WorldWideScience

Sample records for tuscan glass samples

  1. Mitogenomes from The 1000 Genome Project reveal new Near Eastern features in present-day Tuscans.

    Directory of Open Access Journals (Sweden)

    Alberto Gómez-Carballa

    Full Text Available Genetic analyses have recently been carried out on present-day Tuscans (Central Italy in order to investigate their presumable recent Near East ancestry in connection with the long-standing debate on the origins of the Etruscan civilization. We retrieved mitogenomes and genome-wide SNP data from 110 Tuscans analyzed within the context of The 1000 Genome Project. For phylogeographic and evolutionary analysis we made use of a large worldwide database of entire mitogenomes (>26,000 and partial control region sequences (>180,000.Different analyses reveal the presence of typical Near East haplotypes in Tuscans representing isolated members of various mtDNA phylogenetic branches. As a whole, the Near East component in Tuscan mitogenomes can be estimated at about 8%; a proportion that is comparable to previous estimates but significantly lower than admixture estimates obtained from autosomal SNP data (21%. Phylogeographic and evolutionary inter-population comparisons indicate that the main signal of Near Eastern Tuscan mitogenomes comes from Iran.Mitogenomes of recent Near East origin in present-day Tuscans do not show local or regional variation. This points to a demographic scenario that is compatible with a recent arrival of Near Easterners to this region in Italy with no founder events or bottlenecks.

  2. A Tuscan Capital from Rusellae: Comparisons and Hypotheses

    Directory of Open Access Journals (Sweden)

    Antonio Dell'Acqua

    2012-10-01

    Full Text Available This paper presents the analysis of a heart-shaped Tuscan capital, avoid of context, found in Rusellae. Its shape allows to attribute it hypothetically to an arcaded structure identified with the Forum. Currently it is one of the few know evidences in Italy, where the heart-shaped pillar was not frequently used in Roman architecture. It also allows a better understanding of the restoration of the Forum during the Imperial era.

  3. Identification and characterization of lactic acid bacteria and yeasts of PDO Tuscan bread sourdough by culture dependent and independent methods.

    Science.gov (United States)

    Palla, Michela; Cristani, Caterina; Giovannetti, Manuela; Agnolucci, Monica

    2017-06-05

    Sourdough fermentation has been increasingly used worldwide, in accordance with the demand of consumers for tasty, natural and healthy food. The high diversity of lactic acid bacteria (LAB) and yeast species, detected in sourdoughs all over the world, may affect nutritional, organoleptic and technological traits of leavened baked goods. A wide regional variety of traditional sourdough breads, over 200 types, has been recorded in Italy, including special types selected as worthy of either Protected Geographical Indication (PGI) or Protected Designation of Origin (PDO), whose sourdough microbiota has been functionally and molecularly characterized. As, due to the very recent designation, the microbiota of Tuscan bread sourdough has not been investigated so far, the aim of the present work was to isolate and characterize the species composition of LAB and yeasts of PDO Tuscan bread sourdough by culture-independent and dependent methods. A total of 130 yeasts from WLN medium and 193 LAB from both mMRS and SDB media were isolated and maintained to constitute the germplasm bank of PDO Tuscan bread. Ninety six LAB from mMRS medium and 68 yeasts from WLN medium were randomly selected and molecularly identified by ARDRA (Amplified Ribosomal DNA Restriction Analysis) and PCR-RFLP analysis of the ITS region, respectively, and sequencing. The yeast identity was confirmed by 26S D1/D2 sequencing. All bacterial isolates showed 99% identity with Lactobacillus sanfranciscensis, 65 yeast isolates were identified as Candida milleri, and 3 as Saccharomyces cerevisiae. Molecular characterization of PDO Tuscan bread sourdough by PCR-DGGE confirmed such data. The distinctive tripartite species association, detected as the microbiota characterizing the sourdough used to produce PDO Tuscan bread, encompassed a large number of L. sanfranciscensis and C. milleri strains, along with a few of S. cerevisiae. The relative composition and specific physiological characteristics of such microbiota

  4. Novel Gram-Scale Production of Enantiopure R-Sulforaphane from Tuscan Black Kale Seeds

    Directory of Open Access Journals (Sweden)

    Gina Rosalinda De Nicola

    2014-05-01

    Full Text Available Dietary R-sulforaphane is a highly potent inducer of the Keap1/Nrf2/ARE pathway. Furthermore, sulforaphane is currently being used in clinical trials to assess its effects against different tumour processes. This study reports an efficient preparation of enantiopure R-sulforaphane based on the enzymatic hydrolysis of its natural precursor glucoraphanin. As an alternative to broccoli seeds, we have exploited Tuscan black kale seeds as a suitable source for gram-scale production of glucoraphanin. The defatted seed meal contained 5.1% (w/w of glucoraphanin that was first isolated through an anion exchange chromatographic process, and then purified by gel filtration. The availability of glucoraphanin (purity ≈ 95%, weight basis has allowed us to develop a novel simple hydrolytic process involving myrosinase (EC 3.2.1.147 in a biphasic system to directly produce R-sulforaphane. In a typical experiment, 1.09 g of enantiopure R-sulforaphane was obtained from 150 g of defatted Tuscan black kale seed meal.

  5. Experimental study of glass sampling devices

    International Nuclear Information System (INIS)

    Jouan, A.; Moncouyoux, J.P.; Meyere, A.

    1992-01-01

    Two high-level liquid waste containment glass sampling systems have been designed and built. The first device fits entirely inside a standard glass storage canister, and may thus be used in facilities not initially designed for this function. It has been tested successfully in the nonradioactive prototype unit at Marcoule. The work primarily covered the design and construction of an articulated arm supporting the sampling vessel, and the mechanisms necessary for filling the vessel and recovering the sample. System actuation and operation are fully automatic, and the resulting sample is representative of the glass melt. Implementation of the device is delicate however, and its reliability is estimated at about 75%. A second device was designed specifically for new vitrification facilities. It is installed directly on the glass melting furnace, and meets process operating and quality control requirements. Tests conducted at the Marcoule prototype vitrification facility demonstrated the feasibility of the system. Special attention was given to the sampling vessel transfer mechanisms, with two filling and controlled sample cooling options

  6. Glass sampling program during DWPF Integrated Cold Runs

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1990-01-01

    The described glass sampling program is designed to achieve two objectives: To demonstrate Defense Waste Processing Facility (DWPF) ability to control and verify the radionuclide release properties of the glass product; To confirm DWPF's readiness to obtain glass samples during production, and SRL's readiness to analyze and test those samples remotely. The DWPF strategy for control of the radionuclide release properties of the glass product, and verification of its acceptability are described in this report. The basic approach of the test program is then defined

  7. The effect of sample preparation methods on glass performance

    International Nuclear Information System (INIS)

    Oh, M.S.; Oversby, V.M.

    1990-01-01

    A series of experiments was conducted using SRL 165 synthetic waste glass to investigate the effects of surface preparation and leaching solution composition on the alteration of the glass. Samples of glass with as-cast surfaces produced smooth reaction layers and some evidence for precipitation of secondary phases from solution. Secondary phases were more abundant in samples reacted in deionized water than for those reacted in a silicate solution. Samples with saw-cut surfaces showed a large reduction in surface roughness after 7 days of reaction in either solution. Reaction in silicate solution for up to 91 days produced no further change in surface morphology, while reaction in DIW produced a spongy surface that formed the substrate for further surface layer development. The differences in the surface morphology of the samples may create microclimates that control the details of development of alteration layers on the glass; however, the concentrations of elements in leaching solutions show differences of 50% or less between samples prepared with different surface conditions for tests of a few months duration. 6 refs., 7 figs., 1 tab

  8. Method for evaluation of radiative properties of glass samples

    Energy Technology Data Exchange (ETDEWEB)

    Mohelnikova, Jitka [Faculty of Civil Engineering, Brno University of Technology, Veveri 95, 602 00 Brno (Czech Republic)], E-mail: mohelnikova.j@fce.vutbr.cz

    2008-04-15

    The paper presents a simple calculation method which serves for an evaluation of radiative properties of window glasses. The method is based on a computer simulation model of the energy balance of a thermally insulated box with selected glass samples. A temperature profile of the air inside of the box with a glass sample exposed to affecting radiation was determined for defined boundary conditions. The spectral range of the radiation was considered in the interval between 280 and 2500 nm. This interval is adequate to the spectral range of solar radiation affecting windows in building facades. The air temperature rise within the box was determined in a response to the affecting radiation in the time between the beginning of the radiation exposition and the time of steady-state thermal conditions. The steady state temperature inside of the insulated box serves for the evaluation of the box energy balance and determination of the glass sample radiative properties. These properties are represented by glass characteristics as mean values of transmittance, reflectance and absorptance calculated for a defined spectral range. The data of the computer simulations were compared to experimental measurements on a real model of the insulated box. Results of both the calculations and measurements are in a good compliance. The method is recommended for preliminary evaluation of window glass radiative properties which serve as data for energy evaluation of buildings.

  9. Investigation of Sludge Batch 3 (Macrobatch 4) Glass Sample Anomalous Behavior

    International Nuclear Information System (INIS)

    Bannochie, C. J.; Bibler, N. E.; Peeler, D. K.

    2005-01-01

    Two Defense Waste Processing Facility (DWPF) glass samples from Sludge Batch 3 (SB3) (Macrobatch 4) were received by the Savannah River National Laboratory (SRNL) on February 23, 2005. One sample, S02244, was designated for the Product Consistency Test (PCT) and elemental and radionuclide analyses. The second sample, S02247, was designated for archival storage. The samples were pulled from the melter pour stream during the feeding of Melter Feed Tank (MFT) Batch 308 and therefore roughly correspond to feed from Slurry Mix Evaporator (SME) Batches 306-308. During the course of preparing sample S02244 for PCT and other analyses two observations were made which were characterized as ''unusual'' or anomalous behavior relative to historical observations of glasses prepared for the PCT. These observations ultimately led to a series of scoping tests in order to determine more about the nature of the behavior and possible mechanisms. The first observation was the behavior of the ground glass fraction (-100 +200 mesh) for PCT analysis when contacted with deionized water during the washing phase of the PCT procedure. The behavior was analogous to that of an organic compound in the presence of water: clumping, floating on the water surface, and crawling up the beaker walls. In other words, the glass sample did not ''wet'' normally, displaying a hydrophobic behavior in water. This had never been seen before in 18 years SRNL PCT tests on either radioactive or non-radioactive glasses. Typical glass behavior is largely to settle to the bottom of the water filled beaker, though there may be suspended fines which result in some cloudiness to the wash water. The typical appearance is analogous to wetting sand. The second observation was the presence of faint black rings at the initial and final solution levels in the Teflon vessels used for the mixed acid digestion of S02244 glass conducted for compositional analysis. The digestion is composed of two stages, and at both the

  10. Chemical Composition Measurements of LAWA44 Glass Samples

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-15

    DOE is building the Hanford Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is temporarily stored in 177 underground tanks. Both low-activity and high-level wastes will then be vitrified into borosilicate glass using Joule-heated ceramic melters. Efforts are being made to increase the loading of Hanford tank wastes in the glass. One area of work is enhancing waste glass composition/property models and broadening the compositional regions over which those models are applicable. In this report, the Savannah River National Laboratory provides chemical analysis results for several samples of a simulated low-activity waste glass, LAWA44, provided by the Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 97.9 to 102.6 wt %, indicating acceptable recovery of the glass components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. It was noted that the measured B2O3 concentrations are somewhat above the targeted values for the study glasses. No obvious trends were observed with regard to the multiple melting steps used to prepare the study glasses, indicating that any potential effects of volatility were below measurable thresholds.

  11. The Tuscan Artist - Images of Galileo in Milton’s works

    Directory of Open Access Journals (Sweden)

    Toscano Fabio

    2004-09-01

    Full Text Available In The Areopagitica, his most important work of prose, John Milton mentions Galileo as the illustrious martyr who fought for the freedom of thought. The name of the great scientist is repeated several times in the English poet’s epic masterpiece: Paradise Lost. In three different passages of the poem, Milton in fact celebrates the “Tuscan Artist” and his crucial achievements in astronomy. Nevertheless, in a subsequent passage, the poet addresses the Copernican issue without openly defending the heliocentric theory confirmed by Galileo’s discoveries. In fact, he neither embraces the Copernican system nor the Ptolemaic one, but instead compares them, following a dialectic method where one cannot fail to notice an echo of Galileo’s Dialogue Concerning the two Chief World Systems. Milton’s literary work presents images of astronomy at that time, thus offering a valuable historical example of scientific communication through art.

  12. Nutritional characteristics of ancient Tuscan varieties of Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Lisetta Ghiselli

    2016-08-01

    Full Text Available Bread wheat (Triticum aestivum L. is an important cereal in human consumption. In recent years, there has been a growing interest in ancient wheat varieties. The latter represent an important source of germplasm, characterised by a broader genetic base and, therefore, a potential source of biodiversity. The objective of the study was to ascertain the optimal balance between the presence of secondary metabolites having beneficial effects on health and technological features that ensure successful baking quality. The experimental trial was performed in 2011-2012 on three organic farms located in three different areas within the province of Siena (Tuscany. In each location, an overall evaluation of the commercial, rheological and functional properties of five ancient Tuscan bread wheat varieties (Andriolo, Frassineto, Gentil rosso, Inallettabile 96, Verna as compared with a commercial modern variety (Palesio was carried out. The ancient varieties were compared both singularly (pure and in combination (mixtures of two varieties in equal proportion, respectively. Biometric and productive parameters were detected for each plot (32 plots in each farm. Macro- and trace elements, polyphenols, flavonoids and antioxidant activity (antiradical power, ARP were similarly determined on representative whole grain samples. Rheological analysis was carried out on flour samples. The multivariate statistical analysis using principal components analysis was performed on all variables analysed. The results showed a significant environment effect on the different parameters measured and did not reveal significant improvements in the variables measured when varieties were cultivated in mixtures. However, the study did reveal various interesting trends that are warranting of further investigation. The most interesting effect from a nutritional and functional point of view is the relationship between ARP, rheological properties, protein content and gluten content. These

  13. Production of a High-Level Waste Glass from Hanford Waste Samples

    International Nuclear Information System (INIS)

    Crawford, C.L.; Farrara, D.M.; Ha, B.C.; Bibler, N.E.

    1998-09-01

    The HLW glass was produced from a HLW sludge slurry (Envelope D Waste), eluate waste streams containing high levels of Cs-137 and Tc-99, solids containing both Sr-90 and transuranics (TRU), and glass-forming chemicals. The eluates and Sr-90/TRU solids were obtained from ion-exchange and precipitation pretreatments, respectively, of other Hanford supernate samples (Envelopes A, B and C Waste). The glass was vitrified by mixing the different waste streams with glass-forming chemicals in platinum/gold crucibles and heating the mixture to 1150 degree C. Resulting glass analyses indicated that the HLW glass waste form composition was close to the target composition. The targeted waste loading of Envelope D sludge solids in the HLW glass was 30.7 wt percent, exclusive of Na and Si oxides. Condensate samples from the off-gas condenser and off-gas dry-ice trap indicated that very little of the radionuclides were volatilized during vitrification. Microstructure analysis of the HLW glass using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Analysis (EDAX) showed what appeared to be iron spinel in the HLW glass. Further X-Ray Diffraction (XRD) analysis confirmed the presence of nickel spinel trevorite (NiFe2O4). These crystals did not degrade the leaching characteristics of the glass. The HLW glass waste form passed leach tests that included a standard 90 degree C Product Consistency Test (PCT) and a modified version of the United States Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP)

  14. Analysis of some ancient glass samples unearthed in Sichuan area by PIXE

    International Nuclear Information System (INIS)

    Li Fei; Li Qinghui; Gan Fuxi

    2007-01-01

    Proton induced X-ray emission (PIXE) technique is an effective method for the chemical composition analysis of ancient glass samples without destruction. Chemical composition of the ancient glass samples dated from the Warring States Period (770-476 B.C.) to the Six Dynasties Period (220-589 A.D.), which were unearthed in Sichuan area, was quantitatively determined by the PIXE technique. The results show that the glass Bi (disc) and the glass eye beads of the Warring States Period all belong to the PbO-BaO-SiO 2 system. According to the composition and shape, we infer that these glass Bi and eye beads were made in China. Whereas, the chemical compositions of the glass ear pendants and beads of the Six Dynasties Period are varied, including K 2 O-CaO-SiO 2 , K 2 O-SiO 2 and other glass systems, Based on the obtained results and those from literatures, some questions related to the technical propagation of the ancient Chinese glass are discussed. (authors)

  15. Monitoring ground elevation changes in the Larderello geothermal region, Tuscan, Italy

    International Nuclear Information System (INIS)

    Dini, I.; Rosi, A.; Rossi, A.

    1990-01-01

    In 1921-1923 a precise levelling network, with more than 200 km of lines, was set up and measured in the Tuscan geothermal region comprising the Larderello area. In 1985-1986 this topographic network was rearranged and levelling measurements were repeated. Negative elevation changes reaching a maximum of about 170 cm were observed across the areas of maximum fluid withdrawal and maximum fluid pressure decline. Levelling measurements carried out in 1989 show that elevation changes are no longer evident in the central Larderello area, but subsidence of less than 3 cm can still be observed in some nearby areas exploited recently. The measured subsidence values cannot be ascribed solely to the compaction of reservoir rocks, as this would entail a pressure decline down to about 10 km depth. In this paper since this figure seems excessive the authors hypothesize that compaction of the cover terrains is also involved

  16. Characterization of high level nuclear waste glass samples following extended melter idling

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, David K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States)

    2015-06-16

    The Savannah River Site Defense Waste Processing Facility (DWPF) melter was recently idled with glass remaining in the melt pool and riser for approximately three months. This situation presented a unique opportunity to collect and analyze glass samples since outages of this duration are uncommon. The objective of this study was to obtain insight into the potential for crystal formation in the glass resulting from an extended idling period. The results will be used to support development of a crystal-tolerant approach for operation of the high-level waste melter at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Two glass pour stream samples were collected from DWPF when the melter was restarted after idling for three months. The samples did not contain crystallization that was detectible by X-ray diffraction. Electron microscopy identified occasional spinel and noble metal crystals of no practical significance. Occasional platinum particles were observed by microscopy as an artifact of the sample collection method. Reduction/oxidation measurements showed that the pour stream glasses were fully oxidized, which was expected after the extended idling period. Chemical analysis of the pour stream glasses revealed slight differences in the concentrations of some oxides relative to analyses of the melter feed composition prior to the idling period. While these differences may be within the analytical error of the laboratories, the trends indicate that there may have been some amount of volatility associated with some of the glass components, and that there may have been interaction of the glass with the refractory components of the melter. These changes in composition, although small, can be attributed to the idling of the melter for an extended period. The changes in glass composition resulted in a 70-100 °C increase in the predicted spinel liquidus temperature (TL) for the pour stream glass samples relative to the analysis of the melter feed prior to

  17. Microwave-assisted extraction of metal elements from glass fibrous filters for aerosol sampling

    International Nuclear Information System (INIS)

    Li Dong-Mei; Zhang Li-Xing; Wang Xu-Hui; Liu Long-Bo

    2003-01-01

    Atmospheric aerosols are generally collected on filters according to the International Monitoring System (IMS) designed in the Comprehensive Nuclear-Test-Ban Treaty (CTBT). More information could be revealed when the filter sample is pretreated rather than measured directly by γ-ray spectrometer. Microwave-assisted extraction (MAE) is a suitable method that gives higher recoveries of elements from glass fibrous filters under different conditions. The results indicate that the MAE is a highly efficient and robust method for the treatment of glass fibrous filter samples. The recoveries of potential fission products from glass fibrous filter samples by microwave-assisted extraction meet the efficiency of the extraction by both aqua regia and 2% HCl. (author)

  18. ELIMINATION OF THE CHARACTERIZATION OF DWPF POUR STREAM SAMPLE AND THE GLASS FABRICATION AND TESTING OF THE DWPF SLUDGE BATCH QUALIFICATION SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-05-11

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupled operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In

  19. Elimination Of The Characterization Of DWPF Pour Stream Sample And The Glass Fabrication And Testing Of The DWPF Sludge Batch Qualification Sample

    International Nuclear Information System (INIS)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-01-01

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupled operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In contrast, the

  20. Thermodynamic and structural models compared with the initial dissolution rates of SON glass samples

    International Nuclear Information System (INIS)

    Tovena, I.; Advocat, T.; Ghaleb, D.; Vernaz, E.

    1993-01-01

    The experimentally determined initial dissolution rate R 0 of nuclear glass was correlated with thermodynamic parameters and structural parameters. The initial corrosion rates of six ''R7T7'' glass samples measured at 100 deg C in a Soxhlet device were correlated with the glass free hydration energy and the glass formation enthalpy. These correlations were then tested with a group of 26 SON glasses selected for their wide diversity of compositions. The thermodynamic models provided a satisfactory approximation of the initial dissolution rate determined under Soxhlet conditions for SON glass samples that include up to 15 wt% of boron and some alumina. Conversely, these models are inaccurate if the boron concentration exceeds 15 wt% and the glass contains no alumina. Possible correlations between R 0 and structural parameters, such as the boron coordination number and the number of nonbridging oxygen atoms, were also investigated. The authors show that R 0 varies inversely with the number of 4-coordinate boron atoms; conversely, the results do not substantiate published reports of a correlation between R 0 and the number of nonbridging oxygen atoms. (authors). 13 refs., 2 figs., 4 tabs

  1. Effect of Water-Glass Coating on HA and HA-TCP Samples for MSCs Adhesion, Proliferation, and Differentiation

    Directory of Open Access Journals (Sweden)

    Indu Bajpai

    2016-01-01

    Full Text Available Ca-P and silicon based materials have become very popular as bone tissue engineering materials. In this study, water-glass (also known as sodium silicate glass was coated on sintered hydroxyapatite (HA and HA-TCP (TCP stands for tricalcium phosphate samples and subsequently heat-treated at 600°C for 2 hrs. X-rays diffraction showed the presence of β- and α-TCP phases along with HA in the HA-TCP samples. Samples without coating, with water-glass coating, and heat-treated after water-glass coating were used to observe the adhesion and proliferation response of bone marrow derived-mesenchymal stem cells (MSCs. Cell culture was carried out for 4 hrs, 1 day, and 7 days. Interestingly, all samples showed similar response for cell adhesion and proliferation up to 7-day culture but fibronectin, E-cadherin, and osteogenic differentiation related genes (osteocalcin and osteopontin were significantly induced in heat-treated water-glass coated HA-TCP samples. A water-glass coating on Ca-P samples was not found to influence the cell proliferation response significantly but activated some extracellular matrix genes and induced osteogenic differentiation in the MSCs.

  2. Analysis of archaeological ceramics and glass samples by microPIXE and LA-ICP-MS methods

    International Nuclear Information System (INIS)

    Uzonyi, I.; Elekes, Z.; Kiss, A.Z.

    1999-01-01

    The availability of a proton microprobe at ATOMKI and LA-ICP-MS and SEM techniques at the French institutes made it possible to start a joint research of archaeological ceramics and glass samples in the framework of COST-GI program about one year ago. Concerning ceramics the task has been the determination of provenance of some roman amphorae samples. In another project glass samples found in the royal palaces of Buda and Visegrad were analyzed. The results may be utilized both in exact dating and determination of provenance of glass artefacts of unknown origin. (K.A.)

  3. Leach testing of SYNROC and glass samples at 85 and 200/degree/C

    International Nuclear Information System (INIS)

    Oversby, V.M.; Ringwood, A.E.

    1981-01-01

    Leach tests were conducted on 0.5 g disc samples of SYNROC and two glass types using distilled water at 85 and 200/degree/C. No leaching was detected for SYNROC at either temperature. Thus, the upper limit on leach rate for SYNROC is <0.005 g/m/sup 2/d. Waste glass PNL 76-68 had leach rates of 1.4 g/m/sup 2/ d at 85/degree/C and 8.9 g/m/sup 2/ d at 200/degree/C, while 73-1 glass frit had a leach rate of 41 g/m/sup 2/ d at 200/degree/C. The leach tests were repeated in the presence of rock powders. Again, no leaching was measurable for SYNROC. PNL 76-68 glass had leach rates between 4 and 23 g/m/sup 2/ d at 200/degree/C and 73-1 frit leached at rates between 29 and 176 g/m/sup 2/ d at 200/degree/C. Tests were also conducted on crushed glass samples (PNL 76-68, 100-200 /mu/m size fraction). Bulk leach rates were calculated based on measurement of Ca, Cs, and U in the leach solutions. The results of the leach tests show that SYNROC is several orders of magnitude more resistant to leaching than glass

  4. Sampling and Analysis Instruction for the 120-F-1 Glass Dump Site

    International Nuclear Information System (INIS)

    Brown, T.M.

    1998-01-01

    This sampling and analysis instruction has been prepared to clearly define the sampling and analysis activities to be performed to develop the basis for surveillance and maintenance of the 120-F-1 Glass Dumpsite. The purpose of this investigation is to augment historical information and obtain data to establish a technical basis for surveillance and maintenance at the site

  5. Multivariate models to classify Tuscan virgin olive oils by zone.

    Directory of Open Access Journals (Sweden)

    Alessandri, Stefano

    1999-10-01

    Full Text Available In order to study and classify Tuscan virgin olive oils, 179 samples were collected. They were obtained from drupes harvested during the first half of November, from three different zones of the Region. The sampling was repeated for 5 years. Fatty acids, phytol, aliphatic and triterpenic alcohols, triterpenic dialcohols, sterols, squalene and tocopherols were analyzed. A subset of variables was considered. They were selected in a preceding work as the most effective and reliable, from the univariate point of view. The analytical data were transformed (except for the cycloartenol to compensate annual variations, the mean related to the East zone was subtracted from each value, within each year. Univariate three-class models were calculated and further variables discarded. Then multivariate three-zone models were evaluated, including phytol (that was always selected and all the combinations of palmitic, palmitoleic and oleic acid, tetracosanol, cycloartenol and squalene. Models including from two to seven variables were studied. The best model shows by-zone classification errors less than 40%, by-zone within-year classification errors that are less than 45% and a global classification error equal to 30%. This model includes phytol, palmitic acid, tetracosanol and cycloartenol.

    Para estudiar y clasificar aceites de oliva vírgenes Toscanos, se utilizaron 179 muestras, que fueron obtenidas de frutos recolectados durante la primera mitad de Noviembre, de tres zonas diferentes de la Región. El muestreo fue repetido durante 5 años. Se analizaron ácidos grasos, fitol, alcoholes alifáticos y triterpénicos, dialcoholes triterpénicos, esteroles, escualeno y tocoferoles. Se consideró un subconjunto de variables que fueron seleccionadas en un trabajo anterior como el más efectivo y fiable, desde el punto de vista univariado. Los datos analíticos se transformaron (excepto para el cicloartenol para compensar las variaciones anuales, rest

  6. The feasibility of sampling the glass pour in a high level waste vitrification plant

    International Nuclear Information System (INIS)

    Cole, G.V.; Shilton, P.; Morris, J.B.

    1986-06-01

    Vitrified high level waste can be sampled for quality assurance purposes in three general ways: (I) from the glass pour, (II) from the canister, and (III) from the melter. A discussion of the potential advantages and disadvantages of each route is presented. The second philosophy seems to show the best promise; it is recommended that the Contained Pot method and the Token method are best suited for further development. An international survey of policy at vitrification plants shows that with one possible exception no glass sampling is intended and that quality is normally to be assured by control of the vitrification process. (author)

  7. Thermodynamic and structural models compared with the initial dissolution rates of open-quotes SONclose quotes glass samples

    International Nuclear Information System (INIS)

    Tovena, I.; Advocat, T.; Ghaleb, D.; Vernaz, E.; Larche, F.

    1994-01-01

    The experimentally determined initial dissolution rate R 0 of nuclear glass was correlated with thermodynamic parameters and structural parameters. The initial corrosion rates of six open-quotes R7T7close quotes glass samples measured at 100 degrees C in a Soxhlet device were correlated with the glass free hydration energy and the glass formation enthalpy. These correlations were then tested with a group of 26 SON glasses selected for their wide diversity of compositions. The thermodynamic models provided a satisfactory approximation of the initial dissolution rate determined under Soxhlet conditions for SON glass samples that include up to 15 wt% of boron and some alumina. Conversely, these models are inaccurate if the boron concentration exceeds 15 wt% and the glass contains no alumina. Possible correlations between R 0 and structural parameters, such as the boron coordination number and the number of nonbridging oxygen atoms, were also investigated. The authors show that R 0 varies inversely with the number of 4-coordinate boron atoms; conversely, the results do not substantiate published reports of a correlation between R 0 and the number of nonbridging oxygen atoms

  8. The cost of making wine: A Tuscan case study based on a full cost approach

    Directory of Open Access Journals (Sweden)

    Enrico Marone

    2017-12-01

    Full Text Available This article׳s aim is to identify and quantify the connection between a winery business typology and its production cost per bottle to create benchmarks for managerial and organisational choices. Accounting data from wineries in representative areas of the Tuscan wine sector were collected with direct, face-to-face interviews. The data were processed using a cost accounting model elaborated by UniCeSV (Centre for the Strategic Development of the Wine Sector, University of Florence to classify costs according to production phases and production factors. The study was completed using a hierarchical cluster analysis (HCA approach to investigate the relation between cost structures and business typologies. The implementation of the cost accounting model and the HCA showed a strong relationship between how wineries are organised and how costs are structured. Moreover, the weight of geographical localisation (i.e., belonging to a specific denomination of origin has proved to be a key determinant in the shape of the cost structures of wineries. Keywords: Wine production, Full cost analysis, Clustering

  9. Quantitative determination of the specific heat and the glass transition of moist samples by temperature modulated differential scanning calorimetry.

    Science.gov (United States)

    Schubnell, M; Schawe, J E

    2001-04-17

    In differential scanning calorimetry (DSC), remnant moisture loss in samples often overlaps and distorts other thermal events, e.g. glass transitions. To separate such overlapping processes, temperature modulated DSC (TMDSC) has been widely used. In this contribution we discuss the quantitative determination of the heat capacity of a moist sample from TMDSC measurements. The sample was a spray-dried pharmaceutical compound run in different pans (hermetically-sealed pan, pierced lid pan [50 microm] and open pan). The apparent heat capacity was corrected for the remaining amount of moisture. Using this procedure we could clearly identify the glass transition of the dry and the moist sample. We found that a moisture content of about 6.2% shifts the glass transition by about 50 degrees C.

  10. Glass bottle sampling solid phase microextraction gas chromatography mass spectrometry for breath analysis of drug metabolites.

    Science.gov (United States)

    Lu, Yan; Niu, Wenqi; Zou, Xue; Shen, Chengyin; Xia, Lei; Huang, Chaoqun; Wang, Hongzhi; Jiang, Haihe; Chu, Yannan

    2017-05-05

    Breath analysis is a non-invasive approach which may be applied to disease diagnosis and pharmacokinetic study. In the case of offline analysis, the exhaled gas needs to be collected and the sampling bag is often used as the storage vessel. However, the sampling bag usually releases some extra compounds, which may interfere with the result of the breath test. In this study, a novel breath sampling glass bottle was developed with a syringe needle sampling port for solid phase microextraction (SPME). Such a glass bottle scarcely liberates compounds and can be used to collect exhaled gas for ensuing analysis by gas chromatography-mass spectrometry (GC-MS). The glass bottle sampling SPME-GC-MS analysis was carried out to investigate the breath metabolites of myrtol, a multicompound drug normally used in the treatment of bronchitis and sinusitis. Four compounds, α-pinene, 2,3-dehydro-1,8-cineole, d-limonene and 1,8-cineole were found in the exhaled breath of all eight volunteers who had taken the myrtol. While for other ten subjects who had not used the myrtol, these compounds were undetectable. In the SPME-GC-MS analysis of the headspace of myrtol, three compounds were detected including α-pinene, d-limonene and 1,8-cineole. Comparing the results of breath and headspace analysis, it indicates that 2,3-dehydro-1,8-cineole in the breath is the metabolite of 1,8-cineole. It is the first time that this metabolite was identified in human breath. The study demonstrates that the glass bottle sampling SPME-GC-MS method is applicable to exhaled gas analysis including breath metabolites investigation of drugs like myrtol. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013. Scientific Opinion on the substantiation of a health claim related to a combination of Tuscan black cabbage, “tri-coloured” Swiss chard, “bicoloured” spinach and “blu savoy” cabbage and protection of blood lipids from

    DEFF Research Database (Denmark)

    Tetens, Inge

    related to a combination of Tuscan black cabbage, “tri-coloured” Swiss chard, “bi-coloured” spinach and “blu savoy” cabbage and protection of blood lipids from oxidative damage. The food that is the subject of the health claim, a combination of Tuscan black cabbage (Brassica Oleracea botrytis L.), “tri......-coloured” Swiss chard (Beta vulgaris ciclaL.), “bi-coloured” spinach (Spinacia oleracea L.) and “blu savoy” cabbage (Brassica oleracea convar. capitata var. sabauda L.), is sufficiently characterised. The claimed effect, protection of blood lipids from oxidative damage, may be a beneficial physiological effect......-coloured” Swiss chard, “bi-coloured” spinach and “blu savoy” cabbage and protection of blood lipids from oxidative damage....

  12. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013. Scientific Opinion on the substantiation of a health claim related to a combination of Tuscan black cabbage, “tri-coloured” Swiss chard, “bicoloured” spinach and “blu savoy” cabbage and maintenance of normal blood LDL

    DEFF Research Database (Denmark)

    Tetens, Inge

    related to a combination of Tuscan black cabbage, “tri-coloured” Swiss chard, “bi-coloured” spinach and “blu savoy” cabbage and maintenance of normal blood cholesterol concentration. The food that is the subject of the health claim, a combination of Tuscan black cabbage (Brassica Oleracea botrytis L.......), “tri-coloured” Swiss chard (Beta vulgaris ciclaL.), “bi-coloured” spinach (Spinacia oleracea L.) and “blu savoy” cabbage (Brassica oleracea convar. capitata var. sabauda L.), is sufficiently characterised. The claimed effect, maintenance of normal blood LDL-cholesterol concentration, is a beneficial......, “tri-coloured” Swiss chard, “bi-coloured” spinach and “blu savoy” cabbage and maintenance of normal blood LDL-cholesterol concentration....

  13. Whole Lyophilized Olives as Sources of Unexpectedly High Amounts of Secoiridoids: The Case of Three Tuscan Cultivars.

    Science.gov (United States)

    Cecchi, Lorenzo; Migliorini, Marzia; Cherubini, Chiara; Innocenti, Marzia; Mulinacci, Nadia

    2015-02-04

    The phenolic profiles of three typical Tuscan olive cultivars, Frantoio, Moraiolo, and Leccino, stored in different conditions (fresh, frozen, and whole lyophilized fruits), have been compared during the ripening period. Our main goals were to evaluate the phenolic content of whole freeze-dried fruits and to test the stability of the corresponding cake in oxidative-stress conditions. The comparison of fresh and whole freeze-dried fruits from the 2012 season gave unexpected results; e.g., oleuropein in lyophilized fruits was up to 20 times higher than in fresh olives with values up to 80.3 g/kg. Over time we noted that the olive pastes obtained from lyophilized olives contained highly stable phenolic compounds, even under strong oxidative stress conditions. Finally, it was also observed that the cake/powder obtained from unripe freeze-dried olives was very poor in oil content and therefore quite suitable for use in nutritional supplements rich in phenolic compounds, such as secoiridoids, which are not widely present in the human diet.

  14. Adherence to Mediterranean diet in a sample of Tuscan adolescents.

    Science.gov (United States)

    Santomauro, Francesca; Lorini, Chiara; Tanini, Tommaso; Indiani, Laura; Lastrucci, Vieri; Comodo, Nicola; Bonaccorsi, Guglielmo

    2014-01-01

    The aim of this study was to estimate the level of adherence to the Mediterranean diet in a group of Italian high school students, in relation to their lifestyles and social and family contexts, and to compare the nutrition habits of the sample with other similar groups. The KIDMED index and an ad hoc questionnaire were administered to 1127 students (mean age 16.8 ± 1.6 y) in the province of Florence. Any significant associations between the level of adherence to the Mediterranean diet and the aforementioned variables were assessed by the χ(2) test and by logistic regression analysis. The adherence to the Mediterranean diet was good in 16.5%, average in 60.5%, and poor in 23% of the students. The students attending technical high schools, those who played sports less than "almost every day", those who spent >3 h/d in sedentary activities, those who defined their school performance as worse than "more than sufficient," and those who referred to use of a car/moped as the most frequent mode of transportation, had significantly higher odds of poor rather than average or good adherence to Mediterranean diet. Moreover, being normal weight or overweight/obese, and referring to health workers as source of information on diet, seem to be protective factors against poor adherence to Mediterranean diet. Our sample presents a departure from the Mediterranean dietary pattern. It is certainly necessary to implement public health policies targeting teenagers to promote healthier lifestyle choices; the nutritional patterns of the Mediterranean diet should be among these choices. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. An all-glass solid sampling device for open tubular columns in gas chromatography

    NARCIS (Netherlands)

    Cox, T.P.H.; vd Berg, P.M.J.

    1972-01-01

    An all-glass system for direct sample-introduction of high-boiling compounds onto open tubular columns is described. The standard deviation for quantitative measurements is less than 2.7%. The loss in resolving power of capillary columns, due to this injection system is negligible. The system is

  16. Radiological results for samples collected on paired glass- and cellulose-fiber filters at the Sandia complex, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    Mizell, Steve A.; Shadel, Craig A.

    2016-01-01

    Airborne particulates are collected at U.S. Department of Energy sites that exhibit radiological contamination on the soil surface to help assess the potential for wind to transport radionuclides from the contamination sites. Collecting these samples was originally accomplished by drawing air through a cellulose-fiber filter. These filters were replaced with glass-fiber filters in March 2011. Airborne particulates were collected side by side on the two filter materials between May 2013 and May 2014. Comparisons of the sample mass and the radioactivity determinations for the side-by-side samples were undertaken to determine if the change in the filter medium produced significant results. The differences in the results obtained using the two filter types were assessed visually by evaluating the time series and correlation plots and statistically by conducting a nonparametric matched-pair sign test. Generally, the glass-fiber filters collect larger samples of particulates and produce higher radioactivity values for the gross alpha, gross beta, and gamma spectroscopy analyses. However, the correlation between the radioanalytical results for the glass-fiber filters and the cellulose-fiber filters was not strong enough to generate a linear regression function to estimate the glass-fiber filter sample results from the cellulose-fiber filter sample results.

  17. Studies on Bi-Sr-Ca-Cu-O glasses and superconducting glass ceramics

    International Nuclear Information System (INIS)

    Singh, R.; Zacharias, E.

    1991-01-01

    Bi-Sr-Ca-Cu-O glasses and glass ceramics of various compositions were synthesised. The glass transition temperature varies from 396 to 422degC depending on the glass composition. The bulk glass ceramics of 4334, 4336, 2223 and 4246 compositions show superconductivity when the corresponding glass samples were heat-treated in air at 820degC for 3, 9, 12 and 24 h respectively. X-ray diffraction studies show that the superconducting phase present in all these compositions is Bi 2 Sr 2 Ca 1 Cu 2 O x . The 4334 glass ceramic is almost a single-phase material with a preferred orientation such that the c axis is normal to the sample surface. The 2223 glass ceramic has a higher T c (onset) than the other three compositions indicating the presence of high T c phase (110 K) also. ESR studies on the glass samples indicate the existence of Cu 2+ . The effect of heat treatment on ESR shows that the intensity of resonance decreases with increase in heat-treatment duration. This effect is more pronounced for the 4334 and 2223 compositions. The advantages of synthesizing superconducting materials by glass route are discussed in view of practical applications. (author). 9 refs., 6 figs

  18. Glass sample preparation and performance investigations. [solar x-ray imager

    Science.gov (United States)

    Johnson, R. Barry

    1992-01-01

    This final report details the work performed under this delivery order from April 1991 through April 1992. The currently available capabilities for integrated optical performance modeling at MSFC for large and complex systems such as AXAF were investigated. The Integrated Structural Modeling (ISM) program developed by Boeing for the U.S. Air Force was obtained and installed on two DECstations 5000 at MSFC. The structural, thermal and optical analysis programs available in ISM were evaluated. As part of the optomechanical engineering activities, technical support was provided in the design of support structure, mirror assembly, filter wheel assembly and material selection for the Solar X-ray Imager (SXI) program. As part of the fabrication activities, a large number of zerodur glass samples were prepared in different sizes and shapes for acid etching, coating and polishing experiments to characterize the subsurface damage and stresses produced by the grinding and polishing operations. Various optical components for AXAF video microscope and the x-ray test facility were also fabricated. A number of glass fabrication and test instruments such as a scatter plate interferometer, a gravity feed saw and some phenolic cutting blades were fabricated, integrated and tested.

  19. Scintillation and optical properties of TiO2-ZnO-Al2O3-B2O3 glasses and glass-ceramics

    Science.gov (United States)

    Usui, Yuki; Okada, Go; Kawaguchi, Noriaki; Masai, Hirokazu; Yanagida, Takayuki

    2018-04-01

    13TiO2-xZnO-17Al2O3-(70 - x)B2O3 (x = 17, 26, and 35) glasses were prepared by a melt-quenching method, and the obtained glass samples were heated at temperatures 30 °C above the glass transition temperature of corresponding glass in order to obtain glass-ceramics. The obtained glass-ceramic samples were confirmed to have anatase (x = 17) and rutile (x = 26 and 35) phases from X-ray diffraction analysis. Then, the scintillation and optical properties were evaluated and discussed the difference between the glass-ceramic and glass samples. In the scintillation spectra under X-ray irradiation, a broad emission peak was observed around 450 nm in all the samples, and the new peak around 500 nm appeared in the anatase-precipitated glass-ceramic. The intensities of the glass-ceramic samples were enhanced in comparison with the corresponding glasses because the glass-ceramics includes TiO2 crystallites with defect centers which act as effective emission centers. The scintillation decay curves of the glass and glass-ceramic samples were approximated by one and a sum of two exponential decay functions, respectively. The faster component of glass and glass-ceramic samples would be caused by the host emission, and the slower component of glass-ceramic sample would be ascribed to the emission of Ti3+.

  20. Characterization of HLW glass samples Task 3 Characterization of radioactive waste forms a series of final reports (1985-89) No 20

    International Nuclear Information System (INIS)

    Malow, G.; Behrend, U.; Schubert, P.

    1991-01-01

    Due to a delay in the melting of the highly radioactive SON68 glass, a short-term post-investigation of the highly radioactive glass from the Pamela plant in Mol (Belgium) has been carried out, the aim being a check-up of the active LEWC glass SM 513 LW11. The results were compared with those obtained for non-radioactive glass samples. The final report of the present CEC programme shortly describes the planned investigations of the glass R7T7 for the whole period of the research contract and the results of the short-term post-investigation of the Pamela glass. 11 refs.; 9 figs.; 4 tabs

  1. DEHYDRATION AND REHYDRATION OF AN ION-LEACHABLE GLASS USED IN GLASS-IONOMER CEMENTS

    Directory of Open Access Journals (Sweden)

    Jacek Klos

    2017-03-01

    Full Text Available Samples of the ionomer glass known as G338 have been heated at 240°C for 24 hours, after which they lost 1.19 % (Standard deviation 0.16% of their original mass. This loss was attributed to removal of water, as both molecular water and the product of reaction of silanol groups to form siloxane bridges. Exposing samples of glass either to air at ambient humidity or to air at 95% relative humidity showed a degree of rehydration, but mass uptake did not approach the original mass loss in either case. It is suggested that this is because of the relatively difficulty in forming new silanol groups from the siloxane bridges. Glass-ionomer cements prepared from these glass samples with aqueous poly(acrylic acid solution had different properties, depending on the glass used. Dehydrated glass gave cements which set faster but were weaker than those formed by as-received glass. The role of silanol groups in influencing reaction rate and promoting strength development is discussed.

  2. Stroke prevention in atrial fibrillation: findings from Tuscan FADOI Stroke Registry

    Directory of Open Access Journals (Sweden)

    Luca Masotti

    2014-06-01

    Full Text Available Despite vitamin K antagonists (VKAs are considered the first choice treatment for stroke prevention in atrial fibrillation (AF, literature shows their underuse in this context. Since data about VKAs use prior and after acute stroke lack, the aim of this study was to focus on management of anticoagulation with VKAs in this context. Data were retrieved from Tuscan FADOI Stroke Registry, an online data bank aimed to report on characteristics of stroke patients consecutively admitted in Internal Medicine wards in 2010 and 2011. In this period 819 patients with mean age 76.5±12.3 years were enrolled. Data on etiology were available for 715 of them (88.1%, 87% being ischemic and 13% hemorrhagic strokes. AF was present in 238 patients (33%, 165 (69.3% having a known AF before hospitalization, whereas 73 patients (31.7% received a new diagnosis of AF. A percentage of 89% of strokes in patients with known AF were ischemic and 11% hemorrhagic. A percentage of 86.7% of patients with known AF had a CHADS2 ≥2, but only 28.3% were on VKAs before hospitalization. A percentage of 78.8% of patients treated with VKAs before stroke had an international normalized ratio (INR ≤2.0; 68.7% of patients with VKAs-related hemorrhagic strokes had INR ≤3.0. Combined endpoint mortality or severe disability in patients with ischemic stroke associated with AF was present in 47%, while it was present in 19.30% and 19.20% of atherothrombotic and lacunar strokes, respectively. At hospital discharge, VKAs were prescribed in 25.9% of AF related ischemic stroke patients. AF related strokes are burdened by severe outcome but VKAs are dramatically underused in patients with AF, even in higher risk patients. Efforts to improve anticoagulation in this stroke subtype are warranted.

  3. Influence of foaming agents on solid thermal conductivity of foam glasses prepared from CRT panel glass

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2017-01-01

    The understanding of the thermal transport mechanism of foam glass is still lacking. The contribution of solid- and gas conduction to the total thermal conductivity remains to be reported. In many foam glasses, the solid phase consist of a mix of an amorphous and a crystalline part where foaming...... containing glass and crystalline foaming agents and amorphous samples where the foaming agents are completely dissolved in the glass structure, respectively. Results show that the samples prepared by sintering have a higher thermal conductivity than the samples prepared by melt-quenching. The thermal...... conductivities of the sintered and the melt-quenched samples represent an upper and lower limit of the solid phase thermal conductivity of foam glasses prepared with these foaming agents. The content of foaming agents dissolved in the glass structure has a major impact on the solid thermal conductivity of foam...

  4. Copper oxide content dependence of crystallization behavior, glass forming ability, glass stability and fragility of lithium borate glasses

    International Nuclear Information System (INIS)

    Soliman, A.A.; Kashif, I.

    2010-01-01

    Differential thermal analysis (DTA) and X-ray diffraction (XRD) have been employed to investigate the copper oxide content dependence of the glass transition temperatures data, activation energy for the glass transition E t , glass stability GS, fragility index Fi, the glass-forming ability (GFA) and crystallization behavior of {(100-x) mol% Li 2 B 4 O 7 -x mol% CuO} glass samples, where x=0-40 mol% CuO. From the dependence of the glass transition temperature T g on the heating rate β, the fragility, F i , and the activation energy, E t , have been calculated. It is seen that F i and E t are attained their minimum values at 0 x -T g , SCL region and the GS. The GFA has been investigated on the basis of Hruby parameter K H , which is a strong indicator of GFA, and the relaxation time. Results of GFA are in good agreement with the fragility index, F i , calculations indicating that {90Li 2 B 4 O 7 .10CuO} is the best glass former. The stronger glass forming ability has decreasing the fragility index. XRD result indicates that no fully amorphous samples but a mixture of crystalline and amorphous phases are formed in the samples containing x>25 mol% CuO and below it composed of glassy phase. Increasing the CuO content above 25 mol% helps the crystallization process, and thus promotes a distinct SCL region. XRD suggests the presence of micro-crystallites of remaining residual amorphous matrix by increasing the CuO content.

  5. Optimized Synthesis of Foam Glass from Recycled CRT Panel Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Most of the panel glass from cathode ray tubes (CRTs) is landfilled today. Instead of landfilling, the panel glass can be turned into new environment-friendly foam glass. Low density foam glass is an effective heat insulating material and can be produced just by using recycle glass and foaming...... additives. In this work we recycle the CRT panel glass to synthesize the foam glass as a crucial component of building and insulating materials. The synthesis conditions such as foaming temperature, duration, glass particle size, type and concentrations of foaming agents, and so on are optimized...... by performing systematic experiments. In particular, the concentration of foaming agents is an important parameter that influences the size of bubbles and the distribution of bubbles throughout the sample. The foam glasses are characterised regarding density and open/closed porosity. Differential scanning...

  6. Groundwater sampling methods using glass wool filtration to trace human enteric viruses in Madison, Wisconsin

    Science.gov (United States)

    Human enteric viruses have been detected in the Madison, Wisconsin deep municipal well system. Earlier projects by the Wisconsin Geological and Natural History Survey (WGNHS) have used glass wool filters to sample groundwater for these viruses directly from the deep municipal wells. Polymerase chain...

  7. Glass Melting under microgravity. ; Space experiment by Mori astronaut. Mujuryokuka deno glass yoyu. ; Morisan no uchu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Makihara, M. (Osaka National Research Institute, Osaka (Japan))

    1993-03-01

    A space experiment on glass melting under microgravity was performed in a space shuttle in September 1992. The experiment has been intended to make glass from glass material floating in air by heating and melting it with light and an acoustic levitation furnace. The acoustic levitation furnace used in the experiment has been arranged so that a sound wave from a speaker makes a steady wave in a cylindrical quartz glass core tube with a length of 16 cm and a diameter of 4 cm, and a test sample can be retained floating in a valley of central wave pressures. The test sample retained floating has been collected and heated by light from a 500-W halogen lamp. Behavior of molten glass liquid under microgravity has been investigated. The glass material powder spheres have been melted completely and made into glass without crystallization. With regard to flows generated in the test sample placed in the acoustic levitation furnace, a glass spot containing cobalt oxide has been attached onto part of the test sample surface for observation. As a result, the spot has been incorporated in the glass without developing diffusion. 6 refs., 4 figs.

  8. Control of high-level radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Coleman, C.J.

    1990-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize Savannah River Site High Level Waste as a durable borosilicate glass for permanent disposal in a repository. The DWPF will be controlled based on glass composition. The following discussion is a preliminary analysis of the capability of the laboratory methods that can be used to control the glass composition, and the relationships between glass durability and glass properties important to glass melting. The glass durability and processing properties will be controlled by controlling the chemical composition of the glass. The glass composition will be controlled by control of the melter feed transferred from the Slurry Mix Evaporator (SME) to the Melter Feed Tank (MFT). During cold runs, tests will be conducted to demonstrate the chemical equivalence of glass sampled from the pour stream and glass removed from cooled canisters. In similar tests, the compositions of glass produced from slurries sampled from the SME and MFT will be compared to final product glass to determine the statistical relationships between melter feed and glass product. The total error is the combination of those associated with homogeneity in the SME or MFT, sampling, preparation of samples for analysis, instrument calibration, analysis, and the composition/property model. This study investigated the sensitivity of estimation of property data to the combination of variations from sampling through analysis. In this or a similar manner, the need for routine glass product sampling will be minimized, and glass product characteristics will be assured before the melter feed is committed to the melter

  9. Bone bonding ability of some borate bio-glasses and their corresponding glass-ceramic derivatives

    Directory of Open Access Journals (Sweden)

    Fatma H. Margha

    2012-12-01

    Full Text Available Ternary borate glasses from the system Na2O·CaO·B2O3 together with soda-lime-borate samples containing 5 wt.% of MgO, Al2O3, SiO2 or P2O5 were prepared. The obtained glasses were converted to their glass-ceramic derivatives by controlled heat treatment. X-ray diffraction was employed to investigate the separated crystalline phases in glass-ceramics after heat treatment of the glassy samples. The glasses and corresponding glass-ceramics after immersion in water or diluted phosphate solution for extended times were characterized by the grain method (adopted by several authors and recommended by ASTM and Fourier-transform infrared spectra to justify the formation of hydroxyapatite as an indication of the bone bonding ability. The influence of glass composition on bioactivity potential was discussed too.

  10. Sampling polyhexamethylene guanidine aerosols using eosin Y-coated glass beads

    International Nuclear Information System (INIS)

    Choi, Sang Hyun; Park, Seon Kyung; Kang, Hyun Joong; Kwon, Jung Hwan; Lee, Kyu Hong

    2015-01-01

    Fatalities caused by the use of polyhexamethylene guanidine (PHMG), a general-purpose chemical germicide used as a humidifier disinfectant in Korea, have raised concerns about exposure to biocide aerosols in indoor environments. A sampler capable of accumulating PHMG from aqueous aerosols was developed as an alternative to low-volume air samplers. This sampler was prepared by placing glass beads coated with 2-(2,4,5,7-tetrabromo-6-oxido-3-oxo-3H-xanthen-9-yl)benzoate (Eosin Y) in a custom-made plastic holder. Passive sampling rates, measured in a bench-top exposure chamber at two different aqueous PHMG aerosol generation rates, were found to be independent of the experimental conditions. This suggests that the capacity of the sampler to accumulate the PHMG aerosol was sufficient for the sampling duration tested. However, the passive sampling rate was 7.6 × 10"−"6 m"3/h for the sampler area of 22 cm"2. This rate is lower than the typical human breathing rate and inadequate for quantitative instrumental analyses at low concentrations in indoor air. A 30-fold enhancement of the sampling rate was achieved by forced convection using a commercial battery-operated fan at ≥2000 rpm. With this accelerated sampling rate, the sampler could be used to monitor time-integrated concentrations of PHMG aerosols in the air

  11. Sampling polyhexamethylene guanidine aerosols using eosin Y-coated glass beads

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang Hyun; Park, Seon Kyung; Kang, Hyun Joong; Kwon, Jung Hwan [Korea University, Seoul (Korea, Republic of); Lee, Kyu Hong [Korea Institute of Toxicology, Jeongeup (Korea, Republic of)

    2015-07-15

    Fatalities caused by the use of polyhexamethylene guanidine (PHMG), a general-purpose chemical germicide used as a humidifier disinfectant in Korea, have raised concerns about exposure to biocide aerosols in indoor environments. A sampler capable of accumulating PHMG from aqueous aerosols was developed as an alternative to low-volume air samplers. This sampler was prepared by placing glass beads coated with 2-(2,4,5,7-tetrabromo-6-oxido-3-oxo-3H-xanthen-9-yl)benzoate (Eosin Y) in a custom-made plastic holder. Passive sampling rates, measured in a bench-top exposure chamber at two different aqueous PHMG aerosol generation rates, were found to be independent of the experimental conditions. This suggests that the capacity of the sampler to accumulate the PHMG aerosol was sufficient for the sampling duration tested. However, the passive sampling rate was 7.6 × 10{sup −6} m{sup 3}/h for the sampler area of 22 cm{sup 2}. This rate is lower than the typical human breathing rate and inadequate for quantitative instrumental analyses at low concentrations in indoor air. A 30-fold enhancement of the sampling rate was achieved by forced convection using a commercial battery-operated fan at ≥2000 rpm. With this accelerated sampling rate, the sampler could be used to monitor time-integrated concentrations of PHMG aerosols in the air.

  12. Study of glass-nanocomposite and glass-ceramic containing ferroelectric phase

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Khalek, E.K., E-mail: Eid_khalaf0@yahoo.com [Department of Physics, Faculty of Science, Al Azhar University, Nasr City 11884, Cairo (Egypt); Mohamed, E.A. [Department of Physics, Faculty of Science (Girl' s Branch), Al Azhar University, Nasr City, Cairo (Egypt); Salem, Shaaban M.; Ebrahim, F.M.; Kashif, I. [Department of Physics, Faculty of Science, Al Azhar University, Nasr City 11884, Cairo (Egypt)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Glass nanocomposites was synthesized. Black-Right-Pointing-Pointer Glass nanocomposites exhibit both optical transmission bands at 598 and 660 nm and broad dielectric anomalies. Black-Right-Pointing-Pointer The ferroelectricity in pure single-phase oxide glass has not yet been discovered. - Abstract: Transparent glass nanocomposite in the pseudo binary system (100 - x) Li{sub 2}B{sub 4}O{sub 7}-xBaTiO{sub 3} with x = 0 and 60 (in mol%) were prepared. Amorphous and glassy characteristics of the as-prepared samples were established via X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC) respectively. The precipitated BaTiO{sub 3} nanocrystal phase embedded in the glass sample at x = 60 mol% was identified by transmission electron microscopic (TEM). The optical transmission bands at 598 and 660 nm were assigned to Ti{sup 3+} ions in tetragonal distorted octahedral sites. The precipitated Li{sub 2}B{sub 4}O{sub 7}, BaTi(BO{sub 3}){sub 2} and BaTiO{sub 3} nanocrystallites phases with heat-treatment at 923 K for 6 h (HT923) in glass-ceramic were identified by XRD, TEM and infrared absorption spectroscopy. The as-prepared at x = 60 mol% and the HT923 samples exhibit broad dielectric anomalies in the vicinity of the ferroelectric-to-paraelectric transition temperature. The results demonstrate that the method presented may be an effective way to fabricate ferroelectric host and development of multifunctional ferroelectrics.

  13. Crystallization in lead tungsten fluorophosphate glasses

    International Nuclear Information System (INIS)

    Nardi, R.P.R.D.; Braz, C.E.; Cassanjes, F.C.; Poirier, G.

    2014-01-01

    The glass forming ability was investigated in the ternary system NaPO 3 -WO 3 -PbF 2 with a constant NaPO 3 /WO 3 ratio of 3/2 and increasing amounts of PbF 2 . It has been found that glass samples can be obtained from PbF 2 contents from 0 mole% to 60 mole%. The most lead fluoride concentrated samples (50% and 60%) were chosen for a crystallization study in order to investigate the possibility of obtaining glass-ceramics containing crystalline lead fluoride. DSC measurements allowed to determine the characteristic temperatures such as Tg, Tx, Tp and Tf. These glass samples were heat-treated near the crystallization peaks observed by thermal analysis. X-ray diffraction results of these heat-treated glasses pointed out that the dominant phase which precipitates from the glass sample containing 50% of PbF 2 is the lead fluorophosphates phase Pb 5 F(PO 4 ) 3 whereas the sample containing 60% of PbF 2 exhibits a preferential crystallization of cubic lead fluoride β-PbF 2 . (author)

  14. COMPARISON OF BIOACTIVITY IN VITRO OF GLASS AND GLASS CERAMIC MATERIALS DURING SOAKING IN SBF AND DMEM MEDIUM

    Directory of Open Access Journals (Sweden)

    GABRIELA LUTIŠANOVÁ

    2011-09-01

    Full Text Available This paper investigated the surface reactivity of two sets of glasses and glass ceramic materials belonging to the Li2O–SiO2–CaO–P2O5–CaF2 system. The in vitro bioactivity of coatings was evaluated using simulated body fluid (SBF and Dulbecco’s Modified Eagle’s Medium (DMEM soaking test in static regime for up to 28 days at 36.5°C in microincubator. The surface structure changes were examined by scanning electron microscopy (SEM and electron probe micro-analyzer (EPMA methods. The functional groups of the silicate and phosphates were identified by infrared spectroscopy (IR. The crystal phases of the glasses and glass ceramics were identified by X-ray diffraction analysis (XRD. The results suggest the bioactivity behavior for all compositions of glasses as well as glass ceramic samples after 28 days in the SBF and DMEM medium. The surface characterization and in vitro tests revealed a few variations in the reactivity of the different glasses and glass ceramic samples in their pristine form. The best results show the samples of glass and glass ceramic samples with higher content of fluorapatite (FA. The use of the acellular culture medium DMEM resulted in a delay at the start of precipitation.

