J; Myers, Christopher R; Lowenthal, David; Enquist, Brian J; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

  6. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Directory of Open Access Journals (Sweden)

    Stephen A Goff

    2011-07-01

    Full Text Available The iPlant Collaborative (iPlant is a United States National Science Foundation (NSF funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006. iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

  7. Methane Ebullition During Simulated Lake Expansion and Permafrost Degradation

    Science.gov (United States)

    Mazéas, O.; von Fischer, J. C.; Whelan, M.; Rhew, R.

    2007-12-01

    Methane, a potent greenhouse gas, is emitted by Arctic tundra and lakes. Ebullition, or bubbling, of methane from Arctic lakes has been shown to be a major transport mechanism from the sediment to the atmosphere, and ebullition rates are greatest near the edges of the lakes where active erosion is occurring. In regions of continuous permafrost, Arctic lakes have been expanding in recent decades, attributed to permafrost melting and development of thermokarst. Lake expansion occurs when the margins erode into water, supplying large amounts of organic rich material to the sediment-water interface. This allows carbon that was previously stored in the soil (active layer and permafrost) to become bioavailable and subject to decomposition. An increase in Arctic methane emissions as a result of permafrost thawing and lake expansion would constitute a positive feedback to Arctic warming. In order to better understand these processes, an experiment was initiated in July 2007 at the Barrow Environmental Observatory, Barrow, AK. Different layers of locally collected tundra soil were placed into incubation chambers at the bottom of a shallow (about 1 m deep) lake. Each experimental chamber consists of a bucket fixed underneath an inverted funnel, with a sampling port on top to capture and collect the emitted gases. Gas samples are analyzed for methane and carbon dioxide concentrations, as well as relevant isotopic compositions. Gas sampling has occurred at frequent intervals during the late summer and will continue through the early winter. Three replicates of each layer (active layer, seasonally frozen active layer and permafrost) were incubated, as well as an empty control chamber. An additional chamber containing thawed permafrost and cellulose-rich sawdust was placed for comparison, as cellulose is a major component of plant tissue and the fermentation of the cellulose should yield substrates for methanogenesis. Total production of methane versus organic carbon content of

  8. Northern Peatland Shifts Under Changing Climate and Their Impact on Permafrost

    Science.gov (United States)

    Shur, Y.; Jorgenson, T.; Kanevskiy, M. Z.

    2014-12-01

    Formation of peatlands depends primarily on climate and its interactions with hydrology, soil thermal regimes, plant composition, and nutrients. A water balance with precipitation exceeding evaporation is necessary for their formation. The rate of peat accumulation also greatly depends on thermal resources. The prominent impact of the water balance and temperature on peatland formation is evident in the West Siberia Lowland. The rate of peat accumulation steadily increases from arctic tundra to moss tundra, to forest tundra, to northern taiga, and to southern taiga. This increase is a result in increase in air temperature and length of the growing season because all of these zones have water balance favorable for peat formation. Further to south, evaporation prevails over precipitation and peat formation occurs only in isolated areas. Climate change will redefine geographical distribution of climatic and vegetation zones. It is predicted that in arctic and subarctic regions the difference between precipitation and evaporation will increase and as a result these regions will remain favorable to peat accumulation. With increase of thermal resources, the rate of peat accumulation will also increase. The Alaska Arctic Coastal Plain is of a special interest because it has thousands of shallow lakes, which due to warming climate would shift from open waterbodies to peatlands through shoreline paludification and infilling. The accumulation of organic matter will likely turn open water into shore fens and bogs, and eventually to peat plateaus, as is occurring in many boreal landscapes. Expected impact on permafrost in arctic and subarctic regions will include rise of the permafrost table, thickening of the ice-rich intermediate layer with ataxitic (suspended) cryostructure, and replacement of frost boils with earth hummocks. In the contemporary continuous permafrost zone, permafrost formed as climate-driven will be transformed into climate-driven ecosystem protected

