WorldWideScience

Sample records for turtle range chrysemys

  1. Do roads reduce painted turtle (Chrysemys picta populations?

    Directory of Open Access Journals (Sweden)

    Alexandra Dorland

    Full Text Available Road mortality is thought to be a leading cause of turtle population decline. However, empirical evidence of the direct negative effects of road mortality on turtle population abundance is lacking. The purpose of this study was to provide a strong test of the prediction that roads reduce turtle population abundance. While controlling for potentially confounding variables, we compared relative abundance of painted turtles (Chrysemys picta in 20 ponds in Eastern Ontario, 10 as close as possible to high traffic roads (Road sites and 10 as far as possible from any major roads (No Road sites. There was no significant effect of roads on painted turtle relative abundance. Furthermore, our data do not support other predictions of the road mortality hypothesis; we observed neither a higher relative frequency of males to females at Road sites than at No Road sites, nor a lower average body size of turtles at Road than at No Road sites. We speculate that, although roads can cause substantial adult mortality in turtles, other factors, such as release from predation on adults and/or nests close to roads counter the negative effect of road mortality in some populations. We suggest that road mitigation for painted turtles can be limited to locations where turtles are forced to migrate across high traffic roads due, for example, to destruction of local nesting habitat or seasonal drying of ponds. This conclusion should not be extrapolated to other species of turtles, where road mortality could have a larger population-level effect than on painted turtles.

  2. Emydid herpesvirus 1 infection in northern map turtles (Graptemys geographica) and painted turtles (Chrysemys picta).

    Science.gov (United States)

    Ossiboff, Robert J; Newton, Alisa L; Seimon, Tracie A; Moore, Robert P; McAloose, Denise

    2015-05-01

    A captive, juvenile, female northern map turtle (Graptemys geographica) was found dead following a brief period of weakness and nasal discharge. Postmortem examination identified pneumonia with necrosis and numerous epithelial, intranuclear viral inclusion bodies, consistent with herpesviral pneumonia. Similar intranuclear inclusions were also associated with foci of hepatocellular and splenic necrosis. Polymerase chain reaction (PCR) screening of fresh, frozen liver for the herpesviral DNA-dependent DNA polymerase gene yielded an amplicon with 99.2% similarity to recently described emydid herpesvirus 1 (EmyHV-1). Molecular screening of turtles housed in enclosures that shared a common circulation system with the affected map turtle identified 4 asymptomatic, EmyHV-1 PCR-positive painted turtles (Chrysemys picta) and 1 asymptomatic northern map turtle. Herpesvirus transmission between painted and map turtles has been previously suggested, and our report provides the molecular characterization of a herpesvirus in asymptomatic painted turtles that can cause fatal herpesvirus-associated disease in northern map turtles.

  3. Molecular cytogenetic search for cryptic sex chromosomes in painted turtles Chrysemys picta.

    Science.gov (United States)

    Valenzuela, Nicole; Badenhorst, Daleen; Montiel, Eugenia E; Literman, Robert

    2014-01-01

    Sex determination is triggered by factors ranging from genotypic (GSD) to environmental (ESD), or both GSD + EE (GSD susceptible to environmental effects), and its evolution remains enigmatic. The presence/absence of sex chromosomes purportedly separates species at the ESD end of the continuum from the rest (GSD and GSD + EE) because the evolutionary dynamics of sex chromosomes and autosomes differ. However, studies suggest that turtles with temperature-dependent sex determination (TSD) are cryptically GSD and possess sex chromosomes. Here, we test this hypothesis in painted turtles Chrysemys picta (TSD), using comparative-genome-hybridization (CGH), a technique known to detect morphologically indistinguishable sex chromosomes in other turtles and reptiles. Our results show no evidence for the existence of sex chromosomes in painted turtles. While it remains plausible that cryptic sex chromosomes may exist in TSD turtles that are characterized by minor genetic differences that cannot be detected at the resolution of CGH, previous attempts have failed to identify sex-specific markers. Genomic sequencing should prove useful in providing conclusive evidence in this regard. If such efforts uncover sex chromosomes in TSD turtles, it may reveal the existence of a fundamental constraint for the evolution of a full spectrum of sex determination (from pure GSD to pure TSD) that is predicted theoretically. Finding sex chromosomes in ESD organisms would question whether pure ESD mechanisms exist at all in nature, or whether those systems currently considered pure ESD simply await the characterization of an underlying GSD architecture.

  4. State-dependent physiological maintenance in a long-lived ectotherm, the painted turtle (Chrysemys picta).

    Science.gov (United States)

    Schwanz, Lisa; Warner, Daniel A; McGaugh, Suzanne; Di Terlizzi, Roberta; Bronikowski, Anne

    2011-01-01

    Energy allocation among somatic maintenance, reproduction and growth varies not only among species, but among individuals according to states such as age, sex and season. Little research has been conducted on the somatic (physiological) maintenance of long-lived organisms, particularly ectotherms such as reptiles. In this study, we examined sex differences and age- and season-related variation in immune function and DNA repair efficiency in a long-lived reptile, the painted turtle (Chrysemys picta). Immune components tended to be depressed during hibernation, in winter, compared with autumn or spring. Increased heterophil count during hibernation provided the only support for winter immunoenhancement. In juvenile and adult turtles, we found little evidence for senescence in physiological maintenance, consistent with predictions for long-lived organisms. Among immune components, swelling in response to phytohemagglutinin (PHA) and control injection increased with age, whereas basophil count decreased with age. Hatchling turtles had reduced basophil counts and natural antibodies, indicative of an immature immune system, but demonstrated higher DNA repair efficiency than older turtles. Reproductively mature turtles had reduced lymphocytes compared with juvenile turtles in the spring, presumably driven by a trade-off between maintenance and reproduction. Sex had little influence on physiological maintenance. These results suggest that components of physiological maintenance are modulated differentially according to individual state and highlight the need for more research on the multiple components of physiological maintenance in animals of variable states.

  5. An enhanced developmental staging table for the painted turtle, Chrysemys picta (Testudines: Emydidae).

    Science.gov (United States)

    A Cordero, Gerardo; Janzen, Fredric J

    2014-04-01

    Normal developmental staging tables often undergo expansion and enhancement in response to advancing research paradigms and technologies. The Painted Turtle, Chrysemys picta, has long been a preferred reference taxon for comparative embryology and recently became the first turtle species to feature a sequenced genome. However, modern descriptive studies on embryogenesis are lacking and an earlier developmental staging table has been ignored. To address these problems, we re-evaluated descriptions of developmental stages by studying embryos under standardized laboratory conditions. We created an enhanced normal developmental staging table that clarifies and validates previous descriptions of developmental processes in this species. Moreover, we emphasized description of turtle-specific developmental characters such as the carapacial ridge. We demonstrated that embryo growth rate, length of incubation period, and timing to developmental stages are predictable under controlled environmental conditions. The appearance of characters associated with eye, limb, and shell anatomy was congruent with observations made in other turtle species. To reduce experimental bias, we recommend the use of our enhanced staging table when describing embryogenesis in the Painted Turtle. Copyright © 2013 Wiley Periodicals, Inc.

  6. Energy budgets and a climate space diagram for the turtle, Chrysemys scripta

    Energy Technology Data Exchange (ETDEWEB)

    Foley, R. E.

    1976-01-01

    Heat energy budgets were computed and a steady state climate space was generated for a 1000 g red-eared turtle (Chrysemys scripta). Evaporative water loss (EWL) was measured from C. scripta at three wind speeds (10-400 cm sec/sup -1/) and at four air temperatures (5 to 35/sup 0/C) in a wind tunnel. EWL increased as air temperature and wind speed increased. Smaller turtles dehydrated at a faster rate than large turtles. Heat transfer by convection was measured from aluminum castings of C. scripta at three temperature differences between casting and air (..delta..T 15/sup 0/, 10/sup 0/ and 5/sup 0/C) for three windspeeds (10 to 400 cm sec/sup -1/). Convective heat transfer coefficients increased as wind speed and ..delta..T increased. Wind speed has a large effect on the shape of the climate space. At high wind speeds, heat loss by evaporation and convection are greatly increased. In still air (10 cm sec/sup -1/), a turtle cannot remain exposed to full sunlight when air temperatures exceed 19/sup 0/C. When wind speed increases to 400 cm sec/sup -1/, the turtle can bask for long periods of time at temperatures as high as 32/sup 0/C. Basking patterns of C. scripta probably shift from a unimodal pattern in the spring to a bimodal pattern in summer and return to a unimodal pattern in fall. Terrestrial activity may be extensive in the spring and fall but is limited during the hot summer months to periods of rainfall. Nesting activities cannot occur around solar noon because increased metabolic heat loading and high solar radiation intensity could cause death.

  7. Developmental exposure to bisphenol A (BPA) alters sexual differentiation in painted turtles (Chrysemys picta)

    Science.gov (United States)

    Jandegian, Caitlin M.; Deem, Sharon L.; Bhandari, Ramji K.; Holliday, Casey M.; Nicks, Diane; Rosenfeld, Cheryl S.; Selcer, Kyle; Tillitt, Donald E.; vom Saal, Fredrick S.; Velez, Vanessa; Yang, Ying; Holliday, Dawn K.

    2015-01-01

    Environmental chemicals can disrupt endocrine signaling and adversely impact sexual differentiation in wildlife. Bisphenol A (BPA) is an estrogenic chemical commonly found in a variety of habitats. In this study, we used painted turtles (Chrysemys picta), which have temperature-dependent sex determination (TSD), as an animal model for ontogenetic endocrine disruption by BPA. We hypothesized that BPA would override TSD and disrupt sexual development. We incubated farm-raised turtle eggs at the male-producing temperature (26 °C), randomly assigned individuals to treatment groups: control, vehicle control, 17β-estradiol (E2, 20 ng/g-egg) or 0.01, 1.0, 100 μg BPA/g-egg and harvested tissues at hatch. Typical female gonads were present in 89% of the E2-treated “males”, but in none of the control males (n = 35). Gonads of BPA-exposed turtles had varying amounts of ovarian-like cortical (OLC) tissue and disorganized testicular tubules in the medulla. Although the percentage of males with OLCs increased with BPA dose (BPA-low = 30%, BPA-medium = 33%, BPA-high = 39%), this difference was not significant (p = 0.85). In all three BPA treatments, SOX9 patterns revealed disorganized medullary testicular tubules and β-catenin expression in a thickened cortex. Liver vitellogenin, a female-specific liver protein commonly used as an exposure biomarker, was not induced by any of the treatments. Notably, these results suggest that developmental exposure to BPA disrupts sexual differentiation in painted turtles. Further examination is necessary to determine the underlying mechanisms of sex reversal in reptiles and how these translate to EDC exposure in wild populations.

  8. Experimental feeding of Hydrilla verticillata colonized by stigonematales cyanobacteria induces vacuolar myelinopathy in painted turtles (Chrysemys picta.

    Directory of Open Access Journals (Sweden)

    Albert D Mercurio

    Full Text Available Vacuolar myelinopathy (VM is a neurologic disease primarily found in birds that occurs when wildlife ingest submerged aquatic vegetation colonized by an uncharacterized toxin-producing cyanobacterium (hereafter "UCB" for "uncharacterized cyanobacterium". Turtles are among the closest extant relatives of birds and many species directly and/or indirectly consume aquatic vegetation. However, it is unknown whether turtles can develop VM. We conducted a feeding trial to determine whether painted turtles (Chrysemys picta would develop VM after feeding on Hydrilla (Hydrilla verticillata, colonized by the UCB (Hydrilla is the most common "host" of UCB. We hypothesized turtles fed Hydrilla colonized by the UCB would exhibit neurologic impairment and vacuolation of nervous tissues, whereas turtles fed Hydrilla free of the UCB would not. The ability of Hydrilla colonized by the UCB to cause VM (hereafter, "toxicity" was verified by feeding it to domestic chickens (Gallus gallus domesticus or necropsy of field collected American coots (Fulica americana captured at the site of Hydrilla collections. We randomly assigned ten wild-caught turtles into toxic or non-toxic Hydrilla feeding groups and delivered the diets for up to 97 days. Between days 82 and 89, all turtles fed toxic Hydrilla displayed physical and/or neurologic impairment. Histologic examination of the brain and spinal cord revealed vacuolations in all treatment turtles. None of the control turtles exhibited neurologic impairment or had detectable brain or spinal cord vacuolations. This is the first evidence that freshwater turtles can become neurologically impaired and develop vacuolations after consuming toxic Hydrilla colonized with the UCB. The southeastern United States, where outbreaks of VM occur regularly and where vegetation colonized by the UCB is common, is also a global hotspot of freshwater turtle diversity. Our results suggest that further investigations into the effect of the

  9. Experimental feeding of Hydrilla verticillata colonized by stigonematales cyanobacteria induces vacuolar myelinopathy in painted turtles (Chrysemys picta).

    Science.gov (United States)

    Mercurio, Albert D; Hernandez, Sonia M; Maerz, John C; Yabsley, Michael J; Ellis, Angela E; Coleman, Amanda L; Shelnutt, Leslie M; Fischer, John R; Wilde, Susan B

    2014-01-01

    Vacuolar myelinopathy (VM) is a neurologic disease primarily found in birds that occurs when wildlife ingest submerged aquatic vegetation colonized by an uncharacterized toxin-producing cyanobacterium (hereafter "UCB" for "uncharacterized cyanobacterium"). Turtles are among the closest extant relatives of birds and many species directly and/or indirectly consume aquatic vegetation. However, it is unknown whether turtles can develop VM. We conducted a feeding trial to determine whether painted turtles (Chrysemys picta) would develop VM after feeding on Hydrilla (Hydrilla verticillata), colonized by the UCB (Hydrilla is the most common "host" of UCB). We hypothesized turtles fed Hydrilla colonized by the UCB would exhibit neurologic impairment and vacuolation of nervous tissues, whereas turtles fed Hydrilla free of the UCB would not. The ability of Hydrilla colonized by the UCB to cause VM (hereafter, "toxicity") was verified by feeding it to domestic chickens (Gallus gallus domesticus) or necropsy of field collected American coots (Fulica americana) captured at the site of Hydrilla collections. We randomly assigned ten wild-caught turtles into toxic or non-toxic Hydrilla feeding groups and delivered the diets for up to 97 days. Between days 82 and 89, all turtles fed toxic Hydrilla displayed physical and/or neurologic impairment. Histologic examination of the brain and spinal cord revealed vacuolations in all treatment turtles. None of the control turtles exhibited neurologic impairment or had detectable brain or spinal cord vacuolations. This is the first evidence that freshwater turtles can become neurologically impaired and develop vacuolations after consuming toxic Hydrilla colonized with the UCB. The southeastern United States, where outbreaks of VM occur regularly and where vegetation colonized by the UCB is common, is also a global hotspot of freshwater turtle diversity. Our results suggest that further investigations into the effect of the putative UCB toxin

  10. Traditional cultural use as a tool for inferring biogeography and provenance: a case study involving painted turtles (Chrysemys picta) and Hopi Native American culture in Arizona, USA

    Science.gov (United States)

    Lovich, Jeffrey E.; LaRue, Charles T.; Drost, Charles A.; Arundel, Terence R.

    2014-01-01

    Inferring the natural distribution and native status of organisms is complicated by the role of ancient and modern humans in utilization and translocation. Archaeological data and traditional cultural use provide tools for resolving these issues. Although the painted turtle (Chrysemys picta) has a transcontinental range in the United States, populations in the Desert Southwest are scattered and isolated. This pattern may be related to the fragmentation of a more continuous distribution as a result of climate change after the Pleistocene, or translocation by Native Americans who used turtles for food and ceremonial purposes. Because of these conflicting or potentially confounded possibilities, the distribution and status of C. picta as a native species in the state of Arizona has been questioned in the herpetological literature. We present evidence of a population that once occurred in the vicinity of Winslow, Arizona, far from current remnant populations on the upper Little Colorado River. Members of the Native American Hopi tribe are known to have hunted turtles for ceremonial purposes in this area as far back as AD 1290 and possibly earlier. Remains of C. picta are known from several pueblos in the vicinity including Homol'ovi, Awatovi, and Walpi. Given the great age of records for C. picta in Arizona and the concordance of its fragmented and isolated distribution with other reptiles in the region, we conclude that painted turtles are part of the native fauna of Arizona.

  11. [Hemoglobins of reptiles. Expression of alpha-D-genes in the turtles, Chrysemys picta bellii and Phrynops hilarii (Testudines)].

    Science.gov (United States)

    Rücknagel, K P; Reischl, E; Braunitzer, G

    1984-10-01

    The hemoglobins of two turtles (Testudines)--Chrysemys picta bellii (suborder Cryptodira) and Phrynops hilarii (suborder Pleurodira)--were investigated. In both specimens we found two hemoglobin components with two distinct alpha-chains. The alpha-chains of the component HbD of Chrysemys picta bellii and of the component CII of Phyrynops hilarii belong to the alpha D-type, which has so far been reported to occur only in birds. The complete amino-acid sequences of both alpha D-chains are presented. Our further investigations on hemoglobins of other reptiles (Crocodilia, Lacertilia, Serpentes) did not give any evidence for the expression of alpha D-globin genes in the species examined. These findings are discussed with especial reference to the physiology of respiration. It is supposed that alpha D-genes were of certain significance in earlier times. There are findings suggesting that alpha D-genes are embryonic genes with persistent expression in many adult birds and turtles.

  12. Physical Mapping and Refinement of the Painted Turtle Genome (Chrysemys picta) Inform Amniote Genome Evolution and Challenge Turtle-Bird Chromosomal Conservation.

    Science.gov (United States)

    Badenhorst, Daleen; Hillier, LaDeana W; Literman, Robert; Montiel, Eugenia Elisabet; Radhakrishnan, Srihari; Shen, Yingjia; Minx, Patrick; Janes, Daniel E; Warren, Wesley C; Edwards, Scott V; Valenzuela, Nicole

    2015-06-24

    Comparative genomics continues illuminating amniote genome evolution, but for many lineages our understanding remains incomplete. Here, we refine the assembly (CPI 3.0.3 NCBI AHGY00000000.2) and develop a cytogenetic map of the painted turtle (Chrysemys picta-CPI) genome, the first in turtles and in vertebrates with temperature-dependent sex determination. A comparison of turtle genomes with those of chicken, selected nonavian reptiles, and human revealed shared and novel genomic features, such as numerous chromosomal rearrangements. The largest conserved syntenic blocks between birds and turtles exist in four macrochromosomes, whereas rearrangements were evident in these and other chromosomes, disproving that turtles and birds retain fully conserved macrochromosomes for greater than 300 Myr. C-banding revealed large heterochromatic blocks in the centromeric region of only few chromosomes. The nucleolar-organizing region (NOR) mapped to a single CPI microchromosome, whereas in some turtles and lizards the NOR maps to nonhomologous sex-chromosomes, thus revealing independent translocations of the NOR in various reptilian lineages. There was no evidence for recent chromosomal fusions as interstitial telomeric-DNA was absent. Some repeat elements (CR1-like, Gypsy) were enriched in the centromeres of five chromosomes, whereas others were widespread in the CPI genome. Bacterial artificial chromosome (BAC) clones were hybridized to 18 of the 25 CPI chromosomes and anchored to a G-banded ideogram. Several CPI sex-determining genes mapped to five chromosomes, and homology was detected between yet other CPI autosomes and the globally nonhomologous sex chromosomes of chicken, other turtles, and squamates, underscoring the independent evolution of vertebrate sex-determining mechanisms.

  13. Daily and annual patterns of thermoregulation in painted turtles (Chrysemys picta marginata) living in a thermally variable marsh in Northern Michigan.

    Science.gov (United States)

    Rowe, John W; Converse, Paul E; Clark, David L

    2014-02-01

    The capacity for an ectothermic reptile to thermoregulate has implications for many components of its life history. Over two years, we studied thermoregulation in a population of Midland painted turtles (Chrysemys picta marginata) in a shallow, thermally variable wetland during summer in Northern Michigan. Mean body temperature (Tb) of free-ranging turtles was greater in 2008 (25.8 °C) than in 2010 (19.7 °C). Laboratory determined thermoregulatory set point (Tset) ranged from 25 °C (Tset-min) to 31 °C (Tset-max) and was lower during the fall (17-26 °C). Deviations of Tb distributions from field measured operative temperatures (Te) and indices of thermoregulation indicated that C. picta marginata were capable of a limited degree of thermoregulation. Operative temperatures and thermal quality (de=|Tset-min-Te| and |Te-Tset-max|) cycled daily with maximal thermal quality occurring during late morning and late afternoon. The accuracy of thermoregulation (db=|Tset-min-Tb| and |Tb-Tset-max|) was maximal (db values were minimal) as Tb declined and traversed Tset during the late afternoon-early evening hours and was higher on cloudy days than on sunny days because relatively low Te values decreased the number of Tb values that were above Tset. Our index of thermal exploitation (Ex=frequency of Tb observations within Tset) was 36%, slightly lower than that reported for an Ontario population of C. picta marginata. Regression of db (thermal accuracy) on de (thermal quality) indicated that turtles invested more in thermoregulation when thermal quality was low and when water levels were high than when they were low. There were no intersexual differences in mean Tb throughout the year but females had relatively high laboratory determined Tb values in the fall, perhaps reflecting the importance of maintaining ovarian development prior to winter.

  14. Patterns of variation in glycogen, free glucose and lactate in organs of supercooled hatchling painted turtles (Chrysemys picta).

    Science.gov (United States)

    Packard, Mary J; Packard, Gary C

    2005-08-01

    Hatchling painted turtles (Chrysemys picta) typically spend their first winter of life in a shallow, subterranean hibernaculum (the natal nest), where they may be exposed for extended periods to ice and cold. The key to their survival seems to be to avoid freezing and to sustain a state of supercooling. As temperature declines below 0 degrees C, however, the heart of an unfrozen turtle beats progressively slower, the diminished perfusion of peripheral tissues with blood induces a functional hypoxia, and anaerobic glycolysis assumes ever greater importance as a source of ATP. We hypothesized that diminished circulatory function in supercooled turtles also reduces the delivery of metabolic substrates to peripheral tissues from central stores in the liver, so that the tissues depend increasingly on endogenous stores to fuel their metabolism. We discovered in the current investigation that part of the glycogen reserve in hearts and brains of hatchlings is mobilized during the first 10 days of exposure to -6 degrees C but that glucose from hepatic glycogen supports metabolism of the organs thereafter. Hatchlings that were held at -6 degrees C for 10 days and then at +3 degrees C for another 10 days were able to reconstitute some of the reserve of glycogen in heart and liver but not the glycogen reserve in brain. Patterns of accumulation of lactate in individual organs were very similar to those reported for whole animals in a companion study, and point to a high degree of reliance on anaerobic metabolism at -6 degrees C and to a lesser degree of reliance on anaerobiosis at higher subzero temperatures. Lactate had returned to baseline levels in organs of animals that were held for 10 days at -6 degrees C and for another 10 days at +3 degrees C, but free glucose remained elevated. Indeed, carbohydrate metabolism probably does not return to the pre-exposure state in any of the major organs until well after the exposure to subzero temperatures has ended, circulatory

  15. Effects of developmental exposure to bisphenol A and ethinyl estradiol on spatial navigational learning and memory in painted turtles (Chrysemys picta).

    Science.gov (United States)

    Manshack, Lindsey K; Conard, Caroline M; Johnson, Sarah A; Alex, Jorden M; Bryan, Sara J; Deem, Sharon L; Holliday, Dawn K; Ellersieck, Mark R; Rosenfeld, Cheryl S

    2016-09-01

    Developmental exposure of turtles and other reptiles to endocrine disrupting chemicals (EDCs), including bisphenol A (BPA) and ethinyl estradiol (EE2, estrogen present in birth control pills), can induce partial to full gonadal sex-reversal in males. No prior studies have considered whether in ovo exposure to EDCs disrupts normal brain sexual differentiation. Yet, rodent model studies indicate early exposure to these chemicals disturbs sexually selected behavioral traits, including spatial navigational learning and memory. Thus, we sought to determine whether developmental exposure of painted turtles (Chrysemys picta) to BPA and EE2 results in sex-dependent behavioral changes. At developmental stage 17, turtles incubated at 26⁰C (male-inducing temperature) were treated with 1) BPA High (100μg /mL), 2) BPA Low (0.01μg/mL), 3) EE2 (0.2μg/mL), or 4) vehicle or no vehicle control groups. Five months after hatching, turtles were tested with a spatial navigational test that included four food containers, only one of which was baited with food. Each turtle was randomly assigned one container that did not change over the trial period. Each individual was tested for 14 consecutive days. Results show developmental exposure to BPA High and EE2 improved spatial navigational learning and memory, as evidenced by increased number of times spent in the correct target zone and greater likelihood of solving the maze compared to control turtles. This study is the first to show that in addition to overriding temperature sex determination (TSD) of the male gonad, these EDCs may induce sex-dependent behavioral changes in turtles.

  16. Western Pond Turtle Range - CWHR [ds598

    Data.gov (United States)

    California Department of Resources — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  17. Do turtles follow the rules? Latitudinal gradients in species richness, body size, and geographic range area of the world's turtles.

    Science.gov (United States)

    Angielczyk, Kenneth D; Burroughs, Robert W; Feldman, Chris R

    2015-05-01

    Understanding how and why biodiversity is structured across the globe has been central to ecology, evolution, and biogeography even before those disciplines took their modern forms. Three global-scale patterns in particular have been the focus of research and debate for decades: latitudinal gradients in species richness (richness decreases with increasing latitude), body size (body size increases with increasing latitude in endotherms; Bergmann's rule), and geographic range size (range size increases with increasing latitude; Rapoport's rule). Despite decades of study, the generality and robustness of these trends have been debated, as have their underlying causes. Here we investigate latitudinal gradients in species richness, body size, and range size in the world's turtles (Testudines), and add more evidence that these rules do not seem to apply across all taxa. We show that turtle diversity actually peaks at 25° north, a highly unusual global pattern. Turtles also fail to follow Bergmann's Rule, and may show the converse (larger at lower latitudes), though trends are weak. Turtles also show a complex relationship between latitude and range size that does not directly follow Rapoport's rule. Body size and geographic range size are significantly correlated, and multiple abiotic and biotic variables help explain the relationships between latitude and species diversity, body size, and range size. Although we show that turtles do not strictly follow some classic biogeographical rules, we also call for further in-depth research to investigate potential causal mechanisms for these atypical patterns.

  18. Bacteremia in free-ranging Hawaiian green turtles, Chelonia mydas, with fibropapillomatosis

    Science.gov (United States)

    Work, T.M.; Balazs, G.H.; Wolcott, M.; Morris, Robert

    2003-01-01

    Past studies of free-ranging green turtles Chelonia mydas with fibropapillomatosis (FP) in Hawaii have shown that animals become immunosuppressed with increasing severity of this disease. Additionally, preliminary clinical examination of moribund turtles with FP revealed that some animals were also bacteraemic. We tested the hypothesis that bacteraemia in sea turtles is associated with the severity of FP. We captured free-ranging green turtles from areas in Hawaii where FP is absent, and areas where FP has been endemic since the late 1950s. Each turtle was given an FP severity score ranging from 0 (no tumours) to 3 (severely affected). A fifth category included turtles that were stranded ashore and moribund with FP. We found that the percentage of turtles with bacteraemia increased with the severity of FP, and that the majority of bacteria cultured were Vibrio spp. Turtles with severe FP were more susceptible to bactaeremia, probably in part due to immunosuppression. The pattern of bacteraemia in relation to severity of disease strengthens the hypothesis that immunosuppression is a sequel to FP.

  19. Bacteraemia in free-ranging Hawaiian green turtles Chelonia mydas with fibropapillomatosis.

    Science.gov (United States)

    Work, Thierry M; Balazs, George H; Wolcott, Mark; Morris, Robert

    2003-01-22

    Past studies of free-ranging green turtles Chelonia mydas with fibropapillomatosis (FP) in Hawaii have shown that animals become immunosuppressed with increasing severity of this disease. Additionally, preliminary clinical examination of moribund turtles with FP revealed that some animals were also bacteraemic. We tested the hypothesis that bacteraemia in sea turtles is associated with the severity of FP. We captured free-ranging green turtles from areas in Hawaii where FP is absent, and areas where FP has been endemic since the late 1950s. Each turtle was given an FP severity score ranging from 0 (no tumours) to 3 (severely affected). A fifth category included turtles that were stranded ashore and moribund with FP. We found that the percentage of turtles with bacteraemia increased with the severity of FP, and that the majority of bacteria cultured were Vibrio spp. Turtles with severe FP were more susceptible to bactaeremia, probably in part due to immunosuppression. The pattern of bacteraemia in relation to severity of disease strengthens the hypothesis that immunosuppression is a sequel to FP.

  20. Microhabitat use, home range, and movements of the alligator snapping turtle, Macrochelys temminckii, in Oklahoma

    Science.gov (United States)

    Riedle, J.D.; Shipman, P.A.; Fox, S. F.; Leslie, David M.

    2006-01-01

    Little is known about the ecology of the alligator snapping turtle, Macrochelys temminckii, particularly dentography and behavior. To learn more about the species in Oklahoma, we conducted a telemetry project on 2 small streams at Sequoyah National Wildlife Refuge, an 8,417.5-ha refuge located in east-central Oklahoma. Between June 1999 and August 2000, we fitted 19 M. temminckii with ultrasonic telemetry tags and studied turtle movements and microhahitat use. Turtles were checked 2 to 3 times weekly in summer and sporadically in winter. Several microhabitat variables were measured at each turtle location and a random location to help quantify microhabitat use vs. availability. We recorded 147 turtle locations. Turtles were always associated with submerged cover with a high percentage of overhead canopy cover. Turtles used deeper depths in late summer (but not deeper depths than random locations) and deeper depths in mid-winter (and deeper depths than random locations) than in early summer. They used shallower depths than random locations in early summer. This seasonal shift in depth use might be thermoregulatory, although evidence for this is indirect. The mean linear home range for all turtles was 777.8 m. Females had larger home ranges than males, and juveniles had larger home ranges than adults, although the latter was not statistically significant. Macrochelys temminckii used submerged structures as a core site, and stayed at each core site for an average of 12.3 d.

  1. Plasma Vitellogenin in Free-Ranging Loggerhead Sea Turtles (Caretta caretta of the Northwest Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Kimberly Smelker

    2014-01-01

    Full Text Available Vitellogenin is the egg yolk precursor protein produced by oviparous vertebrates. As endogenous estrogen increases during early reproductive activity, hepatic production of vitellogenin is induced and is assumed to be complete in female sea turtles before the first nesting event. Until the present study, innate production of vitellogenin has not been described in free-ranging sea turtles. Our study describes circulating concentrations of vitellogenin in loggerhead sea turtles (Caretta caretta from the Northwest Atlantic Ocean. We collected blood samples from juveniles and adults via in-water captures off the coast of the Southeast USA from May to August, and from nesting females in June and July at Hutchinson Island, Florida. All samples were analyzed using an in-house ELISA developed specifically to measure Caretta caretta vitellogenin concentration. As expected, plasma vitellogenin declined in nesting turtles as the nesting season progressed, although it still remained relatively elevated at the end of the season. In addition, mean vitellogenin concentration in nesting turtles was 1,000 times greater than that measured in samples from in-water captures. Our results suggest that vitellogenesis may continue throughout the nesting season, albeit at a decreasing rate. Further, vitellogenin detected in turtles captured in-water may have resulted from exposure to endocrine disrupting chemicals.

  2. Home is where the shell is: predicting turtle home range sizes.

    Science.gov (United States)

    Slavenko, Alex; Itescu, Yuval; Ihlow, Flora; Meiri, Shai

    2016-01-01

    Home range is the area traversed by an animal in its normal activities. The size of home ranges is thought to be tightly linked to body size, through size effect on metabolic requirements. Due to the structure of Eltonian food pyramids, home range sizes of carnivores are expected to exceed those of herbivorous species. The habitat may also affect home range size, with reduced costs of locomotion or lower food abundance in, for example, aquatic habitats selecting for larger home ranges. Furthermore, home range of males in polygamous species may be large due to sexual selection for increased reproductive output. Comparative studies on home range sizes have rarely been conducted on ectotherms. Because ectotherm metabolic rates are much lower than those of endotherms, energetic considerations of metabolic requirements may be less important in determining the home range sizes of the former, and other factors such as differing habitats and sexual selection may have an increased effect. We collected literature data on turtle home range sizes. We used phylogenetic generalized least squares analyses to determine whether body mass, sex, diet, habitat and social structure affect home range size. Turtle home range size increases with body mass. However, body mass explains relatively little of the variation in home range size. Aquatic turtles have larger home ranges than semiaquatic species. Omnivorous turtles have larger home ranges than herbivores and carnivores, but diet is not a strong predictor. Sex and social structure are unrelated to home range size. We conclude that energetic constraints are not the primary factor that determines home range size in turtles, and energetic costs of locomotion in different habitats probably play a major role. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  3. Haematology and serum biochemical parameters in free-ranging African side neck turtle (Pelusios sinuatus in Ibadan, Nigeria

    Directory of Open Access Journals (Sweden)

    A.O. Omonona

    2011-12-01

    Full Text Available The haematology and serum biochemical parameters in free-ranging African side neck turtle (Pelusios sinuatus in Ibadan, Nigeria was carried out with the view of establishing baseline blood health indices of this species and generating data which could be useful in the comparative physiology of turtles. A total of sixty free ranging turtles comprising juveniles and adults of both sexes were used for the study. The mean values for the RBC, PCV, Hb, MCV, MCH and WBC counts observed in male juvenile were significantly higher (P < 0.05 than those of the females. Nevertheless, in adult turtles, the mean values for the RBC, PCV, Hb, MCV, MCH and WBC counts observed in females were significantly higher (P < 0.05 than those of the males. Similarly, in juvenile turtles, the absolute heterophil, lymphocyte and monocyte counts in females were relatively higher (P < 0.05 than that of male while in adult turtles there were no significant differences (P < 0.05 in these parameters between the males and females. There were no significant difference (P < 0.05 in the values for the total protein, albumin, globulin, creatinine, serum glutamic-oxalacetic transaminase (SGOT, serum glutamic-pyruvic transaminase (SGPT and blood urea nitrogen in the males and females of both the juvenile and adult turtles. The outcome of this study presents baseline data on the haematology and serum biochemical parameters in free-ranging African side neck turtle (Pelusios sinuatus in Ibadan, Nigeria, which could also serve as a template for the comparative physiology of fresh and sea turtles.

  4. Home range, habitat use, and migrations of hawksbill turtles tracked from Dry Tortugas National Park, Florida, USA

    Science.gov (United States)

    Hart, Kristen M.; Sartain-Iverson, Autumn R.; Fujisaki, Ikuko; Pratt, Harold L.; Morley, Danielle; Feeley, Michael W.

    2012-01-01

    To determine habitat-use patterns of sub-adult hawksbills Eretmochelys imbricata, we conducted satellite- and acoustic-tracking of 3 turtles captured in August 2008 within Dry Tortugas National Park (DRTO), south Florida, USA, in the Gulf of Mexico; turtles ranged in size from 51.9 to 69.8 cm straight carapace length. After 263, 699, and 655 d of residence in the park, turtles migrated out of the DRTO. Within the park, core-use areas (i.e. 50% kernel density estimates) were 9.2 to 21.5 km2; all 3 turtle core-use areas overlapped in an area 6.1 km2 within a zone of the park with multiple human uses (e.g. fishing, anchoring). Two turtles migrated to Cuba and ceased transmitting after 320 and 687 tracking days; the third turtle migrated toward Key West, Florida, and ceased transmitting after 884 tracking days. The present study highlights previously unknown regional connections for hawksbills, possible turtle-harvest incidents, and fine-scale habitat use of sub-adult hawksbills within a United States National Park.

  5. Molecular decay of enamel matrix protein genes in turtles and other edentulous amniotes

    Directory of Open Access Journals (Sweden)

    Meredith Robert W

    2013-01-01

    Full Text Available Abstract Background Secondary edentulism (toothlessness has evolved on multiple occasions in amniotes including several mammalian lineages (pangolins, anteaters, baleen whales, birds, and turtles. All edentulous amniote clades have evolved from ancestors with enamel-capped teeth. Previous studies have documented the molecular decay of tooth-specific genes in edentulous mammals, all of which lost their teeth in the Cenozoic, and birds, which lost their teeth in the Cretaceous. By contrast with mammals and birds, tooth loss in turtles occurred in the Jurassic (201.6-145.5 Ma, providing an extended time window for tooth gene degradation in this clade. The release of the painted turtle and Chinese softshell turtle genomes provides an opportunity to recover the decayed remains of tooth-specific genes in Testudines. Results We queried available genomes of Testudines (Chrysemys picta [painted turtle], Pelodiscus sinensis [Chinese softshell turtle], Aves (Anas platyrhynchos [duck], Gallus gallus [chicken], Meleagris gallopavo [turkey], Melopsittacus undulatus [budgerigar], Taeniopygia guttata [zebra finch], and enamelless mammals (Orycteropus afer [aardvark], Choloepus hoffmanni [Hoffmann’s two-toed sloth], Dasypus novemcinctus [nine-banded armadillo] for remnants of three enamel matrix protein (EMP genes with putative enamel-specific functions. Remnants of the AMBN and ENAM genes were recovered in Chrysemys and retain their original synteny. Remnants of AMEL were recovered in both testudines, although there are no shared frameshifts. We also show that there are inactivated copies of AMBN, AMEL and ENAM in representatives of divergent avian lineages including Galloanserae, Passeriformes, and Psittaciformes, and that there are shared frameshift mutations in all three genes that predate the basal split in Neognathae. Among enamelless mammals, all three EMP genes exhibit inactivating mutations in Orycteropus and Choloepus. Conclusions Our results

  6. Thermoregulation of fish and turtles in thermally stressed habitats. Annual progress report, October 1, 1977--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Spotila, J.R.

    1978-06-01

    Morphometric and heating and cooling studies on over 100 largemouth bass, Micropterus salmoides, have provided the data needed to refine the time-dependent body temperature model for fish. The model can now track the changes in body temperature of a bass if its weight and water temperature are known. The model is most sensitive to body diameter, body wall thickness, and tissue conductivity. Doubling tissue conductivity is equivalent to decreasing body diameter by a factor or two. Turtles, Chrysemys scripta, living in the heated portion of a cooling reservoir facultatively exploit the warmed water (..delta..T = 4 to 10/sup 0/C) as an auxiliary heat source for behavioral thermoregulation. Turtles in the heated arm of PAR pond have a smaller home range (200 m) than turtles in an ambient portion of the reservoir (507 m). The ability of animals to thermoregulate at a high constant body temperature depends upon the constraints imposed on them by their body size and physical characteristics and those of their environment. The net heat production required to maintain a specific body temperature changes as the size of an ectotherm increases. Operative environmental temperature is an appropriate measure of environmental heat loading and can be used as a predictor of turtle behavior. This concept may become very valuable in quantifying the effect of thermal effluents on turtle and fish behavior.

  7. Home range and habitat use of juvenile green turtles (Chelonia mydas) in the northern Gulf of Mexico

    Science.gov (United States)

    Lamont, Margaret M.; Fujisaki, Ikuko; Stephens, Brail S.; Hackett, Caitlin

    2015-01-01

    Background: For imperiled marine turtles, use of satellite telemetry has proven to be an effective method in determining long distance movements. However, the large size of the tag, relatively high cost and low spatial resolution of this method make it more difficult to examine fine-scale movements of individuals, particularly at foraging grounds where animals are frequently submerged. Acoustic telemetry offers a more suitable method of assessing fine-scale movement patterns with a smaller tag that provides more precise locations. We used acoustic telemetry to define home ranges and describe habitat use of juvenile green turtles at a temperate foraging ground in the northern Gulf of Mexico.

  8. Continuation of studies on thermoregulation of fish and turtles in thermally stressed habitats. Summary progress report, 1 October 1977-30 September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Spotila, J.R.

    1980-05-01

    Biophysical-behavioral-ecological models have been completed to explain the behavioral thermoregulation of largemouth bass (Micropterus salmoides) and turtles (Chrysemys scripta). Steady state and time dependent mathematical models accurately predict the body temperatures of largemouth bass. Field experiments using multichannel radio transmitters have provided temperatures of several body compartments of free ranging bass in their natural habitat. Initial studies have been completed to describe the behavioral thermoregulation of bass in a reactor cooling reservoir. Energy budgets, fundamental climate spaces, and realized climate spaces have been completed for the turtle, C. scripta. We have described the behavioral thermoregulation of C. scripta in Par Pond, S.C. and have measured its movements, home ranges and population levels in heated and unheated arms of the reservoir. Operative environmental temperature is a good predictor of the basking behavior of this turtle. A new synthesis explained the evolution of thermoregulatory strategies among animals. Laboratory experiments clarified the effects of movement, diving and temperature on the blood flow of alligators. Other experiments defined the role of boundary layers in controlling the evaporation of water from the surfaces of turtles and alligators in still and moving air. Nutritional status may be an important factor affecting the thermoregulatory behavior of turtles.

  9. An Attempt at the Northward Extension of the Breeding Range of the Atlantic Loggerhead Turtle by Egg Transplant Progress Report #3

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The object of this study is to attempt to extend the breeding range of the Atlantic Loggerhead Turtle northward to some of its reported previous range along the...

  10. An Attempt at the Northward Extension of the Breeding Range of the Atlantic Loggerhead Turtle by Egg Transplant Progress Report #2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The object of this study is to attempt to extend the breeding range of the Atlantic Loggerhead Turtle northward to some of its reported previous range along the...

  11. An Attempt at the Northward Extension of the Breeding Range of the Atlantic Loggerhead Turtle by Egg Transplant Progress Report #1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The object of this study is to attempt to extend the breeding range of the Atlantic Loggerhead Turtle northward to some of its reported previous range along the...

  12. An Attempt at the Northward Extension of the Breeding Range of the Atlantic Loggerhead Turtle by Egg Transplant Progress Report #4

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The object of this study is to attempt to extend the breeding range of the Atlantic Loggerhead Turtle northward to some of its reported previous range along the...

  13. An Attempt At The Northward Extension Of The Breeding Range Of The Atlantic Loggerhead Turtle (Caretta caretta caretta) By Egg Transplants

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The primary objective of this study is to attempt to re-establish the Loggerhead turtle breeding population northward back to its former range. The annual release of...

  14. An Attempt At The Northward Extension Of The Breeding Range Of The Atlantic Loggerhead Turtle (Caretta caretta caretta) By Egg Transplants 1977

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The primary objective of this study is to attempt to re-establish the loggerhead turtle breeding population northward back to its former range. The annual release of...

  15. Plasma biochemical and PCV ranges for healthy, wild, immature hawksbill (Eretmochelys imbricata) sea turtles.

    Science.gov (United States)

    Whiting, S D; Guinea, M L; Fomiatti, K; Flint, M; Limpus, C J

    2014-06-14

    In recent years, the use of blood chemistry as a diagnostic tool for sea turtles has been demonstrated, but much of its effectiveness relies on reference intervals. The first comprehensive blood chemistry values for healthy wild hawksbill (Eretmochelys imbricata) sea turtles are presented. Nineteen blood chemistry analytes and packed cell volume were analysed for 40 clinically healthy juvenile hawksbill sea turtles captured from a rocky reef habitat in northern Australia. We used four statistical approaches to calculate reference intervals and to investigate their use with non-normal distributions and small sample sizes, and to compare upper and lower limits between methods. Eleven analytes were correlated with curved carapace length indicating that body size should be considered when designing future studies and interpreting analyte values.

  16. Detection of Salmonella enterica Serovar Montevideo and Newport in Free-ranging Sea Turtles and Beach Sand in the Caribbean and Persistence in Sand and Seawater Microcosms.

    Science.gov (United States)

    Ives, A-K; Antaki, E; Stewart, K; Francis, S; Jay-Russell, M T; Sithole, F; Kearney, M T; Griffin, M J; Soto, E

    2017-09-01

    Salmonellae are Gram-negative zoonotic bacteria that are frequently part of the normal reptilian gastrointestinal flora. The main objective of this project was to estimate the prevalence of non-typhoidal Salmonella enterica in the nesting and foraging populations of sea turtles on St. Kitts and in sand from known nesting beaches. Results suggest a higher prevalence of Salmonella in nesting leatherback sea turtles compared with foraging green and hawksbill sea turtles. Salmonella was cultured from 2/9 and identified by molecular diagnostic methods in 3/9 leatherback sea turtle samples. Salmonella DNA was detected in one hawksbill turtle, but viable isolates were not recovered from any hawksbill sea turtles. No Salmonella was detected in green sea turtles. In samples collected from nesting beaches, Salmonella was only recovered from a single dry sand sample. All recovered isolates were positive for the wzx gene, consistent with the O:7 serogroup. Further serotyping characterized serovars Montevideo and Newport present in cloacal and sand samples. Repetitive-element palindromic PCR (rep-PCR) fingerprint analysis and pulsed-field gel electrophoresis of the 2014 isolates from turtles and sand as well as archived Salmonella isolates recovered from leatherback sea turtles in 2012 and 2013, identified two distinct genotypes and four different pulsotypes, respectively. The genotyping and serotyping were directly correlated. To determine the persistence of representative strains of each serotype/genotype in these environments, laboratory-controlled microcosm studies were performed in water and sand (dry and wet) incubated at 25 or 35°C. Isolates persisted for at least 32 days in most microcosms, although there were significant decreases in culturable bacteria in several microcosms, with the greatest reduction in dry sand incubated at 35°C. This information provides a better understanding of the epizootiology of Salmonella in free-ranging marine reptiles and the potential

  17. Body burdens of heavy metals in Lake Michigan wetland turtles.

    Science.gov (United States)

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.

  18. Immunoglobulin genes of the turtles.

    Science.gov (United States)

    Magadán-Mompó, Susana; Sánchez-Espinel, Christian; Gambón-Deza, Francisco

    2013-03-01

    The availability of reptile genomes for the use of the scientific community is an exceptional opportunity to study the evolution of immunoglobulin genes. The genome of Chrysemys picta bellii and Pelodiscus sinensis is the first one that has been reported for turtles. The scanning for immunoglobulin genes resulted in the presence of a complex locus for the immunoglobulin heavy chain (IGH). This IGH locus in both turtles contains genes for 13 isotypes in C. picta bellii and 17 in P. sinensis. These correspond with one immunoglobulin M, one immunoglobulin D, several immunoglobulins Y (six in C. picta bellii and eight in P. sinensis), and several immunoglobulins that are similar to immunoglobulin D2 (five in C. picta belli and seven in P. sinensis) that was previously described in Eublepharis macularius. It is worthy to note that IGHD2 are placed in an inverted transcriptional orientation and present sequences for two immunoglobulin domains that are similar to bird IgA domains. Furthermore, its phylogenetic analysis allows us to consider about the presence of IGHA gene in a primitive reptile, so we would be dealing with the memory of the gene that originated from the bird IGHA. In summary, we provide a clear picture of the immunoglobulins present in a turtle, whose analysis supports the idea that turtles emerged from the evolutionary line from the differentiation of birds and the presence of the IGHA gene present in a common ancestor.

  19. Lactate accumulation, glycogen depletion, and shell composition of hatchling turtles during simulated aquatic hibernation.

    Science.gov (United States)

    Reese, Scott A; Ultsch, Gordon R; Jackson, Donald C

    2004-07-01

    We submerged hatchling western painted turtles Chrysemys picta Schneider, snapping turtles Chelydra serpentina L. and map turtles Graptemys geographica Le Sueur in normoxic and anoxic water at 3 degrees C. Periodically, turtles were removed and whole-body [lactate] and [glycogen] were measured along with relative shell mass, shell water, and shell ash. We analyzed the shell for [Na+], [K+], total calcium, total magnesium, Pi and total CO2. All three species were able to tolerate long-term submergence in normoxic water without accumulating any lactate, indicating sufficient extrapulmonary O2 extraction to remain aerobic even after 150 days. Survival in anoxic water was 15 days in map turtles, 30 days in snapping turtles, and 40 days in painted turtles. Survival of hatchlings was only about one third the life of their adult conspecifics in anoxic water. Much of the decrease in survival was attributable to a dramatically lower shell-bone content (44% ash in adult painted turtles vs. 3% ash in hatchlings of all three species) and a smaller buffer content of bone (1.3 mmol g(-1) CO2 in adult painted turtles vs. 0.13-0.23 mmol g(-1) CO2 in hatchlings of the three species). The reduced survivability of turtle hatchlings in anoxic water requires that hatchlings either avoid aquatic hibernacula that may become severely hypoxic or anoxic (snapping turtles), or overwinter terrestrially (painted turtles and map turtles).

  20. Forecasting range expansion into ecological traps: climate-mediated shifts in sea turtle nesting beaches and human development.

    Science.gov (United States)

    Pike, David A

    2013-10-01

    Some species are adapting to changing environments by expanding their geographic ranges. Understanding whether range shifts will be accompanied by increased exposure to other threats is crucial to predicting when and where new populations could successfully establish. If species overlap to a greater extent with human development under climate change, this could form ecological traps which are attractive to dispersing individuals, but the use of which substantially reduces fitness. Until recently, the core nesting range for the Critically Endangered Kemp's ridley sea turtle (Lepidochelys kempii) was ca. 1000 km of sparsely populated coastline in Tamaulipas, Mexico. Over the past twenty-five years, this species has expanded its range into populated areas of coastal Florida (>1500 km outside the historical range), where nesting now occurs annually. Suitable Kemp's ridley nesting habitat has persisted for at least 140 000 years in the western Gulf of Mexico, and climate change models predict further nesting range expansion into the eastern Gulf of Mexico and northern Atlantic Ocean. Range expansion is 6-12% more likely to occur along uninhabited stretches of coastline than are current nesting beaches, suggesting that novel nesting areas will not be associated with high levels of anthropogenic disturbance. Although the high breeding-site fidelity of some migratory species could limit adaptation to climate change, rapid population recovery following effective conservation measures may enhance opportunities for range expansion. Anticipating the interactive effects of past or contemporary conservation measures, climate change, and future human activities will help focus long-term conservation strategies.

  1. Turtles outsmart rapid environmental change: The role of cognition in navigation

    OpenAIRE

    Krochmal, Aaron R.; Roth, Timothy C.; Rush, Sage; Wachter, Katrina

    2016-01-01

    Animals inhabiting changing environments show high levels of cognitive plasticity. Cognition may be a means by which animals buffer the impact of environmental change. However, studies examining the evolution of cognition seldom compare populations where change is rapid and selection pressures are strong. We investigated this phenomenon by radiotracking experienced and naïve Eastern painted turtles (Chrysemys picta) as they sought new habitats when their pond was drained. Resident adults repe...

  2. Conservation genetics of the alligator snapping turtle: cytonuclear evidence of range-wide bottleneck effects and unusually pronounced geographic structure

    Science.gov (United States)

    Echelle, A.A.; Hackler, J.C.; Lack, Justin B.; Ballard, S. R.; Roman, J.; Fox, S. F.; Leslie,, David M.; Van Den Bussche, Ronald A.

    2010-01-01

    A previous mtDNA study indicated that female-mediated gene flow was extremely rare among alligator snapping turtle populations in different drainages of the Gulf of Mexico. In this study, we used variation at seven microsatellite DNA loci to assess the possibility of male-mediated gene flow, we augmented the mtDNA survey with additional sampling of the large Mississippi River System, and we evaluated the hypothesis that the consistently low within-population mtDNA diversity reflects past population bottlenecks. The results show that dispersal between drainages of the Gulf of Mexico is rare (F STmsat  = 0.43, ΦSTmtDNA = 0.98). Past range-wide bottlenecks are indicated by several genetic signals, including low diversity for microsatellites (1.1–3.9 alleles/locus; H e = 0.06–0.53) and mtDNA (h = 0.00 for most drainages; π = 0.000–0.001). Microsatellite data reinforce the conclusion from mtDNA that the Suwannee River population might eventually be recognized as a distinct taxonomic unit. It was the only population showing fixation or near fixation for otherwise rare microsatellite alleles. Six evolutionarily significant units are recommended on the basis of reciprocal mtDNA monophyly and high levels of microsatellite DNA divergence.

  3. Intestinal and cloacal strictures in free-ranging and aquarium-maintained green sea turtles (Chelonia mydas).

    Science.gov (United States)

    Erlacher-Reid, Claire D; Norton, Terry M; Harms, Craig A; Thompson, Rachel; Reese, David J; Walsh, Michael T; Stamper, M Andrew

    2013-06-01

    Intestinal or cloacal strictures that resulted in intestinal obstruction were diagnosed in six green sea turtles (Chelonia mydas) from three rehabilitation facilities and two zoologic parks. The etiologies of the strictures were unknown in these cases. It is likely that anatomic adaptations of the gastrointestinal tract unique to the green sea turtle's herbivorous diet, paired with causes of reduced intestinal motility, may predispose the species to intestinal damage and subsequent obstructive intestinal disease. In aquarium-maintained green sea turtles, obesity, diet, reduced physical activity, chronic intestinal disease, and inappropriate or inadequate antibiotics might also be potential contributing factors. Clinical, radiographic, and hematologic abnormalities common among most of these sea turtles include the following: positive buoyancy; lethargy; inappetence; regurgitation; obstipation; dilated bowel and accumulation of oral contrast material; anemia; hypoglycemia; hypoalbuminemia; hypocalcemia; and elevated creatine kinase, aspartate aminotransferase, and blood urea nitrogen. Although these abnormalities are nonspecific with many possible contributing factors, intestinal disease, including strictures, should be considered a differential in green sea turtles that demonstrate all or a combination of these clinical findings. Although diagnostic imaging, including radiographs, computed tomography, or magnetic resonance imaging, are important in determining a cause for suspected gastrointestinal disease and identifying an anatomic location of obstruction, intestinal strictures were not successfully identified when using these imaging modalities. Lower gastrointestinal contrast radiography, paired with the use of oral contrast, was useful in identifying the suspected site of intestinal obstruction in two cases. Colonoscopy was instrumental in visually diagnosing intestinal stricture in one case. Therefore, lower gastrointestinal contrast radiography and

  4. RCsec turtle

    OpenAIRE

    Rose, Matthew

    2005-01-01

    Matthew Rose worked at the Naval Postgraduate School as a graphic designer from February 2002-November 2011. His work for NPS included logos, brochures, business packs, movies/presentations, posters, the CyberSiege video game and many other projects. This material was organized and provided by the artist, for inclusion in the NPS Archive, Calhoun. Includes these files: green-sea-turtle~104.jpg; green-sea-turtle~104.psd; rcsec_turtle.psd; rcsec-logo-turtle.jpg; rcsec-logo-turtle.psd; rcsec...

  5. Continuation of studies on thermoregulation of fish and turtles in thermally stressed habitats. Annual progress report, 1 October 1979-30 September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Spotila, J.R.

    1980-05-01

    Fundamental and realized climate spaces were calculated for the turtle Chrysemys scripta. These allow predictions about the effect of microclimate and thermal effluents on the behavior of these animals to be made. A conceptual model to define the biophysical-behavioral thermoregulatory mechanisms employed by this turtle is being finalized. Operative environmental temperature (T/sub e/) is a good predictor of the basking behavior of turtles. T/sub e/ is positively related to visible and thermal radiation and air temperature. Turtles generally do not bask until T/sub e/ exceeds 28/sup 0/C, thus implicating thermoregulation as a major factor in determining the basking behavior of C. scripta. Water temperature was very important in determining the distribution of largemouth bass, Micropterus salmoides, in a South Carolina reservoir receiving thermal effluent from a nuclear reactor. Bass were restricted in movement by lethal water temperatures, selecting temperatures close to 30/sup 0/C and avoiding temperatures above 31/sup 0/C. Under normal, unheated conditions, bass dispersed throughout the reservoir. During reactor operation, hot water at temperatures lethal to fish (approx. 55/sup 0/C), forced bass to retreat to refuges in two coves and a deep spring. Distribution of bass varied seasonally. Multichannel radio transmitters were surgically implanted in free ranging fish, permitting the telemetry of temperatures from five parts of the body and from surrounding water. In general, body temperatures followed water temperatures closely, but rapidly changing temperatures produced lags between body temperatures and water of as much as 3.5/sup 0/C. (ERB)

  6. Hierarchical, quantitative biogeographic provinces for all North American turtles and their contribution to the biogeography of turtles and the continent

    Science.gov (United States)

    Ennen, Joshua R.; Matamoros, Wilfredo A.; Agha, Mickey; Lovich, Jeffrey E.; Sweat, Sarah C.; Hoagstrom, Christopher W.

    2017-01-01

    and endemism concentrated along the more stable Gulf of México and Atlantic (south of the last permafrost maximum) coasts. Although distribution data indicate two aquatic turtles are most cold tolerant (i.e., Chrysemys picta, Chelydra serpentina), aquatic turtles overall show the most restriction to warmer, wetter climates. Sequential addition of semiaquatic and terrestrial turtles into analyses shows, as expected, that these taxa flesh out turtle faunas in climatically harsh (e.g., grasslands) or remote (e.g., California, Sonoran Desert) regions. The turtle assemblages of southwestern versus southeastern North America are distinct. But there is a transition zone across the semiarid plains of the Texas Gulf Coast, High Plains, and Chihuahuan Desert, including a strong boundary congruent with the Cochise Filter-Barrier. This is not a simple subdivision of Neotropical versus Nearctic taxa, as some lineages from both realms span the transition zone.

  7. Turtle Girls

    Science.gov (United States)

    Nelson, Charles; Ponder, Jennifer

    2010-01-01

    The day the Turtle Girls received Montel's adoption papers, piercing screams ricocheted across the school grounds instantaneously and simultaneously--in that moment, each student felt the joy of civic stewardship. Read on to find out how a visit to The Turtle Hospital inspired a group of elementary students to create a club devoted to supporting…

  8. The aquatic turtle assemblage inhabiting a highly altered landscape in southeast Missouri

    Science.gov (United States)

    Glorioso, Brad M.; Vaughn, Allison J.; Waddle, J. Hardin

    2010-01-01

    Turtles are linked to energetic food webs as both consumers of plants and animals and prey for many species. Turtle biomass in freshwater systems can be an order of magnitude greater than that of endotherms. Therefore, declines in freshwater turtle populations can change energy transfer in freshwater systems. Here we report on a mark–recapture study at a lake and adjacent borrow pit in a relict tract of bottomland hardwood forest in the Mississippi River floodplain in southeast Missouri, which was designed to gather baseline data, including sex ratio, size structure, and population size, density, and biomass, for the freshwater turtle population. Using a variety of capture methods, we captured seven species of freshwater turtles (snapping turtle Chelydra serpentina; red-eared slider Trachemys scripta; southern painted turtle Chrysemys dorsalis; river cooter Pseudemys concinna; false map turtle Graptemys pseudogeographica; eastern musk turtle Sternotherus odoratus; spiny softshell Apalone spinifera) comprising four families (Chelydridae, Emydidae, Kinosternidae, Trinoychidae). With the exception of red-eared sliders, nearly all individuals captured were adults. Most turtles were captured by baited hoop-nets, and this was the only capture method that caught all seven species. The unbaited fyke net was very successful in the borrow pit, but only captured four of the seven species. Basking traps and deep-water crawfish nets had minimal success. Red-eared sliders had the greatest population estimate (2,675), density (205/ha), and biomass (178 kg/ha). Two species exhibited a sex-ratio bias: snapping turtles C. serpentina in favor of males, and spiny softshells A. spinifera in favor of females.

  9. The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage.

    Science.gov (United States)

    Shaffer, H Bradley; Minx, Patrick; Warren, Daniel E; Shedlock, Andrew M; Thomson, Robert C; Valenzuela, Nicole; Abramyan, John; Amemiya, Chris T; Badenhorst, Daleen; Biggar, Kyle K; Borchert, Glen M; Botka, Christopher W; Bowden, Rachel M; Braun, Edward L; Bronikowski, Anne M; Bruneau, Benoit G; Buck, Leslie T; Capel, Blanche; Castoe, Todd A; Czerwinski, Mike; Delehaunty, Kim D; Edwards, Scott V; Fronick, Catrina C; Fujita, Matthew K; Fulton, Lucinda; Graves, Tina A; Green, Richard E; Haerty, Wilfried; Hariharan, Ramkumar; Hernandez, Omar; Hillier, LaDeana W; Holloway, Alisha K; Janes, Daniel; Janzen, Fredric J; Kandoth, Cyriac; Kong, Lesheng; de Koning, A P Jason; Li, Yang; Literman, Robert; McGaugh, Suzanne E; Mork, Lindsey; O'Laughlin, Michelle; Paitz, Ryan T; Pollock, David D; Ponting, Chris P; Radhakrishnan, Srihari; Raney, Brian J; Richman, Joy M; St John, John; Schwartz, Tonia; Sethuraman, Arun; Spinks, Phillip Q; Storey, Kenneth B; Thane, Nay; Vinar, Tomas; Zimmerman, Laura M; Warren, Wesley C; Mardis, Elaine R; Wilson, Richard K

    2013-03-28

    We describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context, and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and determination, and the species' physiological capacities to withstand extreme anoxia and tissue freezing. Our phylogenetic analyses confirm that turtles are the sister group to living archosaurs, and demonstrate an extraordinarily slow rate of sequence evolution in the painted turtle. The ability of the painted turtle to withstand complete anoxia and partial freezing appears to be associated with common vertebrate gene networks, and we identify candidate genes for future functional analyses. Tooth loss shares a common pattern of pseudogenization and degradation of tooth-specific genes with birds, although the rate of accumulation of mutations is much slower in the painted turtle. Genes associated with sex differentiation generally reflect phylogeny rather than convergence in sex determination functionality. Among gene families that demonstrate exceptional expansions or show signatures of strong natural selection, immune function and musculoskeletal patterning genes are consistently over-represented. Our comparative genomic analyses indicate that common vertebrate regulatory networks, some of which have analogs in human diseases, are often involved in the western painted turtle's extraordinary physiological capacities. As these regulatory pathways are analyzed at the functional level, the painted turtle may offer important insights into the management of a number of human health disorders.

  10. Exogenous application of estradiol to eggs unexpectedly induces male development in two turtle species with temperature-dependent sex determination.

    Science.gov (United States)

    Warner, Daniel A; Addis, Elizabeth; Du, Wei-guo; Wibbels, Thane; Janzen, Fredric J

    2014-09-15

    Steroid hormones affect sex determination in a variety of vertebrates. The feminizing effects of exposure to estradiol and the masculinizing effects of aromatase inhibition during development are well established in a broad range of vertebrate taxa, but paradoxical findings are occasionally reported. Four independent experiments were conducted on two turtle species with temperature-dependent sex determination (Chrysemys picta and Chelydra serpentina) to quantify the effects of egg incubation temperature, estradiol, and an aromatase inhibitor on offspring sex ratios. As expected, the warmer incubation temperatures induced female development and the cooler temperatures produced primarily males. However, application of an aromatase inhibitor had no effect on offspring sex ratios, and exogenous applications of estradiol to eggs produced male offspring across all incubation temperatures. These unexpected results were remarkably consistent across all four experiments and both study species. Elevated concentrations of estradiol could interact with androgen receptors or inhibit aromatase expression, which might result in relatively high testosterone concentrations that lead to testis development. These findings add to a short list of studies that report paradoxical effects of steroid hormones, which addresses the need for a more comprehensive understanding of the role of sex steroids in sexual development.

  11. Biochemical responses to fibropapilloma and captivity in the green turtle.

    Science.gov (United States)

    Swimmer, J Y

    2000-01-01

    Blood biochemical parameters were compared for green turtles (Chelonia mydas) with and without green turtle fibropapillomatosis (GTFP) from both captive and wild populations in Hawaii (USA) and from a captive population from California (USA), during the period between 1994 and 1996. Statistical analysis did not detect an influence of disease in any of the blood parameters for free-ranging turtles; however, captive turtles in Hawaii with GTFP had significantly higher levels of alkaline phosphatase and significantly lower levels of lactate compared to non-tumored captive turtles. Multivariate analysis found that biochemical profiles could be used to accurately predict if turtles were healthy or afflicted with GTFP. Discriminant function analysis correctly classified turtles as being with or without GTFP in 89% of cases, suggesting that diseased animals had a distinct signature of plasma biochemistries. Measurements of blood parameters identified numerous differences between captive and wild green turtles in Hawaii. Levels of corticosterone, lactate, triglyceride, glucose, and calcium were significantly higher in wild green turtles as compared to captive turtles, while uric acid levels were significantly lower in wild turtles as compared to captive turtles. Additionally, turtles from Sea World of California (San Diego, California, USA), which had been in captivity the longest, had higher levels of alanine aminotransferase and triglycerides as compared to nearly all other groups. Differences in diet, sampling methods, environmental conditions, and turtle size, help to interpret these results.

  12. Comparative shell buffering properties correlate with anoxia tolerance in freshwater turtles.

    Science.gov (United States)

    Jackson, Donald C; Taylor, Sarah E; Asare, Vivian S; Villarnovo, Dania; Gall, Jonathan M; Reese, Scott A

    2007-02-01

    Freshwater turtles as a group are more resistant to anoxia than other vertebrates, but some species, such as painted turtles, for reasons not fully understood, can remain anoxic at winter temperatures far longer than others. Because buffering of lactic acid by the shell of the painted turtle is crucial to its long-term anoxic survival, we have tested the hypothesis that previously described differences in anoxia tolerance of five species of North American freshwater turtles may be explained at least in part by differences in their shell composition and buffering capacity. All species tested have large mineralized shells. Shell comparisons included 1) total shell CO2 concentration, 2) volume of titrated acid required to hold incubating shell powder at pH 7.0 for 3 h (an indication of buffer release from shell), and 3) lactate concentration of shell samples incubated to equilibrium in a standard lactate solution. For each measurement, the more anoxia-tolerant species (painted turtle, Chrysemys picta; snapping turtle, Chelydra serpentina) had higher values than the less anoxia-tolerant species (musk turtle, Sternotherus odoratus; map turtle, Graptemys geographica; red-eared slider, Trachemys scripta). We suggest that greater concentrations of accessible CO2 (as carbonate or bicarbonate) in the more tolerant species enable these species, when acidotic, to release more buffer into the extracellular fluid and to take up more lactic acid into their shells. We conclude that the interspecific differences in shell composition and buffering can contribute to, but cannot explain fully, the variations observed in anoxia tolerance among freshwater turtles.