  15. Crystallization in lead tungsten fluorophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Nardi, R.P.R.D.; Braz, C.E.; Cassanjes, F.C.; Poirier, G., E-mail: gael.poirier@unifal-mg.edu.br [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil). Instituto de Ciencia e Tecnologia

    2014-07-01

    The glass forming ability was investigated in the ternary system NaPO{sub 3}-WO{sub 3}-PbF{sub 2} with a constant NaPO{sub 3}/WO{sub 3} ratio of 3/2 and increasing amounts of PbF{sub 2}. It has been found that glass samples can be obtained from PbF{sub 2} contents from 0 mole% to 60 mole%. The most lead fluoride concentrated samples (50% and 60%) were chosen for a crystallization study in order to investigate the possibility of obtaining glass-ceramics containing crystalline lead fluoride. DSC measurements allowed to determine the characteristic temperatures such as Tg, Tx, Tp and Tf. These glass samples were heat-treated near the crystallization peaks observed by thermal analysis. X-ray diffraction results of these heat-treated glasses pointed out that the dominant phase which precipitates from the glass sample containing 50% of PbF{sub 2} is the lead fluorophosphates phase Pb{sub 5}F(PO{sub 4}){sub 3} whereas the sample containing 60% of PbF{sub 2} exhibits a preferential crystallization of cubic lead fluoride β-PbF{sub 2}. (author)

  16. Measurement of the volatility and glass transition temperatures of glasses produced during the DWPF startup test program

    International Nuclear Information System (INIS)

    Marra, J.C.; Harbour, J.R.

    1995-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize high-level radioactive waste currently stored in underground tanks at the Savannah River Site by incorporating the waste into a glass matrix. The molten waste glass will be poured into stainless steel canisters which will be welded shut to produce the final waste form. One specification requires that any volatiles produced as a result of accidentally heating the waste glass to the glass transition temperature be identified. Glass samples from five melter campaigns, run as part of the DWPF Startup Test Program, were analyzed to determine glass transition temperatures and to examine the volatilization (by weight loss). Glass transition temperatures (T g ) for the glasses, determined by differential scanning calorimetry (DSC), ranged between 445 C and 474 C. Thermogravimetric analysis (TGA) scans showed that no overall weight loss occurred in any of the glass samples when heated to 500 C. Therefore, no volatility will occur in the final glass product when heated up to 500 C

  17. Lead isotope ratios of ancient Chinese and Japanese glasses

    International Nuclear Information System (INIS)

    Yamasaki, Kazuo; Murozumi, Masayo; Nakamura, Seiji; Yuasa, Mitsuaki; Watarai, Motohiko.

    1980-01-01

    Lead isotope ratios of 29 archaeological glass samples (5 samples excavated in China, 10 samples excavated in Japan, and 14 samples made in Japan) were determined by surface ionization mass spectrometry with a HITACHI RMU-6 spectrometer. Of these glass samples, 28 were made of high lead glass, and one, of alkali-lime glass. Glass samples were decomposed in a mixture of hydrofluoric and nitric acids, and lead was separated from other elements by extraction with dithizone-chloroform. The lead nitrate solution thus prepared (corresponding to 0.5 μg Pb) was loaded on the rhenium single filament. The coefficients of variation of the determined ratios, 207 Pb/ 206 Pb and 208 Pb/ 206 Pb, were 0.1 -- 0.3%. Among the glasses excavated in Japan, some samples of the Yayoi period (ca. 3 rd C. B.C. -- ca. 3 rd C. A.D.) contained a large amount of barium in addition to lead, and resembled closely Chinese pre-Han glasses not only in chemical compositions, but also in lead isotope ratios. This means that pre-Han glasses were brought to Japan and then re-cast into glass beads characteristic of Japan. The lead isotope ratios of the glasses were compared with those of Chinese (2 samples), Korean (2) and Japanese (17) galena orea, and it was found that 12 glass beads made in the 8th century at Nara and 2 fine glass tubes made at Saga in the 18 th -- 19 th centuries showed similar lead isotope ratios with those of the Japanese galena ores. Consequently it is considered that the Japanese galena ores were already used as one of raw materials at manufacturing of these glass beads in ancient centuries. (author)

  18. High insulation foam glass material from waste cathode ray tube panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    . In general CRT consists of two types of glasses: barium/strontium containing glass (panel glass) and lead containing glass (funnel and panel glass). In this work we present the possibility to produce high performance insulation material from the recycled lead-free glass. We studied the influence of foaming...... between 750 and 850°C. We investigated the influence of milling time, particle size, foaming and oxidizing agent concentrations, temperature and time on the foaming process, foam density, foam porosity and homogeneity. Only moderate foaming was observed in carbon containing samples, while the addition...... of the oxidizing agent greatly improved the foaming quality. The results showed that the amount of oxygen available from the glass is not sufficient to combust all of the added carbon, therefore, additional oxygen was supplied via manganese reduction. In general, a minimum in the foam glass density was observed...

  19. Effect of Gamma Irradiation on Some Properties of Bismuth Silicate Glasses and Their Glass Derivatives

    International Nuclear Information System (INIS)

    Abo Hussein, E.M.K.

    2014-01-01

    Glasses containing bismuth oxide have attracted considerable attention, although it is non-conventional glass forming oxide, but it has wide applications. In this work, it is aimed to prove that bismuth silicate glass can act as a good shielding material for γ- rays. For this purpose glass containing 20% bismuth oxide and 80% SiO_2 was prepared using melting-annealing technique. Also effects of adding some alkali heavy metal oxides to this glass such as PbO, BaO or SrO were also studied. The formed glasses were also heat treated at 450 degree C for 4 hours to give the corresponding heat treated glasses. Electron Paramagnetic Resonance (EPR) measurements show that the prepared glasses and heat treated glasses have very good stability when exposed to γ- irradiation, which encourage the assumption of using these glasses as gamma ray shielding materials. Many properties have been investigated, such as density to understand the structural properties, also mechanical properties were verified by measuring microhardness, while the chemical resistance was identified by testing their durability in both acidic and basic solutions. The EPR results were supported by measuring electrical conductivity of the glass and heat treated glass samples at different temperatures ranging from 298 to 553 K, which proved that these glasses have very low conductivity even at high temperature. The formed phases of heat treated glass or glass ceramic samples were demonstrated by means of X-ray diffraction (XRD). Also studying the structure of glasses and heat treated glasses before and after irradiation was investigated by the Infrared transmitting spectra. Calculations of optical band gap energies were demonstrated for some selected glasses and heat treated glasses from the data of UV optical absorption spectra to support the probability of using these bismuth silicate glasses for gamma radiation shielding processing.

  20. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Directory of Open Access Journals (Sweden)

    Inès M. M. M. Ponsot

    2014-07-01

    Full Text Available Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C, whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C. The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.

  1. Natural analogue study of volcanic glass

    International Nuclear Information System (INIS)

    Arai, T.; Yusa, Y.; Sasaki, N.; Tsunoda, N.; Takano, H.

    1989-02-01

    A considerable range in alteration rates of basaltic glasses in various environments has been reported in previous studies. However, these studies paid only cursory attention to the environmental conditions under which the glass had been altered. In this study, the alteration of basaltic glasses was investigated and the environmental conditions and the alteration rate were discussed. Two sample ages were represented: 280 years and 2800 years. Basaltic glasses and their alteration layers were analyzed by electron probe microanalyzer (EMPA) and the thickness of the alteration layers were measured by scanning electron microscope (SEM). The ground water collected near the sampling point of Zunazawa Scoria (2800 years) and the pore water of both samples were analyzed. The alteration temperature and flow rate of water are estimated to be about 13degC and 0.2 l/cm 2 /y respectively on the basis of meteorological data. The alteration layers of young aged basaltic glasses in freshwater conditions are similar to those of leached borosilicate glasses. The alteration rates of these basaltic glasses are estimated to be several μm/1000y. The elemental concentrations in the ground water can be roughly explained as the result of leaching of the glasses. (author)

  2. X-ray fluorescence analysis with micro glass beads using milligram-scale siliceous samples for archeology and geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Shintaro, E-mail: sichi@meiji.ac.jp [Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Kawasaki 214-8571 (Japan); Nakamura, Toshihiro [Department of Applied Chemistry, Meiji University, Kawasaki 214-8571 (Japan)

    2014-06-01

    A micro glass bead technique was developed to assay precious siliceous samples for geochemical and archeological analyses. The micro-sized (approximately 3.5 mm in diameter and 0.8 mm in height) glass beads were prepared by mixing and fusing 1.1 mg of the powdered sample and 11.0 mg of the alkali lithium tetraborate flux for wavelength-dispersive X-ray fluorescence determination of major oxides (Na{sub 2}O, MgO, Al{sub 2}O{sub 3}, SiO{sub 2}, P{sub 2}O{sub 5}, K{sub 2}O, CaO, TiO{sub 2}, MnO, and total Fe{sub 2}O{sub 3}). The preparation parameters, including temperature and agitation during the fusing process, were optimized for the use of a commercial platinum crucible rather than a custom-made crucible. The procedure allows preparation of minute sample amounts of siliceous samples using conventional fusing equipment. Synthetic calibration standards were prepared by compounding chemical reagents such as oxides, carbonates, and diphosphates. Calibration curves showed good linearity with r values > 0.997, and the lower limits of detection were in the 10s to 100s of μg g{sup −1} range (e.g., 140 μg g{sup −1} for Na{sub 2}O, 31 μg g{sup −1} for Al{sub 2}O{sub 3}, and 8.9 μg g{sup −1} for MnO). Using the present method, we determined ten major oxides in igneous rocks, stream sediments, ancient potteries, and obsidian. This was applicable to siliceous samples with various compositions, because of the excellent agreement between the analytical and recommended values of six geochemical references. This minimal-scale analysis may be available for precious and limited siliceous samples (e.g., rock, sand, soil, sediment, clay, and archeological ceramics) in many fields such as archeology and geochemistry. - Highlights: • X-ray fluorescence determination of major oxides was performed using 1.1 mg of sample. • Preparation and measurement techniques of the XRF micro glass bead specimen were optimized. • Calibration curves using synthetic standards showed good

  3. Forensic comparative glass analysis by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Bridge, Candice M.; Powell, Joseph; Steele, Katie L.; Sigman, Michael E.

    2007-01-01

    Glass samples of four types commonly encountered in forensic examinations have been analyzed by laser-induced breakdown spectroscopy (LIBS) for the purpose of discriminating between samples originating from different sources. Some of the glass sets were also examined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Refractive index (RI) measurements were also made on all glass samples and the refractive index data was combined with the LIBS and with the LA-ICP-MS data to enhance discrimination. The glass types examined included float glass taken from front and side automobile windows (examined on the non-float side), automobile headlamp glass, automobile side-mirror glass and brown beverage container glass. The largest overall discrimination was obtained by employing RI data in combination with LA-ICP-MS (98.8% discrimination of 666 pairwise comparisons at 95% confidence), while LIBS in combination with RI provided a somewhat lower discrimination (87.2% discrimination of 1122 pairwise comparisons at 95% confidence). Samples of side-mirror glass were less discriminated by LIBS due to a larger variance in emission intensities, while discrimination of side-mirror glass by LA-ICP-MS remained high

  4. Electrical and thermal properties of lead titanate glass ceramics

    International Nuclear Information System (INIS)

    Shankar, J.; Deshpande, V.K.

    2011-01-01

    Glass samples with composition of (50-X)PbO-(25+X)TiO 2 -25B 2 O 3 (where X=0, 5, 10 and 12.5 mol%) were prepared using conventional quenching technique. The glass transition temperature, T g and crystallization temperature T c were determined from the DTA. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The glass ceramic samples were characterized by XRD, SEM and dielectric constant measurements. The XRD results revealed the formation of ferroelectric lead titanate (PT) as a major crystalline phase in the glass ceramics. The density increases and the CTE decreases for all glass ceramics with increase in X (mol%). This may be attributed to increase in PT phase. The SEM results which show rounded crystallites of lead titanate, also supports other results. Hysteresis loops observed at room temperature confirms the ferroelectric nature of glass ceramics. The optimized glass ceramic sample exhibits high dielectric constant which is of technical importance. -- Research Highlights: →Lead titanate glass ceramics prepared by conventional quenching technique. →Lead titanate is a major crystalline phase in the glass ceramics. →The ferroelectric nature of glass ceramics is confirmed by the hysteresis study. →The high value of ε observed at room temperature is quite promising in the study.

  5. Basaltic glass alteration in confined media: analogy with nuclear glass in geological disposal conditions

    International Nuclear Information System (INIS)

    Parruzot, Benjamin

    2014-01-01

    This dissertation concerns basaltic glass alteration mechanisms and rates. Through a better understanding of the processes controlling the basaltic glass durability, this thesis attempts to establish a link between laboratory studies and volcanic glass alteration in natural environment. The methodology used here is similar to the one used for nuclear glasses. Thus, we measured for the first time the residual alteration rate of basaltic glasses. Protective effect of the alteration film is clearly established. Moreover, synthetic glass representativeness is evaluated through a study focused on the effect of iron oxidation degree on the glass structure and leaching properties. A minor effect of Fe II on the forward rate and a negligible effect on the residual rate are shown. The residual rate is extrapolated at 5 C and compared to the mean alteration rate of natural samples of ages ranging from 1900 to 10 7 years. Non-zeolitized natural glasses follow this linear tendency, suggesting a control of the long-term rate by clayey secondary phase precipitation. Natural environments are open environments: a parametric study was performed in order to quantify the water flow rate effect on chemical composition of the alteration layer. When applied to two natural samples, the obtained laws provide coherent results. It seems possible to unify the descriptive approach from the study of natural environments to the mechanistic approach developed at the laboratory. The next step will consist in developing a model to transpose these results to nuclear glasses. (author) [fr

  6. New insight on glass-forming ability and designing Cu-based bulk metallic glasses: The solidification range perspective

    International Nuclear Information System (INIS)

    Wu, Jili; Pan, Ye; Li, Xingzhou; Wang, Xianfei

    2014-01-01

    Highlights: • The equation, T rg = T g /T l , was rotationally modified to T rg = κ(T m /T l ) + C/T l . • The newly generalized equation suggests a way for describing glass-forming ability. • Several new Cu-based bulk metallic glasses were discovered by solidification range. - Abstract: In this paper, a new equation was rationally generalized from the reduced glass transition temperature. This equation indicates that solidification range can be used for describing glass-forming ability, which can be calculated with the aid of computational thermodynamic approach. Based on this scenario, several new Cu-based bulk metallic glasses in the ternary Cu–Zr–Ti alloy system were discovered. The as-cast samples were characterized by X-ray diffraction and transmission electronic microscopy. The results indicate that as-cast samples have monolithic amorphous nature. Thermal analysis validates that the smaller solidification range is closely related to the higher glass-forming ability, which is contributed to the effect of solidification time on the formation of bulk metallic glasses. This work also suggests that solidus can influence glass formation

  7. Elastic modulus measurements of LDEF glasses and glass-ceramics using a speckle technique

    International Nuclear Information System (INIS)

    Wiedlocher, D.E.; Kinser, D.L.

    1992-01-01

    Elastic moduli of five glass types and the glass-ceramic Zerodur, exposed to a near-earth orbit environment on the Long Duration Exposure Facility (LDEF), were compared to that of unexposed samples. A double exposure speckle photography technique utilizing 633 nm laser light was used in the production of the speckle pattern. Subsequent illumination of a double exposed negative using the same wavelength radiation produces Young's fringes from which the in-plane displacements are measured. Stresses imposed by compressive loading produced measurable strains in the glasses and glass-ceramic

  8. Characterization of the R7T7 LWR reference glass

    International Nuclear Information System (INIS)

    Pacaud, F.; Fillet, C.; Baudin, G.; Bastien-Thiry, H.

    1990-01-01

    Characterization describes the glass properties by means of standard tests with no attempt to assess its long-term behavior. Characterization involved complementary comparative investigations of nonradioactive laboratory glass specimens, radioactive glass specimens prepared in laboratory hot cells, and nonradioactive industrial glass samples fabricated in the full-scale continuous vitrification prototype facility (specimens were taken from the casting stream and core-samples were taken from a 200 kg glass block after cooling in the canister). Additional measurements are planned on actual radioactive glass samples fabricated in the R7 facility at La Hague. The results are indicated for each of the properties studied: physical, thermal and mechanical properties; structure and homogeneity examination; thermal stability and crystallization; resistance to chemical corrosion; irradiation resistance and volatilization. Comparative examination of glass samples of different origins showed consistent properties

  9. Fusibility of medical glass in hospital waste incineration: Effect of glass components

    International Nuclear Information System (INIS)

    Jiang, X.G.; An, C.G.; Li, C.Y.; Fei, Z.W.; Jin, Y.Q.; Yan, J.H.

    2009-01-01

    Medical glass, which is the principal incombustible component in hospital wastes, has a bad influence on combustion. In a rotary kiln incinerator, medical glass melts and turns into slag, possibly adhering to the inner wall. Prediction of the melting characteristics of medical glass hence is important for preventing slagging. The effect of various glass components on fusibility has been investigated experimentally; that of Na 2 O is the most marked. The softening temperature and flow temperature decrease 19.8 o C and 34.0 o C, respectively, with a rise of Na 2 O content in the Basic Content (standard composition of medical glass) of 1%. Correlations between fusion temperatures and glass components have been investigated; predictive functions of four characteristic melting temperatures have been obtained by simplifying the multi-variant series and were verified by testing glass samples. Relative errors of fusion temperatures (computed vs. measured) are mostly less than 5%.

  10. Fabrication of highly insulating foam glass made from CRT panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2015-01-01

    We prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. We investigated the influence of the carbon and MnO2 concentrations, the glass-powder preparation and the foaming conditions on the density and homogeneity of the pore structure...... and the dependence of the thermal conductivity on the foam density. The results show that the moderate foaming effect of the carbon is greatly improved by the addition of MnO2. A density as low as 131 kg m-3 can be achieved with fine glass powder. The foam density has a slight dependence on the carbon and MnO2...... concentrations, but it is mainly affected by the foaming temperature and the time. The thermal conductivity of the foam-glass samples is lower than that of commercial foam glasses with the same density. The lowest value was determined to be 42 mW m-1 K-1 for a foam glass with a density of 131 kg m-3. A further...

  11. Cordierite Glass-Ceramics for Dielectric Materials

    International Nuclear Information System (INIS)

    Siti Mazatul Azwa Saiyed Mohd Nurddin; Selamat, Malek; Ismail, Abdullah

    2007-01-01

    The objective of this project is to examine the potential of using Malaysian silica sand deposit as SiO2 raw material in producing cordierite glass-ceramics (2MgO-2Al2O3-5SiO2) for dielectric materials. Upgraded silica sands from Terengganu and ex-mining land in Perak were used in the test-works. The glass batch of the present work has a composition of 45.00% SiO2, 24.00% Al2O3, 15.00% MgO and 8.50% TiO2 as nucleation agent. From the differential thermal analysis results, the crystallization temperature was found to start around 900 deg. C. The glass samples were heat-treated at 900 deg. C and 1000 deg. C. The X-ray diffraction analysis (XRD) results showed glass-ceramics from Terengganu samples containing mainly cordierite and minor β-quartz crystals. However, glass-ceramics from ex-mining land samples contained mainly α-quartz and minor cordierite crystals. Glass-ceramics with different crystal phases exhibit different mechanical, dielectric and thermal properties. Based on the test works, both silica sand deposits, can be potentially used to produce dielectric material component

  12. Raman Spectroscopic Study on Decorative Glasses in Thailand

    International Nuclear Information System (INIS)

    Won-In, K.; Ponkrapan, S.; Dararutana, P.

    2011-01-01

    Glasses have been used as decorative objects in Thailand for several hundred years. Decorative glasses can generally be seen as architectural components in old styled palaces and Buddhist objects. There were various colors ranging from transparent to amber, blue, green and red with different shades among glass of different colors. Fragments of archaeological glass samples were characterized for the first time using Raman microscopy with the aim of obtaining information that would lead to identification of the glass samples by means of laser scattering. The samples were also investigated using other techniques, such as particle induced X-ray emission spectroscopy and scanning electron microscope operated with energy dispersive X-ray fluorescence spectrometer. They were mostly lead-silica based glasses. The colors resulted from metal ions. The difference in chemical composition was confirmed by Raman signature spectra. (author)

  13. CLAY SOIL STABILISATION USING POWDERED GLASS

    Directory of Open Access Journals (Sweden)

    J. OLUFOWOBI

    2014-10-01

    Full Text Available This paper assesses the stabilizing effect of powdered glass on clay soil. Broken waste glass was collected and ground into powder form suitable for addition to the clay soil in varying proportions namely 1%, 2%, 5%, 10% and 15% along with 15% cement (base by weight of the soil sample throughout. Consequently, the moisture content, specific gravity, particle size distribution and Atterberg limits tests were carried out to classify the soil using the ASSHTO classification system. Based on the results, the soil sample obtained corresponded to Group A-6 soils identified as ‘fair to poor’ soil type in terms of use as drainage and subgrade material. This justified stabilisation of the soil. Thereafter, compaction, California bearing ratio (CBR and direct shear tests were carried out on the soil with and without the addition of the powdered glass. The results showed improvement in the maximum dry density values on addition of the powdered glass and with corresponding gradual increase up to 5% glass powder content after which it started to decrease at 10% and 15% powdered glass content. The highest CBR values of 14.90% and 112.91% were obtained at 5% glass powder content and 5mm penetration for both the unsoaked and soaked treated samples respectively. The maximum cohesion and angle of internal friction values of 17.0 and 15.0 respectively were obtained at 10% glass powder content.

  14. PIXE and PGAA - Complementary methods for studies on ancient glass artefacts (from Byzantine, late medieval to modern Murano glass)

    Science.gov (United States)

    Constantinescu, Bogdan; Cristea-Stan, Daniela; Szőkefalvi-Nagy, Zoltán; Kovács, Imre; Harsányi, Ildikó; Kasztovszky, Zsolt

    2018-02-01

    Combined external milli-beam Particle Induced X-ray Emission (PIXE) and Prompt Gamma Activation Analysis (PGAA) analysis was applied to characterize the composition of paste and colorants from some fragments of Byzantine bracelets (10th-12th Centuries AD), late medieval (17th-18th Centuries AD) and modern Murano glass pieces. As fluxes, PGAA revealed the samples are soda-lime glass, except four samples - two medieval vessel white shards and two dark Byzantine fragments of bracelets - which have potash flux. Aluminium was detected in various proportions in all samples indicating different sources for the added sand. The presence of Magnesium is relevant only in one bracelet fragment suggesting the use of plant (wood?) ash and confirming that the Byzantine bracelet is manufactured from the mixture of both types of glass (natron and plant ash based). PGAA also indicated the presence of low quantities of Cadmium, high level of Arsenic and Lead (possibly lead arsenate) in one medieval sample and of ZnO in Murano glass, and of CoO traces (maximum 0.1%) in all blue-colored Byzantine, late medieval to modern Murano glass artefacts. PIXE confirmed the use of small quantities of CoO for blue color, indicated Manganese combined with Iron for dark glass, Copper for green, Lead, Tin and an Arsenic compound (orpiment?) for yellow and in the case of modern Murano glass Selenium and Cadmium to obtain a reddish color. Despite PIXE - PIGE combination is probably the best one for glass analysis, our external milli-PIXE - PGAA methods proved to be adequate complementary tools to determine many chemical elements from glass composition - Si, Na, K, Ca, Al, Mg, various metallic oxides.

  15. Development of an ASTM standard glass durability test, the Product Consistency Test (PCT), for high level radioactive waste glass

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.

    1994-01-01

    The nation's first, and the world's largest, facility to immobilize high-level nuclear waste in durable borosilicate glass has started operation at the Savannah River Site (SRS) in Aiken, South Carolina. The product specifications on the glass wasteform produced in the Defense Waste Processing Facility (DWPF) required extensive characterization of the glass product before actual production began and for continued characterization during production. To aid in this characterization, a glass durability (leach) test was needed that was easily reproducible, could be performed remotely on highly radioactive samples, and could yield results rapidly. Several standard leach tests were examined with a variety of test configurations. Using existing tests as a starting point, the DWPF Product Consistency Test (PCT was developed in which crushed glass samples are exposed to 90 ± 2 degree C deionized water for seven days. Based on extensive testing, including a seven-laboratory round robin and confirmatory testing with radioactive samples, the PCT is very reproducible, yields reliable results rapidly, and can be performed in shielded cell facilities with radioactive samples

  16. Crystal growth in zinc borosilicate glasses

    Science.gov (United States)

    Kullberg, Ana T. G.; Lopes, Andreia A. S.; Veiga, João P. B.; Monteiro, Regina C. C.

    2017-01-01

    Glass samples with a molar composition (64+x)ZnO-(16-x)B2O3-20SiO2, where x=0 or 1, were successfully synthesized using a melt-quenching technique. Based on differential thermal analysis data, the produced glass samples were submitted to controlled heat-treatments at selected temperatures (610, 615 and 620 °C) during various times ranging from 8 to 30 h. The crystallization of willemite (Zn2SiO4) within the glass matrix was confirmed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Under specific heat-treatment conditions, transparent nanocomposite glass-ceramics were obtained, as confirmed by UV-vis spectroscopy. The influence of temperature, holding time and glass composition on crystal growth was investigated. The mean crystallite size was determined by image analysis on SEM micrographs. The results indicated an increase on the crystallite size and density with time and temperature. The change of crystallite size with time for the heat-treatments at 615 and 620 °C depended on the glass composition. Under fixed heat-treatment conditions, the crystallite density was comparatively higher for the glass composition with higher ZnO content.

  17. Glass particles produced by laser ablation for ICP-MSmeasurements

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.; Liu, C.; Wen, S.; Mao, X.; Russo, R.E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50 J cm{sup -2}. Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation. In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloys samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns and fs-laser ablation than for metals alloys.

  18. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    Science.gov (United States)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas

    2014-03-01

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T "phase diagram" for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  19. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    International Nuclear Information System (INIS)

    Chiu, Janet; Giovambattista, Nicolas; Starr, Francis W.

    2014-01-01

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  20. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Janet; Giovambattista, Nicolas [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States); Starr, Francis W. [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)

    2014-03-21

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  1. Determination of occluded helium and oxygen in irradiated borosilicate glass samples

    International Nuclear Information System (INIS)

    Ramanjaneyulu, P.S.; Kulkarni, A.S.; Shrivastava, K.C.; Yadav, C.S.; Saxena, M.K.; Tomar, B.S.; Ramakumar, K.L.; Shah, J.G.

    2015-01-01

    Occluded gases in irradiated borosilicate glass were determined at 573, 873 and 1273 K for understanding the radiation damage in glass matrix. Hot vacuum extraction coupled with a quadrupole mass spectrometer technique was employed for the measurements. Relative sensitivity factors of various gases in QMS system were also determined and used for gas composition calculations. At 573 K only helium was found to get released whereas at 873 and 1273 K both helium and oxygen were released with major fraction of oxygen. (author)

  2. Screening and identification of major phytochemical compounds in seeds, sprouts and leaves of Tuscan black kale Brassica oleracea (L.) ssp acephala (DC) var. sabellica L.

    Science.gov (United States)

    Giorgetti, Lucia; Giorgi, Gianluca; Cherubini, Edoardo; Gervasi, Pier Giovanni; Della Croce, Clara Maria; Longo, Vincenzo; Bellani, Lorenza

    2018-07-01

    We report the spectrophotometric determination of total polyphenols, flavonoids, glucosinolates and antioxidant activity in seeds, seedlings and leaves of Tuscan black kale. The highest content of phytochemicals was observed in 10 days sprouts and antioxidant activity was maximum in 2, 4 days seedlings. Identification and characterisation of phytochemicals were performed by mass spectrometry (MS), high resolution and tandem MS with electrospray ionisation mode. Low-molecular-weight metabolites were evidenced in seeds while metabolites at high m/z range were detected in cotyledons and leaves. MS spectra evidenced different phenolic compounds (flavonoid caffeoyl glucose, hydroxycinnamic acid sinapine) and glucosinolates (glucoerucin, glucobrassicin and glucoraphanin) in function of developmental stage; galactolipids ω3 and ω6 were observed in leaves. Identification of stages with the highest phytochemicals content encourages the consumption of black kale sprouts and young leaves. Our research can support food and pharmaceutical industries for production of health promoting products from black kale.

  3. Investigations on vanadium doped glasses

    International Nuclear Information System (INIS)

    Madhusudana Rao, P.

    2013-01-01

    The glass samples studied in the present work have been prepared by melt quenching technique. They were prepared by mixing and grinding together by appropriate amounts of Li 2 O - Na 2 O - B 2 O 3 doped with V 2 O 5 in an agate motor before transferring into crucible. The mixtures were heated in an electric furnace at 1225K for 20 mm. The melt was then quenched to room temperature by pouring it on plane brass plate and pressing it with another brass plate. White and yellow coloured glasses have been obtained with good optical quality and high transparency. Finally the vitreous sample were annealed for 3 hrs at 423K to relieve residual internal stress and slowly cooled to room temperature. The polished glasses have been used for XRD, FTIR analysis and for DSC report. The DSC thermo grams for all the glasses were recorded on in the temperature range 50-550℃ with a heating rate of 10℃/min. Electron spin resonance and optical absorption of 20Li 2 O - 10 Na 2 O - (70-X)B 2 O 3 doped with XV 2 O 5 glass system are studied. ESR spectra of V 4+ ions doped in the glass exhibit peak at g =1.98. Spin Hamiltonian parameters are calculated. It was found that these parameters are dependent upon alkali ion concentration in the glass and the VO +2 ion in an octahedral coordination with a tetragonal compression. The physical parameters of all glasses were also evaluated with respect to the composition

  4. Optical properties of zinc lead tellurite glasses

    Directory of Open Access Journals (Sweden)

    Salah Hassan Alazoumi

    2018-06-01

    Full Text Available Tellurite glass systems in the form of [ZnO]x [(TeO20.7-(PbO0.3]1-x with x = 0.15, 0.17, 0.20, 0.22 and 0.25 mol% were prepared using the melt quenching technique. XRD of the prepared samples have been measured for all samples. Both FTIR (280–4000 cm−1 and UV-Vis (200–800 nm spectra have been measured. Optical band gap and refractive index were calculated for every glass sample. Density of glass, molar volume and oxygen packing density (OPD were obtained. Values of the direct, indirect band gap ranged were found in the range 3.41–3.94 eV and 2.40–2.63 eV with increasing of ZnO concentration. Refractive index 2.58 and dielectric constant 6.66 were heigh at 17 ZnO mol% concentration. Molar polarizability, metallization criterion, polaron radius have been calculated for every glass composition. Keywords: Tellurite, Glass, Optical band gap, Refractive index

  5. Fabrication of Radiation Shielding Glass

    International Nuclear Information System (INIS)

    Tavichai, Nattaya; Pormsean, Suriyont; Dararutana, Pisutti; Sirikulrat, Narin

    2003-06-01

    In this work, lead glass doped with 50%, 55%,60%, 65%, and 70% w/w Pb 3 O 4 . After that, glass mixtures were melt at 1,250οC with 4 hours soaking time. Molten glass was shaped by mould casting technique then annealed at 700οC and cooled down to room temperature. It was found that the glass with 60%w/w Pb 3 O 4 show maximum absorption coefficient of about 0.383 cm -1 with I-131 at energy 364 keV. The observed refractive indices of the samples range between 1.5908 to 1.5922

  6. Crystallization and dielectric properties of PbTiO3 based glass ceramics

    Science.gov (United States)

    Shankar, J.; Rani, G. Neeraja; Deshpande, V. K.

    2018-04-01

    Glass samples with composition (50 - X) PbO - (25 + X) TiO2 - 25 B2O3 (where X = 0, 5, 10 and 12.5 mol %) were prepared using conventional quenching technique. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The XRD results in the glass ceramics revealed the formation of tetragonal lead titanate as a major crystalline phase. The SEM results show rounded crystallite of lead titanate. The ferroelectric nature of all the glass ceramic samples is confirmed by P - E hysteresis measurements. The extended heat treatment of glass ceramic samples at 593K for 10 h exhibited saturated hysteresis loops with higher values of remnant polarization.

  7. 57Fe Moessbauer effect in borosilicate glasses

    International Nuclear Information System (INIS)

    Music, S.

    1989-01-01

    The present study was carried out to elucidate the valence state of iron and its co-ordination in borosilicate glasses, which are being investigated as possible solidification matrices for the immobilization of a simulated nuclear waste. 57 Fe Mossbauer spectroscopy was used as the experimental technique. The chemical compositions of glass samples and the experimental conditions for the preparation of these samples are given. Iron in the form of haematite (α-Fe 2 O 3 ) was used as doping material. Details of the experimental procedure have previously been described. Isomer shifts are calculated relative to α-iron. The results indicate a strong dependence of the valency of the iron and its coordination on the chemical composition of the glass and the Fe 2 O 3 content. The method of preparing the glasses also influences the state of the iron in oxide glasses. (Author)

  8. Fabrication and characterization of bioactive glass-ceramic using soda-lime-silica waste glass.

    Science.gov (United States)

    Abbasi, Mojtaba; Hashemi, Babak

    2014-04-01

    Soda-lime-silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Sinter recrystalization and properties evaluation of glass-ceramic from waste glass bottle and magnesite for extended application

    Directory of Open Access Journals (Sweden)

    As'mau Ibrahim Gebi

    2016-12-01

    Full Text Available In a bid to address environmental challenges associated with the management of waste Coca cola glass bottle, this study set out to develop glass ceramic materials using waste coca cola glass bottles and magnesite from Sakatsimta in Adamawa state. A reagent grade chrome (coloring agent were used to modify the composition of the coca cola glass bottle;  X-ray fluorescence(XRF, X-ray diffraction (XRD and Thermo gravimetric analysis (TGA were used to characterize raw materials, four batches GC-1= Coca cola glass frit +1%Cr2O3, GC-2=97% Coca cola glass frit+ 2% magnesite+1%Cr2O3, GC-3=95% Coca cola glass frit+ 4%magnesite+1%Cr2O3, GC-4=93%Coca cola glass frit+ 6%magnesite+ 1%Cr2O3 were formulated and prepared. Thermal Gradient Analysis (TGA results were used as a guide in selection of three temperatures (7000C, 7500C and 8000C used for the study, three particle sizes -106+75, -75+53, -53µm and 2 hr sintering time were also used, the sinter crystallization route of glass ceramic production was adopted. The samples were characterized by X-ray diffraction (XRD and Scanning Electron Microscope (SEM, the density, porosity, hardness and flexural strength of the resulting glass ceramics were also measured. The resulting glass ceramic materials composed mainly of wollastonite, diopside and anorthite phases depending on composition as indicated by XRD and SEM, the density of the samples increased with increasing sintering temperature and decreasing particle size. The porosity is minimal and it decreases with increasing sintering temperature and decreasing particle size. The obtained glass ceramic materials possess appreciable hardness and flexural strength with GC-3 and GC-4 having the best combination of both properties.

  10. Magnetic properties of bioactive glass-ceramics containing nanocrystalline zinc ferrite

    International Nuclear Information System (INIS)

    Singh, Rajendra Kumar; Srinivasan, A.

    2011-01-01

    Glass-ceramics with finely dispersed zinc ferrite (ZnFe 2 O 4 ) nanocrystallites were obtained by heat treatment of x(ZnO,Fe 2 O 3 )(65-x)SiO 2 20(CaO,P 2 O 5 )15Na 2 O (6≤x≤21 mole%) glasses. X-ray diffraction patterns of the glass-ceramic samples revealed the presence of calcium sodium phosphate [NaCaPO 4 ] and zinc ferrite [ZnFe 2 O 4 ] as major crystalline phases. Zinc ferrite present in nanocrystalline form contributes to the magnetic properties of the glass-ceramic samples. Magnetic hysteresis cycles of the glass-ceramic samples were obtained with applied magnetic field sweeps of ±20 kOe and ±500 Oe, in order to evaluate the potential of these glass-ceramics for hyperthermia treatment of cancer. The evolution of magnetic properties in these samples, viz., from a partially paramagnetic to fully ferrimagnetic nature has been explored using magnetometry and X-ray diffraction studies. - Research highlights: → The glass-ceramics contain bone mineral and magnetic phases. → Calcium sodium phosphate and zinc ferrite nanocrystallites have been identified in all the sample. → With an increase in ZnO and Fe2O3 content, magnetic property of samples evolved from partially paramagnetic to fully ferrimagnetic nature. → Large magnetic hysteresis loops have been obtained for samples with high ZnO+Fe2O3 content.

  11. Dielectric behaviour of (Ba,Sr)TiO3 perovskite borosilicate glass ceramics

    International Nuclear Information System (INIS)

    Yadav, Avadhesh Kumar; Gautam, C.R.

    2013-01-01

    Various perovskite (Ba,Sr)TiO 3 borosilicate glasses were prepared by rapid melt-quench technique in the glass system ((Ba 1-x Sr x ).TiO 3 )-(2SiO 2 .B 2 O 3 )-(K 2 O)-(La 2 O 3 ). On the basis of differential thermal analysis results, glasses were converted into glass ceramic samples by regulated heat treatment schedules. The dielectric behaviour of crystallized barium strontium titanate borosilicate glass ceramic samples shows diffuse phase transition. The study depicts the dielectric behaviour of glass ceramic sample BST5K1L0.2S814. The double relaxation was observed in glass ceramic samples corresponding 80/20% Ba/Sr due to change in crystal structure from orthorhombic to tetragonal and tetragonal to cubic with variation of temperature. The highest value of dielectric constant was found to be 48289 for the glass ceramic sample BST5K1L0.2S814. The high value of dielectric constant attributed to space charge polarization between the glassy phase and perovskite phase. Due to very high value of dielectric constant, such glass ceramics are used for high energy storage devices. La 2 O 3 acts as nucleating agent for crystallization of glass to glass ceramics and enhances the dielectric constant and retarded dielectric loss. Such glass ceramics can be used in high energy storage devices such as barrier layer capacitors, multilayer capacitors etc. (author)

  12. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  13. Glass formulation development and offgas analysis of microwave melter powder samples

    International Nuclear Information System (INIS)

    Semones, G.B.; Hoffman, C.R.; Phillips, J.A.

    1994-04-01

    Production of nuclear materials for defense applications has resulted in the accumulation of vast amounts of nuclear waste. This contaminated waste is in a variety of forms that require subsequent reprocessing to isolate and encapsulate the nuclear (e.g., uranium, plutonium, strontium, cesium, and americium) and toxic (e.g., lead, chromium, and cadmium) constituents. The encapsulating material must possess good chemical and mechanical durability to resist leaching of the nuclear and toxic constituents into the environment during permanent storage at a waste repository. Glass is an ideal encapsulating material because its open structure allows the introduction of different waste forms and the final vitreous product possesses a high degree of chemical stability. Microwave heating and melting is a relatively new advancement in glass processing which uses microwave radiation to heat the glass formers to adequate temperatures for sintering or melting. An advantage to this technique is that it enables more rapid heating than traditional heating mechanisms. This decrease in cycle time may help to limit exposure to workers encapsulating radioactive and/or toxic waste

  14. Strengthened glass for high average power laser applications

    International Nuclear Information System (INIS)

    Cerqua, K.A.; Lindquist, A.; Jacobs, S.D.; Lambropoulos, J.

    1987-01-01

    Recent advancements in high repetition rate and high average power laser systems have put increasing demands on the development of improved solid state laser materials with high thermal loading capabilities. The authors have developed a process for strengthening a commercially available Nd doped phosphate glass utilizing an ion-exchange process. Results of thermal loading fracture tests on moderate size (160 x 15 x 8 mm) glass slabs have shown a 6-fold improvement in power loading capabilities for strengthened samples over unstrengthened slabs. Fractographic analysis of post-fracture samples has given insight into the mechanism of fracture in both unstrengthened and strengthened samples. Additional stress analysis calculations have supported these findings. In addition to processing the glass' surface during strengthening in a manner which preserves its post-treatment optical quality, the authors have developed an in-house optical fabrication technique utilizing acid polishing to minimize subsurface damage in samples prior to exchange treatment. Finally, extension of the strengthening process to alternate geometries of laser glass has produced encouraging results, which may expand the potential or strengthened glass in laser systems, making it an exciting prospect for many applications

  15. Physical, thermal and structural properties of Calcium Borotellurite glass system

    Energy Technology Data Exchange (ETDEWEB)

    Paz, E.C. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Açailândia, MA (Brazil); Dias, J.D.M. [CCSST – UFMA, Imperatriz, MA (Brazil); Melo, G.H.A. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Imperatriz, MA (Brazil); Lodi, T.A. [CCSST – UFMA, Imperatriz, MA (Brazil); Carvalho, J.O. [CCSST – UFMA, Imperatriz, MA (Brazil); IFTO, Araguaína, TO (Brazil); Façanha Filho, P.F.; Barboza, M.J.; Pedrochi, F. [CCSST – UFMA, Imperatriz, MA (Brazil); Steimacher, A., E-mail: steimacher@hotmail.com [CCSST – UFMA, Imperatriz, MA (Brazil)

    2016-08-01

    In this work the glass forming ability in Calcium Borotellurite (CBTx) glass system was studied. Six glass samples were prepared by melt-quenching technique and the obtained samples are transparent, lightly yellowish, with no visible crystallites. The structural studies were carried out by using XRD, FTIR, Raman Spectra, density measurements, and the thermal analysis by using DTA and specific heat. The results are discussed in terms of tellurium oxide content and their changes in structural and thermal properties of glass samples. The addition of TeO{sub 2} increased the density and thermal stability values and decreased glass transition temperature (Tg). Raman and FTIR spectroscopies indicated that the network structure of CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. CBTx system showed good glass formation ability and good thermal stability, which make CBTx glasses suitable for manufacturing process and a candidate for rare-earth doping for several optical applications. - Highlights: • Glass forming ability on Calcium Borotellurite system was studied. • The glass structure was investigated by XRD, Raman and FTIR. • The glass network structure of the CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. • The density and thermal stability of the CBTx glass decreases with TeO{sub 2} while the Cp and the Tg decreases. • The obtained CBTx glasses are suitable for manufacturing process and rare-earth doping for several optical applications.

  16. Optical properties of zinc lead tellurite glasses

    Science.gov (United States)

    Alazoumi, Salah Hassan; Aziz, Sidek Abdul; El-Mallawany, R.; Aliyu, Umar Sa'ad; Kamari, Halimah Mohamed; Zaid, Mohd Hafiz Mohd Mohd; Matori, Khamirul Amin; Ushah, Abdulbaset

    2018-06-01

    Tellurite glass systems in the form of [ZnO]x [(TeO2)0.7-(PbO)0.3]1-x with x = 0.15, 0.17, 0.20, 0.22 and 0.25 mol% were prepared using the melt quenching technique. XRD of the prepared samples have been measured for all samples. Both FTIR (280-4000 cm-1) and UV-Vis (200-800 nm) spectra have been measured. Optical band gap and refractive index were calculated for every glass sample. Density of glass, molar volume and oxygen packing density (OPD) were obtained. Values of the direct, indirect band gap ranged were found in the range 3.41-3.94 eV and 2.40-2.63 eV with increasing of ZnO concentration. Refractive index 2.58 and dielectric constant 6.66 were heigh at 17 ZnO mol% concentration. Molar polarizability, metallization criterion, polaron radius have been calculated for every glass composition.

  17. Immobilization of Uranium Silicide in Sintered Iron-Phosphate Glass

    International Nuclear Information System (INIS)

    Mateos, Patricia; Russo, Diego; Rodriguez, Diego; Heredia, A; Sanfilippo, M.; Sterba, Mario

    2003-01-01

    This work is a continuation of a previous one performed in vitrification of uranium silicide in borosilicate and iron-silicate glasses, by sintering.We present the results obtained with an iron-phosphate glass developed at our laboratory and we compare this results with those obtained with the above mentioned glasses. The main objective was to develop a method as simple as possible, so as to get a monolithic glass block with the appropriate properties to be disposed in a deep geological repository.The thermal transformation of the uranium silicide was characterized by DTA/TG analysis and X-ray diffraction.We determined the evolution of the crystalline phases and the change in weight.Calcined uranium silicide was mixed with natural U 3 O 8 , the amount of U 3 O 8 was calculated to simulate an isotopic dilution of 4%.This material was mixed with powdered iron-phosphate glass (in wt.%: 64,9 P 2 O 5 ; 22,7 Fe 2 O 3 ; 8,1 Al 2 O 3 ; 4,3 Na 2 O) in different proportions (in wt%): 7%, 10% y 15%.The powders were pressed and sintered at temperatures between 585 y 670 °C. Samples of the sintered pellet were prepared for the lixiviation tests (MCC-1P: monolithic samples; deionised water; 90° C; 7, 14 and 28 days).The samples showed a quite good durability (0,6 g.m -2 .day -1 ), similar to borosilicate glasses.The microstructure of the glass samples showed that the uranium particles are much better integrated to the glass matrix in the iron-phosphate glasses than in the borosilicate or iron-silicate glasses.We can conclude that the sintered product obtained could be a good alternative for the immobilization of nuclear wastes with high content of uranium, as the ones arising from the conditioning of research reactors spent fuels

  18. Investigations of touchscreen glasses from mobile phones for retrospective and accident dosimetry

    International Nuclear Information System (INIS)

    Discher, Michael; Bortolin, Emanuela; Woda, Clemens

    2016-01-01

    Touchscreen glasses of mobile phones are sensitive to ionizing radiation and have the potential of usage as an emergency dosimeter for retrospective dosimetry for the purpose of triage after a radiological accident or attack. In this study the TL glow curves and dosimetric properties of touchscreen glasses were studied in detail, such as intrinsic background dose, dose response, reproducibility, optical stability and long-term stability of the TL signal. Preliminary results are additionally presented to minimize the intrinsic background dose by mechanically removing the surface layer of the glass samples. Additionally chemical element analyses of the touchscreen glass samples were carried out to investigate the difference between glass samples which show a TL signal and samples which show neither an intrinsic zero dose signal nor a radiation induced TL signal. An irradiation trial using glass samples stored in the dark demonstrated a successful dose recovery. However, when applying a realistic, external light exposure scenario, dose underestimation was observed, even though samples were pre-bleached prior to measurement. More investigations have to be carried out in the future to solve the challenge of the low optical stability of the TL signal, if touchscreen glasses are to be used as a reliable emergency dosimeter. - Highlights: • Touchscreen glasses are sensitive to ionizing radiation and show suitable dosimetric properties. • Mechanically treated samples demonstrated a significant reduction of the intrinsic zero dose signal. • An irradiation trial showed limitations of the used protocol for strongly bleached samples.

  19. Evaluation of Behaviours of Laminated Glass

    Science.gov (United States)

    Sable, L.; Japins, G.; Kalnins, K.

    2015-11-01

    Visual appearance of building facades and other load bearing structures, which now are part of modern architecture, is the reason why it is important to investigate in more detail the reliability of laminated glass for civil structures. Laminated glass in particular has become one of the trendy materials, for example Apple© stores have both load carrying capacity and transparent appearance. Glass has high mechanical strength and relatively medium density, however, the risk of sudden brittle failure like concrete or other ceramics determine relatively high conservatism in design practice of glass structures. This should be changed as consumer requirements evolve calling for a safe and reliable design methodology and corresponding building standards. A design methodology for glass and glass laminates should be urgently developed and included as a chapter in Eurocode. This paper presents initial experimental investigation of behaviour of simple glass sheets and laminated glass samples in 4-point bending test. The aim of the current research is to investigate laminated glass characteristic values and to verify the obtained experimental results with finite element method for glass and EVA material in line with future European Structural Design of Glass Components code.

  20. Comparative study of radiation shielding parameters for bismuth borate glasses

    International Nuclear Information System (INIS)

    Kaundal, Rajinder Singh

    2016-01-01

    Melt and quench technique was used for the preparation of glassy samples of the composition x Bi 2 O 3- (1-x) B 2 O 3 where x= .05 to .040. XCOM computer program is used for the evaluation of gamma-ray shielding parameters of the prepared glass samples. Further the values of mass attenuation coefficients, effective atomic number and half value layer for the glassy samples have been calculated in the energy range from 1KeV to 100GeV. Rigidity of the glass samples have been analyzed by molar volume of the prepared glass samples. (author)

  1. Comparative study of radiation shielding parameters for bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaundal, Rajinder Singh, E-mail: rajinder_apd@yahoo.com [Department of Physics, School of Physical Sciences, Lovely Professional University, Phagwara, Punjab (India)

    2016-07-15

    Melt and quench technique was used for the preparation of glassy samples of the composition x Bi{sub 2}O{sub 3-}(1-x) B{sub 2}O{sub 3} where x= .05 to .040. XCOM computer program is used for the evaluation of gamma-ray shielding parameters of the prepared glass samples. Further the values of mass attenuation coefficients, effective atomic number and half value layer for the glassy samples have been calculated in the energy range from 1KeV to 100GeV. Rigidity of the glass samples have been analyzed by molar volume of the prepared glass samples. (author)

  2. Ductility and work hardening in nano-sized metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D. Z., E-mail: dzchen@caltech.edu [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); Gu, X. W. [Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States); An, Q.; Goddard, W. A. [Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States); Greer, J. R. [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); The Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  3. Apollo 12 ropy glasses revisited

    Science.gov (United States)

    Wentworth, S. J.; Mckay, D. S.; Lindstrom, D. J.; Basu, A.; Martinez, R. R.; Bogard, D. D.; Garrison, D. H.

    1994-01-01

    We analyzed ropy glasses from Apollo 12 soils 12032 and 12033 by a variety of techniques including SEM/EDX, electron microprobe analysis, INAA, and Ar-39-Ar-40 age dating. The ropy glasses have potassium rare earth elements phosphorous (KREEP)-like compositions different from those of local Apollo 12 mare soils; it is likely that the ropy glasses are of exotic origin. Mixing calculations indicate that the ropy glasses formed from a liquid enriched in KREEP and that the ropy glass liquid also contained a significant amount of mare material. The presence of solar Ar and a trace of regolith-derived glass within the ropy glasses are evidence that the ropy glasses contain a small regolith component. Anorthosite and crystalline breccia (KREEP) clasts occur in some ropy glasses. We also found within these glasses clasts of felsite (fine-grained granitic fragments) very similar in texture and composition to the larger Apollo 12 felsites, which have a Ar-39-Ar-40 degassing age of 800 +/- 15 Ma. Measurements of 39-Ar-40-Ar in 12032 ropy glass indicate that it was degassed at the same time as the large felsite although the ropy glass was not completely degassed. The ropy glasses and felsites, therefore, probably came from the same source. Most early investigators suggested that the Apollo 12 ropy glasses were part of the ejecta deposited at the Apollo 12 site from the Copernicus impact. Our new data reinforce this model. If these ropy glasses are from Copernicus, they provide new clues to the nature of the target material at the Copernicus site, a part of the Moon that has not been sampled directly.

  4. Composition of 12-18th century window glass in Belgium: Non-figurative windows in secular buildings and stained-glass windows in religious buildings

    International Nuclear Information System (INIS)

    Schalm, Olivier; Janssens, Koen; Wouters, Hilde; Caluwe, Danielle

    2007-01-01

    A set of ca. 500 window glass fragments originating from different historical sites in Belgium and covering the period 12 th -18 th century was analyzed by means of electron probe microanalysis. Most samples are archaeological finds deriving from non-figurative windows in secular buildings. However, the analyzed set also contains glass sampled from still existing non-figurative windows in secular buildings and stained-glass windows in religious buildings. A sudden compositional change at the end of the 14 th century can be noticed among the series of glass compositions that were obtained. These changes could be related to the use of different glassmaker recipes and to the introduction of new raw materials for glass making

  5. Composition of 12-18 th century window glass in Belgium: Non-figurative windows in secular buildings and stained-glass windows in religious buildings

    Science.gov (United States)

    Schalm, Olivier; Janssens, Koen; Wouters, Hilde; Caluwé, Danielle

    2007-07-01

    A set of ca. 500 window glass fragments originating from different historical sites in Belgium and covering the period 12 th-18 th century was analyzed by means of electron probe microanalysis. Most samples are archaeological finds deriving from non-figurative windows in secular buildings. However, the analyzed set also contains glass sampled from still existing non-figurative windows in secular buildings and stained-glass windows in religious buildings. A sudden compositional change at the end of the 14 th century can be noticed among the series of glass compositions that were obtained. These changes could be related to the use of different glassmaker recipes and to the introduction of new raw materials for glass making.

  6. Standardization of a PIGE methodology for simultaneous quantification of low Z elements in barium borosilicate glass samples

    International Nuclear Information System (INIS)

    Chhillar, S.; Acharya, R.; Dasari, K.B.; Pujari, P.K.; Mishra, R.K.; Kaushik, C.P.

    2013-01-01

    In order to standardize particle induced gamma-ray emission (PIGE) methodology for simultaneous quantification of light elements, analytical sensitivities of Li, F, B, Na, Al and Si were evaluated using 4 MeV proton beam ( ∼ 10 nA current) using 3 MV Pelletron at IOP, Bhubaneswar. The PIGE method was validated by determining all six elements in a synthetic sample in graphite matrix and applied to two barium borosilicate glass (BaBSG) samples. The prompt γ-rays emitted from inelastic scattering or nuclear reactions of corresponding isotopes were measured using a 60% HPGe coupled to MCA and the current normalized count rates were used for concentration calculation. (author)

  7. Preparation and characterization of boro-tellurite glasses

    Science.gov (United States)

    Kaur, Nirmal; Khanna, Atul; Krishna, P. S. R.

    2014-04-01

    Glass samples of the system: xB2O3-(100-x) TeO2; x= 15, 20, 25 and 30 mol% were prepared by melt quenching and characterized by X-ray diffraction, density measurements, Differential Scanning Calorimetry and FTIR spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreased with increase in B2O3 concentration due to the replacement of heavier TeO2 with lighter B2O3 whereas the glass transition temperature increased from 339°C to 366°C; the later effect was due to increase in the concentration of stronger B-O bonds in the glass network. FTIR studies found that BO4 units convert into BO3 with the addition of B2O3.

  8. Phase separation in an ionomer glass

    DEFF Research Database (Denmark)

    Pedersen, Malene Thostrup; Tian, K.V.; Dobó-Nagy, C.

    2015-01-01

    The G338 ionomer glass is a fluoro-alumino-silicate system, which is used as the powder component of glass ionomer cements (GICs) in dental applications. However, despite progress in understanding the nature of this glass, chemical identity of its separated amorphous phases has not yet been...... amorphous phases in G388 are Ca/Na-Al-Si-O, Ca-Al-F and Ca-P-O-F phases, respectively. However, the exact chemical compositions of the three phases still require further exploration. The results of this work are important for understanding the impact of phase separation within ionomer glasses on the setting...... conclusively determined. In this work, we identify these phases by performing differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses on both the as-received glass and heat-treated samples. We detected three glass transitions in the as-received G338 glass during DSC upscaning, implying...

  9. Dosimetric properties of commercial glasses and sand for high doses

    International Nuclear Information System (INIS)

    Teixeira, Maria Ines

    2004-01-01

    Commercial glasses (transparent and colored) produced by Cebrace, Brazil, Sao Paulo, and sand samples of different Brazilian beaches were studied, due to their low cost and easy handling, to verify the possibility of their use in high dose dosimetry. The main dosimetric characteristics were determined using a densitometer, a spectrophotometer, a thermoluminescent (TL) reader and an electronic paramagnetic resonance system. The gamma irradiations were carried out using a Gamma-Cell 220 and a panoramic source ( 60 Co) of IPEN. An optical absorption band was observed at 420 nm in the glass samples. The TL glow curves presented peaks at 205 deg C, 135 deg C, 150 deg C and 145 deg C for the transparent, bronze, brown and green glass samples, respectively. All EPR spectra of the glasses showed Fe 3+ characteristic signals at g = 4.27 and 2.01. The gamma irradiated sand samples presented two peaks at 110 deg C and 170 deg C and an EPR signal at g= 1.999. However, these materials present a pronounced thermal fading at room temperature after irradiation. With the objective to minimize this thermal fading, both glass and sand samples were submitted to different pre- and post-irradiation thermal treatments. The glass and sand samples showed the possibility of utilization for high dose dosimetry and as Yes/No irradiation detectors. (author)

  10. Preliminary report on a glass burial experiment in granite

    International Nuclear Information System (INIS)

    Clark, D.E.; Zhu, B.F.; Robinson, R.S.; Wicks, G.G.

    1983-01-01

    Preliminary results of a two-year burial experiment in granite are discussed. Three compositions of simulated alkali borosilicate waste glasses were placed in boreholes approximately 350 meters deep. The glass sample configurations include mini-cans (stainless steel rings into which glass has been cast) and pineapple slices (thin sections from cylindrical blocks). Assemblies of these glass samples were prepared by stacking them together with granite, compacted bentonite and metal rings to provide several types of interfaces that are expected to occur in the repository. The assemblies were maintained at either ambient mine temperature (8 to 10 0 C) or 90 0 C. The glasses were analyzed before burial and after one month storage at 90 0 C. The most extensive surface degradation occurred on the glasses interfaced with bentonite. In general, very little attack was observed on glass surfaces in contact with the other materials. The limited field and laboratory data are compared

  11. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  12. Magnetic properties of Fe-Nd silica glass ceramics

    Science.gov (United States)

    Nayak, Manjunath T.; Desa, J. A. Erwin; Babu, P. D.

    2018-04-01

    Soda lime silica glass ceramics containing iron and neodymium have been synthesized. The XRD pattern revealed that the glass samples devitrified into multiple phases. Fe2O3 as an initial component converted into Fe3O4 in the sample during the synthesis, and was the main contributor to the magnetic property of the sample. The inclusion of Nd was found to enhance the magnetization of the sample at 5K. The coercivity of the sample increased with decrease in temperature from room to 5K.

  13. STRESS RELAXATION CHARACTERISTICS OF SELECTED COMMERCIALLY PRODUCED GLASSES

    Directory of Open Access Journals (Sweden)

    Chocholoušek J.

    2013-06-01

    Full Text Available This paper describes a quantitative method of stress relaxation measurement in prismatic glass samples during two different time-temperature regimes using the Sénarmont compensator. Four types of glass (Barium crystal glass, Eutal, Simax, and Container glass were subjected to observation in an assembled measuring device. Results will be used for parameterization of the Tool-Narayanaswamy-Mazurin model and consequently implemented in a finite element method code.

  14. Study of rigidity of semiconducting vanadate glasses and its ...

    Indian Academy of Sciences (India)

    These parameters along with the coordination number of the glasses affect the glass transition temperature. The correlation between the elastic moduli and thermal properties of these samples showed that 0.25MoO3–0.25PbO–0.5V2O5 glass is the most rigid and has an applicable glass transition temperature for coating.

  15. Spectroscopic identification of rare earth elements in phosphate glass

    Science.gov (United States)

    Devangad, Praveen; Tamboli, Maktum; Muhammed Shameem, K. M.; Nayak, Rajesh; Patil, Ajeetkumar; Unnikrishnan, V. K.; Santhosh, C.; Kumar, G. A.

    2018-01-01

    In this work, rare earth-doped phosphate glasses were synthesized and characterized using three different spectroscopic techniques. The absorption spectra of the prepared praseodymium (Pr) and samarium (Sm) doped glasses, recorded by a UV-VIS-NIR spectrophotometer, show the characteristic absorption bands of these elements. To confirm this inference, laser-induced fluorescence spectra of Pr and Sm were obtained at a laser excitation of 442 nm. Their emission bands are reported here. The elemental analysis of these samples was carried out using a laser-induced breakdown spectroscopy (LIBS) system. Characteristic emission lines of Pr and Sm have been identified and reported by the recorded LIBS spectra of glass samples. Results prove that using these three complimentary spectroscopic techniques (absorption, fluorescence and LIBS), we can meaningfully characterize rare earth-doped glass samples.

