WorldWideScience

Sample records for turbulent air flows

  1. Sensitivity to draught in turbulent air flows

    Energy Technology Data Exchange (ETDEWEB)

    Todde, V

    1998-09-01

    Even though the ventilation system is designed to supply air flows at constant low velocity and controlled temperature, the resulting air movement in rooms is strongly characterised by random fluctuations. When an air flow is supplied from an inlet, a shear layer forms between the incoming and the standstill air in the room, and large scale vortices develops by coalescence of the vorticity shed at the inlet of the air supply. After a characteristically downstream distance, large scale vortices loose their identity because of the development of cascading eddies and transition to turbulence. The interaction of these vortical structures will rise a complicated three dimensional air movement affected by fluctuations whose frequencies could vary from fractions of Hz to several KHz. The perception and sensitivity to the cooling effect enhanced by these air movements depend on a number of factors interacting with each other: physical properties of the air flow, part and extension of the skin surface exposed to the air flow, exposure duration, global thermal condition, gender and posture of the person. Earlier studies were concerned with the percentage of dissatisfied subjects as a function of air velocity and temperature. Recently, experimental observations have shown that also the fluctuations, the turbulence intensity and the direction of air velocity have an important impact on draught discomfort. Two experimental investigations have been developed to observe the human reaction to horizontal air movements on bared skin surfaces, hands and neck. Attention was concentrated on the effects of relative turbulence intensity of air velocity and exposure duration on perception and sensitivity to the air movement. The air jet flows, adopted for the draught experiment in the neck, were also the object of an experimental study. This experiment was designed to observe the centre-line velocity of an isothermal circular air jet, as a function of the velocity properties at the outlet

  2. Detailed analysis of turbulent flows in air curtains

    NARCIS (Netherlands)

    Jaramillo, Julian E.; Perez-Segarra, Carlos D.; Lehmkuhl, Oriol; Castro, Jesus

    2011-01-01

    In order to prevent entrainment, an air curtain should provide a jet with low turbulence level, and enough momentum to counteract pressure differences across the opening. Consequently, the analysis of the discharge plenum should be taken into consideration. Hence, the main object of this paper is to

  3. A comparative study of turbulence models for dissolved air flotation flow analysis

    International Nuclear Information System (INIS)

    Park, Min A; Lee, Kyun Ho; Chung, Jae Dong; Seo, Seung Ho

    2015-01-01

    The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard κ-ε model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models

  4. Simulation analysis of air flow and turbulence statistics in a rib grit roughened duct.

    Science.gov (United States)

    Vogiatzis, I I; Denizopoulou, A C; Ntinas, G K; Fragos, V P

    2014-01-01

    The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations.

  5. An investigation of turbulent catalytically stabilized channel flow combustion of lean hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I; Benz, P; Schaeren, R; Bombach, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The catalytically stabilised thermal combustion (CST) of lean hydrogen-air mixtures was investigated numerically in a turbulent channel flow configuration using a two-dimensional elliptic model with detailed heterogeneous and homogeneous chemical reactions. Comparison between turbulent and laminar cases having the same incoming mean properties shows that turbulence inhibits homogeneous ignition due to increased heat transport away from the near-wall layer. The peak root-mean-square temperature and species fluctuations are always located outside the extent of the homogeneous reaction zone indicating that thermochemical fluctuations have no significant influence on gaseous combustion. (author) 4 figs., 6 refs.

  6. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    International Nuclear Information System (INIS)

    Sun, X.; Kim, S.; Cheng, L.; Ishii, M.; Beus, S.G.

    2001-01-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in a cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 20-cm in width and 1-cm in gap. The miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions

  7. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    International Nuclear Information System (INIS)

    Xiaodong Sun; Seungjin Kim; Ling Cheng; Mamoru Ishii; Beus, Stephen G.

    2002-01-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 200-mm in width and 10-mm in gap. Miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions. (authors)

  8. Turbulence structure and CO2 transfer at the air-sea interface and turbulent diffusion in thermally-stratified flows

    International Nuclear Information System (INIS)

    Komori, S.

    1996-01-01

    A supercomputer is a nice tool for simulating environmental flows. The Center for Global Environmental Research (CGER) of the National Institute for Environmental Studies purchased a supercomputer SX-3 of CGER about three years ago, and it has been used for various environmental simulations since. Although one of the main purposes for which the supercomputer was used was to simulate global warming with a general circulation model (GCM), our research organization used the supercomputer for more fundamental work to investigate heat and mass transfer mechanisms in environmental flows. Our motivations for this work was the fact that GCMs involve a number of uncertain submodels related to heat and mass transfer in turbulent atmospheric and oceanic flows. It may be easy to write research reports by running GCMs which were developed in western countries, but it is difficult for numerical scientists to do original work with such second-hand GCMs. In this sense, we thought that it would be more original to study the fundamentals of heat and mass transfer mechanisms in environmental flows rather than to run a GCM. Therefore, we tried to numerically investigate turbulence structure and scalar transfer both at the air-sea interface and in thermally stratified flows, neither of which were well modeled by GCMs. We also employed laboratory experiments to clarify the turbulence structure and scalar transfer mechanism, since numerical simulations are not sufficiently powerful to clarify all aspects of turbulence structure and scalar transfer mechanisms. A numerical technique is a promising tool to complement measurements of processes that cannot be clarified by turbulence measurements in environmental flows. It should also be noted that most of the interesting phenomena in environmental flows can be elucidated by laboratory or field measurements but not by numerical simulations alone. Thus, it is of importance to combine laboratory or field measurements with numerical simulations

  9. Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows

    Science.gov (United States)

    Kim, Hyunseok; Park, Hyungmin

    2017-11-01

    In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.