  13. Embryos in the fast lane: high-temperature heart rates of turtles decline after hatching.

    Directory of Open Access Journals (Sweden)

    Wei-Guo Du

    Full Text Available In ectotherms such as turtles, the relationship between cardiovascular function and temperature may be subject to different selective pressures in different life-history stages. Because embryos benefit by developing as rapidly as possible, and can "afford" to expend energy to do so (because they have access to the yolk for nutrition, they benefit from rapid heart (and thus, developmental rates. In contrast, hatchlings do not have a guaranteed food supply, and maximal growth rates may not enhance fitness--and so, we might expect a lower heart rate, especially at high temperatures where metabolic costs are greatest. Our data on two species of emydid turtles, Chrysemys picta, and Graptemys pseudogeographica kohnii, support these predictions. Heart rates of embryos and hatchlings were similar at low temperatures, but heart rates at higher temperatures were much greater before than after hatching.

  14. Sea Turtle Interaction Report

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea Turtle Interaction Report is a report sent out in pdf format to authorized individuals that summarizes sea turtle interactions in the longline fishery. The...

  15. Sea Turtle Interaction Report

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea Turtle Interaction Report is a report sent out in pdf format to authorized individuals that summarizes sea turtle interactions in the longline fishery. The...

  16. Clever Turtle

    Institute of Scientific and Technical Information of China (English)

    李传霞

    2007-01-01

    @@ 人物: F-Fox G-Frog T-Turtle F:(到处寻找食物)I haven't had anything for a whole day.I'm hungry.I want to eat something.(看见青蛙,高兴极了)Wow!A frog!How fat it is!I'll eat it.(悄悄接近青蛙.) G:(正忙着捉害虫,没察觉到狐狸正在靠近)So many pests!I'll eat them up. T:(睡醒后,看到危境中的青蛙)Oh,a fox!He will eat the frog.Poor Frog,he knows nothing at all.I should help him.But what shall I do?Oh,I have an idea.(伸出头,一口咬住了狐狸的尾巴.)

  17. Rapid evolution of Beta-keratin genes contribute to phenotypic differences that distinguish turtles and birds from other reptiles.

    Science.gov (United States)

    Li, Yang I; Kong, Lesheng; Ponting, Chris P; Haerty, Wilfried

    2013-01-01

    Sequencing of vertebrate genomes permits changes in distinct protein families, including gene gains and losses, to be ascribed to lineage-specific phenotypes. A prominent example of this is the large-scale duplication of beta-keratin genes in the ancestors of birds, which was crucial to the subsequent evolution of their beaks, claws, and feathers. Evidence suggests that the shell of Pseudomys nelsoni contains at least 16 beta-keratins proteins, but it is unknown whether this is a complete set and whether their corresponding genes are orthologous to avian beak, claw, or feather beta-keratin genes. To address these issues and to better understand the evolution of the turtle shell at a molecular level, we surveyed the diversity of beta-keratin genes from the genome assemblies of three turtles, Chrysemys picta, Pelodiscus sinensis, and Chelonia mydas, which together represent over 160 Myr of chelonian evolution. For these three turtles, we found 200 beta-keratins, which indicate that, as for birds, a large expansion of beta-keratin genes in turtles occurred concomitantly with the evolution of a unique phenotype, namely, their plastron and carapace. Phylogenetic reconstruction of beta-keratin gene evolution suggests that separate waves of gene duplication within a single genomic location gave rise to scales, claws, and feathers in birds, and independently the scutes of the shell in turtles.

  18. LEGACY - Photographs resulting from experiment remote camera viewing of sea turtles and habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photos collected in marine turtle research programs are diverse, ranging from isolated observations of incidental encounters with turtles to voluminous, complex...

  19. Phosphorylation of the mitochondrial ATP-sensitive potassium channel occurs independently of PKCε in turtle brain.

    Science.gov (United States)

    Hawrysh, Peter John; Miles, Ashley Rebecca; Buck, Leslie Thomas

    2016-10-01

    Neurons from the western painted turtle (Chrysemys picta bellii) are remarkably resilient to anoxia. This is partly due to a reduction in the permeability of excitatory glutamatergic ion channels, initiated by mitochondrial ATP-sensitive K(+) (mK(+)ATP) channel activation. The aim of this study was to determine if: 1) PKCε, a kinase associated with hypoxic stress tolerance, is more highly expressed in turtle brain than the anoxia-intolerant rat brain; 2) PKCε translocates to the mitochondrial membrane during anoxia; 3) PKCε modulates mK(+)ATP channels at the Thr-224 phosphorylation site on the Kir6.2 subunit; and 4) Thr-224 phosphorylation sensitises mK(+)ATP channels to anoxia. Soluble and mitochondrial-rich particulate fractions of turtle and rat cerebral cortex were isolated and PKCε expression was determined by Western blot, which revealed that turtle cortical PKCε expression was half that of the rat. Following the transition to anoxia, no changes in PKCε expression in either the soluble or particulate fraction of the turtle cortex were observed. Furthermore, incubation of tissue with tat-conjugated activator or inhibitor peptides had no effect on the amount of PKCε in either fraction. However, we observed a 2-fold increase in Thr-224 phosphorylation following 1h of anoxia. The increased Thr-224 phosphorylation was blocked by the general kinase inhibitor staurosporine but this did not affect the latency or magnitude of mK(+)ATP channel-mediated mitochondrial depolarization following anoxia, as indicated by rhodamine-123. We conclude that PKCε does not play a role in the onset of mitochondrial depolarization and therefore glutamatergic channel arrest in turtle cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Comparative Genomics Identifies Epidermal Proteins Associated with the Evolution of the Turtle Shell.

    Science.gov (United States)

    Holthaus, Karin Brigit; Strasser, Bettina; Sipos, Wolfgang; Schmidt, Heiko A; Mlitz, Veronika; Sukseree, Supawadee; Weissenbacher, Anton; Tschachler, Erwin; Alibardi, Lorenzo; Eckhart, Leopold

    2016-03-01

    The evolution of reptiles, birds, and mammals was associated with the origin of unique integumentary structures. Studies on lizards, chicken, and humans have suggested that the evolution of major structural proteins of the outermost, cornified layers of the epidermis was driven by the diversification of a gene cluster called Epidermal Differentiation Complex (EDC). Turtles have evolved unique defense mechanisms that depend on mechanically resilient modifications of the epidermis. To investigate whether the evolution of the integument in these reptiles was associated with specific adaptations of the sequences and expression patterns of EDC-related genes, we utilized newly available genome sequences to determine the epidermal differentiation gene complement of turtles. The EDC of the western painted turtle (Chrysemys picta bellii) comprises more than 100 genes, including at least 48 genes that encode proteins referred to as beta-keratins or corneous beta-proteins. Several EDC proteins have evolved cysteine/proline contents beyond 50% of total amino acid residues. Comparative genomics suggests that distinct subfamilies of EDC genes have been expanded and partly translocated to loci outside of the EDC in turtles. Gene expression analysis in the European pond turtle (Emys orbicularis) showed that EDC genes are differentially expressed in the skin of the various body sites and that a subset of beta-keratin genes within the EDC as well as those located outside of the EDC are expressed predominantly in the shell. Our findings give strong support to the hypothesis that the evolutionary innovation of the turtle shell involved specific molecular adaptations of epidermal differentiation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Shell bone histology indicates terrestrial palaeoecology of basal turtles.

    Science.gov (United States)

    Scheyer, Torsten M; Sander, P Martin

    2007-08-07

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys quenstedti. Comparison of their shell bone histology with that of extant turtles preferring either aquatic habitats or terrestrial habitats clearly reveals congruence with terrestrial turtle taxa. Similarities in the shell bones of these turtles are a diploe structure with well-developed external and internal cortices, weak vascularization of the compact bone layers and a dense nature of the interior cancellous bone with overall short trabeculae. On the other hand, 'aquatic' turtles tend to reduce cortical bone layers, while increasing overall vascularization of the bone tissue. In contrast to the study of limb bone proportions, the present study is independent from the uncommon preservation of appendicular skeletal elements in fossil turtles, enabling the palaeoecological study of a much broader range of incompletely known turtle taxa in the fossil record.

  2. The Classroom Animal: Box Turtles.

    Science.gov (United States)

    Kramer, David C.

    1986-01-01

    Provides basic information on the anatomy, physiology, behaviors, and distribution patterns of the box turtle. Offers suggestions for the turtle's care and maintenance in a classroom environment. (ML)

  3. Turtle Data Processing System (TDPS) - Nesting Turtles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of marine turtle data is essential to maximize their research value and enable timely population assessments and recovery monitoring. To provide...

  4. Turtle Data Processing System (TDPS) - Turtle Strandings

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of marine turtle data is essential to maximize their research value and enable timely population assessments and recovery monitoring. To provide...

  5. Turtle Data Processing System (TDPS) - Nearshore Turtles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of marine turtle data is essential to maximize their research value and enable timely population assessments and recovery monitoring. To provide...

  6. A new turtle confirms the presence of Bothremydidae (Pleurodira) in the Cenozoic of Europe and expands the biostratigraphic range of Foxemydina

    Science.gov (United States)

    Pérez-García, Adán

    2016-08-01

    Pleurodira is a clade of Gondwanan turtles that reached Europe at the beginning of the Late Cretaceous. It is recognized as the most abundant and diverse group of freshwater turtles in the uppermost Cretaceous record of this continent, being represented by several members of Bothremydidae. Two well-preserved and relatively complete skulls are studied in this paper. They come from lower Eocene levels of the French locality of Saint-Papoul (Aude). These specimens are recognized as attributable to a new taxon, Tartaruscola teodorii gen. et sp. nov., identified as a bothremydid. This new form constitutes the only known unambiguous and valid representative of Bothremydidae in the Cenozoic of Europe. The new taxon is diagnosed by several autapomorphies and also by an exclusive combination of characters. It is one of the few members of Bothremydini identified in the Cenozoic record and the only one described for the Eocene outside of the Ouled Abdoun Basin of Morocco. Tartaruscola teodorii is identified as a member of Foxemydina, a clade recognized here as exclusive of the European record, and whose presence in post-Mesozoic levels is demonstrated in this paper. The European Foxemydina T. teodorii and the African Bothremydina Bothremys kellyi, both from the Ypresian, are the youngest members of Bothremydini hitherto known.

  7. Diatoms on the carapace of common snapping turtles: Luticola spp. dominate despite spatial variation in assemblages

    Science.gov (United States)

    Wu, Shelly C.; Bergey, Elizabeth A.

    2017-01-01

    Filamentous algae are often visible on the carapaces of freshwater turtles and these algae are dominated by a few species with varying geographic distributions. Compared to filamentous algae, little is known about the much more speciose microalgae on turtles. Our objectives were to compare the diatom flora on a single turtle species (the common snapping turtle, Chelydra serpentina) across part of its range to examine spatial patterns and determine whether specific diatom taxa were consistently associated with turtles (as occurs in the filamentous alga Basicladia spp.). Using preserved turtle specimens from museums, we systematically sampled diatoms on the carapaces of 25 snapping turtles across five states. The diverse diatom assemblages formed two groups–the southern Oklahoma group and the northern Illinois/Wisconsin/New York group, with Arkansas not differing from either group. Of the six diatom species found in all five states, four species are widespread, whereas Luticola cf. goeppertiana and L. cf. mutica are undescribed species, known only from turtles in our study. L. cf. goeppertiana comprised 83% of the diatom abundance on Oklahoma turtles and was relatively more abundant on southern turtles (Oklahoma and Arkansas) than on northern turtles (where mean abundance/state was > 10%). L. cf. mutica was the most abundant species (40%) on New York turtles. Some Luticola species are apparently turtle associates and results support a pattern of spatial variation in Luticola species, similar to that in Basicladia. Using museum specimens is an efficient and effective method to study the distribution of micro-epibionts. PMID:28192469

  8. Turtles outsmart rapid environmental change: The role of cognition in navigation

    Science.gov (United States)

    Krochmal, Aaron R; Roth, Timothy C; Rush, Sage; Wachter, Katrina

    2015-01-01

    Animals inhabiting changing environments show high levels of cognitive plasticity. Cognition may be a means by which animals buffer the impact of environmental change. However, studies examining the evolution of cognition seldom compare populations where change is rapid and selection pressures are strong. We investigated this phenomenon by radiotracking experienced and naïve Eastern painted turtles (Chrysemys picta) as they sought new habitats when their pond was drained. Resident adults repeatedly used specific routes to permanent water sources with exceptional precision, while adults translocated to the site did not. Naïve 1–3 y olds from both populations used the paths taken by resident adults, an ability lost by age 4. Experience did not, however, influence the timing of movement or the latency to begin navigation. This suggests that learning during a critical period may be important for how animals respond to changing environments, highlighting the importance of incorporating cognition into conservation. PMID:27065017

  9. The status of marine turtles in Montserrat (Eastern Caribbean

    Directory of Open Access Journals (Sweden)

    Martin, C. S.

    2005-12-01

    Full Text Available The status of marine turtles in Montserrat (Eastern Caribbean is reviewed following five years of monitoring (1999-2003. The mean number of nests recorded during the annual nesting season (June-October was 53 (± 24.9 SD; range: 13-43. In accordance with earlier reports, the nesting of hawksbill (Eretmochelys imbricata and green (Chelonia mydas turtles was confirmed on several beaches around the island. Only non-nesting emergences were documented for loggerhead turtles (Caretta caretta and there was no evidence of nesting by leatherback turtles (Dermochelys coriacea; however, it is possible that additional survey effort would reveal low density nesting by these species. Officially reported turtle capture data for 1993-2003 suggest that a mean of 0.9 turtle per year (±1.2 SD; range: 0-4 were landed island-wide, with all harvest having occurred during the annual open season (1 October to 31 May. Informed observers believe that the harvest is significantly under-reported and that fishermen avoid declaring their catch by butchering turtles at sea (both during and outside the open season. Of concern is the fact that breeding adults are potentially included in the harvest, and that the open season partially coincides with the breeding season. The present study has shown that although Montserrat is not a major nesting site for sea turtles, it remains important on a regional basis for the Eastern Caribbean.

  10. Underwater Hearing in Turtles.

    Science.gov (United States)

    Willis, Katie L

    2016-01-01

    The hearing of turtles is poorly understood compared with the other reptiles. Although the mechanism of transduction of sound into a neural signal via hair cells has been described in detail, the rest of the auditory system is largely a black box. What is known is that turtles have higher hearing thresholds than other reptiles, with best frequencies around 500 Hz. They also have lower underwater hearing thresholds than those in air, owing to resonance of the middle ear cavity. Further studies demonstrated that all families of turtles and tortoises share a common middle ear cavity morphology, with scaling best suited to underwater hearing. This supports an aquatic origin of the group. Because turtles hear best under water, it is important to examine their vulnerability to anthropogenic noise. However, the lack of basic data makes such experiments difficult because only a few species of turtles have published audiograms. There are also almost no behavioral data available (understandable due to training difficulties). Finally, few studies show what kinds of sounds are behaviorally relevant. One notable paper revealed that the Australian snake-necked turtle (Chelodina oblonga) has a vocal repertoire in air, at the interface, and under water. Findings like these suggest that there is more to the turtle aquatic auditory scene than previously thought.

  11. Natal foraging philopatry in eastern Pacific hawksbill turtles.

    Science.gov (United States)

    Gaos, Alexander R; Lewison, Rebecca L; Jensen, Michael P; Liles, Michael J; Henriquez, Ana; Chavarria, Sofia; Pacheco, Carlos Mario; Valle, Melissa; Melero, David; Gadea, Velkiss; Altamirano, Eduardo; Torres, Perla; Vallejo, Felipe; Miranda, Cristina; LeMarie, Carolina; Lucero, Jesus; Oceguera, Karen; Chácon, Didiher; Fonseca, Luis; Abrego, Marino; Seminoff, Jeffrey A; Flores, Eric E; Llamas, Israel; Donadi, Rodrigo; Peña, Bernardo; Muñoz, Juan Pablo; Ruales, Daniela Alarcòn; Chaves, Jaime A; Otterstrom, Sarah; Zavala, Alan; Hart, Catherine E; Brittain, Rachel; Alfaro-Shigueto, Joanna; Mangel, Jeffrey; Yañez, Ingrid L; Dutton, Peter H

    2017-08-01

    The complex processes involved with animal migration have long been a subject of biological interest, and broad-scale movement patterns of many marine turtle populations still remain unresolved. While it is widely accepted that once marine turtles reach sexual maturity they home to natal areas for nesting or reproduction, the role of philopatry to natal areas during other life stages has received less scrutiny, despite widespread evidence across the taxa. Here we report on genetic research that indicates that juvenile hawksbill turtles (Eretmochelys imbricata) in the eastern Pacific Ocean use foraging grounds in the region of their natal beaches, a pattern we term natal foraging philopatry. Our findings confirm that traditional views of natal homing solely for reproduction are incomplete and that many marine turtle species exhibit philopatry to natal areas to forage. Our results have important implications for life-history research and conservation of marine turtles and may extend to other wide-ranging marine vertebrates that demonstrate natal philopatry.

  12. Biomechanics of turtle shells: how whole shells fail in compression.

    Science.gov (United States)

    Magwene, Paul M; Socha, John J

    2013-02-01

    Turtle shells are a form of armor that provides varying degrees of protection against predation. Although this function of the shell as armor is widely appreciated, the mechanical limits of protection and the modes of failure when subjected to breaking stresses have not been well explored. We studied the mechanical properties of whole shells and of isolated bony tissues and sutures in four species of turtles (Trachemys scripta, Malaclemys terrapin, Chrysemys picta, and Terrapene carolina) using a combination of structural and mechanical tests. Structural properties were evaluated by subjecting whole shells to compressive and point loads in order to quantify maximum load, work to failure, and relative shell deformations. The mechanical properties of bone and sutures from the plastral region of the shell were evaluated using three-point bending experiments. Analysis of whole shell structural properties suggests that small shells undergo relatively greater deformations before failure than do large shells and similar amounts of energy are required to induce failure under both point and compressive loads. Location of failures occurred far more often at sulci than at sutures (representing the margins of the epidermal scutes and the underlying bones, respectively), suggesting that the small grooves in the bone created by the sulci introduce zones of weakness in the shell. Values for bending strength, ultimate bending strain, Young's modulus, and energy absorption, calculated from the three-point bending data, indicate that sutures are relatively weaker than the surrounding bone, but are able to absorb similar amounts of energy due to higher ultimate strain values. Copyright © 2012 Wiley Periodicals, Inc.

  13. Transcriptomic responses to environmental temperature by turtles with temperature-dependent and genotypic sex determination assessed by RNAseq inform the genetic architecture of embryonic gonadal development.

    Science.gov (United States)

    Radhakrishnan, Srihari; Literman, Robert; Neuwald, Jennifer; Severin, Andrew; Valenzuela, Nicole

    2017-01-01

    Vertebrate sexual fate is decided primarily by the individual's genotype (GSD), by the environmental temperature during development (TSD), or both. Turtles exhibit TSD and GSD, making them ideal to study the evolution of sex determination. Here we analyze temperature-specific gonadal transcriptomes (RNA-sequencing validated by qPCR) of painted turtles (Chrysemys picta TSD) before and during the thermosensitive period, and at equivalent stages in soft-shell turtles (Apalone spinifera-GSD), to test whether TSD's and GSD's transcriptional circuitry is identical but deployed differently between mechanisms. Our data show that most elements of the mammalian urogenital network are active during turtle gonadogenesis, but their transcription is generally more thermoresponsive in TSD than GSD, and concordant with their sex-specific function in mammals [e.g., upregulation of Amh, Ar, Esr1, Fog2, Gata4, Igf1r, Insr, and Lhx9 at male-producing temperature, and of β-catenin, Foxl2, Aromatase (Cyp19a1), Fst, Nf-kb, Crabp2 at female-producing temperature in Chrysemys]. Notably, antagonistic elements in gonadogenesis (e.g., β-catenin and Insr) were thermosensitive only in TSD early-embryos. Cirbp showed warm-temperature upregulation in both turtles disputing its purported key TSD role. Genes that may convert thermal inputs into sex-specific development (e.g., signaling and hormonal pathways, RNA-binding and heat-shock) were differentially regulated. Jak-Stat, Nf-κB, retinoic-acid, Wnt, and Mapk-signaling (not Akt and Ras-signaling) potentially mediate TSD thermosensitivity. Numerous species-specific ncRNAs (including Xist) were differentially-expressed, mostly upregulated at colder temperatures, as were unannotated loci that constitute novel TSD candidates. Cirbp showed warm-temperature upregulation in both turtles. Consistent transcription between turtles and alligator revealed putatively-critical reptilian TSD elements for male (Sf1, Amh, Amhr2) and female (Crabp2 and Hspb1

  14. The Full Globin Repertoire of Turtles Provides Insights into Vertebrate Globin Evolution and Functions.

    Science.gov (United States)

    Schwarze, Kim; Singh, Abhilasha; Burmester, Thorsten

    2015-06-15

    Globins are small heme proteins that play an important role in oxygen supply, but may also have other functions. Globins offer a unique opportunity to study the functional evolution of genes and proteins. We have characterized the globin repertoire of two different turtle species: the Chinese softshell turtle (Pelodiscus sinensis) and the western painted turtle (Chrysemys picta bellii). In the genomes of both species, we have identified eight distinct globin types: hemoglobin (Hb), myoglobin, neuroglobin, cytoglobin, globin E, globin X, globin Y, and androglobin. Therefore, along with the coelacanth, turtles are so far the only known vertebrates with a full globin repertoire. This fact allows for the first time a comparative analysis of the expression of all eight globins in a single species. Phylogenetic analysis showed an early divergence of neuroglobin and globin X before the radiation of vertebrates. Among the other globins, cytoglobin diverged first, and there is a close relationship between myoglobin and globin E; the position of globin Y is not resolved. The globin E gene was selectively lost in the green anole, and the genes coding for globin X and globin Y were deleted in chicken. Quantitative real-time reverse transcription polymerase chain reaction experiments revealed that myoglobin, neuroglobin, and globin E are highly expressed with tissue-specific patterns, which are in line with their roles in the oxidative metabolism of the striated muscles, the brain, and the retina, respectively. Histochemical analyses showed high levels of globin E in the pigment epithelium of the eye. Globin E probably has a myoglobin-like role in transporting O2 across the pigment epithelium to supply in the metabolically highly active retina.

  15. The Full Globin Repertoire of Turtles Provides Insights into Vertebrate Globin Evolution and Functions

    Science.gov (United States)

    Schwarze, Kim; Singh, Abhilasha; Burmester, Thorsten

    2015-01-01

    Globins are small heme proteins that play an important role in oxygen supply, but may also have other functions. Globins offer a unique opportunity to study the functional evolution of genes and proteins. We have characterized the globin repertoire of two different turtle species: the Chinese softshell turtle (Pelodiscus sinensis) and the western painted turtle (Chrysemys picta bellii). In the genomes of both species, we have identified eight distinct globin types: hemoglobin (Hb), myoglobin, neuroglobin, cytoglobin, globin E, globin X, globin Y, and androglobin. Therefore, along with the coelacanth, turtles are so far the only known vertebrates with a full globin repertoire. This fact allows for the first time a comparative analysis of the expression of all eight globins in a single species. Phylogenetic analysis showed an early divergence of neuroglobin and globin X before the radiation of vertebrates. Among the other globins, cytoglobin diverged first, and there is a close relationship between myoglobin and globin E; the position of globin Y is not resolved. The globin E gene was selectively lost in the green anole, and the genes coding for globin X and globin Y were deleted in chicken. Quantitative real-time reverse transcription polymerase chain reaction experiments revealed that myoglobin, neuroglobin, and globin E are highly expressed with tissue-specific patterns, which are in line with their roles in the oxidative metabolism of the striated muscles, the brain, and the retina, respectively. Histochemical analyses showed high levels of globin E in the pigment epithelium of the eye. Globin E probably has a myoglobin-like role in transporting O2 across the pigment epithelium to supply in the metabolically highly active retina. PMID:26078264

  16. Green Turtle Critical Habitat

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These data represent the critical habitat for green turtle as designated by Federal Register Vol. 63, No. 46701, September 2, 1998, Rules and Regulations.

  17. Marine turtle capture data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To estimate abundance, growth, and survival rate and to collect tissue samples, marine turtles are captured at nesting beaches and foraging grounds through various...

  18. AMAPPS turtle data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite tags were deployed on 60 loggerhead turtles to assess dive behavior to improve estimates of abundance in aerial surveys

  19. Green Turtle Trophic Ecology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently conducting a study of green sea turtle (Chelonia mydas) trophic ecology in the eastern Pacific. Tissue samples and stable carbon and stable...

  20. Green Turtle Critical Habitat

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These data represent the critical habitat for green turtle as designated by Federal Register Vol. 63, No. 46701, September 2, 1998, Rules and Regulations.

  1. European Atlantic Turtles

    NARCIS (Netherlands)

    Brongersma, L.D.

    1972-01-01

    CONTENTS Preface ................... 3 Introduction .................. 5 Identification.................. 13 The records................... 25 I. Dermochelys coriacea (L.), Leathery Turtle......... 30 IA. List of records of Dermochelys coriacea (L.)......... 31 IB. List of records of unidentified tu

  2. European Atlantic Turtles

    NARCIS (Netherlands)

    Brongersma, L.D.

    1972-01-01

    CONTENTS Preface ................... 3 Introduction .................. 5 Identification.................. 13 The records................... 25 I. Dermochelys coriacea (L.), Leathery Turtle......... 30 IA. List of records of Dermochelys coriacea (L.)......... 31 IB. List of records of unidentified tu

  3. Green Turtle Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for green turtle as designated by Federal Register Vol. 63, No. 46701, September 2, 1998, Rules and Regulations.

  4. Turtles as hopeful monsters.

    Science.gov (United States)

    Rieppel, O

    2001-11-01

    A recently published study on the development of the turtle shell highlights the important role that development plays in the origin of evolutionary novelties. The evolution of the highly derived adult anatomy of turtles is a prime example of a macroevolutionary event triggered by changes in early embryonic development. Early ontogenetic deviation may cause patterns of morphological change that are not compatible with scenarios of gradualistic, stepwise transformation. Copyright 2001 John Wiley & Sons, Inc.

  5. Seasonal Variation in Sea Turtle Density and Abundance in the Southeast Florida Current and Surrounding Waters.

    Science.gov (United States)

    Bovery, Caitlin M; Wyneken, Jeanette

    2015-01-01

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles' highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida's east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.

  6. Evaluation of hematology and serum biochemistry of cold-stunned green sea turtles (Chelonia mydas) in North Carolina, U.S.A.

    Science.gov (United States)

    Anderson, Eric T; Harms, Craig A; Stringer, Elizabeth M; Cluse, Wendy M

    2011-06-01

    Hypothermia or cold-stunning is a condition in which the body temperature of an animal decreases below normal physiologic range and which has been linked to severe morbidity in sea turtles. Reports have focused on the physiologic changes caused by cold-stunning in Kemp's Ridley sea turtles (Lepidochelys kempii) and loggerhead sea turtles (Caretta caretta), but few have evaluated the green sea turtle (Chelonia mydas). This study evaluated hematologic and serum biochemical profiles of cold-stunned green sea turtles in North Carolina, USA. When compared with healthy, free-ranging juvenile green turtles from the same region, cold-stunned turtles exhibited hypoglycemia, hypocalcemia (both total and ionized calcium), hyponatremia, hypokalemia, hypoproteinemia, hypoalbuminemia, hyperphosphatemia, and elevations in uric acid and blood urea nitrogen. These findings contrast with some previously reported changes in cold-stunned Kemp's Ridley and loggerhead sea turtles. These results emphasize the importance of basing therapeutic regimens on biochemical analyses in cold-stunned sea turtles.

  7. The Classroom Animal: Snapping Turtles.

    Science.gov (United States)

    Kramer, David C.

    1987-01-01

    Describes the distinctive features of the common snapping turtle. Discusses facts and misconceptions held about the turtle. Provides guidelines for proper care and treatment of a young snapper in a classroom environment. (ML)

  8. Proposal For 3 Year Extension Of Study An Attempt At The Re-establishment Of The Atlantic Loggerhead Turtle (Caretta caretta caretta) In Its Northern Breeding Range By Egg Transplants

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The primary objective of this study which began 10 years ago was to experimentally transplant Loggerhead turtle eggs from an established colony at Cape Romain NWR,...

  9. A toothed turtle from the Late Jurassic of China and the global biogeographic history of turtles.

    Science.gov (United States)

    Joyce, Walter G; Rabi, Márton; Clark, James M; Xu, Xing

    2016-10-28

    Turtles (Testudinata) are a successful lineage of vertebrates with about 350 extant species that inhabit all major oceans and landmasses with tropical to temperate climates. The rich fossil record of turtles documents the adaptation of various sub-lineages to a broad range of habitat preferences, but a synthetic biogeographic model is still lacking for the group. We herein describe a new species of fossil turtle from the Late Jurassic of Xinjiang, China, Sichuanchelys palatodentata sp. nov., that is highly unusual by plesiomorphically exhibiting palatal teeth. Phylogenetic analysis places the Late Jurassic Sichuanchelys palatodentata in a clade with the Late Cretaceous Mongolochelys efremovi outside crown group Testudines thereby establishing the prolonged presence of a previously unrecognized clade of turtles in Asia, herein named Sichuanchelyidae. In contrast to previous hypotheses, M. efremovi and Kallokibotion bajazidi are not found within Meiolaniformes, a clade that is here reinterpreted as being restricted to Gondwana. A revision of the global distribution of fossil and recent turtle reveals that the three primary lineages of derived, aquatic turtles, including the crown, Paracryptodira, Pan-Pleurodira, and Pan-Cryptodira can be traced back to the Middle Jurassic of Euramerica, Gondwana, and Asia, respectively, which resulted from the primary break up of Pangaea at that time. The two primary lineages of Pleurodira, Pan-Pelomedusoides and Pan-Chelidae, can similarly be traced back to the Cretaceous of northern and southern Gondwana, respectively, which were separated from one another by a large desert zone during that time. The primary divergence of crown turtles was therefore driven by vicariance to the primary freshwater aquatic habitat of these lineages. The temporally persistent lineages of basal turtles, Helochelydridae, Meiolaniformes, Sichuanchelyidae, can similarly be traced back to the Late Mesozoic of Euramerica, southern Gondwana, and Asia. Given

  10. Connectivity in an agricultural landscape as reflected by interpond movements of a freshwater turtle

    Science.gov (United States)

    Bowne, D.R.; Bowers, M.A.; Hines, J.E.

    2006-01-01

    Connectivity is a measure of how landscape features facilitate movement and thus is an important factor in species persistence in a fragmented landscape. The scarcity of empirical studies that directly quantify species movement and determine subsequent effects on population density have, however, limited the utility of connectivity measures in conservation planning. We undertook a 4-year study to calculate connectivity based on observed movement rates and movement probabilities for five age-sex classes of painted turtles (Chrysemys picta) inhabiting a pond complex in an agricultural landscape in northern Virginia (U.S.A.). We determined which variables influenced connectivity and the relationship between connectivity and subpopulation density. Interpatch distance and quality of habitat patches influenced connectivity but characteristics of the intervening matrix did not. Adult female turtles were more influenced by the habitat quality of recipient ponds than other age-sex classes. The importance of connectivity on spatial population dynamics was most apparent during a drought. Population density and connectivity were low for one pond in a wet year but dramatically increased as other ponds dried. Connectivity is an important component of species persistence in a heterogeneous landscape and is strongly dependent on the movement behavior of the species. Connectivity may reflect active selection or avoidance of particular habitat patches. The influence of habitat quality on connectivity has often been ignored, but our findings highlight its importance. Conservation planners seeking to incorporate connectivity measures into reserve design should not ignore behavior in favor of purely structural estimates of connectivity.

  11. Replication and persistence of VHSV IVb in freshwater turtles.

    Science.gov (United States)

    Goodwin, Andrew E; Merry, Gwenn E

    2011-05-09

    With the emergence of viral hemorrhagic septicemia virus (VHSV) strain IVb in the Great Lakes of North America, hatchery managers have become concerned that this important pathogen could be transmitted by animals other than fish. Turtles are likely candidates because they are poikilotherms that feed on dead fish, but there are very few reports of rhabdovirus infections in reptiles and no reports of the fish rhabdoviruses in animals other than teleosts. We injected common snapping turtles Chelydra serpentine and red-eared sliders Trachemys scripta elegans intraperitoneally with 10(4) median tissue culture infectious dose (TCID50) of VHSV-IVb and 21 d later were able to detect the virus by quantitative real-time reverse transcriptase PCR (qrt-RTPCR) in pools of kidney, liver, and spleen. In a second experiment, snapping turtles, red-eared sliders, yellow-bellied sliders T. scripta scripta, and northern map turtles Grapetemys geographica at 14 degrees C were allowed to feed on tissues from bluegill dying of VHSV IVb disease. Turtle kidney, spleen, and brain pools were not positive by qrt-RTPCR on Day 3 post feeding, but were positive on Days 10 and 20. Map turtles on Day 20 post-feeding were positive by both qrt-RTPCR and by cell culture. Our work shows that turtles that consume infected fish are a possible vector for VHSV IVb, and that the fish rhabdoviruses may have a broader host range than previously suspected.

  12. Aging the oldest turtles: the placodont affinities of Priscochelys hegnabrunnensis

    Science.gov (United States)

    Scheyer, Torsten M.

    2008-09-01

    Priscochelys hegnabrunnensis, a fragmentary piece of armour shell from the Muschelkalk of Germany (Upper Triassic) with few diagnostic morphological features, was recently proposed to represent the oldest known stem turtle. As such, the specimen is of high importance because it shifts the date of the first appearance of turtles back about 20 Ma, which equals about 10% of the total stratigraphic range of the group. In this paper, I present new morphologic, histologic and neutron tomographic (NT) data that relate to the microstructure of the bone of the specimen itself. In opposition to the previous morphologic descriptions, P. hegnabrunnensis was found to share several distinctive features (i.e. bone sutures congruent with scute sulci, absence of a diploe structure with interior cancellous bone, thin vascular canals radiating outwards from distinct centres in each field and rugose ventral bone surface texture consisting of mineralised fibre bundles) with cyamodontoid placodonts (Diapsida: Sauropterygia) and fewer with stem turtles (i.e. depth of sulci). Two aspects that were previously thought to be relevant for the assignment to the turtle stem (conical scutes and presence of foramina) are argued to be of dubious value. P. hegnabrunnensis is proposed to represent a fragmentary piece of cyamodontoid armour consisting of fused conical plates herein. The specimen is not a part of the turtle stem and thus does not represent the oldest turtle. Accordingly, P. hegnabrunnensis does not shorten the ghost lineage to the potential sister group of turtles.

  13. Turtle Watch: Community Engagement and Action

    Science.gov (United States)

    Lewis, Elaine; Baudains, Catherine

    2015-01-01

    Many threats face the freshwater turtle, Chelodina colliei, also known as the oblong turtle. A community education project, Turtle Watch, focused on this target species and enabled effective conservation action to be implemented. Turtle Watch was conducted in the Perth Metropolitan Area of Western Australia, as the oblong turtle inhabits the…

  14. Seasonal Variation in Sea Turtle Density and Abundance in the Southeast Florida Current and Surrounding Waters

    Science.gov (United States)

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-01-01

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species. PMID:26717520

  15. Conceptual Model Development for Sea Turtle Nesting Habitat: Support for USACE Navigation Projects

    Science.gov (United States)

    2015-08-01

    Approved for public release; distribution is unlimited. ERDC TN-DOER-R23 August 2015 Conceptual Model Development for Sea Turtle Nesting...value range schemes to include in a spatially explicit ecological model for sea turtle nesting habitat. INTRODUCTION: Much of the Atlantic and Gulf...of Mexico coastlines are designated as critical habitat for loggerhead sea turtle (Caretta caretta) conservation. The terrestrial critical habitat

  16. Terrestrial movement patterns of western pond turtles (Actinemys marmorata) in central California

    Science.gov (United States)

    Pilliod, David S.; Welty, Justin L.; Stafford, Robert

    2013-01-01

    We used radio telemetry to track the terrestrial movements and seasonal habitat use patterns of Western Pond Turtles (Actinemys marmorata) near two ponds in the Carrizo Plain Ecological Reserve, California, USA. We captured 93 turtles in September 2005 and, of these, we tagged three males and six females(weighing > 300 g) with external transmitters. Tagged turtles traveled from 255–1,096 m over the 448-day study, and we found none further than 343 m from ponds. All turtles moved away from the ponds as water levels receded in the fall, resulting in periods of terrestrial overwintering ranging from 10–30 weeks (74–202 d). We found no evidence for group migrations as turtles departed ponds over 2–8 week periods, moved in different directions from their ponds, and used different habitats. Turtles overwintered mainly in oak and chaparral vegetation communities, which constituted most of the local vegetation. We found overwintering turtles in a variety of microhabitats, but all turtles were on the surface with their carapace just visible amongst the duff layer. Turtles returned to ponds over several weeks, sometimes months after they refilled with winter rains. In the winter of 2006–2007, no turtles returned to terrestrial overwintering sites used the previous year. Most of the turtles we tracked spent over half of each year on land, demonstrating the importance of terrestrial habitats around these seasonal ponds. This pattern is similar to pond turtles living in streams (overwinter on land), as compared to permanent ponds (turtles often remain in water).

  17. Measuring energy expenditure in sub-adult and hatchling sea turtles via accelerometry.

    Science.gov (United States)

    Halsey, Lewis G; Jones, T Todd; Jones, David R; Liebsch, Nikolai; Booth, David T

    2011-01-01

    Measuring the metabolic of sea turtles is fundamental to understanding their ecology yet the presently available methods are limited. Accelerometry is a relatively new technique for estimating metabolic rate that has shown promise with a number of species but its utility with air-breathing divers is not yet established. The present study undertakes laboratory experiments to investigate whether rate of oxygen uptake (VO2) at the surface in active sub-adult green turtles Chelonia mydas and hatchling loggerhead turtles Caretta caretta correlates with overall dynamic body acceleration (ODBA), a derivative of acceleration used as a proxy for metabolic rate. Six green turtles (25-44 kg) and two loggerhead turtles (20 g) were instrumented with tri-axial acceleration logging devices and placed singly into a respirometry chamber. The green turtles were able to submerge freely within a 1.5 m deep tank and the loggerhead turtles were tethered in water 16 cm deep so that they swam at the surface. A significant prediction equation for mean VO2 over an hour in a green turtle from measures of ODBA and mean flipper length (R(2) = 0.56) returned a mean estimate error across turtles of 8.0%. The range of temperatures used in the green turtle experiments (22-30 °C) had only a small effect on Vo₂. A VO2-ODBA equation for the loggerhead hatchling data was also significant (R(2) = 0.67). Together these data indicate the potential of the accelerometry technique for estimating energy expenditure in sea turtles, which may have important applications in sea turtle diving ecology, and also in conservation such as assessing turtle survival times when trapped underwater in fishing nets.

  18. Measuring energy expenditure in sub-adult and hatchling sea turtles via accelerometry.

    Directory of Open Access Journals (Sweden)

    Lewis G Halsey

    Full Text Available Measuring the metabolic of sea turtles is fundamental to understanding their ecology yet the presently available methods are limited. Accelerometry is a relatively new technique for estimating metabolic rate that has shown promise with a number of species but its utility with air-breathing divers is not yet established. The present study undertakes laboratory experiments to investigate whether rate of oxygen uptake (VO2 at the surface in active sub-adult green turtles Chelonia mydas and hatchling loggerhead turtles Caretta caretta correlates with overall dynamic body acceleration (ODBA, a derivative of acceleration used as a proxy for metabolic rate. Six green turtles (25-44 kg and two loggerhead turtles (20 g were instrumented with tri-axial acceleration logging devices and placed singly into a respirometry chamber. The green turtles were able to submerge freely within a 1.5 m deep tank and the loggerhead turtles were tethered in water 16 cm deep so that they swam at the surface. A significant prediction equation for mean VO2 over an hour in a green turtle from measures of ODBA and mean flipper length (R(2 = 0.56 returned a mean estimate error across turtles of 8.0%. The range of temperatures used in the green turtle experiments (22-30 °C had only a small effect on Vo₂. A VO2-ODBA equation for the loggerhead hatchling data was also significant (R(2 = 0.67. Together these data indicate the potential of the accelerometry technique for estimating energy expenditure in sea turtles, which may have important applications in sea turtle diving ecology, and also in conservation such as assessing turtle survival times when trapped underwater in fishing nets.

  19. Winter severity and phenology of spring emergence from the nest in freshwater turtles

    Science.gov (United States)

    Baker, Patrick Joseph; Iverson, John B.; Lee, Richard E.; Costanzo, Jon P.

    2010-07-01

    Although many species of freshwater turtles emigrate to water soon after hatching, the offspring of some species overwinter on land and move to aquatic habitats in the following spring. Timing of emigration can affect the hatchlings’ fitness, but the factors underlying phenology of nest emergence are incompletely understood. We tested the supposition that cold stress imposed during hibernation can influence the timing of nest emergence in three species of turtles in the central USA. In each year of the 6-year study, Chrysemys picta emerged in late March and early April and, on average, these hatchlings left their nests 2 weeks earlier than those of Graptemys geographica and 4 weeks earlier than those of Trachemys scripta. Emergence of conspecific hatchlings from different nests usually occurred over 3-7 weeks, but in some years lasted several additional weeks. Relatively few nests had siblings that emerged on the same day (i.e., synchronously); complete emergence of the typical sibling group required 1 to 2 weeks. In winter, subzero cold occurred with regularity in the nests of all species, though C. picta experienced the lowest temperatures owing to their shallower nests. However, for no species did emergence date or length of the emergence period correlate with winter minimum temperature and, at the level of the individual nest, neither did emergence synchrony or duration. Despite encountering lower temperatures, hatchlings of C. picta emigrated from their nests before those of sympatric species, suggesting that the fitness benefits of early emergence may lead to the improvement of cold-hardiness adaptations in northern populations of turtles.

  20. Here, There and Everywhere - On the Recurring Use of Turtle Graphics in CS1

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Caspersen, Michael Edelgaard

    2000-01-01

    in a new object-oriented way and using it in an introductory object-oriented programming course. While, at the outset, we wanted to achieve the same qualities as the original turtle (understanding of state, control flow, instructions) we realized that the concept of turtles is well suited for teaching......The Logo programming language implements a virtual drawing machine—the turtle machine. The turtle machine is well-known for giving students an intuitive understanding of fundamental procedural programming principles. In this paper we present our experiences with resurrecting the Logo turtle...... a whole range of fundamental principles. We have successfully used turtles to give students an intuitive understanding of central object-oriented concepts and principles such as object, class, message passing, behaviour, object identification, subclasses and inheritance; an intuitive understanding...

  1. Mycobacterium haemophilum infection in a juvenile leatherback sea turtle (Dermochelys coriacea).

    Science.gov (United States)

    Donnelly, Kyle; Waltzek, Thomas B; Wellehan, James F X; Stacy, Nicole I; Chadam, Maria; Stacy, Brian A

    2016-11-01

    Mycobacteriosis is infrequently reported in free-ranging sea turtles. Nontuberculous Mycobacterium haemophilum was identified as the causative agent of disseminated mycobacteriosis in a juvenile leatherback turtle (Dermochelys coriacea) that was found stranded on the Atlantic coast of Florida. Disseminated granulomatous inflammation was identified histologically, most notably affecting the nervous system. Identification of mycobacterial infection was based on cytologic, molecular, histologic, and microbiologic methods. Among stranded sea turtles received for diagnostic evaluation from the Atlantic and Gulf of Mexico coasts of the United States between 2004 and 2015, the diagnosis of mycobacteriosis was overrepresented in stranded oceanic-phase juveniles compared with larger size classes, which suggests potential differences in susceptibility or exposure among different life phases in this region. We describe M. haemophilum in a sea turtle, which contributes to the knowledge of diseases of small juvenile sea turtles, an especially cryptic life phase of the leatherback turtle.

  2. Salmonella from Baby Turtles

    Centers for Disease Control (CDC) Podcasts

    2017-01-09

    Dr. Stacey Bosch, a veterinarian with CDC, discusses her article on Salmonella infections associated with baby turtles.  Created: 1/9/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 1/9/2017.

  3. Palaeoecology of triassic stem turtles sheds new light on turtle origins.

    OpenAIRE

    Joyce, Walter G.; Gauthier, Jacques Armand

    2004-01-01

    Competing hypotheses of early turtle evolution contrast sharply in implying very different ecological settings-aquatic versus terrestrial-for the origin of turtles. We investigate the palaeoecology of extinct turtles by first demonstrating that the forelimbs of extant turtles faithfully reflect habitat preferences, with short-handed turtles being terrestrial and long-handed turtles being aquatic. We apply this metric to the two successive outgroups to all living turtles with forelimbs preserv...

  4. Case descriptions of fibropapillomatosis in rehabilitating loggerhead sea turtles Caretta caretta in the southeastern USA.

    Science.gov (United States)

    Page-Karjian, Annie; Norton, Terry M; Harms, Craig; Mader, Doug; Herbst, Larry H; Stedman, Nancy; Gottdenker, Nicole L

    2015-08-20

    Fibropapillomatosis (FP) is a debilitating neoplastic disease that affects all species of hard-shelled sea turtles, including loggerhead turtles Caretta caretta. FP can represent an important clinical concern in rehabilitating turtles, since managing these infectious lesions often requires special husbandry provisions including quarantine, and FP may affect clinical progression, extend rehabilitation duration, and complicate prognoses. Here we describe cases of rehabilitating loggerhead turtles with FP (designated FP+). Medical records of FP+ loggerhead cases from 3 sea turtle rehabilitation facilities in the southeastern USA were reviewed. Between 2001 and 2014, FP was observed in 8 of 818 rehabilitating loggerhead turtles (0.98% overall prevalence in admitted patients). FP+ loggerhead size classes represented were large juvenile (straight carapace length, SCL: 58.1-80 cm; n=7) and adult (SCL>87 cm; n=1). Three turtles presented with FP, and 5 developed tumors during rehabilitation within a range of 45 to 319 d. Sites of new tumor growth included the eyes, sites of trauma, neck, and glottis. FP+ turtles were scored as mildly (3/8), moderately (4/8), or heavily (1/8) afflicted. The mean total time in rehabilitation was 476±355 d (SD) (range: 52-1159 d). Six turtles were released without visible evidence of FP, 1 turtle was released with mild FP, and 1 turtle with internal FP was euthanized. Clinical decision-making for FP+ loggerhead patients can be aided by such information as time to tumor development, anatomic locations to monitor for new tumor growth, husbandry considerations, diagnostic and treatment options, and comparisons to FP in rehabilitating green turtles Chelonia mydas.

  5. Determine age-at-recruitment for green turtles into neritic habitats along the U.S. West Coast using stable isotope analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A total of 19 green turtle humeri were sampled for stable isotope analysis during 2013-2014. Turtle body size ranged from 51-95cm CCL, and all turtles had been...

  6. A phylogenomic analysis of turtles.

    Science.gov (United States)

    Crawford, Nicholas G; Parham, James F; Sellas, Anna B; Faircloth, Brant C; Glenn, Travis C; Papenfuss, Theodore J; Henderson, James B; Hansen, Madison H; Simison, W Brian

    2015-02-01

    Molecular analyses of turtle relationships have overturned prevailing morphological hypotheses and prompted the development of a new taxonomy. Here we provide the first genome-scale analysis of turtle phylogeny. We sequenced 2381 ultraconserved element (UCE) loci representing a total of 1,718,154bp of aligned sequence. Our sampling includes 32 turtle taxa representing all 14 recognized turtle families and an additional six outgroups. Maximum likelihood, Bayesian, and species tree methods produce a single resolved phylogeny. This robust phylogeny shows that proposed phylogenetic names correspond to well-supported clades, and this topology is more consistent with the temporal appearance of clades and paleobiogeography. Future studies of turtle phylogeny using fossil turtles should use this topology as a scaffold for their morphological phylogenetic analyses.

  7. Hydrodynamic role of longitudinal ridges in a leatherback turtle swimming

    Science.gov (United States)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2015-11-01

    The leatherback sea turtle (Dermochelys coriacea), the fastest swimmer and the deepest diver among marine turtles, has five longitudinal ridges on its carapace. These ridges are the most remarkable morphological features distinguished from other marine turtles. To investigate the hydrodynamic role of these ridges in the leatherback turtle swimming, we model a carapace with and without ridges by using three dimensional surface data of a stuffed leatherback turtle in the National Science Museum, Korea. The experiment is conducted in a wind tunnel in the ranges of the real leatherback turtle's Reynolds number (Re) and angle of attack (α). The longitudinal ridges function differently according to the flow condition (i.e. Re and α). At low Re and negative α that represent the swimming condition of hatchlings and juveniles, the ridges significantly decrease the drag by generating streamwise vortices and delaying the main separation. On the other hand, at high Re and positive α that represent the swimming condition of adults, the ridges suppress the laminar separation bubble near the front part by generating streamwise vortices and enhance the lift and lift-to-drag ratio. Supported by the NRF program (2011-0028032).

  8. "Sea Turtles" and "Ground Beetles" [Land Turtles] Should Shake Hands

    Science.gov (United States)

    Kan, Da

    2004-01-01

    This article talks about those who come back to China after studies abroad, characterized as "sea turtles" and those scholars who have remained in China to arduously pursue their studies, characterized as "ground beetles". " Sea turtles" are those foreign MBAs and Ph.D.s who are objects of praise, admiration and are…

  9. "Sea Turtles" and "Ground Beetles" [Land Turtles] Should Shake Hands

    Science.gov (United States)

    Kan, Da

    2004-01-01

    This article talks about those who come back to China after studies abroad, characterized as "sea turtles" and those scholars who have remained in China to arduously pursue their studies, characterized as "ground beetles". " Sea turtles" are those foreign MBAs and Ph.D.s who are objects of praise, admiration and are naturally more eye-catching…

  10. Seasonal residency of loggerhead turtles Caretta caretta tracked from the Gulf of Manfredonia, south Adriatic

    Directory of Open Access Journals (Sweden)

    P. CASALE

    2017-02-01

    Full Text Available A detailed knowledge of sea turtle distribution in relation to anthropogenic threats is key to inform conservation measures. We satellite tracked five loggerhead turtles incidentally caught in the Gulf of Manfredonia, where a high turtle occurrence and high bycatch levels have been recently reported. Turtles were tracked for a period ranging from 27 to 367 days, with a minimum travel distance ranging from 151 to 4,300 km. With the caution due to the small sample size, results suggest that: (i the area may host residential loggerhead turtles at least in summer, while they probably move elsewhere in winter due to the low temperatures occurring in shallow waters, (ii turtles may have very small home ranges in the area, (iii turtle occurrence may be higher in shallow waters along the coast. Moreover (iv one turtle showed remarkable fidelity to the same spot after seasonal migration and constant migration paths. If confirmed and further detailed, such movement patterns may guide effective conservation strategies to reduce the impact of bycatch in the area.

  11. Turtle-associated human salmonellosis.

    NARCIS (Netherlands)

    Stam, F.; Romkens, TE; Hekker, TA; Smulders, Y.M.

    2003-01-01

    A patient who bred exotic turtles as a hobby presented with 2 episodes of severe diarrhea, the second of which was proven to be caused by turtle-associated salmonellosis that was contracted during treatment with a proton-pump inhibitor. The literature about reptile-associated salmonellosis is briefl

  12. Pathology and molecular analysis of Hapalotrema mistroides (Digenea: Spirorchiidae) infecting a Mediterranean loggerhead turtle Caretta caretta.

    Science.gov (United States)

    Santoro, M; Di Nocera, F; Iaccarino, D; Lawton, S P; Cerrone, A; Degli Uberti, B; D'Amore, M; Affuso, A; Hochscheid, S; Maffucci, F; Galiero, G

    2017-04-20

    Turtle blood flukes belonging to the family Spirorchiidae (Digenea) represent a major threat for sea turtle health and are considered the most important parasitic cause of turtle stranding and mortality worldwide. Despite the large diversity of spirorchiid species found globally, there are only 2 records for free-ranging Mediterranean sea turtles that date back to the late 1800s involving just Hapalotrema mistroides Monticelli, 1896. This study describes the first fatal confirmed case of spirorchiidiasis in a free-ranging Mediterranean loggerhead turtle Caretta caretta (Linnaeus) and, owing to the complexities of taxonomic identification of these parasites, provides the first molecular characterization and phylogenetic analysis of H. mistroides from the Mediterranean Sea. The loggerhead turtle showed cachexia and digestive disorders associated with severe damage to the pancreas and intestinal ganglia, caused by deposition of Hapalotrema eggs forming granulomas. Massive Hapalotrema egg emboli in several tissues and organs and encephalitis were the most probable contributions to the death of the turtle. The congruence between the phylogenetic analysis of both the ITS2 and 28S rDNA resolved the Italian and USA H. mistroides as the same species, confirming the parasite identification. The case here described clearly indicates that the blood flukes should be considered in the differential diagnosis of Mediterranean sea turtle diseases.

  13. Investigating the potential role of persistent organic pollutants in Hawaiian green sea turtle fibropapillomatosis

    Science.gov (United States)

    Keller, Jennifer M.; Balazs, George H.; Nilsen, Frances; Rice, Marc; Work, Thierry M.; Jensen, Brenda A.

    2014-01-01

    It has been hypothesized for decades that environmental pollutants may contribute to green sea turtle fibropapillomatosis (FP), possibly through immunosuppression leading to greater susceptibility to the herpesvirus, the putative causative agent of this tumor-forming disease. To address this question, we measured concentrations of 164 persistent organic pollutants (POPs) and halogenated phenols in 53 Hawaiian green turtle (Chelonia mydas) plasma samples archived by the Biological and Environmental Monitoring and Archival of Sea Turtle Tissues (BEMAST) project at the National Institute of Standards and Technology Marine Environmental Specimen Bank. Four groups of turtles were examined: free-ranging turtles from Kiholo Bay (0% FP, Hawaii), Kailua Bay (low FP, 8%, Oahu), and Kapoho Bay (moderate FP, 38%, Hawaii) and severely tumored stranded turtles that required euthanasia (high FP, 100%, Main Hawaiian Islands). Four classes of POPs and seven halogenated phenols were detected in at least one of the turtles, and concentrations were low (often <200 pg/g wet mass). The presence of halogenated phenols in sea turtles is a novel discovery; their concentrations were higher than most man-made POPs, suggesting that the source of most of these compounds was likely natural (produced by the algal turtle diet) rather than metabolites of man-made POPs. None of the compounds measured increased in concentration with increasing prevalence of FP across the four groups of turtles, suggesting that these 164 compounds are not likely primary triggers for the onset of FP. However, the stranded, severely tumored, emaciated turtle group (n = 14) had the highest concentrations of POPs, which might suggest that mobilization of contaminants with lipids into the blood during late-stage weight loss could contribute to the progression of the disease. Taken together, these data suggest that POPs are not a major cofactor in causing the onset of FP.

  14. Investigating the potential role of persistent organic pollutants in Hawaiian green sea turtle fibropapillomatosis.

    Science.gov (United States)

    Keller, Jennifer M; Balazs, George H; Nilsen, Frances; Rice, Marc; Work, Thierry M; Jensen, Brenda A

    2014-07-15

    It has been hypothesized for decades that environmental pollutants may contribute to green sea turtle fibropapillomatosis (FP), possibly through immunosuppression leading to greater susceptibility to the herpesvirus, the putative causative agent of this tumor-forming disease. To address this question, we measured concentrations of 164 persistent organic pollutants (POPs) and halogenated phenols in 53 Hawaiian green turtle (Chelonia mydas) plasma samples archived by the Biological and Environmental Monitoring and Archival of Sea Turtle Tissues (BEMAST) project at the National Institute of Standards and Technology Marine Environmental Specimen Bank. Four groups of turtles were examined: free-ranging turtles from Kiholo Bay (0% FP, Hawaii), Kailua Bay (low FP, 8%, Oahu), and Kapoho Bay (moderate FP, 38%, Hawaii) and severely tumored stranded turtles that required euthanasia (high FP, 100%, Main Hawaiian Islands). Four classes of POPs and seven halogenated phenols were detected in at least one of the turtles, and concentrations were low (often sea turtles is a novel discovery; their concentrations were higher than most man-made POPs, suggesting that the source of most of these compounds was likely natural (produced by the algal turtle diet) rather than metabolites of man-made POPs. None of the compounds measured increased in concentration with increasing prevalence of FP across the four groups of turtles, suggesting that these 164 compounds are not likely primary triggers for the onset of FP. However, the stranded, severely tumored, emaciated turtle group (n=14) had the highest concentrations of POPs, which might suggest that mobilization of contaminants with lipids into the blood during late-stage weight loss could contribute to the progression of the disease. Taken together, these data suggest that POPs are not a major cofactor in causing the onset of FP.

  15. Foraging of the green sea turtle Chelonia mydas on seagrass beds at Mayotte Island (Indian Ocean), determined by acoustic transmitters

    OpenAIRE

    TAQUET Coralie; Taquet, Marc; T. Dempster; Soria, M.; Ciccione, S.; Roos, David; Dagorn, L.

    2006-01-01

    We studied the foraging rhythms of green sea turtles Chelonia mydas on the seagrass beds of N'Gouja Bay, Mayotte Island (Comoros Archipelago) with acoustic transmitters and moored listening stations. We monitored 8 tagged turtles (4 probable males, 3 probable females and 1 immature), from 70 to 109 cm curved carapace length (CCL), for durations ranging from 5 to 92 d. The turtles exhibited a regular diel pattern: they foraged mainly during the day (on average 87% of seagrass detections were b...

  16. Retrospective pathology survey of green turtles Chelonia mydas with fibropapillomatosis in the Hawaiian Islands, 1993-2003

    Science.gov (United States)

    Work, T.M.; Balazs, G.H.; Rameyer, R.A.; Morris, R.A.

    2004-01-01

    We necropsied 255 stranded green turtles Chelonia mydas with fibropapillomatosis (FP) from the Hawaiian Islands, North Pacific, from August 1993 through May 2003. Of these, 214 (84%) were euthanized due to advanced FP and the remainder were found dead in fresh condition. Turtles were assigned a standardized tumor severity score ranging from 1 (lightly tumored) to 3 (heavily tumored). Tumors were counted and measured and categorized as external, oral, or internal and tissues evaluated by light microscopy. Turtles in tumor score 2 and 3 categories predominated, and tumor score 3 turtles were significantly larger than the other 2 categories. More juveniles stranded than subadults or adults. Total cross-sectional area of tumors increased significantly with straight carapace length (SCL). Frequency distribution of total number of external tumors per turtle was significantly skewed to the right, and there were significantly more tumors at the front than rear of turtles. Eighty percent of turtles had oral tumors, and 51% of turtles with oral tumors had tumors in the glottis. Thirty-nine percent of turtles had internal tumors, most of them in the lung, kidney and heart. Fibromas predominated in lung, kidney and musculoskeletal system whereas myxofibromas were more common in intestines and spleen. Fibrosarcomas of low-grade malignancy were most frequent in the heart, and heart tumors had a predilection for the right atrium. Turtles with FP had significant additional complications including inflammation with vascular flukes, bacterial infections, poor body condition, and necrosis of salt gland. Turtles with oral tumors were more likely to have secondary complications such as pneumonia. Most turtles came from the island of Oahu (74%) followed by Maui (20%), Hawaii, Molokai, and Lanai (<3% each). On Oahu, significantly more turtles we necropsied stranded along the northwestern and northeastern shores.

  17. Movements and diving behavior of internesting green turtles along Pacific Costa Rica.

    Science.gov (United States)

    Blanco, Gabriela S; Morreale, Stephen J; Seminoff, Jeffrey A; Paladino, Frank V; Piedra, Rotney; Spotila, James R

    2013-09-01

    Using satellite transmitters, we determined the internesting movements, spatial ecology and diving behavior of East Pacific green turtles (Chelonia mydas) nesting on Nombre de Jesús and Zapotillal beaches along the Pacific coast of northwestern Costa Rica. Kernel density analysis indicated that turtles spent most of their time in a particularly small area in the vicinity of the nesting beaches (50% utilization distribution was an area of 3 km(2) ). Minimum daily distance traveled during a 12 day internesting period was 4.6 ± 3.5 km. Dives were short and primarily occupied the upper 10 m of the water column. Turtles spent most of their time resting at the surface and conducting U-dives (ranging from 60 to 81% of the total tracking time involved in those activities). Turtles showed a strong diel pattern, U-dives mainly took place during the day and turtles spent a large amount of time resting at the surface at night. The lack of long-distance movements demonstrated that this area was heavily utilized by turtles during the nesting season and, therefore, was a crucial location for conservation of this highly endangered green turtle population. The unique behavior of these turtles in resting at the surface at night might make them particularly vulnerable to fishing activities near the nesting beaches.

  18. NWHI Basking Green Turtle Data (Turtle Sightings from Seal Surveys)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains records of green turtle sightings in the Northwestern Hawaiian Islands (NWHI) since 1982 at Lisianski Island, and since 1983 for most other...

  19. Tissue enzyme activities in the loggerhead sea turtle (Caretta caretta).

    Science.gov (United States)

    Anderson, Eric T; Socha, Victoria L; Gardner, Jennifer; Byrd, Lynne; Manire, Charles A

    2013-03-01

    The loggerhead sea turtle, Caretta caretta, one of the seven species of threatened or endangered sea turtles worldwide, is one of the most commonly encountered marine turtles off the eastern coast of the United States and Gulf of Mexico. Although biochemical reference ranges have been evaluated for several species of sea turtles, tissue specificity of the commonly used plasma enzymes is lacking. This study evaluated the tissue specificity of eight enzymes, including amylase, lipase, creatine kinase (CK), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT), in 30 tissues from five stranded loggerhead sea turtles with no evidence of infectious disease. Amylase and lipase showed the greatest tissue specificity, with activity found only in pancreatic samples. Creatine kinase had high levels present in skeletal and cardiac muscle, and moderate levels in central nervous system and gastrointestinal samples. Gamma-glutamyl transferase was found in kidney samples, but only in very low levels. Creatine kinase, ALP, AST, and LDH were found in all tissues evaluated and ALT was found in most, indicating low tissue specificity for these enzymes in the loggerhead.

  20. Global distribution of two fungal pathogens threatening endangered sea turtles.

    Science.gov (United States)

    Sarmiento-Ramírez, Jullie M; Abella-Pérez, Elena; Phillott, Andrea D; Sim, Jolene; van West, Pieter; Martín, María P; Marco, Adolfo; Diéguez-Uribeondo, Javier

    2014-01-01

    Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide.

  1. Eutrophication and the dietary promotion of sea turtle tumors.

    Science.gov (United States)

    Van Houtan, Kyle S; Smith, Celia M; Dailer, Meghan L; Kawachi, Migiwa

    2014-01-01

    The tumor-forming disease fibropapillomatosis (FP) has afflicted sea turtle populations for decades with no clear cause. A lineage of α-herpesviruses associated with these tumors has existed for millennia, suggesting environmental factors are responsible for its recent epidemiology. In previous work, we described how herpesviruses could cause FP tumors through a metabolic influx of arginine. We demonstrated the disease prevails in chronically eutrophied coastal waters, and that turtles foraging in these sites might consume arginine-enriched macroalgae. Here, we test the idea using High-Performance Liquid Chromatography (HPLC) to describe the amino acid profiles of green turtle (Chelonia mydas) tumors and five common forage species of macroalgae from a range of eutrophic states. Tumors were notably elevated in glycine, proline, alanine, arginine, and serine and depleted in lysine when compared to baseline samples. All macroalgae from eutrophic locations had elevated arginine, and all species preferentially stored environmental nitrogen as arginine even at oligotrophic sites. From these results, we estimate adult turtles foraging at eutrophied sites increase their arginine intake 17-26 g daily, up to 14 times the background level. Arginine nitrogen increased with total macroalgae nitrogen and watershed nitrogen, and the invasive rhodophyte Hypnea musciformis significantly outperformed all other species in this respect. Our results confirm that eutrophication substantially increases the arginine content of macroalgae, which may metabolically promote latent herpesviruses and cause FP tumors in green turtles.

  2. Eutrophication and the dietary promotion of sea turtle tumors

    Directory of Open Access Journals (Sweden)

    Kyle S. Van Houtan

    2014-09-01

    Full Text Available The tumor-forming disease fibropapillomatosis (FP has afflicted sea turtle populations for decades with no clear cause. A lineage of α-herpesviruses associated with these tumors has existed for millennia, suggesting environmental factors are responsible for its recent epidemiology. In previous work, we described how herpesviruses could cause FP tumors through a metabolic influx of arginine. We demonstrated the disease prevails in chronically eutrophied coastal waters, and that turtles foraging in these sites might consume arginine-enriched macroalgae. Here, we test the idea using High-Performance Liquid Chromatography (HPLC to describe the amino acid profiles of green turtle (Chelonia mydas tumors and five common forage species of macroalgae from a range of eutrophic states. Tumors were notably elevated in glycine, proline, alanine, arginine, and serine and depleted in lysine when compared to baseline samples. All macroalgae from eutrophic locations had elevated arginine, and all species preferentially stored environmental nitrogen as arginine even at oligotrophic sites. From these results, we estimate adult turtles foraging at eutrophied sites increase their arginine intake 17–26 g daily, up to 14 times the background level. Arginine nitrogen increased with total macroalgae nitrogen and watershed nitrogen, and the invasive rhodophyte Hypnea musciformis significantly outperformed all other species in this respect. Our results confirm that eutrophication substantially increases the arginine content of macroalgae, which may metabolically promote latent herpesviruses and cause FP tumors in green turtles.

  3. Global distribution of two fungal pathogens threatening endangered sea turtles.

    Directory of Open Access Journals (Sweden)

    Jullie M Sarmiento-Ramírez

    Full Text Available Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide.

  4. Hawksbill Sea Turtle Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for hawksbill turtle as designated by Federal Register Vol. 63, No. 46701, September 2, 1998, Rules and Regulations....

  5. Leatherback Sea Turtle Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for leatherback turtle as designated by Federal Register Vol. 44, No. 17711, March 23, 1979, Rules and Regulations....