  16. Preparation and characterization of boro-tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Nirmal, E-mail: akphysics@yahoo.com; Khanna, Atul, E-mail: akphysics@yahoo.com [Glass Physics and Sensors Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar-143005, Punjab (India); Krishna, P. S. R. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra (India)

    2014-04-24

    Glass samples of the system: xB{sub 2}O{sub 3}−(100−x) TeO{sub 2}; x= 15, 20, 25 and 30 mol% were prepared by melt quenching and characterized by X-ray diffraction, density measurements, Differential Scanning Calorimetry and FTIR spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreased with increase in B{sub 2}O{sub 3} concentration due to the replacement of heavier TeO{sub 2} with lighter B{sub 2}O{sub 3} whereas the glass transition temperature increased from 339°C to 366°C; the later effect was due to increase in the concentration of stronger B-O bonds in the glass network. FTIR studies found that BO{sub 4} units convert into BO{sub 3} with the addition of B{sub 2}O{sub 3}.

  17. Electrical conductivity and viscosity of borosilicate glasses and melts

    DEFF Research Database (Denmark)

    Ehrt, Doris; Keding, Ralf

    2009-01-01

    , 0 to 62·5 mol% B2O3, and 25 to 85 mol% SiO2. The glass samples were characterised by different methods. Refractive indices, density and thermal expansion were measured. Phase separation effects were investigated by electron microscopy. The electrical conductivity of glasses and melts were determined......Simple sodium borosilicate and silicate glasses were melted on a very large scale (35 l Pt crucible) to prepare model glasses of optical quality in order to investigate various properties depending on their structure. The composition of the glass samples varied in a wide range: 3 to 33·3 mol% Na2O...... by impedance measurements in a wide temperature range (250 to 1450°C). The activation energies were calculated by Arrhenius plots in various temperature regions: below the glass transition temperature, Tg, above the melting point, Tl, and between Tg and Tl. Viscosity measurements were carried out...

  18. Physical properties and thermoluminescence of glasses designed for radiation dosimetry measurements

    International Nuclear Information System (INIS)

    Laopaiboon, R.; Bootjomchai, C.

    2015-01-01

    Highlights: • TL stability of soda-lime glass was corrected by dopants. • D LDL values indicated that the glass samples have good radiation sensitivity. • Bond compression model theory was used to confirm the results from experimental. • High elastic moduli of glass samples indicated that high stability of structure. - Abstract: Soda lime glasses doped with CeO 2 , Nd 2 O 3 and MnO 2 were prepared. Thermoluminescence (TL) properties, such as glow curves and linearity of TL response on irradiation dose were investigated. Results showed that the TL properties depended on the type and concentration of the dopants. Samples were selected to calculate energy trap depth parameters. To design materials for radiation dosimetry, physical properties, ion concentration, elastic properties and effective atomic numbers are important. Theoretical bond compression models were used to determine the elastic moduli for comparison with experimental values. Results show fair agreement between theoretical and experimental measurements. The high elastic moduli of the glass samples indicated high rigidity and stability of the glass matrix structure

  19. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Melo, B. M. G.; Graça, M. P. F., E-mail: mpfg@ua.pt; Prezas, P. R.; Valente, M. A. [Physics Department (I3N), Aveiro University, Campus Universitário de Santiago, Aveiro (Portugal); Almeida, A. F.; Freire, F. N. A. [Mechanics Engineering Department, Ceará Federal University, Fortaleza (Brazil); Bih, L. [Equipe Physico-Chimie la Matière Condensée, Faculté des Sciences de Meknès, Meknès (Morocco)

    2016-08-07

    In this work, phosphate-borate based glasses with molar composition 20.7P{sub 2}O{sub 5}–17.2Nb{sub 2}O{sub 5}–13.8WO{sub 3}–34.5A{sub 2}O–13.8B{sub 2}O{sub 3}, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σ{sub ac} and σ{sub dc}, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz–1 MHz.

  20. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  1. Understanding the structural drivers governing glass-water interactions in borosilicate based model bioactive glasses.

    Science.gov (United States)

    Stone-Weiss, Nicholas; Pierce, Eric M; Youngman, Randall E; Gulbiten, Ozgur; Smith, Nicholas J; Du, Jincheng; Goel, Ashutosh

    2018-01-01

    borosilicate based model melt-quenched bioactive glass system has been studied to depict the impact of thermal history on its molecular structure and dissolution behavior in water. It has been shown that the methodology of quenching of the glass melt impacts the dissolution rate of the studied glasses by 1.5×-3× depending on the changes induced in their molecular structure due to variation in thermal history. Further, a recommendation has been made to study dissolution behavior of bioactive glasses using surface area of the sample - to - volume of solution (SA/V) approach instead of the currently followed mass of sample - to - volume of solution approach. The structural and chemical dissolution data obtained from bioactive glasses following the approach presented in this paper can be used to develop the structural descriptors and potential energy functions over a broad range of bioactive glass compositions. Realizing the goal of designing third generation bioactive glasses requires a thorough understanding of the complex sequence of reactions that control their rate of degradation (in physiological fluids) and the structural drivers that control them. In this article, we have highlighted some major experimental challenges and choices that need to be carefully navigated in order to unearth the mechanisms governing the chemical dissolution behavior of borosilicate based bioactive glasses. The proposed experimental approach allows us to gain a new level of conceptual understanding about the composition-structure-property relationships in these glass systems, which can be applied to attain a significant leap in designing borosilicate based bioactive glasses with controlled dissolution rates tailored for specific patient and disease states. Copyright © 2017 Acta Materialia Inc. All rights reserved.

  2. Laboratory testing of LITCO glasses

    International Nuclear Information System (INIS)

    Ellison, A.; Wolf, S.; Buck, E.; Luo, J.S.; Dietz, N.; Bates, J.K.; Ebert, W.L.

    1995-01-01

    The purpose of this program is to measure, the intermediate and long-term durability of glasses developed by Lockheed Idaho Technology Co. (LITCO) for the immobilization of calcined radioactive wastes. The objective is to use accelerated corrosion tests as an aid in developing durable waste form compositions. This is a report of tests performed on two LITCO glass compositions, Formula 127 and Formula 532. The main avenue for release of radionuclides into the environment in a geologic repository is the reaction of a waste glass with ground water, which alters the glass and releases its components into solution. These stages in glass corrosion are analyzed by using accelerated laboratory tests in which the ratio of sample surface area to solution volume, SA/V, is varied. At low SA/V, the solution concentrations of glass corrosion products remain low and the reaction approaches the forward rate. At higher SA/V the solution approaches saturation levels for glass corrosion products. At very high SA/V the solution is rapidly saturated in glass corrosion products and secondary crystalline phases precipitate. Tests at very high SA/V provide information about the composition of the solution at saturation or, when no solution is recovered, the identities and the order of appearance of secondary crystalline phases. Tests were applied to Formula 127 and Formula 532 glasses to provide information about the interim and long-term stages in glass corrosion

  3. Enhanced Luminescent Properties in Tm3+/Dy3+ Co-doped Transparent Phosphate Glass Ceramic

    OpenAIRE

    Yao L. Q.; Chen G. H.; Zhong H. J.; Cui S. C.; Li F.; Gan J.Y.

    2016-01-01

    Novel Tm3+/Dy3+ co-doped phosphate glass and glass ceramic samples for white light emitting diodes were prepared by melt quenching method. Under 353 nm excitation, the colors of the luminescence of the glass and glass ceramic samples are white. The CIE chromaticity coordinates (0.338, 0.328) of the emission from the glass ceramic is close to the standard white-light illumination (0.333, 0.333). Compared to the glass, the fluorescence intensity in the glass ceramic is greatly enhanced.

  4. Simulation used to qualify nuclear waste glass for disposal

    International Nuclear Information System (INIS)

    Reimus, T.W.; Kuhn, W.L.

    1987-07-01

    A hypothetical vitrification system was simulated errors associated with controlling and predicting the composition of the nuclear waste glass produced in the system. The composition of the glass must fall within certain limits to qualify for permanent geologic disposal. The estimated error in predicting the concentrations of various constituents in the glass was 2% to 8%, depending on the strategy for sampling and analyzing the feed and on the assumed magnitudes of the process uncertainties. The estimated error in controlling the glass composition was 2% to 9%, depending on the strategy for sampling and analyzing the waste and on the assumed magnitudes of the uncertainties. This work demonstrates that simulation techniques can be used to assist in qualifying nuclear waste glass for disposal. 3 refs., 2 figs., 4 tabs

  5. Memory effect and super-spin-glass ordering in an aggregated nanoparticle sample

    International Nuclear Information System (INIS)

    Cador, O.; Grasset, F.; Haneda, H.; Etourneau, J.

    2004-01-01

    A system consisting of aggregated nonstoichiometric zinc ferrite nanoparticles has been studied using AC and DC magnetization measurements. A superparamagnetic-super-spin-glass phase transition at T g has been identified. The relaxation time diverges at T g and the nonlinear susceptibility shows an abrupt increase. The critical behavior vanishes when the nanoparticles are not in close contact. The observation of the memory effect identical to that which has been already discovered in canonical spin-glass supports the existence of a true thermodynamic transition in agglomerated magnetic nanoparticles

  6. Synthesis, characterization, bioactivity and antibacterial studies of silver doped calcium borosilicate glass-ceramics

    Science.gov (United States)

    Kumar, Alesh; Mariappan, C. R.

    2018-04-01

    Bioactive glass-ceramics 45.8 mol% SiO- 45.8 CaO - 8.4 B2O3 doped with Ag2O were synthesized by sol-gel method. The glass-ceramic nature of samples was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. Fourier transform infrared (FT-IR) spectra reveal the probable stretching and bending vibration modes of silicate and borate groups. UV-Visible spectra reveal the presence of Ag+ ions and metallic Ag in the glass matrix for Ag2O doped ceramic sample. Biocompatibility of the glass nature of samples was studied by soaking of samples in Dulbecco's Modified Eagle's Medium (DMEM) with subsequent XRD studies. It was found that bone-like apatite formation on the glasses after soaked in DMEM. Antibacterial studies of glass ceramics powder against gram positive and negative microorganisms were carried out.

  7. Qualitative and quantitative analysis of different fluid phase in samples of glass beads by X-ray microtomography

    International Nuclear Information System (INIS)

    Marques, Leonardo C.; Nagata, Rodrigo; Appoloni, Carlos R.; Moreira, Anderson C.; Fernanades, Celso P.

    2011-01-01

    The X-ray microtomography has showed to be a useful tool for studies of inner structure of reservoir rocks. Moreover recent works have used this methodology to visualize different fluid phases present in these microstructures. In this paper X-ray microtomography has been applied to visualize three fluid phases, separately or simultaneously, in addition to a solid phase (glass beads). Two glass beads samples were manufactured and scanned, one with 0.8 mm (GB1) and other with 0.6 mm (GB2) diameter, respectively. The three fluid phases used were air, oil and a water-salt-potassium iodine solution. Two Skyscan scanners were used, both a 1172 model, which employs X-ray tube with W anode and cone beam. This laboratory based equipment is able to provide images of until 1 μm spatial resolution. One microtomograph is located at CENPES/PETROBRAS and has a CCD camera of 10 mega pixels resolution. It was used to measure the GB1 sample at 4.84 μm spatial resolution. The other one is located at LAMIR/UFPR and has a CCD camera of 11 mega pixels resolution. It was used to measure the GB2 sample at 4.99 μm spatial resolution. GB1 sample was set up with three fluid phases and presented 38.0 (2.7) % of total porosity before fluid presence and 3.5 % and 19.8 %, as lower and higher average porosity values, respectively, after to be filled with them. GB2 sample was set up with oil and water-salt-potassium iodine solution separated. It presented 36.7 (1.9) % of total porosity when dried, 18.7 (2.0) % when filled with oil and 0 % when filled with the solution. The 2D images clearly show the presence of the solution in addition to the air and solid phases. They also show that the presence of oil phase is less clear than the solution. When all the phases are present together in the sample it is possible to differentiate all of them. Individual 3D images are shown for each phase present in the sample. The 3D image containing all the phases is also shown. (author)

  8. PREPARATION AND CHARACTERIZATION OF POROUS WALLED HOLLOW GLASS MICROSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F; Erich Hansen, E; Ray Schumacher, R; David Peeler, D

    2008-04-21

    Porous-walled hollow glass microspheres (PWHGMs) of a modified alkali borosilicate composition have been successfully fabricated by combining the technology of producing hollow glass microspheres (HGMs) with the knowledge associated with porous glasses. HGMs are first formed by a powder glass--flame process, which are then transformed to PWHGMs by heat treatment and subsequent treatment in acid. Pore diameter and pore volume are most influenced by heat treatment temperature. Pore diameter is increased by a factor of 10 when samples are heat treated prior to acid leaching; 100 {angstrom} in non-heat treated samples to 1000 {angstrom} in samples heat treated at 600 C for 8 hours. As heat treatment time is increased from 8 hours to 24 hours there is a slight shift increase in pore diameter and little or no change in pore volume.

  9. Glass corrosion in natural environments

    Science.gov (United States)

    Thorpe, Arthur N.; Barkatt, Aaron

    1992-01-01

    Experiments carried out during the progress period are summarized. Experiments carried out involving glass samples exposed to solutions of Tris have shown the appearance of 'spikes' upon monitoring glass dissolution as a function of time. The periodic 'spikes' observed in Tris-based media were interpreted in terms of cracking due to excessive stress in the surface region of the glass. Studies of the interactions of silicate glasses with metal ions in buffered media were extended to systems containing Al. Caps buffer was used to establish the pH. The procedures used are described and the results are given. Preliminary studies were initiated as to the feasibility of adding a slowly dissolving solid compound of the additive to the glass-water system to maintain a supply of dissolved additive. It appears that several magnesium compounds have a suitable combination of solubility and affinity towards silicate glass surfaces to have a pronounced retarding effect on the extraction of uranium from the glass. These preliminary findings raise the possibility that introducing a magnesium source into geologic repositories for nuclear waste glass in the form of a sparingly soluble Mg-based backfill material may cause a substantial reduction in the extent of long-term glass corrosion. The studies described also provide mechanistic understanding of the roles of various metal solutes in the leachant. Such understanding forms the basis for developing long-term predictions of nuclear waste glass durability under repository conditions. From what is known about natural highly reduced glasses such as tektites, it is clear that iron is dissolved as ferrous iron with little or no ferric iron. The reducing conditions were high enough to cause metallic iron to exsolve out of the glass in the form of submicroscopic spherules. As the nuclear waste glass is much less reduced, a study was initiated on other natural glasses in addition to the nuclear waste glass. Extensive measurements were

  10. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  11. Structure and properties of gadolinium loaded calcium phosphate glasses

    International Nuclear Information System (INIS)

    Wang, Cuiling; Liang, Xiaofeng; Li, Haijian; Yu, Huijun; Li, Zhen; Yang, Shiyuan

    2014-01-01

    The glass samples with composition xGd 2 O 3 –(50 − x)CaO–50P 2 O 5 (0 ⩽ x ⩽ 9 mol%) were prepared by the conventional melt quench method. The structure and properties of gadolinium loaded in calcium phosphate glasses were investigated using XRD, SEM, DTA, IR and Raman spectroscopy. The XRD and SEM analysis for the samples show that the majority of samples are amorphous, and crystallization occurs when the content of Gd 2 O 3 containing is up to 6 mol%. Two main crystalline phases, Ca 2 P 2 O 7 and Gd 3 (P 2 O 7 ) 3 , are embedded in an amorphous matrix. IR and Raman data indicate that glass structure consists of predominantly metaphosphate (Q 2 ) units and the depolymerization of phosphate network with the addition of Gd 2 O 3 . Both the chemical durability and the glass transition temperature (T g ) are improved with the increase of Gd 2 O 3 , which suggests that the Gd acts a role of strengthening the cross-links between the phosphate chains of the glass

  12. Ruby coloured lead glasses by generation of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gil, C. [Fundacion Centro Nacional del Vidrio, Pocillo, 1, 40100 La Granja de San Ildefonso (Segovia) (Spain); Villegas, M.A. [Centro Nacional de Investigaciones Metalurgicas (CENIM), Spanish Council for Scientific Research (CSIC), Avda. Gregorio del Amo, 8, 28040 Madrid (Spain)]. E-mail: mavillegas@cenim.csic.es

    2004-11-15

    Both yellow and red superficial ruby lead crystal glasses have been obtained by Ag{sup +} ion-exchange. For red ruby colouring lead glass substrates were previously doped with reducing oxides (arsenic, antimony, cerium and tin). The best experimental conditions for silver ion-exchange were determined. The optical absorption behaviour of the samples was studied to point out the influence of the parameters involved in the ion-exchange process. Moreover, other parameters affecting the final colouring of the glasses (kind of dopant, dopant concentration, etc.) were also analysed. The dopant percentage added to the lead crystal glass is the most important factor for developing superficial red ruby colouring. Antimony oxide doped lead glass ion-exchanged with silver showed the most intense red ruby colouring, even for a doping concentration lower than those of arsenic oxide doped samples able to enhance similar colour. Spectral saturation appeared for the highest doping concentration and for the most severe ion-exchange conditions. Chromatic coordinates were calculated from the corresponding transmission visible spectra. The colour purity showed by the samples obtained satisfies the ornamental requirements that motivated this research.

  13. Fabrication of Radiation Shielding Glasses Based on Lead-free High Refractive Index Glasses Prepared from Local Sand

    International Nuclear Information System (INIS)

    Dararutana, Pisutti; Dutchaneepet, Jirapan; Sirikulrat, Narin

    2007-08-01

    Full text: Lead glasses that show high refractive index are the best know and most popular for radiation shielding. Due to harmful effects of lead and considering the health as well as the environmental issues, lead-free glasses were developed. In this work, content of Chumphon sand was fixed at 40 % (by weight) as a main composition but concentrations of BaCO3 were varied from 6 to 30 % (by weight). It was found that the absorption coefficient of the glass samples containing 30 % BaCO3 was 0.233 cm-1 for Ba-133. The density was also measured. It can be concluded that the prepared lead free glasses offered adequate shielding to gamma radiation in comparison with the lead ones. These glasses were one of the environmental friendly materials

  14. Characterization study of industrial waste glass as starting material ...

    African Journals Online (AJOL)

    In present study, an industrial waste glass was characterized and the potential to assess as starting material in development of bioactive materials was investigated. A waste glass collected from the two different glass industry was grounded to fine powder. The samples were characterized using X-ray fluorescence (XRF), ...

  15. Study on processing parameters of glass cutting by nanosecond 532 nm fiber laser

    Science.gov (United States)

    Wang, Jin; Gao, Fan; Xiong, Baoxing; Zhang, Xiang; Yuan, Xiao

    2018-03-01

    The processing parameters of soda-lime glass cutting with several nanosecond 532 nm pulsed fiber laser are studied in order to obtain sufficiently large ablation rate and better processing quality. The influences of laser processing parameters on effective cutting speed and cutting quality of 1 2 mm thick soda-lime glass are studied. The experimental results show that larger laser pulse energy will lead to higher effective cutting speed and larger maximum edge collapse of the front side of the glass samples. Compared with that of 1.1 mm thick glass samples, the 2.0 mm thick glass samples is more difficult to cut. With the pulse energy of 51.2 μJ, the maximum edge collapse is more than 200 μm for the 2.0 mm thick glass samples. In order to achieve the high effective cutting speed and good cutting quality at the same time, the dual energy overlapping method is used to obtain the better cutting performance for the 2.0 mm thick glass samples, and the cutting speed of 194 mm/s and the maximum edge collapse of less than 132 μm are realized.

  16. Aging of a Binary Colloidal Glass

    Science.gov (United States)

    Lynch, Jennifer M.; Cianci, Gianguido C.; Weeks, Eric R.

    2008-03-01

    After having undergone a glass transition, a glass is in a non-equilibrium state, and its properties depend on the time elapsed since vitrification. We study this phenomenon, known as aging. In particular, we study a colloidal suspension consisting of micron-sized particles in a liquid --- a good model system for studying the glass transition. In this system, the glass transition is approached by increasing the particle concentration, instead of decreasing the temperature. We observe samples composed of particles of two sizes (d1= 1.0μm and d2= 2.0μm) using fast laser scanning confocal microscopy, which yields real-time, three-dimensional movies deep inside the colloidal glass. We then analyze the trajectories of several thousand particles as the glassy suspension ages. Specifically, we look at how the size, motion and structural organization of the particles relate to the overall aging of the glass. We find that areas richer in small particles are more mobile and therefore contribute more to the structural changes found in aging glasses.

  17. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  18. Water in Tektites and Impact Glasses by FTIR Spectrometry

    Science.gov (United States)

    Beran, Anton; Koeberl, Christian

    1997-03-01

    To improve the scarce data base of water content in tektites and impact glasses, we analyzed 26 tektites from all four strewn fields and 25 impact glass samples for their water content. We used the fourier transformed IR (FTIR) spectrometry method, which permits measurement of areas of about 40 mm in diameter. Our results show that the tektites have water contents ranging from 0.002 to 0.030 wt% (average 0.014+/-0.008 wt%). Ivory Coast tektites have the lowest water abundances (0.002-0.003 wt%), and Muong Nong-type indochinites and some North American tektites having the highest contents (up to about 0.03 wt%). Impact glass samples (from the Zhamanshin, Aouelloul, and Rio Cuarto craters) yielded water contents of 0.008 to 0.13 wt% H2O. Typical impact glasses from the Aouelloul and Zhamanshin craters have low water contents (0.008 to 0.063 wt%). Libyan Desert Glasses and Rio Cuarto glasses have higher water contents (about 0.11 wt%). We also analyzed glasses of unknown origin (e.g., urengoites; glass fragments from Tikal), which showed very low water contents, in agreement with an origin by impact. Our data confirm that all tektites found on land have very low water contents (<0.03 wt% water), while impact glasses have slightly higher water contents. Both glass types are very dry compared to volcanic glasses. This study confirms that the low water contents (<0.05 wt%) of such glasses can be considered good evidence for an origin by impact.

  19. Fabrication and evaluation of hybrid materials from A-zeolite and ground glass powders for vitrified radioactive waste

    International Nuclear Information System (INIS)

    Kamitani, Masataka; Kondo, Mitsunori; Hiki, Tomonori; Tagami, Toru; Nakahira, Atsushi; Wakihara, Toru

    2014-01-01

    The samples from A-type zeolite and ground soda-lime glass powders were solidified by calcinations at 600 to 800°C in air atmosphere. These hybrid zeolite/glass samples at 700°C were in part insufficiently densified and hybrid samples were fully densified at 800°C, although the densification was not generated at 600°C. A-zeolites were still stable in glass melt at 800°C for hybrid zeolite/glass samples. These hybrid zeolite/glass samples had the ion exchange ability of 20% against Sr 2+ and the high ability over 80% against Cs + as well as A-zeolite. Microstructures of obtained hybrid zeolite/glass samples were evaluated. (author)

  20. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    International Nuclear Information System (INIS)

    Ebert, W.L.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs

  1. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.L. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs.

  2. Late Byzantine mineral soda high alumina glasses from Asia Minor: a new primary glass production group.

    Directory of Open Access Journals (Sweden)

    Nadine Schibille

    Full Text Available The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS. The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor.

  3. FTIR of binary lead borate glass: Structural investigation

    Science.gov (United States)

    Othman, H. A.; Elkholy, H. S.; Hager, I. Z.

    2016-02-01

    The glass samples were prepared according to the following formula: (100-x) B2O3 - x PbO, where x = 20-80 mol% by melt quenching method. The density of the prepared samples was measured and molar volume was calculated. IR spectra were measured for the prepared samples to investigate the glass structure. The IR spectra were deconvoluted using curves of Gaussian shape at approximately the same frequencies. The deconvoluted data were used to study the effect of PbO content on all the structural borate groups. Some structural parameters such as density, packing density, bond length and bond force constant were theoretically calculated and were compared to the obtained experimental results. Deviation between the experimental and theoretically calculated parameters reflects the dual role of PbO content on the network of borate glass.

  4. Production and remediation of low sludge simulated Purex waste glasses, 2: Effects of sludge oxide additions on glass durability

    International Nuclear Information System (INIS)

    Ramsey, W.G.

    1993-01-01

    Glass produced during the Purex 4 campaigns of the Integrated DWPF Melter System (IDMS) and the 774 Research Melter contained a lower fraction of sludge components than targeted by the Product Composition Control System (PCCS). Purex 4 glass was more durable than the benchmark (EA) glass, but was less durable than most other simulated SRS high-level waste glasses. Further, the measured durability of Purex 4 glass was not as well correlated with the durability predicted from the DWPF process control algorithm, probably because the algorithm was developed to predict the durability of SRS high-level waste glasses with higher sludge content than Purex 4. A melter run, designated Purex 4 Remediation, was performed using the 774 Research Melter to determine if the initial PCCS target composition determined for Purex 4 would produce acceptable glass whose durability could be accurately modeled by the DWPF glass durability algorithm. Reagent grade oxides and carbonates were added to Purex 4 melter feed stock to simulate a higher sludge loading. Each canister of glass produced was sampled and the glass durability was determined by the Product Consistency Test method. This document details the durability data and subsequent analysis

  5. Yielding and flow of sheared colloidal glasses

    International Nuclear Information System (INIS)

    Petekidis, G; Vlassopoulos, D; Pusey, P N

    2004-01-01

    We have studied some of the rheological properties of suspensions of hard-sphere colloids with particular reference to behaviour near the concentration of the glass transition. First we monitored the strain on the samples during and after a transient step stress. We find that, at all values of applied step stress, colloidal glasses show a rapid, apparently elastic, recovery of strain after the stress is removed. This recovery is found even in samples which have flowed significantly during stressing. We attribute this behaviour to 'cage elasticity', the recovery of the stress-induced distorted environment of any particle to a more isotropic state when the stress is removed. Second, we monitored the stress as the strain rate dot γ of flowing samples was slowly decreased. Suspensions which are glassy at rest show a stress which becomes independent of dot γ as dot γ →0. This limiting stress can be interpreted as the yield stress of the glass and agrees well both with the yield stress deduced from the step stress and recovery measurements and that predicted by a recent mode coupling theory of sheared suspensions. Thus, the behaviours under steady shearing and transient step stress both support the idea that colloidal glasses have a finite yield stress. We note however that the samples do exhibit a slow accumulation of strain due to creep at stresses below the yield stress

  6. Leaching behavior of glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1981-11-01

    Glass ceramic waste forms have been investigated as alternatives to borosilicate glasses for the immobilization of high-level radioactive waste at Pacific Northwest Laboratory (PNL). Three glass ceramic systems were investigated, including basalt, celsian, and fresnoite, each containing 20 wt % simulated high-level waste calcine. Static leach tests were performed on seven glass ceramic materials and one parent glass (before recrystallization). Samples were leached at 90 0 C for 3 to 28 days in deionized water and silicate water. The results, expressed in normalized elemental mass loss, (g/m 2 ), show comparable releases from celsian and fresnoite glass ceramics. Basalt glass ceramics demonstrated the lowest normalized elemental losses with a nominal release less than 2 g/m 2 when leached in polypropylene containers. The releases from basalt glass ceramics when leached in silicate water were nearly identical with those in deionized water. The overall leachability of celsian and fresnoite glass ceramics was improved when silicate water was used as the leachant

  7. Elemental analysis of forensic glasses by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Almirall, Jose R.; Duckworth, Douglas C.; Bayne, Charles K.; Morton, Sherman A.; Smith, David H.; Koons, Robert D.; Furton, Kenneth G.

    1999-02-01

    Flat glass is a common type of evidence collected from the scenes of crimes such as burglaries, vandalism, and hit-and- run accidents. The usefulness of such evidence lies in the ability to associate the glass from the scene (or a suspect) to the original source. Physical and chemical analysis of the glass can be used for discrimination between the possible sources of glass. If the sample is large enough, physical attributes such as fracture matches, density, color, and thickness can be employed for comparison between a recovered fragment(s) to the suspect source. More commonly, refractive index (RI) comparisons are employed. Due to the improved control over glass manufacturing processes, RI values often cannot differentiate glasses where approximately 6 - 9% of casework samples are not expected to be distinguished by RI alone even if they originated from different sources. Employing methods such as NAA, XRF, ICP-AES, and ICP-MS for the comparison of trace elemental compositions has been shown to be more discriminating than RI comparisons. The multielement capability and the sensitivity of ICP-AES and ICP-MS provide for excellent discrimination power. In this work, the sources of variability in ICP-MS of glass analysis are investigated to determine possible sources of variation. The sources of variation examined include errors due to sample preparation, instrument accuracy and precision, and interlaboratory reproducibility. Other sources of variation include inhomogeneity across a sheet of glass from the same source. Analysis of variance has been applied to our ICP-MS analysis of NIST standards and to the interlaboratory comparisons of float glass samples collected across a sheet in a production facility. The results of these experiments allows for a more accurate interpretation of forensic glass data and a better understanding of the discriminating power (absolute and practical) of ICP-MS.

  8. Laser Machining and In Vitro Assessment of Wollastonite-Tricalcium Phosphate Eutectic Glasses and Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Daniel Sola

    2018-01-01

    Full Text Available Bioactivity and ingrowth of ceramic implants is commonly enhanced by a suitable interconnected porous network. In this work, the laser machining of CaSiO3‒Ca3(PO42 biocompatible eutectic glass-ceramics and glasses was studied. For this purpose, 300 µm diameter craters were machined by using pulsed laser radiation at 532 nm with a pulsewidth in the nanosecond range. Machined samples were soaked in simulated body fluid for 2 months to assess the formation of a hydroxyapatite layer on the surface of the laser machined areas. The samples were manufactured by the laser floating zone technique using a CO2 laser. Morphology, composition and microstructure of the machined samples were described by Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy and micro-Raman Spectroscopy.

  9. Sintering process of Eu doped luminescent glass prepared from porous glass

    International Nuclear Information System (INIS)

    Akai, T; Murakami, M; Yamashita, M; Okajima, T; Umesaki, N

    2011-01-01

    Eu doped high silica glass prepared by sintering porous glass exhibits blue luminescence with high quantum efficiency. In this work, we studied effects of sintering temperature on valance state of europium ion. To investigate a change of valance state of Eu, X-ray absorption near edge structure (XANES) spectroscopy measurements were carried out. Intensity of blue emission at around 430nm drastically increases when the sintering temperature is above 1000 deg. C. From XANES spectra, it is found that almost all the Eu exist as Eu 3+ in a samples sintered below 900 deg. C, while more than 70% of Eu exist as Eu 2+ in the sample sintered at 1050 deg. C and 1100 deg. C. The drastic change of oxidation state of europium ion between 900 and 1050 deg. C is discussed in relation to the structural change probed by infrared (IR) spectroscopy.

  10. A relationship between leach rate of nuclear waste glass and residual amount of sodium on the glass surface

    International Nuclear Information System (INIS)

    Kamizono, Hiroshi; Banba, Tsunetaka

    1984-12-01

    Leach tests of simulated high-level waste glass were carried out in order to examine the quantitative relationship between the amount of elements on the sample surface and that in the leachate. An experimental equation was obtained expressing the relationship between the amount of Na on the sample surface and that in the leachate. This shows that it is possible in some cases to estimate the amount of Na in the leachate by measuring the amount of Na on the sample surface. One example of such an estimation was observed with the simulated high-level waste glass leached at 100 0 C in the presence of a backfill material. (author)

  11. Thermal behaviors of liquid La-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D. W.; Wang, X. D., E-mail: wangxd@zju.edu.cn, E-mail: jiangjz@zju.edu.cn; Lou, H. B.; Cao, Q. P.; Jiang, J. Z., E-mail: wangxd@zju.edu.cn, E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Wang, L. W. [Institute of Materials Science and Engineering, Lanzhou University, Lanzhou 730000 (China); Zhang, D. X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China)

    2014-12-14

    Thermal behaviors of liquid La-based bulk metallic glasses have been measured by using the dilatometer with a self-sealed sample cell. It is demonstrated that the strong glass forming liquid not only has the small thermal expansion coefficient but also shows the slow variation rate. Moreover, the strong glass former has relatively dense atomic packing and also small density change in the liquid state. The results suggest that the high glass forming ability of La-based metallic glasses would be closely related to the slow atomic rearrangements in liquid melts.

  12. CRYSTALLIZATION KINETICS OF GLASS-CERAMICS BY DIFFERENTIAL THERMAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    A. NOZAD

    2011-06-01

    Full Text Available The crystallization behavior of fluorphlogopite, a glass-ceramic in the MgO–SiO2–Al2O3–K2O–B2O3–F system, was studied by substitution of Li2O for K2O in the glass composition. DTA, XRD and SEM were used for the study of crystallization behavior, formed phases and microstructure of the resulting glass-ceramics. Crystallization kinetics of the glass was investigated under non-isothermal conditions, using the formal theory of transformations for heterogeneous nucleation. The crystallization results were analyzed, and both the activation energy of crystallization process as well as the crystallization mechanism were characterized. Calculated kinetic parameters indicated that the appropriate crystallization mechanism was bulk crystallization for base glass and the sample with addition of Li2O. Non-isothermal DTA experiments showed that the crystallization activation energies of base glasses was in the range of 234-246 KJ/mol and in the samples with addition of Li2O was changed to the range of 317-322 KJ/mol.

  13. Effect of sintering on crystallization and structural properties of soda lime silica glass

    Directory of Open Access Journals (Sweden)

    Zaid Mohd Hafiz Mohd

    2017-01-01

    Full Text Available The effect of sintering temperatures on crystallization and structural of the soda lime silica (SLS glass was reported. Elemental weight composition of the SLS glass powder was identified through Energy dispersive X-ray fluorescence (EDXRF analysis while the thermal behavior of the glass was determined using Differential thermal analysis (DTA technique. Archimedes’ method and direct geometric measurement were respectively used to determine bulk density and linear shrinkage of the glass samples. Crystallisation behavior of the samples was investigated by X-ray diffraction (XRD analysis and chemical bonds present in the samples were measured using Fourier Transform Infrared (FTIR spectroscopy. Results showed an increase in the density and linear shrinkage of the samples as a function of the sintering temperature. The XRD analysis revealed the formation of α-quartz (SiO2 and a minor amount of devitrite phases in the samples and these were further verified through the detection of chemical bonds by FTIR after sintering at 800ºC. The properties of the glass-ceramics can be explained on the basis of crystal chemistry which indicated that the alkali ions formed as carriers in the random network structure and can be recommended for the manufacture of glass fiber or toughened glass-ceramic insulators.

  14. Infrared spectra of zinc doped lead borate glasses

    Indian Academy of Sciences (India)

    Unknown

    size, smaller heat of fusion and valence (= 3) of B. In ... of amorphous materials, we have used it to determine the structure ... 1073 K. The homogenized molten glass was cast in two ... ing the glass, all the samples were immediately transferred.

  15. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  16. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    International Nuclear Information System (INIS)

    Adamson, D.; Pickenheim, Bradley

    2008-01-01

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  17. Photoluminescence properties of LiF bismuth silicate glass

    Science.gov (United States)

    Krishnan, M. Laya; Kumar, V. V. Ravi Kanth

    2018-04-01

    The sample (60-X) Bi2O3-30SiO2-XLiF where X=10, 15, 25 were prepared by conventional melt quenching method. X-ray diffraction pattern conformed the amorphous nature of the prepared sample and a broad peak at 2θ=30°. The Raman spectra confirmed that the Bi can exist both network former (BiO3 pyramidal) and network modifier (BiO6 octahedral)in the glass matrix. The samples showing broad absorption at 470nm is due to the presence of Bi2+ ions, because of increasing optical basicity the absorption edge of the sample is blue shifted. The photoluminescence spectra of the glass under 350nm excitation are showing two main peaks at 430nm and 630 nm due to Bi3+ and Bi2+ respectively and 25 LBS glass showing yellow, 15LBS showing near bluish white and 10LBS showing blue luminescence. The color purity and correlated color temperature are also calculated.

  18. Effect of different glasses in glass bonded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-01-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing

  19. Detection of glass particles on bone lesions using SEM-EDS.

    Science.gov (United States)

    Montoriol, Romain; Guilbeau-Frugier, Céline; Chantalat, Elodie; Roumiguié, Mathieu; Delisle, Marie-Bernadette; Payré, Bruno; Telmon, Norbert; Savall, Frédéric

    2017-09-01

    The problem of identifying the wounding agent in forensic cases is recurrent. Moreover, when several tools are involved, distinguishing the origin of lesions can be difficult. Scanning electron microscopy (SEM)/energy dispersive X-ray analysis (EDS) equipment is increasingly available to the scientific and medical community, and some studies have reported its use in forensic anthropology. However, at our knowledge, no study has reported the use of SEM-EDS in forensic cases involving glass tools, whether in case reports or experiments. We performed an experimental study on human rib fragments, on which we manually created wounds using fragments of window and mirror glass. SEM-EDS was executed on samples without any further preparation on low vacuum mode, then on the same samples after defleshing them completely by boiling them. Window and mirror glass particles were detected on experimental wounds. Both had silica in their spectra, and the opaque side of the mirror contained titanium, allowing for their identification. Boiling and defleshing the bone samples involved a loss of information in terms of the number of wounds detected as positive for glass particles and in the number of glass particles detected, for both window and mirror glass. We suggest the analysis of wounds with suspected glass particles using low vacuum mode and with no defleshment by boiling.

  20. Reversibility windows in selenide-based chalcogenide glasses

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Hyla, M.; Boyko, V.; Golovchak, R.

    2008-01-01

    A simple route for the estimation of the reversibility windows in the sense of non-ageing ability is developed for chalcogenide glasses obeying '8-N' rule at the example of As-Se, Ge-Se and Ge-As-Se glass systems. The low limit of their reversibility windows is determined at the average coordination number Z=2.4 in full agreement with rigidity percolation theory, while the upper limit is shown to be related to the glass preparation conditions and samples prehistory

  1. Reversibility windows in selenide-based chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska Street, Lviv, UA 79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa, PL 42200 (Poland); Hyla, M. [Institute of Physics of Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa, PL 42200 (Poland); Boyko, V. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska Street, Lviv, UA 79031 (Ukraine); Lviv National Polytechnic University, 12, Bandera Street, Lviv, UA 79013 (Ukraine); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska Street, Lviv, UA 79031 (Ukraine)], E-mail: golovchak@novas.lviv.ua

    2008-10-01

    A simple route for the estimation of the reversibility windows in the sense of non-ageing ability is developed for chalcogenide glasses obeying '8-N' rule at the example of As-Se, Ge-Se and Ge-As-Se glass systems. The low limit of their reversibility windows is determined at the average coordination number Z=2.4 in full agreement with rigidity percolation theory, while the upper limit is shown to be related to the glass preparation conditions and samples prehistory.

  2. Glass dissolution rate measurement and calculation revisited

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Maxime, E-mail: maxime.fournier@cea.fr [CEA, DEN, DTCD, SECM, F-30207, Bagnols sur Cèze (France); Ull, Aurélien; Nicoleau, Elodie [CEA, DEN, DTCD, SECM, F-30207, Bagnols sur Cèze (France); Inagaki, Yaohiro [Department of Applied Quantum Physics & Nuclear Engineering, Kyushu University, Fukuoka, 819-0395 (Japan); Odorico, Michaël [ICSM-UMR5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule, BP17171, F-30207, Bagnols sur Cèze (France); Frugier, Pierre; Gin, Stéphane [CEA, DEN, DTCD, SECM, F-30207, Bagnols sur Cèze (France)

    2016-08-01

    Aqueous dissolution rate measurements of nuclear glasses are a key step in the long-term behavior study of such waste forms. These rates are routinely normalized to the glass surface area in contact with solution, and experiments are very often carried out using crushed materials. Various methods have been implemented to determine the surface area of such glass powders, leading to differing values, with the notion of the reactive surface area of crushed glass remaining vague. In this study, around forty initial dissolution rate measurements were conducted following static and flow rate (SPFT, MCFT) measurement protocols at 90 °C, pH 10. The international reference glass (ISG), in the forms of powders with different particle sizes and polished monoliths, and soda-lime glass beads were examined. Although crushed glass grains clearly cannot be assimilated with spheres, it is when using the samples geometric surface (S{sub geo}) that the rates measured on powders are closest to those found for monoliths. Overestimation of the reactive surface when using the BET model (S{sub BET}) may be due to small physical features at the atomic scale—contributing to BET surface area but not to AFM surface area. Such features are very small compared with the thickness of water ingress in glass (a few hundred nanometers) and should not be considered in rate calculations. With a S{sub BET}/S{sub geo} ratio of 2.5 ± 0.2 for ISG powders, it is shown here that rates measured on powders and normalized to S{sub geo} should be divided by 1.3 and rates normalized to S{sub BET} should be multiplied by 1.9 in order to be compared with rates measured on a monolith. The use of glass beads indicates that the geometric surface gives a good estimation of glass reactive surface if sample geometry can be precisely described. Although data clearly shows the repeatability of measurements, results must be given with a high uncertainty of approximately ±25%. - Highlights: • Initial dissolution

  3. On the chemical variability of Middelburg glass beads and rods

    International Nuclear Information System (INIS)

    Karklins, K.; Kottman, J.; Hancock, R.G.V.; Sempowski, M.L.; Nohe, A.W.; Moreau, J.-F.; Aufreiter, S.; Kenyon, I.

    2001-01-01

    Forty-three glass samples from a late 16th-early 17th century, glass beadmaking house in Middelburg, the Netherlands, were selected for maximum colouring variability, including plain and multi-coloured varieties. The glass chemistries were quite diverse, within each colour grouping. For each single colour of glass, anticipated colouring elements (copper for turquoise blue, cobalt for dark blue, manganese for rose, and tin for white) were used, with the exception of two beads that were opacified wih antimony rather than with tin. Multi-coloured glass glasses (chevron beads) produced chemistries that match the mixing of the different coloured glasses. In some cases, low relative amounts of some inter-mixed glasses were not detectable against the composition of the major glass component. (author). 16 refs., 3 tabs

  4. Recording of interference fringe structure by femtosecond laser pulses in samples of silver-containing porous glass and thick slabs of dichromated gelatin

    Science.gov (United States)

    Andreeva, Olga V.; Dement'ev, Dmitry A.; Chekalin, Sergey V.; Kompanets, V. O.; Matveets, Yu. A.; Serov, Oleg B.; Smolovich, Anatoly M.

    2002-05-01

    The recording geometry and recording media for the method of achromatic wavefront reconstruction are discussed. The femtosecond recording on the thick slabs of dichromated gelatin and the samples of silver-containing porous glass was obtained. The applications of the method to ultrafast laser spectroscopy and to phase conjugation were suggested.

  5. Synthesis and Structural Studies of Er3+ Containing Lead Cadmium Fluoroborate Glasses and Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Silva Maurício A.P.

    2002-01-01

    Full Text Available The vitreous domain was established in the PbF2-CdF2-B2O 3 system from melting and quenching experiments. Er3+ containing glasses were prepared and glass ceramics were obtained by selected heat-treatments. Lead fluoride was identified (beta-PbF2 as the crystalline phase. Structural studies were performed in some glassy and partially crystallized samples by means of X-ray Diffraction (XRD and Extended X-ray Absorption Fine Structure (EXAFS measurements. The role of Cd2+ and Pb2+ atoms on the glass network formation and also on the crystallization behavior was put forward by these techniques. After crystallization Er3+ atoms segregated in the crystal phase.

  6. Colouration of medieval glass bracelets studied by total reflection x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Detcheva, Albena; Velinova, Ralitsa; Ivanova, Elisaveta; Jordanov, Juri; Karadjov, Metody

    2014-01-01

    The contents of 3d-transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) in fragments of medieval glass bracelets, found in the necropolis of Stambolovo and the castle of Mezek, Bulgaria, were determined by total reflection X-ray fluorescence (TXRF) analysis using gallium as internal standard. The samples were analysed as slurries in Triton X 114. The experimental parameters: grain size of the glass sample, concentrations of glass sample, Triton X114 and internal standard in the slurry, volume of the slurry aliquot taken for analysis, as well as the excitation time, were optimised. For method validation the certified reference material BAM-S005 Type A soda-lime glass was used. It was proven that the elements Co, Mn and Fe are responsible for colour generation in the investigated glass samples. The precision of the determinations is characterised by an RSD in the range 3–11%

  7. Hierarchical Structures and Shaped Particles of Bioactive Glass and Its In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    U. Boonyang

    2013-01-01

    Full Text Available In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM products or shaped bioactive glass nanoparticles. The in vitro bioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF at body temperature (37°C for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.

  8. Moessbauer spectroscopy of some volcanic glasses from the Pampa Region, Cordoba, Argentina

    International Nuclear Information System (INIS)

    Saragovi-Badler, C.; Labenski, F.

    1987-01-01

    Moessbauer spectroscopy was applied to the study of volcanic glasses and closely associated clay minerals which were carefully separated from the sediments of the Pampa Region. The parameters of volcanic glass samples show the presence of a high content of Fe 2+ in octahedral coordination and some Fe 3+ in tetrahedral and octahedral coordination. No remarcable difference was found comparing with a 'pure' volcanic glass sample taken as a reference. In the clay samples the only clay mineral found was illite. (author) 7 refs

  9. Aging near the wall in colloidal glasses

    Science.gov (United States)

    Cao, Cong; Huang, Xinru; Weeks, Eric

    In a colloidal glass system, particles move slower as sample ages. In addition, their motions may be affected by their local structure, and this structure will be different near a wall. We examine how the aging process near a wall differs from that in the bulk of the sample. In particular, we use a confocal microscope to observe 3D motion in a bidisperse colloidal glass sample. We find that flat walls induce the particles to organize into layers. The aging process behaves differently near the boundary, especially within the first three layers. Particle motion near the wall is noticeably slower but also changes less dramatically with age. We compare and contrast aging seen in samples with flat and rough walls.

  10. Properties of glass-bonded zeolite monoliths

    International Nuclear Information System (INIS)

    Lewis, M.A.; Fischer, D.F.; Murphy, C.D.

    1994-01-01

    It has been shown that mineral waste forms can be used to immobilize waste salt generated during the pyrochemical processing of spent fuel from the Integral Fast Reactor (IFR). Solid, leach resistant monoliths were formed by hot-pressing mixtures of salt-occluded zeolite A powders and glass frit at 990 K and 28 MPa. Additional samples have now been fabricated and tested. Normalized release rates for all elements, including iodide and chloride, were less than 1 g/m 2 d in 28-day tests in deionized water and in brine at 363 K (90 degrees C). Preliminary results indicate that these rates fall with time with both leachants and that the zeolite phase in the glass-bonded zeolite does not function as an ion exchanger. Some material properties were measured. The Poisson ratio and Young's modulus were slightly smaller in glass-bonded zeolite than in borosilicate glass. Density depended on zeolite fraction. The glass-bonded zeolite represents a promising mineral waste form for IFR salt

  11. Holes generation in glass using large spot femtosecond laser pulses

    Science.gov (United States)

    Berg, Yuval; Kotler, Zvi; Shacham-Diamand, Yosi

    2018-03-01

    We demonstrate high-throughput, symmetrical, holes generation in fused silica glass using a large spot size, femtosecond IR-laser irradiation which modifies the glass properties and yields an enhanced chemical etching rate. The process relies on a balanced interplay between the nonlinear Kerr effect and multiphoton absorption in the glass which translates into symmetrical glass modification and increased etching rate. The use of a large laser spot size makes it possible to process thick glasses at high speeds over a large area. We have demonstrated such fabricated holes with an aspect ratio of 1:10 in a 1 mm thick glass samples.

  12. Towards Luminescence Dating Of Mosaic Glass

    Science.gov (United States)

    Galli, A.; Martini, M.; Sibila, E.; Villa, I.

    The possibility of dating archaeological glass by means of luminescent techniques has been investigated in recent years, despite the difficulties of this application, mainly linked to the amorphous structure of the material. We focused in particular on mosaic glass, after the encouraging results obtained on byzantine and medieval samples. Further studies were devoted to the comprehension of the luminescent mechanisms in silica glasses, and to the investigation of the relationships between luminescence, colouring or opacifier ions and crystalline phase of the vitreous matrix. The results of a study on the dosimetric characteristics of thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) of a few medieval blue-green mosaic glasses from the San Lorenzo church (Milan) are presented, and the experimental protocols established to identify their suitability for dating are discussed.

  13. Structure and properties of gadolinium loaded calcium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cuiling [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Liang, Xiaofeng, E-mail: XFLiang@swust.edu.cn [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Li, Haijian; Yu, Huijun; Li, Zhen [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Yang, Shiyuan [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China)

    2014-10-15

    The glass samples with composition xGd{sub 2}O{sub 3}–(50 − x)CaO–50P{sub 2}O{sub 5} (0 ⩽ x ⩽ 9 mol%) were prepared by the conventional melt quench method. The structure and properties of gadolinium loaded in calcium phosphate glasses were investigated using XRD, SEM, DTA, IR and Raman spectroscopy. The XRD and SEM analysis for the samples show that the majority of samples are amorphous, and crystallization occurs when the content of Gd{sub 2}O{sub 3} containing is up to 6 mol%. Two main crystalline phases, Ca{sub 2}P{sub 2}O{sub 7} and Gd{sub 3}(P{sub 2}O{sub 7}){sub 3}, are embedded in an amorphous matrix. IR and Raman data indicate that glass structure consists of predominantly metaphosphate (Q{sup 2}) units and the depolymerization of phosphate network with the addition of Gd{sub 2}O{sub 3}. Both the chemical durability and the glass transition temperature (T{sub g}) are improved with the increase of Gd{sub 2}O{sub 3}, which suggests that the Gd acts a role of strengthening the cross-links between the phosphate chains of the glass.

  14. Influence of Some Nuclear Waste on The Durability and Mechanical Properties of Borosilicate glass

    International Nuclear Information System (INIS)

    El-Alaily, N.A.

    2003-01-01

    Various glass systems have been shown to be suitable for producing waste glass forms that are thermally and mechanically stable and exhibit good chemical durability. In this study borosilicate glass containing sodium oxide and aluminum oxide was prepared as a host for high level nuclear waste. The glass durability when the samples were immersed either in distilled water or ground water at 70 degree was studied. The density, porosity and mechanical properties were also investigated. The effects of exposing the samples immersed in groundwater to gamma rays in the glass durability and all other mentioned properties were also studied. The results showed that immersing the glass in ground water causing a decrease in the glass durability. The exposure of the glass immersed in ground water to the gamma rays increases the durability of the glass. The mechanical properties of the prepared glass were good. Although these properties decrease for the corroded glass but they were still good

  15. Repair of glass by sol-gel coating using either conventional or microwave heating

    International Nuclear Information System (INIS)

    Boonyapiwat, A.; Fathi, Z.; Folz, D.C.; Clark, D.E.

    1993-01-01

    A method of repairing glass is discussed. Microindentation was used to deliberately weaken the glass. Some samples were dip coated with silica sol. Effects of dipping the glass in copper nitrate solution also were studied. Heat treatments were conducted in either a conventional furnace or a microwave oven. Four-point bend testing was used to evaluate the merit of each process. Microwave hybrid heating had the same effect on the repair of uncoated glass as conventional heating. Coating the glass with sol resulted in higher strength of glass than heat treatment alone. Treating the glass with copper nitrate without heat treating had no effect on strength. Microwave hybrid heating appears to yield higher reliability in sol-gel coated samples than conventional processing. 21 refs., 8 figs., 2 tabs

  16. Tc and Re Behavior in Borosilicate Waste Glass Vapor Hydration Tests

    International Nuclear Information System (INIS)

    McKeown, David A.; Buechele, Andrew C.; Pegg, Ian L.; Lukens, Wayne W.; Shuh, David K.

    2007-01-01

    Technetium (Tc), found in some nuclear wastes, is of particular concern with regard to long-term storage, because of its long-lived radioactivity and high mobility in the environment. Tc and rhenium (Re), commonly used as a non-radioactive surrogate for Tc, were studied to assess their behavior in borosilicate glass under hydrothermal conditions in the Vapor Hydration Test (VHT). X-ray absorption spectroscopy (XAS) and scanning electron microscopy (SEM) measurements were made on the original Tc- and Re-containing glasses and their corresponding VHT samples, and show different behavior for Tc and Re under VHT conditions. XAS indicates that, despite starting with different Tc(IV) and Tc(VII) distributions in each glass, the VHT samples have 100% Tc(IV)O 6 environments. SEM shows complete alteration of the original glass, Tc enrichment near the sample surface, and Tc depletion in the center. Perrhenate (Re(VII)O 4 - ) is dominant in both Re-containing samples before and after the VHT, where Re is depleted near the VHT sample surface and more concentrated toward the center. (authors)

  17. Heavy metal oxide glasses as gamma rays shielding material

    International Nuclear Information System (INIS)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2016-01-01

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal (_5_6Ba, _6_4Gd, _8_2Pb, _8_3Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  18. Heavy metal oxide glasses as gamma rays shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir, E-mail: dr.tejbir@gmail.com

    2016-10-15

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal ({sub 56}Ba, {sub 64}Gd, {sub 82}Pb, {sub 83}Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  19. Volcanic glasses, their origins and alteration processes

    Science.gov (United States)

    Friedman, I.; Long, W.

    1984-01-01

    Natural glass can be formed by volcanic processes, lightning (fulgarites) burning coal, and by meteorite impact. By far the most common process is volcanic - basically the glass is rapidly chilled molten rock. All natural glasses are thermodynamically unstable and tend to alter chemically or to crystallize. The rate of these processes is determined by the chemical composition of the magma. The hot and fluid basaltic melts have a structure that allows for rapid crystal growth, and seldom forms glass selvages greater than a few centimeters thick, even when the melt is rapidly cooled by extrusion in the deep sea. In contrast the cooler and very viscous rhyolitic magmas can yield bodies of glass that are tens of meters thick. These highly polymerized magmas have a high silica content - often 71-77% SiO2. Their high viscosity inhibits diffusive crystal growth. Basalt glass in sea water forms an alteration zone called palagonite whose thickness increases linearly with time. The rate of diffusion of water into rhyolitic glass, which follows the relationship - thickness = k (time) 1 2, has been determined as a function of the glass composition and temperature. Increased SiO2 increases the rate, whereas increased CaO, MgO and H2O decrease the rate. The activation energy of water diffusion varies from about 19 to 22 kcal/mol. for the glasses studied. The diffusion of alkali out of rhyolite glass occurs simultaneously with water diffusion into the glass. The rate of devitrification of rhyolitic glass is a function of the glass viscosity, which in turn is a function of water content and temperature. Although all of the aforementioned processes tend to destroy natural glasses, the slow rates of these processes, particularly for rhyolitic glass, has allowed samples of glass to persist for 60 million years. ?? 1984.

  20. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs

  1. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs.

  2. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions

  3. Plutonium Solubility In High-Level Waste Alkali Borosilicate Glass

    International Nuclear Information System (INIS)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-01

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to ∼18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m 3 of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m 3 3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The incorporation of 1 wt

  4. Glass as a gamma ray dosemeter

    International Nuclear Information System (INIS)

    Sutrisno Puspodikoro.

    1978-01-01

    The advantages of glass as a γ-rays dosemeter are studied. Experiments have shown that ordinary microscope object glass can be used as a dosemeter, which dose range for linear response extends from about 10 4 -10 6 rads. Heat treatment of the irradiated samples accelerates the initial fading of coloration and stabilizes the residual optical density. On the other side cooling of them retards the initial fading. (author)

  5. Irradiation test of borosilicate glass burnable poison

    International Nuclear Information System (INIS)

    Feng Mingquan; Liao Zumin; Yang Mingjin; Lu Changlong; Huang Deyang; Zeng Wangchun; Zhao Xihou

    1991-08-01

    The irradiation test and post-irradiation examinations for borosilicate glass burnable poison are introduced. Examinations include visual examination, measurement of dimensions and density, and determination of He gas releasing and 10 B burnup. The corrosion and phenomenon of irradiation densification are also discussed. Two type glass samples have been irradiated with different levels of neutron flux. It proved that the GG-17 borosilicate glass can be used as burnable poison to replace the 10 B stainless steel in the Qinshan Nuclear Power Plant, and it is safe, economical and reasonable

  6. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  7. Permanently densified SiO2 glasses: a structural approach.

    Science.gov (United States)

    Martinet, C; Kassir-Bodon, A; Deschamps, T; Cornet, A; Le Floch, S; Martinez, V; Champagnon, B

    2015-08-19

    Densified silica can be obtained by different pressure and temperature paths and for different stress conditions, hydrostatic or including shear. The density is usually the macroscopic parameter used to characterize the different compressed silica samples. The aim of our present study is to compare structural modifications for silica glass, densified from several routes. For this, densified silica glasses are prepared from cold and high temperature (up to 1020 °C) compressions. The different densified glasses obtained in our study are characterized by micro-Raman spectroscopy. Intertetrahedral angles from the main band relative to the bending mode decrease and their values are larger for densified samples from high temperature compression than those samples from cold compression. The relative amount of 3-membered rings deduced from the D2 line area increases as a function of density for cold compression. The temperature increase during the compression process induces a decrease of the 3 fold ring population. Moreover, 3 fold rings are more deformed and stressed for densified samples at room temperature at the expense of those densified at high temperature. Temperature plays a main role in the reorganization structure during the densification and leads to obtaining a more relaxed structure with lower stresses than glasses densified from cold compression. The role of hydrostatic or non-hydrostatic applied stresses on the glass structure is discussed. From the Sen and Thorpe central force model, intertetrahedral angle average value and their distribution are estimated.

  8. Bonding silicon nitride using glass-ceramic

    International Nuclear Information System (INIS)

    Dobedoe, R.S.

    1995-01-01

    Silicon nitride has been successfully bonded to itself using magnesium-aluminosilicate glass and glass-ceramic. For some samples, bonding was achieved using a diffusion bonder, but in other instances, following an initial degassing hold, higher temperatures were used in a nitrogen atmosphere with no applied load. For diffusion bonding, a small applied pressure at a temperature below which crystallisation occurs resulted in intimate contact. At slightly higher temperatures, the extent of the reaction at the interface and the microstructure of the glass-ceramic joint was highly sensitive to the bonding temperature. Bonding in a nitrogen atmosphere resulted in a solution-reprecipitation reaction. A thin layer of glass produced a ''dry'', glass-free joint, whilst a thicker layer resulted in a continuous glassy join across the interface. The chromium silicide impurities within the silicon nitride react with the nucleating agent in the glass ceramic, which may lead to difficulty in producing a fine glass-ceramic microstructure. Slightly lower temperatures in nitrogen resulted in a polycrystalline join but the interfacial contact was poor. It is hoped that one of the bonds produced may be developed to eventually form part of a graded joint between silicon nitride and a high temperature nickel alloy. (orig.)

  9. Investigation of some ancient opaque glasses in the archaeological museums of Istanbul by x-ray radiography technique

    International Nuclear Information System (INIS)

    Tugrul, B.; Sungur, F.; Atik, S.