  9. Plan to extend Arctic's drilling season with new platforms upsets ecologists

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2003-03-01

    Plans to extend the drilling season in Arctic Alaska beyond the traditional winter months has environmentalists worried about the impact on wildlife and the likelihood that oil and gas production will spread more quickly to remote areas. In the past, drilling was confined to the winter only and the thickness of the ice protected the tundra from damage by the heavy drilling equipment. The recent appearance of lightweight drilling equipment, comprised of components that fit together like Lego pieces, can be transported across the tundra beyond the traditional winter months, with promise of minimal damage, combined with significant savings in time and money. Andarko Petroleum Corporation, the company whose planned extended drilling operations are the cause of ecological concern, also claims increased facility to hunt for energy beyond Prudhoe Bay, Alaska's unofficial hub, in places where ice road construction is difficult. Andarko claims that its patented platform design doubles as a production unit and stands about four metres above the tundra, eliminating the need to build permanent production facilities on top of widely used gravel pads, which can leave long-lasting scars on the land and are expensive to clean up. Besides reducing expenses, the arctic platform is claimed to enable exploratory drilling to occur nearly year around. Environmentalists counter by saying that the Andarko plan will increase noise and air pollution, risks greater damage to the ecosystem in the event of a spill, and represents further intrusion upon plants and animals, including caribou, grizzly bears and migratory birds. They are also concerned that the arctic platform concept will help spread industrial activity on Alaska's North Slope. The first arctic platform is expected to be erected 130 km south of Prudhoe Bay as part of a federally sponsored research project to study the feasibility of extracting gas from ice. Specialists at the Alaska Department of Natural Resources

  10. Aboveground mechanical stimuli affect belowground plant-plant communication.

    Science.gov (United States)

    Elhakeem, Ali; Markovic, Dimitrije; Broberg, Anders; Anten, Niels P R; Ninkovic, Velemir

    2018-01-01

    Plants can detect the presence of their neighbours and modify their growth behaviour accordingly. But the extent to which this neighbour detection is mediated by abiotic stressors is not well known. In this study we tested the acclimation response of Zea mays L. seedlings through belowground interactions to the presence of their siblings exposed to brief mechano stimuli. Maize seedling simultaneously shared the growth solution of touched plants or they were transferred to the growth solution of previously touched plants. We tested the growth preferences of newly germinated seedlings toward the growth solution of touched (T_solution) or untouched plants (C_solution). The primary root of the newly germinated seedlings grew significantly less towards T_solution than to C_solution. Plants transferred to T_solution allocated more biomass to shoots and less to roots. While plants that simultaneously shared their growth solution with the touched plants produced more biomass. Results show that plant responses to neighbours can be modified by aboveground abiotic stress to those neighbours and suggest that these modifications are mediated by belowground interactions.

  11. Aboveground mechanical stimuli affect belowground plant-plant communication.

    Directory of Open Access Journals (Sweden)

    Ali Elhakeem

    Full Text Available Plants can detect the presence of their neighbours and modify their growth behaviour accordingly. But the extent to which this neighbour detection is mediated by abiotic stressors is not well known. In this study we tested the acclimation response of Zea mays L. seedlings through belowground interactions to the presence of their siblings exposed to brief mechano stimuli. Maize seedling simultaneously shared the growth solution of touched plants or they were transferred to the growth solution of previously touched plants. We tested the growth preferences of newly germinated seedlings toward the growth solution of touched (T_solution or untouched plants (C_solution. The primary root of the newly germinated seedlings grew significantly less towards T_solution than to C_solution. Plants transferred to T_solution allocated more biomass to shoots and less to roots. While plants that simultaneously shared their growth solution with the touched plants produced more biomass. Results show that plant responses to neighbours can be modified by aboveground abiotic stress to those neighbours and suggest that these modifications are mediated by belowground interactions.

  12. Responses to Projected Changes in Climate and UV-B at the Species Level

    Energy Technology Data Exchange (ETDEWEB)

    Callaghan, Terry V. [Abisko Scientific Research Station, Abisko (Sweden); Bjoern, Lars Olof [Lund Univ. (Sweden). Dept. of Cell and Organism Biology; Cernov, Yuri [Russian Academy of Sciences, Moscow (Russian Federation). A.N. Severtsov Inst. of Evolutionary Morphology and Animal Ecology] (and others)