  6. Sea Turtle Acoustic Telemetry Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Acoustic tags were attached to sea turtles captured in various fishing gear and the animals are either actively or passively tracked

  7. To Swim or Not to Swim: Potential Transmission of Balaenophilus manatorum (Copepoda: Harpacticoida) in Marine Turtles

    Science.gov (United States)

    Tomás, Jesús; Crespo-Picazo, José Luis; García-Párraga, Daniel; Raga, Juan Antonio

    2017-01-01

    Species of Balaenophilus are the only harpacticoid copepods that exhibit a widespread, obligate association with vertebrates, i.e., B. unisetus with whales and B. manatorum with marine turtles and manatees. In the western Mediterranean, juveniles of the loggerhead sea turtle, Caretta caretta are the only available hosts for B. manatorum, which has been found occurring at high prevalence (>80%) on them. A key question is how these epibionts are transmitted from host to host. We investigated this issue based on experiments with live specimens of B. manatorum that were cultured with turtle skin. Specimens were obtained from head-started hatchlings of C. caretta from the western Mediterranean. Hatched nauplii crawled only on rough substrates and lacked the ability to swim. Only copepodites IV and V, and adults, were able to perform directional swimming. Legs 2, 3 and 4 played a major role in swimming and were only well-developed in these stages. Nauplii reared in wells with turtle skin readily fed on this item. Late copepodites and adults also fed on turtle skin but did not consume other potential food items such as fish skin, baleen plates or planktonic algae. Evidences suggest that the transmission of B. manatorum should rely on hosts’ bodily contacts and/or swimming of late developmental stages between spatially close hosts. The possibility of long-ranged dispersal is unlikely for two reasons. First, all developmental stages seem to depend on turtle skin as a food resource. Second, the average clutch size of ovigerous females was small (< 70 eggs) for free-living phases to successfully contact turtles that occur at very low densities (< 0.6 turtles·km−2) in the western Mediterranean. The high prevalence of B. manatorum in loggerhead turtles in this area raises the question whether these turtles have contacts, or tend to closely aggregate, more than is currently believed. PMID:28114412

  8. Determining sex ratios of turtle hatchlings

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Previous status assessments of marine turtles have assumed that the natural sex ratio of a marine turtle population is 1:1 (e.g. Conant et al. 2009). However, this...

  9. Sea turtles sightings in North Carolina

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea turtles sightings are reported to the NMFS Beaufort Laboratory sea turtle program by the general public as they are fishing, boating, etc. These sightings...

  10. Does Ecotourism Contribute to Sea Turtle Conservation? Is the Flagship Status of Turtles Advantageous?

    OpenAIRE

    Tisdell, Clement A.; Wilson, Clevo

    2003-01-01

    There is little doubt that marine turtles are a flagship species for wildlife tourism. In some cases, this has turned out to be liability for sea turtle conservation, but in other cases, where for example turtle-based ecotourism has been developed, it has made a positive contribution to turtle conservation. Examples of both cases are given. Particular attention is given to the development of turtle-based ecotourism at Mon Repos Beach near Bundaberg, Australia. This development is set in its h...

  11. Anti-predator meshing may provide greater protection for sea turtle nests than predator removal.

    Science.gov (United States)

    O'Connor, Julie M; Limpus, Colin J; Hofmeister, Kate M; Allen, Benjamin L; Burnett, Scott E

    2017-01-01

    The problem of how to protect sea turtle nests from terrestrial predators is of worldwide concern. On Queensland's southern Sunshine Coast, depredation of turtle nests by the introduced European red fox (Vulpes vulpes) has been recorded as the primary terrestrial cause of egg and hatchling mortality. We investigated the impact of foxes on the nests of the loggerhead turtle (Caretta caretta) and occasional green turtle (Chelonia mydas) over ten nesting seasons. Meshing of nests with fox exclusion devices (FEDs) was undertaken in all years accompanied by lethal fox control in the first five-year period, but not in the second five-year period. Lethal fox control was undertaken in the study area from 2005 to February 2010, but foxes still breached 27% (range19-52%) of turtle nests. In the second five-year period, despite the absence of lethal fox control, the average percentage of nests breached was less than 3% (range 0-4%). Comparison of clutch depredation rates in the two five-year periods demonstrated that continuous nest meshing may be more effective than lethal fox control in mitigating the impact of foxes on turtle nests. In the absence of unlimited resources available for the eradication of exotic predators, the use of FEDs and the support and resourcing of a dedicated volunteer base can be considered an effective turtle conservation tool on some beaches.

  12. Anti-predator meshing may provide greater protection for sea turtle nests than predator removal

    Science.gov (United States)

    O’Connor, Julie M.; Limpus, Colin J.; Hofmeister, Kate M.; Allen, Benjamin L.; Burnett, Scott E.

    2017-01-01

    The problem of how to protect sea turtle nests from terrestrial predators is of worldwide concern. On Queensland’s southern Sunshine Coast, depredation of turtle nests by the introduced European red fox (Vulpes vulpes) has been recorded as the primary terrestrial cause of egg and hatchling mortality. We investigated the impact of foxes on the nests of the loggerhead turtle (Caretta caretta) and occasional green turtle (Chelonia mydas) over ten nesting seasons. Meshing of nests with fox exclusion devices (FEDs) was undertaken in all years accompanied by lethal fox control in the first five-year period, but not in the second five-year period. Lethal fox control was undertaken in the study area from 2005 to February 2010, but foxes still breached 27% (range19–52%) of turtle nests. In the second five-year period, despite the absence of lethal fox control, the average percentage of nests breached was less than 3% (range 0–4%). Comparison of clutch depredation rates in the two five-year periods demonstrated that continuous nest meshing may be more effective than lethal fox control in mitigating the impact of foxes on turtle nests. In the absence of unlimited resources available for the eradication of exotic predators, the use of FEDs and the support and resourcing of a dedicated volunteer base can be considered an effective turtle conservation tool on some beaches. PMID:28187181

  13. Evidence for retrovirus infections in green turtles Chelonia mydas from the Hawaiian islands

    Science.gov (United States)

    Casey, R.N.; Quackenbush, S.L.; Work, T.M.; Balazs, G.H.; Bowser, P.R.; Casey, J.W.

    1997-01-01

    Apparently normal Hawaiian green turtles Chelonia mydas and those displaying fibropapillomas were analyzed for infection by retroviruses. Strikingly, all samples were positive for polymerase enhanced reverse transcriptase (PERT) with levels high enough to quantitate by the conventional reverse transcriptase (RT) assay. However, samples of skin, even from asymptomatic turtles, were RT positive, although the levels of enzyme activity in healthy turtles hatched and raised in captivity were much lower than those observed in asymptomatic free-ranging turtles. Turtles with fibropapillomas displayed a broad range of reverse transcriptase activity. Skin and eye fibropapillomas and a heart tumor were further analyzed and shown to have reverse transcriptase activity that banded in a sucrose gradient at 1.17 g ml-1. The reverse transcriptase activity purified from the heart tumor displayed a temperature optimum of 37??C and showed a preference for Mn2+ over Mg2+. Sucrose gradient fractions of this sample displaying elevated reverse transcriptase activity contained primarily retrovitalsized particles with prominent envelope spikes, when negatively stained and examined by electron microscopy. Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of gradient-purified virions revealed a conserved profile among 4 independent tumors and showed 7 prominent proteins having molecular weights of 116, 83, 51, 43, 40, 20 and 14 kDa. The data suggest that retroviral infections are widespread in Hawaiian green turtles and a comprehensive investigation is warranted to address the possibility that these agents cause green turtle fibropapillomatosis (GTFP).

  14. 50 CFR 223.205 - Sea turtles.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except...

  15. Management and protection protocols for nesting sea turtles on Cape Hatteras National Seashore, North Carolina

    Science.gov (United States)

    Cohen, J.B.

    2005-01-01

    Executive Summary 1. The southeast U.S. population of the loggerhead turtle (Caretta caretta) has increased since the species was listed as federally threatened in 1978. Since standardized monitoring began in North Carolina in 1995, the number of nests at Cape Hatteras National Seashore (CAHA) fluctuated from year to year, and was lowest in 1996 and 1997 (39 nests) and highest in 2003 (101 nests). Green turtles (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) have nested in small numbers at CAHA, sporadically over time. 2. Hatching success of sea turtle nests typically approaches 80%. At CAHA hatching success from 1999-2003 was low when hurricanes hit during the nesting season (30%-38%), and ranged from 52%-70% otherwise. Hatching success at CAHA is usually correlated with hatching success in the surrounding subpopulation (north Florida to North Carolina). 3. Inclement weather, predation, and human recreation can negatively impact nesting rate and hatching success. 4. Currently there is little protection from recreation at CAHA for nesting females and nests that have not been found by monitors. We propose three management options to provide such protection, and to increase protection for known nests and hatchlings. We propose an adaptive management framework for assessing the effectiveness of these management options in improving sea turtle nesting rate and nest and hatchling survival. 5. We recommend continued efforts to trap and remove mammalian predators from all sea turtle habitat. We further recommend intensive monitoring and surveillance of protected areas to determine the extent and timing of threats to nests and broods, including nest overwash, predation, and disturbance or vandalism by humans. 6. Continue to relocate nests and assist stranded turtles according to North Carolina Wildlife Resources Commission guidelines. 7. Artificial light sources pose a serious threat to sea turtles in some parts of CAHA, which must be remedied immediately

  16. Western Pond Turtle Head-starting and Reintroduction; 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Van Leuven, Susan; Allen, Harriet; Slavin, Kate (Washington Department of Fish and Wildlife, Wildlife Management Program, Olympia, WA)

    2004-09-01

    This report covers the results of the western pond turtle head-starting and reintroduction project for the period of October 2003-September 2004. Wild hatchling western pond turtles from the Columbia River Gorge were reared at the Woodland Park and Oregon Zoos in 2003 and 2004 as part of the recovery effort for this Washington State endangered species. The objective of the program is to reduce losses to introduced predators like bullfrogs and largemouth bass by raising the hatchlings to a size where they are too large to be eaten by most of these predators. Sixty-nine turtles were over-wintered at the Woodland Park Zoo and 69 at the Oregon Zoo. Of these, 136 head-started juvenile turtles were released at three sites in the Columbia Gorge in 2004. Two were held back to attain more growth in captivity. Thirty-four were released at the Klickitat ponds, 19 at the Klickitat lake, 21 at the Skamania site, and 62 at Pierce National Wildlife Refuge (NWR). This brought the total number of head-start turtles released since 1991 to 246 for the Klickitat ponds, 114 for the Klickitat lake, 167 for the Skamania pond complex, and 250 at Pierce NWR. In 2004, 32 females from the two Columbia Gorge populations were equipped with transmitters and monitored for nesting activity. Twenty-one of the females nested and produced 85 hatchlings. The hatchlings were collected in September and October and transported to the Woodland Park and Oregon zoos for rearing in the head-start program. Data collection for a four-year telemetry study of survival and habitat use by juvenile western pond turtles at Pierce NWR concluded in 2004. Radio transmitters on study animals were replaced as needed until all replacements were in service; afterward, the turtles were monitored until their transmitters failed. The corps of study turtles ranged from 39 in August 2003 to 2 turtles at the end of August 2004. These turtles showed the same seasonal pattern of movements between summer water and upland winter

  17. Turtle riders: remoras on marine turtles in Southwest Atlantic

    Directory of Open Access Journals (Sweden)

    Ivan Sazima

    Full Text Available An overview is presented for a poorly documented relationship between reef vertebrates in Southwest Atlantic: remoras (Echeneidae associated with marine turtles. Two remora species (Echeneis naucrates and Remora remora and four turtle species (Caretta caretta, Chelonia mydas, Eretmochelys imbricata, and Dermochelys coriacea are here recorded in symbiotic associations in the SW Atlantic. Echeneis naucrates was recorded both on the coast and on oceanic islands, whereas R. remora was recorded only at oceanic islands and in the open sea. The remora-turtle association is usually regarded as an instance of phoresis (hitchhiking, albeit feeding by the fish is also involved in this symbiosis type. This association seems to be rare in SW Atlantic.

  18. High levels of maternally transferred mercury disrupt magnetic responses of snapping turtle hatchlings (Chelydra serpentina).

    Science.gov (United States)

    Landler, Lukas; Painter, Michael S; Coe, Brittney Hopkins; Youmans, Paul W; Hopkins, William A; Phillips, John B

    2017-09-01

    The Earth's magnetic field is involved in spatial behaviours ranging from long-distance migration to non-goal directed behaviours, such as spontaneous magnetic alignment (SMA). Mercury is a harmful pollutant most often generated from anthropogenic sources that can bio-accumulate in animal tissue over a lifetime. We compared SMA of hatchling snapping turtles from mothers captured at reference (i.e., low mercury) and mercury contaminated sites. Reference turtles showed radio frequency-dependent SMA along the north-south axis, consistent with previous studies of SMA, while turtles with high levels of maternally inherited mercury failed to show consistent magnetic alignment. In contrast, there was no difference between reference and mercury exposed turtles on standard performance measures. The magnetic field plays an important role in animal orientation behaviour and may also help to integrate spatial information from a variety of sensory modalities. As a consequence, mercury may compromise the performance of turtles in a wide variety of spatial tasks. Future research is needed to determine the threshold for mercury effects on snapping turtles, whether mercury exposure compromises spatial behaviour of adult turtles, and whether mercury has a direct effect on the magnetoreception mechanism(s) that mediate SMA or a more general effect on the nervous system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fibropapillomatosis in green turtles Chelonia mydas in Brazil: characteristics of tumors and virus.

    Science.gov (United States)

    Rodenbusch, C R; Baptistotte, C; Werneck, M R; Pires, T T; Melo, M T D; de Ataíde, M W; Testa, P; Alieve, M M; Canal, C W

    2014-10-16

    Fibropapillomatosis (FP) is a benign neoplasia that affects physiological functions of sea turtles and may lead to death. High prevalence of FP in sea turtle populations has prompted several research groups to study the disease and the associated herpesvirus, chelonid herpesvirus 5 (ChHV5). The present study detected and quantified ChHV5 in 153 fibropapilloma samples collected from green turtles Chelonia mydas on the Brazilian coast between 2009 and 2010 to characterize the relationship between viral load and tumor characteristics. Of the tumor samples collected, 73 and 87% were positive for ChHV5 in conventional PCR and real-time PCR, respectively, and viral loads ranged between 1 and 118.62 copies cell⁻¹. Thirty-three percent of turtles were mildly, 28% were moderately and 39% were severely affected with FP. Skin samples were used as negative control. High viral loads correlated positively with increasing FP severity in turtles sampled on the Brazilian coast and with samples from turtles found dead in the states of São Paulo and Bahia. Six viral variants were detected in tumor samples, 4 of which were similar to the Atlantic phylogenetic group. Two variants were similar to the western Atlantic/eastern Caribbean phylogenetic group. Co-infection in turtles with more than one variant was observed in the states of São Paulo and Bahia.

  20. 78 FR 44878 - Turtles Intrastate and Interstate Requirements

    Science.gov (United States)

    2013-07-25

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 1240 Turtles Intrastate and Interstate... public distribution, of viable turtle eggs and live turtles with a carapace length of less than 4 inches... turtle eggs and turtles with a carapace length of less than 4 inches to stop the spread of...

  1. 78 FR 44915 - Turtles Intrastate and Interstate Requirements

    Science.gov (United States)

    2013-07-25

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 1240 Turtles Intrastate and Interstate... commercial or public distribution, of viable turtle eggs and live turtles with a carapace length of less than... distribution of viable turtle eggs and turtles with a carapace length of less than 4 inches to stop the...

  2. Characterization of fibropapillomatosis in green turtles Chelonia mydas (Cheloniidae) captured in a foraging area in southeastern Brazil.

    Science.gov (United States)

    Tagliolatto, Alícia Bertoloto; Guimarães, Suzana Machado; Lobo-Hajdu, Gisele; Monteiro-Neto, Cassiano

    2016-10-27

    Fibropapillomatosis (FP) is a multifactorial disease that affects all species of marine turtles, including green turtles Chelonia mydas (Linnaeus, 1758). It is characterised by the development of internal or external tumours that, depending on their locations and sizes, may intensely impact the health condition of sea turtles. The goal of this study was to characterise the disease in C. mydas found in a foraging area in southeastern Brazil, evaluate the prevalence in this region, and correlate presence and absence, size, body distribution, number of tumours, and disease severity with biometric variables of the captured green turtles. Between 2008 and 2014, the prevalence rate of FP was 43.09%, out of 246 green turtles. The size of the animals with FP was relatively greater than animals without tumours, and the prevalence of FP increased with animal size, peaking in the 60-80 cm size class. From 2013 to 2014, gross evaluation of fibropapillomas was performed. The number of tumours per turtle ranged from 1 to 158. The size of tumours ranged from 10 cm (Size D); Size A tumours and turtles slightly affected by the disease (Score 1) predominated. Tumour progression (72.1%) and regression (32.8%) were seen in some recaptured individuals (n = 61). Moreover, 24.6% of these turtles showed both progressions and regressions of tumours.

  3. Patterning of the turtle shell.

    Science.gov (United States)

    Moustakas-Verho, Jacqueline E; Cebra-Thomas, Judith; Gilbert, Scott F

    2017-08-01

    Interest in the origin and evolution of the turtle shell has resulted in a most unlikely clade becoming an important research group for investigating morphological diversity in developmental biology. Many turtles generate a two-component shell that nearly surrounds the body in a bony exoskeleton. The ectoderm covering the shell produces epidermal scutes that form a phylogenetically stable pattern. In some lineages, the bones of the shell and their ectodermal covering become reduced or lost, and this is generally associated with different ecological habits. The similarity and diversity of turtles allows research into how changes in development create evolutionary novelty, interacting modules, and adaptive physiology and anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Optimal-rearing density for head-starting green turtles (Chelonia mydas Linnaeus, 1758).

    Science.gov (United States)

    Kanghae, Hirun; Thongprajukaew, Karun; Jatupornpitukchat, Sasiporn; Kittiwattanawong, Kongkiat

    2016-09-01

    While ex situ conservation programs of juvenile green turtles (Chelonia mydas Linnaeus, 1758), before release to natural habitats, have been conducted in several countries, the optimal-stocking density for husbandry has not yet been reported. The optimization of stocking density was the main purpose of this study. The 15-day-old post-hatching turtles (29.30 ± 0.05 g body weight) were reared in round fiberglass tanks at various stocking densities including 20 turtles/m(3) (20TM), 40 turtles/m(3) (40TM), 60 turtles/m(3) (60TM), and 80 turtles/m(3) (80TM), over an 8-week trial. Water quality, survival, growth performance, feed utilization, aggressive behavior, fecal digestive enzymes, and hematological parameters were compared between the treatments, and were used as indicators of a successful captive rearing program. The water quality across the four treatments was in the standard range, but a high-stocking density reduced the quality significantly. No mortality was observed in any treatment group. Superior growth and feed utilization were only observed with the 40TM treatment, relative to the others (P < 0.05). The turtles in this group had no aggressive behavior, as indicated by observing hind limb biting. This treatment manipulated the level of proteolytic activity of pepsin and trypsin in response to density stressor, but not amylase, lipase, and chymotrypsin. The 40TM treatment also maintained the hematological characteristics, indicating no negative effects on health status. Overall, the findings indicate that the captivity program of post-hatching turtles at 40 turtles/m(3) is the preferred option in their head-started propagation, as well as in public displays in zoos or aquaria. Zoo Biol. 35:454-461, 2016. © Wiley Periodicals, Inc.

  5. Compensatory responses to food restriction in juvenile green turtles (Chelonia mydas).

    Science.gov (United States)

    Roark, Alison M; Bjorndal, Karen A; Bolten, Alan B

    2009-09-01

    The purpose of this study was to assess the compensatory responses to food restriction and subsequent increased food availability in juvenile green turtles (Chelonia mydas). Turtles were fed an ad libitum ration for 12 weeks (AL), a restricted ration for 12 weeks (R), or a restricted ration for 5 weeks and an ad libitum ration for 7 weeks (R-AL). Analysis of covariance was used to test the relationships between (1) growth and body size, (2) intake and body size, and (3) growth and intake for each of the three treatment groups. Body composition of turtles in each group was also evaluated at the beginning of the study and after weeks 5 and 12. After the switch to ad libitum feeding, R-AL turtles consumed comparable amounts of food and grew faster than AL turtles on a size-adjusted basis, but mean body sizes did not converge, although the overlap in their size ranges increased with time. The R-AL turtles also converted food to growth more efficiently and allocated proportionally more nutrients to protein accretion, thereby restoring body composition (except mineral content) to AL levels by the end of the study. Thus, accelerated size-specific growth without hyperphagia restored body condition but not size. These results indicate that (1) intake in juvenile green turtles is maximal when food is readily available and cannot be increased to compensate for a previous period of food limitation, (2) growth rates of ad libitum-fed turtles are only mildly plastic in response to past nutritional history, and (3) priority rules for nutrient allocation favor the attainment of an optimal condition rather than an optimal size. Nutritional setbacks experienced during the vulnerable juvenile stage could therefore have long-lasting consequences for wild turtles in terms of size-specific mortality risk, but these risks may be mitigated by the potential benefits of maintaining sufficient body stores.

  6. Measuring the impact of invasive species on popular culture: a case study based on toy turtles from Japan

    Science.gov (United States)

    Lovich, Jeffrey E.; Yamamoto, Katsuya

    2016-01-01

    The red-eared slider turtle (Trachemys scripta elegans) is native to portions of the United States of America (USA) and adjacent northeastern Mexico. The bright and colorful hatchlings have long been popular as pets globally but numerous individuals have been released into the wild establishing populations in areas well outside their native range. As a result, slider turtles are now introduced worldwide on all continents, with the exception of Antarctica, and many temperate and tropical islands, including Japan. They are very successful at establishing breeding populations in a variety of habitats, even those in proximity to human development. Once established in large populations, they compete with native turtle species sometimes to the detriment of the latter. Tin toy turtles were popular in Japan for decades, and they were an important export item after World War II. From the 1920s to the 1950s, prior to the widespread establishment of slider populations in Japan, the toys were characterized by muted earth-tone colors representative of native species of Japanese turtles. After the 1950s, toy turtles exhibited brighter combinations of yellow, red and green more typical of slider turtles. This transition may reflect demand for more colorful toys by importing countries like the USA. Alternatively, the change was coincident with the importation of large numbers of colorful slider turtles to Japan via the pet trade and their subsequent establishment and numerical dominance in Japanese wetlands. This switch in toy turtle colors may reflect a cultural transition in awareness of what constitutes the appearance of a typical turtle in Japan. Sliders appear to have been accepted by Japanese consumers as a new cultural norm in the appearance of turtles, a case of art imitating life.

  7. A model of loggerhead sea turtle (Caretta caretta) habitat and movement in the oceanic North Pacific.

    Science.gov (United States)

    Abecassis, Melanie; Senina, Inna; Lehodey, Patrick; Gaspar, Philippe; Parker, Denise; Balazs, George; Polovina, Jeffrey

    2013-01-01

    Habitat preferences for juvenile loggerhead turtles in the North Pacific were investigated with data from two several-year long tagging programs, using 224 satellite transmitters deployed on wild and captive-reared turtles. Animals ranged between 23 and 81 cm in straight carapace length. Tracks were used to investigate changes in temperature preferences and speed of the animals with size. Average sea surface temperatures along the tracks ranged from 18 to 23 °C. Bigger turtles generally experienced larger temperature ranges and were encountered in warmer surface waters. Seasonal differences between small and big turtles suggest that the larger ones dive deeper than the mixed layer and subsequently target warmer surface waters to rewarm. Average swimming speeds were under 1 km/h and increased with size for turtles bigger than 30 cm. However, when expressed in body lengths per second (bl s(-1)), smaller turtles showed much higher swimming speeds (>1 bl s (-1) ) than bigger ones (0.5 bl s(-1)). Temperature and speed values at size estimated from the tracks were used to parameterize a habitat-based Eulerian model to predict areas of highest probability of presence in the North Pacific. The model-generated habitat index generally matched the tracks closely, capturing the north-south movements of tracked animals, but the model failed to replicate observed east-west movements, suggesting temperature and foraging preferences are not the only factors driving large-scale loggerhead movements. Model outputs could inform potential bycatch reduction strategies.

  8. A Model of Loggerhead Sea Turtle (Caretta caretta) Habitat and Movement in the Oceanic North Pacific

    Science.gov (United States)

    Abecassis, Melanie; Senina, Inna; Lehodey, Patrick; Gaspar, Philippe; Parker, Denise; Balazs, George; Polovina, Jeffrey

    2013-01-01

    Habitat preferences for juvenile loggerhead turtles in the North Pacific were investigated with data from two several-year long tagging programs, using 224 satellite transmitters deployed on wild and captive-reared turtles. Animals ranged between 23 and 81 cm in straight carapace length. Tracks were used to investigate changes in temperature preferences and speed of the animals with size. Average sea surface temperatures along the tracks ranged from 18 to 23 °C. Bigger turtles generally experienced larger temperature ranges and were encountered in warmer surface waters. Seasonal differences between small and big turtles suggest that the larger ones dive deeper than the mixed layer and subsequently target warmer surface waters to rewarm. Average swimming speeds were under 1 km/h and increased with size for turtles bigger than 30 cm. However, when expressed in body lengths per second (bl s−1), smaller turtles showed much higher swimming speeds (>1 bl s−1) than bigger ones (0.5 bl s−1). Temperature and speed values at size estimated from the tracks were used to parameterize a habitat-based Eulerian model to predict areas of highest probability of presence in the North Pacific. The model-generated habitat index generally matched the tracks closely, capturing the north-south movements of tracked animals, but the model failed to replicate observed east-west movements, suggesting temperature and foraging preferences are not the only factors driving large-scale loggerhead movements. Model outputs could inform potential bycatch reduction strategies. PMID:24039901

  9. A model of loggerhead sea turtle (Caretta caretta habitat and movement in the oceanic North Pacific.

    Directory of Open Access Journals (Sweden)

    Melanie Abecassis

    Full Text Available Habitat preferences for juvenile loggerhead turtles in the North Pacific were investigated with data from two several-year long tagging programs, using 224 satellite transmitters deployed on wild and captive-reared turtles. Animals ranged between 23 and 81 cm in straight carapace length. Tracks were used to investigate changes in temperature preferences and speed of the animals with size. Average sea surface temperatures along the tracks ranged from 18 to 23 °C. Bigger turtles generally experienced larger temperature ranges and were encountered in warmer surface waters. Seasonal differences between small and big turtles suggest that the larger ones dive deeper than the mixed layer and subsequently target warmer surface waters to rewarm. Average swimming speeds were under 1 km/h and increased with size for turtles bigger than 30 cm. However, when expressed in body lengths per second (bl s(-1, smaller turtles showed much higher swimming speeds (>1 bl s (-1 than bigger ones (0.5 bl s(-1. Temperature and speed values at size estimated from the tracks were used to parameterize a habitat-based Eulerian model to predict areas of highest probability of presence in the North Pacific. The model-generated habitat index generally matched the tracks closely, capturing the north-south movements of tracked animals, but the model failed to replicate observed east-west movements, suggesting temperature and foraging preferences are not the only factors driving large-scale loggerhead movements. Model outputs could inform potential bycatch reduction strategies.

  10. Neurological disease in wild loggerhead sea turtles Caretta caretta.

    Science.gov (United States)

    Jacobson, Elliott R; Homer, Bruce L; Stacy, Brian A; Greiner, Ellis C; Szabo, Nancy J; Chrisman, Cheryl L; Origgi, Francesco; Coberley, Sadie; Foley, Allen M; Landsberg, Jan H; Flewelling, Leanne; Ewing, Ruth Y; Moretti, Richie; Schaf, Susan; Rose, Corinne; Mader, Douglas R; Harman, Glenn R; Manire, Charles A; Mettee, Nancy S; Mizisin, Andrew P; Shelton, G Diane

    2006-06-12

    Beginning in October 2000, subadult loggerhead sea turtles Caretta caretta showing clinical signs of a neurological disorder were found in waters off south Florida, USA. Histopathology indicated generalized and neurologic spirorchiidiasis. In loggerhead sea turtles (LST) with neurospirorchiidiasis, adult trematodes were found in the meninges of the brain and spinal cord of 7 and 3 affected turtles respectively, and multiple encephalic intravascular or perivascular eggs were associated with granulomatous or mixed leukocytic inflammation, vasculitis, edema, axonal degeneration and occasional necrosis. Adult spirorchiids were dissected from meningeal vessels of 2 of 11 LST brains and 1 of 10 spinal cords and were identified as Neospirorchis sp. Affected LST were evaluated for brevetoxins, ciguatoxins, saxitoxins, domoic acid and palytoxin. While tissues from 7 of 20 LST tested positive for brevetoxins, the levels were not considered to be in a range causing acute toxicosis. No known natural (algal blooms) or anthropogenic (pollutant spills) stressors co-occurred with the turtle mortality. While heavy metal toxicosis and organophosphate toxicosis were also investigated as possible causes, there was no evidence for their involvement. We speculate that the clinical signs and pathologic changes seen in the affected LST resulted from combined heavy spirorchiid parasitism and possible chronic exposure to a novel toxin present in the diet of LST.

  11. Thermoregulation and habitat selection in wood turtles Glyptemys insculpta: chasing the sun slowly.

    Science.gov (United States)

    Dubois, Y; Blouin-Demers, G; Shipley, B; Thomas, D

    2009-09-01

    1. It is widely accepted that reptiles are able to regulate behaviourally their body temperature (T(b)), but this generalization is primarily based on studies of lizards and snakes in the temperate zone. Because the precision of T(b) regulation may vary considerably between taxa and over geographical ranges, studies of semi-terrestrial turtles in climatic extremes are relevant to the understanding of reptilian thermoregulation. 2. We studied thermoregulation in 21 free-ranging wood turtles (Glyptemys insculpta) at the northern limit of their range in Québec, using miniature data loggers to measure their internal T(b) and external temperature (T(ext)) continuously. We simultaneously recorded the available operative environmental temperature (T(e)) using 23 physical models randomly moved within each habitat type, and we located turtles using radiotelemetry. 3. The habitat used by wood turtles was thermally constraining and the target temperature (T(set)) was only achievable by basking during a short 5-h time window on sunny days. Wood turtles did show thermoregulatory abilities, as determined by the difference between turtle T(b) distribution and the null distribution of T(e) that resulted in T(b) closer to T(set). Although most individuals regulated their T(b) between 09.00 h and 16.00 h on sunny days, regulation was imprecise, as indicated by an index of thermoregulation precision (| T(b) - T(set) |). 4. The comparison of habitat use to availability indicated selection of open habitats. The hourly mean shuttling index (| T(ext) - T(b) |) suggested that turtles used sun/shade shuttling from 09.00 to 16.00 h to elevate their T(b) above mean T(e). 5. Based on laboratory respirometry data, turtles increased their metabolic rate by 20-26% over thermoconformity, and thus likely increased their energy gain which is assumed to be constrained by processing rate at climatic extremes.

  12. First record of hybridization between green Chelonia mydas and hawksbill Eretmochelys imbricata sea turtles in the Southeast Pacific.

    Science.gov (United States)

    Kelez, Shaleyla; Velez-Zuazo, Ximena; Pacheco, Aldo S

    2016-01-01

    Hybridization among sea turtle species has been widely reported in the Atlantic Ocean, but their detection in the Pacific Ocean is limited to just two individual hybrid turtles, in the northern hemisphere. Herein, we report, for the first time in the southeast Pacific, the presence of a sea turtle hybrid between the green turtle Chelonia mydas and the hawksbill turtle Eretmochelys imbricata. This juvenile sea turtle was captured in northern Peru (4°13'S; 81°10'W) on the 5(th) of January, 2014. The individual exhibited morphological characteristics of C. mydas such as dark green coloration, single pair of pre-frontal scales, four post-orbital scales, and mandibular median ridge, while the presence of two claws in each frontal flipper, and elongated snout resembled the features of E. imbricata. In addition to morphological evidence, we confirmed the hybrid status of this animal using genetic analysis of the mitochondrial gene cytochrome oxidase I, which revealed that the hybrid individual resulted from the cross between a female E. imbricata and a male C. mydas. Our report extends the geographical range of occurrence of hybrid sea turtles in the Pacific Ocean, and is a significant observation of interspecific breeding between one of the world's most critically endangered populations of sea turtles, the east Pacific E. imbricata, and a relatively healthy population, the east Pacific C. mydas.

  13. First record of hybridization between green Chelonia mydas and hawksbill Eretmochelys imbricata sea turtles in the Southeast Pacific

    Directory of Open Access Journals (Sweden)

    Shaleyla Kelez

    2016-02-01

    Full Text Available Hybridization among sea turtle species has been widely reported in the Atlantic Ocean, but their detection in the Pacific Ocean is limited to just two individual hybrid turtles, in the northern hemisphere. Herein, we report, for the first time in the southeast Pacific, the presence of a sea turtle hybrid between the green turtle Chelonia mydas and the hawksbill turtle Eretmochelys imbricata. This juvenile sea turtle was captured in northern Peru (4°13′S; 81°10′W on the 5th of January, 2014. The individual exhibited morphological characteristics of C. mydas such as dark green coloration, single pair of pre-frontal scales, four post-orbital scales, and mandibular median ridge, while the presence of two claws in each frontal flipper, and elongated snout resembled the features of E. imbricata. In addition to morphological evidence, we confirmed the hybrid status of this animal using genetic analysis of the mitochondrial gene cytochrome oxidase I, which revealed that the hybrid individual resulted from the cross between a female E. imbricata and a male C. mydas. Our report extends the geographical range of occurrence of hybrid sea turtles in the Pacific Ocean, and is a significant observation of interspecific breeding between one of the world’s most critically endangered populations of sea turtles, the east Pacific E. imbricata, and a relatively healthy population, the east Pacific C. mydas.

  14. The origin of turtles: a paleontological perspective.

    Science.gov (United States)

    Joyce, Walter G

    2015-05-01

    The origin of turtles and their unusual body plan has fascinated scientists for the last two centuries. Over the course of the last decades, a broad sample of molecular analyses have favored a sister group relationship of turtles with archosaurs, but recent studies reveal that this signal may be the result of systematic biases affecting molecular approaches, in particular sampling, non-randomly distributed rate heterogeneity among taxa, and the use of concatenated data sets. Morphological studies, by contrast, disfavor archosaurian relationships for turtles, but the proposed alternative topologies are poorly supported as well. The recently revived paleontological hypothesis that the Middle Permian Eunotosaurus africanus is an intermediate stem turtle is now robustly supported by numerous characters that were previously thought to be unique to turtles and that are now shown to have originated over the course of tens of millions of years unrelated to the origin of the turtle shell. Although E. africanus does not solve the placement of turtles within Amniota, it successfully extends the stem lineage of turtles to the Permian and helps resolve some questions associated with the origin of turtles, in particular the non-composite origin of the shell, the slow origin of the shell, and the terrestrial setting for the origin of turtles. © 2015 Wiley Periodicals, Inc.

  15. Behavioral Response of Reef Fish and Green Sea Turtles to Midfrequency Sonar.

    Science.gov (United States)

    Watwood, Stephanie L; Iafrate, Joseph D; Reyier, Eric A; Redfoot, William E

    2016-01-01

    There is growing concern over the potential effects of high-intensity sonar on wild fish populations and commercial fisheries. Acoustic telemetry was employed to measure the movements of free-ranging reef fish and sea turtles in Port Canaveral, FL, in response to routine submarine sonar testing. Twenty-five sheepshead (Archosargus probatocephalus), 28 gray snapper (Lutjanus griseus), and 29 green sea turtles (Chelonia mydas) were tagged, with movements monitored for a period of up to 4 months using an array of passive acoustic receivers. Baseline residency was examined for fish and sea turtles before, during, and after the test event. No mortality of tagged fish or sea turtles was evident from the sonar test event. There was a significant increase in the daily residency index for both sheepshead and gray snapper at the testing wharf subsequent to the event. No broad-scale movement from the study site was observed during or immediately after the test.

  16. Road mortality threatens small northern populations of the European pond turtle, Emys orbicularis

    Directory of Open Access Journals (Sweden)

    Giedrius Trakimas

    2008-12-01

    Full Text Available Little is known about road mortality and the effects to European pond turtle Emys orbicularis populations at the northern border of its range. Survival of the turtle populations in suboptimal conditions depends heavily on longevity, regular annual breeding and relatively large clutch sizes, but additional unnatural mortality could alter their survival rates. Loss of only single turtle in majority of northern populations could mean a loss of 3-20% of subpopulation. But due to comparative rarity of the road accidents the effects of individual road mortality to the turtle populations might not be recognized. We discuss possible effects of road–associated mortality, and suggest that precautionary measures as setting of the buffer zones with low road density and possibility of lowering of traffic volume must be considered during the planning of the species conservation actions.

  17. Morphologic and cytochemical characteristics of green turtle (Chelonia mydas) blood cells

    Science.gov (United States)

    Work, T.M.; Raskin, R.E.; Balazs, G.H.; Whittaker, S.D.

    1998-01-01

    Objective - To identify and characterize blood cells from free-ranging Hawaiian green turtles, Chelonia mydas. Sample Population - 26 green turtles from Puako on the island of Hawaii and Kaneohe Bay on the island of Oahu. Procedure - Blood was examined, using light and electron microscopy and cytochemical stains that included benzidine peroxidase, chloroacetate esterase, alpha naphthyl butyrate esterase, acid phosphatase, Sudan black B, periodic acid-Schiff, and toluidine blue. Results - 6 types of WBC were identified: lymphocytes, monocytes, thrombocytes, heterophils, basophils, and eosinophils (small and large). Morphologic characteristics of mononuclear cells and most granulocytes were similar to those of cells from other reptiles except that green turtles have both large and small eosinophils. Conclusions - Our classification of green turtle blood cells clarifies imporoper nomenclature reported previously and provides a reference for future hematologic studies in this species.

  18. Captive sea turtle rearing inventory, feeding, and water chemistry in sea turtle rearing tanks at NOAA Galveston 1995-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The database contains daily records of sea turtle inventories by species feeding rates type of food fed sick sea turtles sea turtles that have died log of tanks...

  19. Specific accumulation of arsenic compounds in green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Ishigaki Island, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Agusa, Tetsuro; Takagi, Kozue [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan); Kubota, Reiji [Division of Environmental Chemistry, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501 (Japan); Anan, Yasumi [Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Iwata, Hisato [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan); Tanabe, Shinsuke [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan)], E-mail: shinsuke@agr.ehime-u.ac.jp

    2008-05-15

    Concentrations of total arsenic (As) and individual compounds were determined in green and hawksbill turtles from Ishigaki Island, Japan. In both species, total As concentrations were highest in muscle among the tissues. Arsenobetaine was a major compound in most tissues of both turtles. High concentrations of trimethylarsine oxide were detected in hawksbill turtles. A significant negative correlation between standard carapace length (SCL), an indicator of age, and total As levels in green turtles was found. In contrast, the levels increased with SCL of hawksbill turtles. Shifts in feeding habitats with growth may account for such a growth-dependent accumulation of As. Although concentrations of As in marine sponges, the major food of hawksbill turtles are not high compared to those in algae eaten by green turtles, As concentrations in hawksbill turtles were higher than those in green turtles, indicating that hawksbill turtles may have a specific accumulation mechanism for As. - Green turtles and hawksbill turtles have specific accumulation features of arsenic.

  20. Notes upon some Sea Turtles

    NARCIS (Netherlands)

    Brongersma, L.D.

    1961-01-01

    In recent years much attention is being paid to marine turtles, and it is the merit of Deraniyagala, Carr, and others to have contributed much to our knowledge of this group. Nevertheless, our knowledge of the species and subspecies that may be recognized, and that of their distribution is as yet fa

  1. Geomagnetic Navigation in Sea Turtles

    Science.gov (United States)

    Lohmann, K.; Putman, N.; Lohmann, C.

    2011-12-01

    Young loggerhead sea turtles (Caretta caretta) from eastern Florida undertake a transoceanic migration in which they gradually circle the north Atlantic Ocean before returning to the North American coast. Newly hatched turtles (hatchlings) begin the migration with a 'magnetic map' in which regional magnetic fields function as navigational markers and elicit changes in swimming direction at crucial geographic boundaries. In laboratory experiments, young turtles that had never before been in the ocean were exposed to fields like those that exist at various, widely separated locations along their transoceanic migratory route. Turtles responded by swimming in directions that would, in each case, help them remain within the North Atlantic gyre currents and advance along the migratory pathway. The results demonstrate that turtles can derive both longitudinal and latitudinal information from the Earth's field, and provide strong evidence that hatchling loggerheads inherit a remarkably elaborate set of responses that function in guiding them along their open-sea migratory route. For young sea turtles, couplings of oriented swimming to regional magnetic fields appear to provide the fundamental building blocks from which natural selection can sculpt a sequence of responses capable of guiding first-time ocean migrants along complex migratory routes. The results imply that hatchlings from different populations in different parts of the world are likely to have magnetic navigational responses uniquely suited for the migratory routes that each group follows. Thus, from a conservation perspective, turtles from different populations are not interchangeable. From an evolutionary perspective, the responses are not incompatible with either secular variation or magnetic polarity reversals. As Earth's field gradually changes, strong selective pressure presumably acts to maintain an approximate match between the responses of hatchlings and the fields that exist at critical points along

  2. Age and growth determination by skeletochronology in loggerhead sea turtles (Caretta caretta from the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Paolo Casale

    2011-03-01

    Full Text Available Skeletochronology was applied to humerus bones to assess the age and growth rates of loggerhead sea turtles (Caretta caretta in the Mediterranean Sea. Fifty-five dead turtles with curved carapace lengths (CCL ranging from 24 to 86.5 cm were collected from the central Mediterranean. Sections of humeri were histologically processed to analyze annual growth marks. Two approaches were used to estimate the somatic growth in the form of a von Bertalanffy growth function. The first approach was based on calculating the total number of growth marks, which corresponds to the age of turtles at death. The second approach estimates the carapace length at old growth marks in order to provide the growth rate of each turtle. The observed individual growth rates ranged from 1.4 to 6.2 cm yr–1, and showed both elevated inter- and intra-individual variability possibly related to the environmental variability experienced by turtles during their lifetime. Both approaches gave similar results and suggest that Mediterranean loggerhead turtles take 14.9 to 28.5 years to reach a CCL of 66.5 to 84.7 cm. This size corresponds to the average size of nesting females found in the most important Mediterranean nesting sites and can be considered the approximate size at maturity.

  3. Sea Turtle Conservation on Bonaire. Sea Turtle Club Bonaire 1997. Project Report

    NARCIS (Netherlands)

    Schuit, M.; Put, van A.L.L.M.; Valkering, N.P.; Eijck, van T.J.W.

    1998-01-01

    The Sea Turtle Club Bonaire (STCB) is a non-governmental, non-profit organization. Its main goal is the conservation of the sea turtles that occur on Bonaire. To reach this goal, annual projects are undertaken, such as research and the promotion of public awareness on sea turtle conservation. The ST

  4. Sea Turtle Conservation on Bonaire. Sea Turtle Club Bonaire 1997. Project Report

    NARCIS (Netherlands)

    Schuit, M.; Put, van A.L.L.M.; Valkering, N.P.; Eijck, van T.J.W.

    1998-01-01

    The Sea Turtle Club Bonaire (STCB) is a non-governmental, non-profit organization. Its main goal is the conservation of the sea turtles that occur on Bonaire. To reach this goal, annual projects are undertaken, such as research and the promotion of public awareness on sea turtle conservation. The

  5. Sea Turtle Conservation on Bonaire. Sea Turtle Club Bonaire 1997. Project Report

    NARCIS (Netherlands)

    Schuit, M.; Put, van A.L.L.M.; Valkering, N.P.; Eijck, van T.J.W.

    1998-01-01

    The Sea Turtle Club Bonaire (STCB) is a non-governmental, non-profit organization. Its main goal is the conservation of the sea turtles that occur on Bonaire. To reach this goal, annual projects are undertaken, such as research and the promotion of public awareness on sea turtle conservation. The ST

  6. The endoskeletal origin of the turtle carapace.

    Science.gov (United States)

    Hirasawa, Tatsuya; Nagashima, Hiroshi; Kuratani, Shigeru

    2013-01-01

    The turtle body plan, with its solid shell, deviates radically from those of other tetrapods. The dorsal part of the turtle shell, or the carapace, consists mainly of costal and neural bony plates, which are continuous with the underlying thoracic ribs and vertebrae, respectively. Because of their superficial position, the evolutionary origins of these costo-neural elements have long remained elusive. Here we show, through comparative morphological and embryological analyses, that the major part of the carapace is derived purely from endoskeletal ribs. We examine turtle embryos and find that the costal and neural plates develop not within the dermis, but within deeper connective tissue where the rib and intercostal muscle anlagen develop. We also examine the fossils of an outgroup of turtles to confirm that the structure equivalent to the turtle carapace developed independently of the true osteoderm. Our results highlight the hitherto unravelled evolutionary course of the turtle shell.

  7. Novel Bio-Logging Tool for Studying Fine-Scale Behaviors of Marine Turtles in Response to Sound

    Directory of Open Access Journals (Sweden)

    Reny B. Tyson

    2017-07-01

    of the vessel passes. This case study provides proof of concept that ROTAGs can successfully be applied to free-ranging marine turtles to examine their behavioral response to sound. Finally, we discuss the broad applications that these tools have to study the fine-scale behaviors of marine turtles and highlight their use to aid in marine turtle conservation and management.

  8. Status of marine turtle rehabilitation in Queensland

    Science.gov (United States)

    Flint, Mark; Limpus, Colin James; Mills, Paul

    2017-01-01

    Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-year period, 5,022 of these turtles were stranded alive with the remainder verified as dead or of unknown condition. A total of 2,970 (59%) of these live strandings were transported to a rehabilitation facility. Overall, 1,173/2,970 (39%) turtles were released over 18 years, 101 of which were recaptured: 77 reported as restrandings (20 dead, 13 alive subsequently died, 11 alive subsequently euthanized, 33 alive) and 24 recaptured during normal marine turtle population monitoring or fishing activities. Of the turtles admitted to rehabilitation exhibiting signs of disease, 88% of them died, either unassisted or by euthanasia and 66% of turtles admitted for unknown causes of stranding died either unassisted or by euthanasia. All turtles recorded as having a buoyancy disorder with no other presenting problem or disorder recorded, were released alive. In Queensland, rehabilitation costs approximately $1,000 per animal per year admitted to a center, $2,583 per animal per year released, and $123,750 per animal per year for marine turtles which are presumably successfully returned to the functional population. This practice may not be economically viable in its present configuration, but may be more cost effective as a mobile response unit. Further there is certainly benefit giving individual turtles a chance at survival and educating the public in the perils facing marine turtles. As well, rehabilitation can provide insight into the diseases and environmental stressors causing

  9. Status of marine turtle rehabilitation in Queensland

    Directory of Open Access Journals (Sweden)

    Jaylene Flint

    2017-03-01

    Full Text Available Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-year period, 5,022 of these turtles were stranded alive with the remainder verified as dead or of unknown condition. A total of 2,970 (59% of these live strandings were transported to a rehabilitation facility. Overall, 1,173/2,970 (39% turtles were released over 18 years, 101 of which were recaptured: 77 reported as restrandings (20 dead, 13 alive subsequently died, 11 alive subsequently euthanized, 33 alive and 24 recaptured during normal marine turtle population monitoring or fishing activities. Of the turtles admitted to rehabilitation exhibiting signs of disease, 88% of them died, either unassisted or by euthanasia and 66% of turtles admitted for unknown causes of stranding died either unassisted or by euthanasia. All turtles recorded as having a buoyancy disorder with no other presenting problem or disorder recorded, were released alive. In Queensland, rehabilitation costs approximately $1,000 per animal per year admitted to a center, $2,583 per animal per year released, and $123,750 per animal per year for marine turtles which are presumably successfully returned to the functional population. This practice may not be economically viable in its present configuration, but may be more cost effective as a mobile response unit. Further there is certainly benefit giving individual turtles a chance at survival and educating the public in the perils facing marine turtles. As well, rehabilitation can provide insight into the diseases and environmental

  10. Associations between Organochlorine Contaminant Concentrations and Clinical Health Parameters in Loggerhead Sea Turtles from North Carolina, USA

    National Research Council Canada - National Science Library

    Jennifer M. Keller; John R. Kucklick; M. Andrew Stamper; Craig A. Harms; Patricia D. McClellan-Green

    2004-01-01

    ...) and pesticides, are known to have broad-ranging toxicities in wildlife. In this study we investigated, for the first time, their possible health effects on loggerhead sea turtles (Caretta caretta...

  11. The Gulf of Manfredonia: a new neritic foraging area for loggerhead sea turtles in the Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Paolo Casale

    2012-07-01

    Full Text Available The Adriatic Sea is an important foraging area for the loggerhead sea turtle, Caretta caretta, but neritic habitats for this species along the Italian coast were identified in the northern shallow area only. The Gulf of Manfredonia is a relatively wide shallow area in the south-west Adriatic and its features and preliminary information make it a potential foraging ground for turtles. In order to assess sea turtle occurrence in the area, we monitored seven bottom trawlers based in the port of Manfredonia during the period Oct 2010 – Jul 2011 through a voluntary logbook programme, resulting in a total of 62 turtle captures during 617 fishing days. Since a turtle capture represents a rare event during such sampling, data were analysed by a zero-inflated Poisson (ZIP model. Results indicate that: (i the Gulf is a neritic foraging ground for loggerhead turtles which occur there with a relatively high density comparable to other Mediterranean foraging grounds, (ii it is frequented by a wide range of size classes, including small juveniles as well as adults, (iii the highest occurrence is during the period Jun-Dec, (iv over 1700 turtle captures occur in the Gulf annually. Preliminary findings about recaptured individuals suggest that part of the turtles are resident in the area. The peculiar features of the Gulf of Manfredonia and the collaboration of the fishing fleet, make it a valuable index site for studying current trends of sea turtle populations at sea as well as other aspects of sea turtle biology and conservation.

  12. Sea Turtles and Strategies for Language Skills.

    Science.gov (United States)

    Tippins, Deborah; And Others

    1993-01-01

    Describes teaching strategies, including science activities, for challenging students' misconceptions about turtles and helping limited-English-proficiency students enhance their language proficiency. (PR)

  13. Modeling neck mobility in fossil turtles.

    Science.gov (United States)

    Werneburg, Ingmar; Hinz, Juliane K; Gumpenberger, Michaela; Volpato, Virginie; Natchev, Nikolay; Joyce, Walter G

    2015-05-01

    Turtles have the unparalleled ability to retract their heads and necks within their shell but little is known about the evolution of this trait. Extensive analysis of neck mobility in turtles using radiographs, CT scans, and morphometry reveals that basal turtles possessed less mobility in the neck relative to their extant relatives, although the anatomical prerequisites for modern mobility were already established. Many extant turtles are able to achieve hypermobility by dislocating the central articulations, which raises cautions about reconstructing the mobility of fossil vertebrates. A 3D-model of the Late Triassic turtle Proganochelys quenstedti reveals that this early stem turtle was able to retract its head by tucking it sideways below the shell. The simple ventrolateral bend seen in this stem turtle, however, contrasts with the complex double-bend of extant turtles. The initial evolution of neck retraction therefore occurred in a near-synchrony with the origin of the turtle shell as a place to hide the unprotected neck. In this early, simplified retraction mode, the conical osteoderms on the neck provided further protection. © 2014 Wiley Periodicals, Inc.

  14. Mass poisoning after consumption of a hawksbill turtle, Federated States of Micronesia, 2010

    Directory of Open Access Journals (Sweden)

    Boris Pavlin

    2015-01-01

    Full Text Available Background: Marine turtles of all species are capable of being toxic. On 17 October 2010, health authorities in the Federated States of Micronesia were notified of the sudden death of three children and the sickening of approximately 20 other people on Murilo Atoll in Chuuk State. The illnesses were suspected to be the result of mass consumption of a hawksbill turtle (Eretmochelys imbricata. An investigation team was assembled to confirm the cause of the outbreak, describe the epidemiology of cases and provide recommendations for control. Methods: We conducted chart reviews, interviewed key informants, collected samples for laboratory analysis, performed environmental investigations and conducted a cohort study. Results: Four children and two adults died in the outbreak and 95 others were sickened; 84% of those who ate the turtle became ill (n = 101. The relative risk for developing illness after consuming the turtle was 11.1 (95% confidence inteval: 4.8–25.9; there was a dose-dependent relationship between amount of turtle meat consumed and risk of illness. Environmental and epidemiological investigations revealed no alternative explanation for the mass illness. Laboratory testing failed to identify a causative agent. Conclusion: We concluded that turtle poisoning (also called chelonitoxism was the cause of the outbreak on Murilo. The range of illness described in this investigation is consistent with previously reported cases of chelonitoxism. This devastating incident highlights the dangers, particularly to children, of consuming turtle meat. Future incidents are certain to occur unless action is taken to alter turtle-eating behaviour in coastal communities throughout the world.

  15. Application of topography survey on the green sea turtle (Chelonia mydas) conservation

    Science.gov (United States)

    Fan, Yuan-Yu; Lo, Liu-Chih; Peng, Kuan-Chieh

    2017-04-01

    Taiwan is located in the Western Pacific monsoon region, typhoon is one of the common natural disasters. Taiwan is hit by typhoons 6 times on average each year, and 2016 have 5. Typhoon not only caused the loss of nature environment in Taiwan but also decreased the endangered species- green sea turtle's breeding success rate. In Wangan island, Penghu, green sea turtle nesting beach's slop is too steep to form the dune cliff, block the way which green sea turtle should nesting above the vegetation line. Nesting under the dune cliff is disturbed easily by the swell from typhoon, Leading to the whole nest was emptied or hatching rate decreased due to water content changed. In order to reduce the threat of typhoon on the green sea turtle, and promote the success of green sea turtle reproduction, we used LiDAR(Light Detection And Ranging) to monitor the topographic change of the green sea turtle nesting habitat and compare the invasion and deposition of the green sea turtle nests before and after the occurrence of typhoons. The results showed that the breeding success rate before the typhoon (2016/09/12) was 93%, which was not affected by the swell. The breeding success rate at the higher position after the typhoon was 95%, and under the dune cliff, 10 nests reproduction failed due to the swell changing the sand layer thickness. The production of dune cliffs is formed by the roots of coastal sand-fixation plants. In the past, the residents collected the coastal plants for fuel, after collecting, sparse vegetation is good to form the flat beach, and to promote green sea turtle nesting on the higher position from the disturbance of typhoon. In the future, to protect the success of green sea turtle's reproduction, should increase the human intervention that disturb the nesting beach's vegetation appropriately, Or cutting the roots directly to reduce the dune cliffs before the nesting season, help the green sea turtle nesting in a higher beach, improve the green sea turtle

  16. Resident areas and migrations of female green turtles nesting at Buck Island Reef National Monument, St. Croix, U.S. Virgin Islands

    Science.gov (United States)

    Hart, Kristen M.; Iverson, Autumn; Benscoter, Allison M.; Fujisaki, Ikuko; Cherkiss, Michael S.; Pollock, Clayton; Lundgren, Ian; Hillis-Starr, Zandy

    2017-01-01

    Satellite tracking in marine turtle studies can reveal much about their spatial use of breeding areas, migration zones, and foraging sites. We assessed spatial habitat-use patterns of 10 adult female green turtles (Chelonia mydas) nesting at Buck Island Reef National Monument, U.S. Virgin Islands (BIRNM) from 2011 – 2014. Turtles ranged in size from 89.0 – 115.9 cm CCL (mean + SD = 106.8 + 7.7 cm). The inter-nesting period across all turtles ranged from 31 July to 4 November, and sizes of the 50% core-use areas during inter-nesting ranged from 4.2 – 19.0 km2. Inter-nesting core-use areas were located up to1.4 km from shore and had bathymetry values ranging from -17.0 to -13.0 m. Seven of the ten turtles remained locally resident after the nesting season. Five turtles (50%) foraged around Buck Island, two foraged around the island of St. Croix, and the other three (30%) made longer-distance migrations to Antigua, St. Kitts & Nevis, and Venezuela. Further, five turtles had foraging centroids within protected areas. Delineating spatial areas and identifying temporal periods of nearshore habitat-use can be useful for natural resource managers with responsibility for overseeing vulnerable habitats and protected marine turtle populations.

  17. A quantitative analysis of the state of knowledge of turtles of the United States and Canada

    Science.gov (United States)

    Lovich, Jeffrey E.; Ennen, Joshua R.

    2013-01-01

    The “information age” ushered in an explosion of knowledge and access to knowledge that continues to revolutionize society. Knowledge about turtles, as measured by number of published papers, has been growing at an exponential rate since the early 1970s, a phenomenon mirrored in all scientific disciplines. Although knowledge about turtles, as measured by number of citations for papers in scientific journals, has been growing rapidly, this taxonomic group remains highly imperiled suggesting that knowledge is not always successfully translated into effective conservation of turtles. We reviewed the body of literature on turtles of the United States and Canada and found that: 1) the number of citations is biased toward large-bodied species, 2) the number of citations is biased toward wide-ranging species, and 3) conservation status has little effect on the accumulation of knowledge for a species, especially after removing the effects of body size or range size. The dispersion of knowledge, measured by Shannon Weiner diversity and evenness indices across species, was identical from 1994 to 2009 suggesting that poorly studied species remained poorly-studied species while well-studied species remained well studied. Several species listed as threatened or endangered under the U.S. Endangered Species Act (e.g., Pseudemys alabamensis, Sternotherus depressus, and Graptemys oculifera) remain poorly studied with the estimated number of citations for each ranging from only 13-24. The low number of citations for these species could best be explained by their restricted distribution and/or their smaller size. Despite the exponential increase in knowledge of turtles in the United States and Canada, no species of turtle listed under the Endangered Species Act has ever been delisted for reason of recovery. Therefore, increased knowledge does not necessarily contribute appreciably to recovery of threatened turtles.

  18. Multinational Tagging Efforts Illustrate Regional Scale of Distribution and Threats for East Pacific Green Turtles (Chelonia mydas agassizii)

    Science.gov (United States)

    Hart, Catherine E.; Blanco, Gabriela S.; Coyne, Michael S.; Delgado-Trejo, Carlos; Godley, Brendan J.; Jones, T. Todd; Resendiz, Antonio; Seminoff, Jeffrey A.; Witt, Matthew J.; Nichols, Wallace J.

    2015-01-01

    To further describe movement patterns and distribution of East Pacific green turtles (Chelonia mydas agassizii) and to determine threat levels for this species within the Eastern Pacific. In order to do this we combined published data from existing flipper tagging and early satellite tracking studies with data from an additional 12 satellite tracked green turtles (1996-2006). Three of these were tracked from their foraging grounds in the Gulf of California along the east coast of the Baja California peninsula to their breeding grounds in Michoacán (1337-2928 km). In addition, three post-nesting females were satellite tracked from Colola beach, Michoacán to their foraging grounds in southern Mexico and Central America (941.3-3020 km). A further six turtles were tracked in the Gulf of California within their foraging grounds giving insights into the scale of ranging behaviour. Turtles undertaking long-distance migrations showed a tendency to follow the coastline. Turtles tracked within foraging grounds showed that foraging individuals typically ranged up to 691.6 km (maximum) from release site location. Additionally, we carried out threat analysis (using the cumulative global human impact in the Eastern Pacific) clustering pre-existing satellite tracking studies from Galapagos, Costa Rica, and data obtained from this study; this indicated that turtles foraging and nesting in Central American waters are subject to the highest anthropogenic impact. Considering that turtles from all three rookeries were found to migrate towards Central America, it is highly important to implement conservation plans in Central American coastal areas to ensure the survival of the remaining green turtles in the Eastern Pacific. Finally, by combining satellite tracking data from this and previous studies, and data of tag returns we created the best available distributional patterns for this particular sea turtle species, which emphasized that conservation measures in key areas may have

  19. Multinational tagging efforts illustrate regional scale of distribution and threats for east pacific green turtles (Chelonia mydas agassizii).

    Science.gov (United States)

    Hart, Catherine E; Blanco, Gabriela S; Coyne, Michael S; Delgado-Trejo, Carlos; Godley, Brendan J; Jones, T Todd; Resendiz, Antonio; Seminoff, Jeffrey A; Witt, Matthew J; Nichols, Wallace J

    2015-01-01

    To further describe movement patterns and distribution of East Pacific green turtles (Chelonia mydas agassizii) and to determine threat levels for this species within the Eastern Pacific. In order to do this we combined published data from existing flipper tagging and early satellite tracking studies with data from an additional 12 satellite tracked green turtles (1996-2006). Three of these were tracked from their foraging grounds in the Gulf of California along the east coast of the Baja California peninsula to their breeding grounds in Michoacán (1337-2928 km). In addition, three post-nesting females were satellite tracked from Colola beach, Michoacán to their foraging grounds in southern Mexico and Central America (941.3-3020 km). A further six turtles were tracked in the Gulf of California within their foraging grounds giving insights into the scale of ranging behaviour. Turtles undertaking long-distance migrations showed a tendency to follow the coastline. Turtles tracked within foraging grounds showed that foraging individuals typically ranged up to 691.6 km (maximum) from release site location. Additionally, we carried out threat analysis (using the cumulative global human impact in the Eastern Pacific) clustering pre-existing satellite tracking studies from Galapagos, Costa Rica, and data obtained from this study; this indicated that turtles foraging and nesting in Central American waters are subject to the highest anthropogenic impact. Considering that turtles from all three rookeries were found to migrate towards Central America, it is highly important to implement conservation plans in Central American coastal areas to ensure the survival of the remaining green turtles in the Eastern Pacific. Finally, by combining satellite tracking data from this and previous studies, and data of tag returns we created the best available distributional patterns for this particular sea turtle species, which emphasized that conservation measures in key areas may have

  20. Multinational tagging efforts illustrate regional scale of distribution and threats for east pacific green turtles (Chelonia mydas agassizii.

    Directory of Open Access Journals (Sweden)

    Catherine E Hart

    Full Text Available To further describe movement patterns and distribution of East Pacific green turtles (Chelonia mydas agassizii and to determine threat levels for this species within the Eastern Pacific. In order to do this we combined published data from existing flipper tagging and early satellite tracking studies with data from an additional 12 satellite tracked green turtles (1996-2006. Three of these were tracked from their foraging grounds in the Gulf of California along the east coast of the Baja California peninsula to their breeding grounds in Michoacán (1337-2928 km. In addition, three post-nesting females were satellite tracked from Colola beach, Michoacán to their foraging grounds in southern Mexico and Central America (941.3-3020 km. A further six turtles were tracked in the Gulf of California within their foraging grounds giving insights into the scale of ranging behaviour. Turtles undertaking long-distance migrations showed a tendency to follow the coastline. Turtles tracked within foraging grounds showed that foraging individuals typically ranged up to 691.6 km (maximum from release site location. Additionally, we carried out threat analysis (using the cumulative global human impact in the Eastern Pacific clustering pre-existing satellite tracking studies from Galapagos, Costa Rica, and data obtained from this study; this indicated that turtles foraging and nesting in Central American waters are subject to the highest anthropogenic impact. Considering that turtles from all three rookeries were found to migrate towards Central America, it is highly important to implement conservation plans in Central American coastal areas to ensure the survival of the remaining green turtles in the Eastern Pacific. Finally, by combining satellite tracking data from this and previous studies, and data of tag returns we created the best available distributional patterns for this particular sea turtle species, which emphasized that conservation measures in key

  1. Sea turtles: old viruses and new tricks.

    Science.gov (United States)

    Jones, Adam G

    2004-10-05

    Recent years have seen an inexplicable increase in the frequency of an appalling disease in sea turtles: fibropapillomatosis, which is likely caused by a herpesvirus and causes tumors to grow throughout the turtle's body. New research has led to the disturbing conclusion that recent, human-induced environmental changes are responsible.

  2. Dune vegetation fertilization by nesting sea turtles.

    Science.gov (United States)

    Hannan, Laura B; Roth, James D; Ehrhart, Llewellyn M; Weishampel, John F

    2007-04-01

    Sea turtle nesting presents a potential pathway to subsidize nutrient-poor dune ecosystems, which provide the nesting habitat for sea turtles. To assess whether this positive feedback between dune plants and turtle nests exists, we measured N concentration and delta15N values in dune soils, leaves from a common dune plant (sea oats [Uniola paniculata]), and addled eggs of loggerhead (Caretta caretta) and green turtles (Chelonia mydas) across a nesting gradient (200-1050 nests/km) along a 40.5-km stretch of beach in east central Florida, USA. The delta15N levels were higher in loggerhead than green turtle eggs, denoting the higher trophic level of loggerhead turtles. Soil N concentration and delta15N values were both positively correlated to turtle nest density. Sea oat leaf tissue delta15N was also positively correlated to nest density, indicating an increased use of augmented marine-based nutrient sources. Foliar N concentration was correlated with delta15N, suggesting that increased nutrient availability from this biogenic vector may enhance the vigor of dune vegetation, promoting dune stabilization and preserving sea turtle nesting habitat.

  3. Solitary Large Intestinal Diverticulitis in Leatherback Turtles (Dermochelys coriacea).

    Science.gov (United States)

    Stacy, B A; Innis, C J; Daoust, P-Y; Wyneken, J; Miller, M; Harris, H; James, M C; Christiansen, E F; Foley, A

    2015-07-01

    Leatherback sea turtles are globally distributed and endangered throughout their range. There are limited data available on disease in this species. Initial observations of solitary large intestinal diverticulitis in multiple leatherbacks led to a multi-institutional review of cases. Of 31 subadult and adult turtles for which complete records were available, all had a single exudate-filled diverticulum, as large as 9.0 cm in diameter, arising from the large intestine immediately distal to the ileocecal junction. All lesions were chronic and characterized by ongoing inflammation, numerous intralesional bacteria, marked attenuation of the muscularis, ulceration, and secondary mucosal changes. In three cases, Morganella morganii was isolated from lesions. Diverticulitis was unrelated to the cause of death in all cases, although risk of perforation and other complications are possible.

  4. Hearing in the Juvenile Green Sea Turtle (Chelonia mydas): A Comparison of Underwater and Aerial Hearing Using Auditory Evoked Potentials.

    Science.gov (United States)

    Piniak, Wendy E D; Mann, David A; Harms, Craig A; Jones, T Todd; Eckert, Scott A

    2016-01-01

    Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas) by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2-39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment.

  5. Hearing in the Juvenile Green Sea Turtle (Chelonia mydas): A Comparison of Underwater and Aerial Hearing Using Auditory Evoked Potentials

    Science.gov (United States)

    Piniak, Wendy E. D.; Mann, David A.; Harms, Craig A.; Jones, T. Todd; Eckert, Scott A.

    2016-01-01

    Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas) by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2–39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment. PMID:27741231

  6. Effect of thermal acclimation on thermal preference, resistance and locomotor performance of hatchling soft-shelled turtle

    Directory of Open Access Journals (Sweden)

    Mei-Xian WU,Ling-Jun HU, Wei DANG, Hong-Liang LU, Wei-Guo DU

    2013-12-01

    Full Text Available The significant influence of thermal acclimation on physiological and behavioral performance has been documented in many ectothermic animals, but such studies are still limited in turtle species. We acclimated hatchling soft-shelled turtles Pelodiscus sinensis under three thermal conditions (10, 20 and 30 °C for 4 weeks, and then measured selected body temperature (Tsel, critical thermal minimum (CTMin and maximum (CTMax, and locomotor performance at different body temperatures. Thermal acclimation significantly affected thermal preference and resistance of P. sinensis hatchlings. Hatchling turtles acclimated to 10 °C selected relatively lower body temperatures and were less resistant to high temperatures than those acclimated to 20 °C and 30 °C. The turtles’ resistance to low temperatures increased with a decreasing acclimation temperature. The thermal resistance range (i.e. the difference between CTMax and CTMin, TRR was widest in turtles acclimated to 20 °C, and narrowest in those acclimated to 10 °C. The locomotor performance of turtles was affected by both body temperature and acclimation temperature. Hatchling turtles acclimated to relatively higher temperatures swam faster than did those acclimated to lower temperatures. Accordingly, hatchling turtles acclimated to a particular temperature may not enhance the performance at that temperature. Instead, hatchlings acclimated to relatively warm temperatures have a better performance, supporting the “hotter is better” hypothesis [Current Zoology 59 (6 : 718–724, 2013 ].