    1986-01-01

    In this study, opaque glass samples of which interiors is invisible, investigated by the x-ray radiography technique. In the evaluation,some knowledge has been extracted about the glass base and mold technique. Furthermore,it was shown that ornamental attachments have been fixed on the glass artifacts by techniques different than what it appears to be. In addition to that, joining edges of restorated opaque glass samples can be investigated and quality of the restoration can be evaluated. Therefore, the opaque glass samples were investigated non-destructively a short period of time, much like transparent glass could be studied. (author)

  10. Fluoride release and surface roughness of a new glass ionomer cement: glass carbomer

    Directory of Open Access Journals (Sweden)

    Célia Maria Condeixa de França LOPES

    2018-02-01

    Full Text Available Abstract Objective This study analyzed the fluoride release/recharge and surface roughness of glass carbomer compared to other encapsulated glass ionomer cements (GICs. Material and method The GICs tested were Glass Fill® (GC-GCP Dental, Riva Self Cure® (RS-SDI, Riva Light Cure® (RL-SDI, Equia Fil® (EF-GC Europe. The composite resin Luna® (LU-SDI was used as control. Five samples of each material were prepared and kept in a humidifier for 24 hours (37 °C, 100% relative humidity. Fluoride release was measured in two times: before (T1: days 1, 2, 7, 14 and after topical application of fluoride (T2: days 15, 16, 21 and 28. The surface roughness was also measured in both times (T1: days 1 and 14; T2: days 15 and 28. All samples were submitted to a single topical application of acidulated fluoride phosphate (Fluor Care - FGM. Two-way ANOVA with repeated measures and Tukey's post-test (p <0.05 were used in the statistical analysis. Result Equia Fil presented the highest fluoride release in both evaluation periods, with a higher release in T1 (p <0.05. The other materials tested, including glass carbomer presented similar release in both periods (T1 and T2. Regarding surface roughness, no significant differences were observed in the interaction between the material × time factors (T1 and T2 (p=0.966. Conclusion The GICs tested presented fluoride release and recharge ability and showed no surface roughness increase by topical application of fluoride.

  11. Nonlinear optical studies in semiconductor-doped glasses under ...

    Indian Academy of Sciences (India)

    Abstract. Nonlinear optical studies in semiconductor-doped glasses (SDGs) are per- formed under femtosecond laser pulse excitation. Z-scan experiments with 800 nm wave- length pulses are used to excite SDG samples in the resonance and non-resonance regimes. Schott colour glass filter OG 515 shows stronger ...

  12. Crystallization of Na2O-SiO2 gel and glass

    Science.gov (United States)

    Neilson, G. F.; Weinberg, M. C.

    1984-01-01

    The crystallization behavior of a 19 wt pct soda silica gel and gel-derived glass was compared to that of the ordinary glass of the same composition. Both bulk and ground glass samples were utilized. X-ray diffraction measurements were made to identify the crystalline phases and gauge the extent of crystallization. It was found that the gel crystallized in a distinctive manner, while the gel glass behavior was not qualitatively different from that of the ordinary glass.

  13. Characterization of glass and glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Borchardt, J.; De, A.K.

    1979-01-01

    Characteristics of solidified nuclear waste forms, glass and glass ceramic compositions and the properties (composition, thermal stability, crystallization, phase behavior, chemical stability, mechanical stability, and radiation effects) of glasses and glass ceramics are discussed. The preparation of glass ceramics may be an optional step for proposed vitrification plants if tailored glasses are used. Glass ceramics exhibit some improved properties with respect to glasses. The overall leach resistance is similar to that of glasses. An increased leach resistance may become effective for single radionuclides being hosted in highly insoluble crystal phases mainly when higher melting temperatures are applicable in order to get more leach resistant residual glass phases. The development of glass ceramic is going on. The technological feasibility is still to be demonstrated. The potential gain of stability when using glass ceramics qualifies the material as an alternative nuclear waste form

  14. Process for manufacture of Te microwire in glass insulation

    International Nuclear Information System (INIS)

    Bodiul, Pavel; Nicolaeva, Alibina; Konopko, Leonid; Bondarciuc, Nicolae

    2010-01-01

    The invention relates to the manufacturing of microwires in glass insulation and can be used in electronics and in the manufacturing of thermoelectrodes for thermoelectric sensors. The process for manufacture of Te microwire in glass insulation consists in softening the Te sample and its pulling in glass insulation. Near the microwire pulling zone through the furnace is maintained a temperature of 430-440 degrees Celsius, which causes the solidification firstly of Te microwire, and then of glass insulation. The result of the invention is to obtain Te microwires in glass insulation of high quality with a diameter of 50-100 μm and a length of 3-15 cm.

  15. Characterization of microstructure of Si3N4 whisker reinforced glass ceramic

    International Nuclear Information System (INIS)

    Han, Byoung Sung; Choi, Shung Shaon

    1993-01-01

    Glass ceramics, especially fiber-reinforced composite ceramics, have attracted a great deal of attention in improving the reliability of ceramic components because of the improvement in various mechanical properties. Through hot-pressing and sintering, 225 cordierite was transformed with glass ceramic and mullite phase. Particularly glass glain size increased with the increasing of the sintering temperature and the heat treatment enhance the toughness and hardness of materials. Like the increased sintering temperature, the roughness increased with increasing whisker vol.%. In case of whisker-rinforced glass ceramic, the fracture surface of samples has been associated with a whisker orientation of samples. (Author)

  16. Influence of tellurite on lifetime for samarium doped lanthanum lead borate glass

    Science.gov (United States)

    Madhu, A.; Eraiah, B.

    2018-04-01

    Samarium substituted tellurium lanthanum lead borate glass is prepared using melt quenching technique. Luminescence spectra have been recorded upon excitation with 402 nm various transitions from 4G5/2 level, for samarium doped tellurite glasses are studied and also lifetime for all the samples exhibit single exponential behaviour of decay curve. Luminescence spectra of present glasses show quenching effect due to cross-relation channels of samarium ions. The lifetime of glass samples decrease as the tellurite concentration is decreased. So, it evidences that to attain longer lifetime for lasing material one can tune the host by selecting concentration of tellurite.

  17. Pb-free Radiation Shielding Glass Using Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Watcharin Rachniyom

    2015-12-01

    Full Text Available In this work, Pb-free shielding glass samples were prepared by the melt quenching technique using subbituminous fly ash (SFA composed of xBi2O3 : (60-xB2O3 : 10Na2O : 30SFA (where x = 10, 15, 20, 25, 30 and 35 by wt%. The samples were investigated for their physical and radiation shielding properties. The density and hardness were measured. The results showed that the density increased with the increase of Bi2O3 content. The highest value of hardness was observed for glass sample with 30 wt% of Bi2O3 concentration. The samples were investigated under 662 keV gamma ray and the results were compared with theoretical calculations. The values of the mass attenuation coefficient (μm, the atomic cross section (σe and the effective atomic number (Zeff were found to increase with an increase of the Bi2O3 concentration and were in good agreement with the theoretical calculations. The best results for the half-value layer (HVL were observed in the sample with 35 wt% of Bi2O3 concentration, better than the values of barite concrete. These results demonstrate the viability of using coal fly ash waste for radiation shielding glass without PbO in the glass matrices.

  18. Solubility of actinides and surrogates in nuclear glasses

    International Nuclear Information System (INIS)

    Lopez, Ch.

    2003-01-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO 2 at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  19. Surface analysis of glass fibres using XPS and AFM: case study of glass fibres recovered from the glass fibre reinforced polymer using chemical recycling

    Science.gov (United States)

    Nzioka, A. M.; Kim, Y. J.

    2018-01-01

    In this study, we present the results of an experimental study of the use of the X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) to characterise the coatings of the recovered E - glass fibres. The recovered E - glass fibres were obtained using chemical recycling process coupled with ultrasound cavitation. The objective of this study was to analyse the impact of chemical recycling and the ultrasound cavitation process on the sizing properties of the recovered fibres. We obtained the recovered fibres and sized using 1 wt% 3 - aminopropyltriethoxysilane (APS). Part of the sized fibres was washed with acetone and analysed all the sample fibres using AFM and XPS. Results showed the different composition of sizing after extraction using acetone. We compared the results of this study with that of virgin clean glass fibres.

  20. Chemical and Oxygen Isotopic Composition of Roman and Late Antique Glass from Northern Greece

    Directory of Open Access Journals (Sweden)

    Alberta Silvestri

    2017-01-01

    Full Text Available The present paper emphasizes the importance of measuring the oxygen isotopic and chemical compositions of ancient glass, in order to constrain some features such as age, raw materials, and production technologies and to identify the “fingerprint” of local productions. In this context, thirty-nine Roman and late Antique glass samples and eight chert samples from northern Greece were selected and analysed for their oxygen isotopic and chemical compositions. Results show that the majority of glass samples are produced using natron as flux and have δ18O values of about 15.5‰, plus or minus a few tenths of one per mil, suggesting that raw materials probably come from Levantine area. Four samples are heavily enriched in 18O, and their chemical composition clearly shows that they were made with soda plant ash as flux. Isotopic and chemical data of Greek chert samples support the hypothesis of local production of the above samples. About half of the glass samples have chemical compositions, which allow their age to be constrained to the late Antique period. For the remaining glass, similarities with literature compositional groups are reported and discussed.

  1. Characterization of damage created by alpha disintegrations in radionuclear waste glass

    International Nuclear Information System (INIS)

    Jacquet-Francillon, N.; Mueller, P.

    1990-01-01

    Study of thermostimulated luminescence of an alpha irradiated glass used as radionuclear waste glass has revealed the formation of a structural defect induced by alpha irradiation. To detect this structural modification the thermostimulated signal of an alpha irradiated sample is recorded under certain conditions. The nature of generated defects has been established using synthetic glasses of more simple composition such as silica or boro-silicate glasses. Results obtained with these simple glasses are transposed to alpha irradiated radionuclear waste glass. The problem is to see how autoirradiated glass could evolve in time. For this purpose actinide-doped glasses are now being fabricated and specific thermostimulated luminescence equipment has been developed for this purpose

  2. Synthesis, characterization of CaF2 doped silicate glass-ceramics.

    Science.gov (United States)

    Riaz, Madeeha; Zia, Rehana; Mirza, Ambreen; Hussain, Tousif; Bashir, Farooq; Anjum, Safia

    2017-06-01

    This paper reports the fabrication and characterization of silicate glass-ceramics doped with (0-12mol%) CaF 2 . TGA-DSC analysis was carried out to determine the crystallization temperature and stability of glass measured by two glass parameters; Hruby parameter K H =(T x -T g )/(T L -T x ) and Weinberg parameter K W =(T c -T g )/T L . It was found that with CaF 2 doping improved sinterability at low temperature and provided stability to the glass. The XRD pattern exhibits a single phase of combeite and doping of CaF 2 cause increase in crystallite size. Microstructure of samples was also improved with CaF 2 addition, pores were significantly reduced. After 15days immersion in simulated body fluid all samples developed apatite layer onto its surface. Hence, the addition of CaF 2 provided bioactive glass-ceramic material having a low processing temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Analysis of viscoelastic flow in tin phosphate glass

    International Nuclear Information System (INIS)

    Cha, Jaemin; Asida, Yuto; Takebe, Hiromichi

    2011-01-01

    The change of the viscoelastic flow near the imprinting temperature was analyzed by a penetration method with a commercial TMA and the result was compared with thermally-imprinted SnO-P 2 O 5 (SP) and SnO-B 2 O 3 -P 2 O 5 (SBP) glass samples by an imprint apparatus. The viscosity of SP glass increases monotonically with increasing SnO content and the specific movement is shown in viscoelastic flow under the optimized thermal imprinting temperature for SP glasses.

  4. The Influence of Cooling Rates on Paleointensity of Volcanic Glasses: an Experimental Approach on Synthetic Glass

    Science.gov (United States)

    von Aulock, F. W.; Ferk, A.; Leonhardt, R.; Hess, K.-U.; Dingwell, D. B.

    2009-04-01

    The suitability of volcanic glass for paleointensity determinations has been proposed in many studies throughout the last years. Besides the mainly single domain magnetic remanence carriers and the pristine character of the volcanic glass, this was also reasoned by the possibility to correct paleointensity data for cooling rate dependency using relaxation geospeedometry. This method gives the cooling rate of a glass at the glass transition interval which marks the change of a ductile supercooled liquid to a brittle glass. In this study the cooling rate correction as carried out for example by Leonhardt et al. 2006 is tested on synthetic volcanic glass. In order to obtain a stable multicomponent glass with ideal magnetic properties, a natural phonolithic glass from Tenerife (Spain) was melted to avoid heterogeneity and degassing. Further it was tempered for 5 hours at 900 °C to yield a sufficient concentration of magnetic remanence carriers. To exclude nucleation or crystallisation 7 samples were then heated to about 50 °C above the glass transition temperature at around 720 °C and quenched at different rates from 0.1 to 15 K/min. After carrying out a paleointensity experiment using a modified Thellier method, which incorporated alteration, additivity and tail checks, the dependence of the thermoremance on cooling rate was investigated. Using the original cooling rates we corrected the data and obtained paleointensities of around 46 T, which is a good approximation of the ambient field of 48 T. Taking into account that the uncorrected mean paleointensity is about 57 T, this suggests that cooling rate correction is not only working, but also a necessary tool to yield the true field value. R. Leonhardt , J. Matzka, A.R.L. Nichols , D.B. Dingwell Cooling rate correction of paleointensity determination for volcanic glasses by relaxation geospeedometry; Earth and Planetary Science Letters 243 (2006) 282-292

  5. Comparative Study of Radiation Shielding Parameters for Bismuth Borate Glasses

    OpenAIRE

    Kaundal, Rajinder Singh

    2016-01-01

    Melt and quench technique was used for the preparation of glassy samples of the composition x Bi2O3-(1-x) B2O3 where x= .05 to .040. XCOM computer program is used for the evaluation of gamma-ray shielding parameters of the prepared glass samples. Further the values of mass attenuation coefficients, effective atomic number and half value layer for the glassy samples have been calculated in the energy range from 1KeV to 100GeV. Rigidity of the glass samples have been analyzed by molar volume of...

  6. Parental magmas of Mare Fecunditatis - Evidence from pristine glasses

    International Nuclear Information System (INIS)

    Jin, Y.; Taylor, L.A.

    1990-01-01

    Results are presented on the petrography and electron microprobe analyses of 14 discrete glass beads from the Luna 16 core sample (21036,15) from Mare Fecunditatis regolith, that were previously characterized as representing pristine glasses. Compared to Apollo pristine glasses analyzed by Delano (1986), the Luna 16 pristine glasses have higher CaO and Al2O3 contents but lower MgO and Ni. On the basis of their contents of MgO, FeO, Al2O3, and CaO, these pristine glasses could be divided into two groups, A and B. It is suggested that at least two parental magmas are needed to explain the chemical variations among these glasses. The Group B glasses appear to represent primitive parental magma that evolved by olivine fractionation to the compositions of the Luna 16 aluminous mare basalts, whereas the Group A volcanic glasses may represent an unusual new basalt magma type that contains a high plagioclase component. 14 refs

  7. Structure and properties of calcium iron phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Bin [School of Science, Southwest University of Science and Technology, Mianyang 621010 (China); Liang, Xiaofeng, E-mail: xfliangswust@gmail.com [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Cuiling; Yang, Shiyuan [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2013-11-15

    The structural properties of xCaO–(100 − x) (0.4Fe{sub 2}O{sub 3}–0.6P{sub 2}O{sub 5}) (x = 0, 10, 20, 30, 40, 50 mol%) glasses have been investigated by XRD, DTA, IR and Raman spectroscopy. XRD analysis has confirmed that the majority of samples are X-ray amorphous, and EDS analysis indicates that the glass matrix can accommodate ≈30 mol% CaO. IR and Raman spectra show that the glass structure consists predominantly of pyrophosphate (Q{sup 1}) units. IR spectra indicate that the phosphate network is depolymerized with the addition of CaO content. The density and glass transition temperature (T{sub g}) increase with increasing CaO content for the glasses. This behavior indicates that the addition of CaO improves the strength of the cross-links between the phosphate chains of the glass.

  8. Natural analogue of nuclear waste glass in a geologic formation. Study on long-term behavior of volcanic glass shards collected from drill cores

    International Nuclear Information System (INIS)

    Yoshikawa, Hideki; Yui, Mikazu; Futakuchi, Katsuhito; Hiroki, Minenari

    2005-01-01

    Alteration of the volcanic glass in geologic formation was investigated as one of the natural analog for a glass of high-level nuclear waste in geological disposal. We analyzed some volcanic glasses included in the core sample of the bore hole and estimated the history of its burying and observed its alteration using the polarizing microscope. Some information at the piling up temperature and the piling up time was collected. (author)

  9. Hydrogen speciation in hydrated layers on nuclear waste glass

    International Nuclear Information System (INIS)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-01-01

    The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 and 165, and PNL 76-68), which were leached at 90 0 C (all glasses) or hydrated in a vapor-saturated atmosphere at 202 0 C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 μm layer on SRL-131 glass formed by leaching at 90 0 C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H + interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups

  10. EPR dosimetry of glass substrate of mobile phone LCDs

    International Nuclear Information System (INIS)

    Trompier, F.; Della Monaca, S.; Fattibene, P.; Clairand, I.

    2011-01-01

    Previous studies have shown that mineral glass from watches, windows and displays of personal electronic devices could be a suitable restrospective dosimeter in case of radiation accident. In this paper glass substrates of the window display of 100 mobile phones of different trademarks were analized by X-band cw-EPR before and after irradiation at 100 Gy. The objective of this study was to highlight some issues of EPR measurements of glass related to inter-sample variability of: i) signal line shape in irradiated and unirradiated glass; ii) signal intensity loss and line shape change with post-irradiation time; iii) signal changes induced by sample preparation and iv) signal changes induced by thermal annealing. Scope of the paper is to provide a phenomenological picture of the observed effects in order to give a warning about possible problems and to provide suggestions for future work. Explanation of the mechanisms and the causes leading to the observed effects was beyond the scope of this work. These preliminary results confirm that glass substrate of mobile phone displays should be considered as a fortuitous dosimeter in radiation accidents. However, albeit very promising, mineral glass presents a number of issues that should be thoroughly investigated and addressed in future work.

  11. Physical, structural and optical characterizations of borate modified bismuth-silicate-tellurite glasses

    Science.gov (United States)

    Berwal, Neelam; Kundu, R. S.; Nanda, Kirti; Punia, R.; Kishore, N.

    2015-10-01

    Quaternary bismuthate glasses with compositions xB2O3-(80 - x) Bi2O3-15SiO2-5TeO2 have been prepared by melt-quench technique. X-ray diffraction studies were performed to ascertain the amorphous nature of samples. The density, molar volume and crystalline volume decrease with increase in B2O3 content whereas the glass transition temperature shows the reverse trend. The Raman and FTIR spectra of the studied glasses indicate that B2O3 has been found to exist in the form of BO3 trigonal and BO4 tetrahedral structural units and vibrations corresponding to these structural units increase with increase in B2O3 content. SiO2 is present in the form of SiO4 tetrahedral structural units and TeO2 in the form of TeO3 structural units. Bismuth plays the role of network modifier [BiO6 octahedra] as well as network former [BiO3 pyramids] for all the glass compositions. The optical band gap energy has been calculated from the fitting of both Mott and Davis's model and Hydrogenic excitonic model with the experimentally observed absorption spectra. A good fitting of experimental data with HEM indicates the excitonic formation in the studies glass system. The values of optical band gap energy show nonlinear behavior due to the structural changes that take place in the present glass samples. The Urbach energy calculated using Urbach empirical formula for studied glass samples suggest the possibility of reduction in defect concentrations. The metallization criterion of the presently studied samples suggests that the prepared glasses may be potential candidates for nonlinear optical applications.

  12. Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: The product consistency test (PCT)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 These product consistency test methods A and B evaluate the chemical durability of homogeneous glasses, phase separated glasses, devitrified glasses, glass ceramics, and/or multiphase glass ceramic waste forms hereafter collectively referred to as “glass waste forms” by measuring the concentrations of the chemical species released to a test solution. 1.1.1 Test Method A is a seven-day chemical durability test performed at 90 ± 2°C in a leachant of ASTM-Type I water. The test method is static and conducted in stainless steel vessels. Test Method A can specifically be used to evaluate whether the chemical durability and elemental release characteristics of nuclear, hazardous, and mixed glass waste forms have been consistently controlled during production. This test method is applicable to radioactive and simulated glass waste forms as defined above. 1.1.2 Test Method B is a durability test that allows testing at various test durations, test temperatures, mesh size, mass of sample, leachant volume, a...

  13. Evaluation of Foaming Behavior of Glass Melts by High-Temperature Microscopy

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    2016-01-01

    Optical monitoring techniques can record in situ the size of glass samples during a dynamic heating process. This allowed us to study sintering and expansion rate of panel glass from cathode ray tube using MnO2 as foaming agent. We show the maximum expansion rate of glass melt foaming (in situ va...... such as type and concentration of foaming agent, glass composition and particle size to obtain foam glass with high porosity and closed pores. Using this approach we show that the foaming of bottle glass is preferentially conducted at a SiC concentration of 1‒4 wt%....

  14. The effect of spark plasma sintering on lithium disilicate glass-ceramics.

    Science.gov (United States)

    Al Mansour, Fatima; Karpukhina, Natalia; Grasso, Salvatore; Wilson, Rory M; Reece, Mike J; Cattell, Michael J

    2015-10-01

    To evaluate the effects of spark plasma sintering (SPS) on the microstructure of lithium disilicate glass-ceramics. IPS e.max CAD glass-ceramic samples were processed using spark plasma sintering (SPS) and conventionally sintered (CS) as a comparison. Specimens were sintered at varying temperatures (T1: 840°C, T2: 820°C, T3: 800°C), heating rates (HR1: 150°C/min, HR2: 300°C/min, HR3: 500°C/min) and pressures (P1: 15MPa, P2: 50MPa, P3: 70MPa). IPS e.max Press glass powder samples were densified at 750 and 800°C (50 or 200MPa pressure). Samples were characterized using XRD, HTXRD, and SEM and quantitative image analysis. There was a significant increase in median crystal size (MCS) between the CS and the SPS T1 groups. A statistical difference (p>0.05) in MCS between SPS T1 and SPS T2 groups was observed. The SPS HR3 sample produced a smaller MCS than the CS, SPS HR1 and HR2 groups (pglass samples resulted in fine fibrils or graduated lithium disilicate crystals. The effects of SPS were used to refine the microstructure of IPS e.max CAD lithium disilicate glass-ceramics. Densification by SPS of IPS e.max Press glass resulted in textured and fine nano-crystalline microstructures. SPS generated glass-ceramic microstructures may have unique properties and could be useful in the production of CAD/CAM materials for dentistry. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation.

    Science.gov (United States)

    Bellucci, Devis; Sola, Antonella; Anesi, Alexandre; Salvatori, Roberta; Chiarini, Luigi; Cannillo, Valeria

    2015-06-01

    Bioactive glass/hydroxyapatite composites for bone tissue repair and regeneration have been produced and discussed. The use of a recently developed glass, namely BG_Ca/Mix, with its low tendency to crystallize, allowed one to sinter the samples at a relatively low temperature thus avoiding several adverse effects usually reported in the literature, such as extensive crystallization of the glassy phase, hydroxyapatite (HA) decomposition and reaction between HA and glass. The mechanical properties of the composites with 80wt.% BG_Ca/Mix and 20wt.% HA are sensibly higher than those of Bioglass® 45S5 reference samples due to the presence of HA (mechanically stronger than the 45S5 glass) and to the thermal behaviour of the BG_Ca/Mix, which is able to favour the sintering process of the composites. Biocompatibility tests, performed with murine fibroblasts BALB/3T3 and osteocites MLO-Y4 throughout a multi-parametrical approach, allow one to look with optimism to the produced composites, since both the samples themselves and their extracts do not induce negative effects in cell viability and do not cause inhibition in cell growth. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Comparison of glass surfaces as a countertop material to existing surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Turo, Laura A.; Winschell, Abigail E.

    2011-09-01

    Gleen Glass, a small production glass company that creates countertops, was selected for the Technology Assistance Program through Pacific Northwest National Laboratory. Gleen Glass was seeking material property analysis comparing glass as a countertop material to current surfaces (i.e. marble, granite and engineered stone). With samples provided from Gleen Glass, testing was done on granite, marble, and 3 different glass surfaces ('Journey,' 'Pebble,' and 'Gleen'). Results showed the glass surfaces have a lower density, lower water absorption, and are stronger in compressive and flexural tests as compared to granite and marble. Thermal shock tests showed the glass failed when objects with a high thermal mass are placed directly on them, whereas marble and granite did not fracture under these conditions.

  17. Vanadium K Xanes Studies of EET79001 Impact-Melt Glasses Revisited

    Science.gov (United States)

    Sutton, S. R.; Rao, M. N.; Nyquist, L. E.; Ross, D. K.

    2016-01-01

    Some impact-melt glasses in shergottites are rich in Martian atmospheric noble gases and sulfur suggesting a possible association with regolith-derived secondary mineral assemblages in the shocked samples. Previously, we studied two glasses, # 506 (Lith C in Lith A) and # 507 (Lith C in Lith B) from EET79001 [1,2] and suggested that sulfur initially existed as sulfate in the glass precursor materials and, on shock-melting of the precursors, the sulfate was reduced to sulfides in the shock glasses. To examine the validity of this hypothesis, we used V K microXANES techniques to measure the valence states of vanadium in the Lith C glasses from Lith A and Lith B in EET79001 [3] to complement and com-pare with previous analogous measurements on,78 glass (Lith C in Lith A) [4,5]. We reported the preliminary results in [3]. Vanadium is ideal for addressing the redox issue because it has multiple valence states and is a well-studied element. Vanadium in basalts exists mostly as V(sup 3+), V(sup 4+) and V(sup 5+) in terrestrial samples, mainly as V(sup 3+) with minor V(sup 2+) and minor V(sup 4+) in lunar samples and as roughly equal mixtures of V(sup 3+) and V(sup 4+) in Martian meteorites. In this report, we discuss the application of the V K XANES results to decipher the nature of shock reduction occurring in the silicate glasses during the impact process.

  18. Glass transition and crystallization kinetics of a barium borosilicate glass by a non-isothermal method

    International Nuclear Information System (INIS)

    Lopes, Andreia A. S.; Soares, Roque S.; Lima, Maria M. A.; Monteiro, Regina C. C.

    2014-01-01

    The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B 2 O 3 -10SiO 2 were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (T g ) and of the maximum crystallization temperature (T p ) on the heating rate was used to determine the activation energy associated with the glass transition (E g ), the activation energy for crystallization (E c ), and the Avrami exponent (n). X-ray diffraction (XRD) revealed that barium borate (β-BaB 2 O 4 ) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba 5 Si 8 O 21 ). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (χ) were also examined. When the crystallization fraction (χ) increased from 0.1 to 0.9, the value of local activation energy (E c (χ)) decreased from 554 to 458 kJ/mol for the first exothermic peak and from 1104 to 831 kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures

  19. XRF and leaching characterization of waste glasses derived from wastewater treatment sludges

    International Nuclear Information System (INIS)

    Ragsdale, R.G., Jr.

    1994-12-01

    Purpose of this study was to investigate use of XRF (x-ray fluorescence spectrometry) as a near real-time method to determine melter glass compositions. A range of glasses derived from wastewater treatment sludges associated with DOE sites was prepared. They were analyzed by XRF and wet chemistry digestion with atomic absorption/inductively coupled emission spectrometry. Results indicated good correlation between these two methods. A rapid sample preparation and analysis technique was developed and demonstrated by acquiring a sample from a pilot-scale simulated waste glass melter and analyzing it by XRF within one hour. From the results, XRF shows excellent potential as a process control tool for waste glass vitrification. Glasses prepared for this study were further analyzed for durability by toxicity characteristic leaching procedure and product consistency test and results are presented

  20. XAFS study on silica glasses irradiated in a nuclear reactor

    International Nuclear Information System (INIS)

    Yoshida, Tomoko; Yoshida, Hisao; Hara, Takanobu; Ii, Tatsuya; Okada, Tomohisa; Tanabe, Tetsuo

    2000-01-01

    X-ray absorption technique (XANES and EXAFS) was applied to study the local structures of silica glasses before and after the irradiation in a nuclear reactor. Although our separate photoluminescence (PL) measurements clearly showed the different aspects about oxygen vacancies in these samples, i.e., at least the B 2β type oxygen-deficient center exists as an intrinsic defect in the fused silica glass while another type B 2α center is formed in the synthesized silica glass, such differences did not directly reflect on the X-ray absorption spectra (XANES and EXAFS). However, the curve-fitting analysis of EXAFS showed that the number of oxygen atoms coordinated to Si relatively increased after the irradiation. This result may indicate the occurrence of the structural relaxation in the irradiated samples, that is, a slightly distorted SiO 4 tetrahedra in silica glasses relaxed to the regular SiO 4 tetrahedra due to the break of some connections between SiO 4 units in the silica glasses. Thus, the X-ray absorption technique gave the important information of the in-reactor irradiated silica glasses which complements the results obtained from PL measurements

  1. Cross-craft interactions between metal and glass working: slag additions to early Anglo-Saxon red glass

    Science.gov (United States)

    Peake, James R. N.; Freestone, Ian C.

    Opaque red glass has been extensively studied over the years, but its compositional complexity and variability means that the way in which it was manufactured is still not fully understood. Previous studies have suggested the use of metallurgical by-products in its manufacture, but until now the evidence has been limited. SEM-EDS analysis of glass beads from the early Anglo-Saxon cemetery complex at Eriswell, southeast England, has provided further insights into the production and technology of opaque red glass, which could only have been possible through invasive sampling. The matrix of the red glasses contains angular particles of slag, the main phases of which typically correspond to either fayalite (Fe2SiO4) or kirschsteinite (CaFeSiO4), orthosilicate (olivine-type) minerals characteristic of some copper- and iron-smelting slags. This material appears to have been added in part as a reducing agent, to promote the precipitation of sub-micrometer particles of the colorant phase, copper metal. Its use represents a sophisticated, if empirical, understanding of materials and can only have resulted through deliberate experimentation with metallurgical by-products by early glass workers. Slag also seems to have been added as a source of iron to colour `black' glass. The compositions of the opaque red glasses appear to be strongly paralleled by Merovingian beads from northern Europe and Anglo-Saxon beads from elsewhere in England, suggesting that this technology is likely to have been quite widespread.

  2. Bioactivity and cell proliferation in radiopaque gel-derived CaO-P2O5-SiO2-ZrO2 glass and glass-ceramic powders.

    Science.gov (United States)

    Montazerian, Maziar; Yekta, Bijan Eftekhari; Marghussian, Vahak Kaspari; Bellani, Caroline Faria; Siqueira, Renato Luiz; Zanotto, Edgar Dutra

    2015-10-01

    In this study, 10 mol% ZrO2 was added to a 27CaO-5P2O5-68SiO2 (mol%) base composition synthesized via a simple sol-gel method. This composition is similar to that of a frequently investigated bioactive gel-glass. The effects of ZrO2 on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass-ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite-wollastonite-zirconia glass-ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass-ceramic particles containing ZrO2 was confirmed by FTIR and SEM. Addition of ZrO2 to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO2 could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass-ceramic powder containing ZrO2 crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass-ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline powders are potential candidates for bone graft substitutes and bone cements with

  3. Temperature-dependent magnetic properties of individual glass spherules, Apollo 11, 12, and 14 lunar samples.

    Science.gov (United States)

    Thorpe, A. N.; Sullivan, S.; Alexander, C. C.; Senftle, F. E.; Dwornik, E. J.

    1972-01-01

    Magnetic susceptibility of 11 glass spherules from the Apollo 14 lunar fines have been measured from room temperature to 4 K. Data taken at room temperature, 77 K, and 4.2 K, show that the soft saturation magnetization was temperature independent. In the temperature range 300 to 77 K the temperature-dependent component of the magnetic susceptibility obeys the Curie law. Susceptibility measurements on these same specimens and in addition 14 similar spherules from the Apollo 11 and 12 mission show a Curie-Weiss relation at temperatures less than 77 K with a Weiss temperature of 3-7 degrees in contrast to 2-3 degrees found for tektites and synthetic glasses of tektite composition. A proposed model and a theoretical expression closely predict the variation of the susceptibility of the glass spherules with temperature.

  4. Yield point of metallic glass

    International Nuclear Information System (INIS)

    Shimizu, Futoshi; Ogata, Shigenobu; Li, Ju

    2006-01-01

    Shear bands form in most bulk metallic glasses (BMGs) within a narrow range of uniaxial strain ε y ≅ 2%. We propose this critical condition corresponds to embryonic shear band (ESB) propagation, not its nucleation. To propagate an ESB, the far-field shear stress τ ∞ ∼ Eε y /2 must exceed the quasi-steady-state glue traction τ glue of shear-alienated glass until the glass transition temperature is approached internally due to frictional heating, at which point ESB matures as a runaway shear crack. The incubation length scale l inc necessary for this maturation is estimated to be ∼10 2 nm for Zr-based BMGs, below which sample size-scale shear localization does not happen. In shear-alienated glass, the last resistance against localized shearing comes from extremely fast downhill dissipative dynamics of timescale comparable to atomic vibrations, allowing molecular dynamics (MD) simulations to capture this recovery process which governs τ glue . We model four metallic glasses: a binary Lennard-Jones system, two binary embedded atom potential systems and a quinternary embedded atom system. Despite vast differences in the structure and interatomic interactions, the four MD calculations give ε y predictions of 2.4%, 2.1%, 2.6% and 2.9%, respectively

  5. Structural and morphological studies lead borate glasses by melt quenching technique

    International Nuclear Information System (INIS)

    Jetruth Mary Alphonsa, K.; Sumathi, T.

    2013-01-01

    The studies of oxide glasses have gained attention due to their structural features. This type of glass has some remarkable features such as low melting temperature, impressive wide glass formation region, high resistance against devitrification and high refractive index. 60B 2 O 3 -(30-x) PbO-xK 2 O/Li 2 O glasses were prepared using the melt quenching technique because of its rapid glass forming ability. The amorphous nature of the prepared glass samples were confirmed by XRD (X-Ray diffraction technique) and SEM (Scanning Electron Microscopy). The quantitative analysis has been carried out in order to obtain more information about the structure of these glasses using FT-IR (Fourier transform infrared spectroscopy). (author)

  6. Brittle to ductile transition in densified silica glass.

    Science.gov (United States)

    Yuan, Fenglin; Huang, Liping

    2014-05-22

    Current understanding of the brittleness of glass is limited by our poor understanding and control over the microscopic structure. In this study, we used a pressure quenching route to tune the structure of silica glass in a controllable manner, and observed a systematic increase in ductility in samples quenched under increasingly higher pressure. The brittle to ductile transition in densified silica glass can be attributed to the critical role of 5-fold Si coordination defects (bonded to 5 O neighbors) in facilitating shear deformation and in dissipating energy by converting back to the 4-fold coordination state during deformation. As an archetypal glass former and one of the most abundant minerals in the Earth's crest, a fundamental understanding of the microscopic structure underpinning the ductility of silica glass will not only pave the way toward rational design of strong glasses, but also advance our knowledge of the geological processes in the Earth's interior.

  7. Electrochromic Glasses.

    Science.gov (United States)

    1980-07-31

    this glass and that dipole-dipole correlations contribute to the "ferroelectric-like" character of this amorphous system. The TeO2 -W03 glasses can only...shows the dielectric constant and Fig. I(b) glass from pure TeO2 ot pure WO. In addition, glass the tan 8 of the WO glass as a function of temperature... glasses containing WO, in various glass forming nitworks of LifO-B1O0, Na:O-BzO,, and TeO2 were prepared from reagent grade oxides at 800 C - 9SO C in

  8. Degradation of glass in the soil

    Energy Technology Data Exchange (ETDEWEB)

    Romich, H.; Gerlach, S.; Mottner, P. [Fraunhofer-Institut fur Silicatforschung (ISC), Wertheim-Bronnbach (Germany)

    2004-07-01

    Full text of publication follows: Glass has been produced and used in Europe for over 2000 years. Glass objects from the Roman period onwards have been excavated during the last centuries. In general, Roman glass is chemically quite stable, and often the only sign of chemical alteration is an iridescent surface, caused by the leaching of cations, which leads to the formation of a hydrated silica-rich layer. Medieval potash glasses are much less durable, and their surfaces are often found deeply leached, sometimes to a point that no unaltered glass remains. These surfaces may be coherent, though fragile, or they are laminar, with no cohesion between the layers at all. In this study an analytical examination of a series of fragments of archaeological glass retrieved from different sites near Cologne and Stuttgart (Germany) has been carried out. Samples of corroded glasses were analysed by optical microscopy and SEM/EDX (surface and cross sections) in order to obtain information about the chemical composition of the bulk glass and the weathered layers. Since the environmental parameters have constantly varied for archaeological objects, mechanistic studies have to rely on laboratory experiments under controlled conditions. For an extensive exposure programme standardised soil or natural garden earth was used, for which the pH was modified. Several corrosion sensitive potash-lime silicate glasses have been designed to study the effect of glass composition. A model glass consisting of SiO{sub 2} (54.2), CaO (28.8) and K{sub 2}O (17.0 weight-%) mostly lead to the formation of a crust on the leached layer, with a total thickness of 100 micrometer (for soil with pH 7 to 8, 12 months exposure). Model glasses also containing Al, Mg and P have built up preferably laminated structures (total thickness up to 200 micrometer). This presentation will give an overview about the variety of degradation phenomena observed on originals and compare the results with controlled laboratory

  9. Simulation of alpha decay of actinides in iron phosphate glasses by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dube, Charu L., E-mail: dubecharu@gmail.com; Stennett, Martin C.; Gandy, Amy S.; Hyatt, Neil C.

    2016-03-15

    Highlights: • Alpha decay of actinides in iron phosphate glasses is simulated by employing ion irradiation technique. • FTIR and Raman spectroscopic measurements confirm modification of glass network. • The depolymerisation of glass network after irradiation is attributed to synergetic effect of nuclear and electronic losses. - Abstract: A surrogate approach of ion beam irradiation is employed to simulate alpha decay of actinides in iron phosphate nuclear waste glasses. Bismuth and helium ions of different energies have been selected for simulating glass matrix modification owing to radiolysis and ballistic damage due to recoil atoms. Structural modification and change in coordination number of network former were probed by employing Reflectance Fourier-Transform Infrared (FT-IR), and Raman spectroscopies as a consequence of ion irradiation. Depolymerisation is observed in glass sample irradiated at intermediate energy of 2 MeV. Helium blisters of micron size are seen in glass sample irradiated at low helium ion energy of 30 keV.

  10. Methods for Measurement and Statistical Analysis of the Frangibility of Strengthened Glass

    Directory of Open Access Journals (Sweden)

    Zhongzhi eTang

    2015-06-01

    Full Text Available Chemically strengthened glass features a surface compression and a balancing central tension (CT in the interior of the glass. A greater CT is usually associated with a higher level of stored elastic energy in the glass. During a fracture event, release of a greater amount of stored energy can lead to frangibility, i.e., shorter crack branching distances, smaller fragment size, and ejection of small fragments from the glass. In this paper, the frangibility and fragmentation behaviors of a series of chemically strengthened glass samples are studied using two different manual testing methods and an automated tester. Both immediate and delayed fracture events were observed. A statistical method is proposed to determine the probability of frangible fracture for glasses ion exchanged under a specific set of conditions, and analysis is performed to understand the dependence of frangibility probability on sample thickness, CT, and testing method. We also propose a more rigorous set of criteria for qualifying frangibility.

  11. Cooling rate dependence of structural order in Al{sub 90}Sm{sub 10} metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yang [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ames Laboratory, US Department of Energy, Ames, Iowa 50011 (United States); Zhang, Yue; Zhang, Feng, E-mail: fzhang@ameslab.gov; Ye, Zhuo [Ames Laboratory, US Department of Energy, Ames, Iowa 50011 (United States); Ding, Zejun [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Cai-Zhuang [Ames Laboratory, US Department of Energy, Ames, Iowa 50011 (United States); Department of Physics, Iowa State University, Ames, Iowa 50011 (United States); Ho, Kai-Ming [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ames Laboratory, US Department of Energy, Ames, Iowa 50011 (United States); Department of Physics, Iowa State University, Ames, Iowa 50011 (United States); International Center for Quantum Design of Functional Materials (ICQD), and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-07-07

    The atomic structure of Al{sub 90}Sm{sub 10} metallic glass is studied using molecular dynamics simulations. By performing a long sub-T{sub g} annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that “3661” cluster is the dominating short-range order in the glass samples. The connection and arrangement of “3661” clusters, which define the medium-range order in the system, are enhanced significantly in the sub-T{sub g} annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu{sub 64.5}Zr{sub 35.5}, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al{sub 90}Sm{sub 10,} which has only marginal glass formability.

  12. Synthesis of nucleated glass-ceramics using oil shale fly ash

    International Nuclear Information System (INIS)

    Luan Jingde; Li Aimin; Su Tong; Cui Xiaobo

    2010-01-01

    Nucleated glass-ceramics materials were produced from oil shale fly ash obtained from Huadian thermal power plant in China with the addition of analytic reagent CaO. On basis of differential thermal analysis (DTA) results, the nucleation and crystallization temperature of two parent glass samples with different alkalinity (Ak=m CaO /m SiO 2 ) were identified as Tn 1 = 810 deg. C, Tc 1 = 956 deg. C and Tn 2 = 824 o C, Tc 2 = 966 deg. C, respectively. X-ray diffraction (XRD) analysis of the produced nucleated glass-ceramics materials revealed that there was a coexistence phenomenon of multi-crystalline phase and the main crystalline phase was anorthite ([Ca,Na][AI,Si] 2 Si 2 O 8 ). The microstructure of the glass-ceramics materials was examined by scanning electron microscope (SEM). SEM observation indicated that there was an increase in the quantity of sphere-shaped crystals when crystallization time increased. Furthermore, the increase of alkalinity caused more amorphous phase occurring in glass-ceramics materials. Through the tests of physical and mechanical properties, the glass-ceramics materials with more crystalline phase and fine microstructure had high density, fine performance of resisting compression (328.92 MPa) and negligible water absorption. Through chemical resistance tests, the glass-ceramics samples showed strong corrosion resistance. Overall results indicated that it was a feasible attempt to produce nucleated glass-ceramics materials for building and decorative materials from oil shale fly ash.

  13. Heisenberg spin glass experiments and the chiral ordering scenario

    International Nuclear Information System (INIS)

    Campbell, Ian A.; Petit, Dorothee C.M.C.

    2010-01-01

    An overview is given of experimental data on Heisenberg spin glass materials so as to make detailed comparisons with numerical results on model Heisenberg spin glasses, with particular reference to the chiral driven ordering transition scenario due to Kawamura and collaborators. On weak anisotropy systems, experiments show critical exponents which are very similar to those estimated numerically for the model Heisenberg chiral ordering transition but which are quite different from those at Ising spin glass transitions. Again on weak anisotropy Heisenberg spin glasses, experimental torque data show well defined in-field transverse ordering transitions up to strong applied fields, in contrast to Ising spin glasses where fields destroy ordering. When samples with stronger anisotropies are studied, critical and in-field behavior tend progressively towards the Ising limit. It can be concluded that the essential physics of laboratory Heisenberg spin glasses mirrors that of model Heisenberg spin glasses, where chiral ordering has been demonstrated numerically. (author)

  14. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics.

    Science.gov (United States)

    Bejarano, Julian; Caviedes, Pablo; Palza, Humberto

    2015-03-11

    Metal doping of bioactive glasses based on ternary 60SiO2-36CaO-4P2O5 (58S) and quaternary 60SiO2-25CaO-11Na2O-4P2O5 (NaBG) mol% compositions synthesized using a sol-gel process was analyzed. In particular, the effect of incorporating 1, 5 and 10 mol% of CuO and ZnO (replacing equivalent quantities of CaO) on the texture, in vitro bioactivity, and cytocompatibility of these materials was evaluated. Our results showed that the addition of metal ions can modulate the textural property of the matrix and its crystal structure. Regarding the bioactivity, after soaking in simulated body fluid (SBF) undoped 58S and NaBG glasses developed an apatite surface layer that was reduced in the doped glasses depending on the type of metal and its concentration with Zn displaying the largest inhibitions. Both the ion release from samples and the ion adsorption from the medium depended on the type of matrix with 58S glasses showing the highest values. Pure NaBG glass was more cytocompatible to osteoblast-like cells (SaOS-2) than pure 58S glass as tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The incorporation of metal ions decreased the cytocompatibility of the glasses depending on their concentration and on the glass matrix doped. Our results show that by changing the glass composition and by adding Cu or Zn, bioactive materials with different textures, bioactivity and cytocompatibility can be synthesized.

  15. Parametric testing of a DWPF glass

    International Nuclear Information System (INIS)

    Bazan, F.; Rego, J.

    1985-03-01

    A series of tests has been performed to characterize the chemical stability of a DWPF borosilicate glass sample as part of the Waste Package Task of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. This material was prepared at the Savannah River Laboratory for the purpose of testing the 165-frit matrix doped with a simulated nonradioactive waste. All tests were conducted at 90 0 C using deionized water and J-13 water (a tuffaceous formation ground water). In the deionized water tests, both monoliths and crushed glass were tested at various ratios of surface area of the sample to volume of water in order to compare leach rates for different sample geometries or leaching times. Effects on the leach rates as a result of the presence of crushed tuff and stainless steel material were also investigated in the tests with J-13 water. 3 refs., 12 figs., 7 tabs

  16. Glass composition and solution speciation effects on stage III dissolution

    International Nuclear Information System (INIS)

    Trivelpiece, Cory L.; Rice, Jarret A.; Pantano, Carlo G.

    2017-01-01

    To understand and mitigate the onset of Stage III corrosion of multicomponent oxides waste glasses. Stage III refers to a resumption of the high initial rate of glass dissolution in some glass samples that have otherwise exhibited dissolution at the much lower residual rate for a long time (Stage II). Although the onset of Stage III is known to occur concurrently with the precipitation of particular alteration products, the root cause of the transition is still unknown. Certain glass compositions (notably AFCI) and high pH environmental conditions are also associated with this observed transition.

  17. Glass composition and solution speciation effects on stage III dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Trivelpiece, Cory L. [Pennsylvania State Univ., University Park, PA (United States); Rice, Jarret A. [Pennsylvania State Univ., University Park, PA (United States); Pantano, Carlo G. [Pennsylvania State Univ., University Park, PA (United States)

    2017-10-03

    To understand and mitigate the onset of Stage III corrosion of multicomponent oxides waste glasses. Stage III refers to a resumption of the high initial rate of glass dissolution in some glass samples that have otherwise exhibited dissolution at the much lower residual rate for a long time (Stage II). Although the onset of Stage III is known to occur concurrently with the precipitation of particular alteration products, the root cause of the transition is still unknown. Certain glass compositions (notably AFCI) and high pH environmental conditions are also associated with this observed transition.

  18. Relaxations in spin glasses: Similarities and differences from ordinary glasses

    International Nuclear Information System (INIS)

    Ngai, K.L.; Rajagopal, A.K.; Huang, C.Y.

    1984-01-01

    Relaxation phenomena have become a major concern in the physics of spin glasses. There are certain resemblances of these relaxation properties to those of ordinary glasses. In this work, we compare the relaxation properties of spin glasses near the freezing temperature with those of glasses near the glass transition temperature. There are similarities between the two types of glasses. Moreover, the relaxation properties of many glasses and spin glasses are in conformity with two coupled ''universality'' relations predicted by a recent model of relaxations in condensed matter

  19. Zr-Cu-Ni-Al bulk metallic glasses with superhigh glass-forming ability

    International Nuclear Information System (INIS)

    Sun, Y.J.; Qu, D.D.; Huang, Y.J.; Liss, K.-D.; Wei, X.S.; Xing, D.W.; Shen, J.

    2009-01-01

    Zr-Cu-Ni-Al quaternary amorphous alloy compositions with varying glass-forming ability are developed by an efficient method of proportional mixing of binary eutectics. The critical diameter of the glassy sample is improved from 6 mm for Zr 53 Cu 18.7 Ni 12 Al 16.3 to 14 mm for Zr 50.7 Cu 28 Ni 9 Al 12.3 by straightforwardly adjusting the eutectic unit's coefficients. The drastic improvement in GFA is attributed to balancing the chemical affinities of the Zr, Cu, Ni and Al components in the melt prior to solidification which makes the precipitation of competing crystalline phases more difficult. As the glass-forming ability increases, the concentration of Cu in the alloys exhibits a same trend. Based on synchrotron radiation high-energy X-ray diffraction analysis and Miracle's structural model, it is envisioned that the substitution of additional Cu atoms for Zr atoms in the investigated alloys stabilizes the efficient cluster packing structure of the amorphous alloys, leading to the pronounced increase in their glass-forming ability

  20. Tomographic location of potential melt-bearing phenocrysts in lunar glass spherules

    International Nuclear Information System (INIS)

    Ebel, D.S.; Fogel, R.A.; Rivers, M.L.

    2005-01-01

    Apollo 17 orange glass spherules contain olivine phenocrysts with melt inclusions from depth. Tomography ( 200 spherules located 1 phenocryst. We will try to find melt inclusions and obtain original magma volatiles and compositions. In 1971, Apollo 17 astronauts collected a 10 cm soil sample (74220) comprised almost entirely of orange glass spherules. Below this, a double drive-tube core sampled a 68 cm thick horizon comprised of orange glass and black beads (crystallized equivalents of orange glass). Primitive lunar glass spherules (e.g.-A17 orange glasses) are thought to represent ejecta from lunar mare fire fountains. The fire-fountains were apparently driven by a combination of C-O gas exsolution from orange glass melt and the oxidation of graphite. Upon eruption, magmas lost their volatiles (e.g., S, CO, CO 2 ) to space. Evidence for volatile escape remains as volatile-rich coatings on the exteriors of many spherules. Moreover, it showed that Type I and II Fe-Ni-rich metal particles found within orange glass olivine phenocrysts, or free-floating in the glass itself, are powerful evidence for the volatile driving force for lunar fire fountains. More direct evidence for the volatile mechanism has yet to be uncovered. Issues remaining include: the exact composition of magmatic volatiles; the hypothesized existence of graphite in the magma; the oxygen fugacity of the magma and of the lunar interior. In 1996 reported a single ∼450 micron, equant olivine phenocryst, containing four glassy melt inclusions (or inclusion cores), the largest ∼30micron in size, in a thin section of the 74001/2 drill core. The melt is assumed to sample the parent magma of the lunar basalts at depth, evidenced by the S content of the inclusion (600 ppm) which is 400 ppm greater than that of the orange glass host. Such melts potentially contain a full complement of the volatile components of the parent magma, which can be analyzed by infrared spectroscopy. Although the A17 orange glass

  1. The local structure nature for a Ti-based bulk metallic glass

    International Nuclear Information System (INIS)

    Chen, Yiqiang; Huang, Yongjiang; Fan, Hongbo; Wang, Dongjun; Shen, Jun

    2013-01-01

    Highlights: ► The directional bonds in TiZrNiCuBe bulk metallic glass are primarily comprised of Be-Ni and Be-Cu bonds. ► A coefficient η could be extracted from Raman scattering to characterize the glass forming ability. ► The weak directional bonds dependent on Be could increase the localized electrons, facilitating the glass forming ability. - Abstract: In the present work, the local atomic structures of a Be-containing Ti-based bulk metallic glass (BMG) have been characterized using electron spectrum for chemical analysis and Raman scattering, including directional bonds and medium range order. It might suggest that a coefficient could be extracted from Raman scattering to characterize the glass forming ability (GFA), which could be employed to interpret the enhanced GFA by Be addition of Ti-based BMG. Additionally, compared with the crystallized sample, the glassy sample exhibits larger average bond length and larger content of local bond distortion using Raman scattering.

  2. Electrical characterization of strontium titanate borosilicate glass ceramics system with bismuth oxide addition using impedance spectroscopy

    International Nuclear Information System (INIS)

    Thakur, O.P.; Kumar, Devendra; Parkash, Om; Pandey, Lakshman

    2003-01-01

    The ac electrical data, measured in the frequency range 0.1 kHz-1 MHz, were used to study the electrical response of strontium titanate borosilicate glass ceramic system with bismuth oxide addition. Complex plane plots from these electrical data for various glass ceramic samples reveal contributions from simultaneously operating polarization mechanisms to overall dielectric behavior. The complex modulus (M * ) representation of electrical data for various glass ceramic samples were found to be more informative. Equivalent circuit models, which represent the electrical behavior of glass ceramic samples, were determined using complex non-linear least square (CNLS) fitting. An attempt has been made to understand the dielectric behavior of various glass ceramics in terms of contributions arising from different polarization processes occurring at glassy matrix, crystalline phases, glass to crystal interface region and blocking electrodes. Glass ceramics containing SrTiO 3 and TiO 2 (rutile) phases show thermally stable dielectric behavior

  3. Gamma ray interactions with undoped and CuO-doped lithium disilicate glasses

    International Nuclear Information System (INIS)

    Elbatal, H.A.; Mandouh, Z.; Zayed, H.; Marzouk, S.Y.; Elkomy, G.; Hosny, A.

    2010-01-01

    Ultraviolet-visible absorption of undoped lithium disilicate glass reveals strong UV absorption and no visible bands could be identified. Such UV absorption is related to the presence of unavoidable trace iron impurities within raw materials used for the preparation of this glass. Optical absorption of the CuO-doped samples show an extra broad visible band centered at 780 nm and in high CuO contents samples obvious splitting to several component peaks are observed. This characteristic visible absorption of copper-doped samples is correlated with the presence of Cu +2 ions in octahedral coordination with tetragonal distortion. Gamma irradiation of the prepared samples produces radiation-induced defects, which are related to the sharing of host lithium disilicate glass, trace iron impurities and copper iron in their formation. The visible spectrum of the CuO samples shows shielding effect towards successive gamma irradiation.

  4. Leaching behavior of microtektite glass compositions in sea water and the effect of precipitation on glass leaching

    International Nuclear Information System (INIS)

    1991-01-01

    In the present study it was attempted to account for the slow corrosion rates of microtektite glass in nature by comparing the leach rates of synthetic microtektite glass samples in deionized water and in sea-water, respectively. In order to obtain systematic data about leachant composition effects, leach tests were also carried out with synthetic leachant compositions enriched with respect to silica or depleted with respect to certain major components of sea-water (Mg, Ca). 47 refs., 1 fig., 5 tabs

  5. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    International Nuclear Information System (INIS)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-01-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70–x) B 2 O 3 –30 Li 2 O–(x) Dy 2 O 3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5–5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy 2 O 3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD). - Highlights: • TL response of undoped and dysprosium doped lithium borate glass subjected to 6 MV photons irradiation at low dose range. • TL linear response of dysprosium doped lithium borate glass. • The sensitivity of dysprosium doped lithium borate glass is approximately 93 times higher than undoped glass

  6. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading

  7. Crystallization Kinetics of Barium and Strontium Aluminosilicate Glasses of Feldspar Composition

    Science.gov (United States)

    Hyatt, Mark J.; Bansal, Narottam P.

    1994-01-01

    Crystallization kinetics of BaO.Al2O3.2SiO2 (BAS) and SrO.Al2O3.2SiO2 (SAS) glasses in bulk and powder forms have been studied by non-isothermal differential scanning calorimetry (DSC). The crystal growth activation energies were evaluated to be 473 and 451 kJ/mol for bulk samples and 560 and 534 kJ/mol for powder specimens in BAS and SAS glasses, respectively. Development of crystalline phases on thermal treatments of glasses at various temperatures has been followed by powder x-ray diffraction. Powder samples crystallized at lower temperatures than the bulk and the crystallization temperature was lower for SAS glass than BAS. Crystallization in both glasses appeared to be surface nucleated. The high temperature phase hexacelsian, MAl2Si2O8 (M = Ba or Sr), crystallized first by nucleating preferentially on the glass surface. Also, monoclinic celsian does not nucleate directly in the glass, but is formed at higher temperatures from the transformation of the metastable hexagonal phase. In SAS the transformation to monoclinic celsian occurred rapidly after 1 h at 1100 C. In contrast, in BAS this transformation is sluggish and difficult and did not go to completion even after 10 h heat treatment at 1400 C. The crystal growth morphologies in the glasses have been observed by optical microscopy. Some of the physical properties of the two glasses are also reported.

  8. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    Energy Technology Data Exchange (ETDEWEB)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; Shuh, D. K. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Knight, K. B.; Eppich, G. R. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Holliday, K. S. [Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-05-21

    Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.

  9. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    Science.gov (United States)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; Shuh, D. K.; Knight, K. B.; Eppich, G. R.; Holliday, K. S.

    2016-05-01

    Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.

  10. Spectral studies on CuO in sodium–calcium borophosphate glasses

    Indian Academy of Sciences (India)

    linear optical devices [10] and as low-melting glass solders or glass seals [11] derived .... For S1 to S4 samples, the vitreous phase coexists with a crystalline phase and the pattern shows large maxima overlapped with the peaks characteristics ...

  11. Pressure-Induced Changes in Inter-Diffusivity and Compressive Stress in Chemically Strengthened Glass

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Thirion, Lynn M.; Youngman, Randall E.

    chamber to compress bulk glass samples isostatically up to 1 GPa at elevated temperature before or after the ion exchange treatment of an industrial sodium-magnesium aluminosilicate glass. Compression of the samples prior to ion exchange leads to a decreased Na+-K+ inter-diffusivity, increased compressive...

  12. Mechanical failure and glass transition in metallic glasses

    International Nuclear Information System (INIS)

    Egami, T.

    2011-01-01

    Research highlights: → We review the recent results of molecular dynamics simulations on metallic glasses. → They show the equivalence of mechanical failure and glass transition. → We discuss the microscopic mechanism behind this equivalence. → We show that the density of defects in metallic glasses is as high as a quarter. → Our concepts about the defect state in glasses need to be changed. - Abstract: The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  13. 2.3 µm laser potential of TeO2 based glasses

    Science.gov (United States)

    Denker, B. I.; Dorofeev, V. V.; Galagan, B. I.; Motorin, S. E.; Sverchkov, S. E.

    2017-09-01

    Tm3+ doped TeO2-based well-dehydrated glasses were synthesized and investigated. The analysis of their spectral and relaxation properties have showed that these glasses can be a suitable host for bulk and fiber lasers emitting at ~2.3 µm wavelength (3H4-3H5 Tm3+ transition). Laser action in the bulk glass sample was demonstrated.

  14. Durability of Mortar Made with Fine Glass Powdered Particles

    Directory of Open Access Journals (Sweden)

    Rosemary Bom Conselho Sales

    2017-01-01

    Full Text Available Different studies investigate the use of waste glass in Portland cement compounds, either as aggregates or as supplementary cementitious materials. Nevertheless, it seems that there is no consensus about the influence of particle color and size on the behavior of the compounds. This study addresses the influence of cement replacement by 10 and 20% of the colorless and amber soda-lime glass particles sized around 9.5 μm on the performance of Portland cement mortars. Results revealed that the partial replacement of cement could contribute to the production of durable mortars in relation to the inhibition of the alkali-aggregate reaction. This effect was more marked with 20% replacement using amber glass. Samples containing glass microparticles were more resistant to corrosion, in particular those made of colorless glass. The use of colorless and amber glass microparticles promoted a reduction in wear resistance.

  15. Testing of Large-Scale ICV Glasses with Hanford LAW Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Kim, Dong-Sang; Vienna, John D.; Matyas, Josef; Smith, Donald E.; Schweiger, Michael J.; Yeager, John D.

    2005-03-01

    Preliminary glass compositions for immobilizing Hanford low-activity waste (LAW) by the in-container vitrification (ICV) process were initially fabricated at crucible- and engineering-scale, including simulants and actual (radioactive) LAW. Glasses were characterized for vapor hydration test (VHT) and product consistency test (PCT) responses and crystallinity (both quenched and slow-cooled samples). Selected glasses were tested for toxicity characteristic leach procedure (TCLP) responses, viscosity, and electrical conductivity. This testing showed that glasses with LAW loading of 20 mass% can be made readily and meet all product constraints by a far margin. Glasses with over 22 mass% Na2O can be made to meet all other product quality and process constraints. Large-scale testing was performed at the AMEC, Geomelt Division facility in Richland. Three tests were conducted using simulated LAW with increasing loadings of 12, 17, and 20 mass% Na2O. Glass samples were taken from the test products in a manner to represent the full expected range of product performance. These samples were characterized for composition, density, crystalline and non-crystalline phase assemblage, and durability using the VHT, PCT, and TCLP tests. The results, presented in this report, show that the AMEC ICV product with meets all waste form requirements with a large margin. These results provide strong evidence that the Hanford LAW can be successfully vitrified by the ICV technology and can meet all the constraints related to product quality. The economic feasibility of the ICV technology can be further enhanced by subsequent optimization.