  10. Effect of Low Co-flow Air Velocity on Hydrogen-air Non-premixed Turbulent Flame Model

    Directory of Open Access Journals (Sweden)

    Noor Mohsin Jasim

    2017-08-01

    Full Text Available The aim of this paper is to provide information concerning the effect of low co-flow velocity on the turbulent diffusion flame for a simple type of combustor, a numerical simulated cases of turbulent diffusion hydrogen-air flame are performed. The combustion model used in this investigation is based on chemical equilibrium and kinetics to simplify the complexity of the chemical mechanism. Effects of increased co-flowing air velocity on temperature, velocity components (axial and radial, and reactants have been investigated numerically and examined. Numerical results for temperature are compared with the experimental data. The comparison offers a good agreement. All numerical simulations have been performed using the Computational Fluid Dynamics (CFD commercial code FLUENT. A comparison among the various co-flow air velocities, and their effects on flame behavior and temperature fields are presented.

  11. Radiative effects on turbulent buoyancy-driven air flow in open square cavities

    International Nuclear Information System (INIS)

    Zamora, B.; Kaiser, A.S.

    2016-01-01

    The effects of the radiative effects and the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low- Reynolds k-ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide range of the Rayleigh number varying from 10 3 to 10 16 . The results obtained taking into account the variable thermophysical properties of air are compared to those calculated assuming constant properties and the Boussinesq approximation. In addition, the influence of considering surface radiative effects on the differences reached for the Nusselt number and the mass flow rate obtained with several intensities of heating is studied; specifically, the effects of thermal radiation on the appearance of the burnout phenomenon is analyzed. The changes produced in the flow patterns into the cavity when the radiative heat transfer and the effects of variation of properties are relevant, are also shown. (authors)

  12. Large Eddy simulation of turbulent hydrogen-fuelled supersonic combustion in an air cross-flow

    Science.gov (United States)

    Ingenito, A.; Cecere, D.; Giacomazzi, E.

    2013-09-01

    The main aim of this article is to provide a theoretical understanding of the physics of supersonic mixing and combustion. Research in advanced air-breathing propulsion systems able to push vehicles well beyond is of interest around the world. In a scramjet, the air stream flow captured by the inlet is decelerated but still maintains supersonic conditions. As the residence time is very short , the study of an efficient mixing and combustion is a key issue in the ongoing research on compressible flows. Due to experimental difficulties in measuring complex high-speed unsteady flowfields, the most convenient way to understand unsteady features of supersonic mixing and combustion is to use computational fluid dynamics. This work investigates supersonic combustion physics in the Hyshot II combustion chamber within the Large Eddy simulation framework. The resolution of this turbulent compressible reacting flow requires: (1) highly accurate non-dissipative numerical schemes to properly simulate strong gradients near shock waves and turbulent structures away from these discontinuities; (2) proper modelling of the small subgrid scales for supersonic combustion, including effects from compressibility on mixing and combustion; (3) highly detailed kinetic mechanisms (the Warnatz scheme including 9 species and 38 reactions is adopted) accounting for the formation and recombination of radicals to properly predict flame anchoring. Numerical results reveal the complex topology of the flow under investigation. The importance of baroclinic and dilatational effects on mixing and flame anchoring is evidenced. Moreover, their effects on turbulence-scale generation and the scaling law are analysed.

  13. Phenomenology and numerical calculations of lean hydrogen-air premixed flame propagation in a turbulent flow

    International Nuclear Information System (INIS)

    Faix-Gantier, A.

    2001-12-01

    This thesis concerns the study of flame propagation in a turbulent flow of lean hydrogen-air mixtures. The aim is to precise the characteristics of propagation as well as combustion and turbulence models able to take into account the peculiarities of these mixtures. This research work is related to the prevention of fire hazards associated with accidental release of hydrogen within the reactor of a nuclear power plant. In a first part, the scales (the flame velocity and thickness) associated with the laminar flame propagation in hydrogen-air mixtures are studied. A specific attention is devoted to the intrinsic instability properties of such flames. Then, the turbulence scales potentially present within a reactor are estimated in order to allow for the determination of the regimes of combustion that might be present within the reactor and among which the flamelet regime appears to be conceivable. In a second part, starting with the analysis of the propagation properties of a mean reaction zone calculated with a flamelet model, we show that, with an adequate tuning of the parameter appearing in the mean reaction rate expression, it is possible to predict numerically the turbulent flame speeds available with the literature. (author)

  14. Three dimensional turbulence structure measurements in air/water two phase flow

    International Nuclear Information System (INIS)

    Wang, S.K.L.