  7. Free-living turtles are a reservoir for Salmonella but not for Campylobacter.

    Science.gov (United States)

    Marin, Clara; Ingresa-Capaccioni, Sofia; González-Bodi, Sara; Marco-Jiménez, Francisco; Vega, Santiago

    2013-01-01

    Different studies have reported the prevalence of Salmonella in turtles and its role in reptile-associated salmonellosis in humans, but there is a lack of scientific literature related with the epidemiology of Campylobacter in turtles. The aim of this study was to evaluate the prevalence of Campylobacter and Salmonella in free-living native (Emys orbicularis, n=83) and exotic (Trachemysscripta elegans, n=117) turtles from 11 natural ponds in Eastern Spain. In addition, different types of samples (cloacal swabs, intestinal content and water from Turtle containers) were compared. Regardless of the turtle species, natural ponds where individuals were captured and the type of sample taken, Campylobacter was not detected. Salmonella was isolated in similar proportions in native (8.0 ± 3.1%) and exotic (15.0 ± 3.3%) turtles (p=0.189). The prevalence of Salmonella positive turtles was associated with the natural ponds where animals were captured. Captured turtles from 8 of the 11 natural ponds were positive, ranged between 3.0 ± 3.1% and 60.0 ± 11.0%. Serotyping revealed 8 different serovars among four Salmonella enterica subspecies: S. enterica subsp. enterica (n = 21), S. enterica subsp. salamae (n = 2), S. enterica subsp. diarizonae (n = 3), and S. enterica subsp. houtenae (n = 1). Two serovars were predominant: S. Thompson (n=16) and S. typhimurium (n=3). In addition, there was an effect of sample type on Salmonella detection. The highest isolation of Salmonella was obtained from intestinal content samples (12.0 ± 3.0%), while lower percentages were found for water from the containers and cloacal swabs (8.0 ± 2.5% and 3.0 ± 1.5%, respectively). Our results imply that free-living turtles are a risk factor for Salmonella transmission, but do not seem to be a reservoir for Campylobacter. We therefore rule out turtles as a risk factor for human campylobacteriosis. Nevertheless, further studies should be undertaken in other countries to confirm these results.

  8. Gastrointestinal helminth community of loggerhead sea turtle Caretta caretta in the Adriatic Sea.

    Science.gov (United States)

    Gračan, Romana; Buršić, Moira; Mladineo, Ivona; Kučinić, Mladen; Lazar, Bojan; Lacković, Gordana

    2012-07-25

    We analysed the intestinal helminth community of 70 loggerhead sea turtles Caretta caretta with a curved carapace length ranging from 25 to 85.4 cm, recovered dead in neritic foraging habitats in the Adriatic Sea in 1995 to 2004. The overall prevalence of infection was high (70.0%), with a mean abundance of 36.8 helminth parasites per turtle. Helminth fauna comprised 5 trematodes (Calycodes anthos, Enodiotrema megachondrus, Orchidasma amphiorchis, Pachypsolus irroratus, Rhytidodes gelatinosus) and 3 nematodes (Sulcascaris sulcata, Anisakis spp., Hysterothylacium sp.), with 6 taxa specific for marine turtles. In terms of infection intensity and parasite abundance, O. amphiorchis was the dominant species (mean intensity: 49.8; mean abundance: 12.8), followed by R. gelatinosus (30.5 and 8.3, respectively) and P. irroratus (23.5 and 7.0, respectively), while larval Anisakis spp. exhibited the highest prevalence (34.3%). The intensity of helminth infection ranged from 1 to 302 (mean: 52.6 ± 69.1) and was not correlated with the size of turtles; this relationship held for all species, except R. gelatinosus (rS = 0.556, p sea turtles in recruited neritic grounds and the diversity of their benthic prey.

  9. Disseminated mycobacteriosis in a stranded loggerhead sea turtle (Caretta caretta).

    Science.gov (United States)

    Nardini, Giordano; Florio, Daniela; Di Girolamo, Nicola; Gustinelli, Andrea; Quaglio, Francesco; Fiorentini, Laura; Leopardi, Stefania; Fioravanti, Maria Letizia

    2014-06-01

    A loggerhead sea turtle (Caretta caretta) was found stranded alive along the Adriatic coast close to Ancona, Italy, displaying obtundation, tachypnea, and increased respiratory effort. It died a few hours after admission, and a postmortem examination was immediately performed. Miliary yellowish nodules were evident in the liver, and a lower number in the heart, stomach, and gut wall. Hundreds of whitish nodules were scattered in the lungs, with the majority of the pulmonary parenchyma being replaced by the lesions. Histologically, all nodular lesions consisted of a small central area of necrosis with acid-fast bacilli surrounded by epithelioid cells, macrophages, and lymphocytes. Giant cells were found in the spleen and the liver. Kidneys, lungs, liver, spleen, brain, and skin lesions were inoculated aseptically onto general isolation media and selective isolation media for mycobacteria. The isolate showed a restriction pattern identical to Mycobacterium chelonae by polymerase chain reaction-restriction fragment length polymorphism. To the best of the authors' knowledge, this is the first description of a disseminated infection caused by a potentially pathogenic mycobacteria in a stranded, free-ranging loggerhead sea turtle. Veterinary staff and biologists who handle sea turtles with suspected mycobacterial disease should protect themselves appropriately.

  10. The head and neck anatomy of sea turtles (Cryptodira: Chelonioidea and skull shape in Testudines.

    Directory of Open Access Journals (Sweden)

    Marc E H Jones

    Full Text Available BACKGROUND: Sea turtles (Chelonoidea are a charismatic group of marine reptiles that occupy a range of important ecological roles. However, the diversity and evolution of their feeding anatomy remain incompletely known. METHODOLOGY/PRINCIPAL FINDINGS: Using computed tomography and classical comparative anatomy we describe the cranial anatomy in two sea turtles, the loggerhead (Caretta caretta and Kemp's ridley (Lepidochelys kempii, for a better understanding of sea turtle functional anatomy and morphological variation. In both taxa the temporal region of the skull is enclosed by bone and the jaw joint structure and muscle arrangement indicate that palinal jaw movement is possible. The tongue is relatively small, and the hyoid apparatus is not as conspicuous as in some freshwater aquatic turtles. We find several similarities between the muscles of C. caretta and L. kempii, but comparison with other turtles suggests only one of these characters may be derived: connection of the m. adductor mandibulae internus into the Pars intramandibularis via the Zwischensehne. The large fleshy origin of the m. adductor mandibulae externus Pars superficialis from the jugal seems to be a characteristic feature of sea turtles. CONCLUSIONS/SIGNIFICANCE: In C. caretta and L. kempii the ability to suction feed does not seem to be as well developed as that found in some freshwater aquatic turtles. Instead both have skulls suited to forceful biting. This is consistent with the observation that both taxa tend to feed on relatively slow moving but sometimes armoured prey. The broad fleshy origin of the m. adductor mandibulae externus Pars superficialis may be linked to thecheek region being almost fully enclosed in bone but the relationship is complex.

  11. Evolutionary origin of the turtle skull.

    Science.gov (United States)

    Bever, G S; Lyson, Tyler R; Field, Daniel J; Bhullar, Bhart-Anjan S

    2015-09-10

    Transitional fossils informing the origin of turtles are among the most sought-after discoveries in palaeontology. Despite strong genomic evidence indicating that turtles evolved from within the diapsid radiation (which includes all other living reptiles), evidence of the inferred transformation between an ancestral turtle with an open, diapsid skull to the closed, anapsid condition of modern turtles remains elusive. Here we use high-resolution computed tomography and a novel character/taxon matrix to study the skull of Eunotosaurus africanus, a 260-million-year-old fossil reptile from the Karoo Basin of South Africa, whose distinctive postcranial skeleton shares many unique features with the shelled body plan of turtles. Scepticism regarding the status of Eunotosaurus as the earliest stem turtle arises from the possibility that these shell-related features are the products of evolutionary convergence. Our phylogenetic analyses indicate strong cranial support for Eunotosaurus as a critical transitional form in turtle evolution, thus fortifying a 40-million-year extension to the turtle stem and moving the ecological context of its origin back onto land. Furthermore, we find unexpected evidence that Eunotosaurus is a diapsid reptile in the process of becoming secondarily anapsid. This is important because categorizing the skull based on the number of openings in the complex of dermal bone covering the adductor chamber has long held sway in amniote systematics, and still represents a common organizational scheme for teaching the evolutionary history of the group. These discoveries allow us to articulate a detailed and testable hypothesis of fenestral closure along the turtle stem. Our results suggest that Eunotosaurus represents a crucially important link in a chain that will eventually lead to consilience in reptile systematics, paving the way for synthetic studies of amniote evolution and development.

  12. Cooperative Marine Turtle Tagging Program sea turtle tagging records on rehabilitated and released sea turtles from NOAA Galveston

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The database is a summary of records of: sea turtle size tags applied release and capture location are summarized in this database which is derived from paper data...

  13. Multi-scale hierarchy of Chelydra serpentina: microstructure and mechanical properties of turtle shell.

    Science.gov (United States)

    Balani, Kantesh; Patel, Riken R; Keshri, Anup K; Lahiri, Debrupa; Agarwal, Arvind

    2011-10-01

    Carapace, the protective shell of a freshwater snapping turtle, Chelydra serpentina, shields them from ferocious attacks of their predators while maintaining light-weight and agility for a swim. The microstructure and mechanical properties of the turtle shell are very appealing to materials scientists and engineers for bio-mimicking, to obtain a multi-functional surface. In this study, we have elucidated the complex microstructure of a dry Chelydra serpentina's shell which is very similar to a multi-layered composite structure. The microstructure of a turtle shell's carapace elicits a sandwich structure of waxy top surface with a harder sub-surface layer serving as a shielding structure, followed by a lamellar carbonaceous layer serving as shock absorber, and the inner porous matrix serves as a load-bearing scaffold while acting as reservoir of retaining water and nutrients. The mechanical properties (elastic modulus and hardness) of various layers obtained via nanoindentation corroborate well with the functionality of each layer. Elastic modulus ranged between 0.47 and 22.15 GPa whereas hardness varied between 53.7 and 522.2 MPa depending on the microstructure of the carapace layer. Consequently, the modulus of each layer was represented into object oriented finite element (OOF2) modeling towards extracting the overall effective modulus of elasticity (~4.75 GPa) of a turtle's carapace. Stress distribution of complex layered structure was elicited with an applied strain of 1% in order to understand the load sharing of various composite layers in the turtle's carapace.

  14. Causes of mortality in green turtles from Hawaii and the insular Pacific exclusive of fibropapillomatosis.

    Science.gov (United States)

    Work, Thierry M; Balazs, George H; Summers, Tammy M; Hapdei, Jessy R; Tagarino, Alden P

    2015-07-23

    Fibropapillomatosis (FP) comprises a majority of green turtle stranding in Hawaii; however, green turtles in the Pacific are also susceptible to non-FP related causes of death. We present here necropsy findings from 230 free-ranging green turtles originating from Hawaii, the Mariana archipelago, Palmyra Atoll, American Samoa, and Johnston Atoll that died from non-FP related causes. Most turtles died from fishing-induced or boat strike trauma followed by infectious/inflammatory diseases, nutritional problems (mainly cachexia), and an array of physiologic problems. Infectious/inflammatory problems included bacterial diseases of the lungs, eyes, liver or intestines, spirorchid fluke infection, or polyarthritis of unknown origin. Likelihood of a successful diagnosis of cause of death was a function of post-mortem decomposition. Fibropapillomatosis was not seen in turtles submitted from outside Hawaii. The preponderance of anthropogenic causes of mortality offers some management opportunities to mitigate causes of death in these animals by, for example, implementing measures to decrease boating and fishing interactions.

  15. Causes of mortality in green turtles from Hawaii and the insular Pacific exclusive of fibropapillomatosis

    Science.gov (United States)

    Work, Thierry M.; Balazs, George H.; Summers, Tammy M.; Hapdei, Jessy R.; Tagarino, Alden P.

    2015-01-01

    Fibropapillomatosis (FP) comprises a majority of green turtle stranding in Hawaii; however, green turtles in the Pacific are also susceptible to non-FP related causes of death. We present here necropsy findings from 230 free-ranging green turtles originating from Hawaii, the Mariana archipelago, Palmyra Atoll, American Samoa, and Johnston Atoll that died from non-FP related causes. Most turtles died from fishing-induced or boat strike trauma followed by infectious/inflammatory diseases, nutritional problems (mainly cachexia), and an array of physiologic problems. Infectious/inflammatory problems included bacterial diseases of the lungs, eyes, liver or intestines, spirorchid fluke infection, or polyarthritis of unknown origin. Likelihood of a successful diagnosis of cause of death was a function of post-mortem decomposition. Fibropapillomatosis was not seen in turtles submitted from outside Hawaii. The preponderance of anthropogenic causes of mortality offers some management opportunities to mitigate causes of death in these animals by, for example, implementing measures to decrease boating and fishing interactions.

  16. Adult loggerhead turtle size, age, stage duration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study involves analysis of skeletal growth marks in humerus bones of 313 loggerhead sea turtles (Caretta caretta) stranded dead along the Atlantic US coast...

  17. Leatherback sea turtle age and growth

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study involves analysis of skeletal growth marks in scleral ossicle bones of 33 leatherback sea turtles stranded dead along the Atlantic and Gulf of Mexico US...

  18. Nesting Loggerhead Sea Turtle Activity Report 2001

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This paper presents results from the 9th Annual Study (using Army Corp of Engineers funds) of nesting by the Atlantic loggerhead sea turtle (Caretta caretta) along...

  19. Nesting Loggerhead Sea Turtle Activity Report 1998

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This paper presents results from the sixth annual study of nesting along the Atlantic Oceanfront by the loggerhead sea turtle (Caretta carettd) in Virginia Beach,...

  20. Green sea turtle age, growth, population characteristics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Morphology, sex ratio, body condition, disease status, age structure, and growth patterns were characterized for 448 green sea turtles cold stunned in St. Joseph...

  1. Loggerhead Sea Turtle Egg Transplant Program

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The 10th year of the Loggerhead Sea Turtle Egg Transplant Program has just concluded with a much lower hatching success than anticipated. Eggs were transferred from...

  2. The diamondback terrapin: The biology, ecology, cultural history, and conservation status of an obligate estuarine turtle

    Science.gov (United States)

    Hart, K.M.; Lee, D.S.; ,

    2006-01-01

    Ranging from Cape Cod to nearly the Texas-Mexico border, the diamondback terrapin (Malaclemys terrapin) is the only species of North American turtle restricted to estuarine systems. Despite this extensive distribution, its zone of occurrence is very linear, and in places fragmented, resulting in a relatively small total area of occupancy. On a global scale, excluding marine species, few turtles even venture into brackish water on a regular basis, and only two Asian species approach the North American terrapin's dependency on estuarine habitats. Here we describe some of the biological and behavioral adaptations of terrapins that allow them to live in the rather harsh estuarine environment. In this chapter we review the natural and cultural history of this turtle, discuss conservation issues, and provide information on the types of research needed to make sound management decisions for terrapin populations in peril.

  3. Shifting the life-history paradigm: discovery of novel habitat use by hawksbill turtles

    Science.gov (United States)

    Gaos, Alexander R.; Lewison, Rebecca L.; Yañez, Ingrid L.; Wallace, Bryan P.; Liles, Michael J.; Nichols, Wallace J.; Baquero, Andres; Hasbún, Carlos R.; Vasquez, Mauricio; Urteaga, José; Seminoff, Jeffrey A.

    2012-01-01

    Adult hawksbill turtles (Eretmochelys imbricata) are typically described as open-coast, coral reef and hard substrate dwellers. Here, we report new satellite tracking data on female hawksbills from several countries in the eastern Pacific that revealed previously undocumented behaviour for adults of the species. In contrast to patterns of habitat use exhibited by their Caribbean and Indo-Pacific counterparts, eastern Pacific hawksbills generally occupied inshore estuaries, wherein they had strong associations with mangrove saltwater forests. The use of inshore habitats and affinities with mangrove saltwater forests presents a previously unknown life-history paradigm for adult hawksbill turtles and suggests a potentially unique evolutionary trajectory for the species. Our findings highlight the variability in life-history strategies that marine turtles and other wide-ranging marine wildlife may exhibit among ocean regions, and the importance of understanding such disparities from an ecological and management perspective. PMID:21880620

  4. Determining organochlorine pesticides in samples of green sea turtles by QuEChERS approach

    Directory of Open Access Journals (Sweden)

    Angélica María Sánchez-Sarmiento

    2016-04-01

    Full Text Available Some Organochlorine Pesticides (OCPs can pose numerous adverse effects on biota. Marine turtles face numerous threats, in particular those related to anthropogenic activities. Therefore, development and improvement methodologies for monitoring chemical compounds are a relevant task. In this work, we developed a methodology based on the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe extraction for detection of twelve OCPs, by gas chromatography with electron capture detector, in fat and liver samples of green sea turtles. Quantification limits were lower than 5.3 ng g-1; acceptable recovery rates for most compounds; medium matrix effect; matrix-calibration with linearity at the range from 1.0 to 200 ng g-1. This methodology provides contributions for the study of pesticide residues with adverse effects on sea turtle health, important skills for new directions in conservation issues.

  5. Using blood samples to estimate persistent organic pollutants and metals in green sea turtles (Chelonia mydas).

    Science.gov (United States)

    van de Merwe, Jason P; Hodge, Mary; Olszowy, Henry A; Whittier, Joan M; Lee, Shing Y

    2010-04-01

    Persistent organic pollutants (POPs) and heavy metals have been reported in a number of green turtle (Chelonia mydas) populations worldwide. However, due to ethical considerations, these studies have generally been on tissues from deceased and stranded animals. The purpose of this study was to investigate the use of blood samples to estimate the tissue contamination of live C. mydas populations. This study analysed 125 POP compounds and eight heavy metals in the blood, liver, kidney and muscle of 16 C. mydas from the Sea World Sea Turtle Rehabilitation Program, Gold Coast, Australia. Strong correlations were observed between blood and tissue concentrations for a number of POPs and metals. Furthermore, these correlations were observed over large ranges of turtle size, sex and condition. These results indicate that blood samples are a reliable non-lethal method for predicting chemical contamination in C. mydas.

  6. MEASUREMENT OF INTRAOCULAR PRESSURE USING TONOVET® IN EUROPEAN POND TURTLE (EMYS ORBICULARIS).

    Science.gov (United States)

    Rajaei, Seyed mehdi; Ansari mood, Maneli; Sadjadi, Reza; Azizi, Farzaneh

    2015-06-01

    Twenty-two captive adult European pond turtles (12 males and 10 females) were unrestrained without sedation while intraocular pressure (IOP) was measured by means of a Tonovet®. Mean±SD IOP values between 8 and 10 am for all turtles were 5.42±0.96 mm Hg (range, 3-9 mm Hg). IOP between the right and left eye and between males and females was not significantly different. There was no correlation between IOP and body weight or body length of animals.

  7. An Updated AP2 Beamline TURTLE Model

    Energy Technology Data Exchange (ETDEWEB)

    Gormley, M.; O' Day, S.

    1991-08-23

    This note describes a TURTLE model of the AP2 beamline. This model was created by D. Johnson and improved by J. Hangst. The authors of this note have made additional improvements which reflect recent element and magnet setting changes. The magnet characteristics measurements and survey data compiled to update the model will be presented. A printout of the actual TURTLE deck may be found in appendix A.

  8. Magnetite in Black Sea Turtles (Chelonia agassizi)

    Science.gov (United States)

    Fuentes, A.; Urrutia-Fucugauchi, J.; Garduño, V.; Sanchez, J.; Rizzi, A.

    2004-12-01

    Previous studies have reported experimental evidence for magnetoreception in marine turtles. In order to increase our knowledge about magnetoreception and biogenic mineralization, we have isolated magnetite particles from the brain of specimens of black sea turtles Chelonia agassizi. Our samples come from natural deceased organisms collected the reserve area of Colola Maruata in southern Mexico. The occurrence of magnetite particles in brain tissue of black sea turtles offers the opportunity for further studies to investigate possible function of ferrimagnetic material, its mineralogical composition, grain size, texture and its location and structural arrangement within the host tissue. After sample preparation and microscopic examination, we localized and identified the ultrafine unidimensional particles of magnetite by scanning electron microscope (SEM). Particles present grain sizes between 10.0 to 40.0Mm. Our study provides, for the first time, evidence for biogenic formation of this material in the black sea turtles. The ultrafine particles are apparently superparamagnetic. Preliminary results from rock magnetic measurements are also reported and correlated to the SEM observations. The black turtle story on the Michoacan coast is an example of formerly abundant resource which was utilized as a subsistence level by Nahuatl indigenous group for centuries, but which is collapsing because of intensive illegal commercial exploitation. The most important nesting and breeding grounds for the black sea turtle on any mainland shore are the eastern Pacific coastal areas of Maruata and Colola, in Michoacan. These beaches are characterized by important amounts of magnetic mineral (magnetites and titanomagnetites) mixed in their sediments.

  9. Fossorial Origin of the Turtle Shell.

    Science.gov (United States)

    Lyson, Tyler R; Rubidge, Bruce S; Scheyer, Torsten M; de Queiroz, Kevin; Schachner, Emma R; Smith, Roger M H; Botha-Brink, Jennifer; Bever, G S

    2016-07-25

    The turtle shell is a complex structure that currently serves a largely protective function in this iconically slow-moving group [1]. Developmental [2, 3] and fossil [4-7] data indicate that one of the first steps toward the shelled body plan was broadening of the ribs (approximately 50 my before the completed shell [5]). Broadened ribs alone provide little protection [8] and confer significant locomotory [9, 10] and respiratory [9, 11] costs. They increase thoracic rigidity [8], which decreases speed of locomotion due to shortened stride length [10], and they inhibit effective costal ventilation [9, 11]. New fossil material of the oldest hypothesized stem turtle, Eunotosaurus africanus [12] (260 mya) [13, 14] from the Karoo Basin of South Africa, indicates the initiation of rib broadening was an adaptive response to fossoriality. Similar to extant fossorial taxa [8], the broad ribs of Eunotosaurus provide an intrinsically stable base on which to operate a powerful forelimb digging mechanism. Numerous fossorial correlates [15-17] are expressed throughout Eunotosaurus' skeleton. Most of these features are widely distributed along the turtle stem and into the crown clade, indicating the common ancestor of Eunotosaurus and modern turtles possessed a body plan significantly influenced by digging. The adaptations related to fossoriality likely facilitated movement of stem turtles into aquatic environments early in the groups' evolutionary history, and this ecology may have played an important role in stem turtles surviving the Permian/Triassic extinction event. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Sea Turtle Conservation on Bonaire. Sea Turtle Club Bonaire 1995 Project Report and Long Term Proposal

    NARCIS (Netherlands)

    Valkering, N.P.; Nugteren, Van P.; Eijck, Van T.J.W.

    1996-01-01

    Bonaire (12°12’N, 68°77’W), Netherlands Antilles, is famous for its unspoiled coral reefs. Reefs and lush sea grass provide forage and refuge for two species of endangered sea turtle, the green turtle ( Chelonia mydas) and the hawksbill (Eretmochelys imbricata). Loggerhead ( Caretta caretta ) and le

  11. Sea Turtle Conservation on Bonaire. Sea Turtle Club Bonaire 1995 Project Report and Long Term Proposal

    NARCIS (Netherlands)

    Valkering, N.P.; Nugteren, Van P.; Eijck, Van T.J.W.

    1996-01-01

    Bonaire (12°12’N, 68°77’W), Netherlands Antilles, is famous for its unspoiled coral reefs. Reefs and lush sea grass provide forage and refuge for two species of endangered sea turtle, the green turtle ( Chelonia mydas) and the hawksbill (Eretmochelys imbricata). Loggerhead ( Caretta caretta ) and

  12. Sea Turtle Conservation on Bonaire. Sea Turtle Club Bonaire 1995 Project Report and Long Term Proposal

    NARCIS (Netherlands)

    Valkering, N.P.; Nugteren, Van P.; Eijck, Van T.J.W.

    1996-01-01

    Bonaire (12°12’N, 68°77’W), Netherlands Antilles, is famous for its unspoiled coral reefs. Reefs and lush sea grass provide forage and refuge for two species of endangered sea turtle, the green turtle ( Chelonia mydas) and the hawksbill (Eretmochelys imbricata). Loggerhead ( Caretta caretta ) and le

  13. Trace element reference intervals in the blood of healthy green sea turtles to evaluate exposure of coastal populations.

    Science.gov (United States)

    Villa, C A; Flint, M; Bell, I; Hof, C; Limpus, C J; Gaus, C

    2017-01-01

    Exposure to essential and non-essential elements may be elevated for green sea turtles (Chelonia mydas) that forage close to shore. Biomonitoring of trace elements in turtle blood can identify temporal trends over repeated sampling events, but any interpretation of potential health risks due to an elevated exposure first requires a comparison against a baseline. This study aims to use clinical reference interval (RI) methods to produce exposure baseline limits for essential and non-essential elements (Na, Mg, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, Ba, and Pb) using blood from healthy subadult turtles foraging in a remote and offshore part of the Great Barrier Reef. Subsequent blood biomonitoring of three additional coastal populations, which forage in areas dominated by agricultural, urban and military activities, showed clear habitat-specific differences in blood metal profiles relative to the those observed in the offshore population. Coastal turtles were most often found to have elevated concentrations of Co, Mo, Mn, Mg, Na, As, Sb, and Pb relative to the corresponding RIs. In particular, blood from turtles from the agricultural site had Co concentrations ranging from 160 to 840 μg/L (4-25 times above RI), which are within the order expected to elicit acute effects in many vertebrates. Additional clinical blood biochemistry and haematology results indicate signs of a systemic disease and the prevalence of an active inflammatory response in a high proportion (44%) of turtles from the agricultural site. Elevated Co, Sb, and Mn in the blood of these turtles significantly correlated with elevated markers of acute inflammation (total white cell counts) and liver dysfunction (alkaline phosphatase and total bilirubin). The results of this study support the notion that elevated trace element exposures may be adversely affecting the health of nearshore green sea turtles.

  14. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Seminoff

    Full Text Available Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15N values of bulk skin, with distinct "low δ(15N" and "high δ(15N" groups. δ(15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation

  15. 77 FR 29586 - Sea Turtle Conservation; Shrimp Trawling Requirements; Correction

    Science.gov (United States)

    2012-05-18

    ... Part 223 RIN 0648-BC10 Sea Turtle Conservation; Shrimp Trawling Requirements; Correction AGENCY... turtle excluder devices (TEDs) in their nets, and announced five public hearings to be held in...

  16. Echo voltage reflected by turtle on various angles

    OpenAIRE

    Sunardi Sunardi; Anton Yudhana; Azrul Mahfurdz; Sharipah Salwa Mohamed

    2015-01-01

    This research proposes the acoustic measurement by using echo sounder for green turtle detection of 1 year, 12 and 18 years. Various positions or angles of turtles are head, tail, shell, lung, left and right side. MATLAB software and echo sounder are used to analyse the frequency and the response of the turtle as echo voltage and target strength parameter. Based on the experiment and analysis have been conducted, the bigger size of the turtle, the higher echo voltage and target strength. The ...

  17. Using Pharmacological Manipulation and High-precision Radio Telemetry to Study the Spatial Cognition in Free-ranging Animals.

    Science.gov (United States)

    Roth, Timothy C; Krochmal, Aaron R; Gerwig, William B; Rush, Sage; Simmons, Nathaniel T; Sullivan, Jeffery D; Wachter, Katrina

    2016-11-06

    An animal's ability to perceive and learn about its environment plays a key role in many behavioral processes, including navigation, migration, dispersal and foraging. However, the understanding of the role of cognition in the development of navigation strategies and the mechanisms underlying these strategies is limited by the methodological difficulties involved in monitoring, manipulating the cognition of, and tracking wild animals. This study describes a protocol for addressing the role of cognition in navigation that combines pharmacological manipulation of behavior with high-precision radio telemetry. The approach uses scopolamine, a muscarinic acetylcholine receptor antagonist, to manipulate cognitive spatial abilities. Treated animals are then monitored with high frequency and high spatial resolution via remote triangulation. This protocol was applied within a population of Eastern painted turtles (Chrysemys picta) that has inhabited seasonally ephemeral water sources for ~100 years, moving between far-off sources using precise (± 3.5 m), complex (i.e., non-linear with high tortuosity that traverse multiple habitats), and predictable routes learned before 4 years of age. This study showed that the processes used by these turtles are consistent with spatial memory formation and recall. Together, these results are consistent with a role of spatial cognition in complex navigation and highlight the integration of ecological and pharmacological techniques in the study of cognition and navigation.

  18. Reptilian prey of the sonora mud turtle (Kinosternon sonoriense) with comments on saurophagy and ophiophagy in North American Turtles

    Science.gov (United States)

    Lovich, J.; Drost, C.; Monatesti, A.J.; Casper, D.; Wood, D.A.; Girard, M.

    2010-01-01

    We detected evidence of predation by the Sonora mud turtle (Kinosternon sonoriense) on the Arizona alligator lizard (Elgaria kingii nobilis) and the ground snake (Sonora semiannulata) at Montezuma Well, Yavapai County, Arizona. Lizards have not been reported in the diet of K. sonoriense, and saurophagy is rare in turtles of the United States, having been reported previously in only two other species:, the false map turtle (Graptemys pseudogeographica) and the eastern box turtle (Terrapene carolina). While the diet of K. sonoriense includes snakes, ours is the first record of S. semiannulata as food of this turtle. Ophiophagy also is rare in turtles of the United States with records for only five other species of turtles. Given the opportunistic diets of many North American turtles, including K. sonoriense, the scarcity of published records of saurophagy and ophiophagy likely represents a shortage of observations, not rarity of occurrence.

  19. 50 CFR 648.106 - Sea Turtle conservation.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Sea Turtle conservation. 648.106 Section 648.106 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Summer Flounder Fisheries § 648.106 Sea Turtle conservation. Sea turtle regulations are found at 50...

  20. Sea Turtles: An Auditorium Program, Grades 6-9.

    Science.gov (United States)

    National Aquarium in Baltimore, MD. Dept. of Education.

    The National Aquarium in Baltimore's sea turtle auditorium program introduces students in grades 6-9 to the seven (or eight, depending on which expert is consulted) species of sea turtles alive today. The program, which includes slides, films, artifacts, and discussion, focuses on sea turtle biology and conservation. This booklet covers most of…

  1. Decline of the Sea Turtles: Causes and Prevention.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Life Sciences.

    A report submitted by the Committee on Sea Turtle Conservation, addresses threats to the world's sea turtle populations to fulfill a mandate of the Endangered Species Act Amendments of 1988. It presents information on the populations, biology, ecology, and behavior of five endangered or threatened turtle species: the Kemp's ridley, loggerhead,…

  2. 21 CFR 1240.62 - Turtles intrastate and interstate requirements.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Turtles intrastate and interstate requirements....62 Turtles intrastate and interstate requirements. (a) Definition. As used in this section the term “turtles” includes all animals commonly known as turtles, tortoises, terrapins, and all other animals...

  3. 42 CFR 71.52 - Turtles, tortoises, and terrapins.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Turtles, tortoises, and terrapins. 71.52 Section 71..., INSPECTION, LICENSING FOREIGN QUARANTINE Importations § 71.52 Turtles, tortoises, and terrapins. (a) Definitions. As used in this section the term: Turtles includes all animals commonly known as...

  4. Estimating at-sea mortality of marine turtles from stranding frequencies and drifter experiments.

    Science.gov (United States)

    Koch, Volker; Peckham, Hoyt; Mancini, Agnese; Eguchi, Tomoharu

    2013-01-01

    Strandings of marine megafauna can provide valuable information on cause of death at sea. However, as stranding probabilities are usually very low and highly variable in space and time, interpreting the results can be challenging. We evaluated the magnitude and distribution of at-sea mortality of marine turtles along the Pacific coast of Baja California Sur, México during 2010-11, using a combination of counting stranded animals and drifter experiments. A total of 594 carcasses were found during the study period, with loggerhead (62%) and green turtles (31%) being the most common species. 87% of the strandings occurred in the southern Gulf of Ulloa, a known hotspot of loggerhead distribution in the Eastern Pacific. While only 1.8% of the deaths could be definitively attributed to bycatch (net marks, hooks), seasonal variation in stranding frequencies closely corresponded to the main fishing seasons. Estimated stranding probabilities from drifter experiments varied among sites and trials (0.05-0.8), implying that only a fraction of dead sea turtles can be observed at beaches. Total mortality estimates for 15-day periods around the floater trials were highest for PSL, a beach in the southern Gulf of Ulloa, ranging between 11 sea turtles in October 2011 to 107 in August 2010. Loggerhead turtles were the most numerous, followed by green and olive ridley turtles. Our study showed that drifter trials combined with beach monitoring can provide estimates for death at sea to measure the impact of small-scale fisheries that are notoriously difficult to monitor for by-catch. We also provided recommendations to improve the precision of the mortality estimates for future studies and highlight the importance of estimating impacts of small-scale fisheries on marine megafauna.

  5. Estimating at-sea mortality of marine turtles from stranding frequencies and drifter experiments.

    Directory of Open Access Journals (Sweden)

    Volker Koch

    Full Text Available Strandings of marine megafauna can provide valuable information on cause of death at sea. However, as stranding probabilities are usually very low and highly variable in space and time, interpreting the results can be challenging. We evaluated the magnitude and distribution of at-sea mortality of marine turtles along the Pacific coast of Baja California Sur, México during 2010-11, using a combination of counting stranded animals and drifter experiments. A total of 594 carcasses were found during the study period, with loggerhead (62% and green turtles (31% being the most common species. 87% of the strandings occurred in the southern Gulf of Ulloa, a known hotspot of loggerhead distribution in the Eastern Pacific. While only 1.8% of the deaths could be definitively attributed to bycatch (net marks, hooks, seasonal variation in stranding frequencies closely corresponded to the main fishing seasons. Estimated stranding probabilities from drifter experiments varied among sites and trials (0.05-0.8, implying that only a fraction of dead sea turtles can be observed at beaches. Total mortality estimates for 15-day periods around the floater trials were highest for PSL, a beach in the southern Gulf of Ulloa, ranging between 11 sea turtles in October 2011 to 107 in August 2010. Loggerhead turtles were the most numerous, followed by green and olive ridley turtles. Our study showed that drifter trials combined with beach monitoring can provide estimates for death at sea to measure the impact of small-scale fisheries that are notoriously difficult to monitor for by-catch. We also provided recommendations to improve the precision of the mortality estimates for future studies and highlight the importance of estimating impacts of small-scale fisheries on marine megafauna.

  6. Ophthalmic variables in rehabilitated juvenile Kemp's ridley sea turtles (Lepidochelys kempii).

    Science.gov (United States)

    Gornik, Kara R; Pirie, Christopher G; Marrion, Ruth M; Wocial, Julika N; Innis, Charles J

    2016-03-15

    To determine central corneal thickness (total corneal thickness [TCT], epithelial thickness [ET], and stromal thickness [ST]), anterior chamber depth (ACD), and intraocular pressure (IOP) in Kemp's ridley sea turtles (Lepidochelys kempii). Prospective cross-sectional study. 25 healthy rehabilitated juvenile Kemp's ridley sea turtles. PROCEDURES; Body weight and straight-line standard carapace length (SCL) were recorded. All turtles underwent a complete anterior segment ophthalmic examination. Central TCT, ET, ST, and ACD were determined by use of a spectral-domain optical coherence tomography device. Intraocular pressure was determined with a rebound tonometer; the horse setting was used to measure IOP in all 25 turtles, and the undefined setting was also used to measure IOP in 20 turtles. For each variable, 3 measurements were obtained bilaterally. The mean was calculated for each eye and used for analysis purposes. The mean ± SD body weight and SCL were 3.85 ± 1.05 kg (8.47 ± 2.31 lb) and 29 ± 3 cm, respectively. The mean ± SD TCT, ET, ST, and ACD were 288 ± 23 μm, 100 ± 6 μm, 190 ± 19 μm, and 581 ± 128 μm, respectively. Mean ± SD IOP was 6.5 ± 1.0 mm Hg when measured with the horse setting and 3.8 ± 1.1 mm Hg when measured with the undefined setting. Results provided preliminary reference ranges for objective assessment of ophthalmic variables in healthy juvenile Kemp's ridley sea turtles.

  7. Comparing Acoustic Tag Attachments Designed for Mobile Tracking of Hatchling Sea Turtles

    Directory of Open Access Journals (Sweden)

    Aimee L. Hoover

    2017-07-01

    Full Text Available The poorly understood movements of sea turtles during the “lost years” of their early life history have been characterized as a “passive drifter” stage. Biologging technology allows us to study patterns of dispersal, but the small body size of young life stages requires particular consideration that such tagging does not significantly impede animal movements. We tested the effect of instrument attachment methods for mobile acoustic tracking of hatchling sea turtles, including a design that would be suitable for leatherback turtles (Dermochelys coriacea. We obtained 8-week-old hatchery-reared green sea turtles (Chelonia mydas (n = 12 individuals and examined the effect of attaching Vemco V5 acoustic tags. Each animal's swim speed, swimming depth, and stroke frequency were determined under three scenarios: control, direct Velcro® attachment to the carapace, and harness attachment, to determine if there was a significant difference amongst treatments. Turtle swimming speed was significantly slower during the middle period of the trial for the harness attachment compared with the control. No significant change in swim speed was observed when the tag was attached directly with Velcro®, and no significant change in dive depth was observed for either treatment compared to the control. Stroke frequency was significantly greater compared to the control at the end of the trial for the Velcro® attachment only, although there was no corresponding increase in swimming speed. This information can be used to design effective approaches for actively tracking free-ranging hatchling sea turtles to understand dispersal and survival of these vulnerable marine species.

  8. A critical review of the Mediterranean sea turtle rescue network: a web looking for a weaver

    Directory of Open Access Journals (Sweden)

    Judith Ullmann

    2015-06-01

    Full Text Available A key issue in conservation biology is recognizing and bridging the gap between scientific results and specific action. We examine sea turtles—charismatic yet endangered flagship species—in the Mediterranean, a sea with historically high levels of exploitation and 22 coastal nations. We take sea turtle rescue facilities as a visible measure for implemented conservation action. Our study yielded 34 confirmed sea turtle rescue centers, 8 first-aid stations, and 7 informal rescue institutions currently in operation. Juxtaposing these facilities to known sea turtle distribution and threat hotspots reveals a clear disconnect. Only 14 of the 22 coastal countries had centers, with clear gaps in the Middle East and Africa. Moreover, the information flow between centers is apparently limited. The populations of the two species nesting in the Mediterranean, the loggerhead Caretta caretta and the green turtle Chelonia mydas, are far below historical levels and face a range of anthropogenic threats at sea and on land. Sea turtle rescue centers are acknowledged to reduce mortality in bycatch hotspots, provide a wealth of scientific data, and raise public awareness. The proposal for a Mediterranean-wide rescue network as published by the Regional Activity Centre for Specially Protected Areas a decade ago has not materialized in its envisioned scope. We discuss the efficiency, gaps, and needs for a rescue network and call for establishing additional rescue centers and an accompanying common online database to connect existing centers. This would provide better information on the number and types of rescue facilities on a Mediterranean scale, improve communication between these facilities, enhance standardization of procedures, yield large-scale data on the number of treated turtles and their injuries, and thus provide valuable input for targeted conservation measures.

  9. Hydrodynamic stability in posthatchling loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtles.

    Science.gov (United States)

    Dougherty, Erin; Rivera, Gabriel; Blob, Richard; Wyneken, Jeanette

    2010-05-01

    Swimming animals may experience a wide range of destabilizing forces resulting from the movements of their propulsors. These forces often cause movements in directions other than the intended trajectory (i.e., recoil motions), potentially increasing locomotor costs. We quantified rectilinear swimming stability for posthatchling loggerhead (Caretta caretta) and green turtles (Chelonia mydas). Sea turtles predominantly swim via "aquatic flight", which is characterized by synchronous dorsoventral flapping of their forelimbs. We tested four predictions about the effects of "aquatic flight" on stability: (1) it would produce little lateral recoil; (2) lateral recoil motions would be non-cyclic; (3) vertical recoil motions would be larger than lateral recoil motions; and (4) vertical recoil motions would be cyclic. Additionally, because posthatchling loggerheads possess dorsal keels on the shell that are absent in green turtles, we evaluated whether such keels might improve stability in swimming turtles. While our expectations for patterns of cyclicity in recoil motions (predictions 2 and 4) were met, our expectations for differences in their absolute and relative magnitudes (predictions 1 and 3) were not. We suggest that lateral recoil motions were greater than predicted due to slight asynchronies between the motions of the left and right foreflippers. Additionally, although minimum lateral recoil motions were smaller than minimum vertical recoil motions, maximum recoil motions were greater in the lateral direction, so that average recoil did not differ significantly between these directions. Finally, because loggerheads did not display higher levels of stability compared to green turtles, there is little evidence to support a stabilizing role for dorsal keels in loggerhead turtles.

  10. First Assessment of the Sex Ratio for an East Pacific Green Sea Turtle Foraging Aggregation: Validation and Application of a Testosterone ELISA.

    Science.gov (United States)

    Allen, Camryn D; Robbins, Michelle N; Eguchi, Tomoharu; Owens, David W; Meylan, Anne B; Meylan, Peter A; Kellar, Nicholas M; Schwenter, Jeffrey A; Nollens, Hendrik H; LeRoux, Robin A; Dutton, Peter H; Seminoff, Jeffrey A

    2015-01-01

    Determining sex ratios of endangered populations is important for wildlife management, particularly species subject to sex-specific threats or that exhibit temperature-dependent sex determination. Sea turtle sex is determined by incubation temperature and individuals lack external sex-based traits until sexual maturity. Previous research utilized serum/plasma testosterone radioimmunoassays (RIA) to determine sex in immature/juvenile sea turtles. However, there has been a growing application of enzyme-linked immunosorbent assay (ELISA) for wildlife endocrinology studies, but no study on sea turtles has compared the results of ELISA and RIA. This study provides the first sex ratio for a threatened East Pacific green sea turtle (Chelonia mydas) foraging aggregation, a critical step for future management of this species. Here, we validate a testosterone ELISA and compare results between RIA and ELISA of duplicate samples. The ELISA demonstrated excellent correspondence with the RIA for providing testosterone concentrations for sex determination. Neither assay proved reliable for predicting the sex of reproductively active females with increased testosterone production. We then applied ELISA to examine the sex ratio of 69 green turtles foraging in San Diego Bay, California. Of 45 immature turtles sampled, sex could not be determined for three turtles because testosterone concentrations fell between the ranges for either sex (females: 4.1-113.1 pg/mL, males: 198.4-2,613.0 pg/mL) and these turtles were not subsequently recaptured to enable sex determination; using a Bayesian model to predict probabilities of turtle sex we predicted all three 'unknowns' were female (> 0.86). Additionally, the model assigned all turtles with their correct sex (if determined at recapture) with 100% accuracy. Results indicated a female bias (2.83F:1M) among all turtles in the aggregation; when focusing only on putative immature turtles the sex ratio was 3.5F:1M. With appropriate validation

  11. First Assessment of the Sex Ratio for an East Pacific Green Sea Turtle Foraging Aggregation: Validation and Application of a Testosterone ELISA

    Science.gov (United States)

    Allen, Camryn D.; Robbins, Michelle N.; Eguchi, Tomoharu; Owens, David W.; Meylan, Anne B.; Meylan, Peter A.; Kellar, Nicholas M.; Schwenter, Jeffrey A.; Nollens, Hendrik H.; LeRoux, Robin A.; Dutton, Peter H.; Seminoff, Jeffrey A.

    2015-01-01

    Determining sex ratios of endangered populations is important for wildlife management, particularly species subject to sex-specific threats or that exhibit temperature-dependent sex determination. Sea turtle sex is determined by incubation temperature and individuals lack external sex-based traits until sexual maturity. Previous research utilized serum/plasma testosterone radioimmunoassays (RIA) to determine sex in immature/juvenile sea turtles. However, there has been a growing application of enzyme-linked immunosorbent assay (ELISA) for wildlife endocrinology studies, but no study on sea turtles has compared the results of ELISA and RIA. This study provides the first sex ratio for a threatened East Pacific green sea turtle (Chelonia mydas) foraging aggregation, a critical step for future management of this species. Here, we validate a testosterone ELISA and compare results between RIA and ELISA of duplicate samples. The ELISA demonstrated excellent correspondence with the RIA for providing testosterone concentrations for sex determination. Neither assay proved reliable for predicting the sex of reproductively active females with increased testosterone production. We then applied ELISA to examine the sex ratio of 69 green turtles foraging in San Diego Bay, California. Of 45 immature turtles sampled, sex could not be determined for three turtles because testosterone concentrations fell between the ranges for either sex (females: 4.1–113.1 pg/mL, males: 198.4–2,613.0 pg/mL) and these turtles were not subsequently recaptured to enable sex determination; using a Bayesian model to predict probabilities of turtle sex we predicted all three ‘unknowns’ were female (> 0.86). Additionally, the model assigned all turtles with their correct sex (if determined at recapture) with 100% accuracy. Results indicated a female bias (2.83F:1M) among all turtles in the aggregation; when focusing only on putative immature turtles the sex ratio was 3.5F:1M. With appropriate

  12. First Assessment of the Sex Ratio for an East Pacific Green Sea Turtle Foraging Aggregation: Validation and Application of a Testosterone ELISA.

    Directory of Open Access Journals (Sweden)

    Camryn D Allen

    Full Text Available Determining sex ratios of endangered populations is important for wildlife management, particularly species subject to sex-specific threats or that exhibit temperature-dependent sex determination. Sea turtle sex is determined by incubation temperature and individuals lack external sex-based traits until sexual maturity. Previous research utilized serum/plasma testosterone radioimmunoassays (RIA to determine sex in immature/juvenile sea turtles. However, there has been a growing application of enzyme-linked immunosorbent assay (ELISA for wildlife endocrinology studies, but no study on sea turtles has compared the results of ELISA and RIA. This study provides the first sex ratio for a threatened East Pacific green sea turtle (Chelonia mydas foraging aggregation, a critical step for future management of this species. Here, we validate a testosterone ELISA and compare results between RIA and ELISA of duplicate samples. The ELISA demonstrated excellent correspondence with the RIA for providing testosterone concentrations for sex determination. Neither assay proved reliable for predicting the sex of reproductively active females with increased testosterone production. We then applied ELISA to examine the sex ratio of 69 green turtles foraging in San Diego Bay, California. Of 45 immature turtles sampled, sex could not be determined for three turtles because testosterone concentrations fell between the ranges for either sex (females: 4.1-113.1 pg/mL, males: 198.4-2,613.0 pg/mL and these turtles were not subsequently recaptured to enable sex determination; using a Bayesian model to predict probabilities of turtle sex we predicted all three 'unknowns' were female (> 0.86. Additionally, the model assigned all turtles with their correct sex (if determined at recapture with 100% accuracy. Results indicated a female bias (2.83F:1M among all turtles in the aggregation; when focusing only on putative immature turtles the sex ratio was 3.5F:1M. With appropriate

  13. Unusual population attributes of invasive red-eared slider turtles (Trachemys scripta elegans) in Japan: do they have a performance advantage?

    Science.gov (United States)

    Taniguchi, Mari; Lovich, Jeffrey E.; Mine, Kanako; Ueno, Shintaro; Kamezaki, Naoki

    2017-01-01

    The slider turtle (Trachemys scripta Thunberg in Schoepff, 1792) is native to the USA and Mexico. Due to the popularity of their colorful hatchlings as pets, they have been exported worldwide and are now present on all continents, except Antarctica. Slider turtles are well-established in Japan and occupy aquatic habitats in urban and agricultural areas, to the detriment of native turtles with which they compete. We asked the overall question, do slider turtles in Japan have a performance advantage because they are liberated from the numerous competing turtle species in their native range and released from many of their natural predators? Traits compared included various measures of adult body size (mean, maximum), female size at maturity as measured by size of gravid females, clutch size, population density and biomass, sex ratio, and sexual size dimorphism, the latter two a partial reflection of growth and maturity differences between the sexes. We sampled slider turtle populations in three habitats in Japan and compared population attributes with published data for the species from throughout its native range in the USA. Mean male body sizes were at the lower end of values from the USA suggesting that males in Japan may mature at smaller body sizes. The smallest gravid females in Japan mature at smaller body sizes but have mean clutch sizes larger than some populations in the USA. Compared to most populations in the USA, slider turtles achieve higher densities and biomasses in Japanese wetlands, especially the lotic system we sampled. Sex ratios were female-biased, the opposite of what is reported for many populations in protected areas of the USA. Sexual size dimorphism was enhanced relative to native populations with females as the larger sex. The enhanced dimorphism is likely a result of earlier size of maturity in Japanese males and the large size of mature (gravid) Japanese females. Slider turtles appear to have a performance advantage over native turtles in

  14. Tracking sea turtles in the Everglades

    Science.gov (United States)

    Hart, Kristin M.

    2008-01-01

    The U.S. Geological Survey (USGS) has a long history of conducting research on threatened, endangered, and at-risk species inhabiting both terrestrial and marine environments, particularly those found within national parks and protected areas. In the coastal Gulf of Mexico region, for example, USGS scientist Donna Shaver at Padre Island National Seashore in Texas has focused on “headstarting” hatchlings of the rare Kemp’s ridley sea turtle (Lepidochelys kempii). She is also analyzing trends in sea turtle strandings onshore and interactions with Gulf shrimp fisheries. Along south Florida’s Gulf coast, the USGS has focused on research and monitoring for managing the greater Everglades ecosystem. One novel project involves the endangered green sea turtle (Chelonia mydas). The ecology and movements of adult green turtles are reasonably well understood, largely due to decades of nesting beach monitoring by a network of researchers and volunteers. In contrast, relatively little is known about the habitat requirements and movements of juvenile and subadult sea turtles of any species in their aquatic environment.

  15. Evolutionary origin of the turtle shell.

    Science.gov (United States)

    Lyson, Tyler R; Bever, Gabe S; Scheyer, Torsten M; Hsiang, Allison Y; Gauthier, Jacques A

    2013-06-17

    The origin of the turtle shell has perplexed biologists for more than two centuries. It was not until Odontochelys semitestacea was discovered, however, that the fossil and developmental data could be synthesized into a model of shell assembly that makes predictions for the as-yet unestablished history of the turtle stem group. We build on this model by integrating novel data for Eunotosaurus africanus-a Late Guadalupian (∼260 mya) Permian reptile inferred to be an early stem turtle. Eunotosaurus expresses a number of relevant characters, including a reduced number of elongate trunk vertebrae (nine), nine pairs of T-shaped ribs, inferred loss of intercostal muscles, reorganization of respiratory muscles to the ventral side of the ribs, (sub)dermal outgrowth of bone from the developing perichondral collar of the ribs, and paired gastralia that lack both lateral and median elements. These features conform to the predicted sequence of character acquisition and provide further support that E. africanus, O. semitestacea, and Proganochelys quenstedti represent successive divergences from the turtle stem lineage. The initial transformations of the model thus occurred by the Middle Permian, which is congruent with molecular-based divergence estimates for the lineage, and remain viable whether turtles originated inside or outside crown Diapsida. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Fine scale daily movements and habitat use of East Pacific green turtles at a shallow coastal lagoon in Baja California Sur, Mexico

    Science.gov (United States)

    Senko, Jesse; Koch, Volker; Megill, William M.; Carthy, Raymond R.; Templeton, R.obert P.; Nichols, Wallace J.

    2010-01-01

    Green turtles spend most of their lives in coastal foraging areas where they face multiple anthropogenic impacts. Therefore, understanding their spatial use in this environment is a priority for conservation efforts. We studied the fine scale daily movements and habitat use of East Pacific green turtles (Chelonia mydas) at Laguna San Ignacio, a shallow coastal lagoon in Baja California Sur, Mexico where sea turtles are subject to high levels of gillnet bycatch and directed hunting. Six turtles ranging from 44.6 to 83.5 cm in straight carapace length were tracked for short deployments (1 to 6 d) with GPS-VHF telemetry. Turtles were active throughout diurnal, nocturnal, and crepuscular periods. Although they moved greater total distances during daytime, their speed of travel and net displacement remained consistent throughout 24-h periods. A positive selection for areas of seagrass and moderate water depth (5 to 10 m) was determined using Ivlev's electivity index, with neutral selection for shallow water ( 10 m). Turtles exhibited two distinct behavioral movement patterns: circular movements with high fidelity to the capture–release location and meandering movements with low fidelity to the capture–release location. Our results indicate that green turtles were active throughout the diel cycle while traveling large distances and traversing multiple habitats over short temporal scales.

  17. Biotransformation of 2,2',5,5'-tetrachlorobiphenyl (PCB 52) and 3,3',4,4'-tetrachlorobiphenyl (PCB 77) by liver microsomes from four species of sea turtles.

    Science.gov (United States)

    Richardson, Kristine L; Schlenk, Daniel

    2011-05-16

    The rates of oxidative metabolism of two tetrachlorobiphenyl congeners were determined in hepatic microsomes from four species of sea turtles, green (Chelonia mydas), olive ridley (Lepidochelys olivacea), loggerhead (Caretta caretta), and hawksbill (Eretmochelys imbricata). Hydroxylation of 3,3',4,4'-tetrachlorobiphenyl (PCB 77), an ortho-meta unsubstituted rodent cytochrome P450 (P450) 1A substrate PCB, was not observed in sea turtle microsomes. Sea turtle microsomes hydroxylated 2,2',5,5'-tetrachlorobiphenyl (PCB 52), a meta-para unsubstituted rodent P450 family 2 substrate PCB, at rates ranging from less than 0.5 to 53 pmol/min/mg protein. The P450 inhibitor ketoconazole inhibited hydroxylation of PCB 52, supporting the role of P450 catalysis. Sea turtle PCB 52 hydroxlyation rates strongly correlated with immunodetected P450 family 2-like and less so with P450 family 3-like hepatic proteins. Testosterone 6β-, 16α-, 16β-hydroxylase activities were also significantly correlated with the expression of these enzymes, indicating that P450 family 2 or P450 family 3 proteins are responsible for PCB hydroxylation in sea turtles. This study indicated species-specific PCB biotransformation in sea turtles and preferential elimination of meta-para unsubstituted PCB congeners over ortho-meta unsubstituted PCB congeners consistent with PCB accumulation patterns observed in tissues of sea turtles.

  18. Metals in Blood and Eggs of Green Sea Turtles (Chelonia mydas) from Nesting Colonies of the Northern Coast of the Sea of Oman.

    Science.gov (United States)

    Sinaei, Mahmood; Bolouki, Mehdi

    2017-06-19

    The green sea turtle (Chelonia mydas) has been a species of global concern for decades. In this study, heavy metals (mercury: Hg; Cadmium: Cd; Lead: Pb; Copper: Cu; and Zinc: Zn) were measured in blood and three egg fraction of green sea turtles nesting on the northern coast of Sea of Oman. Heavy metals concentrations in blood, yolk, albumen, and egg shell ranged between 0.16-36.78, 0.006-33.88, 0.003-4.02, and 0.002-6.85 μg/g (ww), respectively. According to the results, all heavy metals found in blood samples (n = 12) also were detected in the various parts of the eggs (n = 48). Moreover, there were no significant differences between concentrations of heavy metals in different clutches laid in a nesting season. However, Pb concentrations in blood samples significantly increased in later clutches (p sea turtles on the northern coast of Sea of Oman. Results of this study suggest that heavy metals could be one of the factors influencing reductions in fertilization and hatching success. Results also indicate that green sea turtle on the northern coast of Sea of Oman have high capacity in rapid response and detoxification of heavy metals and/or from the low exposure levels of these turtles to the heavy metals. Further research is required concerning the effects of heavy metals on green sea turtles, especially on their possible influence of fetal development of turtles.

  19. Energy expenditure of freely swimming adult green turtles (Chelonia mydas) and its link with body acceleration.

    Science.gov (United States)

    Enstipp, Manfred R; Ciccione, Stéphane; Gineste, Benoit; Milbergue, Myriam; Ballorain, Katia; Ropert-Coudert, Yan; Kato, Akiko; Plot, Virginie; Georges, Jean-Yves

    2011-12-01

    Marine turtles are globally threatened. Crucial for the conservation of these large ectotherms is a detailed knowledge of their energy relationships, especially their at-sea metabolic rates, which will ultimately define population structure and size. Measuring metabolic rates in free-ranging aquatic animals, however, remains a challenge. Hence, it is not surprising that for most marine turtle species we know little about the energetic requirements of adults at sea. Recently, accelerometry has emerged as a promising tool for estimating activity-specific metabolic rates of animals in the field. Accelerometry allows quantification of the movement of animals (ODBA/PDBA, overall/partial dynamic body acceleration), which, after calibration, might serve as a proxy for metabolic rate. We measured oxygen consumption rates (V(O(2))) of adult green turtles (Chelonia mydas; 142.1±26.9 kg) at rest and when swimming within a 13 m-long swim channel, using flow-through respirometry. We investigated the effect of water temperature (T(w)) on turtle and tested the hypothesis that turtle body acceleration can be used as a proxy for V(O(2)). Mean mass-specific V(O(2)) (sV(O(2))) of six turtles when resting at a T(w) of 25.8±1.0°C was 0.50±0.09 ml min(-1) kg(-0.83). sV(O(2))increased significantly with T(w) and activity level. Changes in sV(O(2)) were paralleled by changes in respiratory frequency (f(R)). Deploying bi-axial accelerometers in conjunction with respirometry, we found a significant positive relationship between sV(O(2)) and PDBA that was modified by T(w). The resulting predictive equation was highly significant (r(2)=0.83, P<0.0001) and associated error estimates were small (mean algebraic error 3.3%), indicating that body acceleration is a good predictor of V(O(2)) in green turtles. Our results suggest that accelerometry is a suitable method to investigate marine turtle energetics at sea.

  20. Movements and habitat-use of loggerhead sea turtles in the northern Gulf of Mexico during the reproductive period.

    Directory of Open Access Journals (Sweden)

    Kristen M Hart

    Full Text Available Nesting strategies and use of important in-water habitats for far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on habitat-use by marine turtles in the northern Gulf of Mexico, we used satellite transmitters in 2010 through 2012 to track movements of 39 adult female breeding loggerhead turtles (Caretta caretta tagged on nesting beaches at three sites in Florida and Alabama. During the nesting season, recaptured turtles emerged to nest 1 to 5 times, with mean distance between emergences of 27.5 km; however, several turtles nested on beaches separated by ~250 km within a single season. Mean total distances traveled throughout inter-nesting periods for all turtles was 1422.0 ± 930.8 km. In-water inter-nesting sites, delineated using 50% kernel density estimation (KDE, were located a mean distance of 33.0 km from land, in water with mean depth of -31.6 m; other in-water inter-nesting sites, delineated using minimum convex polygon (MCP approach, were located a mean 13.8 km from land and in water with a mean depth of -15.8 m. Mean size of in-water inter-nesting habitats were 61.9 km(2 (50% KDEs, n = 10 and 741.4 km(2 (MCPs, n = 30; these areas overlapped significantly with trawling and oil and gas extraction activities. Abundance estimates for this nesting subpopulation may be inaccurate in light of how much spread there is between nests of the same individual. Further, our results also have consequences for critical habitat designations for northern Gulf loggerheads, as protection of one nesting beach would not encompass the entire range used by turtles during breeding seasons.

  1. Movements and habitat-use of loggerhead sea turtles in the northern Gulf of Mexico during the reproductive period

    Science.gov (United States)

    Hart, Kristen M.; Lamont, Margaret M.; Sartain-Iverson, Autumn R.; Fujisaki, Ikuko; Stephens, Brail S.

    2013-01-01

    Nesting strategies and use of important in-water habitats for far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on habitat-use by marine turtles in the northern Gulf of Mexico, we used satellite transmitters in 2010 through 2012 to track movements of 39 adult female breeding loggerhead turtles (Caretta caretta) tagged on nesting beaches at three sites in Florida and Alabama. During the nesting season, recaptured turtles emerged to nest 1 to 5 times, with mean distance between emergences of 27.5 km; however, several turtles nested on beaches separated by ~250 km within a single season. Mean total distances traveled throughout inter-nesting periods for all turtles was 1422.0±930.8 km. In-water inter-nesting sites, delineated using 50% kernel density estimation (KDE), were located a mean distance of 33.0 km from land, in water with mean depth of −31.6 m; other in-water inter-nesting sites, delineated using minimum convex polygon (MCP) approach, were located a mean 13.8 km from land and in water with a mean depth of −15.8 m. Mean size of in-water inter-nesting habitats were 61.9 km2 (50% KDEs, n = 10) and 741.4 km2 (MCPs, n = 30); these areas overlapped significantly with trawling and oil and gas extraction activities. Abundance estimates for this nesting subpopulation may be inaccurate in light of how much spread there is between nests of the same individual. Further, our results also have consequences for critical habitat designations for northern Gulf loggerheads, as protection of one nesting beach would not encompass the entire range used by turtles during breeding seasons.

  2. Ontogenetic investigation of underwater hearing capabilities in loggerhead sea turtles (Caretta caretta) using a dual testing approach.

    Science.gov (United States)

    Lavender, Ashley L; Bartol, Soraya M; Bartol, Ian K

    2014-07-15

    Sea turtles reside in different acoustic environments with each life history stage and may have different hearing capacity throughout ontogeny. For this study, two independent yet complementary techniques for hearing assessment, i.e. behavioral and electrophysiological audiometry, were employed to (1) measure hearing in post-hatchling and juvenile loggerhead sea turtles Caretta caretta (19-62 cm straight carapace length) to determine whether these migratory turtles exhibit an ontogenetic shift in underwater auditory detection and (2) evaluate whether hearing frequency range and threshold sensitivity are consistent in behavioral and electrophysiological tests. Behavioral trials first required training turtles to respond to known frequencies, a multi-stage, time-intensive process, and then recording their behavior when they were presented with sound stimuli from an underwater speaker using a two-response forced-choice paradigm. Electrophysiological experiments involved submerging restrained, fully conscious turtles just below the air-water interface and recording auditory evoked potentials (AEPs) when sound stimuli were presented using an underwater speaker. No significant differences in behavior-derived auditory thresholds or AEP-derived auditory thresholds were detected between post-hatchling and juvenile sea turtles. While hearing frequency range (50-1000/1100 Hz) and highest sensitivity (100-400 Hz) were consistent in audiograms pooled by size class for both behavior and AEP experiments, both post-hatchlings and juveniles had significantly higher AEP-derived than behavior-derived auditory thresholds, indicating that behavioral assessment is a more sensitive testing approach. The results from this study suggest that post-hatchling and juvenile loggerhead sea turtles are low-frequency specialists, exhibiting little differences in threshold sensitivity and frequency bandwidth despite residence in acoustically distinct environments throughout ontogeny.

  3. Movements and habitat-use of loggerhead sea turtles in the northern Gulf of Mexico during the reproductive period.

    Science.gov (United States)

    Hart, Kristen M; Lamont, Margaret M; Sartain, Autumn R; Fujisaki, Ikuko; Stephens, Brail S

    2013-01-01

    Nesting strategies and use of important in-water habitats for far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on habitat-use by marine turtles in the northern Gulf of Mexico, we used satellite transmitters in 2010 through 2012 to track movements of 39 adult female breeding loggerhead turtles (Caretta caretta) tagged on nesting beaches at three sites in Florida and Alabama. During the nesting season, recaptured turtles emerged to nest 1 to 5 times, with mean distance between emergences of 27.5 km; however, several turtles nested on beaches separated by ~250 km within a single season. Mean total distances traveled throughout inter-nesting periods for all turtles was 1422.0 ± 930.8 km. In-water inter-nesting sites, delineated using 50% kernel density estimation (KDE), were located a mean distance of 33.0 km from land, in water with mean depth of -31.6 m; other in-water inter-nesting sites, delineated using minimum convex polygon (MCP) approach, were located a mean 13.8 km from land and in water with a mean depth of -15.8 m. Mean size of in-water inter-nesting habitats were 61.9 km(2) (50% KDEs, n = 10) and 741.4 km(2) (MCPs, n = 30); these areas overlapped significantly with trawling and oil and gas extraction activities. Abundance estimates for this nesting subpopulation may be inaccurate in light of how much spread there is between nests of the same individual. Further, our results also have consequences for critical habitat designations for northern Gulf loggerheads, as protection of one nesting beach would not encompass the entire range used by turtles during breeding seasons.

  4. Evaluating the landscape of fear between apex predatory sharks and mobile sea turtles across a large dynamic seascape.

    Science.gov (United States)

    Hammerschlag, Neil; Broderick, Annette C; Coker, John W; Coyne, Michael S; Dodd, Mark; Frick, Michael G; Godfrey, Matthew H; Godley, Brendan J; Griffin, DuBose B; Hartog, Kyra; Murphy, Sally R; Murphy, Thomas M; Nelson, Emily Rose; Williams, Kristina L; Witt, Matthew J; Hawkes, Lucy A

    2015-08-01

    The "landscape of fear" model has been proposed as a unifying concept in ecology, describing, in part, how animals behave and move about in their environment. The basic model predicts that as an animal's landscape changes from low to high risk of predation, prey species will alter their behavior to risk avoidance. However, studies investigating and evaluating the landscape of fear model across large spatial scales (tens to hundreds of thousands of square kilometers) in dynamic, open, aquatic systems involving apex predators and highly mobile prey are lacking. To address this knowledge gap, we investigated predator-prey relationships between. tiger sharks (Galeocerdo cuvier) and loggerhead turtles (Caretta caretta) in the North Atlantic Ocean. This included the use of satellite tracking to examine shark and turtle distributions as well as their surfacing behaviors under varying levels of home range overlap. Our findings revealed patterns that deviated from our a priori predictions based on the landscape of fear model. Specifically, turtles did not alter their surfacing behaviors to risk avoidance when overlap in shark-turtle core home range was high. However, in areas of high overlap with turtles, sharks exhibited modified surfacing behaviors that may enhance predation opportunity. We suggest that turtles may be an important factor in determining shark,distribution, whereas for turtles, other life history trade-offs may play a larger role in defining their habitat use. We propose that these findings are a result of both biotic and physically driven factors that independently or synergistically affect predator-prey interactions in this system. These results have implications for evolutionary biology, community ecology; and wildlife conservation. Further, given the difficulty in studying highly migratory marine species, our approach and conclusions may be applied to the study of other predator-prey systems.