    2004-11-01

    Environmental manipulation experiments showed that species respond individualistically to each environmental-change variable. The greatest responses of plants were generally to nutrient, particularly nitrogen, addition. Summer warming experiments showed that woody plant responses were dominant and that mosses and lichens became less abundant. Responses to warming were controlled by moisture availability and snow cover. Many invertebrates increased population growth in response to summer warming, as long as desiccation was not induced. CO{sub 2} and UV-B enrichment experiments showed that plant and animal responses were small. However, some microorganisms and species of fungi were sensitive to increased UV-B and some intensive mutagenic actions could, perhaps, lead to unexpected epidemic outbreaks. Tundra soil heating, CO{sub 2} enrichment and amendment with mineral nutrients generally accelerated microbial activity. Algae are likely to dominate cyanobacteria in milder climates. Expected increases in winter freeze-thaw cycles leading to ice-crust formation are likely to severely reduce winter survival rate and disrupt the population dynamics of many terrestrial animals. A deeper snow cover is likely to restrict access to winter pastures by reindeer/caribou and their ability to flee from predators while any earlier onset of the snow-free period is likely to stimulate increased plant growth. Initial species responses to climate change might occur at the sub-species level: an Arctic plant or animal species with high genetic/racial diversity has proved an ability to adapt to different environmental conditions in the past and is likely to do so also in the future. Indigenous knowledge, air photographs, satellite images and monitoring show that changes in the distributions of some species are already occurring: Arctic vegetation is becoming more shrubby and more productive, there have been recent changes in the ranges of caribou, and 'new' species of insects and

  13. Measurement-based upscaling of pan Arctic net ecosystem exchange: the PANEEx project

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe; Kusbach, Antonin; Lund, Magnus

    2015-01-01

    The high variability in Arctic tundra net ecosystem exchange (NEE) of carbon (C) can be attributed to the high spatial heterogeneity of Arctic tundra due to the complex topography. Current models of C exchange handle the Arctic as either a single or few ecosystems, responding to environmental...... change in the same manner. In this study, we developed and tested a simple NEE model using the Misterlich light response curve (LRC) function with photosynthetic photon flux density (PPFD) as the main driving variable. Model calibration was carried out with eddy covariance carbon dioxide data from 12...... Arctic tundra sites. The model input parameters (fcsat, Rd and α) were estimated as a function of air temperature (AirT) and leaf area index (LAI) and represent specific characteristics of the NEE-PPFD relationship, including the saturation flux, dark respiration and initial light use efficiency...

  14. Design of plant safety model in plant enterprise engineering environment

    International Nuclear Information System (INIS)

    Gabbar, Hossam A.; Suzuki, Kazuhiko; Shimada, Yukiyasu

    2001-01-01

    Plant enterprise engineering environment (PEEE) is an approach aiming to manage the plant through its lifecycle. In such environment, safety is considered as the common objective for all activities throughout the plant lifecycle. One approach to achieve plant safety is to embed safety aspects within each function and activity within such environment. One ideal way to enable safety aspects within each automated function is through modeling. This paper proposes a theoretical approach to design plant safety model as integrated with the plant lifecycle model within such environment. Object-oriented modeling approach is used to construct the plant safety model using OO CASE tool on the basis of unified modeling language (UML). Multiple views are defined for plant objects to express static, dynamic, and functional semantics of these objects. Process safety aspects are mapped to each model element and inherited from design to operation stage, as it is naturally embedded within plant's objects. By developing and realizing the plant safety model, safer plant operation can be achieved and plant safety can be assured

  15. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between terre...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water.......Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...

  16. Plants, plant pathogens, and microgravity--a deadly trio

    Science.gov (United States)

    Leach, J. E.; Ryba-White, M.; Sun, Q.; Wu, C. J.; Hilaire, E.; Gartner, C.; Nedukha, O.; Kordyum, E.; Keck, M.; Leung, H.; hide

    2001-01-01

    Plants grown in spaceflight conditions are more susceptible to colonization by plant pathogens. The underlying causes for this enhanced susceptibility are not known. Possibly the formation of structural barriers and the activation of plant defense response components are impaired in spaceflight conditions. Either condition would result from altered gene expression of the plant. Because of the tools available, past studies focused on a few physiological responses or biochemical pathways. With recent advances in genomics research, new tools, including microarray technologies, are available to examine the global impact of growth in the spacecraft on the plant's gene expression profile. In ground-based studies, we have developed cDNA subtraction libraries of rice that are enriched for genes induced during pathogen infection and the defense response. Arrays of these genes are being used to dissect plant defense response pathways in a model system involving wild-type rice plants and lesion mimic mutants. The lesion mimic mutants are ideal experimental tools because they erratically develop defense response-like lesions in the absence of pathogens. The gene expression profiles from these ground-based studies will provide the molecular basis for understanding the biochemical and physiological impacts of spaceflight on plant growth, development and disease defense responses. This, in turn, will allow the development of strategies to manage plant disease for life in the space environment.