    1986-01-01

    The phenomena of turbulent air/water two phase upward and downward flows in a circular test section were investigated. Important flow quantities such as void fraction, liquid velocity, and Reynolds stresses were measured by using both single sensor and three sensor hot film probes. A digital data processing technique based on combined derivative and level thresholding was developed to determine the local void fraction from hot-film anemometer signals. The measured local void fraction was integrated and the result was compared with the chordal averaged void fraction measured by a gamma ray densitometer. It was found that the local measurement underestimated local void fraction due to surface tension effects and bubble deflection by the probe. A correlation based on local parameters characterizing probe/bubble interaction was developed, and it corrected the measured void fraction successfully. The measured void fraction profiles in upward flow and downward flow showed two distinct patterns. In upward flow, bubbles tend to migrate toward the wall and the void fraction profile shows a sharp peak near the wall. In downward flow, as the liquid velocity increases, the wall peaking phenomenon fades out and bubbles tend to migrate toward the center of the pipe

  15. Numerical investigation on turbulence mixing characteristics under thermal striping flows. Investigations on fluid temperature fluctuation phenomena in air and sodium

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Satoshi [Customer System Co. Ltd., Tokai, Ibaraki (Japan); Muramatsu, Toshiharu

    1999-05-01

    A three-dimensional thermal striping analysis was carried out using a direct numerical simulation code DINUS-3, for a coaxial jet configuration using air and sodium as a working fluid, within the framework of the EJCC thermo-hydraulic division. From the analysis, the following results have been obtained: (1) Calculated potential core length in air and sodium turbulence flows agreed with a theoretical value (5d - 7d ; d : diameter of jet nozzle) in the two-dimensional free jet theory. (2) Hydraulic characteristics in sodium flows as the potential core length can be estimated by the use of that of air flow characteristics. (3) Shorter thermally potential core length defined by spatial temperature distribution was evaluated in sodium flows, compared with that in air flows. This is due to the higher thermal conductivity of sodium. (4) Thermal characteristics in sodium flows as the thermally potential core length can not be evaluated, based on that air thermal characteristics. (author)

  16. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2017-01-01

    A gliding arc discharge was generated in a turbulent air flow at atmospheric pressure driven by a 35 kHz alternating current (AC) electric power. The spatiotemporally resolved characteristics of the gliding arc discharge, including glow-type discharges, spark-type discharges, short-cutting events...... and transitions among the different types of discharges, were investigated using simultaneously optical and electrical diagnostics. The glow-type discharge shows sinusoidal-like voltage and current waveforms with a peak current of hundreds of milliamperes. The frequency of the emission intensity variation...... of the glow-type discharge is the same as that of the electronic power dissipated in the plasma column. The glow-type discharge can transfer into a spark discharge characterized by a sharp peak current of several amperes and a sudden increase of the brightness in the plasma column. Transitions can also...

  17. Modeling of Turbulent Swirling Flows

    Science.gov (United States)

    Shih, Tsan-Hsing; Zhu, Jiang; Liou, William; Chen, Kuo-Huey; Liu, Nan-Suey; Lumley, John L.

    1997-01-01

    Aircraft engine combustors generally involve turbulent swirling flows in order to enhance fuel-air mixing and flame stabilization. It has long been recognized that eddy viscosity turbulence models are unable to appropriately model swirling flows. Therefore, it has been suggested that, for the modeling of these flows, a second order closure scheme should be considered because of its ability in the modeling of rotational and curvature effects. However, this scheme will require solution of many complicated second moment transport equations (six Reynolds stresses plus other scalar fluxes and variances), which is a difficult task for any CFD implementations. Also, this scheme will require a large amount of computer resources for a general combustor swirling flow. This report is devoted to the development of a cubic Reynolds stress-strain model for turbulent swirling flows, and was inspired by the work of Launder's group at UMIST. Using this type of model, one only needs to solve two turbulence equations, one for the turbulent kinetic energy k and the other for the dissipation rate epsilon. The cubic model developed in this report is based on a general Reynolds stress-strain relationship. Two flows have been chosen for model evaluation. One is a fully developed rotating pipe flow, and the other is a more complex flow with swirl and recirculation.

  18. Writing in turbulent air.

    Science.gov (United States)

    Bominaar, Jeroen; Pashtrapanska, Mira; Elenbaas, Thijs; Dam, Nico; ter Meulen, Hans; van de Water, Willem

    2008-04-01

    We describe a scheme of molecular tagging velocimetry in air in which nitric oxide (NO) molecules are created out of O2 and N2 molecules in the focus of a strong laser beam. The NO molecules are visualized a while later by laser-induced fluorescence. The precision of the molecular tagging velocimetry of gas flows is affected by the gradual blurring of the written patterns through molecular diffusion. In the case of turbulent flows, molecular diffusion poses a fundamental limit on the resolution of the smallest scales in the flow. We study the diffusion of written patterns in detail for our tagging scheme which, at short (micros) delay times is slightly anomalous due to local heating by absorption of laser radiation. We show that our experiments agree with a simple convection-diffusion model that allows us to estimate the temperature rise upon writing. Molecular tagging can be a highly nonlinear process, which affects the art of writing. We find that our tagging scheme is (only) quadratic in the intensity of the writing laser.