  5. 75 FR 27649 - 2010 Annual Determination for Sea Turtle Observer Requirements

    Science.gov (United States)

    2010-05-18

    ... regarding sea turtle-fishery interactions; sea turtle distribution; sea turtle strandings; fishing... or prior to elevated sea turtle strandings; or (3) The fishery uses a gear or technique that is known... have been documented, and there were a limited number of sea turtle strandings in CT waters (n=12)...

  6. Checklist of sea turtles endohelminth in Neotropical region

    Directory of Open Access Journals (Sweden)

    Werneck M. R.

    2016-09-01

    Full Text Available This paper presents a list of parasites described in sea turtles from the Neotropical region. Through the review of literature the occurrence of 79 taxa of helminthes parasites were observed, mostly consisting of the Phylum Platyhelminthes with 76 species distributed in 14 families and 2 families of the Phylum Nematoda within 3 species. Regarding the parasite records, the most studied host was the green turtle (Chelonia mydas followed by the hawksbill turtle (Eretmochelys imbricata, olive ridley turtle (Lepidochelys olivacea, loggerhead turtle (Caretta caretta and leatherback turtle (Dermochelys coriacea. Overall helminths were reported in 12 countries and in the Caribbean Sea region. This checklist is the largest compilation of data on helminths found in sea turtles in the Neotropical region.

  7. Sea turtle nesting distributions and oceanographic constraints on hatchling migration.

    Science.gov (United States)

    Putman, Nathan F; Bane, John M; Lohmann, Kenneth J

    2010-12-07

    Patterns of abundance across a species's reproductive range are influenced by ecological and environmental factors that affect the survival of offspring. For marine animals whose offspring must migrate long distances, natural selection may favour reproduction in areas near ocean currents that facilitate migratory movements. Similarly, selection may act against the use of potential reproductive areas from which offspring have difficulty emigrating. As a first step towards investigating this conceptual framework, we analysed loggerhead sea turtle (Caretta caretta) nest abundance along the southeastern US coast as a function of distance to the Gulf Stream System (GSS), the ocean current to which hatchlings in this region migrate. Results indicate that nest density increases as distance to the GSS decreases. Distance to the GSS can account for at least 90 per cent of spatial variation in regional nest density. Even at smaller spatial scales, where local beach conditions presumably exert strong effects, at least 38 per cent of the variance is explained by distance from the GSS. These findings suggest that proximity to favourable ocean currents strongly influences sea turtle nesting distributions. Similar factors may influence patterns of abundance across the reproductive ranges of diverse marine animals, such as penguins, eels, salmon and seals.

  8. Turtles (Chelodina longicollis) regulate muscle metabolic enzyme activity in response to seasonal variation in body temperature.

    Science.gov (United States)

    Seebacher, F; Sparrow, J; Thompson, M B

    2004-04-01

    Fluctuations in the thermal environment may elicit different responses in animals: migration to climatically different areas, regulation of body temperature, modification of biochemical reaction rates, or assuming a state of dormancy. Many ectothermic reptiles are active over a range of body temperatures that vary seasonally. Here we test the hypothesis that metabolic enzyme activity acclimatises seasonally in freshwater turtles (Chelodina longicollis) in addition to, or instead of, behavioural regulation of body temperatures. We measured body temperatures in free-ranging turtles (n = 3) by radiotelemetry, and we assayed phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome c oxidase (CCO) activities in early autumn (March, n = 10 turtles), late autumn (May, n = 7) and mid-winter (July, n = 7) over a range of assay temperatures (10 degrees C, 15 degrees C, 20 degrees C, 25 degrees C). Body temperatures were either not different from, or higher than expected from a theoretical null-distribution of a randomly moving animal. Field body temperatures at any season were lower, however, than expected from animals that maximised their sun exposure. Turtles maintained constant PFK, LDH and CCO activities in different months, despite body temperature differences of nearly 13.0 degrees C between March (average daily body temperature = 24.4 degrees C) and July (average = 11.4 degrees C). CS activity did not vary between March and May (average daily body temperature = 20.2 degrees C), but it decreased in July. Thus C. longicollis use a combination of behavioural thermoregulation and biochemical acclimatisation in response to seasonally changing thermal conditions. Ectothermic reptiles were often thought not to acclimatise biochemically, and our results show that behavioural attainment of a preferred body temperature is not mandatory for activity or physiological performance in turtles.

  9. Habitat use of breeding green turtles Chelonia mydas tagged in Dry Tortugas National Park: Making use of local and regional MPAs

    Science.gov (United States)

    Hart, Kristen; Zawada, David G.; Fujisaki, Ikuko; Lidz, Barbara H.

    2013-01-01

    Use of existing marine protected areas (MPAs) by far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on MPA use by marine turtles in the Gulf of Mexico, we used satellite transmitters in 2010 and 2011 to track movements of 11 adult female breeding green turtles (Chelonia mydas) tagged in Dry Tortugas National Park (DRTO), in the Gulf of Mexico, south Florida, USA. Throughout the study period, turtles emerged every 9–18 days to nest. During the intervals between nesting episodes (i.e., inter-nesting periods), the turtles consistently used a common core-area within the DRTO boundary, determined using individual 50% kernel-density estimates (KDEs). We mapped the area in DRTO where individual turtle 50% KDEs overlapped using the USGS Along-Track Reef-Imaging System, and determined the diversity and distribution of various benthic-cover types within the mapped area. We also tracked turtles post-nesting as they transited to foraging sites 5–282 km away from tagging beaches; these sites were located both within DRTO and in the surrounding area of the Florida Keys and Florida Keys National Marine Sanctuary (FKNMS), a regional MPA. Year-round residency of 9 out of 11 individuals (82%) both within DRTO and in the FKNMS represents novel non-migratory behavior, which offers an opportunity for conservation of this imperiled species at both local and regional scales. These data comprise the first satellite-tracking results on adult nesting green turtles at this remote study site. Additional tracking could reveal whether the distinct inter-nesting and foraging sites delineated here will be repeatedly used in the future by these and other breeding green turtles.

  10. Decompression sickness ('the bends') in sea turtles.

    Science.gov (United States)

    García-Párraga, D; Crespo-Picazo, J L; de Quirós, Y Bernaldo; Cervera, V; Martí-Bonmati, L; Díaz-Delgado, J; Arbelo, M; Moore, M J; Jepson, P D; Fernández, Antonio

    2014-10-16

    Decompression sickness (DCS), as clinically diagnosed by reversal of symptoms with recompression, has never been reported in aquatic breath-hold diving vertebrates despite the occurrence of tissue gas tensions sufficient for bubble formation and injury in terrestrial animals. Similarly to diving mammals, sea turtles manage gas exchange and decompression through anatomical, physiological, and behavioral adaptations. In the former group, DCS-like lesions have been observed on necropsies following behavioral disturbance such as high-powered acoustic sources (e.g. active sonar) and in bycaught animals. In sea turtles, in spite of abundant literature on diving physiology and bycatch interference, this is the first report of DCS-like symptoms and lesions. We diagnosed a clinico-pathological condition consistent with DCS in 29 gas-embolized loggerhead sea turtles Caretta caretta from a sample of 67. Fifty-nine were recovered alive and 8 had recently died following bycatch in trawls and gillnets of local fisheries from the east coast of Spain. Gas embolization and distribution in vital organs were evaluated through conventional radiography, computed tomography, and ultrasound. Additionally, positive response following repressurization was clinically observed in 2 live affected turtles. Gas embolism was also observed postmortem in carcasses and tissues as described in cetaceans and human divers. Compositional gas analysis of intravascular bubbles was consistent with DCS. Definitive diagnosis of DCS in sea turtles opens a new era for research in sea turtle diving physiology, conservation, and bycatch impact mitigation, as well as for comparative studies in other air-breathing marine vertebrates and human divers.

  11. Conservation hotspots for the turtles on the high seas of the Atlantic Ocean.

    Directory of Open Access Journals (Sweden)

    Hsiang-Wen Huang

    Full Text Available Understanding the distribution of bycaught sea turtles could inform conservation strategies and priorities. This research analyses the distribution of turtles caught as longline fisheries bycatch on the high seas of the Atlantic Ocean. This research collected 18,142 bycatch observations and 47.1 million hooks from large-scale Taiwanese longline vessels in the Atlantic Ocean from June 2002 to December 2013. The coverage rates were ranged from 0.48% to 17.54% by year. Seven hundred and sixty-seven turtles were caught, and the major species were leatherback (59.8%, olive ridley (27.1% and loggerhead turtles (8.7%. Most olive ridley (81.7% and loggerhead (82.1% turtles were hooked, while the leatherbacks were both hooked (44.0% and entangled (31.8%. Depending on the species, 21.4% to 57.7% were dead when brought onboard. Most of the turtles were caught in tropical areas, especially in the Gulf of Guinea (15°N-10°S, 30°W-10°E, but loggerheads were caught in the south Atlantic Ocean (25°S-35°S, 40°W-10°E and 30°S-40°S, 55°W-45°W. The bycatch rate was the highest at 0.030 per 1000 hooks for leatherbacks in the tropical area. The bycatch rates of olive ridley ranged from 0 to 0.010 per thousand hooks. The loggerhead bycatch rates were higher in the northern and southern Atlantic Ocean and ranged from 0.0128 to 0.0239 per thousand hooks. Due to the characteristics of the Taiwanese deep-set longline fleet, bycatch rates were lower than those of coastal longline fisheries, but mortality rates were higher because of the long hours of operation. Gear and bait modification should be considered to reduce sea turtle bycatch and increase survival rates while reducing the use of shallow hooks would also be helpful.

  12. Conservation Hotspots for the Turtles on the High Seas of the Atlantic Ocean

    Science.gov (United States)

    Huang, Hsiang-Wen

    2015-01-01

    Understanding the distribution of bycaught sea turtles could inform conservation strategies and priorities. This research analyses the distribution of turtles caught as longline fisheries bycatch on the high seas of the Atlantic Ocean. This research collected 18,142 bycatch observations and 47.1 million hooks from large-scale Taiwanese longline vessels in the Atlantic Ocean from June 2002 to December 2013. The coverage rates were ranged from 0.48% to 17.54% by year. Seven hundred and sixty-seven turtles were caught, and the major species were leatherback (59.8%), olive ridley (27.1%) and loggerhead turtles (8.7%). Most olive ridley (81.7%) and loggerhead (82.1%) turtles were hooked, while the leatherbacks were both hooked (44.0%) and entangled (31.8%). Depending on the species, 21.4% to 57.7% were dead when brought onboard. Most of the turtles were caught in tropical areas, especially in the Gulf of Guinea (15°N-10°S, 30°W-10°E), but loggerheads were caught in the south Atlantic Ocean (25°S-35°S, 40°W-10°E and 30°S-40°S, 55°W-45°W). The bycatch rate was the highest at 0.030 per 1000 hooks for leatherbacks in the tropical area. The bycatch rates of olive ridley ranged from 0 to 0.010 per thousand hooks. The loggerhead bycatch rates were higher in the northern and southern Atlantic Ocean and ranged from 0.0128 to 0.0239 per thousand hooks. Due to the characteristics of the Taiwanese deep-set longline fleet, bycatch rates were lower than those of coastal longline fisheries, but mortality rates were higher because of the long hours of operation. Gear and bait modification should be considered to reduce sea turtle bycatch and increase survival rates while reducing the use of shallow hooks would also be helpful. PMID:26267796

  13. Conservation hotspots for the turtles on the high seas of the Atlantic Ocean.

    Science.gov (United States)

    Huang, Hsiang-Wen

    2015-01-01

    Understanding the distribution of bycaught sea turtles could inform conservation strategies and priorities. This research analyses the distribution of turtles caught as longline fisheries bycatch on the high seas of the Atlantic Ocean. This research collected 18,142 bycatch observations and 47.1 million hooks from large-scale Taiwanese longline vessels in the Atlantic Ocean from June 2002 to December 2013. The coverage rates were ranged from 0.48% to 17.54% by year. Seven hundred and sixty-seven turtles were caught, and the major species were leatherback (59.8%), olive ridley (27.1%) and loggerhead turtles (8.7%). Most olive ridley (81.7%) and loggerhead (82.1%) turtles were hooked, while the leatherbacks were both hooked (44.0%) and entangled (31.8%). Depending on the species, 21.4% to 57.7% were dead when brought onboard. Most of the turtles were caught in tropical areas, especially in the Gulf of Guinea (15°N-10°S, 30°W-10°E), but loggerheads were caught in the south Atlantic Ocean (25°S-35°S, 40°W-10°E and 30°S-40°S, 55°W-45°W). The bycatch rate was the highest at 0.030 per 1000 hooks for leatherbacks in the tropical area. The bycatch rates of olive ridley ranged from 0 to 0.010 per thousand hooks. The loggerhead bycatch rates were higher in the northern and southern Atlantic Ocean and ranged from 0.0128 to 0.0239 per thousand hooks. Due to the characteristics of the Taiwanese deep-set longline fleet, bycatch rates were lower than those of coastal longline fisheries, but mortality rates were higher because of the long hours of operation. Gear and bait modification should be considered to reduce sea turtle bycatch and increase survival rates while reducing the use of shallow hooks would also be helpful.

  14. Comparative analysis of pleurodiran and cryptodiran turtle embryos depicts the molecular ground pattern of the turtle carapacial ridge.

    Science.gov (United States)

    Pascual-Anaya, Juan; Hirasawa, Tatsuya; Sato, Iori; Kuraku, Shigehiro; Kuratani, Shigeru

    2014-01-01

    The turtle shell is a wonderful example of a genuine morphological novelty, since it has no counterpart in any other extant vertebrate lineages. The evolutionary origin of the shell is a question that has fascinated evolutionary biologists for over two centuries and it still remains a mystery. One of the turtle innovations associated with the shell is the carapacial ridge (CR), a bulge that appears at both sides of the dorsal lateral trunk of the turtle embryo and that probably controls the formation of the carapace, the dorsal moiety of the shell. Although from the beginning of this century modern genetic techniques have been applied to resolve the evolutionary developmental origin of the CR, the use of different models with, in principle, dissimilar results has hampered the establishment of a common mechanism for the origin of the shell. Although modern turtles are divided into two major groups, Cryptodira (or hidden-necked turtles) and Pleurodira (or side-necked turtles), molecular developmental studies have been carried out mostly using cryptodiran models. In this study, we revisit the past data obtained from cryptodiran turtles in order to reconcile the different results. We also analyze the histological anatomy and the expression pattern of main CR factors in a pleurodiran turtle, the red-bellied short-necked turtle Emydura subglobosa. We suggest that the turtle shell probably originated concomitantly with the co-option of the canonical Wnt signaling pathway into the CR in the last common ancestor of the turtle.

  15. Diatoms and Other Epibionts Associated with Olive Ridley (Lepidochelys olivacea Sea Turtles from the Pacific Coast of Costa Rica.

    Directory of Open Access Journals (Sweden)

    Roksana Majewska

    Full Text Available Although the sea turtles have long been familiar and even iconic to marine biologists, many aspects of their ecology remain unaddressed. The present study is the first of the epizoic diatom community covering the olive ridley turtle's (Lepidochelys olivacea carapace and the first describing diatoms living on sea turtles in general, with the primary objective of providing detailed information on turtle epibiotic associations. Samples of turtle carapace including the associated diatom biofilm and epizoic macro-fauna were collected from Ostional beach (9° 59´ 23.7´´ N 85° 41´ 52.6´´ W, Costa Rica, during the arribada event in October 2013. A complex diatom community was present in every sample. In total, 11 macro-faunal and 21 diatom taxa were recorded. Amongst diatoms, the most numerous were erect (Achnanthes spp., Tripterion spp. and motile (Haslea sp., Navicula spp., Nitzschia spp., Proschkinia sp. forms, followed by adnate Amphora spp., while the most common macro-faunal species was Stomatolepas elegans (Cirripedia. Diatom densities ranged from 8179 ± 750 to 27685 ± 4885 cells mm-2. Epizoic microalgae were either partly immersed or entirely encapsulated within an exopolymeric coat. The relatively low diatom species number, stable species composition and low inter-sample dissimilarities (14.4% on average may indicate a mutualistic relationship between the epibiont and the basibiont. Dispersal of sea turtle diatoms is probably highly restricted and similar studies will help to understand both diatom diversity, evolution and biogeography, and sea turtle ecology and foraging strategies.

  16. A giant chelonioid turtle from the late Cretaceous of Morocco with a suction feeding apparatus unique among tetrapods.

    Directory of Open Access Journals (Sweden)

    Nathalie Bardet

    Full Text Available BACKGROUND: Secondary adaptation to aquatic life occurred independently in several amniote lineages, including reptiles during the Mesozoic and mammals during the Cenozoic. These evolutionary shifts to aquatic environments imply major morphological modifications, especially of the feeding apparatus. Mesozoic (250-65 Myr marine reptiles, such as ichthyosaurs, plesiosaurs, mosasaurid squamates, crocodiles, and turtles, exhibit a wide range of adaptations to aquatic feeding and a broad overlap of their tooth morphospaces with those of Cenozoic marine mammals. However, despite these multiple feeding behavior convergences, suction feeding, though being a common feeding strategy in aquatic vertebrates and in marine mammals in particular, has been extremely rarely reported for Mesozoic marine reptiles. PRINCIPAL FINDINGS: A relative of fossil protostegid and dermochelyoid sea turtles, Ocepechelon bouyai gen. et sp. nov. is a new giant chelonioid from the Late Maastrichtian (67 Myr of Morocco exhibiting remarkable adaptations to marine life (among others, very dorsally and posteriorly located nostrils. The 70-cm-long skull of Ocepechelon not only makes it one of the largest marine turtles ever described, but also deviates significantly from typical turtle cranial morphology. It shares unique convergences with both syngnathid fishes (unique long tubular bony snout ending in a rounded and anteriorly directed mouth and beaked whales (large size and elongated edentulous jaws. This striking anatomy suggests extreme adaptation for suction feeding unmatched among known turtles. CONCLUSION/SIGNIFICANCE: The feeding apparatus of Ocepechelon, a bony pipette-like snout, is unique among tetrapods. This new taxon exemplifies the successful systematic and ecological diversification of chelonioid turtles during the Late Cretaceous. This new evidence for a unique trophic specialization in turtles, along with the abundant marine vertebrate faunas associated to

  17. Diatoms and Other Epibionts Associated with Olive Ridley (Lepidochelys olivacea) Sea Turtles from the Pacific Coast of Costa Rica.

    Science.gov (United States)

    Majewska, Roksana; Santoro, Mario; Bolaños, Federico; Chaves, Gerardo; De Stefano, Mario

    2015-01-01

    Although the sea turtles have long been familiar and even iconic to marine biologists, many aspects of their ecology remain unaddressed. The present study is the first of the epizoic diatom community covering the olive ridley turtle's (Lepidochelys olivacea) carapace and the first describing diatoms living on sea turtles in general, with the primary objective of providing detailed information on turtle epibiotic associations. Samples of turtle carapace including the associated diatom biofilm and epizoic macro-fauna were collected from Ostional beach (9° 59´ 23.7´´ N 85° 41´ 52.6´´ W), Costa Rica, during the arribada event in October 2013. A complex diatom community was present in every sample. In total, 11 macro-faunal and 21 diatom taxa were recorded. Amongst diatoms, the most numerous were erect (Achnanthes spp., Tripterion spp.) and motile (Haslea sp., Navicula spp., Nitzschia spp., Proschkinia sp.) forms, followed by adnate Amphora spp., while the most common macro-faunal species was Stomatolepas elegans (Cirripedia). Diatom densities ranged from 8179 ± 750 to 27685 ± 4885 cells mm-2. Epizoic microalgae were either partly immersed or entirely encapsulated within an exopolymeric coat. The relatively low diatom species number, stable species composition and low inter-sample dissimilarities (14.4% on average) may indicate a mutualistic relationship between the epibiont and the basibiont. Dispersal of sea turtle diatoms is probably highly restricted and similar studies will help to understand both diatom diversity, evolution and biogeography, and sea turtle ecology and foraging strategies.

  18. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan.

    Science.gov (United States)

    Wang, Zhuo; Pascual-Anaya, Juan; Zadissa, Amonida; Li, Wenqi; Niimura, Yoshihito; Huang, Zhiyong; Li, Chunyi; White, Simon; Xiong, Zhiqiang; Fang, Dongming; Wang, Bo; Ming, Yao; Chen, Yan; Zheng, Yuan; Kuraku, Shigehiro; Pignatelli, Miguel; Herrero, Javier; Beal, Kathryn; Nozawa, Masafumi; Li, Qiye; Wang, Juan; Zhang, Hongyan; Yu, Lili; Shigenobu, Shuji; Wang, Junyi; Liu, Jiannan; Flicek, Paul; Searle, Steve; Wang, Jun; Kuratani, Shigeru; Yin, Ye; Aken, Bronwen; Zhang, Guojie; Irie, Naoki

    2013-06-01

    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ∼267.9-248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell.

  19. Estimating dispersal and gene flow in the neotropical freshwater turtle Hydromedusa maximiliani (Chelidae by combining ecological and genetic methods

    Directory of Open Access Journals (Sweden)

    Souza Franco L.

    2002-01-01

    Full Text Available Hydromedusa maximiliani is a vulnerable neotropical freshwater turtle endemic to mountainous regions of the Atlantic rainforest in southeastern Brazil. Random amplified polymorphic DNA (RAPD was used to estimate the gene flow and dispersal for individuals inhabiting rivers and streams within a drainage. Nine primers generated 27 scoreable bands, of which 9 (33% were polymorphic and produced 12 RAPD phenotypes. The gene flow estimates (Nm among turtles inhabiting different rivers and streams were variable, ranging from 0.09 to 3.00 (mean: 0.60. For some loci, the rates of gene flow could offset population differentiation (Nm > 1, whereas for others random genetic drift could result in population divergence (Nm < 1. Since the genetic variation of this turtle seems to be structured according to the natural hierarchical system of rivers and streams within drainages, management programs involving translocations between different regions across the geographical range of H. maximiliani should be viewed with caution.

  20. Relating annual increments of the endangered Blanding's turtle plastron growth to climate.

    Science.gov (United States)

    Richard, Monik G; Laroque, Colin P; Herman, Thomas B

    2014-05-01

    This research is the first published study to report a relationship between climate variables and plastron growth increments of turtles, in this case the endangered Nova Scotia Blanding's turtle (Emydoidea blandingii). We used techniques and software common to the discipline of dendrochronology to successfully cross-date our growth increment data series, to detrend and average our series of 80 immature Blanding's turtles into one common chronology, and to seek correlations between the chronology and environmental temperature and precipitation variables. Our cross-dated chronology had a series intercorrelation of 0.441 (above 99% confidence interval), an average mean sensitivity of 0.293, and an average unfiltered autocorrelation of 0.377. Our master chronology represented increments from 1975 to 2007 (33 years), with index values ranging from a low of 0.688 in 2006 to a high of 1.303 in 1977. Univariate climate response function analysis on mean monthly air temperature and precipitation values revealed a positive correlation with the previous year's May temperature and current year's August temperature; a negative correlation with the previous year's October temperature; and no significant correlation with precipitation. These techniques for determining growth increment response to environmental variables should be applicable to other turtle species and merit further exploration.

  1. Incubation temperature, morphology and performance in loggerhead (Caretta caretta turtle hatchlings from Mon Repos, Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Elizabeth L. Sim

    2015-07-01

    Full Text Available Marine turtles are vulnerable to climate change because their life history and reproduction are tied to environmental temperatures. The egg incubation stage is arguably the most vulnerable stage, because marine turtle eggs require a narrow range of temperatures for successful incubation. Additionally, incubation temperature affects sex, emergence success, morphology and locomotor performance of hatchlings. Hatchlings often experience high rates of predation in the first few hours of their life, and increased size or locomotor ability may improve their chances of survival. Between 2010 and 2013 we monitored the temperature of loggerhead (Caretta caretta; Linnaeus 1758 turtle nests at Mon Repos Rookery, and used these data to calculate a mean three day maximum temperature (T3dm for each nest. We calculated the hatching and emergence success for each nest, then measured the mass, size and locomotor performance of hatchlings that emerged from those nests. Nests with a T3dm greater than 34°C experienced a lower emergence success and produced smaller hatchlings than nests with a T3dm lower than 34°C. Hatchlings from nests with a T3dm below 34°C performed better in crawling and swimming trials than hatchlings from nests with a T3dm above 34°C. Thus even non-lethal increases in global temperatures have the potential to detrimentally affect fitness and survival of marine turtle hatchlings.

  2. Body temperature stability achieved by the large body mass of sea turtles.

    Science.gov (United States)

    Sato, Katsufumi

    2014-10-15

    To investigate the thermal characteristics of large reptiles living in water, temperature data were continuously recorded from 16 free-ranging loggerhead turtles, Caretta caretta, during internesting periods using data loggers. Core body temperatures were 0.7-1.7°C higher than ambient water temperatures and were kept relatively constant. Unsteady numerical simulations using a spherical thermodynamic model provided mechanistic explanations for these phenomena, and the body temperature responses to fluctuating water temperature can be simply explained by a large body mass with a constant thermal diffusivity and a heat production rate rather than physiological thermoregulation. By contrast, body temperatures increased 2.6-5.1°C in 107-152 min during their emergences to nest on land. The estimated heat production rates on land were 7.4-10.5 times the calculated values in the sea. The theoretical prediction that temperature difference between body and water temperatures would increase according to the body size was confirmed by empirical data recorded from several species of sea turtles. Comparing previously reported data, the internesting intervals of leatherback, green and loggerhead turtles were shorter when the body temperatures were higher. Sea turtles seem to benefit from a passive thermoregulatory strategy, which depends primarily on the physical attributes of their large body masses.

  3. Fifty-year trends in a box turtle population in Maryland

    Science.gov (United States)

    Hall, R.J.; Henry, P.F.P.; Bunck, C.M.

    1999-01-01

    A survey conducted in 1995 investigated long term declines reported in a population of box turtles Terrapene Carolina monitored each decade since 1945 in bottomland hardwood forest at the Patuxent Wildlife Research Center, Maryland. Methods duplicated past surveys in most respects, but were supplemented by radiotelemetry and a survey of dominant vegetation. Seventy different turtles were found on the 11.8 ha study area, a decline of >75% since peak populations were recorded in 1955. Searchers were less efficient in 1995 than in 1945-1975 for a variety of possible reasons. Among turtles recorded, approximately equal numbers persisted from each of the past five decades, with some individuals surviving >70 years. A sex ratio strongly favoring males was first recorded in 1975 and continued in 1995, but juveniles and subadults were found in greater proportion in 1995 than in any other survey. Six of nine radio-marked turtles left the bottomland study area and migrated to the adjoining bluffs to hibernate, suggesting more extensive movements and perhaps less stable home ranges than formerly thought. Age structure of trees indicated a gradual change to more shade-tolerant species. Examination of rates of change from survey data suggested that major losses probably resulted from changes in hydrology that exacerbated flooding in 1972, with recovery only beginning in 1995 and perhaps limited both by repeated flood events and successional changes in the forest. Slow recovery from losses may indicate that populations of the species would respond poorly to exploitation.

  4. Tracking leatherback turtles from the world's largest rookery: assessing threats across the South Atlantic.

    Science.gov (United States)

    Witt, Matthew J; Augowet Bonguno, Eric; Broderick, Annette C; Coyne, Michael S; Formia, Angela; Gibudi, Alain; Mounguengui Mounguengui, Gil Avery; Moussounda, Carine; NSafou, Monique; Nougessono, Solange; Parnell, Richard J; Sounguet, Guy-Philippe; Verhage, Sebastian; Godley, Brendan J

    2011-08-07

    Despite extensive work carried out on leatherback turtles (Dermochelys coriacea) in the North Atlantic and Indo-Pacific, very little is known of the at-sea distribution of this species in the South Atlantic, where the world's largest population nests in Gabon (central Africa). This paucity of data is of marked concern given the pace of industrialization in fisheries with demonstrable marine turtle bycatch in African/Latin American waters. We tracked the movements of 25 adult female leatherback turtles obtaining a range of fundamental and applied insights, including indications for methodological advancement. Individuals could be assigned to one of three dispersal strategies, moving to (i) habitats of the equatorial Atlantic, (ii) temperate habitats off South America or (iii) temperate habitats off southern Africa. While occupying regions with high surface chlorophyll concentrations, these strategies exposed turtles to some of the world's highest levels of longline fishing effort, in addition to areas with coastal gillnet fisheries. Satellite tracking highlighted that at least 11 nations should be involved in the conservation of this species in addition to those with distant fishing fleets. The majority of tracking days were, however, spent in the high seas, where effective implementation of conservation efforts is complex to achieve.

  5. Implications of extreme sexual size dimorphism for thermoregulation in a freshwater turtle.

    Science.gov (United States)

    Bulté, Grégory; Blouin-Demers, Gabriel

    2010-02-01

    Sexual size dimorphism (SSD) is a common phenomenon in animals. In many species females are substantially larger than males. Because body size plays a central role in modulating the body temperature (T (b)) of ectotherms, intersexual differences in body size may lead to important intersexual differences in thermoregulation. In addition, because SSD is realized by differences in growth rate and because growth rate is strongly temperature dependent in ectotherms, a conflict between male reproductive behaviour and thermoregulation may affect the expression of SSD. In this study, we investigated the thermal implications of SSD in a reptile exhibiting spectacular female-biased SSD: the northern map turtle (Graptemys geographica). Over three seasons, we collected >150,000 measurements of T (b) in free-ranging adult and juvenile northern map turtles using surgically implanted miniature temperature loggers. Northern map turtles exhibited seasonal patterns of thermoregulation typical of reptiles in northern latitudes, but we found that large adult females experienced a lower daily maximum T (b) and a narrower daily range of T (b) than adult males and small juvenile females. In addition, despite more time spent basking, large adult females were not able to thermoregulate as accurately as small turtles. Our findings strongly suggest that body size limits the ability to thermoregulate accurately in large females. By comparing thermoregulatory patterns between adult males and juvenile females of similar body size, we found no evidence that male reproductive behaviours are an impediment to thermoregulation. We also quantified the thermal significance of basking behaviour. We found, contrary to previous findings, that aerial basking allows northern map turtles to raise their T (b) substantially above water temperature, indicating that basking behaviour likely plays an important role in thermoregulation.

  6. Mercury concentrations in snapping turtles (Chelydra serpentina) correlate with environmental and landscape characteristics.

    Science.gov (United States)

    Turnquist, Madeline A; Driscoll, Charles T; Schulz, Kimberly L; Schlaepfer, Martin A

    2011-10-01

    Mercury (Hg) deposited onto the landscape can be transformed into methylmercury (MeHg), a neurotoxin that bioaccumulates up the aquatic food chain. Here, we report on Hg concentrations in snapping turtles (Chelydra serpentina) across New York State, USA. The objectives of this study were to: (1) test which landscape, water, and biometric characteristics correlate with total Hg (THg) concentrations in snapping turtles; and (2) determine whether soft tissue THg concentrations correlate with scute (shell) concentrations. Forty-eight turtles were sampled non-lethally from ten lakes and wetlands across New York to observe patterns under a range of ecosystem variables and water chemistry conditions. THg concentrations ranged from 0.041 to 1.50 μg/g and 0.47 to 7.43 μg/g wet weight of muscle tissue and shell, respectively. The vast majority of mercury (~94%) was in the MeHg form. Sixty-one percent of turtle muscle samples exceeded U.S. Environmental Protection Agency (U.S. EPA) consumption advisory limit of 0.3 μg Hg/g for fish. Muscle THg concentrations were significantly correlated with sulfate in water and the maximum elevation of the watershed. Shell THg concentrations were significantly correlated with the acid neutralizing capacity (ANC) of water, the maximum elevation of the watershed, the percent open water in the watershed, the lake to watershed size, and various forms of atmospheric Hg deposition. Thus, our results demonstrate that THg concentrations in snapping turtles are spatially variable, frequently exceed advisory limits, and are significantly correlated with several landscape and water characteristics.

  7. Forbidden sea turtles: Traditional laws pertaining to sea turtle consumption in Polynesia (Including the Polynesian Outliers

    Directory of Open Access Journals (Sweden)

    Rudrud Regina

    2010-01-01

    Full Text Available Throughout the Pacific regions of Micronesia, Melanesia and Polynesia, sea turtles are recognised as culturally significant species. The specifics of human-sea turtle interactions in these regions, however, are not well known, in part because ethnographic and historic reports documenting these interactions are scattered, requiring extensive archival research. Ethnographic and environmental data collected over a ten-year period are analysed to assess patterns of human-sea turtle interactions prior to (and sometimes beyond Western contact. From the ethnographic data for Polynesia, a region-wide pattern emerges where sea turtle consumption was restricted to special ceremonies when the elites such as chiefs and priests but no one else ate turtle. Only in two countries did this pattern differ. Environmental data does little to elucidate explanations for this region-wide treatment of sea turtles as restricted food sources, as there is no correlation between environmental variability and the presence or absence of these restrictions. Instead the results of this research suggest such practices may have been part of an ancestral Polynesian society, developing well before human settlement into this region of the Pacific.

  8. A sinemydid turtle from the Jehol Biota provides insights into the basal divergence of crown turtles.

    Science.gov (United States)

    Zhou, Chang-Fu; Rabi, Márton

    2015-11-10

    Morphological phylogenies stand in a major conflict with molecular hypotheses regarding the phylogeny of Cryptodira, the most diverse and widely distributed clade of extant turtles. However, molecular hypotheses are often considered a better estimate of phylogeny given that it is more consistent with the stratigraphic and geographic distribution of extinct taxa. That morphology fails to reproduce the molecular topology partly originates from problematic character polarization due to yet another contradiction around the composition of the cryptodiran stem lineage. Extinct sinemydids are one of these problematic clades: they have been either placed among stem-cryptodires, stem-chelonioid sea turtles, or even stem-turtles. A new sinemydid from the Early Cretaceous Jehol Biota (Yixian Formation, Barremian-Early Aptian) of China, Xiaochelys ningchengensis gen. et sp. nov., allows for a reassessment of the phylogenetic position of Sinemydidae. Our analysis indicates that sinemydids mostly share symplesiomorphies with sea turtles and their purported placement outside the crown-group of turtles is an artefact of previous datasets. The best current phylogenetic estimate is therefore that sinemydids are part of the stem lineage of Cryptodira together with an array of other Jurassic to Cretaceous taxa. Our study further emphasises the importance of using molecular scaffolds in global turtle analyses.

  9. Sea Turtle Navigation and the Detection of Geomagnetic Field Features

    Science.gov (United States)

    Lohmann, Kenneth J.; Lohmann, Catherine M. F.

    The lives of sea turtles consist of a continuous series of migrations. As hatchlings, the turtles swim from their natal beaches into the open sea, often taking refuge in circular current systems (gyres) that serve as moving, open-ocean nursery grounds. The juveniles of many populations subsequently take up residence in coastal feeding areas that are located hundreds or thousands of kilometres from the beaches on which the turtles hatched; some juveniles also migrate between summer and winter habitats. As adults, turtles periodically leave their feeding grounds and migrate to breeding and nesting regions, after which many return to their own specific feeding sites. The itinerant lifestyle characteristic of most sea turtle species is thus inextricably linked to an ability to orient and navigate accurately across large expanses of seemingly featureless ocean.In some sea turtle populations, migratory performance reaches extremes. The total distances certain green turtles (Chelonia mydas) and loggerheads (Caretta caretta) traverse over the span of their lifetimes exceed tens of thousands of kilometres, several times the diameter of the turtle's home ocean basin. Adult migrations between feeding and nesting habitats can require continuous swimming for periods of several weeks. In addition, the paths of migrating turtles often lead almost straight across the open ocean and directly to the destination, leaving little doubt that turtles can navigate to distant target sites with remarkable efficiency.

  10. Diversity and status of sea turtle species in the Gulf of Guinea islands

    OpenAIRE

    Castroviejo, Javier; Juste, Javier; Pérez del Val, Jaime; Castelo, Ramón; Gil, Ramón

    1994-01-01

    In West Africa, the Gulf of Guinea islands are important nesting places for four sea turtle species. The Green turtle (Chelonia mydas), the Hawksbill (Eretmochelys imbricata), the Olive Ridley (Lepidochelys olivacea) and the Leatherback (Dermochelys coriacea) turtles nest on Bioko’s southern beaches. The Green, Hawksbill and Leatherback turtles breed on Principe and São Tome. The Leatherback turtle nests, at least, on Annobén. The Leatherback turtle is reported on the four islan...

  11. ABC of multi-fractal spacetimes and fractional sea turtles

    Energy Technology Data Exchange (ETDEWEB)

    Calcagni, Gianluca [Instituto de Estructura de la Materia, CSIC, Madrid (Spain)

    2016-04-15

    We clarify what it means to have a spacetime fractal geometry in quantum gravity and show that its properties differ from those of usual fractals. A weak and a strong definition of multi-scale and multi-fractal spacetimes are given together with a sketch of the landscape of multi-scale theories of gravitation. Then, in the context of the fractional theory with q-derivatives, we explore the consequences of living in a multi-fractal spacetime. To illustrate the behavior of a non-relativistic body, we take the entertaining example of a sea turtle. We show that, when only the time direction is fractal, sea turtles swim at a faster speed than in an ordinary world, while they swim at a slower speed if only the spatial directions are fractal. The latter type of geometry is the one most commonly found in quantum gravity. For time-like fractals, relativistic objects can exceed the speed of light, but strongly so only if their size is smaller than the range of particle-physics interactions. We also find new results about log-oscillating measures, the measure presentation and their role in physical observations and in future extensions to nowhere-differentiable stochastic spacetimes. (orig.)

  12. ABC of multi-fractal spacetimes and fractional sea turtles

    Science.gov (United States)

    Calcagni, Gianluca

    2016-04-01

    We clarify what it means to have a spacetime fractal geometry in quantum gravity and show that its properties differ from those of usual fractals. A weak and a strong definition of multi-scale and multi-fractal spacetimes are given together with a sketch of the landscape of multi-scale theories of gravitation. Then, in the context of the fractional theory with q-derivatives, we explore the consequences of living in a multi-fractal spacetime. To illustrate the behavior of a non-relativistic body, we take the entertaining example of a sea turtle. We show that, when only the time direction is fractal, sea turtles swim at a faster speed than in an ordinary world, while they swim at a slower speed if only the spatial directions are fractal. The latter type of geometry is the one most commonly found in quantum gravity. For time-like fractals, relativistic objects can exceed the speed of light, but strongly so only if their size is smaller than the range of particle-physics interactions. We also find new results about log-oscillating measures, the measure presentation and their role in physical observations and in future extensions to nowhere-differentiable stochastic spacetimes.

  13. ABC of multi-fractal spacetimes and fractional sea turtles

    CERN Document Server

    Calcagni, Gianluca

    2016-01-01

    We clarify what it means to have a spacetime fractal geometry in quantum gravity and show that its properties differ from those of usual fractals. A weak and a strong definition of multi-scale and multi-fractal spacetimes are given together with a sketch of the landscape of multi-scale theories of gravitation. Then, in the context of the fractional theory with $q$-derivatives, we explore the consequences of living in a multi-fractal spacetime. To illustrate the behaviour of a non-relativistic body, we take the entertaining example of a sea turtle. We show that, when only the time direction is fractal, sea turtles swim at a faster speed than in an ordinary world, while they swim at a slower speed if only the spatial directions are fractal. The latter type of geometry is the one most commonly found in quantum gravity. For time-like fractals, relativistic objects can exceed the speed of light, but strongly so only if their size is smaller than the range of particle-physics interactions. We also find new results ...

  14. "Turtle Island Tales." Cue Sheet for Students.

    Science.gov (United States)

    Carr, Gail

    This performance guide is designed for teachers to use with students before and after a shadow play performance of "Turtle Island Tales" by Hobey Ford and His Golden Rod Puppets. The guide, called a "Cuesheet," contains seven activity sheets for use in class, addressing: (1) The Tales (offering brief outlines of the three tales…

  15. Bioenergetics and diving activity of internesting leatherback turtles Dermochelys coriacea at Parque Nacional Marino Las Baulas, Costa Rica.

    Science.gov (United States)

    Wallace, Bryan P; Williams, Cassondra L; Paladino, Frank V; Morreale, Stephen J; Lindstrom, R Todd; Spotila, James R

    2005-10-01

    Physiology, environment and life history demands interact to influence marine turtle bioenergetics and activity. However, metabolism and diving behavior of free-swimming marine turtles have not been measured simultaneously. Using doubly labeled water, we obtained the first field metabolic rates (FMRs; 0.20-0.74 W kg(-1)) and water fluxes (16-30% TBW day(-1), where TBW=total body water) for free-ranging marine turtles and combined these data with dive information from electronic archival tags to investigate the bioenergetics and diving activity of reproductive adult female leatherback turtles Dermochelys coriacea. Mean dive durations (7.8+/-2.4 min (+/-1 s.d.), bottom times (2.7+/-0.8 min), and percentage of time spent in water temperatures (Tw) or =0.99). This suggests that low FMRs and activity levels, combined with shuttling between different water temperatures, could allow leatherbacks to avoid overheating while in warm tropical waters. Additionally, internesting leatherback dive durations were consistently shorter than aerobic dive limits calculated from our FMRs (11.7-44.3 min). Our results indicate that internesting female leatherbacks maintained low FMRs and activity levels, thereby spending relatively little energy while active at sea. Future studies should incorporate data on metabolic rate, dive patterns, water temperatures, and body temperatures to develop further the relationship between physiological and life history demands and marine turtle bioenergetics and activity.

  16. Winter diets of immature green turtles (Chelonia mydas) on a northern feeding ground: integrating stomach contents and stable isotope analyses

    Science.gov (United States)

    Williams, Natalie C.; Bjorndal, Karen A.; Lamont, Margaret M.; Carthy, Raymond R.

    2015-01-01

    The foraging ecology and diet of the green turtle, Chelonia mydas, remain understudied, particularly in peripheral areas of its distribution. We assessed the diet of an aggregation of juvenile green turtles at the northern edge of its range during winter months using two approaches. Stomach content analyses provide a single time sample, and stable isotope analyses integrate diet over a several-month period. We evaluated diet consistency in prey choice over time by comparing the results of these two approaches. We examined stomach contents from 43 juvenile green turtles that died during cold stunning events in St. Joseph Bay, Florida, in 2008 and 2011. Stomach contents were evaluated for volume, dry mass, percent frequency of occurrence, and index of relative importance of individual diet items. Juvenile green turtles were omnivorous, feeding primarily on seagrasses and tunicates. Diet characterizations from stomach contents differed from those based on stable isotope analyses, indicating the turtles are not feeding consistently during winter months. Evaluation of diets during warm months is needed.

  17. Clinical and Pathological Findings in Green Turtles (Chelonia mydas) from Gladstone, Queensland: Investigations of a Stranding Epidemic.

    Science.gov (United States)

    Flint, Mark; Eden, Paul A; Limpus, Colin J; Owen, Helen; Gaus, Caroline; Mills, Paul C

    2015-06-01

    An investigation into the health of green turtles was undertaken near Gladstone, Queensland, in response to a dramatic increase in stranding numbers in the first half of 2011. A total of 56 live turtles were subject to clinical examination and blood sampling for routine blood profiles, and 12 deceased turtles underwent a thorough necropsy examination. This population of green turtles was found to be in poor body condition and a range of infectious and non-infectious conditions were identified in the unhealthy turtles, including hepato-renal insufficiency (up to 81%, 27/33 based on clinical pathology), cachexia (92%, 11/12), parasitism (75%, 9/12), cardiopulmonary anomalies (42%, 5/12), gastroenteritis (25%, 3/12), masses (25%, 3/12) and mechanical impediments (17%, 2/12 based on necropsy). Overall, there was no evidence to indicate a unifying disease as a primary cause of the mass mortality. Recent adverse weather events, historic regional contamination and nearby industrial activities are discussed as potential causative factors.

  18. Global conservation priorities for marine turtles.

    Directory of Open Access Journals (Sweden)

    Bryan P Wallace

    Full Text Available Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs, and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts we developed a "conservation priorities portfolio" system using categories of paired risk and threats scores for all RMUs (n = 58. We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority

  19. Global Conservation Priorities for Marine Turtles

    Science.gov (United States)

    Wallace, Bryan P.; DiMatteo, Andrew D.; Bolten, Alan B.; Chaloupka, Milani Y.; Hutchinson, Brian J.; Abreu-Grobois, F. Alberto; Mortimer, Jeanne A.; Seminoff, Jeffrey A.; Amorocho, Diego; Bjorndal, Karen A.; Bourjea, Jérôme; Bowen, Brian W.; Briseño Dueñas, Raquel; Casale, Paolo; Choudhury, B. C.; Costa, Alice; Dutton, Peter H.; Fallabrino, Alejandro; Finkbeiner, Elena M.; Girard, Alexandre; Girondot, Marc; Hamann, Mark; Hurley, Brendan J.; López-Mendilaharsu, Milagros; Marcovaldi, Maria Angela; Musick, John A.; Nel, Ronel; Pilcher, Nicolas J.; Troëng, Sebastian; Witherington, Blair; Mast, Roderic B.

    2011-01-01

    Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs), and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts) we developed a “conservation priorities portfolio” system using categories of paired risk and threats scores for all RMUs (n = 58). We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority-setting for

  20. Helminth component community of the loggerhead sea turtle, Caretta caretta, from Madeira Archipelago, Portugal.

    Science.gov (United States)

    Valente, Ana Luisa; Delgado, Cláudia; Moreira, Cláudia; Ferreira, Sandra; Dellinger, Thomas; Pinheiro de Carvalho, Miguel A A; Costa, Graça

    2009-02-01

    The helminth fauna of pelagic-stage loggerhead sea turtles, Caretta caretta, is still poorly known. Here, we describe the helminth-component community of healthy, free-ranging juvenile loggerhead sea turtles captured in the waters around Madeira Island, Portugal. Fifty-seven were used in this study. The esophagus, stomach, intestine, liver, gallbladder, spleen, kidneys, trachea, bronchi, urinary bladder, heart, left and right aortas, and coelomic cavity were macroscopically inspected; organs and tissues were removed and washed through a sieve. A search for parasites was made using a stereoscopic microscope; recovered parasites were fixed and stored in 70% alcohol until staining and identification. Prevalence, mean intensity, and mean abundance values were recorded. In total, 156 parasite specimens belonging to 9 species were found: nematodes included Anisakis simplex s.l. (larvae) and an unidentified species; digenetic trematodes present were Enodiotrema megachondrus, Rhytidodes gelatinosus, Pyelosomum renicapite, and Calycodes anthos; acanthocephalans included Bolbosoma vasculosum and Rhadinorhynchus pristis; a single cestode, Nybelinia sp., was present. Parasite infections were found to have both low prevalences and intensities. Possible reasons for this include the oligotrophic conditions of the pelagic habitat around Madeira; a 'dilution effect' because of the vastness of the area; and the small size, and thus ingestion rate, of the turtles. Results are discussed in terms of the various turtle populations that may use the waters surrounding Madeira. This work provides valuable information on the parasite fauna of a poorly known stage in the life of loggerhead sea turtles, thereby filling a fundamental gap with regard to features of the parasite fauna in this species.

  1. Prevalence of Salmonella spp. in pet turtles and their environment

    Science.gov (United States)

    Back, Du-San; Shin, Gee-Wook; Wendt, Mitchell

    2016-01-01

    Pet turtles are known as a source of Salmonella infection to humans when handled in captivity. Thirty four turtles purchased from pet shops and online markets in Korea were examined to determine whether the turtles and their environment were contaminated with Salmonella spp. Salmonella spp. were isolated from fecal samples of 17 turtles. These isolates were identified as S. enterica through 16S rRNA gene sequencing. The isolation rate of Salmonella spp. from the soil and water samples increased over time. We concluded that a high percentage of turtles being sold in pet shops were infected with Salmonella spp., and their environments tend to become contaminated over time unless they are maintained properly. These results indicate that pet turtles could be a potential risk of salmonellosis in Korea. PMID:27729933

  2. Tumors in sea turtles: The insidious menace of fibropapillomatosis

    Science.gov (United States)

    Work, Thierry M.; Balazs, George H.

    2013-01-01

    Early in July 2013, a colleague in New Caledonia reported the stranding of a green sea turtle on the far northwest of the island. The animal had washed up dead on a rocky beach with multiple large tumors on its neck and hind flippers. To all appearances, the turtle had fibropapillomatosis (FP), a tumor disease affecting marine turtles globally. This was the first known case of FP on the island—an alarming find, and another example of the creeping expansion of this disease in green turtles around the world.

  3. Tumors in sea turtles: the insidious menace of fibropapillomatosis

    Science.gov (United States)

    Work, Thierry M.; Balazs, George H.

    2013-01-01

    Early in July 2013, a colleague in New Caledonia reported the stranding of a green sea turtle on the far northwest of the island. The animal had washed up dead on a rocky beach with multiple large tumors on its neck and hind flippers. To all appearances, the turtle had fibropapillomatosis (FP), a tumor disease affecting marine turtles globally. This was the first known case of FP on the island—an alarming find, and another example of the creeping expansion of this disease in green turtles around the world.

  4. Body plan of turtles: an anatomical, developmental and evolutionary perspective.

    Science.gov (United States)

    Nagashima, Hiroshi; Kuraku, Shigehiro; Uchida, Katsuhisa; Kawashima-Ohya, Yoshie; Narita, Yuichi; Kuratani, Shigeru

    2012-03-01

    The evolution of the turtle shell has long been one of the central debates in comparative anatomy. The turtle shell consists of dorsal and ventral parts: the carapace and plastron, respectively. The basic structure of the carapace comprises vertebrae and ribs. The pectoral girdle of turtles sits inside the carapace or the rib cage, in striking contrast to the body plan of other tetrapods. Due to this topological change in the arrangement of skeletal elements, the carapace has been regarded as an example of evolutionary novelty that violates the ancestral body plan of tetrapods. Comparing the spatial relationships of anatomical structures in the embryos of turtles and other amniotes, we have shown that the topology of the musculoskeletal system is largely conserved even in turtles. The positional changes seen in the ribs and pectoral girdle can be ascribed to turtle-specific folding of the lateral body wall in the late developmental stages. Whereas the ribs of other amniotes grow from the axial domain to the lateral body wall, turtle ribs remain arrested axially. Marginal growth of the axial domain in turtle embryos brings the morphologically short ribs in to cover the scapula dorsocaudally. This concentric growth appears to be induced by the margin of the carapace, which involves an ancestral gene expression cascade in a new location. These comparative developmental data allow us to hypothesize the gradual evolution of turtles, which is consistent with the recent finding of a transitional fossil animal, Odontochelys, which did not have the carapace but already possessed the plastron.

  5. Echo voltage reflected by turtle on various angles

    Directory of Open Access Journals (Sweden)

    Sunardi Sunardi

    2015-03-01

    Full Text Available This research proposes the acoustic measurement by using echo sounder for green turtle detection of 1 year, 12 and 18 years. Various positions or angles of turtles are head, tail, shell, lung, left and right side. MATLAB software and echo sounder are used to analyse the frequency and the response of the turtle as echo voltage and target strength parameter. Based on the experiment and analysis have been conducted, the bigger size of the turtle, the higher echo voltage and target strength. The target strength of turtle for lung and shell for all ages are -26.52 dB and –26.17 dB respectively. The target strength of turtles in this research is different with target strength of fish in our previous research. Therefore, for future research, the repellant system based on differences of target strength the turtle and fish for avoided the turtle trapping in the net can be implemented to protect the population of turtle from extinction

  6. An ancestral turtle from the Late Triassic of southwestern China.

    Science.gov (United States)

    Li, Chun; Wu, Xiao-Chun; Rieppel, Olivier; Wang, Li-Ting; Zhao, Li-Jun

    2008-11-27

    The origin of the turtle body plan remains one of the great mysteries of reptile evolution. The anatomy of turtles is highly derived, which renders it difficult to establish the relationships of turtles with other groups of reptiles. The oldest known turtle, Proganochelys from the Late Triassic period of Germany, has a fully formed shell and offers no clue as to its origin. Here we describe a new 220-million-year-old turtle from China, somewhat older than Proganochelys, that documents an intermediate step in the evolution of the shell and associated structures. A ventral plastron is fully developed, but the dorsal carapace consists of neural plates only. The dorsal ribs are expanded, and osteoderms are absent. The new species shows that the plastron evolved before the carapace and that the first step of carapace formation is the ossification of the neural plates coupled with a broadening of the ribs. This corresponds to early embryonic stages of carapace formation in extant turtles, and shows that the turtle shell is not derived from a fusion of osteoderms. Phylogenetic analysis places the new species basal to all known turtles, fossil and extant. The marine deposits that yielded the fossils indicate that this primitive turtle inhabited marginal areas of the sea or river deltas.

  7. Clinical pathology reference intervals for an in-water population of juvenile loggerhead sea turtles (Caretta caretta) in Core Sound, North Carolina, USA.

    Science.gov (United States)

    Kelly, Terra R; McNeill, Joanne Braun; Avens, Larisa; Hall, April Goodman; Goshe, Lisa R; Hohn, Aleta A; Godfrey, Matthew H; Mihnovets, A Nicole; Cluse, Wendy M; Harms, Craig A

    2015-01-01

    The loggerhead sea turtle (Caretta caretta) is found throughout the waters of the Atlantic, Pacific, and Indian Oceans. It is a protected species throughout much of its range due to threats such as habitat loss, fisheries interactions, hatchling predation, and marine debris. Loggerheads that occur in the southeastern U.S. are listed as "threatened" on the U.S. Endangered Species List, and receive state and federal protection. As part of an on-going population assessment conducted by the National Marine Fisheries Service, samples were collected from juvenile loggerhead sea turtles in Core Sound, North Carolina, between 2004 and 2007 to gain insight on the baseline health of the threatened Northwest Atlantic Ocean population. The aims of the current study were to establish hematologic and biochemical reference intervals for this population, and to assess variation of the hematologic and plasma biochemical analytes by season, water temperature, and sex and size of the turtles. Reference intervals for the clinical pathology parameters were estimated following Clinical Laboratory Standards Institute guidelines. Season, water temperature, sex, and size of the turtles were found to be significant factors of variation for parameter values. Seasonal variation could be attributed to physiological effects of decreasing photoperiod, cooler water temperature, and migration during the fall months. Packed cell volume, total protein, and albumin increased with increasing size of the turtles. The size-related differences in analytes documented in the present study are consistent with other reports of variation in clinical pathology parameters by size and age in sea turtles. As a component of a health assessment of juvenile loggerhead sea turtles in North Carolina, this study will serve as a baseline aiding in evaluation of trends for this population and as a diagnostic tool for assessing the health and prognosis for loggerhead sea turtles undergoing rehabilitation.

  8. Clinical pathology reference intervals for an in-water population of juvenile loggerhead sea turtles (Caretta caretta in Core Sound, North Carolina, USA.

    Directory of Open Access Journals (Sweden)

    Terra R Kelly

    Full Text Available The loggerhead sea turtle (Caretta caretta is found throughout the waters of the Atlantic, Pacific, and Indian Oceans. It is a protected species throughout much of its range due to threats such as habitat loss, fisheries interactions, hatchling predation, and marine debris. Loggerheads that occur in the southeastern U.S. are listed as "threatened" on the U.S. Endangered Species List, and receive state and federal protection. As part of an on-going population assessment conducted by the National Marine Fisheries Service, samples were collected from juvenile loggerhead sea turtles in Core Sound, North Carolina, between 2004 and 2007 to gain insight on the baseline health of the threatened Northwest Atlantic Ocean population. The aims of the current study were to establish hematologic and biochemical reference intervals for this population, and to assess variation of the hematologic and plasma biochemical analytes by season, water temperature, and sex and size of the turtles. Reference intervals for the clinical pathology parameters were estimated following Clinical Laboratory Standards Institute guidelines. Season, water temperature, sex, and size of the turtles were found to be significant factors of variation for parameter values. Seasonal variation could be attributed to physiological effects of decreasing photoperiod, cooler water temperature, and migration during the fall months. Packed cell volume, total protein, and albumin increased with increasing size of the turtles. The size-related differences in analytes documented in the present study are consistent with other reports of variation in clinical pathology parameters by size and age in sea turtles. As a component of a health assessment of juvenile loggerhead sea turtles in North Carolina, this study will serve as a baseline aiding in evaluation of trends for this population and as a diagnostic tool for assessing the health and prognosis for loggerhead sea turtles undergoing

  9. The girdles of the oldest fossil turtle, Proterochersis robusta, and the age of the turtle crown.

    Science.gov (United States)

    Joyce, Walter G; Schoch, Rainer R; Lyson, Tyler R

    2013-12-06

    Proterochersis robusta from the Late Triassic (Middle Norian) of Germany is the oldest known fossil turtle (i.e. amniote with a fully formed turtle shell), but little is known about its anatomy. A newly prepared, historic specimen provides novel insights into the morphology of the girdles and vertebral column of this taxon and the opportunity to reassess its phylogenetic position. The anatomy of the pectoral girdle of P. robusta is similar to that of other primitive turtles, including the Late Triassic (Carnian) Proganochelys quenstedti, in having a vertically oriented scapula, a large coracoid foramen, a short acromion process, and bony ridges that connect the acromion process with the dorsal process, glenoid, and coracoid, and by being able to rotate along a vertical axis. The pelvic elements are expanded distally and suturally attached to the shell, but in contrast to modern pleurodiran turtles the pelvis is associated with the sacral ribs. The primary homology of the character "sutured pelvis" is unproblematic between P. robusta and extant pleurodires. However, integration of all new observations into the most complete phylogenetic analysis that support the pleurodiran nature of P. robusta reveals that this taxon is more parsimoniously placed along the phylogenetic stem of crown Testudines. All current phylogenetic hypotheses therefore support the basal placement of this taxon, imply that the sutured pelvis of this taxon developed independently from that of pleurodires, and conclude that the age of the turtle crown is Middle Jurassic.

  10. A Middle Triassic stem-turtle and the evolution of the turtle body plan.

    Science.gov (United States)

    Schoch, Rainer R; Sues, Hans-Dieter

    2015-07-30

    The origin and early evolution of turtles have long been major contentious issues in vertebrate zoology. This is due to conflicting character evidence from molecules and morphology and a lack of transitional fossils from the critical time interval. The ∼220-million-year-old stem-turtle Odontochelys from China has a partly formed shell and many turtle-like features in its postcranial skeleton. Unlike the 214-million-year-old Proganochelys from Germany and Thailand, it retains marginal teeth and lacks a carapace. Odontochelys is separated by a large temporal gap from the ∼260-million-year-old Eunotosaurus from South Africa, which has been hypothesized as the earliest stem-turtle. Here we report a new reptile, Pappochelys, that is structurally and chronologically intermediate between Eunotosaurus and Odontochelys and dates from the Middle Triassic period (∼240 million years ago). The three taxa share anteroposteriorly broad trunk ribs that are T-shaped in cross-section and bear sculpturing, elongate dorsal vertebrae, and modified limb girdles. Pappochelys closely resembles Odontochelys in various features of the limb girdles. Unlike Odontochelys, it has a cuirass of robust paired gastralia in place of a plastron. Pappochelys provides new evidence that the plastron partly formed through serial fusion of gastralia. Its skull has small upper and ventrally open lower temporal fenestrae, supporting the hypothesis of diapsid affinities of turtles.

  11. Cryptosporidium sp. infections in green turtles, Chelonia mydas, as a potential source of marine waterborne oocysts in the Hawaiian Islands

    Science.gov (United States)

    Graczyk, T.K.; Balazs, G.H.; Work, T.M.; Aguirre, A.A.; Ellis, D.M.; Murakawa, Shawn K. K.; Morris, Robert

    1997-01-01

    For the first time, Cryptosporidium sp. oocysts were identified in fecal and intestinal samples from free-ranging marine turtles, Chelonia mydas, from the Hawaiian Islands. The oocysts produced positive reactions with commercial test kits recommended for the detection of human-infectious waterborne oocysts of Cryptosporidium parvum.

  12. Multiple paternity and female-biased mutation at a microsatellite locus in the olive ridley sea turtle (Lepidochelys olivacea)

    NARCIS (Netherlands)

    Hoekert, W.E.J.; Neufeglise, N.; Schouten, A.D.; Menken, S.B.J.

    2002-01-01

    Multiple paternity in the olive ridley sea turtle (Lepidochelys olivacea) population nesting in Suriname was demonstrated using two microsatellite loci, viz., Ei8 and Cm84. The large number of offspring sampled per clutch (70 on average, ranging from 15 to 103) and the number of alleles found at the

  13. Disseminated Mycotic Infection Caused by Colletotrichum acutatum in a Kemp's Ridley Sea Turtle (Lepidochelys kempi)

    OpenAIRE

    Manire, Charles A.; Rhinehart, Howard L.; Sutton, Deanna A.; Thompson, Elizabeth H.; Rinaldi, Michael G.; Buck, John D.; Jacobson, Elliott

    2002-01-01

    Colletotrichum acutatum is a cosmopolitan plant pathogen with a wide host range. While the organism's phytopathogenic potential has been well documented, it has never been reported as an etiologic agent of disease in either animals or humans. In this case, a juvenile Kemp's ridley sea turtle, Lepidochelys kempi, probably with immune compromise following cold stunning (extended hypothermia), developed a disseminated mycotic infection in the lungs and kidneys. Prophylactic treatment with oral i...

  14. Modelling Fine Scale Movement Corridors for the Tricarinate Hill Turtle

    Science.gov (United States)

    Mondal, I.; Kumar, R. S.; Habib, B.; Talukdar, G.

    2016-06-01

    Habitat loss and the destruction of habitat connectivity can lead to species extinction by isolation of population. Identifying important habitat corridors to enhance habitat connectivity is imperative for species conservation by preserving dispersal pattern to maintain genetic diversity. Circuit theory is a novel tool to model habitat connectivity as it considers habitat as an electronic circuit board and species movement as a certain amount of current moving around through different resistors in the circuit. Most studies involving circuit theory have been carried out at small scales on large ranging animals like wolves or pumas, and more recently on tigers. This calls for a study that tests circuit theory at a large scale to model micro-scale habitat connectivity. The present study on a small South-Asian geoemydid, the Tricarinate Hill-turtle (Melanochelys tricarinata), focuses on habitat connectivity at a very fine scale. The Tricarinate has a small body size (carapace length: 127-175 mm) and home range (8000-15000 m2), with very specific habitat requirements and movement patterns. We used very high resolution Worldview satellite data and extensive field observations to derive a model of landscape permeability at 1 : 2,000 scale to suit the target species. Circuit theory was applied to model potential corridors between core habitat patches for the Tricarinate Hill-turtle. The modelled corridors were validated by extensive ground tracking data collected using thread spool technique and found to be functional. Therefore, circuit theory is a promising tool for accurately identifying corridors, to aid in habitat studies of small species.

  15. 50 CFR 660.720 - Interim protection for sea turtles.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Interim protection for sea turtles. 660... Migratory Fisheries § 660.720 Interim protection for sea turtles. (a) Until the effective date of §§ 660.707... harvest of swordfish (Xiphias gladius) using longline gear deployed on the high seas of the Pacific...

  16. Magnetic Navigation in Sea Turtles: Insights from Secular Variation

    Science.gov (United States)

    Putman, N. F.; Lohmann, K.

    2011-12-01

    Sea turtles are iconic migrants that posses a sensitive magnetic-sense that guides their long-distance movements in a variety of contexts. In the first few hours after hatching turtles use the magnetic field to maintain an offshore compass heading to reach deeper water, out of the reach of nearshore predators. Young turtles engage in directed swimming in response to regional magnetic fields that exist along their transoceanic migratory path. Older turtles also use magnetic information to relocate foraging sites and islands used for nesting after displacement. Numerous hypotheses have been put forth to explain how magnetic information functions in these movements, however, there is little consensus among animal navigation researchers. A particular vexing issue is how magnetic navigation can function under the constraints of the constant, gradual shifting of the earth's magnetic field (secular variation). Here, I present a framework based on models of recent geomagnetic secular variation to explore several navigational mechanisms proposed for sea turtles. I show that while examination of secular variation likely falsifies some hypothetical navigational strategies, it provides key insights into the selective pressures that could maintain other navigational mechanisms. Moreover, examination of secular variation's influence on the navigational precision in reproductive migrations of sea turtles offers compelling explanations for the population structure along sea turtle nesting beaches as well as spatiotemporal variation in nesting turtle abundance.

  17. LOGGERHEAD SEA TURTLE LATE NESTING ECOLOGY IN VIRGINIA BEACH, VIRGINIA

    Science.gov (United States)

    T'he.loggerhead sea turtle (Caretta came is the only recurrent nesting species of sea turtle in southeastern Virginia (Lutcavage & Musick, 1985; Dodd, 1988). Inasmuch as the loggerhead is a federally threatened species, the opportunity to gather data on its nesting ecology is imp...

  18. Fisher choice may increase prevalence of green turtle fibropapillomatosis disease

    Directory of Open Access Journals (Sweden)

    Thomas B Stringell

    2015-08-01

    Full Text Available Disease in wildlife populations is often controlled through culling. But when healthy individuals are removed and diseased individuals are left in the population, it is anticipated that prevalence of disease increases. Although this scenario is presumably common in exploited populations where infected individuals are less marketable, it is not widely reported in the literature. We describe this scenario in a marine turtle fishery in the Turks and Caicos Islands (TCI, where green turtles are harvested for local consumption. During a two-year period, we recorded the occurrence of fibropapillomatosis (FP disease in green turtles (Chelonia mydas captured during in-water surveys and compared it with that of turtles landed in the fishery. 13.4% (n=32 of turtles captured during in-water surveys showed externally visible signs of FP. FP occurred at specific geographic locations where fishing also occurred. Despite the disease being prevalent in the size classes selected by fishers, FP was not present in any animals landed by the fishery (n=162. The majority (61% of fishers interviewed expressed that they had caught turtles with FP. Yet, 82% of those that had caught turtles with the disease chose to return their catch to the sea, selectively harvesting healthy turtles and leaving those with the disease in the population. Our study illustrates that fisher choice may increase the prevalence of FP disease and highlights the importance of this widely neglected driver in the disease dynamics of exploited wildlife populations.