  16. Physical properties of glasses exposed to Earth-facing and trailing-side environments on LDEF

    Science.gov (United States)

    Wiedlocher, David E.; Kinser, Donald L.; Weller, Robert A.; Weeks, Robert A.; Mendenhall, Marcus H.

    1993-01-01

    The exposure of 108 glass samples and 12 glass-ceramic samples to Earth-orbit environments permitted measurements which establish the effects of each environment. Examination of five glass types and one glass ceramic located on both the Earth-facing side and the trailing edge revealed no reduction in strength within experimental limits. Strength measurements subjected less than 5 percent of the sample surface area to stresses above 90 percent of the glass's failure strength. Seven micrometeorite or space debris impacts occurred on trailing edge samples. One of those impacts occurred in a location which was subjected to 50 percent of the applied stress at failure. Micrometeorite or space debris impacts were not observed on Earth-facing samples. The physical shape and structure of the impact sites were carefully examined using stereographic scanning electron microscopy. These impacts induce a stress concentration at the damaged region which influences mechanical strength. The flaw size produced by such damage was examined to determine the magnitude of strength degradation in micrometeorite or space-debris impacted glasses. Scanning electron microscopy revealed topographical details of impact sites which included central melt zones and glass fiber production. The overall crater structure is similar to much larger impacts of large meteorite on the Moon in that the melt crater is surrounded by shocked regions of material which fracture zones and spall areas. Residual stresses arising from shock compression and cooling of the fused zone cannot currently be included in fracture mechanics analyses based on simple flaw size examination.

  17. Silicate glasses

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  18. Magnesium and Silicon Isotopes in HASP Glasses from Apollo 16 Lunar Soil 61241

    Science.gov (United States)

    Herzog, G. F.; Delaney, J. S.; Lindsay, F.; Alexander, C. M. O'D; Chakrabarti, R.; Jacobsen, S. B.; Whattam, S.; Korotev, R.; Zeigler, R. A.

    2012-01-01

    The high-Al (>28 wt %), silica-poor (<45 wt %) (HASP) feldspathic glasses of Apollo 16 are widely regarded as the evaporative residues of impacts in the lunar regolith [1-3]. By virtue of their small size, apparent homogeneity, and high inferred formation temperatures, the HASP glasses appear to be good samples in which to study fractionation processes that may accompany open system evaporation. Calculations suggest that HASP glasses with present-day Al2O3 concentrations of up to 40 wt% may have lost 19 wt% of their original masses, calculated as the oxides of iron and silicon, via evaporation [4]. We report Mg and Si isotope abundances in 10 HASP glasses and 2 impact-glass spherules from a 64-105 m grain-size fraction taken from Apollo 16 soil sample 61241.

  19. Leachates analysis of glass from black and white and color televisions sets

    Directory of Open Access Journals (Sweden)

    Radovan Kukla

    2012-01-01

    Full Text Available The aim of work was to determine the content of selected elements in the glass from color and black and white television (TV sets. The amount of back taken TV sets in the Czech Republic increases annualy, which is associated with higher production of the waste glass. Currently there is 1.4 television sets for each household and the number of it should increase in future, because of higher standard of living and new technologies used. Waste glass treatment or landfilling may present, because of composition of the waste glass threat to the environment. One of the indicators of the polution from waste glass is leachate analysis, which can show us the content of hazardous substances in the waste glass, which can be released to the environment. A qualitative analysis of leachate samples was carried out by UV-VIS spectrophotometer. The results showed concentration of potencionaly hazardous substances contained in leachate samples. This was especially content of aluminum, cadmium, chromium, copper, molybdenum, nickel, lead, tin and zinc. Results of analyzes of the aqueous extract of glass were confronted with the limits specified in the currently valid legislation. Based on the results there is clear that in the case of landfilling of the glass from television sets, there is possibility of the contamination of landfill leachate by the elements, which are presented in the glass.

  20. Using quantum dots to tag subsurface damage in lapped and polished glass samples

    International Nuclear Information System (INIS)

    Williams, Wesley B.; Mullany, Brigid A.; Parker, Wesley C.; Moyer, Patrick J.; Randles, Mark H.

    2009-01-01

    Grinding, lapping, and polishing are finishing processes used to achieve critical surface parameters in a variety of precision optical and electronic components. As these processes remove material from the surface through mechanical and chemical interactions, they may induce a damaged layer of cracks, voids, and stressed material below the surface. This subsurface damage (SSD) can degrade the performance of a final product by creating optical aberrations due to diffraction, premature failure in oscillating components, and a reduction in the laser induced damage threshold of high energy optics. As these defects lie beneath the surface, they are difficult to detect, and while many methods are available to detect SSD, they can have notable limitations regarding sample size and type, preparation time, or can be destructive in nature. The authors tested a nondestructive method for assessing SSD that consisted of tagging the abrasive slurries used in lapping and polishing with quantum dots (nano-sized fluorescent particles). Subsequent detection of fluorescence on the processed surface is hypothesized to indicate SSD. Quantum dots that were introduced to glass surfaces during the lapping process were retained through subsequent polishing and cleaning processes. The quantum dots were successfully imaged by both wide field and confocal fluorescence microscopy techniques. The detected fluorescence highlighted features that were not observable with optical or interferometric microscopy. Atomic force microscopy and additional confocal microscope analysis indicate that the dots are firmly embedded in the surface but do not appear to travel deep into fractures beneath the surface. Etching of the samples exhibiting fluorescence confirmed that SSD existed. SSD-free samples exposed to quantum dots did not retain the dots in their surfaces, even when polished in the presence of quantum dots.

  1. The role of collective labor contracts and individual characteristics on job satisfaction in Tuscan nursing homes.

    Science.gov (United States)

    Vainieri, Milena; Smaldone, Pierluigi; Rosa, Antonella; Carroll, Kathleen

    2017-08-23

    The role played by remuneration strategies in motivating health care professionals is one of the most studied factors. Some studies of nursing home (NH) services, while considering wages and labor market characteristics, do not explicitly account for the influence of the contract itself. This study investigates the relationship between the labor contracts applied in 62 Tuscan NHs and NH aides' job satisfaction with two aims: to investigate the impact of European contracts on employee satisfaction in health care services and to determine possible limitations of research not incorporating these contracts. We apply a multilevel model to data gathered from a staff survey administered in 2014 to all employees of 62 NHs to analyze two levels: individual and NH. Labor contracts were introduced into the model as a variable of NH. Findings show that the factors influencing nursing aides' satisfaction occur at both the individual and NH levels. Organizational characteristics explain 16% of the variation. For individual characteristics, foreign and temporary workers emerge as more satisfied than others. For NH variables, results indicate that the labor contract with the worst conditions is not associated with lower workers' satisfaction. Although working conditions play a relevant role in the job satisfaction of aides, labor contracts do not seem to affect it. Interestingly, aides of the NHs with the contract having the best conditions register a significantly lower level of satisfaction compared to the NHs with the worst contract conditions. This suggests that organizational factors such as culture, team work, and other characteristics, which were not explicitly considered in this study, may be more powerful sources of worker satisfaction than labor contracts. Our analysis has value as a management tool to consider alternative sources as well as the labor contract for employee incentives.This is an open-access article distributed under the terms of the Creative Commons

  2. Preparation method and thermal properties of samarium and europium-doped alumino-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sava, B.A., E-mail: savabogdanalexandru@yahoo.com [National Institute of Research and Development for Optoelectronics, Department for Optospintronics, 409 Atomistilor Street, P.O. Box MG – 5, RO-77125 Magurele (Romania); Elisa, M., E-mail: astatin18@yahoo.com [National Institute of Research and Development for Optoelectronics, Department for Optospintronics, 409 Atomistilor Street, P.O. Box MG – 5, RO-77125 Magurele (Romania); Boroica, L., E-mail: boroica_lucica@yahoo.com [National Institute for Lasers, Plasma and Radiation Physics, 77125 Magurele (Romania); Monteiro, R.C.C., E-mail: rcm@fct.unl.pt [Center of Materials Research/Institute for Nanostructures, Nanomodelling and Nanofabrication, (CENIMAT/I3N), Department of Materials Sciences, Faculty of Sciences and Technology, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2013-12-01

    analysis did not show notable mass change for any of doped samples. DSC curves for both rare-earth-doped phosphate glasses, as bulk and powdered samples, showed T{sub g} values in the range 435–450 °C. Bulk samples exhibited a very weak exothermic peak at about 685 °C, while powdered samples showed two weak exothermic peaks at about 555 °C and 685 °C due to devitrification of the glasses. Using designed melting and annealing programs, the doped glasses were improved regarding bubbles and cords content and strain elimination.

  3. Raman and X-ray absorption spectroscopic studies of hydrothermally altered alkali-borosilicate nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, David A., E-mail: davidm@vsl.cua.ed [Vitreous State Laboratory, Catholic University of America, 620 Michigan Ave., N.E., Washington, DC 20064 (United States); Buechele, Andrew C.; Viragh, Carol; Pegg, Ian L. [Vitreous State Laboratory, Catholic University of America, 620 Michigan Ave., N.E., Washington, DC 20064 (United States)

    2010-04-01

    Raman spectroscopy and X-ray absorption spectroscopy (XAS) are used to characterize structural changes that took place in hydrothermally altered (Na,K)-alumina-borosilicate glasses with different Na/K ratios, formulated as part of a durability study to investigate the behavior of glasses for nuclear waste storage. The hydrothermal experiments, or vapor hydration tests (VHT), were performed on each glass for 3 and 20 days at 200 deg. C to accelerate and approximate long-term alteration processes that may occur in a nuclear waste repository. Results found for both glasses and their VHT altered counterparts show little, if any, structural influence from the different starting Na/K ratios. X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Raman spectroscopy indicate that the altered samples are mostly amorphous with small amounts of analcime-like and leucite-like crystals within 200 mum of the sample surface and contain up to 9.7 wt.% water or OH. The Raman data are nearly identical for the amorphous portions of all altered VHT samples investigated, and indicate that two glass structural changes took place during alteration: one, partial depolymerization of the alumina-borosilicate network, and two, introduction of water or OH. Al and Si XAS data indicate tetrahedral AlO{sub 4} and SiO{sub 4} environments in the original glasses as well as in the altered samples. Small energy shifts of the Si K-edge also show that the altered VHT samples have less polymerized networks than the original glass. Na XAS data indicate expanded Na environments in the VHT samples with longer Na-O distances and more nearest-neighbor oxygen atoms, compared with the original glasses, which may be due to hydrous species introduced into the expanding Na-sites.

  4. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses.

    Science.gov (United States)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; S P Singh

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO2 in Na2O-CaO-SrO-P2O5-SiO2 system. This work demonstrates that the substitution of SrO for SiO2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO2. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. High-Level Waste Glass Formulation Model Sensitivity Study 2009 Glass Formulation Model Versus 1996 Glass Formulation Model

    International Nuclear Information System (INIS)

    Belsher, J.D.; Meinert, F.L.

    2009-01-01

    This document presents the differences between two HLW glass formulation models (GFM): The 1996 GFM and 2009 GFM. A glass formulation model is a collection of glass property correlations and associated limits, as well as model validity and solubility constraints; it uses the pretreated HLW feed composition to predict the amount and composition of glass forming additives necessary to produce acceptable HLW glass. The 2009 GFM presented in this report was constructed as a nonlinear optimization calculation based on updated glass property data and solubility limits described in PNNL-18501 (2009). Key mission drivers such as the total mass of HLW glass and waste oxide loading are compared between the two glass formulation models. In addition, a sensitivity study was performed within the 2009 GFM to determine the effect of relaxing various constraints on the predicted mass of the HLW glass.

  6. XPS and ion beam scattering studies of leaching in simulated waste glass containing uranium

    International Nuclear Information System (INIS)

    Karim, D.P.; Pronko, P.P.; Marcuso, T.L.M.; Lam, D.J.; Paulikas, A.P.

    1980-01-01

    Glass samples (consisting of 2 mole % UO 3 dissolved in a number of complex borosilicate simulated waste glasses including Battelle 76-68) were leached for varying times in distilled water at 75 0 C. The glass surfaces were examined before and after leaching using x-ray photoemission spectroscopy and back-scattered ion beam profiling. Leached samples showed enhanced surface layer concentrations of several elements including uranium, titanium, zinc, iron and rare earths. An experiment involving the leaching of two glasses in the same vessel showed that the uranium surface enhancement is probably not due to redeposition from solution

  7. Electron microprobe analysis (WDS EPMA) of Zhamanshin glass reveals the impactor and a common role of accretion in the origin of splash-form impact glass

    International Nuclear Information System (INIS)

    Vetvicka, I; Frank, J; Drtina, J

    2010-01-01

    Impact glass samples collected during expeditions to the Zhamashin and Lonar craters were subjected to a morphology survey and compared to Wabar, Henbury and Darwin impact glasses to reveal that the accretion of fibres and spherules is not exclusive for irghizites but occurs in other splash form glasses over the world. WDS EPMA and LA-ICP-MS assays of Zhamanshin and Lonar glasses enabled the definition of akmurynites as Zhamanshin glass of specific morphology, chemistry and absence of extraterrestrial contamination. However, extraterrestrial contamination in irghizites was verified and further WDS EPMA analyses led to the conclusion that the Zhamanshin crater had been formed by the impact of a primitive achondrite of Lodran chemistry.

  8. Study of the glass formation of high temperature superconductors

    Science.gov (United States)

    Ethridge, Edwin C.; Kaukler, William F.; Rolin, Terry

    1992-01-01

    A number of compositions of ceramic oxide high T(sub c) superconductors were elevated for their glass formation ability by means of rapid thermal analysis during quenching, optical, and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass; then, with subsequent devitrification, it was formed into a bulk crystalline superconductor by a series of processing methods.

  9. The influence of Ge on optical and thermo- mechanical properties of S-Se chalcogenide glasses

    Science.gov (United States)

    Samudrala, Kavitha; Babu Devarasetty, Suresh

    2018-05-01

    S-Se-Ge glasses were prepared by melt quenching method to investigate the effect of Germanium on thermo-mechanical and optical properties of chalcogenide glasses. The glassy nature of the samples has been verified by x-ray diffraction and DSC studies that the samples are glassy in nature. The optical band gap of the samples was estimated by the absorption spectrum fitting method. The optical band gap increased from 1.61 ev for x = 0 sample to 1.90 ev for x = 40 sample and is explained in terms of cohesive energies. The basic thermo-mechanical parameters such as micro-hardness, Volume (Vh) and formation energy (Eh) of micro voids in the glassy network, as well as the modulus of Elasticity (E) have been calculated for prepared glasses.in present glasses. The variation in these parameters with Ge content correlated with heat of atomization of alloys.

  10. Temperature-stress phase diagram of strain glass Ti48.5Ni51.5

    International Nuclear Information System (INIS)

    Wang, Y.; Ren, X.; Otsuka, K.; Saxena, A.

    2008-01-01

    The temperature and stress dependence of the properties of a recently discovered strain glass Ti 48.5 Ni 51.5 , which is a glass of frozen local lattice strains, was investigated systematically. It was found that the ideal freezing temperature (T 0 ) of the strain glass decreases with increasing stress. When the stress exceeds a critical value σ c (T), the pseudo-B2 strain glass transforms into B19' martensite. However, the stress-strain behavior associated with such a stress-induced transition showed a crossover at a crossover temperature T CR , which is ∼20 K below T 0 . Above T CR , the sample showed superelastic behavior; however, below T CR , the sample demonstrated plastic behavior. More interestingly, the σ c vs. temperature relation for unfrozen strain glass obeys the Clausius-Clapyeron relationship, whereas that for frozen strain glass disobeys this universal thermodynamic law. A phenomenological explanation is provided for all the phenomena observed, and it is shown that all the anomalous effects come from the broken ergodicity of the glass system and a temperature-dependent relative stability of the martensitic phase. Based on experimental observations, a temperature-stress phase diagram is constructed for this strain glass, which may serve as a guide map for understanding and predicting the properties of strain glass

  11. Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions

    Directory of Open Access Journals (Sweden)

    M.K. Halimah

    Full Text Available Zinc borotellurite glasses doped with lanthanum oxide were successfully prepared through melt-quenching technique. The amorphous nature of the glass system was validated by the presence of a broad hump in the XRD result. The refractive index of the prepared glass samples was calculated by using the equation proposed by Dimitrov and Sakka. The theoretical value of molar refraction, electronic polarizability, oxide ion polarizability and metallization criterion were calculated by using Lorentz-Lorenz equation. Meanwhile, expression proposed by Duffy and Ingram for the theoretical value of optical basicity of multi-component glasses were applied to obtain energy band gap based optical basicity and refractive index based optical basicity. The optical basicity of prepared glasses decreased with the increasing concentration of lanthanum oxide. Metallization criterion on the basis of refractive index showed an increasing trend while energy band gap based metallization criterion showed a decreasing trend. The small metallization criterion values of the glass samples represent that the width of the conduction band becomes larger which increase the tendency for metallization of the glasses. The results obtained indicates that the fabricated glasses have high potential to be applied on optical limiting devices in photonic field. Keywords: Borotellurite glasses, Refractive index, Electronic polarizability, Oxide ion polarizability, Optical basicity, Metallization criterion

  12. Effect of CASP glass doping on sintering and dielectric properties of SBN ceramics

    International Nuclear Information System (INIS)

    Chen Guohua; Qi Bing

    2009-01-01

    16CaO-29Al 2 O 3 -34SiO 2 -13PbO-4B 2 O 3 -2ZnO-2P 2 O 5 (CASP) glass doped-Sr 0.5 Ba 0.5 Nb 2 O 6 (SBN50) ceramics have been synthesized by solid-state ceramic route. The effects of CASP glass on the firing, microstructure and dielectric characterization of SBN50 ceramics are investigated. The densities of the ceramic samples firstly increase and then slightly decrease with increasing CASP glass content. The appropriate amount of doping glass is 2%. The SBN50 ceramics doped with CASP glass can be sintered at a relatively low temperature, 1200 deg. C. X-ray diffraction analysis shows the single phase (tetragonal tungsten bronze type structure) is preserved for all the samples. The diffuse character of the ceramic system increases and the dielectric constant at phase transition temperature (T c ) markedly decreases as CASP glass content increases. Interestingly, the CASP glass addition drastically alters the microstructure of the sintered ceramics. The isotropic grains in the pure SBN50 ceramics transform to rod like grains after the addition of CASP glass. The grain size of SBN phase is found to obviously increase with increase in CASP glass doping level

  13. Silver-containing mesoporous bioactive glass with improved antibacterial properties.

    Science.gov (United States)

    Gargiulo, Nicola; Cusano, Angela Maria; Causa, Filippo; Caputo, Domenico; Netti, Paolo Antonio

    2013-09-01

    The aim of the present work is the study of the bacteriostatic/bactericidal effect of a silver-containing mesoporous bioactive glass obtained by evaporation-induced self-assembly and successive thermal stabilization. Samples of the manufactured mesophase were characterized by means of transmission electron microscopy and N₂ adsorption/desorption at 77 K, revealing structural and textural properties similar to SBA-15 mesoporous silica. Glass samples used for bioactivity experiments were put in contact with a standardized, commercially available cell culture medium instead of lab-produced simulated body fluid, and were then characterized by means of X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy. All these analyses confirmed the development of a hydroxyl carbonate apatite layer on glass particles. Moreover, the investigated mesostructure showed a very good antibacterial effect against S. aureus strain, with a strong evidence of bactericidal activity already registered at 0.5 mg/mL of glass concentration. A hypothesis about the mechanism by which Ag affects the bacterial viability, based on the intermediate formation of crystalline AgCl, was also taken into account. With respect to what already reported in the literature, these findings claim a deeper insight into the possible use of silver-containing bioactive glasses as multifunctional ceramic coatings for orthopedic devices.

  14. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    Science.gov (United States)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-07-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).

  15. Change in silica sources in Roman and post-Roman glass

    International Nuclear Information System (INIS)

    Aerts, A.; Velde, B.; Janssens, K.; Dijkman, W.

    2003-01-01

    Although Roman and post-Empire glasses found in Europe are reputed to have a very constant composition and hence source of components, it appears that some 4-5th century and later specimens show evidence of a different source of silica (sand) component. Zirconium and titanium are the discriminating elements. Data presented here for 278 specimens from 1st to 4th century German and Belgian samples indicate a strongly homogeneous Zr and Ti content; N: number of analyzed samples while 62 samples from Maastricht show low Zr-Ti contents from 1st to 3rd century samples while 4-5th century samples show a strong trend of concomitant Ti and Zr increase. If the high values of Zr-Ti represent a new source of silica (sand) the trend from low to high content suggests that a significant amount of low Zr-Ti glass was recycled to form these glass objects. Similar high Ti content can be seen in analysis results reported for other but not all 4-5th century samples found in northern Europe while earlier productions show typical low Ti contents. Although the fusing agent for these glasses seems to have always been natron (a mineral deposit in the Nile delta) from Hellenistic times to the 9th century, a change in the silica source, indicated by variation of the Ti and Zr content, could very well reflect the results of political instability of the 4-5th century exemplified by the fragmentation of the Roman Empire into two parts

  16. Change in silica sources in Roman and post-Roman glass

    Energy Technology Data Exchange (ETDEWEB)

    Aerts, A.; Velde, B.; Janssens, K.; Dijkman, W

    2003-04-18

    Although Roman and post-Empire glasses found in Europe are reputed to have a very constant composition and hence source of components, it appears that some 4-5th century and later specimens show evidence of a different source of silica (sand) component. Zirconium and titanium are the discriminating elements. Data presented here for 278 specimens from 1st to 4th century German and Belgian samples indicate a strongly homogeneous Zr and Ti content; N: number of analyzed samples while 62 samples from Maastricht show low Zr-Ti contents from 1st to 3rd century samples while 4-5th century samples show a strong trend of concomitant Ti and Zr increase. If the high values of Zr-Ti represent a new source of silica (sand) the trend from low to high content suggests that a significant amount of low Zr-Ti glass was recycled to form these glass objects. Similar high Ti content can be seen in analysis results reported for other but not all 4-5th century samples found in northern Europe while earlier productions show typical low Ti contents. Although the fusing agent for these glasses seems to have always been natron (a mineral deposit in the Nile delta) from Hellenistic times to the 9th century, a change in the silica source, indicated by variation of the Ti and Zr content, could very well reflect the results of political instability of the 4-5th century exemplified by the fragmentation of the Roman Empire into two parts.

  17. Change in silica sources in Roman and post-Roman glass

    Science.gov (United States)

    Aerts, A.; Velde, B.; Janssens, K.; Dijkman, W.

    2003-04-01

    Although Roman and post-Empire glasses found in Europe are reputed to have a very constant composition and hence source of components, it appears that some 4-5th century and later specimens show evidence of a different source of silica (sand) component. Zirconium and titanium are the discriminating elements. Data presented here for 278 specimens from 1st to 4th century German and Belgian samples indicate a strongly homogeneous Zr and Ti content; N: number of analyzed samples while 62 samples from Maastricht show low Zr-Ti contents from 1st to 3rd century samples while 4-5th century samples show a strong trend of concomitant Ti and Zr increase. If the high values of Zr-Ti represent a new source of silica (sand) the trend from low to high content suggests that a significant amount of low Zr-Ti glass was recycled to form these glass objects. Similar high Ti content can be seen in analysis results reported for other but not all 4-5th century samples found in northern Europe while earlier productions show typical low Ti contents. Although the fusing agent for these glasses seems to have always been natron (a mineral deposit in the Nile delta) from Hellenistic times to the 9th century, a change in the silica source, indicated by variation of the Ti and Zr content, could very well reflect the results of political instability of the 4-5th century exemplified by the fragmentation of the Roman Empire into two parts.

  18. Performance of a solar collector with antireflection treated glass cover

    DEFF Research Database (Denmark)

    Duer, Karsten

    1999-01-01

    The spectral transmittances of two different glass types have been measured in a spectrophotometer. Both glass types have been investigated with and without a Sunarc anti reflection surface (AR surface). The transmittance data for the AR treated samples have been used as input to the AR treatment...

  19. Spectroscopic studies of silver boro tellurite glasses

    Science.gov (United States)

    Kumar, E. Ramesh; Kumari, K. Rajani; Rao, B. Appa; Bhikshamaiah, G.

    2014-04-01

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI-Ag2O-[(1-x)B2O3-xTeO2] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO2 on SBT glass system is that as increasing the concentration of TeO2 the band intensity at 707 cm-1 increase.

  20. Cr3+ and Cr4+ luminescence in glass ceramic silica

    International Nuclear Information System (INIS)

    Martines, Marco A.U.; Davolos, Marian R.; Jafelicci, Miguel Junior; Souza, Dione F. de; Nunes, Luiz A.O.

    2008-01-01

    This paper reports on the effect of glass ceramic silica matrix on [CrO 4 ] 4- and Cr 2 O 3 NIR and visible luminescence. Chromium-containing silica was obtained by precipitation from water-glass and chromium nitrate acid solution with thermal treatment at 1000 deg. C. From XRD results silica and silica-chromium samples are crystalline. The chromium emission spectrum presents two main broad bands: one in the NIR region (1.1-1.7μm) and other in the visible region (0.6-0.7μm) assigned to Cr 4+ and to Cr 3+ , respectively. This thermal treated glass ceramic silica-chromium sample stabilizes the [CrO 4 ] 4- where Cr 4+ substitutes for Si 4+ and also hexacoordinated Cr 3+ group probably as segregated phase in the system. It can be pointed out that luminescence spectroscopy is a powerful tool for detecting the two chromium optical centers in the glass ceramic silica

  1. Integration of Homeopathy and Complementary Medicine in the Tuscan Public Health System and the Experience of the Homeopathic Clinic of the Lucca Hospital.

    Science.gov (United States)

    Rossi, E; Di Stefano, M; Picchi, M; Panozzo, M A; Noberasco, C; Nurra, L; Baccetti, S

    2018-03-17

     The healthcare programs of the Region of Tuscany (Italy) have started the process of integration of some types of complementary medicine (CM), including homeopathy, which began in 1996. The Homeopathic Clinic of Lucca was opened in 1998, followed by the Homeopathic Clinic for Women in 2003, and the Clinic for CM and Diet in Oncology in 2013.  Observational longitudinal studies conducted on 5,877 patients (3,937 in the general clinic, 1,606 in the women's clinic and 334 in oncology) were consecutively examined from 2003 to 2016. The Outcome in Relation to Impact on Daily Living (ORIDL) was generally used to assess outcomes.  Comparing the clinical conditions before and after homeopathic treatment, improvement was observed in 88.8% of general medicine patients with follow-up (45.1%); in particular, 68.1% of the patients had a major improvement in or resolution (ORIDL +2, +3, +4) of their condition. In women, an improvement was obtained in 74.1% cases and a major improvement in 61.2%. In cancer patients with homeopathic and integrative treatment, a significant improvement was observed for all the symptoms during anti-cancer therapy, particularly for hot flashes, nausea, depression, asthenia, and anxiety.  These results suggest that homeopathy can effectively be integrated with allopathic medicine and that the Tuscan experience could provide a useful reference for developing national and European regulations on the use of CM and homeopathy in public healthcare. The Faculty of Homeopathy.

  2. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    Science.gov (United States)

    Vasileva, A. A.; Nazarov, I. A.; Olshin, P. K.; Povolotskiy, A. V.; Sokolov, I. A.; Manshina, A. A.

    2015-10-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium-phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass.

  3. Effect of ZnO on the Thermal Properties of Tellurite Glass

    Directory of Open Access Journals (Sweden)

    H. A. A. Sidek

    2013-01-01

    Full Text Available Systematic series of binary zinc tellurite glasses in the form (ZnOx(TeO2 (where x=0 to 0.4 with an interval of 0.05 mole fraction have been successfully prepared via conventional melt cast-quenching technique. Their density was determined by Archimedes method with acetone as buoyant liquid. The thermal expansion coefficient of each zinc tellurite glasses was measured using L75D1250 dilatometer, while their glass transition temperature (Tg was determined by the SETARAM Labsys DTA/6 differential thermogravimetric analysis at a heating rate of 20 K min−1. The acoustic Debye temperature and the softening temperature (Ts were estimated based on the longitudinal (VL and shear ultrasonic (Vs wave velocities propagated in each glass sample. For ultrasonic velocity measurement of the glass sample, MATEC MBS 8000 Ultrasonic Data Acquisition System was used. All measurements were taken at 10 MHz frequency and at room temperature. All the thermal properties of such binary tellurite glasses were measured as a function of ZnO composition. The composition dependence was discussed in terms of ZnO modifiers that were expected to change the thermal properties of tellurite glasses. Experimental results show their density, and the thermal expansion coefficient increases as more ZnO content is added to the tellurite glass network, while their glass transition, Debye temperature, and the softening temperature decrease due to a change in the coordination number (CN of the network forming atoms and the destruction of the network structure brought about by the formation of some nonbridging oxygen (NBO atoms.

  4. Effect of platinoids on French LWR reference glass properties

    International Nuclear Information System (INIS)

    Pacaud, F.; Fillet, C.; Jacquet-Francillon, N.

    1991-01-01

    Nine samples of the 'R7T7' glass composition selected to vitrify fission product solutions in France were prepared with added platinoid elements (ruthenium, rhodium and palladium) in soluble form and as insoluble metal particles in solution, and their major properties were measured. Regardless of the initial form when added to the glass the platinoids always formed the same heterogeneous inclusions in the final glass: RuO 2 precipitates which were often found as aggregates, and polymetallic (Pd, Rh and Te) inclusions. The particles tended to settle in the molten glass. The viscosity increased by about 20% at 1100 deg C. The mechanical properties and short-term leach rates were not significantly affected. Crystallization increased by a factor of 2 or 3 in heat-treated glass specimens but did not exceed a few volume percent. However, as the short-term leach rate did not significantly increase, the glass properties were very satisfactory

  5. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Hanford Missions Programs; Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Process Technology Programs; Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development; Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development

    2016-07-14

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the process demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the

  6. New compositions of fluoroindate glasses with higher chemical resistance

    Directory of Open Access Journals (Sweden)

    B. J. Costa

    1998-06-01

    Full Text Available In this paper, glasses in the systems In-Ba-Mg and In-Ba-Zn-Sr-Mg were water leachead at 80ºC showing surface degradation after 72 hours of leaching. The extent of such degradation is determined by the solubility and the concentration of the elemental fluorides that constitute the glasses. The formation of a layer of crystallized phases on the surface of the samples was observed. Small weight losses were registered and the absence of water on the glass matrix after the attack suggested that the use of MgF2 in the systems studied can lead to better results against moisture corrosion when compared to other fluoride glasses such as the fluorozirconates.

  7. Effect of Different Fillers on Adhesive Wear Properties of Glass Fiber Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    E. Feyzullahoğlu

    2017-12-01

    Full Text Available Polymeric composites are used for different aims as substitute of traditional materials such as metals; due to their improved strength at small specific weight. The fiber reinforced polymer (FRP composite material consists of polymeric matrix and reinforcing material. Polymeric materials are commonly reinforced with synthetic fibers such as glass and carbon. The glass fiber reinforced polyester (GFRP composites are used with different filler materials. The aim of this study is to investigate the effects of different filler materials on adhesive wear behavior of GFRP. In this experimental study; polymetilmetacrilat (PMMA, Glass beads (GB and Glass sand (GS were used as filling material in GFRP composite samples. The adhesive wear behaviors of samples were carried out using ball on disc type tribometer. The friction force and coefficient of friction were measured during the test. The volume loss and wear rate values of samples were calculated according to test results. Barcol hardness values of samples were measured. The densities of samples were measured. Results show that the wear resistance of GB filled GFRP composite samples was much more than non-filled and PMMA filled GFRP composite samples.

  8. Nuclear microprobe analysis of carbon within glass inclusions and volcanic materials

    International Nuclear Information System (INIS)

    Metrich, N.; Mosbah, M.; Trocellier, P.; Clocchiatti, R.

    1986-01-01

    Microanalysis possibilities have been explored to determine light element concentrations within glasses (melt inclusions and basaltic glass fragments) and volcanic phenocrysts. In the first step, C was examined. The study of different spectral interferences lead to calculated detection limits of 40 μg/g for basaltic glasses and 50 μg/g for olivine crystals. The C contents of all investigated specimens range from 40 μg/g (the detection limit) to 6800 μg/g. Heterogeneities were revealed within glass inclusions. Measurements show obvious concentration profiles in basaltic glass samples. Our results agree with previous published data and are reliable. Accuracy of measurements is about 20%. 12 refs

  9. Structural and thermal properties of vanadium tellurite glasses

    Science.gov (United States)

    Kaur, Rajinder; Kaur, Ramandeep; Khanna, Atul; González, Fernando

    2018-04-01

    V2O5-TeO2 glasses containing 10 to 50 mol% V2O5 were prepared by melt quenching and characterized by X-ray diffraction (XRD), density, Differential Scanning Calorimetry (DSC) and Raman studies.XRD confirmed the amorphous nature of vanadium tellurite samples. The density of the glasses decreases and the molar volume increases on increasing the concentration of V2O5. The thermal properties, such as glass transition temperature Tg, crystallization temperature Tc, and the melting temperature Tm were measured. Tg decreases from a value of 288°C to 232°C. The changes in Tg were correlated with the number of bonds per unit volume, and the average stretching force constant. Raman spectra were used to elucidate the short-range structure of vanadium tellurite glasses.

  10. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Science.gov (United States)

    Sushama, D.

    2014-10-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er2O3 doped TeO2-WO3-La2O3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  11. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  12. Luminescent properties of fluorophosphate glasses with lead chalcogenides molecular clusters

    International Nuclear Information System (INIS)

    Kolobkova, E.V.; Kukushkin, D.S.; Nikonorov, N.V.; Shakhverdov, T.A.; Sidorov, A.I.; Vasiliev, V.N.

    2015-01-01

    Fluorophosphate glasses containing lead, selenium, and sulfur exhibit an intense luminescence in the 400–620 nm spectral region when excited by the 240–420 nm radiation. This luminescence is due to the presence of (PbSe) n and/or (PbS) n molecular clusters in the glasses, which appear in the as-prepared glasses before quantum dots formation. The thermal treatment at temperatures less than the glass transition temperature results in the red-shift of the luminescence bands and in an increase in the luminescence intensity. Heating the thermally treated glass samples leads to the reversible thermal quenching of the luminescence. - Highlights: • Fluorophosphate glasses with Pb, Se, and S ions contain (PbSe) n or (PbS) n molecular clusters. • (PbSe) n and (PbS) n molecular clusters possess luminescence in the visible with UV excitation. • Heating the glass leads to the reversible thermal quenching of the luminescence

  13. Structural properties of lithium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    Thomazini D.

    2001-01-01

    Full Text Available This paper presents the study on lithium triborate glass (LBO in the system (1-x|3B2O3.Li2O| (xNb2O5 yPr3+ zYb3+ wNd3+ with 0 <= x <= 20 mol% (y, z and w in mol%. The samples were studied by Raman spectroscopy, infrared absorption and differential thermal analysis. Pr3+-doped LBO and Pr3+/Yb3+-doped LBO samples show an increase of the glass transition and crystallization temperatures and a decrease of the fusion temperature associated with the increase of the praseodymium concentration in the LBO matrix. For the Nd3+-doped LBO and Pr3+/Yb3+-doped (LBO+Nb2O5 samples, a decrease of the glass transition temperature of the samples was observed. The increase of the rare earth doping leads to an increase of the difference between the glass transition and the crystallization temperatures. From infrared analysis it was possible to identify all the modes associated to the B-O structure. The NbO6 octahedra was also identified by IR spectroscopy for samples with x=5, 10, 15 and 20 mol% and y=0.05, z=1.1 mol%. Raman spectroscopy shows the presence of boroxol rings, tetrahedral and triangular coordination for boron. For samples containing niobium, the Raman spectra show the vibrational mode associated with the Nb-O bond in the niobium octahedra (NbO6.

  14. Positron annihilation study on ZnO-based scintillating glasses

    Science.gov (United States)

    Nie, Jiaxiang; Yu, Runsheng; Wang, Baoyi; Ou, Yuwen; Zhong, Yurong; Xia, Fang; Chen, Guorong

    2009-04-01

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO 2-45ZnO- xBaF 2 ( x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components τ1, τ 2, and τ3 are ˜0.23 ns, ˜0.45 ns, and ˜1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF 2 concentration from 5 mol% to 10 mol%, then decreases as BaF 2 further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF 2 contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  15. Evolution of ferroelectric SrBi2Nb2O9 phase embedded in tellurite glass

    Science.gov (United States)

    Mohamed, E. A.

    2017-12-01

    Glasses with the composition, [(100-x)TeO2- x(SrO-Bi2O3-Nb2O5)] with x = 20, 30 and 40 (in mol %) were prepared. The X-ray diffraction (XRD) pattern and differential thermal analysis (DTA) for the as-prepared samples confirmed the amorphous and glassy characteristics, respectively. The SrBi2Nb2O9 phase in tellurite glass for HT773 sample at x = 40 mol % is formed and confirmed by the Rietveld refinement. DTA curves for all glass samples exhibit two endothermic dips while the two broad exothermic peaks at lower x reduced to one at higher x. Infrared (IR) results revealed that the glassy matrix are composed of TeO3, TeO3+1, TeO4, BiO6 and NbO6 structural units. The changes in the density (ρ), molar volume (Vm), oxygen molar volume (V0) and oxygen packing fraction (OPD) have correlated with structural changes in the glass network. The optical studies show an absorption bands below the absorption edge in the glass samples.

  16. Antibacterial effects and dissolution behavior of six bioactive glasses.

    Science.gov (United States)

    Zhang, Di; Leppäranta, Outi; Munukka, Eveliina; Ylänen, Heimo; Viljanen, Matti K; Eerola, Erkki; Hupa, Mikko; Hupa, Leena

    2010-05-01

    Dissolution behavior of six bioactive glasses was correlated with the antibacterial effects of the same glasses against sixteen clinically important bacterial species. Powdered glasses (<45 microm) were immersed in simulated body fluid (SBF) for 48 h. The pH in the solution inside the glass powder was measured in situ with a microelectrode. After 2, 4, 27, and 48 h, the pH and concentration of ions after removing the particles and mixing the SBF were measured with a normal glass pH electrode and ICP-OES. The bacteria were cultured in broth with the glass powder for up to 4 days, after which the viability of the bacteria was determined. The antibacterial effect of the glasses increased with increasing pH and concentration of alkali ions and thus with increased dissolution tendency of the glasses, but it also depended on the bacterium type. The changes in the concentrations of Si, Ca, Mg, P, and B ions in SBF did not show statistically significant influence on the antibacterial property. Bioactive glasses showed strong antibacterial effects for a wide selection of aerobic bacteria at a high sample concentration (100 mg/mL). The antibacterial effects increased with glass concentration and a concentration of 50 mg/mL (SA/V 185 cm(-1)) was required to generate the bactericidal effects. Understanding the dissolution mechanisms of bioactive glasses is essential when assessing their antibacterial effects. Copyright 2009 Wiley Periodicals, Inc.

  17. Novel selenium containing boro-phosphate glasses: preparation and structural study.

    Science.gov (United States)

    Ciceo-Lucacel, R; Radu, T; Ponta, O; Simon, V

    2014-06-01

    We synthesized a new boro-phosphate glass system with different %mol SeO2 content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P2O7(4-) dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO3(-) middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ3 or BØ2O(-) units. A small contribution of BØ4(-) units was also detected from the FT-IR spectra of glasses. For SeO2 content higher than 5mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND GLASS AMPLIFICATION

    Directory of Open Access Journals (Sweden)

    B. Tioua

    2015-07-01

    Full Text Available Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses. In this poster will offer new doped erbium glasses synthesized in silicate crucibles were obtained in the combination Sb2O3-WO3-Na2O. Several properties are measured and correlated with glass compositions. The absorption spectral studies have been performed for erbium doped glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the theory of Judd-Ofelt, various radiative properties, such as transition probability, branching ratio and radiative life time for various emission levels of these doped glasses have been determined and reported. These results confirm the ability of antimony glasses for glass amplification.

  19. Influence of Glass Property Restrictions on Hanford HLW Glass Volume

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Vienna, John D.

    2001-01-01

    A systematic evaluation of Hanford High-Level Waste (HLW) loading in alkali-alumino-borosilicate glasses was performed. The waste feed compositions used were obtained from current tank waste composition estimates, Hanford's baseline retrieval sequence, and pretreatment processes. The waste feeds were sorted into groups of like composition by cluster analysis. Glass composition optimization was performed on each cluster to meet property and composition constraints while maximizing waste loading. Glass properties were estimated using property models developed for Hanford HLW glasses. The impacts of many constraints on the volume of HLW glass to be produced at Hanford were evaluated. The liquidus temperature, melting temperature, chromium concentration, formation of multiple phases on cooling, and product consistency test response requirements for the glass were varied one- or many-at-a-time and the resultant glass volume was calculated. This study shows clearly that the allowance of crystalline phases in the glass melter can significantly decrease the volume of HLW glass to be produced at Hanford.

  20. Influence of neutron irradiation on ferromagnetic metallic glasses

    International Nuclear Information System (INIS)

    Miglierini, M.; Nasu, Saburo; Sitek, J.

    1992-01-01

    Transmission 57 Fe Moessbauer spectroscopy is used to study effects of neutron irradiation on magnetic properties of Fe-based ferromagnetic metallic glasses. Elastic stress centers are produced during the process of neutron irradiation as a result of atom mixing. Rearrangement of the atoms causes changes in the average value of the hyperfine field distribution and orientation of the net magnetic moment. They are shown to depend on the composition of the investigated samples. Cr-doped metallic glasses depict transformation from ferromagnetic to paramagnetic state at room temperature after neutron irradiation implying changes in the Curie temperature. Presence of Ni in the samples reduces the effects of radiation damage. (orig.)

  1. Structure of cesium loaded iron phosphate glasses: An infrared and Raman spectroscopy study

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Premila, M.; Amarendra, G.; Govindan Kutty, K.V.; Sundar, C.S.; Vasudeva Rao, P.R.

    2012-01-01

    The structure of cesium loaded iron phosphate glasses (IPG) was investigated using infrared and Raman spectroscopy. The spectra of the cesium doped samples revealed a structural modification of the parent glass owing to the incorporation of cesium. The structural changes could be correlated with the variation observed in the glass transition temperature of these glasses. Increased Cs-mediated cationic cross linking appears to be the reason for the initial rise in glass transition temperature up to 21 mol% Cs 2 O in IPG; while, breakdown of the phosphate network with increasing cesium content, brings down the glass transition temperature.

  2. Degradation of partially immersed glass: A new perspective

    Science.gov (United States)

    Chinnam, R. K.; Fossati, P. C. M.; Lee, W. E.

    2018-05-01

    The International Simple Glass (ISG) is a six-component borosilicate glass which was developed as a reference for international collaborative studies on high level nuclear waste encapsulation. Its corrosion behaviour is typically examined when it is immersed in a leaching solution, or when it is exposed to water vapour. In this study, an alternative situation is considered in which the glass is only partially immersed for 7 weeks at a temperature of 90 °C. In this case, half of the glass sample is directly in the solution itself, and the other half is in contact with a water film formed by condensation of water vapour that evaporated from the solution. This results in a different degradation behaviour compared to standard tests in which the material is fully immersed. In particular, whilst in standard tests the system reaches a steady state with a very low alteration rate thanks to the formation of a protective gel layer, in partially-immersed tests this steady state could not be reached because of the continuous alteration from the condensate water film. The constant input of ions from the emerged part of the sample caused a supersaturation of the solution, which resulted in early precipitation of secondary crystalline phases. This setup mimics storage conditions once small amounts of water have entered a glass waste form containing canister. It offers a more realistic outlook of corrosion mechanisms happening in such situations than standard fully-immersed corrosion tests.

  3. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    Science.gov (United States)

    Sathish, K; Thirumaran, S

    2015-08-05

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs

  4. Phase transitions and glass transition in a hyperquenched silica–alumina glass

    DEFF Research Database (Denmark)

    Zhang, Y.F.; Zhao, D.H.; Yue, Yuanzheng

    2017-01-01

    We investigate phase transitions, glass transition, and dynamic behavior in the hyperquenched 69SiO2–31Al2O3 (mol%) glass (SA glass). Upon reheating, the SA glass exhibits a series of thermal responses. Subsequent to the sub-Tg enthalpy release, the glass undergoes a large jump in isobaric heat...... capacity (ΔCp) during glass transition, implying the fragile nature of the SA glass. The mullite starts to form before the end of glass transition, indicating that the SA glass is extremely unstable against crystallization. After the mullite formation, the remaining glass phase exhibits an increased Tg...... and a suppressed ΔCp. The formation of cristobalite at 1553 K indicates the dominance of silica in the remaining glass matrix. The cristobalite gradually re-melts as the isothermal heat-treatment temperature is raised from 1823 to 1853 K, which is well below the melting point of cristobalite, while the amount...

  5. Experimental study on critical breaking stress of float glass under elevated temperature

    International Nuclear Information System (INIS)

    Wang, Yu; Wang, Qingsong; Shao, Guangzheng; Chen, Haodong; Sun, Jinhua; He, Linghui; Liew, K.M.

    2014-01-01

    Highlights: • Critical breaking stresses of clear, ground and coated glass were measured. • Breaking stress and strain of smooth glass were measured from 25 °C to 400 °C. • At approximately 100 °C, critical stress reached the minimum value. • Surface treatment and ambient temperature have notable effects on glass breaking. - Abstract: Cracking and subsequent fallout of glass may significantly affect fire dynamics in compartments. Moreover, the breaking tensile stress of glass, a crucial parameter for breakage occurrence, is the least well known among mechanical properties. In this work, a series of experiments were conducted, through mechanical tensile tests, to directly measure the breaking stress of float glass using Material Testing System 810 apparatus. Clear, ground and coated glass samples with a thickness of 6 mm were measured under ambient conditions, with a room temperature of 25 °C. The breaking stress of smooth glass samples was also measured at 75 °C, 100 °C, 125 °C, 150 °C, 200 °C, 300 °C and 400 °C, respectively. The results show that surface treatment may decrease the critical tensile stress of glass panes. The average breaking stress also fluctuates considerably, from 26.60 to 35.72 MPa with the temperature variations investigated here. At approximately 100 °C, critical stress reached the minimum value at which glass breakage occurs more easily. In addition, the thermal expansion coefficient was established using a thermal dilatometer, to obtain the maximum temperature difference float glass can withstand. It is intended that these results will provide some practical guidelines for fire safety engineers

  6. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  7. Structural modification of silica glass by laser scanning

    International Nuclear Information System (INIS)

    Zhao Jian; Sullivan, James; Zayac, John; Bennett, Ted D.

    2004-01-01

    The thermophysical nature of rapid CO 2 laser heating of silica glass is explored using a numerical simulation that considers the structural state of the glass, as characterized by the fictive temperature. The fictive temperature reflects the thermodynamic temperature at which the glass structure would be in equilibrium. To demonstrate that the thermophysical model can accurately predict the structural change in the glass, the fictive temperature is measured experimentally utilizing the fact that the fictive temperature change corresponds to a change of glass properties that can be revealed through wet chemical etching. The relationship between the etch rate and the fictive temperature is determined by preparing and etching samples of known fictive temperature. Wet chemical etching is used to measure the fictive temperature over the entire laser affected zone and the results are found to compare favorably with the results of the thermophysical model. The model and experimental measurements demonstrate that rapid laser processing results in an increased fictive temperature near the surface of the glass. The fictive temperature increase is about 1000 K and is uniform to within 5% over the laser affected zone. Near the boundary of this zone, the fictive temperature transitions abruptly to the value of the surrounding untreated glass

  8. Optical and spectroscopic investigation on Calcium Borotellurite glass system

    Science.gov (United States)

    Paz, E. C.; Lodi, T. A.; Gomes, B. R. A.; Melo, G. H. A.; Pedrochi, F.; Steimacher, A.

    2016-05-01

    In this work, the glass formation in Calcium Borotellurite (CBTx) system and their optical properties were studied. Six glass samples were prepared by melt-quenching technique and the samples obtained are transparent, lightly yellowish, without any visible crystallites. The results showed that TeO2 addition increases the density, the electronic polarizability and, consequently, the refractive index. The increase of electronic polarizability and optical basicity suggest that TeO2 addition increases the non-bridging oxygen (NBO) concentration. The increase of TeO2 shifts the band edge to longer wavelength owing to increase in non-bridging oxygen ions, resulting in a linear decrease of optical energy gap. The addition of TeO2 increases the temperature coefficient of the optical path length (dS/dT) in room temperature, which are comparable to phosphate and lower than Low Silica Calcium Alumino Silicate (LSCAS) glasses. The values of dS/dT present an increase as a function of temperature for all the samples measured. The results suggest that CBTx is a good candidate for rare-earth doping and several optical applications.

  9. Analysis of early medieval glass beads - Glass in the transition period

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Ziga, E-mail: ziga.smit@ijs.si [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia); Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia); Knific, Timotej [National Museum of Slovenia, Presernova 20, SI-1000 Ljubljana (Slovenia); Jezersek, David [Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia); Istenic, Janka [National Museum of Slovenia, Presernova 20, SI-1000 Ljubljana (Slovenia)

    2012-05-01

    Glass beads from graves excavated in Slovenia and dated archaeologically to the 7th-10th century AD were analysed by the combined PIXE-PIGE method. The results indicate two groups of glass; natron glass made in the Roman tradition and glass made with alkalis from the ash of halophytic plants, which gradually replaced natron glass after c. 800 AD. The alkalis used in the second group of glass seem to be in close relation to a variant of the Venetian white glass that appeared several centuries later. The origin of this glass may be traced to glass production in Mesopotamia and around the Aral Sea. All the mosaic beads with eye decoration, as well as most of the drawn-segmented and drawn-cut beads analysed, are of plant-ash glass, which confirms their supposed oriental origin.

  10. Is There a ‘Glass Ceiling’ for Female Managers in Singapore Organizations?

    Directory of Open Access Journals (Sweden)

    Vlado Dimovski

    2010-12-01

    Full Text Available This study presents an overview of glass-ceiling type barriers inorganizations based on the perceptions of a sample of Singaporemid-level women managers. Previous studies indicated the existenceof a glass ceiling in organizations and presented strategicrecommendations with regard to what corporations could do toremove or reduce the glass ceiling. This study investigates howwomen in middle management perceive their career advancementopportunities and what they consider their organizations tobe doing to support their advancement. Glass ceiling and informalstructures in the organizations will be analyzed from the aspectsof corporate climate, corporate practices, and corporate culture.The relevant questions are derived from the model developed byBergman and Hallberg (2002. This study aims to answer whetherthere is a glass ceiling present in Singapore companies. The studybegins with an introduction of the concept of a glass ceiling thatprevents women from advancing, and then continues with previousstudies on corporate climate, corporate practices and corporateculture, and data analysis of samples from Singapore organizations.The findings show that women middle managers inSingapore organizations face a glass ceiling in their working environmentwhich, for example, inhibits the promotion of femalemanagers, and entails a barrier to the career development opportunitiesof women presents that women do not have enough organizationalsupport, including networking, mentoring, and familyfriendly initiatives.

  11. Electrical conductivity improvement of strontium titanate doped lead vanadate glasses by nanocrystallization

    Energy Technology Data Exchange (ETDEWEB)

    El-Desoky, M.M., E-mail: mmdesoky@gmail.co [Physics Department, Faculty of Education, Suez Canal University, El-Arish (Egypt); Zayed, H.S.S.; Ibrahim, F.A.; Ragab, H.S. [Physics Department, Faculty of Education, Suez Canal University, El-Arish (Egypt)

    2009-11-15

    The structural and electrical conductivity (sigma) of annealed SrTiO{sub 3}-PbO{sub 2}-V{sub 2}O{sub 5} glasses were studied. The annealing of initially glass samples leads to formation of nanocrystalline grains embedded in the glassy matrix. XRD patterns of the glass-ceramic samples show that nanocrystals were embedded in the glassy matrix with an average grain size of 32 nm. The glass-ceramic nanocrystals obtained by annealing at temperatures close to the crystallization temperature T{sub c} exhibit enhancement of electrical conductivity up to four orders of magnitude than initially glasses. The enhancement of the electrical conductivity due to annealing was attributed to two interdependent factors: (i) an increase of concentration of V{sup 4+}-V{sup 5+} pairs; and (ii) formation of defective, well-conducting regions along the glass-crystallites interfaces. From the conductivity temperature relation, it was found that small polaron hopping model was applicable at temperature above theta{sub D}/2 (theta{sub D}, the Debye temperature). The electrical conduction at T >theta{sub D}/2 was due to non-adiabatic small polaron hopping (SPH) of electrons between vanadium ions. The parameters obtained from the fits of the experimental data to this model appear reasonable and are consistent with glass composition.

  12. Electrical conductivity improvement of strontium titanate doped lead vanadate glasses by nanocrystallization

    International Nuclear Information System (INIS)

    El-Desoky, M.M.; Zayed, H.S.S.; Ibrahim, F.A.; Ragab, H.S.

    2009-01-01

    The structural and electrical conductivity (σ) of annealed SrTiO 3 -PbO 2 -V 2 O 5 glasses were studied. The annealing of initially glass samples leads to formation of nanocrystalline grains embedded in the glassy matrix. XRD patterns of the glass-ceramic samples show that nanocrystals were embedded in the glassy matrix with an average grain size of 32 nm. The glass-ceramic nanocrystals obtained by annealing at temperatures close to the crystallization temperature T c exhibit enhancement of electrical conductivity up to four orders of magnitude than initially glasses. The enhancement of the electrical conductivity due to annealing was attributed to two interdependent factors: (i) an increase of concentration of V 4+ -V 5+ pairs; and (ii) formation of defective, well-conducting regions along the glass-crystallites interfaces. From the conductivity temperature relation, it was found that small polaron hopping model was applicable at temperature above θ D /2 (θ D , the Debye temperature). The electrical conduction at T >θ D /2 was due to non-adiabatic small polaron hopping (SPH) of electrons between vanadium ions. The parameters obtained from the fits of the experimental data to this model appear reasonable and are consistent with glass composition.

  13. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    International Nuclear Information System (INIS)

    Vasileva, A.A.; Nazarov, I.A.; Olshin, P.K.; Povolotskiy, A.V.; Sokolov, I.A.; Manshina, A.A.

    2015-01-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag 2 O–0.4P 2 O 5 –0,1Nb 2 O 5 glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag 2 O–0.1Nb 2 O 5 –0.4P 2 O 5 and 0.55Ag 2 O–0.45P 2 O 5 glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown

  14. Microstructure, mechanical, and in vitro properties of mica glass-ceramics with varying fluorine content.

    Science.gov (United States)

    Molla, Atiar Rahaman; Basu, Bikramjit

    2009-04-01

    The design and development of glass ceramic materials provide us the unique opportunity to study the microstructure development with changes in either base glass composition or heat treatment conditions as well as to understand processing-microstructure-property (mechanical/biological) relationship. In the present work, it is demonstrated how various crystal morphology can develop when F(-) content in base glass (K(2)O-B(2)O(3)-Al(2)O(3)-SiO(2)-MgO-F) is varied in the range of 1.08-3.85% and when all are heat treated at varying temperatures of 1000-1120 degrees C. For some selected heat treatment temperature, the heat treatment time is also varied over 4-24 h. It was established that with increase in fluoride content in the glass composition, the crystal volume fraction of the glass-ceramic decreases. Using 1.08% fluoride, more than 80% crystal volume fraction could be achieved in the K(2)O-B(2)O(3)-Al(2)O(3)-SiO(2)-MgO-F system. It was observed that with lower fluoride content glass-ceramic, if heated at 1040 degrees C for 12 h, an oriented microstructure with 'envelop like' crystals can develop. For glass ceramics with higher fluorine content (2.83% or 3.85%), hexagonal-shaped crystals are formed. Importantly, high hardness of around 8 GPa has been measured in glass ceramics with maximum amount of crystals. The three-point flexural strength and elastic modulus of the glass-ceramic (heat treated at 1040 degrees C for 24 h) was 80 MPa and 69 GPa of the sample containing 3.85% fluorine, whereas, similar properties obtained for the sample containing 1.08% F(-) was 94 MPa and 57 GPa, respectively. Further, in vitro dissolution study of the all three glass-ceramic composition in artificial saliva (AS) revealed that leached fluoride ion concentration was 0.44 ppm, when the samples were immersed in AS for 8 weeks. This was much lower than the WHO recommended safety limits of 1.5 ppm. Among all the investigated glass-ceramic samples, the glass ceramic with 3.85% F

  15. Unusual glass-forming ability induced by changes in the local atomic structure in Ti-based bulk metallic glass

    International Nuclear Information System (INIS)

    Kim, Y C; Chang, H J; Kim, D H; Kim, W T; Cha, P R

    2007-01-01

    The effect of partial replacement of Cu by Be in Ti 50 Cu 32 Ni 15 Sn 3 alloy on the thermal properties, structure, and forming ability of an amorphous phase were investigated by differential scanning calorimetry (DSC), x-ray diffraction (XRD), extended x-ray absorption fine structure (EXAFS), and high-resolution transmission electron microscopy (HRTEM). Ti 50 Cu 25 Ni 15 Sn 3 Be 7 alloy shows enhanced glass-forming ability, enabling one to fabricate a fully amorphous bulk metallic glass sample 2 mm in diameter by injection casting. With the replacement, the supercooled liquid region ΔT x (= T x -T g , where T x is the crystallization temperature and T g is the glass transition temperature) decreased from 73 to 45 K and the reduced glass transition temperature T rg (= T g /T 1 , where T 1 is the liquidus temperature) increased from 0.53 to 0.57. The amorphous Ti 50 Cu 25 Ni 15 Sn 3 Be 7 phase showed a formation of short-range-ordered clusters 1-2 nm in size, which is attributed to the strong interaction between Ti and Be. The results show that ΔT x can be used as a thermal parameter reflecting the glass-forming ability of the alloy only when the phase formed during crystallization is the same as the phase competing with the glass transition during solidification

  16. Increase by order of magnitude in quality factor during Cherenkov radiation detection in samples on solid carriers in glass cuvettes Kavalier

    International Nuclear Information System (INIS)

    Podracka, E.; Tykva, R.

    The method of measuring Cherenkov radiation is discussed developed by the authors, based on measuring samples on a solid carrier in glass scintillation cuvettes Kavalier. Increased interaction of emitted beta particles and modified measurement configuration were achieved by putting polyethylene foils of 0.3 mm in thickness and 17 mm in diameter straight to the sample or inserting a polyethylene tube of 13 mm in length and 15 mm in diameter down to the bottom of the cuvette in whose axis the sample is mounted. The application of the said technique can increase the quality factor by an order of magnitude when Czechoslovak-made cuvettes are used and a significantly higher value of quality factor can be obtained than when peak standard cuvettes imported from abroad and the original Huelsen and Prenzel's procedure are used. (B.S.)

  17. The use of positrons to survey alteration layers on synthetic nuclear waste glasses

    International Nuclear Information System (INIS)

    Reiser, Joelle T.; Parruzot, Benjamin; Weber, Marc H.; Ryan, Joseph V.; McCloy, John S.; Wall, Nathalie A.