  19. Turbulence, aeration and bubble features of air-water flows in macro- and intermediate roughness conditions

    Directory of Open Access Journals (Sweden)

    Stefano Pagliara

    2011-06-01

    Full Text Available Free surface flows in macro- and intermediate roughness conditions have a high aeration potential causing the flow characteristics to vary with slopes and discharges. The underlying mechanism of two-phase flow characteristics in macro- and intermediate roughness conditions were analyzed in an experimental setup assembled at the Laboratory of Hydraulic Protection of the Territory (PITLAB of the University of Pisa, Italy. Crushed angular rocks and hemispherical boulders were used to intensify the roughness of the bed. Flow rates per unit width ranging between 0.03 m2/s and 0.09 m2/s and slopes between 0.26 and 0.46 were tested over different arrangements of a rough bed. Analyses were mainly carried out in the inner flow region, which consists of both bubbly and intermediate flow regions. The findings revealed that the two-phase flow properties over the rough bed were much affected by rough bed arrangements. Turbulence features of two-phase flows over the rough bed were compared with those of the stepped chute data under similar flow conditions. Overall, the results highlight the flow features in the inner layers of the two-phase flow, showing that the maximum turbulence intensity decreases with the relative submergence, while the bubble frequency distribution is affected by the rough bed elements.

  20. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)

    2016-12-15

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  1. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Sun, Xiaodong; Liu, Yang

    2016-01-01

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  2. Influence of the Reynolds number on the instant flow evolution of a turbulent rectangular free jet of air

    International Nuclear Information System (INIS)

    Gori, Fabio; Petracci, Ivano; Angelino, Matteo

    2014-01-01

    Highlights: • Flow with Negligible Disturbances, or first type, with length L ND = L 1 . • Flow with Small Disturbances, or second type, with length L SD . • Total length, L ND + L SD = L 2 , is in agreement with average Undisturbed flow, L U . • Flow with Coherent Vortices, or third type, with length L CV . • Total length, L ND + L SD + L CV = L 3 , is in agreement with average Potential core, L P . - Abstract: The paper is aimed at investigating the influence of the Reynolds number on the instant flow evolution of a rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2,200, where the Reynolds number, Re, is defined according to the hydraulic diameter, D, of a rectangular slot of height H, equal to about D = 2H. The Particle Image Velocimetry (PIV) technique allows obtaining the instant PIV visualizations on the central symmetry section of the rectangular jet. The visual inspection of the instant frames with one and two vortices, except for Re = 35,300 where only one vortex images are detected, shows that after the jet exit is present the Flow with Constant Instant Height, with a length L CIH which increases with the decrease of the Reynolds number, from a ratio L CIH /H equal to L CIH /H = 0.9 at Re = 35,300 to L CIH /H = 4.0 at Re = 2,200. The instant PIV measurements, carried out at several distances from the jet exit, show that the variations of the ratio U/U ‾ 0 of the centerline instant velocity, U, to the exit average velocity, U ‾ 0 , remain below ±4% for a length L CIV , defining the Flow with Constant Instant Velocity on the centerline. The ratio L CIV /H increases from L CIV /H = 1.1 at Re = 35,300 to L CIV /H = 4.1 at Re = 2,200 and is quite similar to L CIH /H. The instant PIV measurements of the centerline turbulence intensity, Tu, show that its variations remain below ±4% for a length L CIT , defining the Flow with Constant Instant Turbulence on the centerline. The ratio L CIT /H is equal to L CIV /H

  3. Computational Fluid Dynamics Modeling Three-Dimensional Unsteady Turbulent Flow and Excitation Force in Partial Admission Air Turbine

    Directory of Open Access Journals (Sweden)

    Yonghui Xie

    2013-01-01

    Full Text Available Air turbines are widely used to convert kinetic energy into power output in power engineering. The unsteady performance of air turbines with partial admission not only influences the aerodynamic performance and thermodynamic efficiency of turbine but also generates strong excitation force on blades to impair the turbine safely operating. Based on three-dimensional viscous compressible Navier-stokes equations, the present study employs RNG (Renormalization group k-ε turbulence model with finite volume discretization on air turbine with partial admission. Numerical models of four different admission rates with full annulus are built and analyzed via CFD (computational fluid dynamics modeling unsteady flows. Results indicate that the unsteady time-averaged isentropic efficiency is lower than the steady isentropic efficiency, and this difference rises as unsteady isentropic efficiency fluctuates stronger when the admission rate is reduced. The rotor axial and tangential forces with time are provided for all four admission rates. The low frequency excitation forces generated by partial admission are extraordinarily higher than the high frequency excitation forces by stator wakes.