  19. Global analysis of anthropogenic debris ingestion by sea turtles.

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  20. Assessing Trophic Position and Mercury Accumulation in Sanpping Turtles

    Science.gov (United States)

    This study determined the trophic position and the total mercury concentrations of snapping turtles (Chelydra serpentina) captured from 26 freshwater sites in Rhode Island. Turtles were captured in baited wire cages, and a non-lethal sampling technique was used in which tips of ...

  1. A large phylogeny of turtles (Testudines) using molecular data

    NARCIS (Netherlands)

    Guillon, J.-M.; Guéry, L.; Hulin, V.; Girondot, M.

    2012-01-01

    Turtles (Testudines) form a monophyletic group with a highly distinctive body plan. The taxonomy and phylogeny of turtles are still under discussion, at least for some clades. Whereas in most previous studies, only a few species or genera were considered, we here use an extensive compilation of DNA

  2. Turtle origins: insights from phylogenetic retrofitting and molecular scaffolds.

    Science.gov (United States)

    Lee, M S Y

    2013-12-01

    Adding new taxa to morphological phylogenetic analyses without substantially revising the set of included characters is a common practice, with drawbacks (undersampling of relevant characters) and potential benefits (character selection is not biased by preconceptions over the affinities of the 'retrofitted' taxon). Retrofitting turtles (Testudines) and other taxa to recent reptile phylogenies consistently places turtles with anapsid-grade parareptiles (especially Eunotosaurus and/or pareiasauromorphs), under both Bayesian and parsimony analyses. This morphological evidence for turtle-parareptile affinities appears to contradict the robust genomic evidence that extant (living) turtles are nested within diapsids as sister to extant archosaurs (birds and crocodilians). However, the morphological data are almost equally consistent with a turtle-archosaur clade: enforcing this molecular scaffold onto the morphological data does not greatly increase tree length (parsimony) or reduce likelihood (Bayesian inference). Moreover, under certain analytic conditions, Eunotosaurus groups with turtles and thus also falls within the turtle-archosaur clade. This result raises the possibility that turtles could simultaneously be most closely related to a taxon traditionally considered a parareptile (Eunotosaurus) and still have archosaurs as their closest extant sister group.

  3. Graptemys pearlensis Ennen, Lovich, Kreiser, Selman, and Qualls 2010 – Pearl River Map Turtle

    Science.gov (United States)

    Ennen, Joshua R.; Lovich, Jeffrey E.; Jones, Robert L.; Rhodin, A. G. J.; Pritchard, P. C. H.; van Dijk, P. P.; Saumure, R.A.; Buhlmann, K.A.; Iverson, J.B.; Mittermeier, R.A.

    2016-01-01

    The Pearl River Map Turtle, Graptemys pearlensis (Family Emydidae), is a moderate-sized aquatic turtle endemic to the Pearl River drainage of Louisiana and Mississippi. This taxon has long been a cryptic species, as it was considered part of G. pulchra before 1992 and part of G. gibbonsi until 2010. Graptemys pearlensis exhibits sexual dimorphism, with adult females being considerably larger (carapace length to 295 mm) than adult males (CL to 121 mm). In the 1960s and 1970s, the species was commonly found in higher abundance than the sympatric G. oculifera, a federally listed species. However, due to habitat degradation and the precipitous decline of native mollusks, the species is now found in lower numbers than G. oculifera throughout much of its range. The current IUCN Red List status is Endangered; however, very little is known about the natural history and ecology of the species, which will make conservation efforts challenging.

  4. Western pond turtle: Biology, sampling techniques, inventory and monitoring, conservation, and management: Northwest Fauna No. 7

    Science.gov (United States)

    Bury, R.B.; Welsh, Hartwell H.; Germano, David J.; Ashton, Donald T.

    2012-01-01

    One of only two native, freshwater turtle species in the western United States, western pond turtles are declining in portions of their original range. Declines are mostly due to habitat loss, introduction of non-native species, pollution, and lack of connectivity among populations. USGS zoologist R. Bruce Bury and colleagues from the U.S. Forest Service, California State University, and other agencies compiled and edited a new review and field manual of this charismatic species. Objectives were to determine its current distribution and abundance, summarize and evaluate population features, review techniques to detect population and habitat changes, and improve monitoring for long-term trends. Methods described in the manual should improve consistency, efficiency, and accuracy of survey data, resulting in improved management and conservation efforts.

  5. [Determination of underivatized glycine and proline in vinegar turtle shell by HPLC-ELSD].

    Science.gov (United States)

    Wang, Xinyu; Tan, Xiaomei; Gao, Mingze; Peng, Jinlong

    2011-08-01

    To establish a method to determine the underivatized glycine (Gly) and proline (Pro) in vinegar turtle shell. An HPLC-ELSD method was conducted on a Prevail C18 column (4.6 mm x 250 mm, 5 microm) with the mobile phase of acetonitrile and 0.7% trifluoroacetic acid solution (containing 5.0 mmol x L(-1) heptafluorobutyric acid), and elution time was 15 min. The calibration curves were showed good linearity within the concentration range of 0.14-0.6 g x L(-1). The average recoveries were 101.2% and 102.5%, and RSD were 1.9% and 2.5%, respectively. Since this method needs neither the special amino acid analyzer nor derivation of amino acid., it is efficient, simple and accurate., which could be used for quality control of vinegar turtle shell.

  6. Interanal seam loss in Asian turtles of the Cuora flavomarginata complex (Testudines, Geoemydidae)

    Science.gov (United States)

    Ernst, Carl H.; Lovich, Jeffrey E.

    2015-01-01

    The taxonomy of Asian box turtles of the genus Cuora is complicated by the description of numerous valid and invalid taxa over the last several decades. However, some characteristics used to differentiate species are questionable. Members of the C. flavomarginata complex are defined by some, but not all, taxonomists as having reduced interanal seam lengths relative to other species. We examined the ratio of interanal scute seam length divided by midline anal scute length in C. flavomarginata and C. evelynae. Hatchlings show a seam that divides 100% of the anal scute along the midline. As individuals increase in carapace length, there is a tendency for the percentage to decrease, especially in females, although there is considerable overlap. We suggest that the decrease in interanal seam length is due to abrasion of the plastron on the substrate as turtles grow larger and older. Differences in habitat substrates across the range of the species may contribute to the wide variation we observed.

  7. Characterization of single nucleotide polymorphism markers for the green sea turtle (Chelonia mydas).

    Science.gov (United States)

    Roden, Suzanne E; Dutton, Peter H; Morin, Phillip A

    2009-05-01

    We present data on 29 new single nucleotide polymorphism assays for the green sea turtle, Chelonia mydas. DNA extracts from 39 green turtles were used for two methods of single nucleotide polymorphism discovery. The first approach employed an amplified fragment length polymorphism technique. The second technique screened a microsatellite library. Allele-specific amplification assays were developed for high-throughput single nucleotide polymorphism genotyping and tested on two Pacific C. mydas nesting populations. Observed heterozygosities ranged from 0 to 0.95 for a Hawaiian population and from 0 to 0.85 for a Galapagos population. Each of the populations had one locus out of Hardy-Weinberg equilibrium, SSCM2b and SSCM5 for Hawaii and Galapagos, respectively. No loci showed significant genotypic linkage disequilibrium across an expanded set of four Pacific nesting populations. However, two loci, SSCM4 and SSCM10b showed linkage disequilibrium across three populations indicating possible association.

  8. Satellite tracking reveals habitat use by juvenile green sea turtles Chelonia mydas in the Everglades, Florida, USA

    Science.gov (United States)

    Hart, Kristen M.; Fujisaki, Ikuko

    2010-01-01

    We tracked the movements of 6 juvenile green sea turtles captured in coastal areas of southwest Florida within Everglades National Park (ENP) using satellite transmitters for periods of 27 to 62 d in 2007 and 2008 (mean ± SD: 47.7 ± 12.9 d). Turtles ranged in size from 33.4 to 67.5 cm straight carapace length (45.7 ± 12.9 cm) and 4.4 to 40.8 kg in mass (16.0 ± 13.8 kg). These data represent the first satellite tracking data gathered on juveniles of this endangered species at this remote study site, which may represent an important developmental habitat and foraging ground. Satellite tracking results suggested that these immature turtles were resident for several months very close to capture and release sites, in waters from 0 to 10 m in depth. Mean home range for this springtime tracking period as represented by minimum convex polygon (MCP) was 1004.9 ± 618.8 km2 (range 374.1 to 2060.1 km2), with 4 of 6 individuals spending a significant proportion of time within the ENP boundaries in 2008 in areas with dense patches of marine algae. Core use areas determined by 50% kernel density estimates (KDE) ranged from 5.0 to 54.4 km2, with a mean of 22.5 ± 22.1 km2. Overlap of 50% KDE plots for 6 turtles confirmed use of shallow-water nearshore habitats =0.6 m deep within the park boundary. Delineating specific habitats used by juvenile green turtles in this and other remote coastal areas with protected status will help conservation managers to prioritize their efforts and increase efficacy in protecting endangered species.

  9. Marine turtles used to assist Austronesian sailors reaching new islands.

    Science.gov (United States)

    Wilmé, Lucienne; Waeber, Patrick O; Ganzhorn, Joerg U

    2016-02-01

    Austronesians colonized the islands of Rapa Nui, Hawaii, the Marquesas and Madagascar. All of these islands have been found to harbor Austronesian artifacts and also, all of them are known nesting sites for marine turtles. Turtles are well known for their transoceanic migrations, sometimes totalling thousands of miles, between feeding and nesting grounds. All marine turtles require land for nesting. Ancient Austronesians are known to have had outstanding navigation skills, which they used to adjust course directions. But these skills will have been insufficient to locate tiny, remote islands in the vast Indo-Pacific oceans. We postulate that the Austronesians must have had an understanding of the marine turtles' migration patterns and used this knowledge to locate remote and unknown islands. The depth and speed at which marine turtles migrate makes following them by outrigger canoes feasible. Humans have long capitalized on knowledge of animal behavior.

  10. Numerical Study of the Mechanical Response of Turtle Shell

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Chengwei Wu; Chenzhao Zhang; Zhen Chen

    2012-01-01

    The turtle shell is an amazing structure optimized through the long-term evolution by nature.This paper reports the mechanical response of the shell (Red-ear turtle) to static and dynamic loads,respectively.It is found that the turtle shell under a compressive load yields the maximum vertical displacement at the rear end,but the vertical displacement at the front end is only half of that at the rear end.The maximum horizontal displacement of the shell also occurs at the rear end.It is believed that such a deformation pattern is helpful for protecting the turtle's internal organs and its head.The principal stress directions in the inside surface of the shell under a compressive load are almost the same as those of the biofiber distribution in the inside surface,which results in the strong bending resistance of the turtle shell.

  11. Removal of nonnative slider turtles (Trachemys scripta) and effects on native Sonora mud turtles (Kinosternon sonoriense) at Montezuma Well, Yavapai County, Arizona

    Science.gov (United States)

    Drost, Charles A.; Lovich, Jeffrey E.; Madrak, Sheila V.; Monatesti, A.J.

    2011-01-01

    The National Park Service (NPS) estimates that 234 national parks contain nonnative, invasive animal species that are of management concern (National Park Service, 2004). Understanding and controlling invasive species is thus an important priority within the NPS (National Park Service, 1996). The slider turtle (Trachemys scripta) is one such invasive species. Native to the Southeastern United States (Ernst and Lovich, 2009), as well as Mexico, Central America, and portions of South America (Ernst and Barbour, 1989), the slider turtle has become established throughout the continental United States and in other locations around the world (Burke and others, 2000). Slider turtle introductions have been suspected to be a threat to native turtles (Holland 1994; da Silva and Blasco, 1995), however, there has not been serious study of their effects until recently. Cadi and Joly (2003) found that slider turtles outcompeted European pond turtles (Emys orbicularis) for preferred basking sites under controlled experimental conditions, demonstrating for the first time direct competition for resources between a native and an exotic turtle species. Similarly, Spinks and others (2003) suggested that competition for basking sites between slider turtles and Pacific pond turtles (Actinemys marmorata) was partly responsible for the decline of Pacific pond turtles observed at their study site in California. They concluded that the impact of introduced slider turtles was 'almost certainly negative' for the western pond turtle. In the most recent critical study to assess the effects of introduced slider turtles on native turtles, Cadi and Joly (2004) demonstrated that European pond turtles that were kept under experimentally controlled conditions with slider turtles lost body weight and exhibited higher rates of mortality than in control groups of turtles comprised of the same species, demonstrating potential population-level effects on native species. Slider turtles are not native to

  12. Nesting Activity of Loggerhead Turtles (Caretta caretta at Göksu Delta, Turkey during 2004 and 2008 nesting seasons

    Directory of Open Access Journals (Sweden)

    Salih H. Durmus

    2011-07-01

    Full Text Available Göksu Delta is one of the most important nesting beaches in Turkey for the endangered loggerhead turtle (Caretta caretta. This paper provides information on the nesting activities of loggerhead turtles, the spatial and temporal distribution of nesting, nesting success, nesting density, hatching success, incubation duration and clutch size over two nesting seasons. A total of 902 emergences occurred over two seasons, of which 239 (26.5% nests were deposited (137 nests in 2004 and 102 nests in 2008 and the overall mean nesting density was 3.4 nests/km. The peak of nesting emergences takes place mainly in June. Of the overall nests, 226 (94.6% were excavated and 16044 eggs were counted. Of these eggs, 3680 (22.9% hatchlings emerged and 2695 (73.2% of hatchlings of them were able to reach the sea. The mean number of eggs per clutch was 71 (range: 15 – 143. The shortest and longest incubation duration in these 2 seasons ranged from 46 to 62 days with a mean of 53 days. The main problems are negatively affecting loggerhead turtle population at Göksu Delta are dense jackal predation both adult and eggs and inundation in nests. The average nesting effort here (mean: 119.5 nests/season confirms that Göksu Delta is one of the most important nesting sites for loggerhead turtles in Turkey.

  13. Three novel herpesviruses of endangered Clemmys and Glyptemys turtles.

    Science.gov (United States)

    Ossiboff, Robert J; Raphael, Bonnie L; Ammazzalorso, Alyssa D; Seimon, Tracie A; Newton, Alisa L; Chang, Tylis Y; Zarate, Brian; Whitlock, Alison L; McAloose, Denise

    2015-01-01

    The rich diversity of the world's reptiles is at risk due to significant population declines of broad taxonomic and geographic scope. Significant factors attributed to these declines include habitat loss, pollution, unsustainable collection and infectious disease. To investigate the presence and significance of a potential pathogen on populations of critically endangered bog turtles (Glyptemys muhlenbergii) as well sympatric endangered wood (G. insculpta) and endangered spotted (Clemmys guttata) turtles in the northeastern United States, choanal and cloacal swabs collected from 230 turtles from 19 sites in 5 states were screened for herpesvirus by polymerase chain reaction. We found a high incidence of herpesvirus infection in bog turtles (51.5%; 105/204) and smaller numbers of positive wood (5) and spotted (1) turtles. Sequence and phylogenetic analysis revealed three previously uncharacterized alphaherpesviruses. Glyptemys herpesvirus 1 was the predominant herpesvirus detected and was found exclusively in bog turtles in all states sampled. Glyptemys herpesvirus 2 was found only in wood turtles. Emydid herpesvirus 2 was found in a small number of bog turtles and a single spotted turtle from one state. Based on these findings, Glyptemys herpesvirus 1 appears to be a common infection in the study population, whereas Glyptemys herpesvirus 2 and Emydid herpesvirus 2 were not as frequently detected. Emydid herpesvirus 2 was the only virus detected in more than one species. Herpesviruses are most often associated with subclinical or mild infections in their natural hosts, and no sampled turtles showed overt signs of disease at sampling. However, infection of host-adapted viruses in closely related species can result in significant disease. The pathogenic potential of these viruses, particularly Emydid herpesvirus 2, in sympatric chelonians warrants additional study in order to better understand the relationship of these viruses with their endangered hosts.

  14. Association of herpesvirus with fibropapillomatosis of the green turtle Chelonia mydas and the loggerhead turtle Caretta caretta in Florida.

    Science.gov (United States)

    Lackovich, J K; Brown, D R; Homer, B L; Garber, R L; Mader, D R; Moretti, R H; Patterson, A D; Herbst, L H; Oros, J; Jacobson, E R; Curry, S S; Klein, P A

    1999-07-30

    Sea turtle fibropapillomatosis (FP) is a disease marked by proliferation of benign but debilitating cutaneous fibropapillomas and occasional visceral fibromas. Transmission experiments have implicated a chloroform-sensitive transforming agent present in filtered cell-free tumor homogenates in the etiology of FP. In this study, consensus primer PCR methodology was used to test the association of a chelonian herpesvirus with fibropapillomatosis. Fibropapilloma and skin samples were obtained from 17 green and 2 loggerhead turtles affected with FP stranded along the Florida coastline. Ninety-three cutaneous and visceral tumors from the 19 turtles, and 33 skin samples from 16 of the turtles, were tested. All turtles affected with FP had herpesvirus associated with their tumors as detected by PCR. Ninety-six percent (89/93) of the tumors, but only 9% (3/33) of the skin samples, from affected turtles contained detectable herpesvirus. The skin samples that contained herpesvirus were all within 2 cm of a fibropapilloma. Also, 1 of 11 scar tissue samples from sites where fibropapillomas had been removed 2 to 51 wk earlier from 5 green turtles contained detectable herpesvirus. None of 18 normal skin samples from 2 green and 2 loggerhead turtles stranded without FP contained herpesvirus. The data indicated that herpesvirus was detectable only within or close to tumors. To determine if the same virus infected both turtle species, partial nucleotide sequences of the herpesvirus DNA polymerase gene were determined from 6 loggerhead and 2 green turtle samples. The sequences predicted that herpesvirus of loggerhead turtles differed from those of green turtles by only 1 of 60 amino acids in the sequence examined, indicating that a chelonian herpesvirus exhibiting minor intratypic variation was the only herpesvirus present in tumors of both green and loggerhead turtles. The FP-associated herpesvirus resisted cultivation on chelonian cell lines which support the replication of other

  15. Invasion of the turtles? : exotic turtles in the Netherland: a risk assessment

    NARCIS (Netherlands)

    Bugter, R.J.F.; Ottburg, F.G.W.A.; Roessink, I.; Jansman, H.A.H.; Grift, van der E.A.; Griffioen, A.J.

    2011-01-01

    The authors of this report assessed the risk of exotic turtles becoming invasive in the Netherlands. Main components of the risk are the large scale of introduction of discarded pets to Dutch nature and possible suitability of species to survive and reproduce successfully under present or future Dut

  16. Hormone and Metabolite Profiles in Nesting Green and Flatback Turtles: Turtle Species with Different Life Histories

    Directory of Open Access Journals (Sweden)

    Maria P. Ikonomopoulou

    2014-01-01

    Full Text Available Herbivorous turtle, Chelonia mydas, inhabiting the south China Sea and breeding in Peninsular Malaysia, and Natator depressus, a carnivorous turtle inhabiting the Great Barrier Reef and breeding at Curtis Island in Queensland, Australia, differ both in diet and life history. Analysis of plasma metabolites levels and six sex steroid hormones during the peak of their nesting season in both species showed hormonal and metabolite variations. When compared with results from other studies progesterone levels were the highest whereas dihydrotestosterone was the plasma steroid hormone present at the lowest concentration in both C. mydas and N. depressus plasma. Interestingly, oestrone was observed at relatively high concentrations in comparison to oestradiol levels recorded in previous studies suggesting that it plays a significant role in nesting turtles. Also, hormonal correlations between the studied species indicate unique physiological interactions during nesting. Pearson correlation analysis showed that in N. depressus the time of oviposition was associated with elevations in both plasma corticosterone and oestrone levels. Therefore, we conclude that corticosterone and oestrone may influence nesting behaviour and physiology in N. depressus. To summarise, these two nesting turtle species can be distinguished based on the hormonal profile of oestrone, progesterone, and testosterone using discriminant analysis.

  17. Vibrio cholerae Colonization of Soft-Shelled Turtles.

    Science.gov (United States)

    Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin; Kan, Biao

    2017-07-15

    Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae-contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N-acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms.IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological

  18. Terrestrial basking sea turtles are responding to spatio-temporal sea surface temperature patterns.

    Science.gov (United States)

    Van Houtan, Kyle S; Halley, John M; Marks, Wendy

    2015-01-01

    Naturalists as early as Darwin observed terrestrial basking in green turtles (Chelonia mydas), but the distribution and environmental influences of this behaviour are poorly understood. Here, we examined 6 years of daily basking surveys in Hawaii and compared them with the phenology of local sea surface temperatures (SST). Data and models indicated basking peaks when SST is coolest, and we found this timeline consistent with bone stress markings. Next, we assessed the decadal SST profiles for the 11 global green turtle populations. Basking generally occurs when winter SST falls below 23°C. From 1990 to 2014, the SST for these populations warmed an average 0.04°C yr(-1) (range 0.01-0.09°C yr(-1)); roughly three times the observed global average over this period. Owing to projected future warming at basking sites, we estimated terrestrial basking in green turtles may cease globally by 2100. To predict and manage for future climate change, we encourage a more detailed understanding for how climate influences organismal biology.

  19. Evidence of Fluconazole-Resistant Candida Species in Tortoises and Sea Turtles.

    Science.gov (United States)

    Brilhante, Raimunda Sâmia Nogueira; Rodrigues, Pedro Henrique de Aragão; de Alencar, Lucas Pereira; Riello, Giovanna Barbosa; Ribeiro, Joyce Fonteles; de Oliveira, Jonathas Sales; Castelo-Branco, Débora de Souza Collares Maia; Bandeira, Tereza de Jesus Pinheiro Gomes; Monteiro, André Jalles; Rocha, Marcos Fábio Gadelha; Cordeiro, Rossana de Aguiar; Moreira, José Luciano Bezerra; Sidrim, José Júlio Costa

    2015-12-01

    The aim of this study was to evaluate the antifungal susceptibility of Candida spp. recovered from tortoises (Chelonoidis spp.) and sea turtles (Chelonia mydas, Caretta caretta, Lepidochelys olivacea, Eretmochelys imbricata). For this purpose, material from the oral cavity and cloaca of 77 animals (60 tortoises and 17 sea turtles) was collected. The collected specimens were seeded on 2% Sabouraud dextrose agar with chloramphenicol, and the identification was carried out by morphological and biochemical methods. Sixty-six isolates were recovered from tortoises, out of which 27 were C. tropicalis, 27 C. famata, 7 C. albicans, 4 C. guilliermondii and 1 C. intermedia, whereas 12 strains were obtained from sea turtles, which were identified as Candida parapsilosis (n = 4), Candida guilliermondii (n = 4), Candida tropicalis (n = 2), Candida albicans (n = 1) and Candida intermedia (n = 1). The minimum inhibitory concentrations for amphotericin B, itraconazole and fluconazole ranged from 0.03125 to 0.5, 0.03125 to >16 and 0.125 to >64, respectively. Overall, 19 azole-resistant strains (14 C. tropicalis and 5 C. albicans) were found. Thus, this study shows that Testudines carry azole-resistant Candida spp.

  20. Age and body size of captive hawksbill turtles at the onset of follicular development.

    Science.gov (United States)

    Kawazu, Isao; Kino, Masakatsu; Maeda, Konomi; Teruya, Hideshi

    2015-01-01

    The aim of this study was to record the age and body size of 23 captive female hawksbill turtles at the onset of follicular development. The age, straight carapace length (SCL), and body mass (BM) of the turtles were recorded between 2006 and 2014 at follicular development (determined via ultrasonography) these parameters were 17.7 ± 1.7 years (range: 13-20 years), 77.7 ± 3.3 cm (73.3-83.5 cm), and 61.1 ± 8.0 kg (48.2-76.1 kg), respectively. When the year of the onset of follicular development was designated year 0, the increase in SCL in years -7-0 and 0-3 averaged 2.2 cm and 1.0 cm, respectively. Correspondingly, the increase in BM in years -7-0 and 0-3 averaged 5.0 kg and 2.2 kg, respectively. This is the first study to report the age and body size of captive female hawksbill turtles at the onset of follicular development, which indicates the beginning of sexual maturation. The reduction in growth after follicular development suggests that at the onset of sexual maturation, female hawksbills may utilize energy for follicular development rather than growth.

  1. Genetic stock compositions and natal origin of green turtle (Chelonia mydas foraging at Brunei Bay

    Directory of Open Access Journals (Sweden)

    Juanita Joseph

    2016-04-01

    Full Text Available Knowledge of genetics composition and growth stages of endangered green turtles, as well as the connectivity between nesting and foraging grounds is important for effective conservation. A total of 42 green turtles were captured at Brunei Bay with curved carapace length ranging from 43.8 to 102.0 cm, and most sampled individuals were adults and large juveniles. Twelve haplotypes were revealed in mitochondrial DNA control region sequences. Most haplotypes contained identical sequences to haplotypes previously found in rookeries in the Western Pacific, Southeast Asia, and the Indian Ocean. Haplotype and nucleotide diversity indices of the Brunei Bay were 0.8444±0.0390 and 0.009350±0.004964, respectively. Mixed-stock analysis (for both uninformative and informative prior weighting by population size estimated the main contribution from the Southeast Asian rookeries of the Sulu Sea (mean ≥45.31%, Peninsular Malaysia (mean ≥17.42%, and Sarawak (mean ≥12.46%. Particularly, contribution from the Sulu Sea rookery was estimated to be the highest and lower confidence intervals were more than zero (≥24.36%. When estimating contributions by region rather than individual rookeries, results showed that Brunei Bay was sourced mainly from the Southeast Asian rookeries. The results suggest an ontogenetic shift in foraging grounds and provide conservation implications for Southeast Asian green turtles.

  2. Establishment and characterization of 13 cell lines from a green turtle (Chelonia mydas) with fibropapillomas

    Science.gov (United States)

    Lu, Y.; Nerurkar, V.R.; Aguirre, A.A.; Work, T.M.; Balazs, G.H.; Yanagihara, R.

    1999-01-01

    Thirteen cell lines were established and characterized from brain, kidney, lung, spleen, heart, liver, gall bladder, urinary bladder, pancreas, testis, skin, and periorbital and tumor tissues of an immature male green turtle (Chelonia mydas) with fibropapillomas. Cell lines were optimally maintained at 30A? C in RPMI 1640 medium supplemented with 10% fetal bovine serum. Propagation of the turtle cell lines was serum dependent, and plating efficiencies ranged from 13 to 37%. The cell lines, which have been subcultivated more than 20 times, had a doubling time of approximately 30 to 36 h. When tested for their sensitivity to several fish viruses, most of the cell lines were susceptible to a rhabdovirus, spring viremia carp virus, but refractory to channel catfish virus (a herpesvirus), infectious pancreatic necrosis virus (a birnavirus), and two other fish rhabdoviruses, infectious hematopoietic necrosis virus and viral hemorrhagic septicemia virus. During in vitro subcultivation, tumor-like cell aggregates appeared in cell lines derived from lungs, testis, and periorbital and tumor tissues, and small, naked intranuclear virus particles were detected by thin-section electron microscopy. These cell lines are currently being used in attempts to isolate the putative etiologic virus of green turtle fibropapilloma.

  3. Are we working towards global research priorities for management and conservation of sea turtles?

    Science.gov (United States)

    Rees, A.F.; Alfaro-Shigueto, J.; Barata, P. C. R.; Bjorndal, K. A.; Bolten, A.B.; Bourjea, J.; Broderick, A.C.; Campbell, L.M.; Cardona, L.; Carreras, C.; Casale, P.; Ceriani, S.A.; Dutton, P.H.; Eguchi, T.; Formia, A.; Fuentes, M. M. P. B.; Fuller, W. J.; Girondot, M.; Godfrey, M. H.; Hamann, M.; Hart, Kristen M.; Hays, G.C.; Hochscheid, S.; Jensen, M.P.; Kaska, Y.; Mangel, J.C.; Mortimer, J.A.; Naro-Maciel, E.; Ng, C.K.Y.; Nichols, W.J.; Phillott, A.D.; Reina, R. D.; Revuelta, O.; Schofield, G.; Seminoff, J.A.; Shanker, K.; Tomás, J.; Van Houtan, K.S.; van de Merwe, J.; Vander Zanden, H.B.; Wallace, B. P.; Wedemeyer-Strombel, K. R.; Work, Thierry M.; Godley, B.J.

    2016-01-01

    In 2010, an international group of 35 sea turtle researchers refined an initial list of more than 200 research questions into 20 metaquestions that were considered key for management and conservation of sea turtles. These were classified under 5 categories: reproductive biology, biogeography, population ecology, threats and conservation strategies. To obtain a picture of how research is being focused towards these key questions, we undertook a systematic review of the peer-reviewed literature (2014 and 2015) attributing papers to the original 20 questions. In total, we reviewed 605 articles in full and from these 355 (59%) were judged to substantively address the 20 key questions, with others focusing on basic science and monitoring. Progress to answering the 20 questions was not uniform, and there were biases regarding focal turtle species, geographic scope and publication outlet. Whilst it offers some meaningful indications as to effort, quantifying peer-reviewed literature output is obviously not the only, and possibly not the best, metric for understanding progress towards informing key conservation and management goals. Along with the literature review, an international group based on the original project consortium was assigned to critically summarise recent progress towards answering each of the 20 questions. We found that significant research is being expended towards global priorities for management and conservation of sea turtles. Although highly variable, there has been significant progress in all the key questions identified in 2010. Undertaking this critical review has highlighted that it may be timely to undertake one or more new prioritizing exercises. For this to have maximal benefit we make a range of recommendations for its execution. These include a far greater engagement with social sciences, widening the pool of contributors and focussing the questions, perhaps disaggregating ecology and conservation.

  4. Are we working towards global research priorities for management and conservation of sea turtles?

    Science.gov (United States)

    Rees, A.F.; Alfaro-Shigueto, J.; Barata, P.C.R.; Bjorndal, K.A.; Bolten, A.B.; Bourjea, J.; Broderick, A.C.; Campbell, L.M.; Cardona, L.; Carreras, C.; Casale, P.; Ceriani, S.A.; Dutton, P.H.; Eguchi, T.; Formia, A.; Fuentes, M.M.P.B.; Fuller, W.J.; Girondot, M.; Godfrey, M.H.; Hamann, M.; Hart, Kristen M.; Hays, G.C.; Hochscheid, S.; Kaska, Y.; Jensen, M.P.; Mangel, J.C.; Mortimer, J.A.; Naro-Maciel, E.; Ng, C.K.Y.; Nichols, W.J.; Phillott, A.D.; Reina, R.D.; Revuelta, O.; Schofield, G.; Seminoff, J.A.; Shanker, K.; Tomás, J.; van de Merwe, J.P.; Van Houtan, K.S.; Vander Zanden, H.B.; Wallace, B.P.; Wedemeyer-Strombel, K.R.; Work, Thierry M.; Godley, B.J.

    2016-01-01

    In 2010, an international group of 35 sea turtle researchers refined an initial list of more than 200 research questions into 20 metaquestions that were considered key for management and conservation of sea turtles. These were classified under 5 categories: reproductive biology, biogeography, population ecology, threats and conservation strategies. To obtain a picture of how research is being focused towards these key questions, we undertook a systematic review of the peer-reviewed literature (2014 and 2015) attributing papers to the original 20 questions. In total, we reviewed 605 articles in full and from these 355 (59%) were judged to substantively address the 20 key questions, with others focusing on basic science and monitoring. Progress to answering the 20 questions was not uniform, and there were biases regarding focal turtle species, geographic scope and publication outlet. Whilst it offers some meaningful indications as to effort, quantifying peer-reviewed literature output is obviously not the only, and possibly not the best, metric for understanding progress towards informing key conservation and management goals. Along with the literature review, an international group based on the original project consortium was assigned to critically summarise recent progress towards answering each of the 20 questions. We found that significant research is being expended towards global priorities for management and conservation of sea turtles. Although highly variable, there has been significant progress in all the key questions identified in 2010. Undertaking this critical review has highlighted that it may be timely to undertake one or more new prioritizing exercises. For this to have maximal benefit we make a range of recommendations for its execution. These include a far greater engagement with social sciences, widening the pool of contributors and focussing the questions, perhaps disaggregating ecology and conservation.

  5. Biochemical indices as correlates of recent growth in juvenile green turtles (Chelonia mydas).

    Science.gov (United States)

    Roark, Alison M; Bjorndal, Karen A; Bolten, Alan B; Leeuwenburgh, Christiaan

    2009-08-15

    Nucleic acid and protein concentrations and their ratios are increasingly used as correlates of nutritional condition and growth in marine species. However, their application in studies of reptile growth has not yet been validated. The green turtle (Chelonia mydas) is an endangered marine reptile for which assessing population health requires knowledge of demographic parameters such as individual growth rates. The purpose of this study was to evaluate a number of biochemical indices ([DNA], [RNA], RNA:DNA ratio, [protein], protein:DNA ratio, and RNA:protein ratio) in liver, heart, and blood as potential predictors of recent growth rate in juvenile green turtles under controlled feeding conditions. Intake of juvenile green turtles was manipulated over twelve weeks to obtain a range of growth rates. With the exception of [RNA](blood), [DNA](heart), and [protein]:[DNA](liver), all biochemical indices demonstrated significant linear relationships with growth rate during the last 1.5 weeks of the study. The best single predictors of recent growth were hepatic [RNA] and [RNA]:[protein], which explained 66% and 49%, respectively, of the variance in growth. Contrary to expectations, these two indices were negatively correlated with growth rate. To investigate the possibility that hepatic [RNA] was higher in slow-growing turtles because of elevated expression of antioxidant genes, we quantified glutathione peroxidase activity and total antioxidant potential. Both measures of antioxidant function were affected by intake and growth histories, but these effects did not explain our results for hepatic RNA and protein concentrations. We developed a model that predicted 68% of the variance in specific growth rate (SGR) with the equation SGR = -0.913(ln[RNA](liver)) + 17.689(Condition Index) + 4.316. In addition, our findings that [DNA] and [RNA]:[DNA] for blood were significantly correlated with SGR demonstrate the potential utility of minimally invasive tissue sampling that

  6. The role of turtles as coral reef macroherbivores

    KAUST Repository

    Goatley, Christopher H. R.

    2012-06-29

    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood. © 2012 Goatley et al.

  7. The role of turtles as coral reef macroherbivores.

    Directory of Open Access Journals (Sweden)

    Christopher H R Goatley

    Full Text Available Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas and hawksbill turtles (Eretmochelys imbricata showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood.

  8. Neuroanatomy of the marine Jurassic turtle Plesiochelys etalloni (Testudinata, Plesiochelyidae).

    Science.gov (United States)

    Carabajal, Ariana Paulina; Sterli, Juliana; Müller, Johannes; Hilger, André

    2013-01-01

    Turtles are one of the least explored clades regarding endocranial anatomy with few available descriptions of the brain and inner ear of extant representatives. In addition, the paleoneurology of extinct turtles is poorly known and based on only a few natural cranial endocasts. The main goal of this study is to provide for the first time a detailed description of the neuroanatomy of an extinct turtle, the Late Jurassic Plesiochelysetalloni, including internal carotid circulation, cranial endocast and inner ear, based on the first digital 3D reconstruction using micro CT scans. The general shape of the cranial endocast of P. etalloni is tubular, with poorly marked cephalic and pontine flexures. Anteriorly, the olfactory bulbs are clearly differentiated suggesting larger bulbs than in any other described extinct or extant turtle, and indicating a higher capacity of olfaction in this taxon. The morphology of the inner ear of P. etalloni is comparable to that of extant turtles and resembles those of slow-moving terrestrial vertebrates, with markedly low, short and robust semicircular canals, and a reduced lagena. In P. etalloni the arterial pattern is similar to that found in extant cryptodires, where all the internal carotid branches are protected by bone. As the knowledge of paleoneurology in turtles is scarce and the application of modern techniques such as 3D reconstructions based on CT scans is almost unexplored in this clade, we hope this paper will trigger similar investigations of this type in other turtle taxa.

  9. Survival probabilities of loggerhead sea turtles (Caretta caretta estimated from capture-mark-recapture data in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Paolo Casale

    2007-06-01

    Full Text Available Survival probabilities of loggerhead sea turtles (Caretta caretta are estimated for the first time in the Mediterranean by analysing 3254 tagging and 134 re-encounter data from this region. Most of these turtles were juveniles found at sea. Re-encounters were live resightings and dead recoveries and data were analysed with Barker’s model, a modified version of the Cormack-Jolly-Seber model which can combine recapture, live resighting and dead recovery data. An annual survival probability of 0.73 (CI 95% = 0.67-0.78; n=3254 was obtained, and should be considered as a conservative estimate due to an unknown, though not negligible, tag loss rate. This study makes a preliminary estimate of the survival probabilities of in-water developmental stages for the Mediterranean population of endangered loggerhead sea turtles and provides the first insights into the magnitude of the suspected human-induced mortality in the region. The model used here for the first time on sea turtles could be used to obtain survival estimates from other data sets with few or no true recaptures but with other types of re-encounter data, which are a common output of tagging programmes involving these wide-ranging animals.

  10. Non-migratory breeding by isolated green sea turtles ( Chelonia mydas) in the Indian Ocean: biological and conservation implications

    Science.gov (United States)

    Whiting, Scott D.; Murray, Wendy; Macrae, Ismail; Thorn, Robert; Chongkin, Mohammad; Koch, Andrea U.

    2008-04-01

    Green sea turtles ( Chelonia mydas) are renowned for their long-distance migrations but have less fame for short-distance migrations or non-migratory behavior. We present satellite telemetric evidence from Cocos (Keeling) Islands, Indian Ocean for the first predominantly non-migratory green sea turtle ( C. mydas) population. The mean migration distance from the nesting beach to the foraging grounds was 35.5 km with a maximum mean transit time of 3.4 days. The behavior of this population has major implications for our general understanding of green turtle behavior and their life cycle and for conservation. Firstly, these results indicate a level of juvenile or adult non-breeding homing behavior from the open ocean to foraging grounds adjacent to their natal nesting beach. Secondly, a non-migratory breeding phase reduces the consumption of reproductive energy utilized, potentially resulting in higher fecundity for this population. Thirdly, the close proximity of the nesting and foraging habitats allows for uniformity in management and conservation strategies rarely possible for wide-ranging green turtle populations.

  11. Marine turtle mitogenome phylogenetics and evolution

    DEFF Research Database (Denmark)

    Duchene, Sebastián; Frey, Amy; Alfaro-Núñez, Luis Alonso

    2012-01-01

    . Analyses of partial mitochondrial sequences and some nuclear markers have revealed phylogenetic inconsistencies within Cheloniidae, especially regarding the placement of the flatback. Population genetic studies based on D-Loop sequences have shown considerable structuring in species with broad geographic...... to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all...

  12. Reproductive Disorders and Perinatology of Sea Turtles.

    Science.gov (United States)

    Spadola, Filippo; Morici, Manuel; Santoro, Mario; Oliveri, Matteo; Insacco, Gianni

    2017-05-01

    Sea turtles' reproductive disorders are underdiagnosed, but potentially, there are several diseases that may affect gonads, genitalia, and annexes. Viruses, bacteria, and parasites may cause countless disorders, but more frequently the cause is traumatic or linked to human activities. Furthermore, veterinary management of the nest is of paramount importance as well as the care of newborns (also in captivity). This article gives an overview on the methods used to manage nests and reproductive activities of these endangered chelonians species. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Beta-keratins of turtle shell are glycine-proline-tyrosine rich proteins similar to those of crocodilians and birds.

    Science.gov (United States)

    Dalla Valle, Luisa; Nardi, Alessia; Toni, Mattia; Emera, Deena; Alibardi, Lorenzo

    2009-02-01

    This study presents, for the first time, sequences of five beta-keratin cDNAs from turtle epidermis obtained by means of 5'- and 3'-rapid amplification of cDNA ends (RACE) analyses. The deduced amino acid sequences correspond to distinct glycine-proline-serine-tyrosine rich proteins containing 122-174 amino acids. In situ hybridization shows that beta-keratin mRNAs are expressed in cells of the differentiating beta-layers of the shell scutes. Southern blotting analysis reveals that turtle beta-keratins belong to a well-conserved multigene family. This result was confirmed by the amplification and sequencing of 13 genomic fragments corresponding to beta-keratin genes. Like snake, crocodile and avian beta-keratin genes, turtle beta-keratins contain an intron that interrupts the 5'-untranslated region. The length of the intron is variable, ranging from 0.35 to 1.00 kb. One of the sequences obtained from genomic amplifications corresponds to one of the five sequences obtained from cDNA cloning; thus, sequences of a total of 17 turtle beta-keratins were determined in the present study. The predicted molecular weight of the 17 different deduced proteins range from 11.9 to 17.0 kDa with a predicted isoelectric point of 6.8-8.4; therefore, they are neutral to basic proteins. A central region rich in proline and with beta-strand conformation shows high conservation with other reptilian and avian beta-keratins, and it is likely involved in their polymerization. Glycine repeat regions, often containing tyrosine, are localized toward the C-terminus. Phylogenetic analysis shows that turtle beta-keratins are more similar to crocodilian and avian beta-keratins than to those of lizards and snakes.

  14. Interannual differences for sea turtles bycatch in Spanish longliners from Western Mediterranean Sea.

    Science.gov (United States)

    Báez, José C; Macías, David; García-Barcelona, Salvador; Real, Raimundo

    2014-01-01

    Recent studies showed that regional abundance of loggerhead and leatherback turtles could oscillate interannually according to oceanographic and climatic conditions. The Western Mediterranean is an important fishing area for the Spanish drifting longline fleet, which mainly targets swordfish, bluefin tuna, and albacore. Due to the spatial overlapping in fishing activity and turtle distribution, there is an increasing sea turtle conservation concern. The main goal of this study is to analyse the interannual bycatch of loggerhead and leatherback turtles by the Spanish Mediterranean longline fishery and to test the relationship between the total turtle by-catch of this fishery and the North Atlantic Oscillation (NAO). During the 14 years covered in this study, the number of sea turtle bycatches was 3,940 loggerhead turtles and 8 leatherback turtles, 0.499 loggerhead turtles/1000 hooks and 0.001014 leatherback turtles/1000 hooks. In the case of the loggerhead turtle the positive phase of the NAO favours an increase of loggerhead turtles in the Western Mediterranean Sea. However, in the case of leatherback turtle the negative phase of the NAO favours the presence of leatherback turtle. This contraposition could be related to the different ecophysiological response of both species during their migration cycle.

  15. Interannual Differences for Sea Turtles Bycatch in Spanish Longliners from Western Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    José C. Báez

    2014-01-01

    Full Text Available Recent studies showed that regional abundance of loggerhead and leatherback turtles could oscillate interannually according to oceanographic and climatic conditions. The Western Mediterranean is an important fishing area for the Spanish drifting longline fleet, which mainly targets swordfish, bluefin tuna, and albacore. Due to the spatial overlapping in fishing activity and turtle distribution, there is an increasing sea turtle conservation concern. The main goal of this study is to analyse the interannual bycatch of loggerhead and leatherback turtles by the Spanish Mediterranean longline fishery and to test the relationship between the total turtle by-catch of this fishery and the North Atlantic Oscillation (NAO. During the 14 years covered in this study, the number of sea turtle bycatches was 3,940 loggerhead turtles and 8 leatherback turtles, 0.499 loggerhead turtles/1000 hooks and 0.001014 leatherback turtles/1000 hooks. In the case of the loggerhead turtle the positive phase of the NAO favours an increase of loggerhead turtles in the Western Mediterranean Sea. However, in the case of leatherback turtle the negative phase of the NAO favours the presence of leatherback turtle. This contraposition could be related to the different ecophysiological response of both species during their migration cycle.

  16. Phylogenetic relationships among extinct and extant turtles: the position of Pleurodira and the effects of the fossils on rooting crown-group turtles

    NARCIS (Netherlands)

    Sterli, J.

    2010-01-01

    The origin and evolution of the crown-group of turtles (Cryptodira + Pleurodira) is one of the most interesting topics in turtle evolution, second perhaps only to the phylogenetic position of turtles among amniotes. The present contribution focuses on the former problem, exploring the phylogenetic r

  17. Sexing freshwater turtles: penile eversion in Phrynops tuberosus (Testudines: Chelidae

    Directory of Open Access Journals (Sweden)

    João F.M. Rodrigues

    2014-12-01

    Full Text Available Here, we described a noninvasive method for sexing freshwater turtles by stimulating penile eversion. We immobilized the neck and limbs of animals using fingers and, after some seconds, turtles everted their penis. This method was tested in 33 male Phrynops tuberosus, and 28 everted the penis. The efficiency of the method was not dependent of animal size, which reinforces its applicability. Our method allows sexing turtles in the field, avoiding killing the animal or causing major injuries in order to assess the sex.

  18. Cutaneous fibroma in a captive common snapping turtle (Chelydra serpentina).

    Science.gov (United States)

    Gonzales-Viera, O; Bauer, G; Bauer, A; Aguiar, L S; Brito, L T; Catão-Dias, J L

    2012-11-01

    An adult female common snapping turtle (Chelydra serpentina) had a mass on the plantar surface of the right forelimb that was removed surgically. Microscopical examination revealed many spindle cells with mild anisocytosis and anisokaryosis and a surrounding collagenous stroma. There were no mitoses. Immunohistochemistry showed that the spindle cells expressed vimentin, but not desmin. A diagnosis of cutaneous fibroma was made. Tumours are reported uncommonly in chelonian species. Cutaneous fibroma has been diagnosed in an alligator snapping turtle (Macrochelys temminckii), but not previously in a common snapping turtle.

  19. captive breeding of the four-eyed turtle (sacalia quadriocellata)

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    in 1998,a study on forty-five four-eyed turtles (sacalia quadriocellata) was initiated to gather preliminary biological data of this species and to investigate the feasibility of its captive reproduction.in the following six years,no courtship behavior was found occurring in males and no oviposition in females.from 2004 to 2007,two successful techniques were applied to initiate reproductive behavior:1) injecting exogenous reproductive hormones; and 2) reducing the stress of living in captivity.as a result of the hormone treatments,courtship behavior and copulation were observed during september and october,2005.however,no courtship displays were seen from the ck males,which were not treated with hormones.ovulation occurred between december and march,and the correlation was not significant between behavior of ovulation and food intake.females laid only one clutch of eggs each year,with 2.47 eggs (n=34,range=l-4) at average,and 84 eggs were totally obtained,of which 13 were damaged,52 were infertile and 19 fertile.of the fertile eggs,nine were hatched with mean incubation period of 105.9 days (n=9,range=89-122 days) at temperature ranging from 24 to 27℃.

  20. Disseminated mycotic infection caused by Colletotrichum acutatum in a Kemp's ridley sea turtle (Lepidochelys kempi).

    Science.gov (United States)

    Manire, Charles A; Rhinehart, Howard L; Sutton, Deanna A; Thompson, Elizabeth H; Rinaldi, Michael G; Buck, John D; Jacobson, Elliott

    2002-11-01

    Colletotrichum acutatum is a cosmopolitan plant pathogen with a wide host range. While the organism's phytopathogenic potential has been well documented, it has never been reported as an etiologic agent of disease in either animals or humans. In this case, a juvenile Kemp's ridley sea turtle, Lepidochelys kempi, probably with immune compromise following cold stunning (extended hypothermia), developed a disseminated mycotic infection in the lungs and kidneys. Prophylactic treatment with oral itraconazole did not prevent or cure the infection. This report of a Colletotrichum acutatum infection in an animal extends the range of disease caused by this organism beyond that of a phytopathogen.

  1. Ultraviolet colour opponency in the turtle retina.

    Science.gov (United States)

    Ventura, D F; Zana, Y; de Souza, J M; DeVoe, R D

    2001-07-01

    We have examined the functional architecture of the turtle Pseudemys scripta elegans retina with respect to colour processing, extending spectral stimulation into the ultraviolet, which has not been studied previously in the inner retina. We addressed two questions. (i) Is it possible to deduce the ultraviolet cone spectral sensitivity function through horizontal cell responses? (ii) Is there evidence for tetrachromatic neural mechanisms, i.e. UV/S response opponency? Using a constant response methodology we have isolated the ultraviolet cone input into the S/LM horizontal cell type and described it in fine detail. Monophasic (luminosity), biphasic L/M (red-green) and triphasic S/LM (yellow-blue) horizontal cells responded strongly to ultraviolet light. The blue-adapted spectral sensitivity function of a S/LM cell peaked in the ultraviolet and could be fitted to a porphyropsin cone template with a peak at 372 nm. In the inner retina eight different combinations of spectral opponency were found in the centre of the receptive field of ganglion cells. Among amacrine cells the only types found were UVSM-L+ and its reverse. One amacrine and four ganglion cells were also opponent in the receptive field surround. UV/S opponency, seen in three different types of ganglion cell, provides a neural basis for discrimination of ultraviolet colours. In conclusion, the results strongly suggest that there is an ultraviolet channel and a neural basis for tetrachromacy in the turtle retina.

  2. Inter-nesting habitat-use patterns of loggerhead sea turtles: Enhancing satellite tracking with benthic mapping

    Science.gov (United States)

    Hart, Kristen M.; Zawada, David G.; Fujisaki, Ikuko; Lidz, Barbara H.

    2010-01-01

    The loggerhead sea turtle Caretta caretta faces declining nest numbers and bycatches from commercial longline fishing in the southeastern USA. Understanding spatial and temporal habitat-use patterns of these turtles, especially reproductive females in the neritic zone, is critical for guiding management decisions. To assess marine turtle habitat use within the Dry Tortugas National Park (DRTO), we used satellite telemetry to identify core-use areas for 7 loggerhead females inter-nesting and tracked in 2008 and 2009. This effort represents the first tracking of DRTO loggerheads, a distinct subpopulation that is 1 of 7 recently proposed for upgrading from threatened to endangered under the US Endangered Species Act. We also used a rapid, high-resolution, digital imaging system to map benthic habitats in turtle core-use areas (i.e. 50% kernel density zones). Loggerhead females were seasonal residents of DRTO for 19 to 51 d, and individual inter-nesting habitats were located within 1.9 km (2008) and 2.3 km (2009) of the nesting beach and tagging site. The core area common to all tagged turtles was 4.2 km2 in size and spanned a depth range of 7.6 to 11.5 m. Mapping results revealed the diversity and distributions of benthic cover available in the core-use area, as well as a heavily used corridor to/from the nesting beach. This combined tagging-mapping approach shows potential for planning and improving the effectiveness of marine protected areas and for developing spatially explicit conservation plans.

  3. Maternal transfer and sublethal immune system effects of brevetoxin exposure in nesting loggerhead sea turtles (Caretta caretta) from western Florida.

    Science.gov (United States)

    Perrault, Justin R; Bauman, Katherine D; Greenan, Taylor M; Blum, Patricia C; Henry, Michael S; Walsh, Catherine J

    2016-11-01

    Blooms of Karenia brevis (also called red tides) occur almost annually in the Gulf of Mexico. The health effects of the neurotoxins (i.e., brevetoxins) produced by this toxic dinoflagellate on marine turtles are poorly understood. Florida's Gulf Coast represents an important foraging and nesting area for a number of marine turtle species. Most studies investigating brevetoxin exposure in marine turtles thus far focus on dead and/or stranded individuals and rarely examine the effects in apparently "healthy" free-ranging individuals. From May-July 2014, one year after the last red tide bloom, we collected blood from nesting loggerhead sea turtles (Caretta caretta) on Casey Key, Florida USA. These organisms show both strong nesting and foraging site fidelity. The plasma was analyzed for brevetoxin concentrations in addition to a number of health and immune-related parameters in an effort to establish sublethal effects of this toxin. Lastly, from July-September 2014, we collected unhatched eggs and liver and yolk sacs from dead-in-nest hatchlings from nests laid by the sampled females and tested these samples for brevetoxin concentrations to determine maternal transfer and effects on reproductive success. Using a competitive enzyme-linked immunosorbent assay (ELISA), all plasma samples from nesting females tested positive for brevetoxin (reported as ng brevetoxin-3[PbTx-3] equivalents [eq]/mL) exposure (2.1-26.7ng PbTx-3eq/mL). Additionally, 100% of livers (1.4-13.3ng PbTx-3eq/mL) and yolk sacs (1.7-6.6ng PbTx-3eq/mL) from dead-in-nest hatchlings and 70% of eggs (turtles.

  4. Final critical habitat for the Hawksbill sea turtle (Eretmochelys imbricata)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — To provide the user with a general idea of areas where final critical habitat for hawksbill sea turtle (Eretmochelys imbricata) based on the description provided in...

  5. Gulf of Mexico Kemps ridley sea turtle age and growth

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study involves analysis of skeletal growth marks in humerus bones of 340 Kemps ridley sea turtles stranded dead along the Gulf of Mexico US coast (hatchling to...

  6. Summary of bacteria found in captive sea turtles 2002-Present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The database contains a summary of bacteria which have been isolated in sea turtles dead and alive at the NOAA Galveston Laboratory and is based on reports received...

  7. Turtle embryos move to optimal thermal environments within the egg.

    Science.gov (United States)

    Zhao, Bo; Li, Teng; Shine, Richard; Du, Wei-Guo

    2013-08-23

    A recent study demonstrated that the embryos of soft-shelled turtles can reposition themselves within their eggs to exploit locally warm conditions. In this paper, we ask whether turtle embryos actively seek out optimal thermal environments for their development, as do post-hatching individuals. Specifically, (i) do reptile embryos move away from dangerously high temperatures as well as towards warm temperatures? and (ii) is such embryonic movement due to active thermoregulation, or (more simply) to passive embryonic repositioning caused by local heat-induced changes in viscosity of fluids within the egg? Our experiments with an emydid turtle (Chinemys reevesii) show that embryos avoid dangerously high temperatures by moving to cooler regions of the egg. The repositioning of embryos is an active rather than passive process: live embryos move towards a heat source, whereas dead ones do not. Overall, our results suggest that behavioural thermoregulation by turtle embryos is genuinely analogous to the thermoregulatory behaviour exhibited by post-hatching ectotherms.

  8. 2002-2004 Aquatic Turtle Collection Spreadsheet Data

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Data tables that includes the times, locations and dates that surveys were conducted. Any turtle that was captured during a survey was measured, sexed, and weighed...

  9. Western Pond Turtle Observations - Region 1 [ds313

    Data.gov (United States)

    California Department of Resources — This dataset was developed in an effort to compile Western Pond Turtle (Clemmys marmorata) observations in CDFG Region 1. Steve Burton (CDFG Staff Environmental...

  10. 78 FR 9024 - Sea Turtle Conservation; Shrimp Trawling Requirements

    Science.gov (United States)

    2013-02-07

    ... elevated sea turtle strandings in the Northern Gulf of Mexico, particularly throughout the Mississippi... with fishery interactions. The most likely cause of the strandings was thought to be the...

  11. [Proposal] Loggerhead sea turtle nest monitoring on seven refuges

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this project is to continue FWS involvement in the long-term, consistent monitoring of loggerhead sea turtle nesting to assess changes in phenological...

  12. Inventory of sea turtle eggs for contaminant analysis

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is an inventory of the bags of sea turtle eggs/hatchlings collected on St. Vincent NWR in 1996 and transferred to the Panama City Field Office for contaminants...

  13. Conservation of freshwater turtles in Amazonia: retrospective and future prospects

    Directory of Open Access Journals (Sweden)

    Aderson de Souza Alcântara

    2014-08-01

    Full Text Available This paper aims to discuss the current status of conservation of freshwater turtles of the Amazon and the absence of the genus Podocnemis the Official List of Species of Brazilian Fauna Threatened with Extinction. Amazonian turtles are used as food by indigenous people and fisherman communities. However, fishing of adult females, uncontrolled egg collecting, habitat degradation and trafficking in wildlife have caused the decline of these populations. Nevertheless, Podocnemis expansa and Podocnemis unifilis were not included in the Brazil’s official list of animals threatened. Therefore, the turtles remain at great risk, due to the intense pressure that they are suffering. It is recommended that the criteria and the conservation status are reviewed including those animals in the category of vulnerable and to ensure a thorough review and modification in the current Brazilian law to be covered studies and management of turtles for subsistence, respecting and adding value to way of life of Amazonian peoples.

  14. Final critical habitat for the Leatherback Sea Turtle (Dermochelys coriacea)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — o provide the user with a general idea of areas where final critical habitat for Leatherback Sea Turtle (Dermochelys coriacea) occur based on the description...

  15. Two cases of pseudohermaphroditism in loggerhead sea turtles Caretta caretta.

    Science.gov (United States)

    Crespo, Jose Luis; García-Párraga, Daniel; Giménez, Ignacio; Rubio-Guerri, Consuelo; Melero, Mar; Sánchez-Vizcaíno, José Manuel; Marco, Adolfo; Cuesta, Jose A; Muñoz, María Jesús

    2013-09-03

    Two juvenile (curved carapace lengths: 28 and 30 cm) loggerhead sea turtles Caretta caretta with precocious male external characteristics were admitted to the ARCA del Mar rescue area at the Oceanogràfic Aquarium in Valencia, Spain, in 2009 and 2010. Routine internal laparoscopic examination and subsequent histopathology confirmed the presence of apparently healthy internal female gonads in both animals. Extensive tissue biopsy and hormone induction assays were consistent with female sex. To the best of our knowledge, this is the first report of pseudohermaphroditism in loggerhead sea turtles based on sexual external characteristics and internal laparoscopic examination. Our findings suggest that the practice of using external phenotypical characteristics as the basis for gender identification in sea turtles should be reevaluated. Future research should focus on detecting more animals with sexual defects and their possible effects on the sea turtle population.

  16. Corneal fibropapillomatosis in green sea turtles (Chelonia mydas) in Australia.

    Science.gov (United States)

    Flint, M; Limpus, C J; Patterson-Kane, J C; Murray, P J; Mills, P C

    2010-05-01

    Chelonid corneal fibropapillomatosis has not previously been recorded in Australian waters. During 2008, 724 green sea turtles (Chelonia mydas) were examined in Queensland, Australia at two sites, Moreton Bay (n=155) and Shoalwater Bay (n=569), during annual monitoring. In the same calendar year, 63 turtles were submitted from various sites in southern Queensland for post-mortem examination at the University of Queensland. Four of the 787 animals (0.5%) were found to have corneal fibropapillomas of varying size, with similar gross and microscopical features to those reported in other parts of the world. Two animals with corneal fibropapillomas also had cutaneous fibropapillomas. Clinical assessment indicated that these lesions had detrimental effects on the vision of the turtles and therefore their potential ability to source food, avoid predators and interact with conspecifics. Importantly, these findings represent an emergence of this manifestation of fibropapillomatosis in green sea turtle populations in the southern Pacific Ocean.

  17. Chapter 2. Vulnerability of marine turtles to climate change.

    Science.gov (United States)

    Poloczanska, Elvira S; Limpus, Colin J; Hays, Graeme C

    2009-01-01

    Marine turtles are generally viewed as vulnerable to climate change because of the role that temperature plays in the sex determination of embryos, their long life history, long age-to-maturity and their highly migratory nature. Extant species of marine turtles probably arose during the mid-late Jurassic period (180-150 Mya) so have survived past shifts in climate, including glacial periods and warm events and therefore have some capacity for adaptation. The present-day rates of increase of atmospheric greenhouse gas concentrations, and associated temperature changes, are very rapid; the capacity of marine turtles to adapt to this rapid change may be compromised by their relatively long generation times. We consider the evidence and likely consequences of present-day trends of climate change on marine turtles. Impacts are likely to be complex and may be positive as well as negative. For example, rising sea levels and increased storm intensity will negatively impact turtle nesting beaches; however, extreme storms can also lead to coastal accretion. Alteration of wind patterns and ocean currents will have implications for juveniles and adults in the open ocean. Warming temperatures are likely to impact directly all turtle life stages, such as the sex determination of embryos in the nest and growth rates. Warming of 2 degrees C could potentially result in a large shift in sex ratios towards females at many rookeries, although some populations may be resilient to warming if female biases remain within levels where population success is not impaired. Indirectly, climate change is likely to impact turtles through changes in food availability. The highly migratory nature of turtles and their ability to move considerable distances in short periods of time should increase their resilience to climate change. However, any such resilience of marine turtles to climate change is likely to be severely compromised by other anthropogenic influences. Development of coastlines may

  18. Marine Mammal and Sea Turtle Research Collection (MMASTR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Southwest Fisheries Science Center in La Jolla houses one of the largest marine mammal and marine turtle sample collections in the world, with over 140,000...

  19. Final critical habitat for the Leatherback Sea Turtle (Dermochelys coriacea)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — o provide the user with a general idea of areas where final critical habitat for Leatherback Sea Turtle (Dermochelys coriacea) occur based on the description...

  20. Final critical habitat for the Hawksbill sea turtle (Eretmochelys imbricata)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — To provide the user with a general idea of areas where final critical habitat for hawksbill sea turtle (Eretmochelys imbricata) based on the description provided in...

  1. Monthly morphometric data on captive loggerhead sea turtles 1995-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The database contains monthly measurements taken on captive reared sea turtles. Measurements include: straight carapace length nuchal notch to carapace tip, straight...

  2. Serum antileptospiral agglutinins in freshwater turtles from Southern Brazil

    Science.gov (United States)

    Silva, Éverton F; Seyffert, Núbia; Cerqueira, Gustavo M.; Leihs, Karl P.; Athanazio, Daniel A.; Valente, Ana L. S.; Dellagostin, Odir A.; Brod, Claudiomar S.

    2009-01-01

    In this study, we observed the presence of antileptospiral agglutinins in freshwater turtles of two urban lakes of Pelotas, Southern Brazil. Forty animals (29 Trachemys dorbigny and 11 Phrynops hilarii) were captured and studied. Attempts to isolate leptospires from blood and urine samples were unsuccessful. Serum samples (titer > 100) reactive to pathogenic strains were observed in 11 animals. These data encourage surveys of pet turtles to evaluate the risk of transmission of pathogenic leptospires to humans. PMID:24031348

  3. Eutrophication and the dietary promotion of sea turtle tumors

    OpenAIRE

    Kyle S Van Houtan; Celia M. Smith; Dailer, Meghan L.; Migiwa Kawachi

    2014-01-01

    The tumor-forming disease fibropapillomatosis (FP) has afflicted sea turtle populations for decades with no clear cause. A lineage of α-herpesviruses associated with these tumors has existed for millennia, suggesting environmental factors are responsible for its recent epidemiology. In previous work, we described how herpesviruses could cause FP tumors through a metabolic influx of arginine. We demonstrated the disease prevails in chronically eutrophied coastal waters, and that turtles foragi...

  4. Conservation of freshwater turtles in Amazonia: retrospective and future prospects

    OpenAIRE

    Aderson de Souza Alcântara

    2014-01-01

    This paper aims to discuss the current status of conservation of freshwater turtles of the Amazon and the absence of the genus Podocnemis the Official List of Species of Brazilian Fauna Threatened with Extinction. Amazonian turtles are used as food by indigenous people and fisherman communities. However, fishing of adult females, uncontrolled egg collecting, habitat degradation and trafficking in wildlife have caused the decline of these populations. Nevertheless, Podocnemis ex...

  5. The Distribution and Conservation Status of Green Turtles (Chelonia mydas) and Olive Ridley Turtles (Lepidochelys olivacea) on Pulau Pinang beaches (Malaysia), 1995-2009.

    Science.gov (United States)

    Salleh, Sarahaizad Mohd; Yobe, Mansor; Sah, Shahrul Anuar Mohd

    2012-05-01

    The Green Turtle (Chelonia mydas) and Olive Ridley Turtle (Lepidochelys olivacea) are the only sea turtles with recorded landings in the Pulau Pinang coastal area. The Green Turtle has been the most abundant and widely distributed sea turtle in this area since it was first surveyed in 1995. Statistical analysis by the Pulau Pinang Department of Fisheries on the distribution of sea turtles from 2001 through 2009 has identified Pantai Kerachut and Telok Kampi as the most strongly preferred beaches for Green Turtle landings, with records for almost every month in every year. Green Turtle tracks and nests have also been found along the coast of Pulau Pinang at Batu Ferringhi, Tanjong Bungah, Pantai Medan, Pantai Belanda, Telok Kumbar, Gertak Sanggul, Moonlight Beach, Telok Duyung, Telok Aling, Telok Bahang and Telok Katapang. The Olive Ridley Turtle is present in smaller numbers; landing and nesting have only been recorded on a few beaches. There are no previous records of Olive Ridley landings at Pantai Kerachut and Telok Kampi, but tracks and nests have been found at Telok Kumbar, Tanjong Bungah, Pantai Medan, Telok Duyung and Gertak Sanggul. A Turtle Conservation Centre has been established at Pantai Kerachut to protect these species from extinction in Pulau Pinang. This paper presents details of the records and distribution of sea turtles in Pulau Pinang from 1995 through 2009.

  6. Origin of the unique ventilatory apparatus of turtles.

    Science.gov (United States)

    Lyson, Tyler R; Schachner, Emma R; Botha-Brink, Jennifer; Scheyer, Torsten M; Lambertz, Markus; Bever, G S; Rubidge, Bruce S; de Queiroz, Kevin

    2014-01-01

    The turtle body plan differs markedly from that of other vertebrates and serves as a model system for studying structural and developmental evolution. Incorporation of the ribs into the turtle shell negates the costal movements that effect lung ventilation in other air-breathing amniotes. Instead, turtles have a unique abdominal-muscle-based ventilatory apparatus whose evolutionary origins have remained mysterious. Here we show through broadly comparative anatomical and histological analyses that an early member of the turtle stem lineage has several turtle-specific ventilation characters: rigid ribcage, inferred loss of intercostal muscles and osteological correlates of the primary expiratory muscle. Our results suggest that the ventilation mechanism of turtles evolved through a division of labour between the ribs and muscles of the trunk in which the abdominal muscles took on the primary ventilatory function, whereas the broadened ribs became the primary means of stabilizing the trunk. These changes occurred approximately 50 million years before the evolution of the fully ossified shell.

  7. Emerging from the rib: resolving the turtle controversies.

    Science.gov (United States)

    Rice, Ritva; Riccio, Paul; Gilbert, Scott F; Cebra-Thomas, Judith

    2015-05-01

    Two of the major controversies in the present study of turtle shell development involve the mechanism by which the carapacial ridge initiates shell formation and the mechanism by which each rib forms the costal bones adjacent to it. This paper claims that both sides of each debate might be correct-but within the species examined. Mechanism is more properly "mechanisms," and there is more than one single way to initiate carapace formation and to form the costal bones. In the initiation of the shell, the rib precursors may be kept dorsal by either "axial displacement" (in the hard-shell turtles) or "axial arrest" (in the soft-shell turtle Pelodiscus), or by a combination of these. The former process would deflect the rib into the dorsal dermis and allow it to continue its growth there, while the latter process would truncate rib growth. In both instances, though, the result is to keep the ribs from extending into the ventral body wall. Our recent work has shown that the properties of the carapacial ridge, a key evolutionary innovation of turtles, differ greatly between these two groups. Similarly, the mechanism of costal bone formation may differ between soft-shell and hard-shell turtles, in that the hard-shell species may have both periosteal flattening as well as dermal bone induction, while the soft-shelled turtles may have only the first of these processes. © 2015 Wiley Periodicals, Inc.