    2017-01-01

    In order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe 0 in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only. For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe 0 . Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.

  18. The use of positrons to survey alteration layers on synthetic nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Joelle T. [Washington State University, Chemistry Department, Pullman, WA 99164 (United States); Pacific Northwest National Laboratory, Energy and Environment Directorate, Richland, WA 99352 (United States); Parruzot, Benjamin [Pacific Northwest National Laboratory, Energy and Environment Directorate, Richland, WA 99352 (United States); Weber, Marc H. [Washington State University, Center for Materials Research, Pullman, WA 99164 (United States); Ryan, Joseph V., E-mail: joe.ryan@pnnl.gov [Pacific Northwest National Laboratory, Energy and Environment Directorate, Richland, WA 99352 (United States); McCloy, John S. [Washington State University, Chemistry Department, Pullman, WA 99164 (United States); Pacific Northwest National Laboratory, Energy and Environment Directorate, Richland, WA 99352 (United States); Washington State University, School of Mechanical and Materials Engineering, Pullman, WA 99164 (United States); Wall, Nathalie A., E-mail: nawall@wsu.edu [Washington State University, Chemistry Department, Pullman, WA 99164 (United States)

    2017-07-15

    In order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe{sup 0} in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only. For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe{sup 0}. Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.

  19. The use of positrons to survey alteration layers on synthetic nuclear waste glasses

    Science.gov (United States)

    Reiser, Joelle T.; Parruzot, Benjamin; Weber, Marc H.; Ryan, Joseph V.; McCloy, John S.; Wall, Nathalie A.

    2017-07-01

    In order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe0 in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only. For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe0. Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.

  20. Spectroscopic studies of silver boro tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, E. Ramesh, E-mail: apparao.bojja@gmail.com; Kumari, K. Rajani, E-mail: apparao.bojja@gmail.com; Rao, B. Appa, E-mail: apparao.bojja@gmail.com; Bhikshamaiah, G., E-mail: apparao.bojja@gmail.com [Department of Physics, Osmania University, Hyderabad-500007 (India)

    2014-04-24

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO{sub 2} on SBT glass system is that as increasing the concentration of TeO{sub 2} the band intensity at 707 cm{sup −1} increase.

  1. Characterization of glass filter micromodels used for polymer EOR flooding experiments

    Energy Technology Data Exchange (ETDEWEB)

    Foedisch, H.; Wegner, J.; Hincapie-Reina, R.; Ganzer, L. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    This work is conducted as part of the research project DGMK 746 - ''Experimental and Numerical Analysis of Polymer Flooding Processes Using Micromodels - From Pore Scale to Continuum Scale''. The industry standard to assess polymer flood performance is through flooding experiments with cores or plugs. A complement to flooding experiments in cores is represented by micromodels such as glass filters, which resemble real porous media through their porous structures. In this way, an almost unlimited number of equivalent samples can be produced. Moreover, compared to cores the micromodels enable visual access to the flooding process enabling a detailed process description. The sintered glass filters used in this work represent one way to make displacement processes inside artificial structures visible. However, challenges exist to transfer the results obtained from models composed of glass to real plugs or rock sections. Therefore, this study focuses on the comparison of glass filter micromodels and real rock samples composed of Bentheimer sandstone. We determine water permeability and oil-water relative permeability endpoints with flooding experiments, compare capillary pressure functions of the glass models obtained from mercury porosimetry analysis with results from Bentheimer sandstone, and characterize the glass filter with respect of connate water saturation using NMR-spectroscopy and porosity obtained from pycnometer measurements. (orig.)

  2. Spherical 2+p spin-glass model: An exactly solvable model for glass to spin-glass transition

    International Nuclear Information System (INIS)

    Crisanti, A.; Leuzzi, L.

    2004-01-01

    We present the full phase diagram of the spherical 2+p spin-glass model with p≥4. The main outcome is the presence of a phase with both properties of full replica symmetry breaking phases of discrete models, e.g., the Sherrington-Kirkpatrick model, and those of one replica symmetry breaking. This phase has a finite complexity which leads to different dynamic and static properties. The phase diagram is rich enough to allow the study of different kinds of glass to spin glass and spin glass to spin glass phase transitions

  3. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Sushama, D., E-mail: sushasukumar@gmail.com [Research Awardee, LAMP, Dept. of Physics, Nit, Calicut, India and Dept. of Physics, M.S.M. College, Kayamkulam, Kerala (India)

    2014-10-15

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er{sub 2}O{sub 3} doped TeO{sub 2}‐WO{sub 3}‐La{sub 2}O{sub 3} Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  4. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    International Nuclear Information System (INIS)

    Sushama, D.

    2014-01-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er 2 O 3 doped TeO 2 ‐WO 3 ‐La 2 O 3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption

  5. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses

    International Nuclear Information System (INIS)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; Singh, S.P.

    2016-01-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO 2 in Na 2 O–CaO–SrO–P 2 O 5 –SiO 2 system. This work demonstrates that the substitution of SrO for SiO 2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO 2 . The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. - Highlights: • The substitution of SrO was done for SiO 2 in Na 2 O–CaO–SrO–P 2 O 5 –SiO 2 bioactive glass. • Network connectivity significantly influenced on bioactivity and biocompatibility. • In vitro SBF studies showed enhanced HCA crystallinity on the glass surface. • The cell culture studies exhibited better cell compatibility and significant growth. • Density and elastic moduli increased with increasing concentration of strontia.

  6. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses

    Energy Technology Data Exchange (ETDEWEB)

    Arepalli, Sampath Kumar, E-mail: askumar.rs.cer11@iitbhu.ac.in [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Tripathi, Himanshu [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Hira, Sumit Kumar; Manna, Partha Pratim [Immunobiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 (India); Pyare, Ram; Singh, S.P. [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO{sub 2} in Na{sub 2}O–CaO–SrO–P{sub 2}O{sub 5}–SiO{sub 2} system. This work demonstrates that the substitution of SrO for SiO{sub 2} has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO{sub 2}. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. - Highlights: • The substitution of SrO was done for SiO{sub 2} in Na{sub 2}O–CaO–SrO–P{sub 2}O{sub 5}–SiO{sub 2} bioactive glass. • Network connectivity significantly influenced on bioactivity and biocompatibility. • In vitro SBF studies showed enhanced HCA crystallinity on the glass surface. • The cell culture studies exhibited better cell compatibility and significant growth. • Density and elastic moduli increased with increasing concentration of strontia.

  7. Calorimetric investigation of an yttrium-dysprosium spin glass

    International Nuclear Information System (INIS)

    Wenger, L.E.

    1978-01-01

    In an effort to compare the spin glass characteristics of yttrium--rare earth alloys with those of the noble-metal spin glasses, the susceptibility and heat capacity of Y/sub 0.98/Dy/sub 0.02/ have been measured in the temperature range 2.5--40 K. The low-field ac susceptibility measurement shows the characteristic cusp-like peak at 7.64 K. The magnetic specific heat of the same sample shows a peak at 7.0 K and may be qualitatively described as a semi-cusp. The magnetic entropy change from absolute zero to 7 K is approximately 0.52 of cR ln(2J+1). These results are qualitatively different than previous calorimetric results on the archetypal spin glasses, AuFe and CuMn, where rounded maxima are observed at temperatures above the spin glass transition temperatures

  8. Glass binder development for a glass-bonded sodalite ceramic waste form

    International Nuclear Information System (INIS)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; Kroll, Jared O.; Peterson, Jacob A.

    2017-01-01

    This paper discusses work to develop Na_2O-B_2O_3-SiO_2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na_2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.

  9. High-Temperature Thermal Diffusivity Measurements of Silicate Glasses

    Science.gov (United States)

    Pertermann, M.; Hofmeister, A. M.; Whittington, A. G.; Spera, F. J.; Zayac, J.

    2005-12-01

    Transport of heat in geologically relevant materials is of great interest because of its key role in heat transport, magmatism and volcanic activity on Earth. To better understand the thermal properties of magmatic materials at high temperatures, we measured the thermal diffusivity of four synthetic end-member silicate glasses with the following compositions: albite (NaAlSi3O8), orthoclase (KAlSi3O8), anorthite (CaAl2Si2O8), and diopside (CaMgSi2O6). Thermal diffusivity measurements were conducted with the laser-flash technique and data were acquired from room temperature to a maximum temperature near 1100°C, depending on the glass transition temperature. The presence of sub-mm sized bubbles in one of the orthoclase samples had no discernable effect on measured diffusivities. At room temperature, the three feldspar-type glasses have thermal diffusivity (D) values of 0.58-0.61 mm2/s, whereas the diopside glass has 0.52 mm2/s. With increasing temperature, D decreases by 5-10% (relative) for all samples and becomes virtually constant at intermediate temperatures. At higher temperatures, the anorthite and diopside glasses exhibit significant drops in thermal diffusivity over a 50-100°C interval, correlating with previously published heat capacity changes near the glass transition for these compositions. For anorthite, D (in mm2/s) decreases from 0.48 at 750-860°C to 0.36 at 975-1075°C; for diopside, D changes from 0.42 at 630-750°C to 0.30 at 850-910°C, corresponding to relative drops of 24 and 29%, respectively. Albite and orthoclase glasses do not exhibit this change and also lack significant changes in heat capacity near the glass transition. Instead, D is constant at 400-800°C for albite, and for orthoclase values go through a minimum at 500-600°C before increasing slightly towards 1100°C but it never exceeds the room temperature D. Our data on thermal diffusivity correlate closely with other thermophysical properties. Thus, at least in case of simple

  10. Study on the fabrication and photoluminescence characteristics of LiBO2 glass scintillators with the lanthanides activators

    International Nuclear Information System (INIS)

    Sin, S. W.; Hwang, J. H.; Choi, S. H.; Sumarokov, S. Yu.

    2002-01-01

    LiBO 2 glass scintillators were fabricated, and lanthanides(except Pm) oxides or chlorides were used as an activator. For the fabrication of LiBO 2 glasses, optimum heating conditions were obtained, and the photoluminescence of the glasses was measured by the monochromator. For the best transparency of the glass samples, optimum heating temperature and time are 1000 .deg. C and 40 min, respectively. The result of photoluminescence analysis shows that Pr, Nd, Gd, Ho, Er, Tm, Yb, and Lu are not good as activator. Because emission spectrum of samples with them was equal to that of sample without activator. In the case of samples with Europium, the peak of emission spectrum of Eu(III) is 810 nm. And Samples with Ce(III) are 760 nm, and Tb(III) are about 535 nm. Samples with Ce(III) and Tb(III) have the best PL intensity with added sugar in Ar reduction atmosphere, and sample with Eu(III) has the best intensity without a reducing process

  11. Using physical properties of molten glass to estimate glass composition

    International Nuclear Information System (INIS)

    Choi, Kwan Sik; Yang, Kyoung Hwa; Park, Jong Kil

    1997-01-01

    A vitrification process is under development in KEPRI for the treatment of low-and medium-level radioactive waste. Although the project is for developing and building Vitrification Pilot Plant in Korea, one of KEPRI's concerns is the quality control of the vitrified glass. This paper discusses a methodology for the estimation of glass composition by on-line measurement of molten glass properties, which could be applied to the plant for real-time quality control of the glass product. By remotely measuring viscosity and density of the molten glass, the glass characteristics such as composition can be estimated and eventually controlled. For this purpose, using the database of glass composition vs. physical properties in isothermal three-component system of SiO 2 -Na 2 O-B 2 O 3 , a software TERNARY has been developed which determines the glass composition by using two known physical properties (e.g. density and viscosity)

  12. Positron annihilation study on ZnO-based scintillating glasses

    Energy Technology Data Exchange (ETDEWEB)

    Nie Jiaxiang [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China); Yu Runsheng; Wang Baoyi [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Ou Yuwen [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China); Zhong Yurong [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Xia Fang [School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Chen Guorong, E-mail: grchen@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China)

    2009-04-15

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO{sub 2}-45ZnO-xBaF{sub 2} (x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components {tau}{sub 1}, {tau}{sub 2}, and {tau}{sub 3} are {approx}0.23 ns, {approx}0.45 ns, and {approx}1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF{sub 2} concentration from 5 mol% to 10 mol%, then decreases as BaF{sub 2} further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF{sub 2} contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  13. Dissolution of basaltic glass in seawater: Mechanism and rate

    International Nuclear Information System (INIS)

    Crovisier, J.L.; Honnorez, J.; Eberhart, J.P.

    1987-01-01

    Basaltic glasses are considered as natural analogues for nuclear waste glasses. Thermodynamic computer codes used to evaluate long term behavior of both nuclear waste and basaltic glasses require the knowledge of the dissolution mechanism of the glass network. The paper presents the results of a series of experiments designed to study the structure and chemical composition of alteration layers formed on the surface of artificial tholeiitic glass altered in artificial seawater. Experiments were performed at 60 degree C, 1 bar and 350 bars in non-renewed conditions. A natural sample from Palagonia (Sicily) has been studied by electron microscopy and comparison between natural and experimental palagonitic layers is made. The behavior of dissolved silica during experiments, and both the structure and the chemical composition of the palagonitic layers, indicate that they form by precipitation of secondary minerals from solution after a total breakdown of the glassy network, i.e., congruent dissolution of the glass. Hence the dissolution equation necessary for thermodynamic modelling of basaltic glass dissolution in seawater at low temperature must be written as a simple stoichiometric process. These experiments indicate that the transformation of glass to palagonitic material is not isovolumetric. Hence it is preferable to use Fe or Ti as conservative elements for chemical budget calculations

  14. Water sorption and glass transition of amorphous sugars containing BSA

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, K.; Suzuki, T.; Tatsumichi, T.; Kirii, S.; Okazaki, M. [Kyoto Univ., Kyoto (Japan). Dept. of Chemical Engineering

    2000-08-01

    Water sorption and glass transition of four amorphous sugars (lactose, maltose, sucrose, and trehalose) containing bovine serum albumin (BSA) are investigated. Freeze-dried sugar-BSA samples equilibrated at several water activities ranging from 0 to 0.43 were prepared. Moisture content and glass transition temperature (T{sub g}) were measured. For the all sugars, it is found that BSA lowers T{sub g} at low water activity, and raises it at high water activity. It is also found that the difference between T{sub g} of the sugar-BSA samples and that of the corresponding amorphous sugar samples (T{sub g0}) depends mainly on T{sub g0}. (author)

  15. Radionuclide decay effects on waste glass corrosion and weathering

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.

    1993-01-01

    The release of glass components into solution, including radionuclides, may be influenced by the presence of radiolytically produced nitric acid, carboxylic acid, and transient water dissociation products such as ·OH and O 2 - . Under batch test conditions, glass corrosion has been shown to increase up to a maximum of three-to five-fold in irradiated tests relative to nonirradiated tests, while in other studies the presence of radiolytic products has actually decreased glass corrosion rates. Bicarbonate groundwaters will buffer against pH decreases and changes in corrosion rates. Under high surface area-to-solution volume (S/V) conditions, the bicarbonate buffering reservoir may be quickly overwhelmed by radiolytic acids that are concentrated in the thin films of water contacting the samples. Glass reaction rates have been shown to increase up to 10-to-15-fold due to radiation exposure under high S/V conditions. Radiation damage to solid glass materials results in bond damage and atomic displacements. This type of damage has been shown to increase the release rates of glass components up to four-fold during subsequent corrosion tests, although under actual disposal conditions, glass annealing processes may negate the solid radiation damage effects

  16. Study on the fabrication and photoluminescence characteristics of LiPO3 glass scintillators with the lanthanides activators

    International Nuclear Information System (INIS)

    Jeong, S. Z.; Lee, J. M.; Hwang, J. H.; Choi, S. H.

    2001-01-01

    In this syudy, LiPO 3 glass scintillators were fabricated, and lanthanides (except Pm) oxides or chlorides were used as an activator. For the fabrication of LiPO 3 glasses, optimum heating conditions were obtained, and the photoluminescence of the glasses was measured by the monochromator. For the best transparency of the glass samples, optimum heating temperature and time is 950 .deg. C and 90 min, respectively. As the result of photoluminescence analysis, it was impossible to apply Pr, Nd, Gd, Ho, Er, Tm, Yb, and Lu to activator. Because emission spectrum of samples with them was equal to that of sample without activator. In case of samples with Europium, the peak of emission spectrum of Eu(II) and Eu(III) is 420 nm and 620 nm, separately. And Samples with Ce(III) are about 380 nm, and Tb(III) are about 550 nm. On the fabrication of LiPO 3 glass samples, PL intensity was increased by adding sugar as reductant, and using Ar reduction atmosphere. And the optimum reduction conditions were differed as to the kinds of activators. Samples with Eu(II) and Tb(III) have the best PL intensity in the Ar reduction atmosphere, and sample with Ce(III) have the best intensity by added sugar

  17. Microstructuring of glasses

    CERN Document Server

    Hülsenberg, Dagmar; Bismarck, Alexander

    2008-01-01

    As microstructured glass becomes increasingly important for microsystems technology, the main application fields include micro-fluidic systems, micro-analysis systems, sensors, micro-actuators and implants. And, because glass has quite distinct properties from silicon, PMMA and metals, applications exist where only glass devices meet the requirements. The main advantages of glass derive from its amorphous nature, the precondition for its - theoretically - direction-independent geometric structurability. Microstructuring of Glasses deals with the amorphous state, various glass compositions and their properties, the interactions between glasses and the electromagnetic waves used to modify it. Also treated in detail are methods for influencing the geometrical microstructure of glasses by mechanical, chemical, thermal, optical, and electrical treatment, and the methods and equipment required to produce actual microdevices.

  18. Distribusi Streptococcus mutans pada Tepi Tumpatan Glass Ionomer

    Directory of Open Access Journals (Sweden)

    Abdul Muthalib

    2015-10-01

    Full Text Available Secondary caries always occurs as a result of the filling not being hermetically. Purposes of this research is to prove whether there is a leak on the border of the tooth enamel and border between the Glass-ionomer filling with the Streptococcus mutans infection with parameter of SMAAPPI (Simplified S. mutans Approximal Plaque Index by Keeni et al, 1981. The subject of the research were 20 patients who came to the Dental Clinic at University of Indonesia with criteria possessing Glass-ionomer filling at the lower jaws. Collection of the samples were dental plaque gathered using a 1.5 mm excavator to scrape one way direction from the enamel, along the border between the enamel and Glass-ionomer filling and Glass-ionomer filling's surface. Isolation with medium transport sem-synthetic Cariostat and TSY20B and identification by using biochemical test. isolated colony strain local Streptococcus mutans from enamel, the border enamel and Glass-ionomer and the surface of the Glass-ionomer. The results were Streptococcus mutans were found from enamel 3006 colonies, on the border between the enamel and Glass-ionomer 143 colonies and on the surface of the Glss-ionomer 7291 colonies. Amoung of Streptococcus mutans colony obtained on the border of the enamel and Glass-ionomer were smaller compared to the surface of the Glass-ionomer and tooth enamel. Concluded that the leak of the filling was not caused by the number of distributed Streptooccus mutans colonies on the side, because the fluoroapatite fastener occurred due to the Glass-ionomer releasing in fluor along the border of the filling.

  19. Ferroelectricity of strained SrTiO3 in lithium tetraborate glass-nanocomposite and glass-ceramic

    Science.gov (United States)

    Abdel-Khalek, E. K.; Mohamed, E. A.; Kashif, I.

    2018-02-01

    Glass-nanocomposite (GNCs) sample of the composition [90Li2B4O7-10SrTiO3] (mol %) was prepared by conventional melt quenching technique. The glassy phase and the amorphous nature of the GNCs sample were identified by Differential thermal analysis (DTA) and X-ray diffraction (XRD) studies, respectively. DTA of the GNCs exhibits sharp and broad exothermic peaks which represent the crystallization of Li2B4O7 and SrTiO3, respectively. The tetragonal Li2B4O7 and tetragonal SrTiO3 crystalline phases in glass-ceramic (GC) were identified by XRD and scanning electron microscopic (SEM). The strain tetragonal SrTiO3 phase in GNCs and GC has been confirmed by SEM. The values of crystallization activation energies (Ec1 and Ec2) for the first and second exothermic peaks are equal to 174 and 1452 kJ/mol, respectively. The Ti3+ ions in tetragonal distorted octahedral sites in GNCs were identified by optical transmission spectrum. GNCs and GC samples exhibit broad dielectric anomalies at 303 and 319 K because of strained SrTiO3 ferroelectric, respectively.

  20. High electric field conduction in low-alkali boroaluminosilicate glass

    Science.gov (United States)

    Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.

    2018-02-01

    Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.

  1. Surface alteration and physical properties of glass from the Cretaceous-Tertiary boundary

    Science.gov (United States)

    Barkatt, A.; Sang, J.C.; Thorpe, A.N.; Senftle, F.E.; Talmy, I.G.; Norr, M.K.; Mazer, J.J.; Izett, G.; Sigurdsson, Haraldur

    1994-01-01

    The scalloped surface feature on Cretaceous-Tertiary boundary glass is often explained as being due to terrestrial aqueous leaching. Leaching of man-made glass results in a reduction in density of the glass. Also, Fe, because of its relative insolubility, is concentrated by the leaching process. Thus, the Haitian glass specimens which have been heavily altered should have a thin rim of less dense glass in which the Fe is concentrated compared to the core glass. The higher Fe concentration in the rim glass should cause it to have an enhanced Curie constant and a lower density compared to the unaltered glass. The magnetic Curie constant, density, and scanning electron microscopic studies were made on altered specimens of Haitian glass and also on specimens showing a minimum of alteration. The results show that the less altered samples have the highest density and the lowest Curie constant. The data substantiate the terrestrial hypothesis. ?? 1994.

  2. Neptunium immobilization and recovery using phase separated glasses

    International Nuclear Information System (INIS)

    Meaker, T.F.

    1997-01-01

    A phase separated (amorphous) glass has been developed which allows very efficient recovery of +4 valence actinides. The total amount of crystal formation in a heat treated vycor-type glass can be controlled with time, temperature and loading. Heat treatments at lower temperatures and for less time inhibit crystal formation while still allowing significant phase separation. If the Thorium loading exceeds 10 weight percent oxide, crystal formation during heat treatment may not be avoided. The total amount of crystal growth has a direct affect on thorium leachability. An increase in crystal formation limits the Th recovery significantly. High thorium loaded glasses (15 weight percent) with heat treatments (increased crystal formation) leach at approximately the same rate as non-heat treated glasses. A phase separated (amorphous) glass has been produced using thorium as a surrogate for neptunium. Two different homogeneous vycor compositions targeting 10 and 15 weight percent thorium oxide have been processed, heat treated and leached with concentrated nitric acid at 110 degrees C. Thorium recovery rates have been shown to be considerably better when the glass has been heat treated inducing phase separation that is relatively crystal free. Non-heat treated and crystalline (due to heat treatment) glasses have similar Th recovery rates with respect to surface area. Phase separated amorphous samples were found to have significantly higher thorium concentrations in the leachate compared to non-heat treated and crystalline glasses for all mesh sizes. All glasses had increased thorium concentration in the leachate as surface area increased

  3. Laser properties of an improved average-power Nd-doped phosphate glass

    International Nuclear Information System (INIS)

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.

    1995-01-01

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young's modulus), and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime

  4. Novel selenium containing boro-phosphate glasses: Preparation and structural study

    Energy Technology Data Exchange (ETDEWEB)

    Ciceo-Lucacel, R.; Radu, T., E-mail: teodora.radu@phys.ubbcluj.ro; Ponta, O.; Simon, V.

    2014-06-01

    We synthesized a new boro-phosphate glass system with different %mol SeO{sub 2} content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P{sub 2}O{sub 7}{sup 4−} dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO{sub 3}{sup −} middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ{sub 3} or BØ{sub 2}O{sup −} units. A small contribution of BØ{sub 4}{sup −} units was also detected from the FT-IR spectra of glasses. For SeO{sub 2} content higher than 5 mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. - Highlights: • New P{sub 2}O{sub 5}-CaO-B{sub 2}O{sub 3}-SeO{sub 2} glasses synthesized by conventional melt quenching method. • Evidences for the Se ions modifier role in the local structure by FT-IR and XPS. • Significant advances in understanding the structural properties of the new system.

  5. Novel selenium containing boro-phosphate glasses: Preparation and structural study

    International Nuclear Information System (INIS)

    Ciceo-Lucacel, R.; Radu, T.; Ponta, O.; Simon, V.

    2014-01-01

    We synthesized a new boro-phosphate glass system with different %mol SeO 2 content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P 2 O 7 4− dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO 3 − middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ 3 or BØ 2 O − units. A small contribution of BØ 4 − units was also detected from the FT-IR spectra of glasses. For SeO 2 content higher than 5 mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. - Highlights: • New P 2 O 5 -CaO-B 2 O 3 -SeO 2 glasses synthesized by conventional melt quenching method. • Evidences for the Se ions modifier role in the local structure by FT-IR and XPS. • Significant advances in understanding the structural properties of the new system

  6. Low-field susceptibilities of rare-earth spin glass alloys

    International Nuclear Information System (INIS)

    Sarkissian, B.V.B.

    1978-01-01

    The low-field AC susceptibilities of the dilute rare-earth spin glass alloys Sc-Gd, Sc-Tb, Pr-Tb and Pr-Gd are reported and compared with low-field DC susceptibilities of the same samples. The similarities between their behaviour and that of Au-Fe spin glass alloys is also considered. When single-ion anisotropy is important, this can cause a dramatic broadening of the sharp peak. Broadening in the AC peak has also observed as the frequency of the deriving field is increased. These data can be qualitatively discussed in terms of a recent magnetic-cluster model for spin glasses. (author)

  7. Adsorption of Cationic Peptides to Solid Surfaces of Glass and Plastic

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2015-01-01

    , that the peptides adsorb to solid surfaces of glass and plastic. Specifically, we use analytical HPLC to systematically quantify the adsorption of the three cationic membraneactive peptides mastoparan X, melittin, and magainin 2 to the walls of commonly used glass and plastic sample containers. Our results show...

  8. lead glass brick

    CERN Multimedia

    When you look through the glass at a picture behind, the picture appears raised up because light is slowed down in the dense glass. It is this density (4.06 gcm-3) that makes lead glass attractive to physicists. The refractive index of the glass is 1.708 at 400nm (violet light), meaning that light travels in the glass at about 58% its normal speed. At CERN, the OPAL detector uses some 12000 blocks of glass like this to measure particle energies.

  9. Improvement of dose determination using glass display of mobile phones for accident dosimetry

    International Nuclear Information System (INIS)

    Discher, M.; Woda, C.; Fiedler, I.

    2013-01-01

    Previous studies have demonstrated that mobile phones can be used as suitable emergency dosimeters in case of an accidental radiation overexposure. Glass samples extracted from displays of mobile phones are sensitive to ionizing radiation and can be measured using the thermoluminescence (TL) method. A non-radiation induced background signal (so-called zero dose signal) was observed which overlaps with the radiation induced signal and consequently limits the minimum detectable dose. Investigations of several glasses from different displays showed that it is possible to reduce the zero dose signal up to 90% by etching the glass surface with concentrated hydrofluoric acid. With this approach a reduction of the detection limit of a factor of four, corresponding to approximately 80 mGy, was achieved. Dosimetric properties of etched samples are presented and developed protocols validated by dose recovery tests under realistic conditions. With the improvements in sample preparation the proposed method of dose determination is a competitive alternative to OSL/TL measurements of electronic components and chip cards and provides a useful option for retrospective accident dosimetry. -- Highlights: ► Glass displays from mobile phones have good potential for emergency dosimetry. ► The background signal can be reduced by etching glass samples with hydrofluoric acid. ► The minimum detectable dose can be lowered to approximately 80 mGy

  10. Glass-like, low-energy excitations in neutron-irradiated quartz

    International Nuclear Information System (INIS)

    Gardner, J.W.

    1980-01-01

    The specific heat and thermal conductivity of neutron-irradiated crystalline quartz have been measured for temperatures approx. = 0.1 to 5 K. Four types of low-energy excitations are observed in the irradiated samples, two of which can be removed selectively by heat treatment. One set of remaining excitations gives rise to low-temperature thermal behavior characteristic of glassy (amorphous) solids. The density of these glass-like excitations can be 50% the density observed in vitreous silica, yet the sample still retains long-range atomic order. In a less-irradiated sample, glass-like excitations may be present with a density only approx. = 2.5% that observed in vitreous silica and possess a similar broad energy spectrum over 0.1 to 1 K

  11. Neural network analysis of nuclear waste glass composition vs durability

    International Nuclear Information System (INIS)

    Seibel, C.K.

    1994-01-01

    The relationship between the chemical composition of oxide glasses and their physical properties is poorly understood, but it is becoming more important as vitrification (transformation into glass) of high-level nuclear waste becomes the favored method for long-term storage. The vitrified waste will be stored deep in geologic repositories where it must remain intact for at least 10,000 years. A strong resistance to groundwater exposure; i.c. a slow rate of glass dissolution, is of great importance. This project deals specifically with glass samples developed and tested for the nuclear fuel reprocessing facility near West Valley, New York. This facility needs to dispose of approximately 2.2 million liters of high-level radioactive liquid waste currently stored in stainless steel tanks. A self-organizing, artificial neural network was used to analyze the trends in the glass dissolution data for the effects of composition and the resulting durability of borosilicate glasses in an aqueous environment. This durability data can be used to systematically optimize the properties of the complex nuclear glasses and slow the dissolution rate of radionuclides into the environment

  12. Examination of the Thermo-mechanical Properties of E-Glass/Carbon Composites

    Directory of Open Access Journals (Sweden)

    Hande Sezgin

    2017-12-01

    Full Text Available Eight-ply E-glass, carbon and E-glass/carbon fabric-reinforced polyester based hybrid composites were manufactured in this study. A vacuum infusion system was used as the production method. Dynamic mechanical analysis, thermogravimetric analysis and differential scanning calorimetry analysis were conducted to examine the thermo-mechanical properties of composite samples. The effect of reinforcement type and different stacking sequences of fabric plies on the thermo-mechanical properties of composite samples were also investigated. Results showed that the type and alignment of reinforcement material has a signifi cant effect on the dynamic mechanical properties of composite samples.

  13. Thermomechanical analyses of phenolic foam reinforced with glass fiber mat

    International Nuclear Information System (INIS)

    Zhou, Jintang; Yao, Zhengjun; Chen, Yongxin; Wei, Dongbo; Wu, Yibing

    2013-01-01

    Highlights: • Over 10% glass fiber was used to reinforce phenolic foam in the shape of glass fiber mat. • Nucleating agents were used together with glass fiber mat and improved tensile strength of phenolic foam by 215.6%. • Nucleating agents lead to a smaller bubble size of phenolic foam. • The glass transition temperature of phenolic foam remained unchanged during the reinforcement. - Abstract: In this paper, thermomechanical analysis (TMA) and dynamic mechanical analysis were employed to study the properties of phenolic foam reinforced with glass fiber mat. Unreinforced phenolic foam was taken as the control sample. Mechanical tests and scanning electron microscopy were performed to confirm the results of TMA. The results show that glass fiber mat reinforcement improves the mechanical performance of phenolic foam, and nucleating agents improve it further. Phenolic foam reinforced with glass fiber mat has a smaller thermal expansion coefficient compared with unreinforced foam. The storage modulus of the reinforced phenolic foam is also higher than that in unreinforced foam, whereas the loss modulus of the former is lower than that of the latter. The glass transition temperature of the phenolic foam matrix remains unchanged during the reinforcement

  14. Thermoluminescence Response of Copper-Doped Potassium Borate Glass Subjected to 6 Megavolt X-Ray Irradiation

    Science.gov (United States)

    Hossain, I.; Shekaili, N. K.; Wagiran, H.

    2015-03-01

    This study addresses the characteristics of Cu-doped and undoped potassium borate glass for use as ionizing radiation dosimeters by investigating and comparing the thermoluminescence responses, linearity, sensitivity and dose response s of the two types of glasses. A number of samples based on xK 2 CO 3 + (100 - x)H 3 BO 3 , where 10 ≤ x ≤ 30 mol.%, have been prepared using a melt quenching technique. The amorphous phases were identified using X-ray diffraction (XRD). The undoped potassium borate samples 20K 2 CO 3 + 80H 3 BO 3 (mol.%) and Cu-doped (0.5 mol.%) samples were placed in a solid phantom apparatus and irradiated with in X-ray tube under 6 MV accelerating voltage with doses ranging from 0.5 to 4.0 Gy. This beam was produced by the Primus MLC 3339 linear accelerator (LINAC) available at Hospital Sultan Ismail, Johor Bahru, Malaysia. The results clearly show the superiority of Cu-doped glass in terms of response and sensitivity to producing luminescence over undoped potassium borate glass. The sensitivity of Cu-doped glass is 6.75 times greater than that of undoped glass.

  15. Excess free volume in metallic glasses measured by X-ray diffraction

    International Nuclear Information System (INIS)

    Yavari, Alain Reza; Moulec, Alain Le; Inoue, Akihisa; Nishiyama, Nobuyuki; Lupu, Nicoleta; Matsubara, Eiichiro; Botta, Walter Jose; Vaughan, Gavin; Di Michiel, Marco; Kvick, Ake

    2005-01-01

    In crystalline materials, lattice expansion as measured by diffraction methods differs from the expansion of the sample dimensions as measured by dilatometry, due to the contribution of thermal vacancies to the latter. We have found that in glassy materials and metallic glasses in particular, this is not the case for the contribution of free volume. These findings are the first direct experimental confirmation of simulation results indicating that atomic size holes are unstable in glasses such that free volume is dispersed randomly. This allows direct measurement of excess free volume in glasses using diffraction methods in place of dilatometry, which is difficult to use once the sample softens at the glass transition temperature T g and above. Quenched-in and deformation-induced free-volume ΔV f were measured by X-ray diffraction in transmission during heating using synchrotron light. The measured thermal expansion coefficients α th were the same as in dilatometry. The glass transition T g appeared as a break in the value of α th at T g . The 'change-of-slope method' was applied to the kinetics of relaxation to derive the activation energy for the free-volume annihilation process

  16. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    Energy Technology Data Exchange (ETDEWEB)

    Vasileva, A.A., E-mail: anvsilv@gmail.com [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation); Nazarov, I.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg (Russian Federation); Olshin, P.K.; Povolotskiy, A.V. [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation); Sokolov, I.A. [St.Petersburg State Polytechnical University, St.Petersburg (Russian Federation); LTD “AtomTjazhMash”, St.Petersburg (Russian Federation); Manshina, A.A. [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation)

    2015-10-15

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag{sub 2}O–0.4P{sub 2}O{sub 5}–0,1Nb{sub 2}O{sub 5} glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag{sub 2}O–0.1Nb{sub 2}O{sub 5}–0.4P{sub 2}O{sub 5} and 0.55Ag{sub 2}O–0.45P{sub 2}O{sub 5} glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown.

  17. High-silica glass matrix process for high-level waste solidification

    International Nuclear Information System (INIS)

    Simmons, J.H.; Macedo, P.B.

    1981-01-01

    In the search for an optimum glass matrix composition, we have determined that chemical durability and thermal stability are maximized, and that stress development is minimized for glass compositions containing large concentrations of glass-forming oxides, of which silica is the major component (80 mol%). These properties and characteristics were recently demonstrated to belong to very old geological glasses known as tektites (ages of 750,000 to 34 million years.) The barrier to simulating tektite compositions for the waste glasses was the high melting temperature (1600 to 1800 0 C) needed for these glasses. Such temperatures greatly complicate furnace design and maintenance and lead to an intolerable vaporization of many of the radioisotopes into the off-gas system. Research conducted at our laboratory led to the development of a porous high-silica waste glass material with approximately 80% SiO 2 by mole and 30% waste loading by weight. The process can handle a wide variety of compositions, and yields long, elliptical, monolithic samples, which consist of a loaded high-silica core completely enveloped in a high-silica glass tube, which has collapsed upon the core and sealed it from the outside. The outer glass layer is totally free of waste isotopes and provides an integral multibarrier protection system

  18. Contrasting the magnetic response between magnetic-glass and reentrant spin-glass

    OpenAIRE

    Roy, S. B.; Chattopadhyay, M. K.

    2008-01-01

    Magnetic-glass is a recently identified phenomenon in various classes of magnetic systems undergoing a first order magnetic phase transition. We shall highlight here a few experimentally determined characteristics of magnetic-glass and the relevant set of experiments, which will enable to distinguish a magnetic-glass unequivocally from the well known phenomena of spin-glass and reentrant spin-glass.

  19. DSC and Raman studies of silver borotellurite glasses

    Science.gov (United States)

    Kaur, Amandeep; Khanna, Atul; Gonzàlez, Fernando

    2016-05-01

    Silver borotellurite glasses of composition: xAg2O-yB2O3-(100-x-y)TeO2 (x=20-mol%, y = 0, 10, 20 and 30-mol%) were prepared and characterized by density, X-ray diffraction (XRD), differential scanning calorimetry, and Raman spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreases while the glass transition temperature increases with increase in B2O3 content from 10 to 30-mol%. Raman study shows that coordination number of Te with oxygen decreases steadily from 3.42 to 3.18 on adding B2O3 due to the transformation of TeO4 into TeO3 units.

  20. Effects of finite size on spin glass dynamics

    Science.gov (United States)

    Sato, Tetsuya; Komatsu, Katsuyoshi

    2010-12-01

    In spite of comprehensive studies to clarify a variety of interesting phenomena of spin glasses, their understanding has been insufficiently established. To overcome such a problem, fabrication of a mesoscopic spin glass system, whose dynamics can be observed over the entire range to the equilibrium, is useful. In this review the challenges of research that has been performed up to now in this direction and our recent related studies are introduced. We have established to study the spin glass behaviour in terms of droplet picture using nanofabricated mesoscopic samples to some extent, but some problems that should be clarified have been left. Finally, the direction of some new studies is proposed to solve the problems.

  1. Hydration of Rhyolitic Glasses: Comparison Between High- and Low-Temperature Processes

    Science.gov (United States)

    Anovitz, L.; Fayek, M.; Cole, D. R.; Carter, T.

    2012-12-01

    While a great deal is known about the interaction between water and rhyolitic glasses and melts at temperatures above the glass transition, the nature of this interaction at lower temperatures is more obscure. Comparisons between high- and low-temperature diffusive studies suggest that several factors play an important role under lower-temperatures conditions that are not significant at higher temperatures. Surface concentrations, which equilibrate quickly at high temperature, change far more slowly as temperatures decrease, and may not equilibrate at room temperature for hundreds or thousands of years. Coupled with temperature-dependent diffusion coefficients this complicates calculation of diffusion profiles as a function of time. A key factor in this process appears to be the inability of "self-stress", caused by the in-diffusing species, to relax at lower temperatures, a result expected below the glass transition. Regions of the glass hydrated at low temperatures are strongly optically anisotropic, and preliminary calculations suggest that the magnitude of stress involved may be very high. On the microstuctural scale, extrapolations of high-temperature FTIR data to lower temperatures suggests there should be little or no hydroxyl present in glasses "hydrated" at low temperatures. Analyses of both block and powder samples suggest that this is generally true in the bulk of the hydrated glass, excluding hydroxyl groups that formed during the initial cooling of the melt. However, hydroxyl do groups appear to be present at the glass surface, where both SIMS and neutron reflectometry data suggest hydration levels may be higher than projected from the bulk of the glass. Isotopic exchange experiments also suggest that bonding is relatively weak, as hydration water exchanges readily with the enviroment. All of these observations lead to the conclusion that the observed stress is due to the presence of interstructural, rather than bonded, water. This likely explains the

  2. Role of MnO in manganese–borate binary glass systems

    Indian Academy of Sciences (India)

    Structural and thermal properties of x MnO−( 100 − x )B 2 O 3 (where x = 40 , 50 and 60 mol%) glass samples have been investigated with the employment of various techniques. Fourier transform infrared spectroscopy results revealed the influence of MnO on glass matrix. Decrease of B–O bond-related band intensities has ...

  3. Comparison of a model vapor deposited glass films to equilibrium glass films

    Science.gov (United States)

    Flenner, Elijah; Berthier, Ludovic; Charbonneau, Patrick; Zamponi, Francesco

    Vapor deposition of particles onto a substrate held at around 85% of the glass transition temperature can create glasses with increased density, enthalpy, kinetic stability, and mechanical stability compared to an ordinary glass created by cooling. It is estimated that an ordinary glass would need to age thousands of years to reach the kinetic stability of a vapor deposited glass, and a natural question is how close to the equilibrium is the vapor deposited glass. To understand the process, algorithms akin to vapor deposition are used to create simulated glasses that have a higher kinetic stability than their annealed counterpart, although these glasses may not be well equilibrated either. Here we use novel models optimized for a swap Monte Carlo algorithm in order to create equilibrium glass films and compare their properties with those of glasses obtained from vapor deposition algorithms. This approach allows us to directly assess the non-equilibrium nature of vapor-deposited ultrastable glasses. Simons Collaboration on Cracking the Glass Problem and NSF Grant No. DMR 1608086.

  4. Elastic moduli of a Brownian colloidal glass former

    Science.gov (United States)

    Fritschi, S.; Fuchs, M.

    2018-01-01

    The static, dynamic and flow-dependent shear moduli of a binary mixture of Brownian hard disks are studied by an event-driven molecular dynamics simulation. Thereby, the emergence of rigidity close to the glass transition encoded in the static shear modulus G_∞ is accessed by three methods. Results from shear stress auto-correlation functions, elastic dispersion relations, and the elastic response to strain deformations upon the start-up of shear flow are compared. This enables one to sample the time-dependent shear modulus G(t) consistently over several decades in time. By that a very precise specification of the glass transition point and of G_∞ is feasible. Predictions by mode coupling theory of a finite shear modulus at the glass transition, of α-scaling in fluid states close to the transition, and of shear induced decay in yielding glass states are tested and broadly verified.

  5. Thermal shock behaviour of SiC-fibre-reinforced glasses

    International Nuclear Information System (INIS)

    Klug, T.; Reichert, J.; Brueckner, R.

    1992-01-01

    The preparation of two SiC-fibre-reinforced glasses with very different thermal expansion coefficients and glass transition temperatures is described and the influence of long-time temperature and thermal shock behaviour of these composites on the mechanical properties is investigated by means of bending test experiments before and after thermal treatments. It will be shown from experiments and calculations on stresses due to thermal expansion mismatch between fibre and glass matrix that not only best mechanical properties but also best thermal shock behaviour are connected with low tensile intrinsic stresses produced by thermal expansion mismatch during preparation. The thermal shock resistance of the best composite (SiC fibre/DURAN glass) does not show a significant decrease of flexural strength even after 60 shocks from 550 to 25deg C in water, while the bulk glass sample of the same dimension was destroyed by one thermal shock from 350deg C. (orig.) [de

  6. High-average-power laser medium based on silica glass

    Science.gov (United States)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    Silica glass is one of the most attractive materials for a high-average-power laser. We have developed a new laser material base don silica glass with zeolite method which is effective for uniform dispersion of rare earth ions in silica glass. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action. As the main reason of bubbling is due to hydroxy species remained in the gelation same, we carefully choose colloidal silica particles, pH value of hydrochloric acid for hydrolysis of tetraethylorthosilicate on sol-gel process, and temperature and atmosphere control during sintering process, and then we get a bubble less transparent rare earth doped silica glass. The refractive index distortion of the sample also discussed.

  7. SAXS study of growth of AgCl crystallites in photo chromic glass

    International Nuclear Information System (INIS)

    Takatohi, Urias E.; Bittencourt, Diomar; Watanabe, Shigueo

    1996-01-01

    A class of photo chromic glasses presents a reversible change in their optical absorption when exposed to light due to small silver halide crystals inside the glassy matrix. The silver halides crystals grow during the annealing of the glass. A base glass of 40 Si O 2 . 10 Al 2 O 3 .(16,1) K 2 O. (33,9) B 2 O 3 doped Ag CL and Cu O was produced and submited to different annealing programs, SAXS measurements were performed with samples annealed for 0.5h at temperatures from 480 O C to 620 O C and samples annealed at 600 0 C for times from 0.25h to 1.25h. Guinier radius (R g ) for samples annealed between 570 and 620 0 C show crescent growth rate in the interval. For samples annealed at 600 0 C for different times t a R 3 g = Kt law can be observed. Variation on optical absorption spectra for samples exposed to light show a correlation with the SAXS results. (author)

  8. Diopside-Fluorapatite-Wollastonite Based Bioactive Glasses and Glass-ceramics =

    Science.gov (United States)

    Kansal, Ishu

    Bioactive glasses and glass-ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaO-MgO-P2O5-SiO2-F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) - fluorapatite (9CaO•3P2O5•CaF2) - wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside - fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium

  9. Optical Properties of Bismuth Tellurite Based Glass

    Directory of Open Access Journals (Sweden)

    Hooi Ming Oo

    2012-04-01

    Full Text Available A series of binary tellurite based glasses (Bi2O3x (TeO2100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO. The Fourier transform infrared spectroscopy (FTIR results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases.

  10. Optical Properties of Bismuth Tellurite Based Glass

    Science.gov (United States)

    Oo, Hooi Ming; Mohamed-Kamari, Halimah; Wan-Yusoff, Wan Mohd Daud

    2012-01-01

    A series of binary tellurite based glasses (Bi2O3)x (TeO2)100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO). The Fourier transform infrared spectroscopy (FTIR) results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases. PMID:22605999

  11. Shear-stress fluctuations and relaxation in polymer glasses

    Science.gov (United States)

    Kriuchevskyi, I.; Wittmer, J. P.; Meyer, H.; Benzerara, O.; Baschnagel, J.

    2018-01-01

    We investigate by means of molecular dynamics simulation a coarse-grained polymer glass model focusing on (quasistatic and dynamical) shear-stress fluctuations as a function of temperature T and sampling time Δ t . The linear response is characterized using (ensemble-averaged) expectation values of the contributions (time averaged for each shear plane) to the stress-fluctuation relation μsf for the shear modulus and the shear-stress relaxation modulus G (t ) . Using 100 independent configurations, we pay attention to the respective standard deviations. While the ensemble-averaged modulus μsf(T ) decreases continuously with increasing T for all Δ t sampled, its standard deviation δ μsf(T ) is nonmonotonic with a striking peak at the glass transition. The question of whether the shear modulus is continuous or has a jump singularity at the glass transition is thus ill posed. Confirming the effective time-translational invariance of our systems, the Δ t dependence of μsf and related quantities can be understood using a weighted integral over G (t ) .

  12. Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass

    Science.gov (United States)

    Chen, Chang-hong; Feng, Ke-qin; Zhou, Yu; Zhou, Hong-ling

    2017-08-01

    Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature (900-1060°C) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060°C. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength (16.64 MPa) among the investigated samples and a relatively low bulk density (0.83 g/cm3), were attained in the case of the foamed glass-ceramics sintered at 1000°C.

  13. Identification of glass compositions suitable for disposal of waste reactive metal

    International Nuclear Information System (INIS)

    Varma, R.; Brown, A.P.; Kumar, R.; San-Pedro, R.; Freeman, C.J.; Helt, J.E.

    1988-09-01

    This study was conducted in support of a project to convert waste sodium to a form that is amenable to easy disposal in ordinary landfills. This waste sodium will be from reactor and other operations at the US Department of Energy and will contain small amounts of radioactive species that must not be released to the environment in an uncontrolled manner. The sodium will be converted into a glass that will contain and isolate the radionuclides present in it. This study was conducted to define acceptable glass compositions that (1) are resistant to leaching of sodium by groundwater and rainwater, (2) contain a relatively large proportion of sodium so that unreasonably large volumes of the glass for disposal will not be produced, and (3) are conveniently prepared from the waste sodium. For this purpose, glass samples containing varying amounts of the oxides of sodium, calcium, boron, aluminum, and silicon were prepared in the laboratory. The samples were subjected to the accelerated MCC-1 test to determine resistance to leaching by water at 60/degree/C. Soda-silica glasses were observed to dissolve in the water rather quickly. Addition of the other ingredients was found to impart significant leach resistance to the glasses. Among the high-Na 2 O glasses, those containing alumina (3% Al 2 O 3 -10% CaO-30% Na 2 O and 6% Al 2 O 3 -10% B 2 O 3 -30% Na 2 O) were found to be most resistant to leaching. Lowering the Na 2 O content to 20% made these glasses even more leach resistant. 8 refs., 6 figs., 2 tabs

  14. Structure and spectroscopy of rare earth – Doped lead phosphate glasses

    International Nuclear Information System (INIS)

    Pisarski, Wojciech A.; Żur, Lidia; Goryczka, Tomasz; Sołtys, Marta; Pisarska, Joanna

    2014-01-01

    Highlights: • Lead phosphate glasses doped with rare earth ions were prepared. • The local structure was examined using X-ray diffraction and spectroscopic methods. • Different structural phosphate groups are present in lead phosphate glasses. • The electron–phonon coupling strength and phonon energy of the glass host was determined. • Several observed emission bands are due to 4f–4f electronic transitions of rare earth ions. -- Abstract: Lead–gallium phosphate glasses doped with rare the earth ions (Eu 3+ , Dy 3+ , Tb 3+ , Er 3+ ) were synthesized. The structure of obtained glasses was examined by means of use: X-ray diffraction (XRD), nuclear magnetic resonance ( 207 Pb and 31 P NMR), fourier transform infrared (FT-IR) and Raman spectroscopy. In contrast to fully amorphous Ln-doped samples (Ln = Eu, Dy, Tb), in Er-doped sample the GaPO 4 crystalline phase was identified. It was found from the NMR, FT-IR and Raman spectroscopic techniques that, different structural phosphate groups were present in lead phosphate glasses. Based on absorption measurements, the UV–VIS cut-off wavelength for lead phosphate glass was determined and its value is close to 305 nm. Excitation and emission spectra of rare earths were also detected. From excitation spectra of Eu 3+ the electron–phonon coupling strength and phonon energy of the glass host were determined. Due to 4f 6 –4f 6 (Eu 3+ ), 4f 8 –4f 8 (Tb 3+ ), 4f 9 –4f 9 (Dy 3+ ) and 4f 11 –4f 11 (Er 3+ ) electronic transitions of trivalent rare earth ions several luminescence bands were stated

  15. Structure and transport investigations on lithium-iron-phosphate glasses

    International Nuclear Information System (INIS)

    Banday, Azeem; Sharma, Monika; Murugavel, Sevi

    2016-01-01

    Cathode materials for Lithium Ion Batteries (LIB’s) are being constantly studied and reviewed especially in the past few decades. LiFePO_4 (LFP) is one of the most potential candidates in the pedigree of cathode materials and has been under extensive study ever since. In this work, we report the synthesis of amorphous analogs of crystallite LFP by conventional melt quenching method. Thermal study by using differential scanning calorimetry (DSC) was used to determine the glass transition T_g and crystallization T_c temperatures on the obtained glass sample Fourier transform infrared (FTIR) absorption spectroscopy is being used to investigate the structural properties of the glass sample. The intrinsic electrical conductivity measurements were done using broad-band impedance spectroscopy with wide different temperature ranges. The conduction mechanism is described by non-adiabatic small polaron hopping between nearest neighbors. Based on the obtained results, we suggest that the glassy LFP is more suitable cathode material as compared to its crystalline counterpart.

  16. Glass marking with diode-pumped Nd:YLF laser; Handotai reiki Nd:YLF laser ni yoru glass marking

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, F.; Hayashi, K. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1996-08-20

    The compact marking system based on a beam scanning system in which the fourth harmonic (FHG: 262 nm in wavelength) of a diode-pumped Nd:YLF (Nd:LiYf4) laser is used for the source of ultraviolet light is described. The result of application to the glass marking that caused a problem due to the generation of cracks is also explained. The machining characteristics significantly vary depending on the type of glass. During actual marking, sample processing must be beforehand carried out to optimize the processing conditions after confirming that there is no problem in practical use. For marking on the glass used for liquid-crystal board, it is valid to improve the density of a dot and increase the number of shots per dot for obtaining high visibility. However, cracks may occur in the clearance of each dot because of the thermal effect. Therefore, the processing conditions must be optimized according to the glass type and crack generation state. The generation of cracks can be suppressed by setting the processing conditions to the optimum level. As a result, satisfactory marking is obtained. 8 refs., 6 figs.

  17. Preparation and investigation of Ge-S-I glasses for infrared fiber optics

    Science.gov (United States)

    Velmuzhov, A. P.; Sukhanov, M. V.; Plekhovich, A. D.; Snopatin, G. E.; Churbanov, M. F.; Iskhakova, L. D.; Ermakov, R. P.; Kotereva, T. V.; Shiryaev, V. S.

    2016-02-01

    Glass samples of [GeSx]90I10 (x = 1.5, 1.7, 2.0, 2.3, 2.45, 2.6) compositions were prepared, and some their thermal, optical properties as well as tendency to crystallization were investigated. The compositional dependences of glass transition temperature, volume fraction of crystallized phase and activation energy of glass formation (Eg) have nonmonotonic character with a maximum for [GeS2.0]90I10 glass. Glasses of 85.8GeS2-14.2GeI4 and [GeS1.5]90I10 compositions are identified as promising for preparation of optical fiber. For the first time, Ge-S-I glass fibers were produced. Minimum optical losses in 85.8GeS2-14.2GeI4 glass fiber were 2.7 dB/m at a wavelength of 5.1 μm, and that in [GeS1.5]90I10 glass fiber were 14.5 dB/m at 5.5 μm.

  18. Leaching of glass

    International Nuclear Information System (INIS)

    Hench, L.L.

    1977-01-01

    Understanding surface compositional profiles of glasses over a range of 0-2000 A with a variety of analytical instruments shows that five general types of glass surfaces exist. The surface character of a glass article depends upon bulk composition and environmental history during which surface dealkalization, film formation, and network dissolution can occur. Environmental-surface interactions generally result in complex compositional profiles of all the constituents in a glass. Durable glasses almost always develop a stable surface film which has a higher concentration of network formers than the bulk composition. Compositional effects that are used to improve glass durability usually improve the stability of the surface films. Durability tests or service conditions that lead to film destruction are especially severe for the most silicate glasses. 43 references

  19. Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses.

    Science.gov (United States)

    Kapoor, Saurabh; Goel, Ashutosh; Tilocca, Antonio; Dhuna, Vikram; Bhatia, Gaurav; Dhuna, Kshitija; Ferreira, José M F

    2014-07-01

    We investigated the structure-property relationships in a series of alkali-free phosphosilicate glass compositions co-doped with Zn(2+) and Sr(2+). The emphasis was laid on understanding the structural role of Sr(2+) and Zn(2+) co-doping on the chemical dissolution behavior of glasses and its impact on their in vitro bioactivity. The structure of glasses was studied using molecular dynamics simulations in combination with solid state nuclear magnetic resonance spectroscopy. The relevant structural properties are then linked to the observed degradation behavior, in vitro bioactivity, osteoblast proliferation and oxidative stress levels. The apatite-forming ability of glasses has been investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy-energy-dispersive spectroscopy after immersion of glass powders/bulk in simulated body fluid (SBF) for time durations varying between 1h and 14 days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO 10993-14. All the glasses exhibit hydroxyapatite formation on their surface within 1-3h of their immersion in SBF. The cellular responses were observed in vitro on bulk glass samples using human osteosarcoma MG63 cell line. The dose-dependent cytoprotective effect of glasses with respect to the concentration of zinc and strontium released from the glasses is also discussed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Infrared Spectroscopic Study For Structural Investigation Of Lithium Lead Silicate Glasses

    International Nuclear Information System (INIS)

    Ahlawat, Navneet; Aghamkar, Praveen; Ahlawat, Neetu; Agarwal, Ashish; Monica

    2011-01-01

    Lithium lead silicate glasses with composition 30Li 2 O·(70-x)PbO·xSiO 2 (where, x = 10, 20, 30, 40, 50 mol %)(LPS glasses) were prepared by normal melt quench technique at 1373 K for half an hour in air to understand their structure. Compositional dependence of density, molar volume and glass transition temperature of these glasses indicates more compactness of the glass structure with increasing SiO 2 content. Fourier transform infrared (FTIR) spectroscopic data obtained for these glasses was used to investigate the changes induced in the local structure of samples as the ratio between PbO and SiO 2 content changes from 6.0 to 0.4. The observed absorption band around 450-510 cm -1 in IR spectra of these glasses indicates the presence of network forming PbO 4 tetrahedral units in glass structure. The increase in intensity with increasing SiO 2 content (upto x = 30 mol %) suggests superposition of Pb-O and Si-O bond vibrations in absorption band around 450-510 cm -1 . The values of optical basicity in these glasses were found to be dependent directly on PbO/SiO 2 ratio.

  1. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kerisit, Sebastien N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krogstad, Eirik J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burton, Sarah D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bjornstad, Bruce N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle MV [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-03-29

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

  2. Chemical states of molybdenum in radioactive waste glass

    International Nuclear Information System (INIS)

    Ishiguro, Katsuhiko; Kawanishi, Nobuo; Nagaki, Hiroshi; Naito, Aritsune

    1982-01-01

    In order to confirm an expectation that the chemical state of molybdenum in glass reflects the phase separation tendency of the yellow solid from the melt of borosilicate glass, simulated waste glasses were prepared, and ESCA analysis was performed using a commercially available electron spectrometer (PHI550 E) with an excitation source consisting of Mg Kα-ray. The effects of the concentration of Mo and FE 2 O 3 and the melting atmosphere (oxidizing or reducing) in which the samples were prepared on the chemical state of Mo and the solubility of MoO 3 were examined. From the observation of Mo spectra, it was shown that Mo in waste glass had several valencies, e.g., Mo(3), Mo(4), Mo(5) and Mo(6), while Mo in the yellow solid separated from the melts exhibited hexa-valent state, the peak intensity of higher valencies increased relatively with the increase of MoO 3 concentration, but the chemical state of Mo did not change remarkably around the solubility limit of MoO 3 , the melting atmosphere influenced on the Mo state in the waste glass, the peak intensity of Mo(6) increased relatively with the increasing Fe 2 O 3 concentration, and Mo in devitrified glass exhibited hexa-valent state. (Yoshitake, I.)

  3. Colloidal glasses

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Colloidal glasses. Glassy state is attained when system fails to reach equilibrium due to crowding of constituent particles. In molecular glasses, glassy state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the ...

  4. Crystallization of Cu60Ti20Zr20 metallic glass with and without pressure

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Yang, B.; Saksl, K.

    2003-01-01

    Structural stability of a Cu60Ti20Zr20 metallic glass under-pressure up to 4.5 GPa was investigated by x-ray diffraction. The sample exhibited a supercooled liquid region of 33 K and a ratio of the glass-transition temperature to the liquidus temperature of 0.63. The glass crystallized in two......, structure crystalline phase with a spacing group P6(3)/mmc (194) and lattice parameters a = 5.105 Angstrom and c = 8.231 Angstrom. Both crystallization temperatures increased with pressure having a slope of 19 K/GPa. The increase of the first crystallization temperature with increasing pressure in the glass...... can be explained by the suppression of atomic mobility. No significant structural change was detected in the Cu60Ti20Zr20 glass annealed,in vacuum at 697 K for I h as compared to the as-prepared sample from x-ray diffraction. measurements....

  5. Effect of irradiation on differential thermal properties and crystallization behavior of some lithium borate glasses

    International Nuclear Information System (INIS)

    El-Alaily, N.A.; Mohamed, R.M.