  4. Modelling of air flow supply in a room at variable regime by using both K - E and spalart - allmaras turbulent model

    Science.gov (United States)

    Korbut, Vadim; Voznyak, Orest; Sukholova, Iryna; Myroniuk, Khrystyna

    2017-12-01

    The abstract is to The article is devoted to the decision of actual task of air distribution efficiency increasing with the help of swirl and spread air jets to provide normative parameters of air in the production apartments. The mathematical model of air supply with swirl and spread air jets in that type of apartments is improved. It is shown that for reachin of air distribution maximal efficiency it is necessary to supply air by air jets, that intensively extinct before entering into a working area. Simulation of air flow performed with the help of CFD FLUENT (Ansys FLUENT). Calculations of the equation by using one-parameter model of turbulence Spalart-Allmaras are presented. The graphical and the analytical dependences on the basis of the conducted experimental researches, which can be used in subsequent engineering calculations, are shown out. Dynamic parameters of air flow that is created due to swirl and spread air jets at their leakage at variable regime and creation of dynamic microclimate in a room has been determined. Results of experimental investigations of air supply into the room by air distribution device which creates swirl air jets for creation more intensive turbulization air flow in the room are presented. Obtained results of these investigations give possibility to realize engineer calculations of air distribution with swirl air jets. The results of theoretical researches of favourable influence of dynamic microclimate to the man are presented. When using dynamic microclimate, it's possible to decrease conditioning and ventilation system expenses. Human organism reacts favourably on short lasting deviations from the rationed parameters of air environment.

  5. Destabilizing turbulence in pipe flow

    Science.gov (United States)

    Kühnen, Jakob; Song, Baofang; Scarselli, Davide; Budanur, Nazmi Burak; Riedl, Michael; Willis, Ashley P.; Avila, Marc; Hof, Björn

    2018-04-01

    Turbulence is the major cause of friction losses in transport processes and it is responsible for a drastic drag increase in flows over bounding surfaces. While much effort is invested into developing ways to control and reduce turbulence intensities1-3, so far no methods exist to altogether eliminate turbulence if velocities are sufficiently large. We demonstrate for pipe flow that appropriate distortions to the velocity profile lead to a complete collapse of turbulence and subsequently friction losses are reduced by as much as 90%. Counterintuitively, the return to laminar motion is accomplished by initially increasing turbulence intensities or by transiently amplifying wall shear. Since neither the Reynolds number nor the shear stresses decrease (the latter often increase), these measures are not indicative of turbulence collapse. Instead, an amplification mechanism4,5 measuring the interaction between eddies and the mean shear is found to set a threshold below which turbulence is suppressed beyond recovery.

  6. How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood.

    Science.gov (United States)

    Aristodemou, Elsa; Boganegra, Luz Maria; Mottet, Laetitia; Pavlidis, Dimitrios; Constantinou, Achilleas; Pain, Christopher; Robins, Alan; ApSimon, Helen

    2018-02-01

    The city of London, UK, has seen in recent years an increase in the number of high-rise/multi-storey buildings ("skyscrapers") with roof heights reaching 150 m and more, with the Shard being a prime example with a height of ∼310 m. This changing cityscape together with recent plans of local authorities of introducing Combined Heat and Power Plant (CHP) led to a detailed study in which CFD and wind tunnel studies were carried out to assess the effect of such high-rise buildings on the dispersion of air pollution in their vicinity. A new, open-source simulator, FLUIDITY, which incorporates the Large Eddy Simulation (LES) method, was implemented; the simulated results were subsequently validated against experimental measurements from the EnFlo wind tunnel. The novelty of the LES methodology within FLUIDITY is based on the combination of an adaptive, unstructured, mesh with an eddy-viscosity tensor (for the sub-grid scales) that is anisotropic. The simulated normalised mean concentrations results were compared to the corresponding wind tunnel measurements, showing for most detector locations good correlations, with differences ranging from 3% to 37%. The validation procedure was followed by the simulation of two further hypothetical scenarios, in which the heights of buildings surrounding the source building were increased. The results showed clearly how the high-rise buildings affected the surrounding air flows and dispersion patterns, with the generation of "dead-zones" and high-concentration "hotspots" in areas where these did not previously exist. The work clearly showed that complex CFD modelling can provide useful information to urban planners when changes to cityscapes are considered, so that design options can be tested against environmental quality criteria. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    Science.gov (United States)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-01-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  8. Influence of turbulent flow on the explosion parameters of micro- and nano-aluminum powder–air mixtures

    International Nuclear Information System (INIS)

    Liu, Xueling; Zhang, Qi

    2015-01-01

    Highlights: • The slope of P_m_a_x versus U_r_m_s is greater for nano-Al powder than for micro-Al powder. • The u_e_f_f_,_m_a_x of micro-Al and nano-Al powder-air mixtures increases linearly with U_r_m_s. • For micro- and nano-Al powders, u_e_f_f_, _m_a_x increases as the percentage of nano-Al increases. - Abstract: The environmental turbulence intensity has a significant influence on the explosion parameters of both micro- and nano-Al at the time of ignition. However, explosion research on turbulence intensity with respect to micro- and nano-Al powders is still insufficient. In this work, micro- and nano-aluminum powders were investigated via scanning electron microscopy (SEM), and their particle size distributions were measured using a laser diffraction analyzer under dispersing air pressures of 0.4, 0.6, and 0.8 MPa in a 20 L cylindrical, strong plexiglass vessel. The particle size distributions in three different mass ratio mixtures of micro- and nano-Al powders (micro-Al:nano-Al_[_m_a_s_s_r_a_t_i_o_] = 95:5, 90:10, and 85:15) were also measured. The results show that the agglomerate size of nano-Al powder is an order of magnitude larger than the nanoparticles’ actual size. Furthermore, the turbulence intensity ranges (U_r_m_s) of the Al powder-air mixtures were measured using particle image velocimetry (PIV) under dispersing air pressures of 0.4, 0.6, and 0.8 MPa. The effect of turbulence intensity on the explosion characteristics of the micro- and nano-Al powders was investigated using a 20 L cylindrical explosion vessel. The results of micro-Al and nano-Al powder-air mixtures with a stoichiometric concentration of 337.00 g·m"−"3 were discussed for the maximum explosion pressure, the maximum rate of pressure increase and the maximum effective burning velocity under the different turbulence intensity.