  8. Turtle Observations from Rose Atoll 18 October to 28 November, 1990

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Nightly surveys of Rose Island were conducted to monitor turtle activity from 18 October to 28 November, 1990. Two turtles were tagged and one tag recovery was...

  9. Seagrasses in the Age of Sea Turtle Conservation and Shark Overfishing

    Directory of Open Access Journals (Sweden)

    Michael R Heithaus

    2014-08-01

    Full Text Available Efforts to conserve globally declining herbivorous green sea turtles have resulted in promising growth of some populations. These trends could significantly impact critical ecosystem services provided by seagrass meadows on which turtles feed. Expanding turtle populations could improve seagrass ecosystem health by removing seagrass biomass and preventing of the formation of sediment anoxia. However, overfishing of large sharks, the primary green turtle predators, could facilitate turtle populations growing beyond historical sizes and trigger detrimental ecosystem impacts mirroring those on land when top predators were extirpated. Experimental data from multiple ocean basins suggest that increasing turtle populations can negatively impact seagrasses, including triggering virtual ecosystem collapse. Impacts of large turtle populations on seagrasses are reduced in the presence of intact shark populations. Healthy populations of sharks and turtles, therefore, are likely vital to restoring or maintaining seagrass ecosystem structure, function, and their value in supporting fisheries and as a carbon sink.

  10. ESTABLISHMENT OF A FIBRINOGEN REFERENCE INTERVAL IN ORNATE BOX TURTLES (TERRAPENE ORNATA ORNATA).

    Science.gov (United States)

    Parkinson, Lily; Olea-Popelka, Francisco; Klaphake, Eric; Dadone, Liza; Johnston, Matthew

    2016-09-01

    This study sought to establish a reference interval for fibrinogen in healthy ornate box turtles ( Terrapene ornata ornata). A total of 48 turtles were enrolled, with 42 turtles deemed to be noninflammatory and thus fitting the inclusion criteria and utilized to estimate a fibrinogen reference interval. Turtles were excluded based upon physical examination and blood work abnormalities. A Shapiro-Wilk normality test indicated that the noninflammatory turtle fibrinogen values were normally distributed (Gaussian distribution) with an average of 108 mg/dl and a 95% confidence interval of the mean of 97.9-117 mg/dl. Those turtles excluded from the reference interval because of abnormalities affecting their health had significantly different fibrinogen values (P = 0.313). A reference interval for healthy ornate box turtles was calculated. Further investigation into the utility of fibrinogen measurement for clinical usage in ornate box turtles is warranted.

  11. Estimation of survival rates and abundance of green turtles along the U.S. West Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine abundance and survival rates of the east Pacific green turtles in the northern most foraging grounds, the turtle research groups at SWFSC have been...

  12. Applying new genetic approaches to improve quality of population assessment of green and loggerhead turtles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — As the NOAA-Fisheries? National Sea Turtle Genetics Lab, the SWFSC Marine Turtle Genetics Program has the lead responsibility for generating, analyzing and...

  13. Ultralight aircraft surveys reveal marine turtle population increases along the west coast of Reunion Island

    OpenAIRE

    Jean, Claire; Ciccione, Stephane; Ballorain, Katia; Georges, Jean-Yves; Bourjea, Jerome

    2010-01-01

    Reunion Island in the south-west Indian Ocean once had significant nesting populations of marine turtles but they declined rapidly after human colonization. In 1996, after regular sightings of turtles offshore, an aerial survey programme was initiated to monitor the occurrence of marine turtles and their distribution along the west coast of the island Between 1998 and 2008, along a 30-km coastline transect between Saint Leu and Saint Paul, a total of 1,845 marine turtle sightings were recorde...

  14. The feeding habit of sea turtles influences their reaction to artificial marine debris

    OpenAIRE

    Takuya Fukuoka; Misaki Yamane; Chihiro Kinoshita; Tomoko Narazaki; Marshall, Greg J.; Abernathy, Kyler J.; Nobuyuki Miyazaki; Katsufumi Sato

    2016-01-01

    Ingestion of artificial debris is considered as a significant stress for wildlife including sea turtles. To investigate how turtles react to artificial debris under natural conditions, we deployed animal-borne video cameras on loggerhead and green turtles in addition to feces and gut contents analyses from 2007 to 2015. Frequency of occurrences of artificial debris in feces and gut contents collected from loggerhead turtles were 35.7% (10/28) and 84.6% (11/13), respectively. Artificial debris...

  15. Sea Turtle Bycatch Mitigation in U.S. Longline Fisheries

    Directory of Open Access Journals (Sweden)

    Yonat Swimmer

    2017-08-01

    Full Text Available Capture of sea turtles in longline fisheries has been implicated in population declines of loggerhead (Caretta caretta and leatherback (Dermochelys coriacea turtles. Since 2004, United States (U.S. longline vessels targeting swordfish and tunas in the Pacific and regions in the Atlantic Ocean have operated under extensive fisheries regulations to reduce the capture and mortality of endangered and threatened sea turtles. We analyzed 20+ years of longline observer data from both ocean basins during periods before and after the regulations to assess the effectiveness of the regulations. Using generalized additive mixed models (GAMMs, we investigated relationships between the probability of expected turtle interactions and operational components such as fishing location, hook type, bait type, sea surface temperature, and use of light sticks. GAMMs identified a two to three-fold lower probability of expected capture of loggerhead and leatherback turtle bycatch in the Atlantic and Pacific when circle hooks are used (vs. J hook. Use of fish bait (vs. squid was also found to significantly reduce the capture probability of loggerheads in both ocean basins, and for leatherbacks in the Atlantic only. Capture probabilities are lowest when using a combination of circle hook and fish bait. Influences of light sticks, hook depth, geographic location, and sea surface temperature are discussed specific to species and regions. Results confirmed that in two U.S.-managed longline fisheries, rates of sea turtle bycatch significantly declined after the regulations. In the Atlantic (all regions, rates declined by 40 and 61% for leatherback and loggerhead turtles, respectively, after the regulations. Within the NED area alone, where additional restrictions include a large circle hook (18/0 and limited use of squid bait, rates declined by 64 and 55% for leatherback and loggerhead turtles, respectively. Gains were even more pronounced for the Pacific shallow set fishery

  16. Time in tortoiseshell: a bomb radiocarbon-validated chronology in sea turtle scutes.

    Science.gov (United States)

    Van Houtan, Kyle S; Andrews, Allen H; Jones, T Todd; Murakawa, Shawn K K; Hagemann, Molly E

    2016-01-13

    Some of the most basic questions of sea turtle life history are also the most elusive. Many uncertainties surround lifespan, growth rates, maturity and spatial structure, yet these are critical factors in assessing population status. Here we examine the keratinized hard tissues of the hawksbill (Eretmochelys imbricata) carapace and use bomb radiocarbon dating to estimate growth and maturity. Scutes have an established dietary record, yet the large keratin deposits of hawksbills evoke a reliable chronology. We sectioned, polished and imaged posterior marginal scutes from 36 individual hawksbills representing all life stages, several Pacific populations and spanning eight decades. We counted the apparent growth lines, microsampled along growth contours and calibrated Δ(14)C values to reference coral series. We fit von Bertalanffy growth function (VBGF) models to the results, producing a range of age estimates for each turtle. We find Hawaii hawksbills deposit eight growth lines annually (range 5-14), with model ensembles producing a somatic growth parameter (k) of 0.13 (range 0.1-0.2) and first breeding at 29 years (range 23-36). Recent bomb radiocarbon values also suggest declining trophic status. Together, our results may reflect long-term changes in the benthic community structure of Hawaii reefs, and possibly shed light on the critical population status for Hawaii hawksbills.

  17. 78 FR 51705 - Proposed Designation of Marine Critical Habitat for the Loggerhead Sea Turtle, Caretta caretta...

    Science.gov (United States)

    2013-08-21

    ... Marine Critical Habitat for the Loggerhead Sea Turtle, Caretta caretta, Under the Endangered Species Act... related to our Proposed Designation of Marine Critical Habitat for the Loggerhead Sea Turtle, Caretta... Designation of Critical Habitat for the Northwest Atlantic Ocean Loggerhead Sea Turtle Distinct...

  18. 77 FR 29905 - Sea Turtle Conservation; Shrimp and Summer Flounder Trawling Requirements

    Science.gov (United States)

    2012-05-21

    ... National Oceanic and Atmospheric Administration 50 CFR Part 223 RIN 0648-AW93 Sea Turtle Conservation... modification was tested under the leatherback sea turtle model test using a 32-inch bent-bar TED and failed... original Parker TED design did not pass the small turtle testing protocol due to serious design flaws;...

  19. 75 FR 53925 - Sea Turtle Conservation; Shrimp and Summer Flounder Trawling Requirements

    Science.gov (United States)

    2010-09-02

    ... National Oceanic and Atmospheric Administration 50 CFR Part 223 RIN 0648-AW93 Sea Turtle Conservation...: Background All sea turtles that occur in U.S. waters are listed as either endangered or threatened under the... green turtles in Florida and on the Pacific coast of Mexico, which are listed as endangered. Sea...

  20. 75 FR 47825 - Emergency Exemption; Issuance of Emergency Permit to Rehabilitate Sea Turtles Affected by the...

    Science.gov (United States)

    2010-08-09

    ... Fish and Wildlife Service Emergency Exemption; Issuance of Emergency Permit to Rehabilitate Sea Turtles... sea turtle species. We, the U.S. Fish and Wildlife Service have authorized Texas State Aquarium, under an Endangered Species Act (ESA) permit, to aid sea turtles affected by the oil spill....

  1. 78 FR 65959 - Proposed Designation of Marine Critical Habitat for the Loggerhead Sea Turtle, Caretta caretta...

    Science.gov (United States)

    2013-11-04

    ... Marine Critical Habitat for the Loggerhead Sea Turtle, Caretta caretta, Under the Endangered Species Act... related to our Proposed Designation of Marine Critical Habitat for the Loggerhead Sea Turtle, Caretta... Critical Habitat for the Northwest Atlantic Ocean Loggerhead Sea Turtle Distinct Population Segment...

  2. 50 CFR 224.104 - Special requirements for fishing activities to protect endangered sea turtles.

    Science.gov (United States)

    2010-10-01

    ... activities to protect endangered sea turtles. 224.104 Section 224.104 Wildlife and Fisheries NATIONAL MARINE... endangered sea turtles. (a) Shrimp fishermen in the southeastern United States and the Gulf of Mexico who comply with rules for threatened sea turtles specified in § 223.206 of this chapter will not be...

  3. 75 FR 81201 - 2011 Annual Determination for Sea Turtle Observer Requirement

    Science.gov (United States)

    2010-12-27

    ... for Sea Turtle Observer Requirement AGENCY: National Marine Fisheries Service (NMFS), National Oceanic...' request. The purpose of observing identified fisheries is to learn more about sea turtle interactions in a given fishery, evaluate existing measures to prevent or reduce prohibited sea turtle takes, and...

  4. 77 FR 14347 - Proposed Information Collection; Comment Request; Reporting of Sea Turtle Incidental Take in...

    Science.gov (United States)

    2012-03-09

    ... of Sea Turtle Incidental Take in Virginia Chesapeake Bay Pound Net Operations AGENCY: National... endangered and threatened sea turtles, found both live and dead, in their pound net operations. When a live or dead sea turtle is discovered during a pound net trip, the Virginia pound net fisherman...

  5. 77 FR 474 - 2012 Annual Determination for Sea Turtle Observer Requirement

    Science.gov (United States)

    2012-01-05

    ... National Oceanic and Atmospheric Administration RIN 0648-XA892 2012 Annual Determination for Sea Turtle... learn more about sea turtle interactions in a given fishery, evaluate existing measures to prevent or reduce prohibited sea turtle takes, and to determine whether additional measures to implement...

  6. 50 CFR 223.206 - Exceptions to prohibitions relating to sea turtles.

    Science.gov (United States)

    2010-10-01

    ... to prohibitions relating to sea turtles. (a) Permits—(1) Scientific research, education, zoological... zoological exhibition, or to enhance the propagation or survival of threatened species of sea turtles, in... of sea turtle is found injured, dead, or stranded, any agent or employee of the National...

  7. 78 FR 77428 - 2014 Annual Determination for Sea Turtle Observer Requirement

    Science.gov (United States)

    2013-12-23

    ... National Oceanic and Atmospheric Administration RIN 0648-XD008 2014 Annual Determination for Sea Turtle... to learn more about sea turtle interactions in a given fishery, evaluate existing measures to prevent or reduce prohibited sea turtle takes, and to determine whether additional measures to implement...

  8. 75 FR 70900 - Proposed Information Collection; Comment Request; Reporting of Sea Turtle Entanglement in Fishing...

    Science.gov (United States)

    2010-11-19

    ... of Sea Turtle Entanglement in Fishing Gear or Marine Debris AGENCY: National Oceanic and Atmospheric... of a currently approved collection. This collection of information involves sea turtles becoming... prevent the recovery of endangered and threatened sea turtle populations. The National Marine...

  9. 50 CFR 648.126 - Protection of threatened and endangered sea turtles.

    Science.gov (United States)

    2010-10-01

    ... sea turtles. 648.126 Section 648.126 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... sea turtles. This section supplements existing regulations issued to regulate incidental take of sea turtles under authority of the Endangered Species Act under 50 CFR parts 222 and 223. In addition to...

  10. 77 FR 75999 - 2013 Annual Determination for Sea Turtle Observer Requirement

    Science.gov (United States)

    2012-12-26

    ... National Oceanic and Atmospheric Administration RIN 0648-XC379 2013 Annual Determination for Sea Turtle... to learn more about sea turtle interactions in a given fishery, evaluate existing measures to prevent or reduce prohibited sea turtle takes, and to determine whether additional measures to implement...

  11. Deep time perspective on turtle neck evolution: chasing the Hox code by vertebral morphology.

    Science.gov (United States)

    Böhmer, Christine; Werneburg, Ingmar

    2017-08-21

    The unparalleled ability of turtle neck retraction is possible in three different modes, which characterize stem turtles, living side-necked (Pleurodira), and hidden-necked (Cryptodira) turtles, respectively. Despite the conservatism in vertebral count among turtles, there is significant functional and morphological regionalization in the cervical vertebral column. Since Hox genes play a fundamental role in determining the differentiation in vertebra morphology and based on our reconstruction of evolutionary genetics in deep time, we hypothesize genetic differences among the turtle groups and between turtles and other land vertebrates. We correlated anterior Hox gene expression and the quantifiable shape of the vertebrae to investigate the morphological modularity in the neck across living and extinct turtles. This permitted the reconstruction of the hypothetical ancestral Hox code pattern of the whole turtle clade. The scenario of the evolution of axial patterning in turtles indicates shifts in the spatial expression of HoxA-5 in relation to the reduction of cervical ribs in modern turtles and of HoxB-5 linked with a lower morphological differentiation between the anterior cervical vertebrae observed in cryptodirans. By comparison with the mammalian pattern, we illustrate how the fixed count of eight cervical vertebrae in turtles resulted from the emergence of the unique turtle shell.

  12. Loggerhead turtle movements reconstructed from 18O and 13C profiles from commensal barnacle shells

    Science.gov (United States)

    Killingley, John S.; Lutcavage, Molly

    1983-03-01

    Commensal barnacles, Chelonibia testudinaria, from logger-head turtles have 18O and 13C variations in their calcitic shells that record the environments in which the turtles live. Isotopic profiles from the barnacle shells can thus be interpreted to reconstruct movements of the host turtle between open ocean and brackish-water regimes.

  13. 78 FR 66841 - Turtles Intrastate and Interstate Requirements; Confirmation of Effective Date

    Science.gov (United States)

    2013-11-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 1240 Turtles Intrastate and Interstate... commercial or public distribution, of viable turtle eggs and live turtles with a carapace length of less...

  14. Investigation of shell disease in map turtles (Graptemys spp.).

    Science.gov (United States)

    Hernandez-Divers, Stephen J; Hensel, Patrick; Gladden, Juliet; Hernandez-Divers, Sonia M; Buhlmann, Kurt A; Hagen, Chris; Sanchez, Susan; Latimer, Kenneth S; Ard, Mary; Camus, Alvin C

    2009-07-01

    Nineteen map turtles (Graptemys spp.) maintained under natural conditions were investigated because of chronic shell abnormalities. Animals were evaluated using a novel shell scoring system that divided the 54 scutes into six regions, with each region scored for lesion extent and severity, and summated to produce a total shell disease score (TSDS). Complete blood counts and various biochemistry analytes (total protein, albumin, globulin, urea, uric acid, 25-hydroxycholecalciferol, phosphorus, and ionized and total calcium) were measured. Under ketamine-medetomidine-morphine anesthesia, cytology tape strips and full thickness shell biopsies were collected aseptically for microbiologic, histologic (including scoring of biopsy quality), and ultrastructural evaluations. The TSDSs were low and ranged from 4 to 22 (median = 9) out of a possible score of 54. There were no correlations between TSDS and any hematologic or biochemistry parameter. The histologic quality of shell biopsies was good, and normal shell structure, by both light and electron microscopy, is described. Small clefts and pitting lesions were noted in 8/19 sections. There was no evidence of erosion, ulceration, inflammation, or infectious agents, but algae and diatoms were observed. Six biopsies yielded aerobic isolates (Chryseobacterium indologenes, Aeromonas hydrophila, Ralstonia pickettii, and Morganella morganii), whereas 11 shell samples grew various clostridial anerobes. No fungal organisms were cultured. Although the etiology of the lesions described remains unknown, the use of a scoring system in conjunction with full thickness biopsies is suggested to help standardize investigations into chelonian shell disease in the future.

  15. Chlamydiosis in mariculture-reared green sea turtles (Chelonia mydas).

    Science.gov (United States)

    Homer, B L; Jacobson, E R; Schumacher, J; Scherba, G

    1994-01-01

    From August 1990 to June 1991, a moderate die-off of 4- to 5-year-old green sea turtles (Chelonia mydas) occurred at Cayman Turtle Farm, Grand Cayman, British West Indies. Clinical signs included lethargy, anorexia, and inability to dive. Many of the ill turtles floated on the surface of their tanks. There was no apparent sex predilection. Complete necropsies, including histopathologic examination of tissues, were performed on eight turtles. Necropsies revealed multiple irregular discrete to patchy 1-10 mm pale gray foci throughout the hearts of four turtles. By light microscopic examination, the most severe and consistent lesions were necrotizing myocarditis, histiocytic to fibrinous splenitis, and hepatic lipidosis and necrosis. A mixed leukocytic infiltrate of acidophils, macrophages, and lymphocytes was present in affected areas of the heart. Other lesions included lymphocytic/plasmacytic interstitial nephritis, subacute interstitial pneumonia, subacute mesenteric vasculitis, chronic/active enteritis of the small intestine, and occasional granulomas associated with spirorchid trematode ova. Chlamydiae could be demonstrated in macrophages in sections of paraffin-embedded heart, liver, and spleen and in myocardial fibers and hepatocytes using a modified Macchiavello's stain. Chlamydial antigen was detected by light microscopic examination in the cytoplasm of myocardial fibers and in occasional hepatocytes using a commercially available genus-specific antichlamydial monoclonal antibody and the avidin biotin peroxidase complex staining method. Electron microscopic examination of the heart of the most severely affected turtle revealed developmental stages of chlamydial organisms. A suspension of heart from this turtle was inoculated into the yolk sacs of chicken embryos.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Growth rates and age at adult size of loggerhead sea turtles (Caretta caretta in the Mediterranean Sea, estimated through capture-mark-recapture records

    Directory of Open Access Journals (Sweden)

    Paolo Casale

    2009-09-01

    Full Text Available Growth rates of the juvenile phase of loggerhead turtles (Caretta caretta were estimated for the first time in the Mediterranean Sea from capture-mark-recapture records. Thirty-eight turtles were released from Italian coasts and re-encountered after 1.0-10.9 years in the period 1986-2007. Their mean CCL (curved carapace length ranged from 32.5 to 82.0 cm and they showed variable growth rates, ranging from 0 to 5.97 cm/yr (mean: 2.5. The association between annual growth rate and three covariates (mean year, mean size and time interval was investigated through a non-parametric modelling approach. Only mean size showed a clear effect on growth rate, described by a monotonic declining curve. Variability indicates that factors not included in the model, probably individual-related ones, have an important effect on growth rates. Based on the monotonic decreasing growth function which indicates no growth spurt, a von Bertalanffy growth function was used to estimate the time required by turtles to grow within the observed size range. The results indicate that turtles would take 16-28 years to reach 66.5-84.7 cm CCL, the average nesting female sizes observed at the most important Mediterranean nesting sites, which can be considered an approximation of the size at maturity.

  17. The feeding habit of sea turtles influences their reaction to artificial marine debris.

    Science.gov (United States)

    Fukuoka, Takuya; Yamane, Misaki; Kinoshita, Chihiro; Narazaki, Tomoko; Marshall, Greg J; Abernathy, Kyler J; Miyazaki, Nobuyuki; Sato, Katsufumi

    2016-01-01

    Ingestion of artificial debris is considered as a significant stress for wildlife including sea turtles. To investigate how turtles react to artificial debris under natural conditions, we deployed animal-borne video cameras on loggerhead and green turtles in addition to feces and gut contents analyses from 2007 to 2015. Frequency of occurrences of artificial debris in feces and gut contents collected from loggerhead turtles were 35.7% (10/28) and 84.6% (11/13), respectively. Artificial debris appeared in all green turtles in feces (25/25) and gut contents (10/10), and green turtles ingested more debris (feces; 15.8 ± 33.4 g, gut; 39.8 ± 51.2 g) than loggerhead turtles (feces; 1.6 ± 3.7 g, gut; 9.7 ± 15.0 g). In the video records (60 and 52.5 hours from 10 loggerhead and 6 green turtles, respectively), turtles encountered 46 artificial debris and ingested 23 of them. The encounter-ingestion ratio of artificial debris in green turtles (61.8%) was significantly higher than that in loggerhead turtles (16.7%). Loggerhead turtles frequently fed on gelatinous prey (78/84), however, green turtles mainly fed marine algae (156/210), and partly consumed gelatinous prey (10/210). Turtles seemed to confuse solo drifting debris with their diet, and omnivorous green turtles were more attracted by artificial debris.

  18. The feeding habit of sea turtles influences their reaction to artificial marine debris

    Science.gov (United States)

    Fukuoka, Takuya; Yamane, Misaki; Kinoshita, Chihiro; Narazaki, Tomoko; Marshall, Greg J.; Abernathy, Kyler J.; Miyazaki, Nobuyuki; Sato, Katsufumi

    2016-06-01

    Ingestion of artificial debris is considered as a significant stress for wildlife including sea turtles. To investigate how turtles react to artificial debris under natural conditions, we deployed animal-borne video cameras on loggerhead and green turtles in addition to feces and gut contents analyses from 2007 to 2015. Frequency of occurrences of artificial debris in feces and gut contents collected from loggerhead turtles were 35.7% (10/28) and 84.6% (11/13), respectively. Artificial debris appeared in all green turtles in feces (25/25) and gut contents (10/10), and green turtles ingested more debris (feces; 15.8 ± 33.4 g, gut; 39.8 ± 51.2 g) than loggerhead turtles (feces; 1.6 ± 3.7 g, gut; 9.7 ± 15.0 g). In the video records (60 and 52.5 hours from 10 loggerhead and 6 green turtles, respectively), turtles encountered 46 artificial debris and ingested 23 of them. The encounter-ingestion ratio of artificial debris in green turtles (61.8%) was significantly higher than that in loggerhead turtles (16.7%). Loggerhead turtles frequently fed on gelatinous prey (78/84), however, green turtles mainly fed marine algae (156/210), and partly consumed gelatinous prey (10/210). Turtles seemed to confuse solo drifting debris with their diet, and omnivorous green turtles were more attracted by artificial debris.

  19. Optimal egg size in a suboptimal environment: reproductive ecology of female Sonora mud turtles (Kinosternon sonoriense) in central Arizona, USA

    Science.gov (United States)

    Lovich, Jeffrey E.; Madrak, Sheila V.; Drost, Charles A.; Monatesti, Anthony J.; Casper, Dennis; Znari, Mohammed

    2012-01-01

    We studied the reproductive ecology of female Sonora mud turtles (Kinosternon sonoriense) at Montezuma Well, a chemically-challenging natural wetland in central Arizona, USA. Females matured between 115.5 and 125 mm carapace length (CL) and 36-54% produced eggs each year. Eggs were detected in X-radiographs from 23 April-28 September (2007-2008) and the highest proportion (56%) of adult females with eggs occurred in June and July. Clutch frequency was rarely more than once per year. Clutch size was weakly correlated with body size, ranged from 1-8 (mean = 4.96) and did not differ significantly between years. X-ray egg width ranged from 17.8-21.7 mm (mean 19.4 mm) and varied more among clutches than within. Mean X-ray egg width of a clutch did not vary significantly with CL of females, although X-ray pelvic aperture width increased with CL. We observed no evidence of a morphological constraint on egg width. In addition, greater variation in clutch size, relative to egg width, suggests that egg size is optimized in this hydrologically stable but chemically-challenging habitat. We suggest that the diversity of architectures exhibited by the turtle pelvis, and their associated lack of correspondence to taxonomic or behavioral groupings, explains some of the variation observed in egg size of turtles.

  20. Quantitative analysis of herpes virus sequences from normal tissue and fibropapillomas of marine turtles with real-time PCR

    Science.gov (United States)

    Quackenbush, S.L.; Casey, R.N.; Murcek, R.J.; Paul, T.A.; Work, T.M.; Limpus, C.J.; Chaves, A.; duToit, L.; Perez, J.V.; Aguirre, A.A.; Spraker, T.R.; Horrocks, J.A.; Vermeer, L.A.; Balazs, G.S.; Casey, J.W.

    2001-01-01

    Quantitative real-time PCR has been used to measure fibropapilloma-associated turtle herpesvirus (FPTHV) pol DNA loads in fibropapillomas, fibromas, and uninvolved tissues of green, loggerhead, and olive ridley turtles from Hawaii, Florida, Costa Rica, Australia, Mexico, and the West Indies. The viral DNA loads from tumors obtained from terminal animals were relatively homogenous (range 2a??20 copies/cell), whereas DNA copy numbers from biopsied tumors and skin of otherwise healthy turtles displayed a wide variation (range 0.001a??170 copies/cell) and may reflect the stage of tumor development. FPTHV DNA loads in tumors were 2.5a??4.5 logs higher than in uninvolved skin from the same animal regardless of geographic location, further implying a role for FPTHV in the etiology of fibropapillomatosis. Although FPTHV pol sequences amplified from tumors are highly related to each other, single signature amino acid substitutions distinguish the Australia/Hawaii, Mexico/Costa Rica, and Florida/Caribbean groups.

  1. Embryonic remnants of intercentra and cervical ribs in turtles

    Directory of Open Access Journals (Sweden)

    Ingmar Werneburg

    2013-09-01

    A broad sample of extant turtles possesses a series of paired bones in the neck that are situated between the cervical vertebrae. These paired bones were originally proposed to be cervical rib remnants, but have more recently been interpreted as vestiges of intercentra. Here, we document, for the first time, the neck development of a pleurodire turtle, Emydura subglobosa, and identify blastematous structures, which partially recapitulate the ribs and intercentra of the plesiomorphic tetrapod condition. We identify blastematous “bridges” between intercentra and the corresponding ribs, which we homologize with the vestiges visible in extant turtles and with the remnant parapophyseal articulation processes of the intercentra of some stem taxa. Only the unpaired, median part of the intercentrum of the atlas is retained in adult turtles, but intercentra are recapitulated along the entire vertebral column during development; they are embedded in the cervical myosepta and serve as attachment sites for neck musculature. We also identify two rib rudiments in the occipital region, which may indicate that at least two vertebrae are integrated into the cranium of turtles in particular, and of amniotes in general.

  2. Metal accumulation and evaluation of effects in a freshwater turtle.

    Science.gov (United States)

    Yu, Shuangying; Halbrook, Richard S; Sparling, Donald W; Colombo, Robert

    2011-11-01

    A variety of contaminants have been detected in aquatic and terrestrial environments around the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. The presence of these contaminants at the PGDP may pose a risk to biota, yet little is known about the bioaccumulation of contaminants and associated effects in wildlife, especially in aquatic turtles. The current study was initiated to evaluate: (1) the accumulation of heavy metals (Cd, Cr, Cu, Pb, and Hg) in aquatic ecosystems associated with the PGDP using red-eared slider turtle (Trachemys scripta elegans) as biomonitors; (2) maternal transfer of heavy metals; and (3) potential hematological and immunological effects resulting from metal accumulation. A total of 26 turtles were collected from 7 ponds located south, adjacent, and north of the PGDP. Liver Cu concentrations were significantly different among ponds and Cu concentrations in eggs were positively correlated with female Cu concentrations in kidney. The concentrations of heavy metals measured in turtle tissues and eggs were low and, based on previous studies of reptiles and established avian threshold levels of heavy metals, did not appear to have adverse effects on aquatic turtles inhabiting ponds near the PGDP. However, total white blood cell counts, heterophil to lymphocyte ratio, and phytohemagglutinin stimulation index were correlated with metal concentrations. Because other factors may affect the hematological and immunological indices, further investigation is needed to determine if these effects are associated with metal exposure, other contaminants, or disease.

  3. No slip locomotion of hatchling sea turtles on granular media

    Science.gov (United States)

    Mazouchova, Nicole; Li, Chen; Gravish, Nick; Savu, Andrei; Goldman, Daniel

    2009-11-01

    Sea turtle locomotion occurs predominantly in aquatic environments. However after hatching from a nest on a beach, the juvenile turtles (hatchlings), must run across several hundred meters of granular media to reach the water. To discover how these organisms use aquatically adapted limbs for effective locomotion on sand, we use high speed infrared video to record hatchling Loggerhead sea turtles (Caretta caretta) kinematics in a field site on Jekyll Island, GA, USA. A portable fluidized bed trackway allows variation of the properties of the granular bed including volume fraction and angle up to the angle of repose. Despite being adapted for life in water, on all treatments the turtles use strategies similar to terrestrial organisms when moving on sand. Speeds up to 3 BL/sec are generated not by paddling in sand, but by limb movement that minimizes slip of the flippers, thus maintaining force below the yield stress of the medium. We predict turtle speed using a model which incorporates the yield stress of the granular medium as a function of surface angle.

  4. The effects of large beach debris on nesting sea turtles

    Science.gov (United States)

    Fujisaki, Ikuko; Lamont, Margaret M.

    2016-01-01

    A field experiment was conducted to understand the effects of large beach debris on sea turtle nesting behavior as well as the effectiveness of large debris removal for habitat restoration. Large natural and anthropogenic debris were removed from one of three sections of a sea turtle nesting beach and distributions of nests and false crawls (non-nesting crawls) in pre- (2011–2012) and post- (2013–2014) removal years in the three sections were compared. The number of nests increased 200% and the number of false crawls increased 55% in the experimental section, whereas a corresponding increase in number of nests and false crawls was not observed in the other two sections where debris removal was not conducted. The proportion of nest and false crawl abundance in all three beach sections was significantly different between pre- and post-removal years. The nesting success, the percent of successful nests in total nesting attempts (number of nests + false crawls), also increased from 24% to 38%; however the magnitude of the increase was comparably small because both the number of nests and false crawls increased, and thus the proportion of the nesting success in the experimental beach in pre- and post-removal years was not significantly different. The substantial increase in sea turtle nesting activities after the removal of large debris indicates that large debris may have an adverse impact on sea turtle nesting behavior. Removal of large debris could be an effective restoration strategy to improve sea turtle nesting.

  5. Homeotic shift at the dawn of the turtle evolution

    Science.gov (United States)

    Szczygielski, Tomasz

    2017-04-01

    All derived turtles are characterized by one of the strongest reductions of the dorsal elements among Amniota, and have only 10 dorsal and eight cervical vertebrae. I demonstrate that the Late Triassic turtles, which represent successive stages of the shell evolution, indicate that the shift of the boundary between the cervical and dorsal sections of the vertebral column occurred over the course of several million years after the formation of complete carapace. The more generalized reptilian formula of at most seven cervicals and at least 11 dorsals is thus plesiomorphic for Testudinata. The morphological modifications associated with an anterior homeotic change of the first dorsal vertebra towards the last cervical vertebra in the Triassic turtles are partially recapitulated by the reduction of the first dorsal vertebra in crown-group Testudines, and they resemble the morphologies observed under laboratory conditions resulting from the experimental changes of Hox gene expression patterns. This homeotic shift hypothesis is supported by the, unique to turtles, restriction of Hox-5 expression domains, somitic precursors of scapula, and brachial plexus branches to the cervical region, by the number of the marginal scute-forming placodes, which was larger in the Triassic than in modern turtles, and by phylogenetic analyses.

  6. Jellyfish support high energy intake of leatherback sea turtles (Dermochelys coriacea: video evidence from animal-borne cameras.

    Directory of Open Access Journals (Sweden)

    Susan G Heaslip

    Full Text Available The endangered leatherback turtle is a large, highly migratory marine predator that inexplicably relies upon a diet of low-energy gelatinous zooplankton. The location of these prey may be predictable at large oceanographic scales, given that leatherback turtles perform long distance migrations (1000s of km from nesting beaches to high latitude foraging grounds. However, little is known about the profitability of this migration and foraging strategy. We used GPS location data and video from animal-borne cameras to examine how prey characteristics (i.e., prey size, prey type, prey encounter rate correlate with the daytime foraging behavior of leatherbacks (n = 19 in shelf waters off Cape Breton Island, NS, Canada, during August and September. Video was recorded continuously, averaged 1:53 h per turtle (range 0:08-3:38 h, and documented a total of 601 prey captures. Lion's mane jellyfish (Cyanea capillata was the dominant prey (83-100%, but moon jellyfish (Aurelia aurita were also consumed. Turtles approached and attacked most jellyfish within the camera's field of view and appeared to consume prey completely. There was no significant relationship between encounter rate and dive duration (p = 0.74, linear mixed-effects models. Handling time increased with prey size regardless of prey species (p = 0.0001. Estimates of energy intake averaged 66,018 kJ • d(-1 but were as high as 167,797 kJ • d(-1 corresponding to turtles consuming an average of 330 kg wet mass • d(-1 (up to 840 kg • d(-1 or approximately 261 (up to 664 jellyfish • d(-1. Assuming our turtles averaged 455 kg body mass, they consumed an average of 73% of their body mass • d(-1 equating to an average energy intake of 3-7 times their daily metabolic requirements, depending on estimates used. This study provides evidence that feeding tactics used by leatherbacks in Atlantic Canadian waters are highly profitable and our results are consistent with estimates of mass gain prior to

  7. Inter-nesting movements and habitat-use of adult female Kemp's ridley turtles in the Gulf of Mexico.

    Science.gov (United States)

    Shaver, Donna J; Hart, Kristen M; Fujisaki, Ikuko; Bucklin, David; Iverson, Autumn R; Rubio, Cynthia; Backof, Thomas F; Burchfield, Patrick M; de Jesus Gonzales Diaz Miron, Raul; Dutton, Peter H; Frey, Amy; Peña, Jaime; Gomez Gamez, Daniel; Martinez, Hector J; Ortiz, Jaime

    2017-01-01

    Species vulnerability is increased when individuals congregate in restricted areas for breeding; yet, breeding habitats are not well defined for many marine species. Identification and quantification of these breeding habitats are essential to effective conservation. Satellite telemetry and switching state-space modeling (SSM) were used to define inter-nesting habitat of endangered Kemp's ridley turtles (Lepidochelys kempii) in the Gulf of Mexico. Turtles were outfitted with satellite transmitters after nesting at Padre Island National Seashore, Texas, USA, from 1998 through 2013 (n = 60); Rancho Nuevo, Tamaulipas, Mexico, during 2010 and 2011 (n = 11); and Tecolutla, Veracruz, Mexico, during 2012 and 2013 (n = 11). These sites span the range of nearly all nesting by this species. Inter-nesting habitat lies in a narrow band of nearshore western Gulf of Mexico waters in the USA and Mexico, with mean water depth of 14 to 19 m within a mean distance to shore of 6 to 11 km as estimated by 50% kernel density estimate, α-Hull, and minimum convex polygon methodologies. Turtles tracked during the inter-nesting period moved, on average, 17.5 km/day and a mean total distance of 398 km. Mean home ranges occupied were 725 to 2948 km2. Our results indicate that these nearshore western Gulf waters represent critical inter-nesting habitat for this species, where threats such as shrimp trawling and oil and gas platforms also occur. Up to half of all adult female Kemp's ridleys occupy this habitat for weeks to months during each nesting season. Because inter-nesting habitat for this species is concentrated in nearshore waters of the western Gulf of Mexico in both Mexico and the USA, international collaboration is needed to protect this essential habitat and the turtles occurring within it.

  8. Maternal transfer of trace elements in leatherback turtles (Dermochelys coriacea) of French Guiana

    Energy Technology Data Exchange (ETDEWEB)

    Guirlet, Elodie [Laboratoire d' Ecologie, Systematique et Evolution, Batiment 362, Universite Paris Sud, 91405 Orsay Cedex (France)], E-mail: elodie.guirlet@u-psud.fr; Das, Krishna [Centre de recherche MARE, Laboratoire d' Oceanologie, Universite de Liege, B6, B-4000 Liege (Belgium)], E-mail: krishna.das@ulg.ac.be; Girondot, Marc [Laboratoire d' Ecologie, Systematique et Evolution, Batiment 362, Universite Paris Sud, 91405 Orsay Cedex (France); Departement Evolution et Systematique, Museum National d' Histoire Naturelle de Paris, 25 rue Cuvier, 75005 Paris (France)], E-mail: marc.girondot@u-psud.fr

    2008-07-30

    In sea turtles, parental investment is limited to the nutrients and energy invested in eggs that will support embryonic development. Leatherback females have the largest clutches with the biggest eggs of the sea turtles and the highest reproductive output in reptiles. The migration between foraging sites and nesting beaches also represents high energy expenditure. The toxicokinetic of pollutants in the tissues is thus expected to vary during those periods but there is a lack of information in reptiles. Concentrations of essential (Copper, Zinc, Selenium) and non-essentials elements (Cadmium, Lead, Mercury) were determined in blood (n = 78) and eggs (n = 76) of 46 free-ranging leatherback females collected in French Guiana. Maternal transfer to eggs and relationships between blood and eggs concentrations during the nesting season were investigated. All trace elements were detectable in both tissues. Levels of toxic metals were lower than essential elements likely due to the high pelagic nature of leatherbacks that seems to limit exposure to toxic elements. Significant relationships between blood and egg concentrations were observed for Se and Cd. Se could have an important role in embryonic development of leatherback turtles and Cd transfer could be linked to similar carrier proteins as Se. Finally, as multiple clutches were sampled from each female, trends in trace elements were investigated along the nesting season. No change was observed in eggs but changes were recorded in blood concentrations of Cu. Cu level decreased while blood Pb levels increased through the nesting season. The high demand on the body during the breeding season seems to affect blood Cu concentrations. Calcium requirement for egg production with concomitant Pb mobilization could explain the increase in blood Pb concentrations along the nesting season.

  9. Estimates of the non-market value of sea turtles in Tobago using stated preference techniques.

    Science.gov (United States)

    Cazabon-Mannette, Michelle; Schuhmann, Peter W; Hailey, Adrian; Horrocks, Julia

    2017-05-01

    Economic benefits are derived from sea turtle tourism all over the world. Sea turtles also add value to underwater recreation and convey non-use values. This study examines the non-market value of sea turtles in Tobago. We use a choice experiment to estimate the value of sea turtle encounters to recreational SCUBA divers and the contingent valuation method to estimate the value of sea turtles to international tourists. Results indicate that turtle encounters were the most important dive attribute among those examined. Divers are willing to pay over US$62 per two tank dive for the first turtle encounter. The mean WTP for turtle conservation among international visitors to Tobago was US$31.13 which reflects a significant non-use value associated with actions targeted at keeping sea turtles from going extinct. These results illustrate significant non-use and non-consumptive use value of sea turtles, and highlight the importance of sea turtle conservation efforts in Tobago and throughout the Caribbean region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ontogenetic scaling of the humerus in sea turtles and its implications for locomotion.

    Science.gov (United States)

    Nishizawa, Hideaki; Asahara, Masakazu; Kamezaki, Naoki

    2013-03-01

    In the present study, we analyzed the ontogenetic scaling of humeri in the green turtle (Chelonia mydas) and loggerhead turtle (Caretta caretta). Green turtles have relatively thicker humeri than loggerhead turtles, indicating that the humerus of the green turtle can resist greater loads. Our results are consistent with isometry, or slightly negative allometry, of diameter in relation to length of the humerus in both species. Geometric similarity or isometry of the humerus in relation to body mass is supported by estimates of the cross-sectional properties of green turtles. Sea turtles are adapted for aquatic life, but also perform terrestrial locomotion. Thus, during terrestrial locomotion, which requires support against gravity, the observed scaling relationships indicate that there may be greater stress and fracture risk on the humeri of larger green turtles than on the humeri of smaller turtles. In aquatic habitats, in which limbs are mainly used for propulsion, the stress and fracture risk for green turtle humeri are estimated to increase with greater speed. This scaling pattern may be related to the possibility that smaller turtles swim at a relatively faster speed per body length.

  11. How do hatcheries influence embryonic development of sea turtle eggs? Experimental analysis and isolation of microorganisms in leatherback turtle eggs.

    Science.gov (United States)

    Patino-Martinez, Juan; Marco, Adolfo; Quiñones, Liliana; Abella, Elena; Abad, Roberto Muriel; Diéguez-Uribeondo, Javier

    2012-01-01

    Many conservation programs consider translocation of turtle nests to hatcheries as a useful technique. The repeated use of the same incubation substrate over several seasons in these hatcheries could, however, be harmful to embryos if pathogens were able to accumulate or if the physical and chemical characteristics of the incubation environment were altered. However, this hypothesis has yet to be tested. We conducted two field experiments to evaluate the effects of hatchery sand and eggshell decay on the embryonic development of leatherback sea turtle eggs in Colombia. We identified the presence of both fungi and bacteria species on leatherback turtle eggs. Sea turtle eggs exposed to previously used hatchery substrates or to decaying eggshells during the first and middle third of the embryonic development produced hatchlings that were smaller and/or weighed less than control eggs. However, this did not negatively influence hatching success. The final third of embryonic development seems to be less susceptible to infection by microorganisms associated with decaying shells. We discuss the mechanisms that could be affecting sea turtle egg development when in contact with fungi. Further studies should seek to understand the infection process and the stages of development in which the fungi are more virulent to the eggs of this critically endangered species.

  12. Development of a Summarized Health Index (SHI) for use in predicting survival in sea turtles.

    Science.gov (United States)

    Li, Tsung-Hsien; Chang, Chao-Chin; Cheng, I-Jiunn; Lin, Suen-Chuain

    2015-01-01

    Veterinary care plays an influential role in sea turtle rehabilitation, especially in endangered species. Physiological characteristics, hematological and plasma biochemistry profiles, are useful references for clinical management in animals, especially when animals are during the convalescence period. In this study, these factors associated with sea turtle surviving were analyzed. The blood samples were collected when sea turtles remained alive, and then animals were followed up for surviving status. The results indicated that significantly negative correlation was found between buoyancy disorders (BD) and sea turtle surviving (p sea turtles had significantly higher levels of aspartate aminotranspherase (AST), creatinine kinase (CK), creatinine and uric acid (UA) than surviving sea turtles (all p sea turtles and to improve veterinary care at rehabilitation facilities.

  13. Levels and distribution of polybrominated diphenyl ethers and organochlorine compounds in sea turtles from Japan.

    Science.gov (United States)

    Malarvannan, Govindan; Takahashi, Shin; Isobe, Tomohiko; Kunisue, Tatsuya; Sudaryanto, Agus; Miyagi, Toshihiko; Nakamura, Masaru; Yasumura, Shigeki; Tanabe, Shinsuke

    2011-01-01

    Three species of sea turtles (green, hawksbill and loggerhead turtles) stranded along the coasts or caught (by-catch) around Ishigaki Island and Kochi, Japan were collected between 1998 and 2006 and analyzed for six organohalogen compounds viz., PBDEs, PCBs, DDTs, CHLs, HCHs and HCB. The present study is the first and foremost to report the occurrence of organohalogen compounds in the sea turtles from Japan. Among the compounds analyzed, concentrations of PCBs, DDTs and CHLs were the highest in all the turtle samples. PBDEs were ubiquitously present in all the turtle species. Comparing with the other two species, concentrations of organohalogens in green turtle were relatively low and decreasing trend in the concentrations were noted with increasing carapace length. Concentrations of OCs in sea turtles from the coasts of Ishigaki Island and Kochi were relatively low as compared to those from other locations in the world.

  14. Morphology vs Genetics: the hybrid origin of a sea turtle disproved by DNA

    Directory of Open Access Journals (Sweden)

    L. GAROFALO

    2013-01-01

    Full Text Available A putative hybrid sea turtle juvenile was evaluated with discriminant DNA markers. When compared with standard values for sea turtles, the general morphological features assigned the specimen to Caretta caretta, while the shape and coloration of the head and the beak profile fell within the Eretmochelys imbricata range; the front flippers were instead like those of a Chelonia mydas. Moreover, prefrontal scale number was outside the putative parental species’ ranges. The mitochondrial D-loop sequence was from C. caretta, and matched haplotype CC-A2.1, the most common in the Mediterranean. Sequence profiles at three nuclear loci withspecies-specific substitutions (Cmos, BDNF and R35 revealed only C. caretta variants, thus excluding that the individual wasan F1 hybrid. This study highlights the importance of integrating different methodological approaches to understand reproductive animal biology and to set the boundaries for specific morphological traits. In particular, we propose the genetic analysis of a new combination of mitochondrial and nuclear markers as a standard procedure which can be adopted in the identification of sea turtlehybrids.

  15. Turtle hunting and tombstone opening. public generosity as costly signaling.

    Science.gov (United States)

    Smith; Bird

    2000-07-01

    Costly signaling theory (CST) offers an explanation of generosity and collective action that contrasts sharply with explanations based on conditional reciprocity. This makes it particularly relevant to situations involving widespread unconditional provisioning of collective goods. We provide a preliminary application of CST to ethnographic data on turtle hunting and public feasting among the Meriam of Torres Strait, Australia. Turtle hunting appears to meet the key conditions specified in CST: it is (1) an honest signal of underlying abilities such as strength, risk-taking, skill, and leadership; (2) costly in ways not subject to reciprocation; (3) an effective means of broadcasting signals, since the collective good (a feast) attracts a large audience; and (4) seems to provide benefits to signalers (turtle hunters) as well as recipients (audience). We conclude with some suggestions as to the broader implications of this research, and the costly signaling paradigm in general, for understanding collective action and generosity in human social groups.

  16. Debris ingestion by juvenile marine turtles: an underestimated problem.

    Science.gov (United States)

    Santos, Robson Guimarães; Andrades, Ryan; Boldrini, Marcillo Altoé; Martins, Agnaldo Silva

    2015-04-15

    Marine turtles are an iconic group of endangered animals threatened by debris ingestion. However, key aspects related to debris ingestion are still poorly known, including its effects on mortality and the original use of the ingested debris. Therefore, we analysed the impact of debris ingestion in 265 green turtles (Chelonia mydas) over a large geographical area and different habitats along the Brazilian coast. We determined the death rate due to debris ingestion and quantified the amount of debris that is sufficient to cause the death of juvenile green turtles. Additionally, we investigated the original use of the ingested debris. We found that a surprisingly small amount of debris was sufficient to block the digestive tract and cause death. We suggested that debris ingestion has a high death potential that may be masked by other causes of death. An expressive part of the ingested debris come from disposable and short-lived products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. An outbreak of salmonellosis linked to a marine turtle.

    Science.gov (United States)

    O'Grady, K A; Krause, V

    1999-06-01

    In September 1998, an outbreak of gastroenteritis occurred in a coastal Aboriginal community in the Northern Territory over a seven day period. An investigation was conducted by the Center for Disease Control, Territory Health Services. Thirty-six cases were detected and 17% (n=6) were hospitalized. Salmonella chester was isolated from eight of nine stool specimens. Sixty-two percent of cases interviewed (n=28) reported consumption of a green turtle (Chelonia mydas) within a median of 24 hours prior to onset of illness. Of the remainder, all but two were contacts of other cases. Salmonella chester was isolated from a section of partially cooked turtle meat. There are no previous published reports of salmonellosis associated with consumption of sea turtles despite them being a popular food source in coastal communities in the Pacific.

  18. The draft genomes of soft–shell turtle and green sea turtle yield insights into the development and evolution of the turtle–specific body plan

    OpenAIRE

    Wang, Zhuo; Pascual-Anaya, Juan; Zadissa, Amonida; Li, Wenqi; Niimura, Yoshihito; Huang, Zhiyong; Li, Chunyi; White, Simon; Xiong, Zhiqiang; Fang, Dongming; Wang, Bo; Ming, Yao; Chen, Yan; Zheng, Yuan; Kuraku, Shigehiro

    2013-01-01

    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ~267.9–248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these tu...

  19. The draft genomes of soft–shell turtle and green sea turtle yield insights into the development and evolution of the turtle–specific body plan

    Science.gov (United States)

    Niimura, Yoshihito; Huang, Zhiyong; Li, Chunyi; White, Simon; Xiong, Zhiqiang; Fang, Dongming; Wang, Bo; Ming, Yao; Chen, Yan; Zheng, Yuan; Kuraku, Shigehiro; Pignatelli, Miguel; Herrero, Javier; Beal, Kathryn; Nozawa, Masafumi; Li, Qiye; Wang, Juan; Zhang, Hongyan; Yu, Lili; Shigenobu, Shuji; Wang, Junyi; Liu, Jiannan; Flicek, Paul; Searle, Steve; Wang, Jun; Kuratani, Shigeru; Yin, Ye; Aken, Bronwen; Zhang, Guojie; Irie, Naoki

    2014-01-01

    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ~267.9–248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell. PMID:23624526

  20. Turtle cleaners: reef fishes foraging on epibionts of sea turtles in the tropical Southwestern Atlantic, with a summary of this association type

    Directory of Open Access Journals (Sweden)

    Cristina Sazima

    Full Text Available In the present study we record several instances of reef fish species foraging on epibionts of sea turtles (cleaning symbiosis at the oceanic islands of Fernando de Noronha Archipelago and near a shipwreck, both off the coast of Pernambuco State, northeast Brazil. Nine reef fish species and three turtle species involved in cleaning are herein recorded. Besides our records, a summary of the literature on this association type is presented. Postures adopted by turtles during the interaction are related to the habits of associated fishes. Feeding associations between fishes and turtles seem a localized, albeit common, phenomenon.

  1. Neuronal control of turtle hindlimb motor rhythms.

    Science.gov (United States)

    Stein, P S G

    2005-03-01

    The turtle, Trachemys scripta elegans, uses its hindlimb during the rhythmic motor behaviors of walking, swimming, and scratching. For some tasks, one or more motor strategies or forms may be produced, e.g., forward swimming or backpaddling. This review discusses experiments that reveal characteristics of the spinal neuronal networks producing these motor behaviors. Limb-movement studies show shared properties such as rhythmic alternation between hip flexion and hip extension, as well as variable properties such as the timing of knee extension in the cycle of hip movements. Motor-pattern studies show shared properties such as rhythmic alternation between hip flexor and hip extensor motor activities, as well as variable properties such as modifiable timing of knee extensor motor activity in the cycle of hip motor activity. Motor patterns also display variations such as the hip-extensor deletion of rostral scratching. Neuronal-network studies reveal mechanisms responsible for movement and motor-pattern properties. Some interneurons in the spinal cord have shared activities, e.g., each unit is active during more than one behavior, and have distinct characteristics, e.g., each unit is most excited during a specific behavior. Interneuronal recordings during variations support the concept of modular organization of central pattern generators in the spinal cord.

  2. SUBSISTENCE HUNTING FOR TURTLES IN NORTHWESTERN ECUADOR

    Directory of Open Access Journals (Sweden)

    John L Carr

    2014-05-01

    Full Text Available 800x600 We describe the subsistence exploitation of an entire turtle fauna in Esmeraldas Province, Ecuador. We collected firsthand accounts and witnessed a number of capture techniques used by rural Afroecuadorian and Chachi inhabitants of the Cayapas-Santiago river basin. The diversity of techniques indicated a practical knowledge of the ecology of the species. Chelydra acutirostris, Kinosternon leucostomum, Rhinoclemmys annulata, melanosterna, and R. nasuta were captured and eaten. "Poziando" involved cleaning pools in a stream bed during the relatively dry season by removing live plants, organic detritus, and thenseining with baskets; we observed R. melanosterna and K. leucostomum captured in this way. Pitfall traps baited with fruit were used to catch R. melanosterna during forays on land. Basket traps (“canasto tortuguero” with a wooden slat funnel across the opening are floated with balsa lashed to the sides. Banana or Xanthosoma leaf bait in the basket traps caught R. melanosterna, R. nasuta, and K. leucostomum. Marshy areas were probed for R. melanosterna and K. leucostomum. Direct capture by hand was also common. Turtles were relished as food items; all turtles captured were consumed, usually in soup or stew. Use of turtles for food in the region was pervasive, perhaps because fish and game populations were depleted.Aprovechamiento de subsistencia de la fauna de tortugas en el noroccidente de EcuadorDescribimos la cacería de subsistencia de la fauna de tortugas en la provincia de Esmeraldas, Ecuador. Hemos recogido testimonios de primera mano y fuimos testigos de una serie de técnicas de captura utilizadas por los habitantes rurales afroecuatorianos y chachis de la cuenca de los ríos Cayapas–Santiago. La diversidad de técnicas indica un conocimiento práctico de la ecología de las especies. Chelydra acutirostris, Kinosternon leucostomum, Rhinoclemmys annulata, R. melanosterna y R.nasuta fueron capturadas y utilizadas como

  3. Traumatic Amputation of Finger From an Alligator Snapping Turtle Bite.

    Science.gov (United States)

    Johnson, Robert D; Nielsen, Cynthia L

    2016-06-01

    Legend states that the alligator snapping turtle (Macrochelys temminckii) should be handled with extreme caution as it has jaw strength powerful enough to bite a wooden broomstick in half. Tales of bite injuries from what is the largest freshwater turtle in North America exist anecdotally, yet there are few descriptions of medical encounters for such. The risk of infection from reptilian bites to the hand in an aquatic environment warrants thorough antibiotic treatment in conjunction with hand surgery consultation. We present the first case report of a near total amputation of an index finger in an adolescent boy who had been bitten by a wild "gator snapper."

  4. Turtle isochore structure is intermediate between amphibians and other amniotes.

    Science.gov (United States)

    Chojnowski, Jena L; Braun, Edward L

    2008-10-01

    Vertebrate genomes are comprised of isochores that are relatively long (>100 kb) regions with a relatively homogenous (either GC-rich or AT-rich) base composition and with rather sharp boundaries with neighboring isochores. Mammals and living archosaurs (birds and crocodilians) have heterogeneous genomes that include very GC-rich isochores. In sharp contrast, the genomes of amphibians and fishes are more homogeneous and they have a lower overall GC content. Because DNA with higher GC content is more thermostable, the elevated GC content of mammalian and archosaurian DNA has been hypothesized to be an adaptation to higher body temperatures. This hypothesis can be tested by examining structure of isochores across the reptilian clade, which includes the archosaurs, testudines (turtles), and lepidosaurs (lizards and snakes), because reptiles exhibit diverse body sizes, metabolic rates, and patterns of thermoregulation. This study focuses on a comparative analysis of a new set of expressed genes of the red-eared slider turtle and orthologs of the turtle genes in mammalian (human, mouse, dog, and opossum), archosaurian (chicken and alligator), and amphibian (western clawed frog) genomes. EST (expressed sequence tag) data from a turtle cDNA library enriched for genes that have specialized functions (developmental genes) revealed using the GC content of the third-codon-position to examine isochore structure requires careful consideration of the types of genes examined. The more highly expressed genes (e.g., housekeeping genes) are more likely to be GC-rich than are genes with specialized functions. However, the set of highly expressed turtle genes demonstrated that the turtle genome has a GC content that is intermediate between the GC-poor amphibians and the GC-rich mammals and archosaurs. There was a strong correlation between the GC content of all turtle genes and the GC content of other vertebrate genes, with the slope of the line describing this relationship also

  5. Encroachment of Human Activity on Sea Turtle Nesting Sites

    Science.gov (United States)

    Ziskin, D.; Aubrecht, C.; Elvidge, C.; Tuttle, B.; Baugh, K.; Ghosh, T.

    2008-12-01

    The encroachment of anthropogenic lighting on sea turtle nesting sites poses a serious threat to the survival of these animals [Nicholas, 2001]. This danger is quantified by combining two established data sets. The first is the Nighttime Lights data produced by the NOAA National Geophysical Data Center [Elvidge et al., 1997]. The second is the Marine Turtle Database produced by the World Conservation Monitoring Centre (WCMC). The technique used to quantify the threat of encroachment is an adaptation of the method described in Aubrecht et al. [2008], which analyzes the stress on coral reef systems by proximity to nighttime lights near the shore. Nighttime lights near beaches have both a direct impact on turtle reproductive success since they disorient hatchlings when they mistake land-based lights for the sky-lit surf [Lorne and Salmon, 2007] and the lights are also a proxy for other anthropogenic threats. The identification of turtle nesting sites with high rates of encroachment will hopefully steer conservation efforts to mitigate their effects [Witherington, 1999]. Aubrecht, C, CD Elvidge, T Longcore, C Rich, J Safran, A Strong, M Eakin, KE Baugh, BT Tuttle, AT Howard, EH Erwin, 2008, A global inventory of coral reef stressors based on satellite observed nighttime lights, Geocarto International, London, England: Taylor and Francis. In press. Elvidge, CD, KE Baugh, EA Kihn, HW Kroehl, ER Davis, 1997, Mapping City Lights with Nighttime Data from the DMSP Operational Linescan System, Photogrammatic Engineering and Remote Sensing, 63:6, pp. 727-734. Lorne, JK, M Salmon, 2007, Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean, Endangered Species Research, Vol. 3: 23-30. Nicholas, M, 2001, Light Pollution and Marine Turtle Hatchlings: The Straw that Breaks the Camel's Back?, George Wright Forum, 18:4, p77-82. Witherington, BE, 1999, Reducing Threats To Nesting Habitat, Research and Management Techniques for

  6. Climate change overruns resilience conferred by temperature-dependent sex determination in sea turtles and threatens their survival.

    Science.gov (United States)

    Santidrián Tomillo, Pilar; Genovart, Meritxell; Paladino, Frank V; Spotila, James R; Oro, Daniel

    2015-08-01

    Temperature-dependent sex determination (TSD) is the predominant form of environmental sex determination (ESD) in reptiles, but the adaptive significance of TSD in this group remains unclear. Additionally, the viability of species with TSD may be compromised as climate gets warmer. We simulated population responses in a turtle with TSD to increasing nest temperatures and compared the results to those of a virtual population with genotypic sex determination (GSD) and fixed sex ratios. Then, we assessed the effectiveness of TSD as a mechanism to maintain populations under climate change scenarios. TSD populations were more resilient to increased nest temperatures and mitigated the negative effects of high temperatures by increasing production of female offspring and therefore, future fecundity. That buffered the negative effect of temperature on the population growth. TSD provides an evolutionary advantage to sea turtles. However, this mechanism was only effective over a range of temperatures and will become inefficient as temperatures rise to levels projected by current climate change models. Projected global warming threatens survival of sea turtles, and the IPCC high gas concentration scenario may result in extirpation of the studied population in 50 years.

  7. Accumulation of polychlorinated biphenyls (PCBs) and evaluation of hematological and immunological effects of PCB exposure on turtles.

    Science.gov (United States)

    Yu, Shuangying; Halbrook, Richard S; Sparling, Donald W

    2012-06-01

    Concentrations of total polychlorinated biphenyls (PCBs), Aroclor 1260, and 26 congeners were measured in liver, fat, and eggs of red-eared slider turtles (Trachemys scripta elegans) collected from ponds near or on the Paducah Gaseous Diffusion Plant (PGDP), Kentucky, USA. Concentrations of total PCBs (wet mass) ranged from 0.002 to 0.480 mg/kg, 0.028 to 0.839 mg/kg, and 0.001 to 0.011 mg/kg in liver, fat, and eggs, respectively. Concentrations of Arochlor 1260 did not exceed 0.430, 0.419, and 0.007 mg/kg in liver, fat, and eggs, respectively. Exposure to PCBs in red-eared sliders collected from the PGDP is characterized by low concentrations of moderately chlorinated mono-ortho and di-ortho congeners (PCB 153, 180, and 118). Although PCB concentrations measured in the current study were low, chronic exposure to PCBs may have altered hematology and immunity of the turtles examined. Total white blood cell count and number of heterophils were negatively correlated with concentrations of total PCBs and Arochlor 1260, respectively. However, disease and other contaminants in the study area may influence the results. Because little is known regarding the influence of PCBs on hematology and immune function in turtles, additional study is needed to better evaluate results observed in the current study.

  8. Migration routes and staging areas of trans-Saharan Turtle Doves appraised from light-level geolocators.

    Directory of Open Access Journals (Sweden)

    Cyril Eraud

    Full Text Available The identification of migration routes, wintering grounds and stopover sites are crucial issues for the understanding of the Palearctic-African bird migration system as well as for the development of relevant conservation strategies for trans-Saharan migrants. Using miniaturized light-level geolocators we report a comprehensive and detailed year round track of a granivorous trans-Saharan migrant, the European Turtle Dove (Streptopelia turtur. From five recovered loggers, our data provide new insights on migratory journeys and winter destinations of Turtle Doves originating from a breeding population in Western France. Data confirm that Turtle Doves wintered in West Africa. The main wintering area encompassed Western Mali, the Inner Delta Niger and the Malian/Mauritanian border. Some individuals also extended their wintering ranges over North Guinea, North-West of Burkina Faso and the Ivory-Coast. Our results reveal that all individuals did not spend the winter period at a single location; some of them experienced a clear eastward shift of several hundred kilometres. We also found evidence for a loop migration pattern, with a post-breeding migration flyway lying west of the spring route. Finally, we found that on their way back to breeding grounds Turtle Doves needed to refuel after crossing the Sahara desert. Contrary to previous suggestions, our data reveal that birds used stopover sites for several weeks, presumably in Morocco and North Algeria. This later finding is a crucial issue for future conservation strategies because environmental conditions on these staging areas might play a pivotal role in population dynamics of this declining species.

  9. A model for simulating the active dispersal of juvenile sea turtles with a case study on western Pacific leatherback turtles

    Science.gov (United States)

    Lalire, Maxime

    2017-01-01

    Oceanic currents are known to broadly shape the dispersal of juvenile sea turtles during their pelagic stage. Accordingly, simple passive drift models are widely used to investigate the distribution at sea of various juvenile sea turtle populations. However, evidence is growing that juveniles do not drift purely passively but also display some swimming activity likely directed towards favorable habitats. We therefore present here a novel Sea Turtle Active Movement Model (STAMM) in which juvenile sea turtles actively disperse under the combined effects of oceanic currents and habitat-driven movements. This model applies to all sea turtle species but is calibrated here for leatherback turtles (Dermochelys coriacea). It is first tested in a simulation of the active dispersal of juveniles originating from Jamursba-Medi, a main nesting beach of the western Pacific leatherback population. Dispersal into the North Pacific Ocean is specifically investigated. Simulation results demonstrate that, while oceanic currents broadly shape the dispersal area, modeled habitat-driven movements strongly structure the spatial and temporal distribution of juveniles within this area. In particular, these movements lead juveniles to gather in the North Pacific Transition Zone (NPTZ) and to undertake seasonal north-south migrations. More surprisingly, juveniles in the NPTZ are simulated to swim mostly towards west which considerably slows down their progression towards the American west coast. This increases their residence time, and hence the risk of interactions with fisheries, in the central and eastern part of the North Pacific basin. Simulated habitat-driven movements also strongly reduce the risk of cold-induced mortality. This risk appears to be larger among the juveniles that rapidly circulate into the Kuroshio than among those that first drift into the North Equatorial Counter Current (NECC). This mechanism might induce marked interannual variability in juvenile survival as the

  10. Mitogen-induced lymphocyte proliferation in loggerhead sea turtles: comparison of methods and effects of gender, plasma testosterone concentration, and body condition on immunity.

    Science.gov (United States)

    Keller, Jennifer M; McClellan-Green, Patricia D; Lee, A Michelle; Arendt, Mike D; Maier, Philip P; Segars, Al L; Whitaker, J David; Keil, Deborah E; Peden-Adams, Margie M

    2005-02-10

    A fully functioning immune system is vital to the survival of threatened and endangered sea turtles. Immunological protection against diseases in any organism can be reduced by a number of natural and anthropogenic factors, such as seasonal changes, malnutrition, disease states, and contaminant exposure. These factors are even more critical when they occur in endangered species or populations. To identify alterations in the immunological health of loggerhead sea turtles (Caretta caretta), the mitogen-induced lymphocyte proliferation (LP) assay was developed using peripheral blood leukocytes (PBLs). Collection and culture conditions were optimized for this assay using non-lethal blood samples collected from free-ranging turtles along the southeastern US coast. During the collection, two anticoagulants (sodium heparin and lithium heparin) were compared to determine effects of different ions on assay results. Optimal culture conditions were established for loggerhead PBLs while two different methods of measuring LP were compared: (1) the traditional radioactive (3)H-thymidine assay and (2) a non-radioactive, colorimetric method utilizing 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium (MTT). The results indicate that the (3)H-thymidine and the non-radioactive MTT methods did not correlate with each other and that the use of heparin type did not influence the results of the LP assay. Lastly, using these optimized methods, we investigated the effect of gender, plasma testosterone concentration, and body condition on LP in loggerhead turtles and found that none of the parameters largely influenced LP.

  11. Do open-cycle hatcheries relying on tourism conserve sea turtles? Sri Lankan developments and economic-ecological considerations.