    2001-01-01

    Differential thermal properties and the crystallization behavior of binary system Li 2 O-B 2 O 3 glasses were investigated. The effects of the presence of oxides of aluminum, lead or one of the transition metals TiO 2 or V 2 O 5 or Fe 2 O 3 in the parent glass were also studied. The effects of three different heat treatments on the crystalline structure of all the studied glasses were also investigated. The results showed that all glass samples were amorphous before the heat treatment, with the most common formed phase being tetraborate Li 2 B 8 O 13 (Li 2 O-4B 2 O 3 ). The exposure of the glass samples to either gamma rays or fast neutrons resulted in considerable changes in their thermal behavior. The results also showed that T g increases for all studied glasses when subjected to irradiation either by fast neutron or gamma rays, while T c decreased only at higher doses

  6. Ancient Glass: A Literature Search and its Role in Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Pierce, Eric M.

    2010-07-01

    needed to simulate the long-term performance of nuclear waste glasses in a near-surface or deep geologic repositories. The information that will be required include 1) experimental measurements to quantify the model parameters, 2) detailed analyses of altered glass samples, and 3) detailed analyses of the sediment surrounding the ancient glass samples.

  7. Ancient Glass: A Literature Search and its Role in Waste Management

    International Nuclear Information System (INIS)

    Strachan, Denis M.; Pierce, Eric M.

    2010-01-01

    needed to simulate the long-term performance of nuclear waste glasses in a near-surface or deep geologic repositories. The information that will be required include (1) experimental measurements to quantify the model parameters, (2) detailed analyses of altered glass samples, and (3) detailed analyses of the sediment surrounding the ancient glass samples.

  8. Defining the Glass Composition Limits for SRS Contaminated Soils

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Crews, W.O.

    1995-01-01

    Contaminated soil resulting from the excavation, repair, and decommissioning of facilities located at the Savannah River Site (SRS) is currently being disposed of by shallow land burial or is being stored when considered only hazardous. Vitrification of this waste is being investigated, since it will bind the hazardous and radioactive species in a stable and durable glass matrix, which will reduce the risk of ground water contamination. However, the composition limits for producing durable glass have to be determined before the technology can be applied. Glass compositions, consisting of SRS soil and glass forming additives, were tested on a crucible-scale in three ternary phase systems. Nine different glass compositions were produced, with waste loadings ranging from 43 to 58 weight percent. These were characterized using varoius chemical methods and tested for durability in both alkaline and acidic environments. All nine performed well in alkaline environments, but only three met the strictest criteria for the acidic environment tests. Although the glasses did not meet all of the limits for the acidic tests, the test was performed on very conservative size samples, so the results were also conservative. Therefore, enough evidence was found to provide proof that SRS soil can be vitrified in a durable glass matrix

  9. Crystallization kinetics, glass transition kinetics, and thermal stability of Se70-xGa30Inx (x=5, 10, 15, and 20) semiconducting glasses

    International Nuclear Information System (INIS)

    Imran, Mousa M.A.

    2011-01-01

    Crystallization and glass transition kinetics of Se 70-x Ga 30 In x (x=5, 10, 15, and 20) semiconducting chalcogenide glasses were studied under non-isothermal condition using a Differential Scanning Calorimeter (DSC). DSC thermograms of the samples were recorded at four different heating rates 5, 10, 15, and 20 K/min. The variation of the glass transition temperature (T g ) with the heating rate (β) was used to calculate the glass transition activation energy (E t ) using two different models. Meanwhile, the variation of the peak temperature of crystallization (T p ) with β was utilized to deduce the crystallization activation energy (E c ) using Kissinger, Augis-Bennet, and Takhor models. Results reveal that E t decreases with increasing In content, while both T g and E c exhibit the opposite behavior, and the crystal growth occurs in one dimension. The variation of these thermal parameters with the average coordination number was also discussed, and the results were interpreted in terms of the type of bonding that In makes with Se. Assessment of thermal stability and glass forming ability (GFA) was carried out on the basis of some quantitative criteria and the results indicate that thermal stability is enhanced while the crystallization rate is reduced with the addition of In to Se-Ga glass. -- Research highlights: → Addition of In to Se-Ga glass decreases the glass transition activation energy. → The crystallization rate in Se-Ga-In glass is reduced as In content increases. → The crystal growth in Se-Ga-In glass occurs in one dimension. → Thermal properties of Se-Ga-In glass indicate a shift in Phillips-Thorpe threshold.

  10. Enhanced 99 Tc retention in glass waste form using Tc(IV)-incorporated Fe minerals

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Luksic, Steven A.; Wang, Guohui; Saslow, Sarah; Kim, Dong-Sang; Schweiger, Michael J.; Soderquist, Chuck Z.; Bowden, Mark E.; Lukens, Wayne W.; Kruger, Albert A.

    2017-11-01

    Technetium (99Tc) immobilization by doping into iron oxide mineral phases may alleviate the problems with Tc volatility during vitrification of nuclear waste. Reduced Tc, Tc(IV), substitutes for Fe(III) in the crystal structure by a process of Tc reduction from Tc(VII) to Tc(IV) followed by co-precipitation of Fe oxide minerals. Two Tc-incorporated Fe minerals (Tc-goethite and Tc-magnetite/maghemite) were prepared and tested for Tc retention in glass melt samples at temperatures between 600 – 1,000 oC. After being cooled, the solid glass specimens prepared at different temperatures were analyzed for Tc oxidation state using Tc K-edge XANES. In most samples, Tc was partially oxidized from Tc(IV) to Tc(VII) as the melt temperature increased. However, Tc retention in glass melt samples prepared using Tc-incorporated Fe minerals were moderately higher than in glass prepared using KTcO4 because of limited and delayed Tc volatilization.

  11. Effect of ZnO on phase emergence, microstructure and surface modifications of calcium phosphosilicate glass/glass-ceramics having iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K.; Dixit, A.; Bhattacharya, S.; Jagannath [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Deo, M.N. [High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kothiyal, G.P., E-mail: gpkoth@barc.gov.in [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2010-03-01

    The effect of ZnO on phase emergence and microstructure properties of glass and glass-ceramics with composition 25SiO{sub 2}-50CaO-15P{sub 2}O{sub 5}-(10 - x)Fe{sub 2}O{sub 3}-xZnO (where x = 0, 2, 5, 7 mol%) has been studied. They have been characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Surface modifications of these glass-ceramics in simulated body fluid have been studied using Fourier transform infrared reflection spectroscopy (FTIR), XPS and SEM. Results have shown a decrease in the fraction of non-bridging oxygen with increase in zinc oxide content. Emergence of crystalline phases in glass-ceramics at different heat treatment temperatures was studied using XRD. When glass is heat treated at 800 deg. C calcium phosphate, hematite and magnetite are developed as major phases in the glass-ceramics samples with ZnO up to 5 mol%. In addition to these, calcium silicate (Ca{sub 3}Si{sub 2}O{sub 7}) phase is also observed when glass is heat treated at 1000 deg. C. The microstructure of the glass-ceramics heat treated at 800 deg. C exhibits the formation of nano-size (40-50 nm) grains. On heat treatment at 1000 deg. C crystallites grow to above 50 nm size and more than one phase are observed in the microstructure. The formation of thin flake-like structure with coarse particles is observed at high zinc oxide concentration (x = 7 mol%). In vitro studies have shown the surface modifications and formation of Ca-P-rich layer on the glass-ceramics when immersed in simulated body fluids (SBF) for different durations. The bioactive response was found to depend on ZnO content.

  12. Effect of ZnO on phase emergence, microstructure and surface modifications of calcium phosphosilicate glass/glass-ceramics having iron oxide

    International Nuclear Information System (INIS)

    Sharma, K.; Dixit, A.; Bhattacharya, S.; Jagannath; Deo, M.N.; Kothiyal, G.P.

    2010-01-01

    The effect of ZnO on phase emergence and microstructure properties of glass and glass-ceramics with composition 25SiO 2 -50CaO-15P 2 O 5 -(10 - x)Fe 2 O 3 -xZnO (where x = 0, 2, 5, 7 mol%) has been studied. They have been characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Surface modifications of these glass-ceramics in simulated body fluid have been studied using Fourier transform infrared reflection spectroscopy (FTIR), XPS and SEM. Results have shown a decrease in the fraction of non-bridging oxygen with increase in zinc oxide content. Emergence of crystalline phases in glass-ceramics at different heat treatment temperatures was studied using XRD. When glass is heat treated at 800 deg. C calcium phosphate, hematite and magnetite are developed as major phases in the glass-ceramics samples with ZnO up to 5 mol%. In addition to these, calcium silicate (Ca 3 Si 2 O 7 ) phase is also observed when glass is heat treated at 1000 deg. C. The microstructure of the glass-ceramics heat treated at 800 deg. C exhibits the formation of nano-size (40-50 nm) grains. On heat treatment at 1000 deg. C crystallites grow to above 50 nm size and more than one phase are observed in the microstructure. The formation of thin flake-like structure with coarse particles is observed at high zinc oxide concentration (x = 7 mol%). In vitro studies have shown the surface modifications and formation of Ca-P-rich layer on the glass-ceramics when immersed in simulated body fluids (SBF) for different durations. The bioactive response was found to depend on ZnO content.

  13. Analysis Of DWPF Sludge Batch 7A (Macrobatch 8) Pour Stream Samples

    International Nuclear Information System (INIS)

    Johnson, F.

    2012-01-01

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 7a (SB7a), also referred to as Macrobatch 8 (MB8), in June 2011. SB7a is a blend of the heel of Tank 40 from Sludge Batch 6 (SB6) and the SB7a material that was transferred to Tank 40 from Tank 51. SB7a was processed using Frit 418. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP), which is governed by the DWPF Waste Compliance Plan, and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Three pour stream glass samples and two Melter Feed Tank (MFT) slurry samples were collected while processing SB7a. These additional samples were taken during SB7a to understand the impact of antifoam and the melter bubblers on glass redox chemistry. The samples were transferred to the Savannah River National Laboratory (SRNL) where they were analyzed. The following conclusions were drawn from the analytical results provided in this report: (1) The sum of oxides for the official SB7a pour stream glass is within the Product Composition Control System (PCCS) limits (95-105 wt%). (2) The average calculated Waste Dilution Factor (WDF) for SB7a is 2.3. In general, the measured radionuclide content of the official SB7a pour stream glass is in good agreement with the calculated values from the Tank 40 dried sludge results from the SB7a Waste Acceptance Program Specification (WAPS) sample. (3) As in previous pour stream samples, ruthenium and rhodium inclusions were detected by Scanning Electron Microscopy-Electron Dispersive Spectroscopy (SEM-EDS) in the official SB7a pour stream sample. (4) The Product Consistency Test (PCT) results indicate that the official SB7a pour stream glass meets the waste acceptance criteria for durability with a normalized boron release of 0.64 g/L, which is an order of magnitude less than the Environmental

  14. Corrosion of ancient glass beads found in Southern Thailand

    International Nuclear Information System (INIS)

    Won-in, K; Thongkam, Y; Intarasiri, S; Kamwanna, T; Dararutana, P

    2012-01-01

    Glass has been used as ornaments and decorations in Thailand for several hundred years. The archaeological resources suggested that the ancient glass beads excavated in southern Thailand were made more than 1300 years ago. Initial findings revealed that there were number of difference in shade between the glass beads of difference colors. Energy dispersive X-ray spectrometer (EDS) system attached with scanning electron microscope (SEM) and particle-induced X-ray emission spectroscopy (PIXE) were firstly used to study the surface corrosion of the samples. SEM micrographs showed more corroded and flaked microstructure. These were contributed to the interaction of both the ground water and its dissolved chemical compounds.

  15. Database and Interim Glass Property Models for Hanford HLW Glasses

    International Nuclear Information System (INIS)

    Hrma, Pavel R; Piepel, Gregory F; Vienna, John D; Cooley, Scott K; Kim, Dong-Sang; Russell, Renee L

    2001-01-01

    The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region

  16. Fabrication and characterization of MCC approved testing material: ATM-11 glass

    International Nuclear Information System (INIS)

    Wald, J.W.; Daniel, J.L.

    1986-08-01

    ATM-11 glass is designed to be representative of defense high-level waste glasses that will be produced by the Defense Waste Processing Facility at the Savannah River Plant in Aiken, South Carolina. It is representative of a 300-year-old nuclear waste glass and was intended as a conservative compromise between 10-year-old waste and 1000-year-old waste. The feedstock material for this glass was supplied by Savannah River Laboratory, Aiken, SC, as SRL-165 black frit to which was added Ba, Cs, Mo, Nd, Ni, Pd, Rb, Ru, Sr, Te, Y, and Zr, as well as 241 Am, 237 Np, /sup 239+240/Pu, 151 Sm, 99 Tc, and depleted U. The glass was melted under the reducing conditions that resulted from the addition of 0.7 wt% graphite during the final melting process. Nearly 3 kg of ATM-11 glass were produced from a feedstock melted in a nitrogen-atmosphere glove box at 1250 0 C in Denver Fire Clay crucibles. After final melting, the glass was formed into stress-annealed rectangular bars 1.9 x 1.9 x 10 cm nominal size. Twenty-six bars were cast with a nominal weight of about 100 g each. The analyzed composition of ATM-11 glass is tabulated. Examination of a single transverse section from one bar by reflected light microscopy showed random porosity estimated at 0.4 vol% with nominal pore diameters ranging from ∼5 μm to 175 μm. A distinct randomly distributed second phase was observed at a very low concentration in the glass matrix as agglomerated, metallic-like clusters. One form of the aggregates contained mainly a high concentration of iron, while a second form had regions of high nickel concentration, and of high palladium concentration. All aggregates also contained a low concentration of technetium and/or ruthenium. An autoradiograph of the sample provided an indication of the total radionuclide ditribution. X-ray diffraction analysis of this same sample indicates that the glass probably contained 5 wt% crystalline material

  17. Crystal growth and optical properties of CdS-doped lead silicate glass

    International Nuclear Information System (INIS)

    Liu Hao; Liu Qiming; Zhao Xiujian

    2007-01-01

    The crystal growth and optical properties of CdS microcrystallite-doped lead silicate glass is investigated in this paper. The existence of CdS nanocrystals was confirmed via X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results reveal that a two-stage heat-treat procedure can produce a better size distribution of CdS nanocrystals than a one-stage heat-treat procedure in glasses. The second harmonic generation (SHG) from the base glass and CdS microcrystallite doped glasses was observed, and the effects of the heat treatments and the thermal poling temperature on the crystallization of CdS and second-order harmonic (SH) intensity were discussed, respectively. It is indicated that samples doped with CdS microcrystallite showed larger SH intensity than that of the base glass. Use of a higher thermal poling temperature than the glass transformation temperature does not result in a good SH intensity in glasses

  18. Is There a ‘Glass Ceiling’ for Female Managers in Singapore Organizations?

    OpenAIRE

    Vlado Dimovski; Miha Skerlavaj; Mandy Mok Kim Man

    2010-01-01

    This study presents an overview of glass-ceiling type barriers in organizations based on the perceptions of a sample of Singapore mid-level women managers. Previous studies indicated the existence of a glass ceiling in organizations and presented strategic recommendations with regard to what corporations could do to remove or reduce the glass ceiling. This study investigates how women in middle management perceive their career advancement opportunities and what they consider their organizatio...

  19. Neutron- and light-scattering studies of the liquid-to-glass and glass-to-glass transitions in dense copolymer micellar solutions

    International Nuclear Information System (INIS)

    Chen Weiren; Chen Sowhsin; Mallamace, Francesco; Glinka, Charles J.; Fratini, Emiliano

    2003-01-01

    Recent mode coupling theory (MCT) calculations show that if a short-range attractive interaction is added to the pure hard sphere system, one may observe a new type of glass originating from the clustering effect (the attractive glass) as a result of the attractive interaction. This is in addition to the known glass-forming mechanism due to the cage effect in the hard sphere system (the repulsive glass). The calculations also indicate that if the range of attraction is sufficiently short compared to the diameter of the particle, within a certain interval of volume fractions where the two glass-forming mechanisms nearly balance each other, varying the external control parameter, the effective temperature, makes the glass-to-liquid-to-glass reentrance and the glass-to-glass transitions possible. Here we present experimental evidence of both transitions, obtained from small-angle neutron-scattering and photon correlation measurements taken from dense L64 copolymer micellar solutions in heavy water. Varying the temperature in certain predicted volume fraction range triggers a sharp transition between these two different types of glass. In particular, according to MCT, there is an end point (called A 3 singularity) of this glass-to-glass transition line, beyond which the long-time dynamics of the two glasses become identical. Our findings confirm this theoretical prediction. Surprisingly, although the Debye-Waller factors, the long-time limit of the coherent intermediate scattering functions, of these two glasses obtained from photon correlation measurements indeed become identical at the predicted volume fraction, they exhibit distinctly different intermediate time relaxation. Furthermore, our experimental results obtained from volume fractions beyond the end point are characterized by the same features as the repulsive glass obtained before the end point. A complete phase diagram giving the boundaries of the structural arrest transitions for L64 micellar system is

  20. A New Ni-Based Metallic Glass with High Thermal Stability and Hardness

    Directory of Open Access Journals (Sweden)

    Aytekin Hitit

    2015-02-01

    Full Text Available Glass forming ability (GFA, thermal stability and microhardness of Ni51−xCuxW31.6B17.4 (x = 0, 5 metallic glasses have been investigated. For each alloy, thin sheets of samples having thickness of 20 µm and 100 µm were synthesized by piston and anvil method in a vacuum arc furnace. Also, 400 µm thick samples of the alloys were synthesized by suction casting method. The samples were investigated by X-ray diffractometry (XRD and differential scanning calorimetry (DSC. Crystallization temperature of the base alloy, Ni51W31.6B17.4, is found to be 996 K and 5 at.% copper substitution for nickel increases the crystallization temperature to 1063 K, which is the highest value reported for Ni-based metallic glasses up to the present. In addition, critical casting thickness of alloy Ni51W31.6B17.4 is 100 µm and copper substitution does not have any effect on critical casting thickness of the alloys. Also, microhardness of the alloys are found to be around 1200 Hv, which is one of the highest microhardness values reported for a Ni-based metallic glass until now.

  1. Brittle-to-Ductile Transition in Metallic Glass Nanowires.

    Science.gov (United States)

    Şopu, D; Foroughi, A; Stoica, M; Eckert, J

    2016-07-13

    When reducing the size of metallic glass samples down to the nanoscale regime, experimental studies on the plasticity under uniaxial tension show a wide range of failure modes ranging from brittle to ductile ones. Simulations on the deformation behavior of nanoscaled metallic glasses report an unusual extended strain softening and are not able to reproduce the brittle-like fracture deformation as found in experiments. Using large-scale molecular dynamics simulations we provide an atomistic understanding of the deformation mechanisms of metallic glass nanowires and differentiate the extrinsic size effects and aspect ratio contribution to plasticity. A model for predicting the critical nanowire aspect ratio for the ductile-to-brittle transition is developed. Furthermore, the structure of brittle nanowires can be tuned to a softer phase characterized by a defective short-range order and an excess free volume upon systematic structural rejuvenation, leading to enhanced tensile ductility. The presented results shed light on the fundamental deformation mechanisms of nanoscaled metallic glasses and demarcate ductile and catastrophic failure.

  2. Characterization of selenium doped silica glasses synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Kobayashi, R.A.; Toffoli, S.M.

    2012-01-01

    Selenium is a rare element in nature. It is used in the food, pharmaceutical, and glass industries. In commercial glasses, selenium is the element responsible for most of the pink or light red color, but its effect is primarily dependent on the oxidation state of the element in the glassy matrix. Besides, selenium is highly volatile, and as high as 80 wt% may be lost in the furnace during the industrial glass elaboration. The sol– gel method yields synthesized materials of high purity and homogeneity, and uses low processing temperatures. Samples of silica glass were obtained by sol-gel method, incorporating precursors of selenium, with the main objective of reducing selenium losses during its heating. The results of optical absorption, XRD and thermal analysis (TGA, DSC) of the glasses are presented and discussed. (author)

  3. Aqueous corrosion of silicate glasses. Analogy between volcanic glasses and the French nuclear waste glass R7T7

    International Nuclear Information System (INIS)

    Goldschmidt, F.

    1991-01-01

    The behaviour of borosilicate glasses upon aqueous corrosion is controlled for long periods of time (>10,000 years) by processes which are not directly accessible by means of laboratory experiments. The analogical approach consists here to compare leaching performances between the french nuclear waste glass R7T7 and natural volcanic glasses, basaltic and rhyolitic ones. The three glasses were leached in the same conditions; open system, 90 deg C, initial pH of 9.7. Basaltic and R7T7 glasses having the same kinetic of dissolution, the basaltic glass was chosen as the best analogue. (author). refs., figs., tabs

  4. The use of Interferometric Microscopy to assess 3D modifications of deteriorated medieval glass.

    Science.gov (United States)

    Gentaz, L.; Lombardo, T.; Chabas, A.

    2012-04-01

    Due to low durability, Northern European medieval glass undergoes the action of the atmospheric environment leading in some cases to a state of dramatic deterioration. Modification features varies from a simple loss of transparency to a severe material loss. In order to understand the underlying mechanisms and preserve this heritage, fundamental research is necessary too. In this optic, field exposure of analogues and original stained glass was carried out to study the early stages of the glass weathering. Model glass and original stained glass (after removal of deterioration products) were exposed in real conditions in an urban site (Paris) for 48 months. A regular withdrawal of samples allowed a follow-up of short-term glass evolution. Morphological modifications of the exposed samples were investigated through conventional and non destructive microscopy, using respectively a Scanning Electron Microscope (SEM) and an Interferometric Microscope (IM). This latter allows a 3D quantification of the object with no sample preparation. For all glasses, both surface recession and build-up of deposit were observed as a consequence of a leaching process (interdiffusion of protons and glass cations). The build-up of a deposit comes from the reaction between the extracted glass cations and atmospheric gases. Instead, surface recession is due mainly to the formation of brittle layer of altered glass at the sub-surface, where a fracture network can appear, leading to the scaling of parts of this modified glass. Finally, dissolution of the glass takes place, inducing the formation of pits and craters. The arithmetic roughness (Ra) was used as an indicator of weathering increase, in order to evaluate the deterioration state. For instance, the Ra grew from few tens of nm for pristine glass to thousands of nm for scaled areas. This technique also allowed a precise quantification of dimensions (height, depth and width) of deposits and pits, and the estimation of their overall

  5. Thermal, mechanical and Raman studies on mixed alkali borotungstate glasses

    Science.gov (United States)

    Edukondalu, A.; Sathe, Vasant; Rahman, Syed; Siva Kumar, K.

    2014-04-01

    Mixed alkali borotungstate glasses with xLi2O-(30-x)Na2O-10WO3-60B2O3 (0 ≤ x ≤ 30) composition were prepared by melt quench technique. The amorphous phase of the prepared glass samples was conformed from their X-ray diffraction and SEM studies. Differential scanning calorimetry and Raman spectroscopic studies were employed to investigate the structure of all the prepared glasses. The elastic moduli and Debye temperature were calculated in terms of Makishima-Mackenzie model. Acting as complementary techniques, Raman measurement revealed that the network structure of the present glasses is mainly based on BO3 and BO4 units placed in different structural groups. Raman spectra confirms the presence of tungsten ions mainly as WO6 groups. In the present work, the mixed alkali effect (MAE) has been investigated in the above glass system through modulated DSC studies.

  6. Nuclear waste glass product consistency test (PCT), Version 5.0

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.; Waters, B.J.

    1992-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Preliminary Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Produce Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples. Version 5.0 of the PCT procedure is attached

  7. The effects of gamma irradiation on the elastic properties of soda lime glass doped with cerium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Laopaiboon, R.; Laopaiboon, J.; Pencharee, S. [Glass Technology Excellent Center (GTEC), Department of Physics, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand); Nontachat, S. [Department of Radiotherapy, Ubon Ratchathani Cancer Centre, Ubon Ratchathani, 34190 (Thailand); Bootjomchai, C., E-mail: cherdsak_per@hotmail.co.th [Glass Technology Excellent Center (GTEC), Department of Physics, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand)

    2016-05-05

    Soda lime glass doped with cerium oxide was prepared using a conventional melt quenching technique. The density and molar volume of the glass samples were measured. Ultrasonic wave velocities of the glass samples were carried out using a pulse echo technique. The density and ultrasonic velocities were used for determining elastic moduli of the glass samples, both before and after irradiation with gamma rays at 1 kGy. The results revealed that the influence of gamma irradiation caused the matrix structure of the glass samples to be damaged by creating displacements, electronic defects and/or breaks in the network bonds, leading to the formation of non-bridging oxygens (NBOs). Elastic properties were investigated under the influence of gamma irradiation. The results also revealed that the structures of the glass samples were distorted by irradiation. Damage by irradiation created the NBOs and/or the transformation of main glass network structures from Q{sub 4} to Q{sub 3}. Evidence of these results was acquired from FTIR spectra. The results of FTIR supported the results and were obtained from ultrasonic velocities. In addition, the elastic properties obtained from experiments were compared with theoretical values calculated from the Makishima and Mackenzie model (M–M model). - Highlights: • Results show good agreement between experimental and theoretical of elastic moduli. • Influence of irradiation created a distorted network structure. • Transformation of network structure from Ref. Q{sub 4} to Q{sub 3} after irradiation. • FTIR result is good evidence of the result is obtained from ultrasonic technique.

  8. Crystallization in Pd40Ni40P20 glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saksl, K.; Nishiyama, N.

    2002-01-01

    Phase segregation and the effect of pressure on crystallization of bulk and ribbon Pd40Ni40P20 glasses have been studied by means of differential scanning calorimetry (DSC) and x-ray diffraction. The DSC measurements show only one glass transition event in the samples annealed at different...... temperatures in the supercooled liquid region. Phase analyses reveal at least five crystalline phases crystallized from the glass: monoclinic; body-centered tetragonal; orthorhombic; Ni2Pd2P and fcc-(Ni,Pd) solid solution phases. In the pressure range from 0 to 4.2 GPa, the crystallization temperature...... increases with pressure having a slope of 11 K/GPa. The eutectic crystallization reaction mode and crystalline phases formed are unchanged in the pressure range used. The enhancement of the crystallization temperature with increasing pressure in the glass can be explained by the suppression of atomic...

  9. Glass transition and composite formation in InF{sub 3}-containing oxyfluoroniobate system

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, N. N.; Ignatieva, L. N.; Marchenko, Yu. V. [Institute of Chemistry FEB RAS, Vladivostok (Russian Federation); Bouznik, V. M. [All-Russian Scientific Research Institute of Aviation Materials (Russian Federation)

    2016-05-18

    The glasses in the system MnNbOF{sub 5}-BaF{sub 2}-InF{sub 3} have been firstly synthesized and studied. The thermal parameters of these glasses are analyzed. It was stated that glass of the composition 40MnNbOF{sub 5}-40BaF{sub 2}-20InF{sub 3} is the most thermal stable in the system under study. By X-ray analysis the compositions of the crystalline phases obtained at the glass thermal treatment were determined: the main phases are Ba{sub 3}In{sub 2}F{sub 12} and BaNbOF{sub 5}. By Raman and IR spectra analysis it was stated that the networks of glasses in the system are built by the structural type of the glasses in NbO{sub 2}F-BaF{sub 2} system: (NbO{sub n}F{sub m}) polyhedra joined oxygen bridges. Indium trifluoride forms InF{sub 6} polyhedra, which are embeded between oxyfluoroniobate ions, forming a common networks or forms its own layers from InF{sub 6} polyhedra. IR-spectroscopy method showed that at devitrification of the sample 30MnNbOF{sub 5}-50BaF{sub 2}-20InF{sub 3} the band position and shape change in going from glass state to crystalline. The bands in the range 900–700 cm{sup −1} shift into the low-frequency range and transformed into narrow peaks characteristic for the crystalline state. It was determined that for this sample the IR-spectroscopy method fixes the presence of the crystalline phases at 340°C without time of exposure, despite the fact that X-ray analysis shows an amorphous state for this sample at the same temperature. It was suggested, that controlling the composition and conditions of annealing of the glasses it can be obtain the transparent glass-ceramics of definite composition.

  10. Structural influence of mixed transition metal ions on lithium bismuth borate glasses

    Science.gov (United States)

    Yadav, Arti; Dahiya, Manjeet S.; Hooda, A.; Chand, Prem; Khasa, S.

    2017-08-01

    Lithium bismuth borate glasses containing mixed transition metals having composition 7CoO·23Li2O·20Bi2O3·50B2O3 (CLBB), 7V2O5·23Li2O·20Bi2O3·50B2O3 (VLBB) and x(2CoO·V2O5)·(30 - x)Li2O·20Bi2O3·50B2O3 (x = 0.0 (LBB) and x = 2.0, 5.0, 7.0, 10.0 mol% (CVLBB1-4)) are synthesized via melt quench route. The synthesized compositions are investigated for their physical properties using density (D) and molar volume (Vm), thermal properties by analyzing DSC/TG thermo-graphs, structural properties using IR absorption spectra in the mid-IR range and optical properties using UV-Vis-NIR spectroscopy. The Electron Paramagnetic Resonance (EPR) spectra of vanadyl and cobalt ion have been analyzed to study compositional effects on spin-Hamiltonian parameters. The non linear variations in physical properties depict a strong structural influence of Co/V- oxides on the glassy matrix. The compositional variations in characteristic temperatures (glass transition temperature Tg, glass crystallization temperature Tp and glass melting temperature Tm) reveals that Tg for glass samples CLBB is relatively less than that of pure lithium bismuth borate (LBB) glass sample wherein Tg for sample VLBB is higher than that of LBB. The increase in Tg (as compared with LBB) with an enhanced substitution of mixed transition metal oxides (2CoO·V2O5) shows a progressive structure modification of bismuth borate matrix. These predictions are very well corroborated by corresponding compositional trends of Tp and Tm. FTIR studies reveal that Co2+& VO2+ ions lead to structural rearrangements through the conversion of three-coordinated boron into four coordinated boron and thereby reducing number of non-bridging oxygen atoms. Bismuth is found to exist in [BiO6] octahedral units only, whereas boroxol rings are not present in the glass network. The theoretical values of optical basicity (Λth) and corresponding oxide ion polarizability (αo2-) have also been calculated to investigate oxygen covalency of

  11. Augite-anorthite glass-ceramics from residues of basalt quarry and ceramic wastes

    Directory of Open Access Journals (Sweden)

    Gamal A. Khater

    2015-06-01

    Full Text Available Dark brown glasses were prepared from residues of basalt quarries and wastes of ceramic factories. Addition of CaF2, Cr2O3 and their mixture CaF2-Cr2O3 were used as nucleation catalysts. Generally, structures with augite and anorthite as major phases and small amount of magnetite and olivine phases were developed through the crystallization process. In the samples heat treated at 900 °C the dominant phase is augite, whereas the content of anorthite usually overcomes the augite at higher temperature (1100 °C. Fine to medium homogenous microstructures were detected in the prepared glass-ceramic samples. The coefficient of thermal expansion and microhardness measurements of the glass-ceramic samples were from 6.16×10-6 to 8.96×10-6 °C-1 (in the 20–500 °C and 5.58 to 7.16 GP, respectively.

  12. Experimental studies of glued Aluminum-glass joints

    Science.gov (United States)

    Ligaj, B.; Wirwicki, M.; Karolewska, K.; Jasińska, A.

    2018-04-01

    Glued steel-glass or aluminum-glass joints are to be found, among other things, in vehicles (cars, buses, trains, trams) as windscreen assembly pieces for the supporting structure. For the purposes of the experiments, samples were made in which the top beam was made of the AW-2017A aluminum alloy and the bottom beam was made of thermally reinforced soda-lime glass whereas the glued joints were made of one-component polyurethane glue Körapur 175. The tests were performed under four-point bending conditions at monotonic incremental bending moment values on the Instron 5965 durability machine. The experimental study of the durability of glued joints under four-point bending conditions with the monotonic incremental bending moment allows to determine the values of stresses, whose value is related to initiation of damage of the tested joint.

  13. Spheroidization of glass powders for glass ionomer cements.

    Science.gov (United States)

    Gu, Y W; Yap, A U J; Cheang, P; Kumar, R

    2004-08-01

    Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.

  14. Geochemistry of HASP, VLT, and other glasses from double drive tube 79001/2

    Science.gov (United States)

    Lindstrom, D. J.; Wentworth, S. J.; Martinez, R. R.; Mckay, D. S.

    1992-01-01

    The Apollo 17 double drive tube 79001/2 (station 9, Van Serg Crater) is distinctive because of its extreme maturity, abundance, and variety of glass clasts. It contains mare glasses of both high Ti and very low Ti (VLT) compositions, and highland glasses of all compositions common in lunar regolith samples: highland basalt (feldspathic; Al2O3 greater than 23 wt percent), KREEP (Al2O3 less than 23 wt percent, K2O greater than 0.25 wt percent), and low-K Fra Mauro (LKFM; Al2O3 less than 23 wt percent, K2O less than 0.25 wt percent). It also contains rare specimens of high-alumina, silica-poor (HASP), and ultra Mg glasses. HASP glasses contain insufficient SiO2 to permit the calculation of a standard norm, and are thought to be the product of volatilization during impact melting. They have been studied by electron microprobe major-element analysis techniques but have not previously been analyzed for trace elements. The samples analyzed for this study were polished grain mounts of the 90-160 micron fraction of four sieved samples from the 79001/2 core (depth range 2.3-11.5 cm). A total of 80 glasses were analyzed by SEM/EDS and electron microprobe, and a subset of 33 of the glasses, representing a wide range of compositional types, was chosen for high-sensitivity INAA. A microdrilling device removed disks (mostly 50-100 micron diameter, weighing approx. 0.1-0.5 micro-g) for INAA. Preliminary data reported here are based only on short counts done within two weeks of irradiation.

  15. Zero-field NMR study on a spin glass: iron-doped 2H-niobium diselenide

    International Nuclear Information System (INIS)

    Chen, M.C.

    1982-01-01

    Spin echoes are used to study the 93 Nb NQR in 2H-NbSe 2 Fe/sub x/. Measured are (intensity) x (temperature), and T/sub 1P/ (spin-lattice relaxation parameter) and T 2 (spin-spin relaxation time) as a function of temperature. Data reveal dramatic differences between non-spin glass samples (x = 0, 0.25%, 1% and 5%) and spin glass samples (x = 8%, 10% and 12%). All of the NQR results and the model calculation of the correlation times of Fe spins are best described by the phase transition picture of spin glasses

  16. Communication: Surface-facilitated softening of ordinary and vapor-deposited glasses

    Science.gov (United States)

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-08-01

    A common distinction between the ordinary glasses formed by melt cooling and the stable amorphous films formed by vapor deposition is the apparent mechanism of their devitrification. Using quasi-adiabatic, fast scanning calorimetry that is capable of heating rates in excess of 105 K s-1, we have investigated the softening kinetics of micrometer-scale, ordinary glass films of methylbenzene and 2-propanol. At the limit of high heating rates, the transformation mechanism of ordinary glasses is identical to that of their stable vapor-deposited counterparts. In both cases, softening is likely to begin at the sample surface and progress into its bulk via a transformation front. Furthermore, such a surface-facilitated mechanism complies with zero-order, Arrhenius rate law. The activation energy barriers for the softening transformation imply that the kinetics must be defined, at least in part, by the initial thermodynamic and structural state of the samples.

  17. GLASS COMPOSITION-TCLP RESPONSE MODEL FOR WASTE GLASSES

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Vienna, John D.

    2004-01-01

    A first-order property model for normalized Toxicity Characteristic Leaching Procedure (TCLP) release as a function of glass composition was developed using data collected from various studies. The normalized boron release is used to estimate the release of toxic elements based on the observation that the boron release represents the conservative release for those constituents of interest. The current TCLP model has two targeted application areas: (1) delisting of waste-glass product as radioactive (not mixed) waste and (2) designating the glass wastes generated from waste-glass research activities as hazardous or non-hazardous. This paper describes the data collection and model development for TCLP releases and discusses the issues related to the application of the model

  18. Recent research on magnetic properties of glass-coated microwires

    International Nuclear Information System (INIS)

    Zhukov, A.; Zhukova, V.; Blanco, J.M.; Gonzalez, J.

    2005-01-01

    In this paper, we report and analyse the results of tailoring the GMI effect of glass-coated amorphous thin microwires (with the metallic nucleus diameter about 10-22 μm) by choosing the sample chemical composition, geometry (thickness of glass coating) and conditions of heat treatment by Joule heating and furnace annealing. The observed dependencies have been interpreted in terms of stress relaxation and changes of the magneto-elastic anisotropy induced by the Joule heating

  19. Influence of annealing temperature on the nanostructure TiO2-SnO2 prepared by electron gun method on the glass substrate and the aluminum/glass

    Directory of Open Access Journals (Sweden)

    N Beigmohammadi

    2013-09-01

    Full Text Available  TiO2-SnO2 thin films were coated on glass and Al / glass substrates by electron gun method. In coating process, the vacuum was 1.5×10-5 torr. Then, films were annealed at 450, 500 and 550 ˚ C. The crystallographic structure and film morphology were investigated by means of XRD and SEM. The electrical (I-V and optical properties were studied by the two point props system and UV/Vis/NIR spectrophotometer. The results showed the films under 550 ˚ C were crystalline. The thickness and grain size were 350 and 50 nm respectively. The electrical conductivity in the sample with Al / glass substrate under 550 ˚ C was better than the other samples. When temperature increased, the energy gap decreased from 4.05 to 4.03 eV for direct cases.

  20. Preparation of high-purity Pr{sup 3+} doped Ge–As–Se–In–I glasses for active mid-infrared optics

    Energy Technology Data Exchange (ETDEWEB)

    Karaksina, E.V.; Shiryaev, V.S., E-mail: shiryaev@ihps.nnov.ru; Kotereva, T.V.; Velmuzhov, A.P.; Ketkova, L.A.; Snopatin, G.E.

    2016-09-15

    The multi-stage method for the synthesis of high-purity Ge–As–Se–In–I glasses doped with Pr{sup 3+} ions is developed. It is based on the chemical distillation purification of glass-forming melt and the chemical transport reactions for purification and vacuum loading of indium. The level of purity of glasses, synthesized by this method, is higher in comparison with the traditional direct melting method for glass synthesis. The high-purity Pr{sup 3+}-doped Ge–As–Se–In and Pr{sup 3+}-doped Ge–As–Se–In–I glass samples are prepared; the optical, thermal and luminescent properties are investigated. The purest host glass samples, obtained by the multi-stage purification techniques, contain a low concentration of limiting impurities: hydrogen − ≤0.05 ppm (wt) and oxygen − ≤0.1 ppm (wt), that is, at present, the best result for multi-component chalcogenide glasses for mid-IR active fibers. The samples of Pr{sup 3+}-doped Ge–As–Se–In glass fibers have the minimum optical losses of 0.58 dB/m at the wavelength of 2.72 μm and exhibit an intense broadband luminescence in the spectral range of 3.5–5.5 μm, with a maximum shifted to longer wavelengths as compared with the bulk samples.

  1. Multiple Glass Ceilings

    OpenAIRE

    Russo, Giovanni; Hassink, Wolter

    2011-01-01

    Both vertical (between job levels) and horizontal (within job levels) mobility can be sources of wage growth. We find that the glass ceiling operates at both margins. The unexplained part of the wage gap grows across job levels (glass ceiling at the vertical margin) and across the deciles of the intra-job-level wage distribution (glass ceiling at the horizontal margin). This implies that women face many glass ceilings, one for each job level above the second, and that the glass ceiling is a p...

  2. Thermal properties and crystallization of lithium–mica glass and glass-ceramics

    International Nuclear Information System (INIS)

    Nia, A. Faeghi

    2013-01-01

    Highlights: • Two groups of Li–mica glass-ceramics, have been compared. • By controlling the glass composition, crystalline lepidolite was obtained. • The T p of Li–mica was through the previous virgilite and eucryptite phase. - Abstract: The purpose of this study was the synthesis of two groups of Li–mica glass-ceramics denoted by lepidolite (Al 2.5 F 2 KLi 1.5 O 10 Si 3 ) and Li-phlogopite (LiMg 3 AlSi 3 O 10 F 2 ). The studied system was SiO 2 –Al 2 O 3 –MgO–K 2 O–Li 2 O. A total of 3 compositions were prepared. Bulk casted glasses and sintered glass-ceramics of Li-phlogopite and lepidolite systems, were prepared. Eucryptite and virgilite were two prior phases of lepidolite and Li-phlogopite crystallization. It was shown that the obtained glass-ceramics have lower TEC than corresponding glasses. Sinterability of lepidolite glass-ceramic was shown that improved by increasing the Al 2 O 3 content in glass composition. TEC and microhardness values were α = 6.08 × 10 −6 /°C, 755 ± 11.1, α = 7.86 × 10 −6 /°C, 739 ± 7.4 and α = 5.05 × 10 −6 /°C, 658 ± 6.2 HV for Li-lep, Klep1 and Klep2 glasses, respectively

  3. Chemical durability of lead borosilicate glass matrix under simulated geological conditions

    International Nuclear Information System (INIS)

    Yalmali, Vrunda S.; Deshingkar, D.S.; Wattal, P.K.

    2002-03-01

    The lead borosilicate glass has been developed for vitrification of High Level Waste (HLW) stored at Trombay. This waste is contains especially high contents of sodium, uranium sulphate and iron. The glasses containing HLW are to be ultimately disposed into deep geological repositories. Long term leach rates under simulated geological conditions need to be evaluated for glass matrix. Studies were taken up to estimate the lead borosilicate glass WTR-62 matrix for chemical durability in presence of synthetic ground water. The leachant selected was based on composition of ground water sample near proposed repository site. In the first phase of these tests, the experiments were conducted for short duration of one and half month. The leaching experiments were conducted in presence of a) distilled water b) synthetic ground water c) synthetic ground water containing granite, bentonite and ferric oxide and d) synthetic ground water containing humic acid at 100 0 C. The leachate samples were analysed by pHmetry , ion chromatography and UV -VIS spectrophotometry. The normalised leach rates for lead borosilicate WTR- 62 glass matrix based on silica, boron and sulphate analyses of leachates were of the order of 10 -3 to 10 -5 gms/cm 2 /day for 45 days test period in presence of synthetic ground water as well as in presence of other materials likely to be present along with synthetic ground water. These rates are comparable to those of sodium borsilicate glass matrices reported in literature. It is known that the leach rates of glass matrix decrease with longer test durations due to formation of leached layer on its surface. The observed leach rates of lead borosilicate WTR- 62 glass matrix for 45 day tests under simulated geological conditions were found to be sufficiently encouraging to take up long term tests for evaluating its performances under repository conditions. (author)

  4. Product consistency leach tests of Savannah River Site radioactive waste glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Bates, J.K.

    1989-01-01

    The Product Consistency Test (PCT) is a glass leach test that was developed at the Savannah River Site (SRS) to routinely confirm the durability of nuclear waste glasses that will be produced in the Defense Waste Processing Facility. The PCT is a 7 day, crushed glass leach test in deionized water at 90 degree C. Final leachates are filtered and acidified prior to analysis. To demonstrate the reproducibility of the PCT when performed remotely, SRS and Argonne National Laboratory have performed the PCT on samples of two radioactive glasses. The tests were also performed to compare the releases of the radionuclides with the major nonradioactive glass components and to determine if radiation from the glass was affecting the results of the PCT. The test was performed in triplicate at each laboratory. For the major soluble elements, B, Li, Na, and Si, in the glass, each investigator obtained relative precisions in the range 2--5% in the triplicate tests. This range indicates good precision for the PCT when performed remotely with master slave manipulators in a shielded cell environment

  5. Spectroscopy of Yb-doped tungsten-tellurite glass and assessment of its lasing properties

    Science.gov (United States)

    Merzliakov, M. A.; Kouhar, V. V.; Malashkevich, G. E.; Pestryakov, E. V.

    2018-01-01

    Glasses of the TeO2-WO3-Yb2O3 system are synthesized for wide range of Yb3+ concentrations of up to 6.0 × 1021 ions/cm3. The spectral-luminescent properties of lightly doped samples are investigated at room temperature and at the boiling point of liquid nitrogen. The energies of the Stark levels of the ground and excited states of Yb3+ ions incorporated into tungsten-tellurite glass are determined by analyzing the low-temperature spectra. The absorption, emission, and gain cross section spectra are obtained. The excess of the measured fluorescence decay time over the radiative lifetime ∼0.3 ms derived from the absorption spectra is attributed to the reabsorption effect in bulk samples. Measurements of lightly doped glass powder in the immersion liquid are made to reduce the effect of reabsorption. The fluorescence decay time of the powder is very close to the calculated radiative lifetime. Compared with phosphate, silicate, and other Yb3+-doped glasses, the tungsten-tellurite glass has a promising potential as a gain medium for lasers and amplifiers.

  6. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, Erica M.; Almirall, Jose R.

    2010-05-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  7. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Cahoon, Erica M.; Almirall, Jose R.

    2010-01-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  8. Crystallization In Multicomponent Glasses

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.

    2009-01-01

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  9. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  10. Volumetric change of simulated radioactive waste glass irradiated by electron accelerator. [Silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Seichi; Furuya, Hirotaka; Inagaki, Yaohiro; Kozaka, Tetsuo; Sugisaki, Masayasu

    1987-11-01

    Density changes of simulated radioactive waste glasses, silica glass and Pyrex glass irradiated by an electron accelerator were measured by a ''sink-float'' technique. The density changes of the waste and silica glasses were less than 0.05 %, irradiated at 2.0 MeV up to the fluence of 1.7 x 10/sup 17/ ecm/sup 2/, while were remarkably smaller than that of Pyrex glass of 0.18 % shrinkage. Precision of the measurements in the density changes of the waste glass was lower than that of Pyrex glass possibly because of the inhomogeneity of the waste glass

  11. Effect of Al2O3 nano-filler on properties of glass-based seals for solid oxide fuel cells.

    Science.gov (United States)

    Lee, Dong Bok; Choi, Myong-Jae; Park, Sung; Lee, Jae Chun

    2013-01-01

    This study compares the viscosity and strength of three glass-based seals prepared with or without nano or micron-sized alumina powder used as filler material. Measurements of the viscosity and bending strength of the glass-based seals showed that addition of the nano-sized alumina powder to the glass increased both the high-temperature viscosity and the strength of the sintered glass matrix. Strength tests and observations of the microstructure of the fracture surface of the seal samples confirmed the strengthening of the glass network structure. Conversion of non-bridging oxygen to bridging oxygen is presumed to occur upon the addition of alumina to the glass sample. The strengthening of the alumina-glass composite seal was attributed to the alumina nano-filler and prolonged heat treatment at elevated temperatures.

  12. PIXE analysis of western han dynasty ancient glasses unearthed in Yangzhou city

    International Nuclear Information System (INIS)

    Li Qinghui; Gu Donghong; Gan Fuxi; Zhang Bin; Ma Bo; Cheng Huansheng

    2003-01-01

    Chemical composition analysis is one of the most important research aspects to provide scientific proof for the technical origin and development of Chinese ancient glass. Proton induced X-ray emission (PIXE) technique is a kind of multi-element quantitative analysis method with high sensitivity and without destruction of samples. Chemical composition of the Western Han dynasty glass garment flakes, which were excavated from Yangzhou city, was analyzed by PIXE, quantitatively. It was found that these glass flakes were attributed to PbO-BaO-SiO 2 glass originated in China. These flakes all consist of a glass core and a corroded outer layer with different thickness. There are relatively higher PbO, P 2 O 5 and CaO, while much lower BaO and SiO 2 in the corroded layers than in the glass cores. The experimental results were discussed

  13. Discontinuous and heterogeneous glass transition behavior of carbohydrate polymer-plasticizer systems.

    Science.gov (United States)

    Kawai, Kiyoshi; Hagura, Yoshio

    2012-07-01

    In order to understand the glass transition properties of carbohydrate polymer-plasticizer systems, glass transition temperatures of dextrin-glucose and dextrin-maltose systems were investigated systematically using differential scanning calorimetry. The onset (Tg(on)) and offset (Tg(off)) of the glass transition decreased with increasing plasticizer (glucose or maltose) content, and showed an abrupt depression at certain plasticizer content. The abrupt depression of Tg(off) occurred at higher plasticizer content than that of Tg(on). The glass transition was much broader for intermediate plasticizer content. From the enthalpy relaxation behavior of samples aged at various temperatures, it was found that two different glass transitions occurred contentiously in the broad glass transition. These results suggested that carbohydrate polymer-plasticizer systems can be classified into three regions: the entrapment of the plasticizer by the polymer, the formations of the polymer-plasticizer and plasticizer-rich domains, and the embedment of polymer into the plasticizer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Wet and dry atmospheric deposition on TiO2 coated glass

    International Nuclear Information System (INIS)

    Chabas, Anne; Gentaz, Lucile; Lombardo, Tiziana; Sinegre, Romain; Falcone, Roberto; Verita, Marco; Cachier, Helene

    2010-01-01

    To prevent the soiling of glass window used in the built environment, the use TiO 2 coated products appears an important application matter. To test the cleaning efficiency and the sustainability of self-cleaning glass, a field experiment was conducted under real life condition, on a site representative of the background urban pollution. Samples of float glass, used as reference, and commercialized TiO 2 coated glasses were exposed to dry and wet atmospheric deposition during two years. The crossed optical, chemical and microscopic evaluations performed, after withdrawal, allowed highlighting a sensible difference between the reference and the self-cleaning substrate in terms of accumulation, nature, abundance and geometry of the deposit. This experiment conducted in real site emphasized on the efficacy of self-cleaning glass to reduce the maintenance cost. - This paper evaluates the self-cleaning glass efficiency highlighting its ability to prevent soiling and to be used as a mean of remediation.

  15. Novel resorbable glass-ceramic scaffolds for hard tissue engineering: from the parent phosphate glass to its bone-like macroporous derivatives.

    Science.gov (United States)

    Bretcanu, Oana; Baino, Francesco; Verné, Enrica; Vitale-Brovarone, Chiara

    2014-05-01

    One of the major challenges of hard tissue engineering research focuses on the development of scaffolds that can match the mechanical properties of the host bone and resorb at the same rate as the bone is repaired. The aim of this work was the synthesis and characterization of a resorbable phosphate glass, as well as its application for the fabrication of three dimensional (3-D) scaffolds for bone regeneration. The glass microstructure and behaviour upon heating were analysed by X-ray diffraction, differential scanning calorimetry and hot stage microscopy. The glass solubility was investigated according to relevant ISO standards using distilled water, simulated body fluid (SBF) and Tris-HCl as testing media. The glass underwent progressive dissolution over time in all three media but the formation of a hydroxyapatite-like layer was also observed on the samples soaked in SBF and Tris-HCl, which demonstrated the bioactivity of the material. The glass powder was used to fabricate 3-D macroporous bone-like glass-ceramic scaffolds by adopting polyethylene particles as pore formers: during thermal treatment, the polymer additive was removed and the sintering of glass particles was allowed. The obtained scaffolds exhibited high porosity (87 vol.%) and compressive strength around 1.5 MPa. After soaking for 4 months in SBF, the scaffolds mass loss was 76 wt.% and the pH of the solution did not exceed the 7.55 value, thereby remaining in a physiological range. The produced scaffolds, being resorbable, bioactive, architecturally similar to trabecular bone and exhibiting interesting mechanical properties, can be proposed as promising candidates for bone repair applications.

  16. Preliminary assessment of modified borosilicate glasses for chromium and ruthenium immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Farid, Osama M. [Reactors Department, Nuclear Research Center, Atomic Energy Authority of Egypt, P.O. 13759, Inshas, Cairo (Egypt); Centre of Nuclear Engineering (CNE), Department of Materials, Imperial College London, London, SW7 2BP (United Kingdom); Abdel Rahman, R.O., E-mail: alaarehab@yahoo.com [Hot Laboratory Center, Atomic Energy Authority of Egypt, P.O. 13759, Inshas, Cairo (Egypt)

    2017-01-15

    The feasibility of using modified alkali borosilicate glasses for ruthenium and chromium immobilization is preliminary assessed by investigating the immobilization system structure under normal conditions. Within this context, reference alkali borosilicate, and simulated Magnox-modified glasses were prepared and studied. The results indicate that ruthenium is immobilized in the vitreous structure as encapsulated RuO{sub 2} crystallites that act as seeds for heterogeneous nucleation of other crystalline phases. The presence of Zn, as modifier, has contributed to chromium immobilization in zincochromite spinel structure, whereas Ca is accommodated in the vitreous structure. Immobilization performance was evaluated by conducting conservative static leach test and studying the leached glass. Leached glass morphology was altered, where near surface reference glass is leached over 400 nm and simulated Magnox-modified sample is altered over 300 nm. Normalized release rates are within normal range for borosilicate material. For simulated Magnox-modified sample, Ca and alkali structural element, i.e. Na and Li, are leached via ion-exchange reaction. The ion-exchanged fraction equals 1.06 × 10{sup −8} mol/m{sup 2} s and chromium has slightly lower normalized release rate value than ruthenium. - Highlights: • The presence of modifiers and waste oxides led to localized de-vitrification. • Ruthenium is encapsulated within the vitreous glass network as RuO{sub 2} crystals. • Chromium is immobilized within the zincochromite spinel structure. • Pitting and cracks induced by leaching did not affect the immobilization performance.

  17. Glass ceiling in SMEs? Women, managerialization and performance

    OpenAIRE

    L. Songini; L. Gnan

    2012-01-01

    This article analyses the role of women in a sample of Italian small and medium sized enterprises (SMEs), both non-family and family owned businesses. We assume that the existence of a glass ceiling implies that women are not in a position to exercise an active role in the company; ownership per se does not assure the elimination of the glass ceiling, while the broader involvement of women in governance and management roles, as we may suppose in family firms, may represent a better situation ...

  18. Magnetization relaxation in spin glasses above transition point

    International Nuclear Information System (INIS)

    Zajtsev, I.A.; Minakov, A.A.; Galonzka, R.R.

    1988-01-01

    Magnetization relaxation of Cd 0.6 Zn 0.4 Cr 2 Se 4 and Cd 0.6 Mn 0.4 Te monocrystalline samples with T g =21 K and T g =12 K respectively and magnetic colloid is investigated. It is shown that magnetization inexponential relaxation detected experimentally in spin and dipole glasses is essentially higher than T g temperature transition. It is found that at temperatures higher than T g the essential difference is observed in behaviour of spin glasses with different Z and disorder types

  19. Novel High Temperature and Radiation Resistant Infrared Glasses and Optical Fibers for Sensing in Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballato, John [Clemson Univ., SC (United States)

    2018-01-22

    One binary and three series of ternary non-oxide pure sulfide glasses compositions were investigated with the goal of synthesizing new glasses that exhibit high glass transition (Tg) and crystallization (Tc) temperatures, infrared transparency, and reliable glass formability. The binary glass series consisted of Ges2 and La2S3 and the three glass series in the x(nBaS + mLa2S3) + (1-2x)GeS2 ternary system have BaS:La2S3 modifier ratios of 1:1, 1:2, and 2:1 with . With these glasses, new insights were realized as to how ionic glasses form and how glass modifiers affect both structure and glass formability. All synthesized compositions were characterized by Infrared (IR) and Raman spectroscopies and differential thermal analysis (DTA) to better understand the fundamental structure, optical, and thermal characteristics of the glasses. After a range of these glasses were synthesized, optimal compositions were formed into glass disks and subjected to gamma irradiation. Glass disks were characterized both before and after irradiation by microscope imaging, measuring the refractive index, density, and UV-VIS-IR transmission spectra. The final total dose the samples were subjected to was ~2.5 MGy. Ternary samples showed a less than 0.4% change in density and refractive index and minimal change in transmission window. The glasses also resisted cracking as seen in microscope images. Overall, many glass compositions were developed that possess operating temperatures above 500 °C, where conventional chalcogenide glasses such as As2S3 and have Tgs from ~200-300 °C, and these glasses have a greater than Tc – Tg values larger than 100 °C and this shows that these glasses have good thermal stability of Tg such that they can be fabricated into optical fibers and as such can be considered candidates for high temperature infrared fiber optics. Initial fiber fabrication efforts showed that selected glasses could be drawn but larger

  20. Hysteresis critical point of nitrogen in porous glass: occurrence of sample spanning transition in capillary condensation.

    Science.gov (United States)

    Morishige, Kunimitsu

    2009-06-02

    To examine the mechanisms for capillary condensation and for capillary evaporation in porous glass, we measured the hysteresis critical points and desorption scanning curves of nitrogen in four kinds of porous glasses with different pore sizes (Vycor, CPG75A, CPG120A, and CPG170A). The shapes of the hysteresis loop in the adsorption isotherm of nitrogen for the Vycor and the CPG75A changed with temperature, whereas those for the CPG120A and the CPG170A remained almost unchanged with temperature. The hysteresis critical points for the Vycor and the CPG75A fell on the common line observed previously for ordered mesoporous silicas. On the other hand, the hysteresis critical points for the CPG120A and the CPG170A deviated appreciably from the common line. This strongly suggests that capillary evaporation of nitrogen in the interconnected and disordered pores of both the Vycor and the CPG75A follows a cavitation process at least in the vicinity of their hysteresis critical temperatures in the same way as that in the cagelike pores of the ordered silicas, whereas the hysteresis critical points in the CPG120A and the CPG170A have origin different from that in the cagelike pores. The desorption scanning curves for the CPG75A indicated the nonindependence of the porous domains. On the other hand, for both the CPG120A and the CPG170A, we obtained the scanning curves that are expected from the independent domain theory. All these results suggest that sample spanning transitions in capillary condensation and evaporation take place inside the interconnected pores of both the CPG120A and the CPG170A.

  1. Petrology and geochemistry of VLT glasses from double drive tube 79001/2

    Science.gov (United States)

    Wentworth, Susan J.; Lindstrom, D. J.; Martinez, R. R.; Mckay, D. S.

    1993-01-01

    As a part of more general studies of soils from Apollo 17 double drive tube 79001/2, glasses from the 79001/2 core are being analyzed by a multidisciplinary approach including SEM/EDS and INAA. Efforts are currently focused on VLT (very low-Ti; TiO2 less than 1 wt%) mare glasses, which are common in 79001/2 and have also been found in other Apollo 17 soils. One of the primary objectives is to determine whether any or all of the Apollo 17 VLT glasses represent pristine volcanic compositions. In addition, the range of VLT glass compositions and possible relationships between the glasses and VLT lithic samples, for which some geochemical data have been obtained previously, is being defined.

  2. Cinema ed enogastronomia nel portale turistico della Regione Toscana / Cinema and enogastronomy in the tourism portal of the Toscana Region

    Directory of Open Access Journals (Sweden)

    Gian Luigi Corinto

    2016-05-01

    The paper analyzes the case study of the Tuscan Region which in 2007 has charged the Sistema Toscana Foundation to strategically control all the territorial marketing activities, even including those of the regional film commission and the promotional tourist web site. The aim is to analyze the specific promotional model for enogastronomy and film tourism, as in the peculiar combination of the Tuscan case. The findings are that enongatronomy and tourism have been promoted in combination but only referring to 'minor' tuscan destinations, different from the crowded regional capital or other cultural sites. This choice has been determined by the strategic market positioning of the entire regional tourism supply, effectively integrating local vocations in the web communications. The task of the Foundation in promoting the whole territory and even the minor destinations must be considered as substantially successful, mainly because it has increased the visibility of the Tuscan region by conveniently using all the old and new media tools.