  9. Turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air-bubbles clustered near the wall

    Science.gov (United States)

    Lakehal, D.; Métrailler, D.; Reboux, S.

    2017-06-01

    This paper presents Direct Numerical Simulation (DNS) results of a turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air bubbles clustered near the wall (maximum void fraction of α = 8% at y+ ˜ 20). The bubbles were fully resolved using the level set approach built within the CFD/CMFD code TransAT. The fluid properties (air and water) were kept real, including density, viscosity, and surface tension coefficient. The aim of this work is to understand the effects of the bubbles on near-wall turbulence, paving the way towards convective wall-boiling flow studies. The interactions between the gas bubbles and the water stream were studied through an in-depth analysis of the turbulence statistics. The near-wall flow is overall affected by the bubbles, which act like roughness elements during the early phase, prior to their departure from the wall. The average profiles are clearly altered by the bubbles dynamics near the wall, which somewhat contrasts with the findings from similar studies [J. Lu and G. Tryggvason, "Dynamics of nearly spherical bubbles in a turbulent channel upflow," J. Fluid Mech. 732, 166 (2013)], most probably because the bubbles were introduced uniformly in the flow and not concentrated at the wall. The shape of the bubbles measured as the apparent to initial diameter ratio is found to change by a factor of at least two, in particular at the later stages when the bubbles burst out from the boundary layer. The clustering of the bubbles seems to be primarily localized in the zone populated by high-speed streaks and independent of their size. More importantly, the bubbly flow seems to differ from the single-phase flow in terms of turbulent stress distribution and energy exchange, in which all the stress components seem to be increased in the region very close to the wall, by up to 40%. The decay in the energy spectra near the wall was found to be significantly slower for the bubbly flow than for a single-phase flow, which

  10. Turbulence models in supersonic flows

    International Nuclear Information System (INIS)

    Shirani, E.; Ahmadikia, H.; Talebi, S.

    2001-05-01

    The aim of this paper is to evaluate five different turbulence models when used in rather complicated two-dimensional and axisymmetric supersonic flows. They are Baldwin-Lomax, k-l, k-ε, k-ω and k-ζ turbulence models. The compressibility effects, axisymmetric correction terms and some modifications for transition region are used and tested in the models. Two computer codes based on the control volume approach and two flux-splitting methods. Roe and Van Leer, are developed. The codes are used to simulate supersonic mixing layers, flow behind axisymmetric body, under expanded jet, and flow over hollow cylinder flare. The results are compared with experimental data and behavior of the turbulence models is examined. It is shown that both k-l and k-ζ models produce very good results. It is also shown that the compressibility correction in the model is required to obtain more accurate results. (author)

  11. Vertical structure of turbulence in offshore flow during RASEX

    DEFF Research Database (Denmark)

    Mahrt, L.; Vickers, D.; Edson, J.

    2001-01-01

    and dissipation. However, weakly stable and weakly unstable cases exhibit completely different vertical structure. With flow of warm air from land over cooler water, modest buoyancy destruction of turbulence and reduced shear generation of turbulence over the less rough sea surface cause the turbulence to rapidly...... with height and downward transport of turbulence energy toward the surface. With flow of cool air over a warmer sea surface, a convective internal boundary layer develops downstream from the coast. An overlying relatively thick layer of downward buoyancy flux (virtual temperature flux) is sometimes maintained...

  12. Flow evolution of a turbulent submerged two-dimensional rectangular free jet of air. Average Particle Image Velocimetry (PIV) visualizations and measurements

    International Nuclear Information System (INIS)

    Gori, Fabio; Petracci, Ivano; Angelino, Matteo

    2013-01-01

    Highlights: • Zone of flow establishment contains a newly identified undisturbed region of flow. • In the undisturbed region of flow the velocity profile is similar to the exit one. • In undisturbed region of flow the height of average PIV visualizations is constant. • In the undisturbed region of flow the turbulence on the centerline is equal to exit. • Length of undisturbed region of flow decreases with Reynolds number increase. -- Abstract: The paper presents average flow visualizations and measurements, obtained with the Particle Image Velocimetry (PIV) technique, of a submerged rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2200, where the Reynolds number is defined according to the hydraulic diameter of a rectangular slot of height H. According to the literature, just after the exit of the jet there is a zone of flow, called zone of flow establishment, containing the region of mixing fluid, at the border with the stagnant fluid, and the potential core, where velocity on the centerline maintains a value almost equal to the exit one. After this zone is present the zone of established flow or fully developed region. The goal of the paper is to show, with average PIV visualizations and measurements, that, before the zone of flow establishment is present a region of flow, never mentioned by the literature and called undisturbed region of flow, with a length, L U , which decreases with the increase of the Reynolds number. The main characteristics of the undisturbed region is the fact that the velocity profile maintains almost equal to the exit one, and can also be identified by a constant height of the average PIV visualizations, with length, L CH , or by a constant turbulence on the centerline, with length L CT . The average PIV velocity and turbulence measurements are compared to those performed with the Hot Film Anemometry (HFA) technique. The average PIV visualizations show that the region of constant height has