  17. Derivation of the canopy conductance from surface temperature and spectral indices for estimating evapotranspiration in semiarid vegetation; Monitorizacion de conductancia en vegetacion semiarida a partir de indices espectrales y temperatura de supeficie

    Energy Technology Data Exchange (ETDEWEB)

    Morillas, L.; Garcia, M.; Zarco-Tejada, P.; Ladron de Guevara, M.; Villagarcia, L.; Were, A.; Domingo, F.

    2009-07-01

    This work evaluates the possibilities for estimating stomata conductance (C) and leaf transpiration (Trf) at the ecosystem scale from radiometric indices and surface temperature. The relationships found between indices and the transpiration component of the water balance in a semiarid tussock ecosystem in SE Spain are discussed. Field data were collected from spring 2008 until winter 2009 in order to observe the annual variability of the relationships and the behaviour of spectral indices and surface temperature. (Author) 11 refs.

  18. Derivation of the canopy conductance from surface temperature and spectral indices for estimating evapotranspiration in semiarid vegetation

    International Nuclear Information System (INIS)

    Morillas, L.; Garcia, M.; Zarco-Tejada, P.; Ladron de Guevara, M.; Villagarcia, L.; Were, A.; Domingo, F.

    2009-01-01

    This work evaluates the possibilities for estimating stomata conductance (C) and leaf transpiration (Trf) at the ecosystem scale from radiometric indices and surface temperature. The relationships found between indices and the transpiration component of the water balance in a semiarid tussock ecosystem in SE Spain are discussed. Field data were collected from spring 2008 until winter 2009 in order to observe the annual variability of the relationships and the behaviour of spectral indices and surface temperature. (Author) 11 refs.

  19. Infantry Small-Unit Mountain Operations

    Science.gov (United States)

    2011-02-01

    should be on the uphill side of grass tussocks, small talus, and other level spots to avoid twisting an ankle or straining an Achilles tendon...should be extremely cautious while traveling on the side of a hill. During side-hill travel personnel are more vulnerable to twisted ankles , back injury...installation in the mountains is the fixed rope system. A fixed rope is a rope anchored in place to assist Soldiers in movement over difficult terrain

  20. Plant life management optimized utilization of existing nuclear power plants

    International Nuclear Information System (INIS)

    Watzinger, H.; Erve, M.

    1999-01-01

    For safe, reliable and economical nuclear power generation it is of central importance to understand, analyze and manage aging-related phenomena and to apply this information in the systematic utilization and as-necessary extension of the service life of components and systems. An operator's overall approach to aging and plant life management which also improves performance characteristics can help to optimize plant operating economy. In view of the deregulation of the power generation industry with its increased competition, nuclear power plants must today also increasingly provide for or maintain a high level of plant availability and low power generating costs. This is a difficult challenge even for the newest, most modern plants, and as plants age they can only remain competitive if a plant operator adopts a strategic approach which takes into account the various aging-related effects on a plant-wide basis. The significance of aging and plant life management for nuclear power plants becomes apparent when looking at their age: By the year 2000 roughly fifty of the world's 434 commercial nuclear power plants will have been in operation for thirty years or more. According to the International Atomic Energy Agency, as many as 110 plants will have reached the thirty-year service mark by the year 2005. In many countries human society does not push the construction of new nuclear power plants and presumably will not change mind within the next ten years. New construction licenses cannot be expected so that for economical and ecological reasons existing plants have to be operated unchallengeably. On the other hand the deregulation of the power production market is asking just now for analysis of plant life time to operate the plants at a high technical and economical level until new nuclear power plants can be licensed and constructed. (author)