    Science.gov (United States)

    Tisdell, Clem; Wilson, Clevo

    2005-04-01

    By combining economic analysis of markets with ecological parameters, this article considers the role that tourism-based sea turtle hatcheries (of an open-cycle type) can play in conserving populations of sea turtles. Background is provided on the nature and development of such hatcheries in Sri Lanka. The modeling facilitates the assessment of the impacts of turtle hatcheries on the conservation of sea turtles and enables the economic and ecological consequences of tourism, based on such hatcheries, to be better appreciated. The results demonstrate that sea turtle hatcheries serving tourists can make a positive contribution to sea turtle conservation, but that their conservation effectiveness depends on the way they are managed. Possible negative effects are also identified. Economic market models are combined with turtle population survival relationships to predict the conservation impact of turtle hatcheries and their consequence for the total economic value obtained from sea turtle populations.

  12. Oral bacterial microbiota and traumatic injuries of free-ranging Phrynops geoffroanus (Testudines, Chelidae in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Bruno O. Ferronato

    2009-07-01

    Full Text Available During 2006 and 2007, we collected free-ranging Phrynops geoffroanus, from two anthropogenically altered rivers in southeastern Brazil. Oral microbiological samples were taken for isolation of aerobic and facultative anaerobic bacteria; a physical examination was performed;and we evaluated possible effects on the turtles’ health. Twenty-nine species of bacteria were isolated in Piracicaba River turtles (n=10, and twenty-four species in Piracicamirim stream turtles (n=8, most of them gram-negative. In both sites, potential pathogens for reptiles were: Escherichia coli, Klebsiella pneumoniae, Enterobacter agglomerans, Citrobacter freundii, and Bacillus sp. Although boatpropeller lesions were common on the carapace of the turtles, we have not found turtles with signs of clinical diseases. The oral bacterial microbiota of P. geoffroanus inhabiting the Piracicaba River basin are composed of a diverse microbe spectrum, and long-term studies of the effects of pollution and traumatic injuries on this population and its microbial flora are warranted.

  13. Dehydration as an effective treatment for brevetoxicosis in loggerhead sea turtles (Caretta caretta).

    Science.gov (United States)

    Manire, Charles A; Anderson, Eric T; Byrd, Lynne; Fauquier, Deborah A

    2013-06-01

    Harmful algal blooms are known to cause morbidity and mortality to a large number of marine and estuarine organisms worldwide, including fish and marine mammals, birds, and turtles. The effects of these algal blooms on marine organisms are due to the various toxins produced by the different algal species. In southwest Florida, frequent blooms of the dinoflagellate Karenia brevis, which produces neurotoxins known as brevetoxins, cause widespread fish kills and affect many marine animals. In 2005-2007, numerous sea turtles of several species underwent treatment for brevetoxicosis at the Sea Turtle Rehabilitation Hospital. In green sea turtles, Chelonia mydas, and Kemp's ridley sea turtles, Lepidochelys kempii, symptoms associated with brevetoxicosis were limited to neurologic signs, such as the inability to control the head (head bobbing) and nervous twitching. For these turtles, treatment involved removing the turtles from the environment containing the toxins and providing short-term supportive care. In loggerhead sea turtles, Caretta caretta, symptoms were more generalized; thus, a similar approach was unsuccessful, as was routine treatment for general toxicosis. Loggerhead sea turtles had more extreme neurologic symptoms including coma, and other symptoms that included generalized edema, conjunctival edema, and cloacal or penile prolapse. Treatment of brevetoxicosis in loggerhead sea turtles required a therapeutic regimen that initially included dehydration and systemic antihistamine treatment followed by supportive care.

  14. Chelonitoxism outbreak caused from consuming turtle, Eastern Samar, Philippines, August 2013

    Directory of Open Access Journals (Sweden)

    Ray Justin Ventura

    2015-04-01

    Full Text Available Background: On 21 August 2013, the Event-based Surveillance and Response system of the Department of Health, Philippines captured a foodborne illness event among residents of a coastal village in Eastern Samar, Philippines. The suspected cause was the consumption of a sea turtle found near the village. A team from the Department of Health was sent to conduct an outbreak investigation. Methods: A case was defined as any person in Arteche, Eastern Samar, who developed dry mouth and burning sensation in the throat from 15 August to 27 August, 2013. Severity of the disease was classified as mild, moderate or severe. We conducted records review, environmental investigation, interviews of key informants and a retrospective cohort study. Results: Sixty-eight cases were identified; four died (case fatality rate = 6%. All cases had a history of turtle meat consumption. Dose-dependent relationship was noted between amount of turtle meat consumed and the risk of illness. In the cohort study, consumption of turtle meat and turtle meat soup were associated with illness. Conclusion: This study identified turtle meat as the source of this foodborne outbreak and emphasized the dangers of consuming turtle meat. Other reported cases of turtle meat poisoning in the Philippines suggest that turtle consumption is an ongoing practice in the country. By publishing information about sea turtle poisoning outbreaks in the Philippines, we hope to raise awareness of the potential severe health effects from ingesting these endangered sea creatures.

  15. Epizootiology of spirorchid infection in green turtles (Chelonia mydas) in Hawaii

    Science.gov (United States)

    Work, T.M.; Balazs, G.H.; Schumacher, Jody L.; Marie, A.

    2005-01-01

    We describe the epizootiology of spirorchiid trematode infections in Hawaiian green turtles (Chelonia mydas) by quantifying tissue egg burdens in turtles submitted for necropsy and by assessing antibody response to crude adult worm and egg antigens among a variety of age groups. Hapalotrema sp. and Laeredius sp. predominated in turtles infected with spirorchiids. Tissue egg burdens decreased with increasing size and increased with deteriorating body condition of turtles. No relationship was found between tissue egg burdens and sex or fibropapillomatosis status. Tissue egg burdens increased in turtles from southeast to northwest in the main Hawaiian Islands (Hawaii to Kauai). Hatchling and captive-reared turtles had significantly lower levels of antibodies against crude worm and egg antigens. Based on tissue egg burdens and antibody status, we hypothesize that immature turtles become infected with spirorchiids shortly after recruiting into coastal foraging pastures from the pelagic environment, that infection levels decrease with age, and that spirorchiids detrimentally affect the body condition of sea turtles independent of tumor burden. The low intensity of infection in turtles with the endemic trematode Carettacola hawaiiensis suggests either that turtles are less susceptible to infection with this parasite or that the parasite is outcompeted by species of Hapalotrema and Laeredius. Given that the 2 latter species are found in the Pacific and other oceans, they are not likely endemic and were probably introduced into Hawaii through an undetermined route.

  16. Comparative study of the shell development of hard- and soft-shelled turtles.

    Science.gov (United States)

    Nagashima, Hiroshi; Shibata, Masahiro; Taniguchi, Mari; Ueno, Shintaro; Kamezaki, Naoki; Sato, Noboru

    2014-07-01

    The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used - the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin. © 2014 Anatomical Society.

  17. Induction of oviposition by the administration of oxytocin in hawksbill turtles.

    Science.gov (United States)

    Kawazu, Isao; Kino, Masakatsu; Maeda, Konomi; Yamaguchi, Yasuhiro; Sawamukai, Yutaka

    2014-12-01

    We set out to develop an oviposition induction technique for captive female hawksbill turtles Eretmochelys imbricata. The infertile eggs of nine females were induced to develop by the administration of follicle-stimulating hormone, after which we investigated the effects of administering oxytocin on oviposition. Seven of the turtles were held in a stationary horizontal position on a retention stand, and then oxytocin was administrated (0.6-0.8 units/kg of body weight; 5 mL). The seven turtles were retained for a mandatory 2 h period after oxytocin administration, and were then returned to the holding tanks. As the control, normal saline (5 mL) was administered to the other two turtles, followed by the administration of oxytocin after 24 h. The eggs in oviducts of all nine turtles were observed by ultrasonography at 24 h after oxytocin administration. The control experiment validated that stationary retention and normal saline administration had no effect on egg oviposition. Eight of the turtles began ovipositing eggs at 17-43 min after oxytocin administration, while one began ovipositing in the holding tank immediately after retention. All turtles finished ovipositing eggs within 24 h of oxytocin administration. This report is the first to demonstrate successful induced oviposition in sea turtles. We suggest that the muscles in the oviducts of hawksbill turtles may respond to relatively lower doses of oxytocin (inducing contractions) compared to land and freshwater turtles (4-40 units/kg) based on existing studies.

  18. Trading shallow safety for deep sleep: Juvenile green turtles select deeper resting sites as they grow

    Science.gov (United States)

    Hart, Kristen M.; White, Connor F.; Iverson, Autumn R; Whitney, Nick

    2016-01-01

    To better protect endangered green sea turtles Chelonia mydas, a more thorough understanding of the behaviors of each life stage is needed. Although dive profile analyses obtained using time-depth loggers have provided some insights into habitat use, recent work has shown that more fine-scale monitoring of body movements is needed to elucidate physical activity patterns. We monitored 11 juvenile green sea turtles with tri-axial acceleration data loggers in their foraging grounds in Dry Tortugas National Park, Florida, USA, for periods ranging from 43 to 118 h (mean ± SD: 72.8 ± 27.3 h). Approximately half of the individuals (n = 5) remained in shallow (overall mean depth less than 2 m) water throughout the experiment, whereas the remaining individuals (n = 6) made excursions to deeper (4 to 27 m) waters, often at night. Despite these differences in depth use, acceleration data revealed a consistent pattern of diurnal activity and nocturnal resting in most individuals. Nocturnal depth differences thus do not appear to represent differences in behavior, but rather different strategies to achieve the same behavior: rest. We calculated overall dynamic body acceleration (ODBA) to assess the relative energetic cost of each behavioral strategy in an attempt to explain the differences between them. Animals in deeper water experienced longer resting dives, more time resting per hour, and lower mean hourly ODBA. These results suggest that resting in deeper water provides energetic benefits that outweigh the costs of transiting to deep water and a potential increased risk of predation.

  19. Stable Cretaceous sex chromosomes enable molecular sexing in softshell turtles (Testudines: Trionychidae)

    Science.gov (United States)

    Rovatsos, Michail; Praschag, Peter; Fritz, Uwe; Kratochvšl, Lukáš

    2017-01-01

    Turtles demonstrate variability in sex determination ranging from environmental sex determination (ESD) to highly differentiated sex chromosomes. However, the evolutionary dynamics of sex determining systems in this group is not well known. Differentiated ZZ/ZW sex chromosomes were identified in two species of the softshell turtles (Trionychidae) from the subfamily Trionychinae and Z-specific genes were identified in a single species. We tested Z-specificity of a subset of these genes by quantitative PCR comparing copy gene numbers in male and female genomes in 10 species covering the phylogenetic diversity of trionychids. We demonstrated that differentiated ZZ/ZW sex chromosomes are conserved across the whole family and that they were already present in the common ancestor of the extant trionychids. As the sister lineage, Carettochelys insculpta, possess ESD, we can date the origin of the sex chromosomes in trionychids between 200 Mya (split of Trionychidae and Carettochelyidae) and 120 Mya (basal splitting of the recent trionychids). The results support the evolutionary stability of differentiated sex chromosomes in some lineages of ectothermic vertebrates. Moreover, our approach determining sex-linkage of protein coding genes can be used as a reliable technique of molecular sexing across trionychids useful for effective breeding strategy in conservation projects of endangered species. PMID:28186115

  20. Alien invasive slider turtle in unpredicted habitat: a matter of niche shift or of predictors studied?

    Directory of Open Access Journals (Sweden)

    Dennis Rödder

    Full Text Available BACKGROUND: Species Distribution Models (SDMs aim on the characterization of a species' ecological niche and project it into geographic space. The result is a map of the species' potential distribution, which is, for instance, helpful to predict the capability of alien invasive species. With regard to alien invasive species, recently several authors observed a mismatch between potential distributions of native and invasive ranges derived from SDMs and, as an explanation, ecological niche shift during biological invasion has been suggested. We studied the physiologically well known Slider turtle from North America which today is widely distributed over the globe and address the issue of ecological niche shift versus choice of ecological predictors used for model building, i.e., by deriving SDMs using multiple sets of climatic predictor. PRINCIPAL FINDINGS: In one SDM, predictors were used aiming to mirror the physiological limits of the Slider turtle. It was compared to numerous other models based on various sets of ecological predictors or predictors aiming at comprehensiveness. The SDM focusing on the study species' physiological limits depicts the target species' worldwide potential distribution better than any of the other approaches. CONCLUSION: These results suggest that a natural history-driven understanding is crucial in developing statistical models of ecological niches (as SDMs while "comprehensive" or "standard" sets of ecological predictors may be of limited use.

  1. Incubation temperature effects on hatchling performance in the loggerhead sea turtle (Caretta caretta.

    Directory of Open Access Journals (Sweden)

    Leah R Fisher

    Full Text Available Incubation temperature has significant developmental effects on oviparous animals, including affecting sexual differentiation for several species. Incubation temperature also affects traits that can influence survival, a theory that is verified in this study for the Northwest Atlantic loggerhead sea turtle (Caretta caretta. We conducted controlled laboratory incubations and experiments to test for an effect of incubation temperature on performance of loggerhead hatchlings. Sixty-eight hatchlings were tested in 2011, and 31 in 2012, produced from eggs incubated at 11 different constant temperatures ranging from 27°C to 33°C. Following their emergence from the eggs, we tested righting response, crawling speed, and conducted a 24-hour long swim test. The results support previous studies on sea turtle hatchlings, with an effect of incubation temperature seen on survivorship, righting response time, crawling speed, change in crawl speed, and overall swim activity, and with hatchlings incubated at 27°C showing decreased locomotor abilities. No hatchlings survived to be tested in both years when incubated at 32°C and above. Differences in survivorship of hatchlings incubated at high temperatures are important in light of projected higher sand temperatures due to climate change, and could indicate increased mortality from incubation temperature effects.

  2. Individual-level behavioral responses of immature green turtles to snorkeler disturbance.

    Science.gov (United States)

    Griffin, Lucas P; Brownscombe, Jacob W; Gagné, Tyler O; Wilson, Alexander D M; Cooke, Steven J; Danylchuk, Andy J

    2017-03-01

    Despite many positive benefits of ecotourism, increased human encounters with wildlife may have detrimental effects on wild animals. As charismatic megafauna, nesting and foraging sea turtles are increasingly the focus of ecotourism activities. The purpose of our study was to quantify the behavioral responses of immature green turtles (Chelonia mydas) to disturbance by snorkelers, and to investigate whether turtles have individual-level responses to snorkeler disturbance. Using a standardized disturbance stimulus in the field, we recorded turtle behaviors pre- and post-disturbance by snorkelers. Ninety percent of turtles disturbed by snorkeler (n = 192) initiated their flights at distances of ≤3 m. Using principal component analysis, we identified two distinct turtle personality types, 'bold' and 'timid', based upon 145 encounters of 19 individually identified turtles and five disturbance response variables. There was significant intra-individual repeatability in behavioral responses to disturbance, but bolder turtles had more behavioral plasticity and less consistent responses than more timid individuals. Bolder individuals with reduced evasion responses might be at a higher risk of shark predation, while more timid turtles might have greater energetic consequences due to non-lethal predator effects and repeated snorkeler disturbance. Over the longer term, a turtle population with a mix of bold and timid individuals may promote more resilient populations. We recommend that snorkelers maintain >3 m distance from immature green turtles when snorkeling, and that ecotourism activities be temporally and spatially stratified. Further, turtle watching guidelines need to be communicated to both tour operators and independent snorkelers to reduce the disturbance of turtles.

  3. Diet Composition of Hawksbill Turtles (Eretmochelys imbricata) in ...

    African Journals Online (AJOL)

    before analysis, blotted dry and inspected under ... (NaOCl) for 15 minutes for spicule analysis. Settled material was extracted and ..... data can also be collected and individual subjects can .... SWoT State of the World's Sea Turtles. Report, 1: 8.

  4. Anatomical evidence for intracardiac blood shunting in marine turtles

    African Journals Online (AJOL)

    Blood flow through the heart of the freshwater turtle during air-breathing and diving has ... shown this ring of cardiac muscle to be active in maintaining systemic blood .... reducing or preventing pulmonary blood flow, since the contraction of the ...

  5. Atomic Force Microscopy of Asymmetric Membranes from Turtle Erythrocytes

    Science.gov (United States)

    Tian, Yongmei; Cai, Mingjun; Xu, Haijiao; Ding, Bohua; Hao, Xian; Jiang, Junguang; Sun, Yingchun; Wang, Hongda

    2014-01-01

    The cell membrane provides critical cellular functions that rely on its elaborate structure and organization. The structure of turtle membranes is an important part of an ongoing study of erythrocyte membranes. Using a combination of atomic force microscopy and single-molecule force spectroscopy, we characterized the turtle erythrocyte membrane structure with molecular resolution in a quasi-native state. High-resolution images both leaflets of turtle erythrocyte membranes revealed a smooth outer membrane leaflet and a protein covered inner membrane leaflet. This asymmetry was verified by single-molecule force spectroscopy, which detects numerous exposed amino groups of membrane proteins in the inner membrane leaflet but much fewer in the outer leaflet. The asymmetric membrane structure of turtle erythrocytes is consistent with the semi-mosaic model of human, chicken and fish erythrocyte membrane structure, making the semi-mosaic model more widely applicable. From the perspective of biological evolution, this result may support the universality of the semi-mosaic model. PMID:25134535

  6. Movement mysteries unveiled: spatial ecology of juvenile green sea turtles

    Science.gov (United States)

    Shaver, Donna J.; Hart, Kristen M.; Fujisaki, Ikuko; Rubio, Cynthia; Sartain-Iverson, Autumn R.; Lutterschmidt, William I.

    2013-01-01

    Locations of important foraging areas are not well defined for many marine species. Unraveling these mysteries is vital to develop conservation strategies for these species, many of which are threatened or endangered. Satellite-tracking is a tool that can reveal movement patterns at both broad and fine spatial scales, in all marine environments. This chapter presents records of the longest duration track of an individual juvenile green turtle (434 days) and highest number of tracking days in any juvenile green turtle study (5483 tracking days) published to date. In this chapter, we use spatial modeling techniques to describe movements and identify foraging areas for juvenile green turtles (Chelonia mydas) captured in a developmental habitat in south Texas, USA. Some green turtles established residency in the vicinity of their capture and release site, but most used a specific habitat feature (i.e., a jettied pass) to travel between the Gulf of Mexico and a nearby bay. Still others moved southward within the Gulf of Mexico into Mexican coastal waters, likely in response to decreasing water temperatures. These movements to waters off the coast of Mexico highlight the importance of international cooperation in restoration efforts undertaken on behalf of this imperiled species.

  7. ORGANOCHLORINE CONTAMINANTS IN SEA TURTLES FROM THE EASTERN PACIFIC

    Science.gov (United States)

    We measured organochlorine residues in three species of sea turtles from the Baja California peninsula, Mexico. Seventeen of 21 organochlorine pesticides analyzed were detected, with heptachlor epoxide and y-hexachlorocyclohexane the most prevalent in 14 (40%) and 11 (31%) of th...

  8. Coping with Ninja Turtle Play in My Kindergarten Classroom.

    Science.gov (United States)

    Gronlund, Gaye

    1992-01-01

    Describes one teacher's efforts to understand children's aggressive play by reading literature that suggests children use play to construct meaning, viewing the Ninja Turtle cartoon show, and interviewing children about their superhero play. Male and female roles in play, aggression and violence, and television commercialism are discussed. (LB)

  9. Latitudinal diversity gradients in Mesozoic non-marine turtles

    Science.gov (United States)

    Nicholson, David B.; Holroyd, Patricia A.; Valdes, Paul; Barrett, Paul M.

    2016-11-01

    The latitudinal biodiversity gradient (LBG)-the pattern of increasing taxonomic richness with decreasing latitude-is prevalent in the structure of the modern biota. However, some freshwater taxa show peak richness at mid-latitudes; for example, extant Testudines (turtles, terrapins and tortoises) exhibit their greatest diversity at 25° N, a pattern sometimes attributed to recent bursts of climatically mediated species diversification. Here, we test whether this pattern also characterizes the Mesozoic distribution of turtles, to determine whether it was established during either their initial diversification or as a more modern phenomenon. Using global occurrence data for non-marine testudinate genera, we find that subsampled richness peaks at palaeolatitudes of 15-30° N in the Jurassic, 30-45° N through the Cretaceous to the Campanian, and from 30° to 60° N in the Maastrichtian. The absence of a significant diversity peak in southern latitudes is consistent with results from climatic models and turtle niche modelling that demonstrate a dearth of suitable turtle habitat in Gondwana during the Jurassic and Late Cretaceous. Our analyses confirm that the modern testudinate LBG has a deep-time origin and further demonstrate that LBGs are not always expressed as a smooth, equator-to-pole distribution.

  10. 78 FR 63872 - Turtles Intrastate and Interstate Requirements

    Science.gov (United States)

    2013-10-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 1240 Turtles Intrastate and Interstate Requirements Correction In rule document 2013-17751 appearing on pages 44878-44881 in the issue of July...

  11. Turtle carapace anomalies: the roles of genetic diversity and environment.

    Directory of Open Access Journals (Sweden)

    Guillermo Velo-Antón

    Full Text Available BACKGROUND: Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3% to 69% in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. CONCLUSIONS/SIGNIFICANCE: Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants and heritability of anomalies would be useful to better understand the complex origin of anomalies in natural populations.

  12. Satellite Tracking of Post-nesting Migration of Green Turtles

    Institute of Scientific and Technical Information of China (English)

    Wang Wenzhi; Wang Dongxiao; Wang Huajie; Song Xiaojun

    2002-01-01

    @@ During the period August 17-28, 2001, in collaboration with the Provincial Bureau of Oceanography & Fisheries of Guangdong and the South China Institute for Endangered Species, the South China Sea Institute of Oceanology, a CAS affiliate in the city of Guangzhou, conducted a sea turtle satellite tracking project at Haigui Bay (Fig. 1) in the vicinity of Gangkou Town, Huidong County, Guangdong Province.

  13. Persistent leatherback turtle migrations present opportunities for conservation.

    Directory of Open Access Journals (Sweden)

    George L Shillinger

    2008-07-01

    Full Text Available Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004-2005, 2005-2006, and 2007 satellite tracking dataset (12,095 cumulative satellite tracking days collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre.

  14. Isotope analysis reveals foraging area dichotomy for atlantic leatherback turtles.

    Directory of Open Access Journals (Sweden)

    Stéphane Caut

    Full Text Available BACKGROUND: The leatherback turtle (Dermochelys coriacea has undergone a dramatic decline over the last 25 years, and this is believed to be primarily the result of mortality associated with fisheries bycatch followed by egg and nesting female harvest. Atlantic leatherback turtles undertake long migrations across ocean basins from subtropical and tropical nesting beaches to productive frontal areas. Migration between two nesting seasons can last 2 or 3 years, a time period termed the remigration interval (RI. Recent satellite transmitter data revealed that Atlantic leatherbacks follow two major dispersion patterns after nesting season, through the North Gulf Stream area or more eastward across the North Equatorial Current. However, information on the whole RI is lacking, precluding the accurate identification of feeding areas where conservation measures may need to be applied. METHODOLOGY/PRINCIPAL FINDINGS: Using stable isotopes as dietary tracers we determined the characteristics of feeding grounds of leatherback females nesting in French Guiana. During migration, 3-year RI females differed from 2-year RI females in their isotope values, implying differences in their choice of feeding habitats (offshore vs. more coastal and foraging latitude (North Atlantic vs. West African coasts, respectively. Egg-yolk and blood isotope values are correlated in nesting females, indicating that egg analysis is a useful tool for assessing isotope values in these turtles, including adults when not available. CONCLUSIONS/SIGNIFICANCE: Our results complement previous data on turtle movements during the first year following the nesting season, integrating the diet consumed during the year before nesting. We suggest that the French Guiana leatherback population segregates into two distinct isotopic groupings, and highlight the urgent need to determine the feeding habitats of the turtle in the Atlantic in order to protect this species from incidental take by

  15. Continuation of studies on thermoregulation of fish and turtles in thermally stressed habitats. Annual progress report, 1 October 1978-30 September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Spotila, J.R.

    1979-06-01

    A time dependent mathematical model accurately predicts heart, brain, and gut temperatures of largemouth bass. Body diameter, insulation thickness, and tissue thermal conductivity are controlling variables in the transfer of heat between a fish and water. Fish metabolic rate and water velocity across fish surfaces do not appreciably affect heat transfer rates. Multichannel temperature transmitters telemeter body temperatures of free swimming bass in Pond C on the Savannah River Plant while the behavior of those fish and other bass is recorded by an observer. Field studies of the home ranges and movements of turtles in Par Pond on the Savannah River Plant are completed. We have recorded the movements of 30 individuals fitted with radio transmitters. Distinct differences are apparent in the behavior of turtles in areas affected by heated effluents as compared to those in control areas. Calculations and theoretical analysis of the transient energy exchange of turtles are continuing. Laboratory experiments using /sup 133/Xe indicate that blood flow in the muscles and skin of alligators increases 2 to 6 fold during movement. Relative variation is similar in magnitude to that seen in human muscle. Evaporative water loss from alligators decreases as body size increases. The ratios of respiratory to cutaneous water loss are 1.80 at 5/sup 0/C, 1.18 at 25/sup 0/C and 0.85 at 35/sup 0/C. Boundary layer resistances to evaporative water loss are 6 fold less than predicted by calculations of aerodynamic boundary layers. Body size is a primary factor in determining the thermoregulatory strategy that is to be used by a given animal.Operative environmental temperatures (T/sub e/) are as high as 60/sup 0/C for a turtle basking on a log in the sun. In a rainstorm T/sub e/ drops to 18/sup 0/C. Experiments to measure T/sub e/ for turtles in normal and thermally affected areas are now continuing on the Savannah River Plant. (ERB)

  16. Twelve new polymorphic microsatellite markers from the loggerhead sea turtle (Caretta caretta) and crossspecies amplification on other marine turtle species

    DEFF Research Database (Denmark)

    Monzón-Argüello, Catalina; Muñoz, Joaquin; Marco, Adolfo;

    2008-01-01

    from 3 to 13 (average of 7.33) and the values of observed heterozygosities from 0.32 to 0.80 (average of 0.61). Cross-species amplification on three other marine turtles, Chelonia mydas, Eretmochelys imbricata and Dermochelys coriacea, revealed polymorphism and variability at eight, eleven and three...

  17. First satellite tracks of neonate sea turtles redefine the 'lost years' oceanic niche.

    Science.gov (United States)

    Mansfield, Katherine L; Wyneken, Jeanette; Porter, Warren P; Luo, Jiangang

    2014-04-22

    Few at-sea behavioural data exist for oceanic-stage neonate sea turtles, a life-stage commonly referred to as the sea turtle 'lost years'. Historically, the long-term tracking of small, fast-growing organisms in the open ocean was logistically or technologically impossible. Here, we provide the first long-term satellite tracks of neonate sea turtles. Loggerheads (Caretta caretta) were remotely tracked in the Atlantic Ocean using small solar-powered satellite transmitters. We show that oceanic-stage turtles (i) rarely travel in Continental Shelf waters, (ii) frequently depart the currents associated with the North Atlantic Subtropical Gyre, (iii) travel quickly when in Gyre currents, and (iv) select sea surface habitats that are likely to provide a thermal benefit or refuge to young sea turtles, supporting growth, foraging and survival. Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use, allowing us to re-examine sea turtle 'lost years' paradigms.

  18. Detecting spring after a long winter: coma or slow vigilance in cold, hypoxic turtles?

    Science.gov (United States)

    Madsen, Jesper G; Wang, Tobias; Beedholm, Kristian; Madsen, Peter T

    2013-01-01

    Many freshwater turtle species can spend the winter submerged in ice-covered lakes by lowering their metabolism, and it has been proposed that such severe metabolic depression render these turtles comatose. This raises the question of how they can detect the arrival of spring and respond in a sensible way to sensory information during hibernation. Using evoked potentials from cold or hypoxic turtles exposed to vibration and light, we show that hibernating turtles maintain neural responsiveness to light stimuli during prolonged hypoxia. Furthermore, turtles held under hibernation conditions for 14 days increase their activity when exposed to light or elevated temperatures, but not to vibration or increased oxygen. It is concluded that hibernating turtles are not comatose, but remain vigilant during overwintering in cold hypoxia, allowing them to respond to the coming of spring and to adjust their behaviour to specific sensory inputs.

  19. Unexpectedly low rangewide population genetic structure of the imperiled eastern box turtle Terrapene c. carolina.

    Directory of Open Access Journals (Sweden)

    Steven J A Kimble

    Full Text Available Rangewide studies of genetic parameters can elucidate patterns and processes that operate only over large geographic scales. Herein, we present a rangewide population genetic assessment of the eastern box turtle Terrapene c. carolina, a species that is in steep decline across its range. To inform conservation planning for this species, we address the hypothesis that disruptions to demographic and movement parameters associated with the decline of the eastern box turtle has resulted in distinctive genetic signatures in the form of low genetic diversity, high population structuring, and decreased gene flow. We used microsatellite genotype data from (n = 799 individuals from across the species range to perform two Bayesian population assignment approaches, two methods for comparing historical and contemporary migration among populations, an evaluation of isolation by distance, and a method for detecting barriers to gene flow. Both Bayesian methods of population assignment indicated that there are two populations rangewide, both of which have maintained high levels of genetic diversity (HO = 0.756. Evidence of isolation by distance was detected in this species at a spatial scale of 300-500 km, and the Appalachian Mountains were identified as the primary barrier to gene flow across the species range. We also found evidence for historical but not contemporary migration between populations. Our prediction of many, highly structured populations across the range was not supported. This may point to cryptic contemporary gene flow, which might in turn be explained by the presence of rare transients in populations. However these data may be influenced by historical signatures of genetic connectivity because individuals of this species can be long-lived.

  20. Isolation, characterization, and antibiotic resistance of Vibrio spp. in sea turtles from Northwestern Mexico

    OpenAIRE

    Zavala-Norzagaray, Alan A.; Aguirre, A. Alonso; Velazquez-Roman, Jorge; Flores-Villaseñor, Héctor; León-Sicairos, Nidia; Ley-Quiñonez, C. P.; Hernández-Díaz, Lucio De Jesús; Canizalez-Roman, Adrian

    2015-01-01

    The aerobic oral and cloacal bacterial microbiota and their antimicrobial resistance were characterized for 64 apparently healthy sea turtles captured at their foraging grounds in Ojo de Liebre Lagoon (OLL), Baja California Sur (BCS), Mexico (Pacific Ocean) and the lagoon system of Navachiste (LSN) and Marine Area of Influence (MAI), Guasave, Sinaloa (Gulf of California). A total of 34 black turtles (Chelonia mydas agassizii) were sampled in OLL and eight black turtles and 22 olive ridley tur...

  1. Factors influencing survivorship of rehabilitating green sea turtles (Chelonia mydas) with fibropapillomatosis.

    Science.gov (United States)

    Page-Karjian, Annie; Norton, Terry M; Krimer, Paula; Groner, Maya; Nelson, Steven E; Gottdenker, Nicole L

    2014-09-01

    Marine turtle fibropapillomatosis (FP) is a debilitating, infectious neoplastic disease that has reached epizootic proportions in several tropical and subtropical populations of green turtles (Chelonia mydas). FP represents an important health concern in sea turtle rehabilitation facilities. The objectives of this study were to describe the observed epidemiology, biology, and survival rates of turtles affected by FP (FP+ turtles) in a rehabilitation environment; to evaluate clinical parameters as predictors of survival in affected rehabilitating turtles; and to provide information about case progression scenarios and potential outcomes for FP+ sea turtle patients. A retrospective case series analysis was performed using the medical records of the Georgia Sea Turtle Center (GSTC), Jekyll Island, Georgia, USA, during 2009-2013. Information evaluated included signalment, morphometrics, presenting complaint, time to FP onset, tumor score (0-3), co-morbid conditions, diagnostic test results, therapeutic interventions, and case outcomes. Overall, FP was present in 27/362 (7.5%) of all sea turtles admitted to the GSTC for rehabilitation, either upon admittance or during their rehabilitation. Of these, 25 were green and 2 were Kemp's ridley turtles. Of 10 turtles that had only plaque-like FP lesions, 60% had natural tumor regression, all were released, and they were significantly more likely to survive than those with classic FP (P = 0.02 [0.27-0.75, 95% CI]). Turtles without ocular FP were eight times more likely to survive than those with ocular FP (odds ratio = 8.75, P = 0.032 [1.21-63.43, 95% CI]). Laser-mediated tumor removal surgery is the treatment of choice for FP+ patients at the GSTC; number of surgeries was not significantly related to case outcome.

  2. Health implications associated with exposure to farmed and wild sea turtles

    OpenAIRE

    Warwick, Clifford; Arena, Phillip C; Steedman, Catrina

    2013-01-01

    Exposure to sea turtles may be increasing with expanding tourism, although reports of problems arising from interaction with free-living animals appear of negligible human health and safety concern. Exposure both to wild-caught and captive-housed sea turtles, including consumption of turtle products, raises several health concerns for the public, including: microbiological (bacteria, viruses, parasites and fungi), macrobiological (macroparasites), and organic and inorganic toxic contaminants ...

  3. Multistate Outbreak of Human Salmonella Poona Infections Associated with Pet Turtle Exposure--United States, 2014.

    Science.gov (United States)

    Basler, Colin; Bottichio, Lyndsay; Higa, Jeffrey; Prado, Belinda; Wong, Michael; Bosch, Stacey

    2015-07-31

    In May 2014, a cluster of human Salmonella Poona infections was identified through PulseNet, the national molecular subtyping network for foodborne disease surveillance. Historically, this rare serotype has been identified in multiple Salmonella outbreaks associated with pet turtle exposure and has posed a particular risk to small children. Although the sale and distribution of small turtles (those with carapace [upper shell] lengths turtles are still available for illegal purchase through transient street vendors, at flea markets, and at fairs.

  4. Philopatry of male marine turtles inferred from mitochondrial DNA markers

    OpenAIRE

    FitzSimmons, Nancy N.; Limpus, Colin J.; Norman, Janette A; Goldizen, Alan R.; Jeffrey D. Miller; Moritz, Craig

    1997-01-01

    Recent studies of mitochondrial DNA (mtDNA) variation among marine turtle populations are consistent with the hypothesis that females return to beaches in their natal region to nest as adults. In contrast, less is known about breeding migrations of male marine turtles and whether they too are philopatric to natal regions. Studies of geographic structuring of restriction fragment and microsatellite polymorphisms at anonymous nuclear loci in green turtle (Chelonia mydas) populations indicate th...

  5. EFFECTS OF "SWIM WITH THE TURTLES" TOURIST ATTRACTIONS ON GREEN SEA TURTLE (CHELONIA MYDAS) HEALTH IN BARBADOS, WEST INDIES.

    Science.gov (United States)

    Stewart, Kimberly; Norton, Terry; Mohammed, Hamish; Browne, Darren; Clements, Kathleen; Thomas, Kirsten; Yaw, Taylor; Horrocks, Julia

    2016-04-01

    Along the West Coast of Barbados a unique relationship has developed between endangered green sea turtles (Chelonia mydas) and humans. Fishermen began inadvertently provisioning these foraging turtles with fish offal discarded from their boats. Although initially an indirect supplementation, this activity became a popular attraction for visitors. Subsequently, demand for this activity increased, and direct supplementation or provisioning with food began. Food items offered included raw whole fish (typically a mixture of false herring [Harengula clupeola] and pilchard [Harengula humeralis]), filleted fish, and lesser amounts of processed food such as hot dogs, chicken, bread, or various other leftovers. Alterations in behavior and growth rates as a result of the provisioning have been documented in this population. The purpose of this study was to determine how tourism-based human interactions are affecting the overall health of this foraging population and to determine what potential health risks these interactions may create for sea turtles. Juvenile green sea turtles (n=29) were captured from four sites off the coast of Barbados, West Indies, and categorized into a group that received supplemental feeding as part of a tour (n=11) or an unsupplemented group (n=18) that consisted of individuals that were captured at sites that did not provide supplemental feeding. Following capture, a general health assessment of each animal was conducted. This included weight and morphometric measurements, a systematic physical examination, determination of body condition score and body condition index, epibiota assessment and quantification, and clinical pathology including hematologic and biochemical testing and nutritional assessments. The supplemented group was found to have changes to body condition, vitamin, mineral, hematologic, and biochemical values. Based on these results, recommendations were made to decrease negative behaviors and health impacts for turtles as a result

  6. 77 FR 31062 - Programs To Reduce Incidental Capture of Sea Turtles in Shrimp Fisheries; Certifications Pursuant...

    Science.gov (United States)

    2012-05-24

    ... United States: Colombia, Costa Rica, Ecuador, El Salvador, Guatemala, Guyana, Honduras, Mexico, Nicaragua... waters where the risk of taking sea turtles is negligible. They are: Argentina, Belgium, Canada,...

  7. Inorganic elements in green sea turtles (Chelonia mydas): relationships among external and internal tissues.

    Science.gov (United States)

    Faust, Derek R; Hooper, Michael J; Cobb, George P; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N

    2014-09-01

    Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p sea turtles.

  8. Immunological evaluation of captive green sea turtle (Chelonia mydas) with ulcerative dermatitis

    Science.gov (United States)

    Muñoz, Fernando Alberto; ,; ,; Romero-Rojas, Andrés; Gonzalez-Ballesteros, Erik; Work, Thierry; Villaseñor-Gaona, Hector; Estrada-Garcia, Iris

    2013-01-01

    Ulcerative dermatitis (UD) is common in captive sea turtles and manifests as skin erosions and ulcers associated with gram-negative bacteria. This study compared clinically healthy and UD-affected captive turtles by evaluating hematology, histopathology, immunoglobulin levels, and delayed-type hypersensitivity assay. Turtles with UD had significantly lower weight, reduced delayed-type hypersensitivity (DTH) responses, and higher heterophil:lymphocyte ratios. This study is the first to assay DTH in green turtles (Chelonia mydas) and suggests that UD is associated with immunosuppression.

  9. Health implications associated with exposure to farmed and wild sea turtles.

    Science.gov (United States)

    Warwick, Clifford; Arena, Phillip C; Steedman, Catrina

    2013-01-01

    Exposure to sea turtles may be increasing with expanding tourism, although reports of problems arising from interaction with free-living animals appear of negligible human health and safety concern. Exposure both to wild-caught and captive-housed sea turtles, including consumption of turtle products, raises several health concerns for the public, including: microbiological (bacteria, viruses, parasites and fungi), macrobiological (macroparasites), and organic and inorganic toxic contaminants (biotoxins, organochlorines and heavy metals). We conducted a review of sea turtle associated human disease and its causative agents as well as a case study of the commercial sea turtle facility known as the Cayman Turtle Farm (which receives approximately 240,000 visitors annually) including the use of water sampling and laboratory microbial analysis which identified Pseudomonas aeruginosa, Aeromonas spp., Vibrio spp. and Salmonella spp. Our assessment is that pathogens and toxic contaminants may be loosely categorized to represent the following levels of potential risk: viruses and fungi = very low; protozoan parasites = very low to low; metazoan parasites, bacteria and environmental toxic contaminants = low or moderate to high; and biotoxin contaminant = moderate to very high. Farmed turtles and their consumable products may constitute a significant reservoir of potential human pathogen and toxin contamination. Greater awareness among health-care professionals regarding both potential pathogens and toxic contaminants from sea turtles, as well as key signs and symptoms of sea turtle-related human disease, is important for the prevention and control of salient disease.

  10. Use of Dry Tortugas National Park by threatened and endangered marine turtles: Chapter 5

    Science.gov (United States)

    Hart, Kristin M.; Fujisaki, Ikuko; Sartain-Iverson, Autumn R.

    2012-01-01

    Satellite and acoustic tracking results for green turtles, hawksbills, and loggerheads have revealed patterns in the proportion of time that tagged turtles spend within various zones of the park, including the RNA. Green turtles primarily utilize the shallow areas in the northern portion of the park. Hawksbills were mostly observed near Garden Key and loggerheads were observed throughout DRTO. Our record of turtle captures, recaptures, and sightings over the last 4 years serves as a baseline database for understanding the size classes of each species present in the park, as well as species-specific habitats in DRTO waters.

  11. Blood Gasses Contents of Green Turtle (Chelonia mydas Hatch Treated by Different Temperatures

    Directory of Open Access Journals (Sweden)

    RINI PUSPITANINGRUM

    2011-09-01

    Full Text Available The aim of this research was to gain the profile of blood gasses of green turtle (Chelonia mydas hatch. Blood gas of the green turtle was analysed after exposuring them at 28 oC and 50% of humidity for 24 hours in a pvc tube and at 34 oC under sunlight exposured with 47% of humidity for 30 minutes. The result showed the different values of blood gas contents. This result showed indication of metabolism activities and poikilothermic adaptation of green turtle hatch. This information can be used to support for turtle hatchery in Indonesia.

  12. Immunological evaluation of captive green sea turtle (Chelonia mydas) with ulcerative dermatitis.

    Science.gov (United States)

    Muñoz, Fernando Alberto; Estrada-Parra, Sergio; Romero-Rojas, Andrés; Gonzalez-Ballesteros, Erik; Work, Thierry M; Villaseñor-Gaona, Hector; Estrada-Garcia, Iris

    2013-12-01

    Ulcerative dermatitis (UD) is common in captive sea turtles and manifests as skin erosions and ulcers associated with gram-negative bacteria. This study compared clinically healthy and UD-affected captive turtles by evaluating hematology, histopathology, immunoglobulin levels, and delayed-type hypersensitivity assay. Turtles with UD had significantly lower weight, reduced delayed-type hypersensitivity (DTH) responses, and higher heterophil:lymphocyte ratios. This study is the first to assay DTH in green turtles (Chelonia mydas) and suggests that UD is associated with immunosuppression.

  13. Determine sex ratios of green turtles along the U.S. West Coast through examinations of hormones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A testosterone (T) enzyme-linked immunosorbent assay (ELISA) was validated for use with green turtle plasma in order to determine the sex of juvenile turtles. We...

  14. Jellyfish aggregations and leatherback turtle foraging patterns in a temperate coastal environment.

    Science.gov (United States)

    Houghton, Jonathan D R; Doyle, Thomas K; Wilson, Mark W; Davenport, John; Hays, Graeme C

    2006-08-01

    Leatherback turtles (Dermochelys coriacea) are obligate predators of gelatinous zooplankton. However, the spatial relationship between predator and prey remains poorly understood beyond sporadic and localized reports. To examine how jellyfish (Phylum Cnidaria: Orders Semaeostomeae and Rhizostomeae) might drive the broad-scale distribution of this wide ranging species, we employed aerial surveys to map jellyfish throughout a temperate coastal shelf area bordering the northeast Atlantic. Previously unknown, consistent aggregations of Rhizostoma octopus extending over tens of square kilometers were identified in distinct coastal "hotspots" during consecutive years (2003-2005). Examination of retrospective sightings data (>50 yr) suggested that 22.5% of leatherback distribution could be explained by these hotspots, with the inference that these coastal features may be sufficiently consistent in space and time to drive long-term foraging associations.

  15. The Role of Geomagnetic Cues in Green Turtle Open Sea Navigation

    Science.gov (United States)

    Benhamou, Simon; Sudre, Joël; Bourjea, Jérome; Ciccione, Stéphane; De Santis, Angelo; Luschi, Paolo

    2011-01-01

    Background Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas) displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km) post-nesting migrations no differently from controls. Methodology/Principal Findings In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS), which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24–48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected) homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home. Conclusions/Significance While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home) likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues. PMID:22046329

  16. The role of geomagnetic cues in green turtle open sea navigation.

    Directory of Open Access Journals (Sweden)

    Simon Benhamou

    Full Text Available BACKGROUND: Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km post-nesting migrations no differently from controls. METHODOLOGY/PRINCIPAL FINDINGS: In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS, which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24-48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home. CONCLUSIONS/SIGNIFICANCE: While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues.

  17. 75 FR 25840 - Endangered and Threatened Species; Recovery Plans; Recovery Plan for the Kemp's Ridley Sea Turtle

    Science.gov (United States)

    2010-05-10

    ... Plans; Recovery Plan for the Kemp's Ridley Sea Turtle AGENCIES: National Marine Fisheries Service (NMFS... Ridley Sea Turtle (Lepidochelys kempii). The Kemp's Ridley Recovery Plan is a bi-national plan developed... and interested parties to assist in the recovery of loggerhead turtles. The Plan...

  18. 75 FR 12496 - Endangered and Threatened Species; Recovery Plans; Recovery Plan for the Kemp's Ridley Sea Turtle

    Science.gov (United States)

    2010-03-16

    ... Plans; Recovery Plan for the Kemp's Ridley Sea Turtle AGENCIES: National Marine Fisheries Service (NMFS... availability for public review of the draft Bi-National Recovery Plan (Plan) for the Kemp's Ridley Sea Turtle... turtles. The Plan identifies substantive actions needed to achieve recovery by addressing the threats...

  19. 76 FR 58781 - Endangered and Threatened Species; Recovery Plans; Recovery Plan for the Kemp's Ridley Sea Turtle

    Science.gov (United States)

    2011-09-22

    ... Plans; Recovery Plan for the Kemp's Ridley Sea Turtle AGENCY: National Marine Fisheries Service (NMFS...- National Recovery Plan (Recovery Plan) for the Kemp's Ridley Sea Turtle (Lepidochelys kempii). The Recovery...: The Bi-National Recovery Plan for the Kemp's Ridley Sea Turtle (Lepidochelys kempii) is available...

  20. Habitat selection by green turtles in a spatially heterogeneous benthic landscape in Dry Tortugas National Park, Florida

    Science.gov (United States)

    Fujisaki, Ikuko; Hart, Kristen M.; Sartain-Iverson, Autumn R.

    2016-01-01

    We examined habitat selection by green turtles Chelonia mydas at Dry Tortugas National Park, Florida, USA. We tracked 15 turtles (6 females and 9 males) using platform transmitter terminals (PTTs); 13 of these turtles were equipped with additional acoustic transmitters. Location data by PTTs comprised periods of 40 to 226 d in varying months from 2009 to 2012. Core areas were concentrated in shallow water (mean bathymetry depth of 7.7 m) with a comparably dense coverage of seagrass; however, the utilization distribution overlap index indicated a low degree of habitat sharing. The probability of detecting a turtle on an acoustic receiver was inversely associated with the distance from the receiver to turtle capture sites and was lower in shallower water. The estimated daily detection probability of a single turtle at a given acoustic station throughout the acoustic array was small (turtle detections was even smaller. However, the conditional probability of multiple turtle detections, given at least one turtle detection at a receiver, was much higher despite the small number of tagged turtles in each year (n = 1 to 5). Also, multiple detections of different turtles at a receiver frequently occurred within a few minutes (40%, or 164 of 415, occurred within 1 min). Our numerical estimates of core area overlap, co-occupancy probabilities, and habitat characterization for green turtles could be used to guide conservation of the area to sustain the population of this species.

  1. Are Your Children Captured by Ninja Turtles? How To Turn What Children "Love" into What Is Appropriate.

    Science.gov (United States)

    Miles, Sue L.

    This booklet relates ways to communicate with preschoolers about such phenomena as Ninja Turtles. Ninja Turtles are likeable, fun-loving creatures that have captured the imagination of children because they have a great deal of energy, strength, and power. However, because the turtles model language and engage in violence that negatively affects…

  2. The fate of a middle Danian (Lower Paleocene) turtle from the bryozoan limestone of Faxe Quarry, Denmark

    DEFF Research Database (Denmark)

    Milàn, Jesper; Lindow, Bent Erik Kramer; Lauridsen, Bodil Wesenberg

    A piece of turtle carapace from the Middle Danian bryozoan limestone at the Faxe quarry, eastern Denmark, is identified as a partial coastal plate from the carapace of a chelonioid turtle. In addition to being the first record of turtles from the Middle Danian of Denmark, the fragment bears...

  3. Global Analysis of Anthropogenic Debris Ingestion by Sea Turtles

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-01-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. Análisis Global de la Ingesta de Residuos Antropogénicos por Tortugas Marinas La ingesta de residuos marinos puede tener efectos letales y subletales sobre las tortugas marinas y otros animales. Aunque hay investigadores que han reportado la ingesta de residuos antropogénicos por tortugas marinas y la incidencia de la ingesta de residuos ha incrementado con el tiempo, no ha habido una síntesis global del fenómeno desde 1985. Por esto analizamos 37 estudios publicados, desde

  4. On the homology of the shoulder girdle in turtles.

    Science.gov (United States)

    Nagashima, Hiroshi; Sugahara, Fumiaki; Takechi, Masaki; Sato, Noboru; Kuratani, Shigeru

    2015-05-01

    The shoulder girdle in turtles is encapsulated in the shell and has a triradiate morphology. Due to its unique configuration among amniotes, many theories have been proposed about the skeletal identities of the projections for the past two centuries. Although the dorsal ramus represents the scapular blade, the ventral two rami remain uncertain. In particular, the ventrorostral process has been compared to a clavicle, an acromion, and a procoracoid based on its morphology, its connectivity to the rest of the skeleton and to muscles, as well as with its ossification center, cell lineage, and gene expression. In making these comparisons, the shoulder girdle skeleton of anurans has often been used as a reference. This review traces the history of the debate on the homology of the shoulder girdle in turtles. And based on the integrative aspects of developmental biology, comparative morphology, and paleontology, we suggest acromion and procoracoid identities for the two ventral processes.

  5. Remote guidance of untrained turtles by controlling voluntary instinct behavior.

    Directory of Open Access Journals (Sweden)

    Serin Lee

    Full Text Available Recently, several studies have been carried out on the direct control of behavior in insects and other lower animals in order to apply these behaviors to the performance of specialized tasks in an attempt to find more efficient means of carrying out these tasks than artificial intelligence agents. While most of the current methods cause involuntary behavior in animals by electronically stimulating the corresponding brain area or muscle, we show that, in turtles, it is also possible to control certain types of behavior, such as movement trajectory, by evoking an appropriate voluntary instinctive behavior. We have found that causing a particular behavior, such as obstacle avoidance, by providing a specific visual stimulus results in effective control of the turtle's movement. We propose that this principle may be adapted and expanded into a general framework to control any animal behavior as an alternative to robotic probes.

  6. Infection of Avian Pox Virus in Oriental Turtle-Doves

    Directory of Open Access Journals (Sweden)

    Kyung-Yeon Eo1, Young-Hoan Kim2, Kwang-Hyun Cho3, Jong-Sik Jang4, Tae-Hwan Kim5, Dongmi Kwak5 and Oh-Deog Kwon5*

    2011-10-01

    Full Text Available Three Oriental Turtle-doves (Streptopelia orientalis exhibiting lethargy, dyspnea, poor physical condition, and poor flight endurance, were rescued and referred to the Animal Health Center, Seoul Zoo, Korea. The doves had wart-like lesions on the legs and head. All of them died the following day after arrival, with the exception of one that survived for 6 days. Diphtheritic membranes on the tongue and oral mucosa were apparent at necropsy. Avian pox virus infection was suspected based on the proliferative skin lesions and oral diphtheritic lesions. Infection of the avian pox virus was confirmed by PCR using primers specific to the 4b core protein gene of avian pox virus. All cases were diagnosed with avian pox virus infection. This is believed to be the first description on natural infection of avian pox in Oriental Turtle-doves in Korea.

  7. Molecular Data for the Sea Turtle Population in Brazil

    Directory of Open Access Journals (Sweden)

    Sibelle Torres Vilaça

    2013-01-01

    Full Text Available We report here a dataset comprising nine nuclear markers for the Brazilian population of Cheloniidae turtles: hawksbills (Eretmochelys imbricata, loggerheads (Caretta caretta, olive ridleys (Lepidochelys olivacea, and green turtles (Chelonia mydas. Because hybridization is a common phenomenon between the four Cheloniidae species nesting on the Brazilian coast, we also report molecular markers for the hybrids E. imbricata × C. caretta, C. caretta × L. olivacea, and E. imbricata × L. olivacea and for one hybrid E. imbricata × C. mydas and one between three species C. mydas × E. imbricata × C. caretta. The data was used in previous studies concerning (1 the description of frequent hybrids C. caretta × E. imbricata in Brazil, (2 the report of introgression in some of these hybrids, and (3 population genetics. As a next step for the study of these hybrids and their evolution, genome-wide studies will be performed in the Brazilian population of E. imbricata, C. caretta, and their hybrids.

  8. 汉画像石中龟的阴阳交通意象%The Turtle Imagery about the Connection Yin and Yang in the Relief Stone Sculpture of the Dynasty

    Institute of Scientific and Technical Information of China (English)

    卢星; 杨金萍

    2011-01-01

    汉画像石中龟的形态各异,寓有不同内涵:龟以其特殊的外形及神格特点,表现出交通天地阴阳的意蕴;龟鸟图所描述的运日神话,表现了昼夜交替、阴阳交接的过程;龟蛇相交的形象,则表现为男女阴阳交合的主题.龟属肾主水理论及龟甲、龟息导引等的利用,体现了人体内阴极生阳及中医利用药物、导引等平衡阴阳、交济水火的思想.%The turtle in the relief stone sculpture of Han dynasty have different shape and meanings: the turtle have special shapes and godhead.Meanwhile, it expresses the imagery of connection sky and earth.The picture of turtle and bird describes the myth of conveying the sun and expresses alternation of night and day and the association of Yin and Yang ; the imagery of turtle and snake expresses the topic about coition of man and women.Utilizing the theory of turtle range the kidney governing water metabolism and tortoise shell, greater sustenance expressed the topic about balance the bodies of Yin and Yang.The turtle of the relief stone sculpture of the Han dynasty express the imaginary of connection of Yin and Yang.

  9. Life History and Environmental Requirements of Loggerhead Turtles

    Science.gov (United States)

    1988-08-01

    may become associated with sargassum rafts in the Gulf Stream (Caldwell 1968; Smith 1968; Fletemeyer 1978a, 1978b; Carr and Meylan 1980). Movement of...probably related to surface thousand may survive to adulthood basking to increase body temperature (Hirth and Schaffer 1974; Frazer 12 WA 1982). A...thousand is likely turtles have not been studied , logger- to survive that long) (Frazer 1983c). heads in laboratory experiments had From tag return data, a

  10. Turtle and mammal penis designs are anatomically convergent.

    OpenAIRE

    Kelly, D A

    2004-01-01

    Males in many modern amniote taxa have a hydraulic penis that inflates for copulation. Hydraulic skeletons are typically reinforced with inextensible fibres; the specific arrangement of the fibres within the skeleton determines whether it is flexible or resists bending. I show that the hydraulic skeleton in the turtle penis is reinforced by an axial orthogonal array of collagen fibres. This microanatomy is evolutionarily convergent with that of mammalian penises, and implies that there is a l...

  11. Recent hybrid origin of three rare chinese turtles

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Bryan L.; Parham, James F.

    2006-02-07

    Three rare geoemydid turtles described from Chinese tradespecimens in the early 1990s, Ocadia glyphistoma, O. philippeni, andSacalia pseudocellata, are suspected to be hybrids because they are knownonly from their original descriptions and because they have morphologiesintermediate between other, better-known species. We cloned the allelesof a bi-parentally inherited nuclear intron from samples of these threespecies. The two aligned parental alleles of O. glyphistoma, O.philippeni, and S. pseudocellata have 5-11.5 times more heterozygouspositions than do 13 other geoemydid species. Phylogenetic analysis showsthat the two alleles from each turtle are strongly paraphyletic, butcorrectly match sequences of other species that were hypothesized frommorphology to be their parental species. We conclude that these rareturtles represent recent hybrids rather than valid species. Specifically,"O. glyphistoma" is a hybrid of Mauremys sinensis and M. cf. annamensis,"O. philippeni" is a hybrid of M. sinensis and Cuora trifasciata, and "S.pseudocellata" is a hybrid of C. trifasciata and S. quadriocellata.Conservation resources are better directed toward finding and protectingpopulations of other rare Southeast Asian turtles that do representdistinct evolutionary lineages.

  12. Long-Term Climate Forcing in Loggerhead Sea Turtle Nesting

    Science.gov (United States)

    Van Houtan, Kyle S.; Halley, John M.

    2011-01-01

    The long-term variability of marine turtle populations remains poorly understood, limiting science and management. Here we use basin-scale climate indices and regional surface temperatures to estimate loggerhead sea turtle (Caretta caretta) nesting at a variety of spatial and temporal scales. Borrowing from fisheries research, our models investigate how oceanographic processes influence juvenile recruitment and regulate population dynamics. This novel approach finds local populations in the North Pacific and Northwest Atlantic are regionally synchronized and strongly correlated to ocean conditions—such that climate models alone explain up to 88% of the observed changes over the past several decades. In addition to its performance, climate-based modeling also provides mechanistic forecasts of historical and future population changes. Hindcasts in both regions indicate climatic conditions may have been a factor in recent declines, but future forecasts are mixed. Available climatic data suggests the Pacific population will be significantly reduced by 2040, but indicates the Atlantic population may increase substantially. These results do not exonerate anthropogenic impacts, but highlight the significance of bottom-up oceanographic processes to marine organisms. Future studies should consider environmental baselines in assessments of marine turtle population variability and persistence. PMID:21589639

  13. Sensor network architecture for monitoring turtles on seashore

    Science.gov (United States)

    Carvajal-Gámez, Blanca E.; Cruz, Victor; Díaz-Casco, Manuel A.; Franco, Andrea; Escobar, Carolina; Colin, Abilene; Carreto-Arellano, Chadwick

    2017-04-01

    In the last decade, advances in information and communication technologies have made it possible to diversify the use of sensor networks in different areas of knowledge (medicine, education, militia, urbanization, protection of the environment, etc.). At present, this type of tools is used to develop applications that allow the identification and monitoring of endangered animals in their natural habitat; however, there are still limitations because some of the devices used alter the behavior of the animals, as in the case of sea turtles. Research and monitoring of sea turtles is of vital importance in identifying possible threats and ensuring their preservation, the behavior of this species (migration, reproduction, and nesting) is highly related to environmental conditions. Because of this, behavioral changes information of this species can be used to monitor global climatic conditions. This work presents the design, development and implementation of an architecture for the monitoring and identification of the sea turtle using sensor networks. This will allow to obtain information for the different investigations with a greater accuracy than the conventional techniques, through non-invasive means for the species and its habitat. The proposed architecture contemplates the use of new technology devices, selfconfigurable, with low energy consumption, interconnection with various communication protocols and sustainable energy supply (solar, wind, etc.).

  14. Green turtles (Chelonia mydas) have novel asymmetrical antibodies

    Science.gov (United States)

    Work, Thierry M.; Dagenais, Julie; Breeden, Renee; Schneemann, Anette; Sung, Joyce; Hew, Brian; Balazs, George H.; Berestecky, John M.

    2015-01-01

    Igs in vertebrates comprise equally sized H and L chains, with exceptions such as H chain–only Abs in camels or natural Ag receptors in sharks. In Reptilia, Igs are known as IgYs. Using immunoassays with isotype-specific mAbs, in this study we show that green turtles (Chelonia mydas) have a 5.7S 120-kDa IgY comprising two equally sized H/L chains with truncated Fc and a 7S 200-kDa IgY comprised of two differently sized H chains bound to L chains and apparently often noncovalently associated with an antigenically related 90-kDa moiety. Both the 200- and 90-kDa 7S molecules are made in response to specific Ag, although the 90-kDa molecule appears more prominent after chronic Ag stimulation. Despite no molecular evidence of a hinge, electron microscopy reveals marked flexibility of Fab arms of 7S and 5.7S IgY. Both IgY can be captured with protein G or melon gel, but less so with protein A. Thus, turtle IgY share some characteristics with mammalian IgG. However, the asymmetrical structure of some turtle Ig and the discovery of an Ig class indicative of chronic antigenic stimulation represent striking advances in our understanding of immunology.

  15. Turtle mimetic soft robot with two swimming gaits.

    Science.gov (United States)

    Song, Sung-Hyuk; Kim, Min-Soo; Rodrigue, Hugo; Lee, Jang-Yeob; Shim, Jae-Eul; Kim, Min-Cheol; Chu, Won-Shik; Ahn, Sung-Hoon

    2016-05-04

    This paper presents a biomimetic turtle flipper actuator consisting of a shape memory alloy composite structure for implementation in a turtle-inspired autonomous underwater vehicle. Based on the analysis of the Chelonia mydas, the flipper actuator was divided into three segments containing a scaffold structure fabricated using a 3D printer. According to the filament stacking sequence of the scaffold structure in the actuator, different actuating motions can be realized and three different types of scaffold structures were proposed to replicate the motion of the different segments of the flipper of the Chelonia mydas. This flipper actuator can mimic the continuous deformation of the forelimb of Chelonia mydas which could not be realized in previous motor based robot. This actuator can also produce two distinct motions that correspond to the two different swimming gaits of the Chelonia mydas, which are the routine and vigorous swimming gaits, by changing the applied current sequence of the SMA wires embedded in the flipper actuator. The generated thrust and the swimming efficiency in each swimming gait of the flipper actuator were measured and the results show that the vigorous gait has a higher thrust but a relatively lower swimming efficiency than the routine gait. The flipper actuator was implemented in a biomimetic turtle robot, and its average swimming speed in the routine and vigorous gaits were measured with the vigorous gait being capable of reaching a maximum speed of 11.5 mm s(-1).

  16. A review of fibropapillomatosis in Green turtles (Chelonia mydas).

    Science.gov (United States)

    Jones, K; Ariel, E; Burgess, G; Read, M

    2016-06-01

    Despite being identified in 1938, many aspects of the pathogenesis and epidemiology of fibropapillomatosis (FP) in marine turtles are yet to be fully uncovered. Current knowledge suggests that FP is an emerging infectious disease, with the prevalence varying both spatially and temporally, even between localities in close proximity to each other. A high prevalence of FP in marine turtles has been correlated with residency in areas of reduced water quality, indicating that there is an environmental influence on disease presentation. Chelonid herpesvirus 5 (ChHV5) has been identified as the likely aetiological agent of FP. The current taxonomic position of ChHV5 is in the family Herpesviridae, subfamily Alphaherpesvirinae, genus Scutavirus. Molecular differentiation of strains has revealed that a viral variant is typically present at specific locations, even within sympatric species of marine turtles, indicating that the disease FP originates regionally. There is uncertainty surrounding the exact path of transmission and the conditions that facilitate lesion development, although recent research has identified atypical genes within the genome of ChHV5 that may play a role in pathogenesis. This review discusses emerging areas where researchers might focus and theories behind the emergence of FP globally since the 1980s, which appear to be a multi-factorial interplay between the virus, the host and environmental factors influencing disease expression.

  17. Green Turtles (Chelonia mydas) Have Novel Asymmetrical Antibodies.

    Science.gov (United States)

    Work, Thierry M; Dagenais, Julie; Breeden, Renee; Schneemann, Anette; Sung, Joyce; Hew, Brian; Balazs, George H; Berestecky, John M

    2015-12-01

    Igs in vertebrates comprise equally sized H and L chains, with exceptions such as H chain-only Abs in camels or natural Ag receptors in sharks. In Reptilia, Igs are known as IgYs. Using immunoassays with isotype-specific mAbs, in this study we show that green turtles (Chelonia mydas) have a 5.7S 120-kDa IgY comprising two equally sized H/L chains with truncated Fc and a 7S 200-kDa IgY comprised of two differently sized H chains bound to L chains and apparently often noncovalently associated with an antigenically related 90-kDa moiety. Both the 200- and 90-kDa 7S molecules are made in response to specific Ag, although the 90-kDa molecule appears more prominent after chronic Ag stimulation. Despite no molecular evidence of a hinge, electron microscopy reveals marked flexibility of Fab arms of 7S and 5.7S IgY. Both IgY can be captured with protein G or melon gel, but less so with protein A. Thus, turtle IgY share some characteristics with mammalian IgG. However, the asymmetrical structure of some turtle Ig and the discovery of an Ig class indicative of chronic antigenic stimulation represent striking advances in our understanding of immunology.

  18. Hierarchical state-space estimation of leatherback turtle navigation ability.

    Science.gov (United States)

    Mills Flemming, Joanna; Jonsen, Ian D; Myers, Ransom A; Field, Christopher A

    2010-12-28

    Remotely sensed tracking technology has revealed remarkable migration patterns that were previously unknown; however, models to optimally use such data have developed more slowly. Here, we present a hierarchical Bayes state-space framework that allows us to combine tracking data from a collection of animals and make inferences at both individual and broader levels. We formulate models that allow the navigation ability of animals to be estimated and demonstrate how information can be combined over many animals to allow improved estimation. We also show how formal hypothesis testing regarding navigation ability can easily be accomplished in this framework. Using Argos satellite tracking data from 14 leatherback turtles, 7 males and 7 females, during their southward migration from Nova Scotia, Canada, we find that the circle of confusion (the radius around an animal's location within which it is unable to determine its location precisely) is approximately 96 km. This estimate suggests that the turtles' navigation does not need to be highly accurate, especially if they are able to use more reliable cues as they near their destination. Moreover, for the 14 turtles examined, there is little evidence to suggest that male and female navigation abilities differ. Because of the minimal assumptions made about the movement process, our approach can be used to estimate and compare navigation ability for many migratory species that are able to carry electronic tracking devices.

  19. Long-term climate forcing in loggerhead sea turtle nesting.

    Directory of Open Access Journals (Sweden)

    Kyle S Van Houtan

    Full Text Available The long-term variability of marine turtle populations remains poorly understood, limiting science and management. Here we use basin-scale climate indices and regional surface temperatures to estimate loggerhead sea turtle (Caretta caretta nesting at a variety of spatial and temporal scales. Borrowing from fisheries research, our models investigate how oceanographic processes influence juvenile recruitment and regulate population dynamics. This novel approach finds local populations in the North Pacific and Northwest Atlantic are regionally synchronized and strongly correlated to ocean conditions--such that climate models alone explain up to 88% of the observed changes over the past several decades. In addition to its performance, climate-based modeling also provides mechanistic forecasts of historical and future population changes. Hindcasts in both regions indicate climatic conditions may have been a factor in recent declines, but future forecasts are mixed. Available climatic data suggests the Pacific population will be significantly reduced by 2040, but indicates the Atlantic population may increase substantially. These results do not exonerate anthropogenic impacts, but highlight the significance of bottom-up oceanographic processes to marine organisms. Future studies should consider environmental baselines in assessments of marine turtle population variability and persistence.

  20. Addressing the Problem of Poorly Preserved Zoological Specimens: A Case Study with Turtles

    Science.gov (United States)

    Thomas, Robert A.; Thomas, Aimée K.

    2015-01-01

    We present a new use for a poorly preserved turtle specimen that teachers can easily use in demonstrating vertebrate anatomy or adaptive herpetology at the high school or college level. We give special attention to illustrating the sigmoid flexure of the neck as certain turtles withdraw their heads. This ability is anatomically and biologically…