  13. An experimental investigation of turbulent flow heat transfer through ...

    African Journals Online (AJOL)

    An experimental investigation has been carried out to study the turbulent flow heat transfer and to determine the pressure drop characteristics of air, flowing through a tube with insert. An insert of special geometry is used inside the tube. The test section is electrically heated, and air is allowed to flow as the working fluid ...

  14. Topology optimization of turbulent flows

    DEFF Research Database (Denmark)

    Dilgen, Cetin B.; Dilgen, Sumer B.; Fuhrman, David R.

    2018-01-01

    The aim of this work is to present a fast and viable approach for taking into account turbulence in topology optimization of complex fluid flow systems, without resorting to any simplifying assumptions in the derivation of discrete adjoints. Topology optimization is an iterative gradient...

  15. Hypersonic Air Flow with Finite Rate Chemistry

    National Research Council Canada - National Science Library

    Boyd, Ian

    1997-01-01

    ... describe the effects of non-equilibrium flow chemistry, shock interaction, and turbulent mixing and combustion on the performance of vehicles and air breathing engines designed to fly in the hypersonic flow...

  16. Turbulent flows over sparse canopies

    Science.gov (United States)

    Sharma, Akshath; García-Mayoral, Ricardo

    2018-04-01

    Turbulent flows over sparse and dense canopies exerting a similar drag force on the flow are investigated using Direct Numerical Simulations. The dense canopies are modelled using a homogeneous drag force, while for the sparse canopy, the geometry of the canopy elements is represented. It is found that on using the friction velocity based on the local shear at each height, the streamwise velocity fluctuations and the Reynolds stress within the sparse canopy are similar to those from a comparable smooth-wall case. In addition, when scaled with the local friction velocity, the intensity of the off-wall peak in the streamwise vorticity for sparse canopies also recovers a value similar to a smooth-wall. This indicates that the sparse canopy does not significantly disturb the near-wall turbulence cycle, but causes its rescaling to an intensity consistent with a lower friction velocity within the canopy. In comparison, the dense canopy is found to have a higher damping effect on the turbulent fluctuations. For the case of the sparse canopy, a peak in the spectral energy density of the wall-normal velocity, and Reynolds stress is observed, which may indicate the formation of Kelvin-Helmholtz-like instabilities. It is also found that a sparse canopy is better modelled by a homogeneous drag applied on the mean flow alone, and not the turbulent fluctuations.

  17. Correlations for heat transfer coefficient and friction factor for turbulent flow of air through square and hexagonal ducts with twisted tape insert

    Science.gov (United States)

    Yadav, Rupesh J.; Kore, Sandeep S.; Joshi, Prathamesh S.

    2018-05-01

    The experimental and numerical Nusselt number and friction factor investigation for turbulent flow through a non-circular duct with twisted-tape inserts have been presented. The non-circular ducts include square, hexagonal duct. The results of non-circular ducts are compared with circular duct. All the ducts have same equivalent diameter. The twist ratios used for the experiment are Y = 3.5, 4.5, 5.5 and 6.5. Experiments were carried out on square duct, hexagonal duct and circular duct. The Reynolds number lied between 10,000 and 1, 05,000. The present study is restricted to the flow of air at Pr = 0.7 only and within a narrow temperature range of 40 to 75 ΟC, within which the compressible nature of air can be neglected. The results reveal that, both Nusselt number and friction factor increases as the side of non-circular duct increases. Maximum Nusselt number and friction factor is obtained in case of circular duct with twisted tape. Further the correlations of Nu and f are given for different non circular duct with twisted tape insert for engineering applications for the turbulent regime. Since the thermal performance factor (η) is observed to be within the range of 0.8 to 1.13 for both circular and noncircular ducts, the overall benefit of using twisted tape in the flow field shall nevertheless be marginal.

  18. Suppression of turbulent resistivity in turbulent Couette flow

    Science.gov (United States)

    Si, Jiahe; Colgate, Stirling A.; Sonnenfeld, Richard G.; Nornberg, Mark D.; Li, Hui; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe

    2015-07-01

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  19. Suppression of turbulent resistivity in turbulent Couette flow

    Energy Technology Data Exchange (ETDEWEB)

    Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-07-15

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  20. Suppression of turbulent resistivity in turbulent Couette flow

    International Nuclear Information System (INIS)

    Si, Jiahe; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.