  3. Advances in understanding the structure of borosilicate glasses: A Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Manara, D.; Grandjean, A. [CEA Marcoule, Serv Confinement Deches and Vitrificat, DTCD, DEN - 30 (France); Neuville, D.R. [Institut Physique Globe, Physique des Mineraux et Magmas, CNRS, F-75252 Paris 05 (France)

    2009-05-15

    This study is focused on the behavior of ternary SiO{sub 2}-Na{sub 2}O-B{sub 2}O{sub 3} borosilicate glasses at temperatures between 298 and 1800 K. Unpolarized Raman spectra were measured up to high temperature. SiO{sub 2}-Na{sub 2}O-B{sub 2}O{sub 3} glass samples were prepared with different values of the ratio R [Na{sub 2}O]/[B{sub 2}O{sub 3}], while the ratio K = [SiO{sub 2}]/[B{sub 2}O{sub 3}] was kept constant and equal 2.12. Spectra were measured at room temperature in samples with 0.43 {<=} R {<=} 1.68, and the effect of the modifier content was clearly observed in these glasses, only in partial agreement with previous literature results. In particular, the formation in the glass of sodium-danburite units Na{sub 2}O-B{sub 2}O{sub 3}-2SiO{sub 2} was postulated. This feature led to a new assessment of R{sup *}, the critical value of R above which every new alkali atom added to the system breaks a Fo-O-Fo (Fo=glass former) bridge causing depolymerization of the glass. A revised formula is proposed to obtain the value of R{sup *} as a function of K. Raman spectra measured at high temperature yielded important information about the temperature-dependent evolution of the borosilicate system. In particular, borate and borosilicate units including tetra-coordinated boron seem to be unstable at high temperature, where the formation of metaborate chains or rings is fostered. Above 1500 degrees C, evaporation of borate compounds is clearly observed, stemming from the small sample size. (authors)

  4. Manufacturing of glass from tin mining tailings in Bolivia

    International Nuclear Information System (INIS)

    Arancibia, J. r. H.; Alfonso, P.; Garcia-Valles, M.; Martinez, S.; Parcerisa, D.; Canet, C.; Romero, F. M.

    2013-01-01

    Tailings from mining activities in Bolivia represent an environmental problem. In the vicinity of the tin mines of Llallagua, Potosi department, there are large dumps and tailings. We present a study of the use of these wastes as raw materials for the manufacture of glass. This procedure aims to contribute to environmental remediation of mining areas through the vitrification, a process which offers an alternative for stabilization of hazardous waste. In addition, the marketing of the obtained product would provide an additional income to the mining areas. For this study three samples of mining waste, with grain size between sand and silt, were used. The chemical composition of these raw materials, determined by X-ray fluorescence, is granitic, with high contents of heavy metals. On the basis of its composition, glass were made from silica glass by adding CaCO 3 and Na 2 CO 3 . The thermal cycle has been determined from TDA. Tg values of glass range from 626 degree centigrade to 709 degree centigrade. Leaching tests of the obtained glasses confirm their capacity to retain heavy metals. (Author)

  5. Laser ablation of silicate glasses doped with transuranic actinides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1998-01-01

    Direct sampling laser ablation plasma mass spectrometry (DS-LAMS) was applied to silica glasses doped with 237 Np, 242 Pu or 241 Am using a unique instrument recently installed into a transuranic glovebox. The primary goal was to assess the utility of mass spectrometry of directly ablated ions for facile evaluation of actinide (An) constituents of silicate glass immobilization matrices used for encapsulation of radionuclides. The instrument and general procedures have been described elsewhere. Three high-purity silicate glasses prepared by a sol-gel process (SG) and one conventional high-temperature (HT; melting point ∼ 1,450 C) borosilicate glass were studied. These glasses comprised the following constituents, with compositions expressed in mass percentages: Np-HT ∼ 30% SiO 2 + 6% B 2 O 3 + 3% BaO + 13% Al 2 O 3 + 10% PbO + 30% La 2 O 3 + 8% 237 NpO 2 ; Np-SG ∼ 70% SiO 2 + 30% 237 NpO 2 ; Pu-SG ∼ 70% SiO 2 + 30% 242 PuO 2 ; Am-SG ∼ 85% SiO 2 + 15% 241 AmO 2

  6. SAXS study of growth of AgCl crystallites in photo chromic glass

    Energy Technology Data Exchange (ETDEWEB)

    Takatohi, Urias E. [Instituto Adventista de Ensino, Sao Paulo, SP (Brazil); Bittencourt, Diomar; Watanabe, Shigueo [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1996-12-31

    A class of photo chromic glasses presents a reversible change in their optical absorption when exposed to light due to small silver halide crystals inside the glassy matrix. The silver halides crystals grow during the annealing of the glass. A base glass of 40 Si O{sub 2}. 10 Al{sub 2} O{sub 3}.(16,1) K{sub 2} O. (33,9) B{sub 2} O{sub 3} doped Ag CL and Cu O was produced and submited to different annealing programs, SAXS measurements were performed with samples annealed for 0.5h at temperatures from 480{sup O}C to 620{sup O}C and samples annealed at 600{sup 0}C for times from 0.25h to 1.25h. Guinier radius (R{sub g}) for samples annealed between 570 and 620{sup 0}C show crescent growth rate in the interval. For samples annealed at 600{sup 0}C for different times t a R{sup 3}{sub g} = Kt law can be observed. Variation on optical absorption spectra for samples exposed to light show a correlation with the SAXS results. (author) 4 refs., 2 figs.

  7. Optical and structural investigation on sodium borosilicate glasses doped with Cr2O3

    Science.gov (United States)

    Ebrahimi, E.; Rezvani, M.

    2018-02-01

    In this work, Sodium borosilicate glasses with chemical composition of 60% SiO2-20% B2O3-20%Na2O doped with different contents of Cr2O3 were prepared by melting-quenching method. Physical, structural and optical properties of glasses were investigated by studying density and molar volume, Fourier Transform Infrared (FT-IR) Spectra and UV-visible absorption spectroscopy. The results showed an increase in density of glasses with the increase of Cr2O3 that can be due to addition of oxide with high molar mass. The optical absorption spectra of un-doped glass reveals UV absorption due to trace iron impurities with no visible band however Cr2O3 doped glasses shows absorption in visible range that are characteristic. Increasing of Cr3 + ions in the glassy microstructure of samples provides a semiconducting character to Sodium borosilicate glass by reducing the direct and indirect optical band gaps of glass samples from 3.79 to 2.59 (ev) and 3.36 to 2.09 (ev), respectively. These changes could be attributed to the role of Cr3 + ions as the network former which asserts improvement of semiconducting behavior in presence of Cr2O3.

  8. Dipolar ferromagnets and glasses (invited)

    International Nuclear Information System (INIS)

    Rosenbaum, T.F.; Wu, W.; Ellman, B.; Yang, J.; Aeppli, G.; Reich, D.H.

    1991-01-01

    What is the ground state and what are the dynamics of 10 23 randomly distributed Ising spins? We have attempted to answer these questions through magnetic susceptibility, calorimetric, and neutron scattering studies of the randomly diluted dipolar-coupled Ising magnet LiHo x Y 1-x F 4 . The material is ferromagnetic for dipole concentrations at least as low as x=0.46, with a Curie temperature obeying mean-field scaling relative to that of pure LiHoF 4 . In the dilute spin limit, an x=0.045 crystal shows very unusual glassy properties characterized by decreasing barriers to relaxation as T→0. Its properties are consistent with a single low degeneracy ground state with a large gap for excitations. A slightly more concentrated x=0.167 sample, however, supports a complex ground state with no appreciable gap, in accordance with prevailing theories of spin glasses. The underlying causes of such disparate behavior are discussed in terms of random clusters as probed by neutron studies of the x=0.167 sample. In addition to tracing the evolution of the glassy and ferromagnetic states with dipole concentration, we investigate the effects of a transverse magnetic field on the Ising spin glass, LiHo 0.167 Y 0.833 F 4 . The transverse field mixes the eigenfunctions of the ground-state Ising doublet with the otherwise inaccessible excited-state levels. We observe a rapid decrease in the characteristic relaxation times, large changes in the spectral form of the relaxation, and a depression of the spin-glass transition temperature with the addition of quantum fluctuations

  9. The relationship between structural and optical properties of Se-Ge-As glasses

    Science.gov (United States)

    Ghayebloo, M.; Rezvani, M.; Tavoosi, M.

    2018-05-01

    In this study, the structural and optical characterization of bulk Se-Ge-As glasses has been investigated. In this regards, six different Se60Ge40-xAsx (0 ≤ x ≤ 25) glasses were prepared by conventional melt quenching technique in quartz ampoule. The produced samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, differential thermal analysis (DTA), ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. The fundamental absorption edge for all the glasses was analyzed in terms of the theory proposed by Davis and Mott. According to achieved results, fully amorphous phase can easily form in different Se-Ge-As systems. The thermal and optical characteristic of Se60Ge40-xAsx glasses shows anomalous behavior at 5 mol% of As for the glass transition temperature, transmittance, absorption edge, optical energy gap and Urbach energy. The highest glass transition temperature, transmittance, optical energy gap and Urbach energy properties were achieved in Se60Ge35As5 glass as a result of the highest connectivity of cations and anions in glass network.

  10. Corrosion mechanism and bioactivity of borate glasses analogue to Hench’s bioglass

    Directory of Open Access Journals (Sweden)

    Mona A. Ouis

    2012-09-01

    Full Text Available Bioactive borate glasses (from the system Na2O-CaO-B2O3-P2O5 and corresponding glass-ceramics as a new class of scaffold material were prepared by full replacement of SiO2 with B2O3 in Hench patented bioactive glass. The prepared samples were investigated by differential thermal analysis (DTA, Fourier transform infrared (FTIR spectroscopy and X-ray diffraction (XRD analysis. The DTA data were used to find out the proper heat treatment temperatures for preparation of the appropriate glass-ceramics with high crystallinity. The prepared crystalline glass-ceramics derivatives were examined by XRD to identify the crystalline phases that were precipitated during controlled thermal treatment. The FTIR spectroscopy was used to justify the formation of hydroxyapatite as an indication of the bioactivity potential or activity of the studied ternary borate glasses or corresponding glass-ceramics after immersion in aqueous phosphate solution. The corrosion results are interpreted on the basis of suggested recent views on the corrosion mechanism of such modified borate glasses in relation to their composition and constitution.

  11. Thermoluminescence properties of alkali borate glasses containing neodymium

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, A.F.; Henaish, B.A.; Kenaway, M.A.; Salem, L.R.

    1988-01-01

    The thermoluminescence properties of sodium borate glasses as a function of neodymium oxide content as well as the divalent metal oxides (RO = ZnO, MgO and CaO) in replacement of Na/sub 2/O have been investigated. It is observed that the addition of Nd/sub 2/O/sub 3/ imparts to the host glass a monopeak glow curve according to an active luminescent centre (E approx. = 0.97 eV to 1.232 eV). The gradual addition of neodymium oxide to the sodium borate glass causes gradual enhancement in the TL-intensity up to a quenching concentration value (4 g Nd/sub 2/O/sub 3/ added to 100 g of borate glass) above which a draw back in TL-intensity occurs. On the other hand the replacement of 5 wt% Na/sub 2/O by RO shows that CaO dominates the other two divalent metal oxides used, as it possesses a much deeper luminescent trap (1.232 eV). The results obtained suggest that these glasses can be used in radiation detection and dosimetry. The ..gamma..-induced Tl-signal of such type of glass is found to be reproducible within an acceptable error of not more than 3.5% in all individual and group scattering over the detector samples each of which is used 10 times for evaluating the same ..gamma..-dose.

  12. Shielding behavior of V2O5 doped lead borate glasses towards gamma irradiation

    International Nuclear Information System (INIS)

    Ghoneim, N.A.; ElBatal, H.A.; Abdelghany, A.M.; Ali, I.S.

    2011-01-01

    Highlights: → Base lead borate glass together with samples of the same composition doped with varying V 2 O 5 contents were prepared. → UV-visible and infrared spectroscopy were measured before and after successive gamma irradiation. → Glass samples are observed to absorb strongly in the UV. → Infrared absorption spectra indicate the presence of both triangular and tetrahedral borate groups besides the sharing of lead ions in network forming and network modifying sites. - Abstract: Undoped lead borate glass of the composition PbO 70%-B 2 O 3 30% together with samples of the same composition and doped with varying V 2 O 5 contents were prepared. UV-visible absorption spectra were measured out in the range 200-1500 nm before and after successive gamma irradiation. Infrared absorption measurements within the range 4000-400 cm -1 were carried out for the undoped and V 2 O 5 doped samples before gamma irradiation and after being irradiated with a dose of 6 Mrad. All the glass samples are observed to absorb strongly in the UV region due to the combined contributions of absorption due to trace iron impurities and that from the divalent lead Pb 2+ ions. The V 2 O 5 -doped glasses reveal extra visible absorption bands which are attributed to the existence of V 3+ ions in measurable content but not neglecting the other valence states of vanadium ions (V 4+ , V 5+ ). Infrared absorption spectra indicate the presence of both triangular and tetrahedral borate groups besides the sharing of lead ions in network forming and network modifying sites.

  13. Recent results on the effect of gamma radiation on the durability and microstructure of DWPF glass

    International Nuclear Information System (INIS)

    Bibler, N.E.; Tosten, M.H.; Beam, D.C.

    1989-01-01

    The effect of gamma radiation on the durability and microstructure of a simulated nuclear waste glass from the Savannah River Site has been carefully investigated. Three large pieces of glass were irradiated with a Co-60 source to three doses up to a maximum dose of 3.1 x 10 10 rad. Internal samples of the large pieces of irradiated and unirradiated glass were leached in deionized water to investigate durability changes and were examined by transmission electron microscopy (TEM) to investigate microstructure changes. Leach tests were performed in triplicate at 90 degree C with crushed glass samples in deionized water. A statistical analysis of the results indicated to the 95% confidence level that the radiation did not affect the glass durability. Careful examination by TEM indicated no effect of gamma radiation on the microstructure of the glass although severe damage could be induced by the electron beam from the microscope. 19 refs., 2 figs., 3 tabs

  14. Effect of replacing calcium oxide with calcium fluoride on some physical properties of borosilicate glass ceramics

    International Nuclear Information System (INIS)

    Assem, E E

    2005-01-01

    Two glass samples were prepared according to the molar formula (20%X-40%B 2 O 3 -40%SiO 2 ), where X = CaO or CaF 2 . The glass was melted at 1300 deg. C for 3 h until homogenous glass was obtained. The glass samples were heat-treated at 700 deg. C for 2 h and at 850 deg. C for different times. The green glass obtained has low dielectric constant and positive magnetic susceptibility. The molar volume, scanning electron microscope and differential thermal analysis studies showed that the crystallization rate increases with an increase in the sintering time. The replacement of CaO by CaF 2 improves the physical properties of the glass. The existence of fluorine ions increases the electrical conductivity, magnetic susceptibility, molar volume, dielectric constant and effective overall reaction rate (κ). All measured properties have a random behaviour with sintering time due to phase separation and asymmetry of crystallization

  15. Luminescence properties of erbium doped sodium barium borate glass with silver nanoparticles

    Science.gov (United States)

    Rajeshree Patwari, D.; Eraiah, B.

    2018-02-01

    Alteration in the absorption features of rare earth (RE) doped glasses with silver nanoparticles is ever-challenging in photonics. Erbium (Er3+) doped glasses with composition (60-x-y)B2O3-30Na2CO3-10BaO-xEr2O3-yAgCl where (x=0.5, 1.0 and y=1.0 mol %) are synthesized using melt-quenching method. The density is determined by Archimedes principle and molar volumes are calculated. Glass samples were characterized by XRD and UV-Visible spectroscopy. UV-Visible spectra shows eleven prominent absorption peaks centred around 366, 378, 408, 442, 452, 489, 521, 547, 652, 800 and 977 nm equivalent to the rare earth (Er3+) ion transitions. The sample without rare earth shows no peaks which specifies that rare earth ion plays a spirited role in the glass matrix. The glass samples with silver and without rare earth ion shows plasmon peak on heat treatment. The energy band gap values calculated for direct and indirect transitions are in the range of 3.126-3.440eV and 2.58-3.177eV respectively. The refractive indices and Urbach energies are also determined. Photoluminescence spectra are recorded and studied for excitation of the most intense peaks of wavelengths 378 and 521nm. The luminescence of erbium ion is enhanced by the presence of silver when the concentration of rare earth ion is less than that of silver.

  16. Primary crystallization in Al-rich metallic glasses at unusually low temperatures

    International Nuclear Information System (INIS)

    Bokeloh, J.; Boucharat, N.; Roesner, H.; Wilde, G.

    2010-01-01

    The initial stage of the primary crystallization reaction and the glass transition of the marginal metallic glass Al 89 Y 6 Fe 5 were investigated by conventional differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC), microcalorimetry, X-ray diffraction (XRD) and transmission electron microscopy. A sharp onset of the primary crystallization was found by microcalorimetry and XRD studies at temperatures which were 120 deg. C below the primary crystallization peak observed in conventional DSC. A systematic MDSC study of annealed samples revealed a wide spectrum of glass transition onsets, which show a strong dependence on the annealing conditions. In addition, the glass transition onsets can be linked to the initial stage of the primary crystallization. The spectrum of glass transition onsets observed is discussed with respect to the occurrence of phase separation preceding the nucleation and growth of dendritic aluminium nanocrystals.

  17. Thermal, mechanical and Raman studies on mixed alkali borotungstate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Edukondalu, A. [Department of Physics, Osmania University, Hyderabad 500007 (India); Sathe, Vasant [Consortium for Scientific Research, Khandwa Road, Indore 452017 (India); Rahman, Syed [Department of Physics, Osmania University, Hyderabad 500007 (India); Siva Kumar, K., E-mail: siva193ou@gmail.com [Department of Physics, Osmania University, Hyderabad 500007 (India)

    2014-04-01

    Mixed alkali borotungstate glasses with xLi{sub 2}O–(30−x)Na{sub 2}O–10WO{sub 3}–60B{sub 2}O{sub 3} (0 ≤ x ≤ 30) composition were prepared by melt quench technique. The amorphous phase of the prepared glass samples was conformed from their X-ray diffraction and SEM studies. Differential scanning calorimetry and Raman spectroscopic studies were employed to investigate the structure of all the prepared glasses. The elastic moduli and Debye temperature were calculated in terms of Makishima–Mackenzie model. Acting as complementary techniques, Raman measurement revealed that the network structure of the present glasses is mainly based on BO{sub 3} and BO{sub 4} units placed in different structural groups. Raman spectra confirms the presence of tungsten ions mainly as WO{sub 6} groups. In the present work, the mixed alkali effect (MAE) has been investigated in the above glass system through modulated DSC studies.

  18. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Aldo R. Boccaccini

    2010-07-01

    Full Text Available Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on the basis of melt-derived bioactive silicate glass compositions and relevant composite structures. Starting with an excerpt on the history of bioactive glasses, as well as on fundamental requirements for bone tissue engineering scaffolds, a detailed overview on recent developments of bioactive glass and glass-ceramic scaffolds will be given, including a summary of common fabrication methods and a discussion on the microstructural-mechanical properties of scaffolds in relation to human bone (structure-property and structure-function relationship. In addition, ion release effects of bioactive glasses concerning osteogenic and angiogenic responses are addressed. Finally, areas of future research are highlighted in this review.

  19. Parameters of Concrete Modified with Glass Meal and Chalcedonite Dust

    Science.gov (United States)

    Kotwa, Anna

    2017-10-01

    Additives used for production of concrete mixtures affect the rheological properties and parameters of hardened concrete, including compressive strength, water resistance, durability and shrinkage of hardened concrete. By their application, the use of cement and production costs may be reduced. The scheduled program of laboratory tests included preparation of six batches of concrete mixtures with addition of glass meal and / or chalcedonite dust. Mineral dust is a waste product obtained from crushed aggregate mining, with grain size below 0,063μm. The main ingredient of chalcedonite dust is silica. Glass meal used in the study is a material with very fine grain size, less than 65μm. This particle size is present in 60% - 90% of the sample. Additives were used to replace cement in concrete mixes in an amount of 15% and 25%. The amount of aggregate was left unchanged. The study used Portland cement CEM I 42.5R. Concrete mixes were prepared with a constant rate w / s = 0.4. The aim of the study was to identify the effect of the addition of chalcedonite dust and / or glass meal on the parameters of hardened concrete, i.e. compressive strength, water absorption and capillarity. Additives used in the laboratory tests significantly affect the compressive strength. The largest decrease in compressive strength of concrete samples was recorded for samples with 50% substitutes of cement additives. This decrease is 34.35%. The smallest decrease in compressive strength was noted in concrete with the addition of 15% of chalcedonite dust or 15% glass meal, it amounts to an average of 15%. The study of absorption shows that all concrete with the addition of chalcedonite dust and glass meal gained a percentage weight increase between 2.7 ÷ 3.1% for the test batches. This is a very good result, which is probably due to grout sealing. In capillary action for the test batches, the percentage weight gains of samples ranges from 4.6% to 5.1%. However, the reference concrete obtained

  20. Bioactive glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.

    2007-04-01

    Full Text Available Since the late 1960´s, a great interest in the use of bioceramic materials for biomedical applications has been developed. In a previous paper, the authors reviewed crystalline bioceramic materials “sensus stricto”, it is to say, those ceramic materials, constituted for non-metallic inorganic compounds, crystallines and consolidates by thermal treatment of powders at high temperature. In the present review, the authors deal with those called bioactive glasses and glassceramics. Although all of them are also obtained by thermal treatment at high temperature, the first are amorphous and the second are obtained by devitrification of a glass, although the vitreous phase normally prevails on the crystalline phases. After an introduction to the concept of bioactive materials, a short historical review of the bioactive glasses development is made. Its preparation, reactivity in physiological media, mechanism of bonding to living tissues and mechanical strength of the bone-implant interface is also reported. Next, the concept of glass-ceramic and the way of its preparation are exposed. The composition, physicochemical properties and biological behaviour of the principal types of bioactive glasses and glass-ceramic materials: Bioglass®, Ceravital®, Cerabone®, Ilmaplant® and Bioverit® are also reviewed. Finally, a short review on the bioactive-glass coatings and bioactive-composites and most common uses of bioactive-glasses and glass-ceramics are carried out too.

    Desde finales de los años sesenta, se ha despertado un gran interés por el uso de los materiales biocerámicos para aplicaciones biomédicas. En un trabajo previo, los autores hicieron una revisión de los denominados materiales biocerámicos cristalinos en sentido estricto, es decir, de aquellos materiales, constituidos por compuestos inorgánicos no metálicos, cristalinos y consolidados mediante tratamientos térmicos a altas temperaturas. En el presente trabajo, los autores

  1. Synthesis and characterization of barium fluoride substituted zinc tellurite glasses

    Science.gov (United States)

    Aishwarya, K.; Vinitha, G.; Varma, G. Sreevidya; Asokan, S.; Manikandan, N.

    2017-12-01

    Glasses in the TeO2-ZnO-BaF2 system were prepared by standard melt quenching technique and were characterized for their thermal, optical and structural properties. Samples were found to show good thermal stability with values ranging above 100 °C for all the compositions. Optical bandgap and refractive index values were calculated from linear optical measurements using UV-Vis spectroscopy. Infrared spectra showed the presence of hydroxyl groups in the glasses indicating that the effect of fluorine was negligible in removing the hydroxyl impurities for the experimental conditions and compositions used. Raman measurements showed the modification occurring in the glass network due to addition of barium fluoride in terms of increase in the formation of non-bridging oxygen atoms compared to strong Te-O-Te linkages in the glass matrix.

  2. Surface analysis of thin film coatings on container glass

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, A. [GCC Pty Ltd., Jindalee, QLD (Australia); Wood, B. [The University of Queensland, Brisbane, QLD (Australia). Department of Chemistry

    1999-12-01

    Full text: Container glass is generally coated with a tin oxide layer followed by a coating of polymer. These coatings are believed to improve the mechanical properties of container glass as well as aid in the application of advertising labels to glass. The tin oxide layer on commercial beer bottles has a total thickness of about 15-20nm which consists of an interfacial layer comprising 70-85% of the total thickness. The polymer coating is about 2-5nm thick and also possesses an interfacial layer with tin oxide. A PHI Model 560 XPS/ SAM/ SIMS multi-technique system Is used to estimate concentration profiles of Sn, O, C, Si, Ca, Na and O. A combination of XPS, AES and SIMS is necessary to describe the coatings. Instrumental conditions and sample preparation methods are developed to optimize the analysis of thin films on glass. The coating comprises of three areas, namely (A) where polymer and tin co-exist (B) a pure tin oxide layer and (C) where tin co-exists with glass. By varying the chemical source of tin, it is possible to systematically vary the thickness of the interface and the concentration profile of Sn. Using XRD, crystalline phase(s) could be detected in tin oxide films as thin as 15nm. While the principle phase is cassiterite, a second phase is also detected which is believed to originate from the interface. Using a UMIS 2000 nanoindentor system, instrumental parameters are optimized for measurement of elastic modulus of films at varying depths, i.e. from surface of coating to the bulk of the glass. A sharp rise is observed at depth corresponding to the interface which is indicative of the significance of the interfacial layer. Samples are prepared by systematic ion-milling which are representative of various regions of the coating, namely (A), (B) and (C). These samples are analyzed by XRD and TEM. Based on these studies, a structural model of tin oxide layer and interface is presented to explain increase in elastic modulus at the interface. Copyright

  3. Surface analysis of thin film coatings on container glass

    International Nuclear Information System (INIS)

    Bhargava, A.; Wood, B.

    1999-01-01

    Full text: Container glass is generally coated with a tin oxide layer followed by a coating of polymer. These coatings are believed to improve the mechanical properties of container glass as well as aid in the application of advertising labels to glass. The tin oxide layer on commercial beer bottles has a total thickness of about 15-20nm which consists of an interfacial layer comprising 70-85% of the total thickness. The polymer coating is about 2-5nm thick and also possesses an interfacial layer with tin oxide. A PHI Model 560 XPS/ SAM/ SIMS multi-technique system Is used to estimate concentration profiles of Sn, O, C, Si, Ca, Na and O. A combination of XPS, AES and SIMS is necessary to describe the coatings. Instrumental conditions and sample preparation methods are developed to optimize the analysis of thin films on glass. The coating comprises of three areas, namely (A) where polymer and tin co-exist (B) a pure tin oxide layer and (C) where tin co-exists with glass. By varying the chemical source of tin, it is possible to systematically vary the thickness of the interface and the concentration profile of Sn. Using XRD, crystalline phase(s) could be detected in tin oxide films as thin as 15nm. While the principle phase is cassiterite, a second phase is also detected which is believed to originate from the interface. Using a UMIS 2000 nanoindentor system, instrumental parameters are optimized for measurement of elastic modulus of films at varying depths, i.e. from surface of coating to the bulk of the glass. A sharp rise is observed at depth corresponding to the interface which is indicative of the significance of the interfacial layer. Samples are prepared by systematic ion-milling which are representative of various regions of the coating, namely (A), (B) and (C). These samples are analyzed by XRD and TEM. Based on these studies, a structural model of tin oxide layer and interface is presented to explain increase in elastic modulus at the interface. Copyright

  4. Glass and vitrification

    International Nuclear Information System (INIS)

    Barton, J.L.; Vacher, R.; Moncouyoux, J.P.; Vernaz, E.

    1997-01-01

    Most glasses used as materials are oxides glasses that are produced by a quick quench of a liquid. Glasses are characterized by the absence of periodicity in the atomic arrangements, they do not have symmetries and do not present order over a long distance. This series of 4 short articles present: 1) the properties of glass and its industrial story, 2) the glass structure, 3) a forty years long story of glass as dies used to confine wastes and 4) the methodology used to study the behaviour of glass over very long periods of time. This methodology is based on 5 steps: 1) define and specify the material to study (the prediction of long term alteration of a material is nonsense unless you know well its initial properties), 2) identify all the alteration processes that are likely to happen, determine their kinetics and the influence of environmental parameters, 3) develop mathematical models in order to simulate long-term behaviour of glasses, 4) determine the release rates of the radionuclides confined in the glass, and 5) validate data and models, it is not possible to expect a complete validation of a model that will be extrapolated over tens of thousands of years, nevertheless some ways of validation can lead to a satisfactory level of confidence taking into account reasonable uncertainties. (A.C.)

  5. Glass formation, properties, and structure of soda-yttria-silicate glasses

    Science.gov (United States)

    Angel, Paul W.; Hann, Raiford E.

    1991-01-01

    The glass formation region of the soda yttria silicate system was determined. The glasses within this region were measured to have a density of 2.4 to 3.1 g/cu cm, a refractive index of 1.50 to 1.60, a coefficient of thermal expansion of 7 x 10(exp -6)/C, softening temperatures between 500 and 780 C, and Vickers hardness values of 3.7 to 5.8 GPa. Aqueous chemical durability measurements were made on select glass compositions while infrared transmission spectra were used to study the glass structure and its effect on glass properties. A compositional region was identified which exhibited high thermal expansion, high softening temperatures, and good chemical durability.

  6. Glass formation, properties and structure of soda-yttria-silica glasses

    Science.gov (United States)

    Angel, Paul W.; Hann, Raiford E.

    1992-01-01

    The glass formation region of the soda yttria silicate system was determined. The glasses within this region were measured to have a density of 2.4 to 3.1 g/cu cm, a refractive index of 1.50 to 1.60, a coefficient of thermal expansion of 7 x 10(exp -6)/C, softening temperatures between 500 and 780 C, and Vickers hardness values of 3.7 to 5.8 GPa. Aqueous chemical durability measurements were made on select glass compositions while infrared transmission spectra were used to study the glass structure and its effect on glass properties. A compositional region was identified which exhibited high thermal expansion, high softening temperatures, and good chemical durability.

  7. Production of glass or glass-ceramic to metal seals with the application of pressure

    Science.gov (United States)

    Kelly, Michael D.; Kramer, Daniel P.

    1987-11-10

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  8. Application of ultramicrotome section technique to the characterization of nuclear glass durability

    International Nuclear Information System (INIS)

    Nogues, J.L.; Thomassin, J.H.; Touray, J.C.

    1984-06-01

    Surface corrosion four different glasses was studied by electron microscopy. After static leaching at 90 0 C by bidistillate water for 3 months samples are embedded in resin and sections 500 A thick are cut perpendicular to glass surface for examination. Results obtained are discussed in function of chemical composition [fr

  9. Mechanical properties of glasses impacted by debris or micrometeorites

    Science.gov (United States)

    Kinser, Donald L.; Wiedlocher, David E.

    1992-01-01

    Mechanical strength measurements on five glasses and one glass ceramic exposed on the Long Duration Exposure Facility (LDEF) have revealed no damage exceeding experimental limits of error after exposure. The measurement technique subjected less than 5 percent of the sample surface area to stresses above 90 percent of the failure strength. Seven micrometeorite or space debris impacts occurred at locations which were not in that portion of the sample subjected to greater than 90 percent of the applied stress. In consequence of this, the impact events on the sample were not detected in mechanical strength measurements. The physical form and structure of the impact sites was carefully examined to determine the influence of those events upon stress concentration associated with the impact and the resulting mechanical strength influence. The size of the impact site insofar as it determines flaw size for fracture purposes was examined. Surface topography of the impacts reveals that six of the seven sites display impact melting. The classical melt crater structure is surrounded by a zone of fractured glass. Residual stresses arising from shock compression and from cooling of the impact fused zone cannot be included in fracture mechanics analyses based on simple flaw size analyses. Strategies for refining estimates of mechanical strength degradation by impact events are presented.

  10. Long term bleaching of optical glasses darkened by Co60 ionizing radiation

    International Nuclear Information System (INIS)

    Wirtenson, G.R.; White, R.H.

    1997-01-01

    Typical camera designs include optical glass elements that may be affected by the ionizing radiation present in the natural space environment. Ordinary optical glasses darken at low (10(to the 3rd power) rad) dose levels when exposed to ionizing radiation. This darkening decreases the sensitivity of optical sensors. Optical glass flats of FK 51, LaK 0, PK 51A, and ZK Ny were exposed to a 10.6 krad dose of ionizing radiation. Spectrophotometer traces determined the transmittance of the samples as a function of wavelength in the range 350 to 850 nm before and at various time intervals after the irradiation. These measured values were then use to evaluate the rate of recovery or ''bleaching'' of the exposed samples. To prevent accelerated bleaching, the samples were kept at room temperature and away from light, except during measurement. Tables of the measured data and plots of the transmissivity vs. wavelength at various times after irradiation are presented

  11. Glass leaching performance

    International Nuclear Information System (INIS)

    Chick, L.A.; Turcotte, R.P.

    1983-05-01

    Current understanding of the leaching performance of high-level nuclear waste (HLW) glass is summarized. The empirical model of waste glass leaching behavior developed shows that at high water flow rates the glass leach rate is kinetically limited to a maximum value. At intermediate water flow rates, leaching is limited by the solution concentration of silica and decreases with decreasing water flow rates. Release of soluble elements is controlled by silica dissolution because silica forms the binding network of the glass. At low water flow rates, mass loss rates reach values controlled by formation rates of alteration minerals, or by diffusion of dissolution products through essentially stagnant water. The parameters reviewed with respect to their quantifiable influence on leaching behavior include temperature, pH, leachant composition, glass composition, thermal history, and radiation. Of these, temperature is most important since the rate of mass loss approximately doubles with each 10 0 C increase in dilute solutions. The pH has small effects within the 4 to 10 range. The chemical composition of the leachant is most important with regard to its influence on alteration product formation. Glass composition exhibits the largest effects at high flow rates where improved glasses leach from ten to thirty times slower than glass 76 to 68. The effects of the thermal history (devitrification) of the glass are not likely to be significant. Radiation effects are important primarily in that radiolysis can potentially drive pH values to less than 4. Radiation damage to the glass causes insignificant changes in leaching performance

  12. Optimization of waste loading in high-level glass in the presence of uncertainty

    International Nuclear Information System (INIS)

    Hoza, M.; Fann, G.I.; Hopkins, D.F.

    1995-02-01

    Hanford high-level liquid waste will be converted into a glass form for long-term storage. The glass must meet certain constraints on its composition and properties in order to have desired properties for processing (e.g., electrical conductivity, viscosity, and liquidus temperature) and acceptable durability for long-term storage. The Optimal Waste Loading (OWL) models, based on rigorous mathematical optimization techniques, have been developed to minimize the number of glass logs required and determine glass-former compositions that will produce a glass meeting all relevant constraints. There is considerable uncertainty in many of the models and data relevant to the formulation of high-level glass. In this paper, we discuss how we handle uncertainty in the glass property models and in the high-level waste composition to the vitrification process. Glass property constraints used in optimization are inequalities that relate glass property models obtained by regression analysis of experimental data to numerical limits on property values. Therefore, these constraints are subject to uncertainty. The sampling distributions of the regression models are used to describe the uncertainties associated with the constraints. The optimization then accounts for these uncertainties by requiring the constraints to be satisfied within specified confidence limits. The uncertainty in waste composition is handled using stochastic optimization. Given means and standard deviations of component masses in the high-level waste stream, distributions of possible values for each component are generated. A series of optimization runs is performed; the distribution of each waste component is sampled for each run. The resultant distribution of solutions is then statistically summarized. The ability of OWL models to handle these forms of uncertainty make them very useful tools in designing and evaluating high-level waste glasses formulations

  13. Friction behavior of glass and metals in contact with glass in various environments

    Science.gov (United States)

    Buckley, D. H.

    1973-01-01

    Sliding friction experiments have been conducted for heat-resistant glass and metals in contact with glass. These experiments were conducted in various environments including vacuum, moist air, dry air, octane, and stearic acid in hexadecane. Glass exhibited a higher friction force in moist air than it did in vacuum when in sliding contact with itself. The metals, aluminum, iron, and gold, all exhibited the same friction coefficient when sliding on glass in vacuum as glass sliding on glass. Gold-to-glass contacts were extremely sensitive to the environment despite the relative chemical inertness of gold.

  14. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    Energy Technology Data Exchange (ETDEWEB)

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and

  15. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    International Nuclear Information System (INIS)

    Shine, E. P.; Poirier, M. R.

    2013-01-01

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and

  16. Investigation of mechanical properties of hemp/glass fiber reinforced nano clay hybrid composites

    Science.gov (United States)

    Unki, Hanamantappa Ningappa; Shivanand, H. K.; Vidyasagar, H. N.

    2018-04-01

    Over the last twenty to thirty years composite materials have been used in engineering field. Composite materials possess high strength, high strength to weight ratio due to these facts composite materials are becoming popular among researchers and scientists. The major proportion of engineering materials consists of composite materials. Composite materials are used in vast applications ranging from day-to-day household articles to highly sophisticated applications. In this paper an attempt is made to prepare three different composite materials using e-glass and Hemp. In this present investigation hybrid composite of Hemp, Glass fiber and Nano clay will be prepared by Hand-layup technique. The glass fiber used in this present investigation is E-glass fiber bi-directional: 90˚ orientation. The composite samples will be made in the form of a Laminates. The wt% of nanoclay added in the preparation of sample is 20 gm constant. The fabricated composite Laminate will be cut into corresponding profiles as per ASTM standards for Mechanical Testing. The effect of addition of Nano clay and variation of Hemp/glass fibers will be studied. In the present work, a new Hybrid composite is developed in which Hemp, E glass fibers is reinforced with epoxy resin and with Nano clay.

  17. Laser induced breakdown spectroscopy for analysis and characterization of degradation pathologies of Roman glasses

    International Nuclear Information System (INIS)

    Palomar, T.; Oujja, M.; García-Heras, M.; Villegas, M.A.; Castillejo, M.

    2013-01-01

    The feasibility and possibilities of laser induced breakdown spectroscopy (LIBS) in the full study of non-destructible historic glasses have been explored in the present work. Thirteen Roman glass samples, including seven entire glass beads, from the ancient town of Augusta Emerita (SW Spain) were characterized by LIBS in combination with other conventional techniques, such as scanning electron microscopy/energy dispersive X-ray spectrometry, X-ray fluorescence and ultraviolet–visible spectrophotometry. LIBS stratigraphic analysis, carried out by the application of successive laser pulses on the same spot, has been mainly targeted at characterizing particular features of non-destructible historic glasses, such as bulk chemical composition, surface degradation pathologies (dealkalinization layers and deposits), chromophores, and opacifying elements. The obtained data demonstrate that LIBS can be a useful and alternative technique for spectroscopic studies of historical glasses, especially for those conserved under burial conditions and when it deals with studying non-destructible samples. - Highlights: • Determination of chromophores and opacifiers in non-destructible glass by LIBS • Manganese is determined as principal component of dark deposits. • Antimony appears in all decorations while lead is only present in yellow ones. • Stratigraphic analysis enables the identification of dealkalinization layers

  18. Laser induced breakdown spectroscopy for analysis and characterization of degradation pathologies of Roman glasses

    Energy Technology Data Exchange (ETDEWEB)

    Palomar, T. [Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C/Albasanz 26-28, 28037 Madrid (Spain); Oujja, M., E-mail: m.oujja@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, C/Serrano 119, 28006 Madrid (Spain); García-Heras, M.; Villegas, M.A. [Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C/Albasanz 26-28, 28037 Madrid (Spain); Castillejo, M. [Instituto de Química Física Rocasolano, CSIC, C/Serrano 119, 28006 Madrid (Spain)

    2013-09-01

    The feasibility and possibilities of laser induced breakdown spectroscopy (LIBS) in the full study of non-destructible historic glasses have been explored in the present work. Thirteen Roman glass samples, including seven entire glass beads, from the ancient town of Augusta Emerita (SW Spain) were characterized by LIBS in combination with other conventional techniques, such as scanning electron microscopy/energy dispersive X-ray spectrometry, X-ray fluorescence and ultraviolet–visible spectrophotometry. LIBS stratigraphic analysis, carried out by the application of successive laser pulses on the same spot, has been mainly targeted at characterizing particular features of non-destructible historic glasses, such as bulk chemical composition, surface degradation pathologies (dealkalinization layers and deposits), chromophores, and opacifying elements. The obtained data demonstrate that LIBS can be a useful and alternative technique for spectroscopic studies of historical glasses, especially for those conserved under burial conditions and when it deals with studying non-destructible samples. - Highlights: • Determination of chromophores and opacifiers in non-destructible glass by LIBS • Manganese is determined as principal component of dark deposits. • Antimony appears in all decorations while lead is only present in yellow ones. • Stratigraphic analysis enables the identification of dealkalinization layers.

  19. Basic Research on Oxynitride Glasses.

    Science.gov (United States)

    1982-07-01

    AG0 (1900 K) = -136.321 kcal (3) Si() + 1/202 (g) + SiO(g) AG (1900 K) = -60.237 kcal The reactions can be combined to yield the overall reaction (4...glass were continu- ously exposed to 95"C distilled water for 350 h in a Soxhlet apparatus. The sample weight losses after that time were 0.111Z

  20. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  1. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    International Nuclear Information System (INIS)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-01-01

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  2. Optical, physical and structural studies of boro-zinc tellurite glasses

    International Nuclear Information System (INIS)

    Gayathri Pavani, P.; Sadhana, K.; Chandra Mouli, V.

    2011-01-01

    To investigate the modification effect of the modifier ZnO on boro-tellurite glass, a series of glasses with compositions 50B 2 O 3 -(50-x)ZnO-xTeO 2 have been prepared by conventional melt quenching technique. Amorphous nature of the samples was confirmed through X-ray diffraction technique. Optical absorption and IR structural studies are carried out on the glass system. The optical absorption studies revealed that the cutoff wavelength increases while optical band gap (E opt ) and Urbach energy decreases with an increase of ZnO content. Refractive index evaluated from E opt was found to increase with an increase of ZnO content. The compositional dependence of different physical parameters such as density, molar volume, oxygen packing density, optical basicity, have been analyzed and discussed. The IR studies showed that the structure of glass consists of TeO 4 , TeO 3 /TeO 3+1 , BO 3 , BO 4 and ZnO 4 units. -- Research highlights: → Novel boro-zinc tellurite ternary glasses that can compete with boro-tellurite and zinc tellurite glasses are successfully prepared. → Boro-zinc tellurite ternary glasses are of higher refractive index compared with zinc tellurite glasses. → Optical, physical and structural properties of the novel ternary glass system are explained.→ At 30 mol% of ZnO, TeO 4 is replaced by ZnO 4 indicating the presence of ZnO 4 network.

  3. Can painted glass felt or glass fibre cloth be used as vapour barrier?

    DEFF Research Database (Denmark)

    El-Khattam, Amira; Andersen, Mie Them; Hansen, Kurt Kielsgaard

    2014-01-01

    In most Nordic homes the interior surfaces of walls and ceilings have some kind of surface treatment for aesthetical reasons. The treatments can for example be glass felt or glass fibre cloth which are painted afterwards. To evaluate the hygrothermal performance of walls and ceilings...... treatments. The surface treatments were glass felt or glass fibre cloth with different types of paints or just paint. The paint types were acrylic paint and silicate paint. The results show that the paint type has high influence on the water vapour resistance while the underlay i.e. glass felt or glass fibre...... acrylic paint on glass felt or glass fibre cloth cannot be used instead of a vapour barrier....

  4. Generation of micro-sized conductive lines on glass fibre fabrics by inkjet printing

    NARCIS (Netherlands)

    Balda Irurzun, Unai; Dutschk, Victoria; Calvimontes, Alfredo; Akkerman, Remko

    2012-01-01

    Micro-sized lines were inkjet printed on glass fibre fabrics using different droplet spacing. A conductive ink containing silver nanoparticles was used in this study. Glass fibre fabrics were differently pre-treated to avoid spontaneous spreading of the ink dispersion. The sample topography was

  5. Nondestructive Redox Quantification Reveals Glassmaking of Rare French Gothic Stained Glasses.

    Science.gov (United States)

    Hunault, Myrtille O J Y; Loisel, Claudine; Bauchau, Fanny; Lemasson, Quentin; Pacheco, Claire; Pichon, Laurent; Moignard, Brice; Boulanger, Karine; Hérold, Michel; Calas, Georges; Pallot-Frossard, Isabelle

    2017-06-06

    The sophisticated colors of medieval glasses arise from their transition metal (TM) impurities and capture information about ancient glassmaking techniques. Beyond the glass chemical composition, the TM redox is also a key factor in the glass color, but its quantification without any sampling is a challenge. We report a combination of nondestructive and noninvasive quantitative analyses of the chemical composition by particle-induced X-ray emission-particle-induced γ-ray emission mappings and of the color and TM element speciation by optical absorption spectroscopy performed on a red-blue-purple striped glass from the stained glass windows of the Sainte-Chapelle in Paris, France, during its restoration. These particular glass pieces must have been produced as a single shot, which guarantees that the chemical variations reflect the recipe in use in a specific medieval workshop. The quantitative elemental mappings demonstrate that the colored glass parts are derived from the same base glass, to which TMs were deliberately added. Optical absorption spectra reveal the origin of the colors: blue from Co II , red from copper nanoparticles, and purple from Mn III . Furthermore, the derivation of the quantitative redox state of each TM in each color shows that the contents of Fe, Cu, and Mn were adjusted to ensure a reducing glass matrix in the red stripe or a metastable overoxidized glass in the purple stripe. We infer that the agility of the medieval glassmaker allowed him to master the redox kinetics in the glass by rapid shaping and cooling to obtain a snapshot of the thermodynamically unstable glass colors.

  6. The effect of replaced recycled glass on thermal conductivity and compression properties of cement

    Science.gov (United States)

    khalil, A. S.; Mahmoud, M. A.; AL-Hathal, A.; Jawad, M. K.; Mozahim, B. M.

    2018-05-01

    This study deal with recycling of waste colorless glass bottles which are prepared as a powder and use them as an alternative for cement to save the environment from west and reduce some of cement(ceramic) damage and interactions with conserving physical properties of block concrete. Different weight percentage (0%, 2%, 4%, 5%, 6%, 8%, 10%, 15%, 20% and 25%) of recycled glass bottle were use in this research to be replaced by a certain percentages of cement. Thermal conductivity was studied for prepared samples. Results show that the thermal conductivity decrease with the increase of weight percentage of glass powder comparing with the stander sample.

  7. Numerical study of the glass-glass transition in short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Zaccarelli, Emanuela; Sciortino, Francesco; Tartaglia, Piero

    2004-01-01

    We report extensive numerical simulations in the glass region for a simple model of short-ranged attractive colloids, the square well model. We investigate the behaviour of the density autocorrelation function and of the static structure factor in the region of temperatures and packing fractions where a glass-glass transition is expected according to theoretical predictions. We strengthen our observations by studying both waiting time and history dependence of the numerical results. We provide evidence supporting the possibility that activated bond-breaking processes destabilize the attractive glass, preventing the full observation of a sharp glass-glass kinetic transition

  8. Model based energy benchmarking for glass furnace

    International Nuclear Information System (INIS)

    Sardeshpande, Vishal; Gaitonde, U.N.; Banerjee, Rangan

    2007-01-01

    Energy benchmarking of processes is important for setting energy efficiency targets and planning energy management strategies. Most approaches used for energy benchmarking are based on statistical methods by comparing with a sample of existing plants. This paper presents a model based approach for benchmarking of energy intensive industrial processes and illustrates this approach for industrial glass furnaces. A simulation model for a glass furnace is developed using mass and energy balances, and heat loss equations for the different zones and empirical equations based on operating practices. The model is checked with field data from end fired industrial glass furnaces in India. The simulation model enables calculation of the energy performance of a given furnace design. The model results show the potential for improvement and the impact of different operating and design preferences on specific energy consumption. A case study for a 100 TPD end fired furnace is presented. An achievable minimum energy consumption of about 3830 kJ/kg is estimated for this furnace. The useful heat carried by glass is about 53% of the heat supplied by the fuel. Actual furnaces operating at these production scales have a potential for reduction in energy consumption of about 20-25%

  9. Effects of Fe{sub 2}O{sub 3} content on ionic conductivity of Li{sub 2}O-TiO{sub 2}-P{sub 2}O{sub 5} glasses and glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Mohaghegh, E., E-mail: elnaz.mohaghegh@gmail.com [Department of Materials Science and Engineering, Sharif University of Technology, Tehran, 11155-9466 (Iran, Islamic Republic of); Nemati, A. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran, 11155-9466 (Iran, Islamic Republic of); Eftekhari Yekta, B. [Ceramic Division, School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, 16846-13114 (Iran, Islamic Republic of); Banijamali, S. [Ceramic Division, Materials & Energy Research Center, Alborz, 31787-316 (Iran, Islamic Republic of)

    2017-04-01

    In this study, Li{sub 2}O-TiO{sub 2}-P{sub 2}O{sub 5}-x(Fe{sub 2}O{sub 3}) (x = 0, 2.5, 5 and 7.5 weight part) glass and glass-ceramics were synthesized through conventional melt-quenching method and subsequently heat treatment. Glass samples were studied by UV–visible spectroscopy and crystallized samples were characterized by differential thermal analysis, X-ray diffractometry and field emission scanning electron microscopy. Besides, electrical properties were examined according to the electrochemical impedance spectroscopy techniques. Experimental optical spectra of the Fe{sub 2}O{sub 3}-doped glasses revealed strong UV absorption band in the range of 330–370 nm, which were attributed to the presence of Fe{sup 3+} ions. The major crystalline phase of the fabricated glass-ceramics was LiTi{sub 2}(PO{sub 4}){sub 3}. However, Li{sub 3}PO{sub 4} was also identified as the minor one. Considering the impedance spectroscopy studies, ionic conductivity of Fe{sub 2}O{sub 3} containing glasses was higher than that of the base glass. Additionally, the maximum bulk ionic conductivity of 1.38 × 10{sup −3} S/cm was achieved as well as activation energy as low as 0.26 eV at room temperature for x = 5. - Highlights: • Bulk and total ionic conductivity was extracted by using impedance spectroscopy. • Ionic conductivity of the studied glasses and glass-ceramics increased with increasing Fe{sub 2}O{sub 3} content. • The highest bulk ionic conductivity at room temperature was found to be 1.38 × 10{sup −3} S/cm for GC{sub 5}.

  10. The crystallization behaviour and bioactivity of wollastonite glass-ceramic based on Na2O–K2O–CaO–SiO2–F glass system

    Directory of Open Access Journals (Sweden)

    S.M. Salman

    2015-09-01

    Full Text Available The study concerns about the crystallization behaviour and in vitro bioactivity of a glass-ceramic prepared from a series of glasses in the Na2O–K2O–CaO–SiO2–F system. A minor amount of cerium oxide was also added instead of calcium oxide in some selective glass batches. The main crystalline phases, formed after the appropriate heat treatments, were wollastonite solid solution and pseudo-wollastonite-like phases. There is a preferential tendency for wollastonite (CaSiO3 to accommodate K, Na, F, and Ce ions in its structure forming wollastonite solid solution with variable formulas. The bioactivity of the resulting crystalline materials was examined in vitro by immersion in simulated body fluid at 37 °C. An increase of the surface bioactivity of glass-ceramic with the Na2O/K2O replacement was observed which is attributed to the augmentation solubility of the crystalline sample. On the other hand, the bioactivity of the crystalline sample with CeO2/CaO replacement was improved by the crystallization of pseudo-wollastonite phase together with wollastonite solid solution phase.

  11. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  12. Photocatalytic activity of titanium dioxide modified concrete materials - influence of utilizing recycled glass cullets as aggregates.

    Science.gov (United States)

    Chen, Jun; Poon, Chi-Sun

    2009-08-01

    Combining the use of photocatalysts with cementitious materials is an important development in the field of photocatalytic air pollution mitigation. This paper presents the results of a systematic study on assessing the effectiveness of pollutant degradation by concrete surface layers that incorporate a photocatalytic material - Titanium Dioxide. The photocatalytic activity of the concrete samples was determined by photocatalytic oxidation of nitric oxide (NO) in the laboratory. Recycled glass cullets, derived from crushed waste beverage bottles, were used to replace sand in preparing the concrete surface layers. Factors, which may affect the pollutant removal performance of the concrete layers including glass color, aggregate size and curing age, were investigated. The results show a significant enhancement of the photocatalytic activity due to the use of glass cullets as aggregates in the concrete layers. The samples fabricated with clear glass cullets exhibited threefold NO removal efficiency compared to the samples fabricated with river sand. The light transmittance property of glass was postulated to account for the efficiency improvement, which was confirmed by a separate simulation study. But the influence of the size of glass cullets was not evident. In addition, the photocatalytic activity of concrete surface layers decreased with curing age, showing a loss of 20% photocatalytic activity after 56-day curing.

  13. A method for making a glass supported system, such glass supported system, and the use of a glass support therefor

    NARCIS (Netherlands)

    Unnikrishnan, S.; Jansen, Henricus V.; Berenschot, Johan W.; Fazal, I.; Louwerse, M.C.; Mogulkoc, B.; Sanders, Remco G.P.; de Boer, Meint J.; Elwenspoek, Michael Curt

    2008-01-01

    The invention relates to a method for making a glass supported micro or nano system, comprising the steps of: i) providing a glass support; ii) mounting at least one system on at least one glass support; and iii) bonding the system to the glass support, such that the system is circumferentially

  14. Development of soda-lime glasses from ornamental rock wastes

    International Nuclear Information System (INIS)

    Babisk, Michelle Pereira

    2009-01-01

    During the ornamental rocks production, among other steps, one saw the rock blocks in order to transform them into semi-finished plates. In this step, expressive amounts of residues are generated, which are not properly discharged in nature, without any programmed utilization. The residues of silicide rocks present, in their compositions, oxides which are raw materials employed to fabricate soda-lime type glasses (containing SiO_2, Al_2O_3, CaO, Na_2O and K_2O). On the other hand the residues of carbonatic rocks are constituted of glass net modifier oxides, like CaO and MgO. In this work it was developed four types of soda-lime glasses using ornamental rock residues, where the glasses compositions were adjusted by adding sand, as silica source, as well as sodium and calcium carbonates as sources of Na_2O and CaO, respectively. The obtained glasses were characterized by means of Archimed's method for densities measurements, microstructure by using optical and electronic microscopy, phases by means of X-ray diffraction (XRD), hardness by Vickers indentation, spectroscopy (UV/VIS), and hydrolytic resistance according to ISO 719. The XRD analyses confirmed the compositions total vitrification, where the greened aspect of the samples was due to the presence of the iron oxides. The produced glasses properties were compared with those of commercial glasses aiming their industrial employment. The main difference between the produced glasses and those commercials varied primarily regarding the amount of carbonates incorporated. The results showed that the ornamental rocks residues may be used as raw materials for glasses fabrication, and they found a useful economic destination rather than discharge which promotes undesirable environmental impact. (author)

  15. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Arepalli, Sampath Kumar, E-mail: askumar.rs.cer11@iitbhu.ac.in; Tripathi, Himanshu; Vyas, Vikash Kumar; Jain, Shubham; Suman, Shyam Kumar; Pyare, Ram; Singh, S.P., E-mail: spsinghceram@gmail.com

    2015-04-01

    Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1 − X) SiO{sub 2−}–24.3 Na{sub 2}O–26.9 CaO–2.6 P{sub 2}O{sub 5}, where X = 0, 0.4, 0.8, 1.2 and 1.6 mol% of BaO was chosen and melted in an electric furnace at 1400 ± 5 °C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent. - Highlights: • In vitro bioactivity of soda-lime–baria-phospho-silicate glass was investigated. • HCA formed on surface of glasses was confirmed by XRD, SEM and FTIR spectrometry. • Mechanical properties of glasses were found to increase with barium addition. • Hemolysis showed that 1.2 mol% BaO bioactive glass exhibited better biocompatibility. • Barium substituted bioactive glasses can be used as bone implants.

  16. Binary eutectic clusters and glass formation in ideal glass-forming liquids

    International Nuclear Information System (INIS)

    Lu, Z. P.; Shen, J.; Xing, D. W.; Sun, J. F.; Liu, C. T.

    2006-01-01

    In this letter, a physical concept of binary eutectic clusters in 'ideal' glass-forming liquids is proposed based on the characteristics of most well-known bulk metallic glasses (BMGs). The authors approach also includes the treatment of binary eutectic clusters as basic units, which leads to the development of a simple but reliable method for designing BMGs more efficiently and effectively in these unique glass-forming liquids. As an example, bulk glass formers with superior glass-forming ability in the Zr-Ni-Cu-Al and Zr-Fe-Cu-Al systems were identified with the use of the strategy

  17. DETERMINATION OF HLW GLASS MELT RATE USING X-RAY COMPUTED TOMOGRAPHY

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.; Miller, D.; Immel, D.

    2011-10-06

    The purpose of the high-level waste (HLW) glass melt rate study is two-fold: (1) to gain a better understanding of the impact of feed chemistry on melt rate through bench-scale testing, and (2) to develop a predictive tool for melt rate in support of the on-going frit development efforts for the Defense Waste Processing Facility (DWPF). In particular, the focus is on predicting relative melt rates, not the absolute melt rates, of various HLW glass formulations solely based on feed chemistry, i.e., the chemistry of both waste and glass-forming frit for DWPF. Critical to the successful melt rate modeling is the accurate determination of the melting rates of various HLW glass formulations. The baseline procedure being used at the Savannah River National Laboratory (SRNL) is to; (1) heat a 4 inch-diameter stainless steel beaker containing a mixture of dried sludge and frit in a furnace for a preset period of time, (2) section the cooled beaker along its diameter, and (3) measure the average glass height across the sectioned face using a ruler. As illustrated in Figure 1-1, the glass height is measured for each of the 16 horizontal segments up to the red lines where relatively large-sized bubbles begin to appear. The linear melt rate (LMR) is determined as the average of all 16 glass height readings divided by the time during which the sample was kept in the furnace. This 'visual' method has proved useful in identifying melting accelerants such as alkalis and sulfate and further ranking the relative melt rates of candidate frits for a given sludge batch. However, one of the inherent technical difficulties of this method is to determine the glass height in the presence of numerous gas bubbles of varying sizes, which is prevalent especially for the higher-waste-loading glasses. That is, how the red lines are drawn in Figure 1-1 can be subjective and, therefore, may influence the resulting melt rates significantly. For example, if the red lines are drawn too low

  18. Sol–gel processing of carbidic glasses

    Indian Academy of Sciences (India)

    Unknown

    Bull. Mater. Sci., Vol. 23, No. 1, February 2000, pp. 1–4. © Indian Academy of Sciences. 1 ... processing has been used to prepare silicon based glasses, especially oxycarbides through organic–inorganic .... thermal cracking of hydrocarbon CH2 groups may also be ... spectra (figure 5) of the pyrolysed samples also show.

  19. Effects of alpha and gamma radiation on glass reaction in an unsaturated environment

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.; Young, J.E.; Bates, J.K.

    1990-01-01

    Radiation may effect the long-term performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water. The present study examines (1) the effects of alpha or gamma irradiation in a water vapor environment, and (2) the influence of radiolytic products on glass reaction. Results indicate that nitric and organic acids form in an irradiated water vapor environment and are dissolved in thin films of condensed water. Glass samples exposed to these conditions react faster and have a different assemblage of secondary phases than glasses exposed to nonirradiated water vapor environments. 23 refs., 4 figs., 2 tabs

  20. A simple method for tuning the glass transition process in inorganic phosphate glasses

    Science.gov (United States)

    Fulchiron, René; Belyamani, Imane; Otaigbe, Joshua U.; Bounor-Legaré, Véronique

    2015-02-01

    The physical modification of glass transition temperature (Tg) and properties of materials via blending is a common practice in industry and academia and has a large economic advantage. In this context, simple production of hitherto unattainable new inorganic glass blends from already existing glass compositions via blending raises much hope with the potential to provide new glasses with new and improved properties, that cannot be achieved with classical glass synthesis, for a plethora of applications such as computers screens, glass-to-metal seals, and storage materials for nuclear wastes. Here, we demonstrate that blends of the specific glass compositions studied are miscible in all proportions, an unreported phenomenon in hard condensed matter like glass. Interestingly, excellent agreement was found between the obtained data and calculated Tgs from theoretical equations (Supplementary information) for predicting the composition dependence of Tg for miscible blends with weak but significant specific interactions between the blend components. That this blending method is at present not applied to inorganic glasses reflects the fact that water and chemically resistant phosphate glasses with relatively low Tgs have become available only recently.