    2015-01-01

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations

  1. High Altitude Clear Air Turbulence Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Air Force Flight Dynamics Laboratory conducted the High Altitude Clear Air Turbulence Project in the mid 1960s with the intention of better understanding air...

  2. Turbulence introduction to theory and applications of turbulent flows

    CERN Document Server

    Westerweel, Jerry; Nieuwstadt, Frans T M

    2016-01-01

    This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises.

  3. Experiments in turbulent pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Torbergsen, Lars Even

    1998-12-31

    This thesis reports experimental results for the mean velocity and turbulence statistics in two straight pipe sections for bulk Reynolds numbers in the range 22000 to 75000. The flow was found consistent with a fully developed state. Detailed turbulence spectra were obtained for low and moderate turbulent Reynolds number. For the pipe centre line location at R{sub {lambda}} = 112, a narrow range in the streamwise power spectrum applied to the -5/3 inertial subrange. However this range was influenced both by turbulence production and viscous dissipation, and therefore did not reflect a true inertial range. The result indicates how the intermediate range between the production and dissipative scales can be misinterpreted as an inertial range for low and moderate R{sub {lambda}}. To examine the universal behaviour of the inertial range, the inertial scaling of the streamwise power spectrum is compared to the inertial scaling of the second order longitudinal velocity structure function, which relate directly by a Fourier transform. Increasing agreement between the Kolmogorov constant C{sub K} and the second order structure function scaling constant C{sub 2} was observed with increasing R{sub {lambda}}. The result indicates that a true inertial range requires several decades of separation between the energy containing and dissipative scales. A method for examining spectral anisotropy is reported and applied to turbulence spectra in fully developed pipe flow. It is found that the spectral redistribution from the streamwise to the two lateral spectra goes primarily to the circumferential component. Experimental results are reported for an axisymmetric contraction of a fully developed pipe flow. 67 refs., 75 figs., 9 tabs.

  4. On the prediction of turbulent secondary flows

    Science.gov (United States)

    Speziale, C. G.; So, R. M. C.; Younis, B. A.

    1992-01-01

    The prediction of turbulent secondary flows, with Reynolds stress models, in circular pipes and non-circular ducts is reviewed. Turbulence-driven secondary flows in straight non-circular ducts are considered along with turbulent secondary flows in pipes and ducts that arise from curvature or a system rotation. The physical mechanisms that generate these different kinds of secondary flows are outlined and the level of turbulence closure required to properly compute each type is discussed in detail. Illustrative computations of a variety of different secondary flows obtained from two-equation turbulence models and second-order closures are provided to amplify these points.

  5. Evaporation of polydispersed droplets in a highly turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Cochet, M.; Bazile, Rudy; Ferret, B.; Cazin, S. [INPT, UPS, IMFT (Institut de Mecanique des Fluides de Toulouse), Universite de Toulouse (France)

    2009-09-15

    A model experiment for the study of evaporating turbulent two-phase flows is presented here. The study focuses on a situation where pre-atomized and dispersed droplets vaporize and mix in a heated turbulent flow. The test bench consists in a channel flow with characteristics of homogeneous and isotropic turbulence where fluctuations levels reach very high values (25% in the established zone). An ultrasonic atomizer allows the injection of a mist of small droplets of acetone in the carrier flow. The large range diameters ensure that every kind of droplet behavior with regards to turbulence is possible. Instantaneous concentration fields of the vaporized phase are extracted from fluorescent images (PLIF) of the two phase flow. The evolution of the mixing of the acetone vapor is analyzed for two different liquid mass loadings. Despite the high turbulence levels, concentration fluctuations remain significant, indicating that air and acetone vapor are not fully mixed far from the injector. (orig.)

  6. PDF methods for turbulent reactive flows

    Science.gov (United States)

    Hsu, Andrew T.

    1995-01-01

    Viewgraphs are presented on computation of turbulent combustion, governing equations, closure problem, PDF modeling of turbulent reactive flows, validation cases, current projects, and collaboration with industry and technology transfer.

  7. Stochastic models for turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

  8. Modeling and Simulation of Turbulent Flows through a Solar Air Heater Having Square-Sectioned Transverse Rib Roughness on the Absorber Plate

    Directory of Open Access Journals (Sweden)

    Anil Singh Yadav

    2013-01-01

    Full Text Available Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P and rib-height (e have been taken such that the relative roughness pitch (P/e=14.29 remains constant. The relative roughness height, e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement.

  9. Modeling and simulation of turbulent flows through a solar air heater having square-sectioned transverse rib roughness on the absorber plate.

    Science.gov (United States)

    Yadav, Anil Singh; Bhagoria, J L

    2013-01-01

    Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P) and rib-height (e) have been taken such that the relative roughness pitch (P/e = 14.29) remains constant. The relative roughness height, e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement.

  10. Turbulence modelling for incompressible flows

    International Nuclear Information System (INIS)

    Rodi, W.

    1985-12-01

    EUROMECH colloquium 180 was held at Karlsruhe from 4-6 July, 1984, with the aim of bringing together specialists working in the area of turbulence modelling and of reviewing the state-of-the-art in this field. 44 scientists from 12 countries participated and 28 papers were presented. The meeting started with a review of the performance of two-equation turbulence models employing transport equations for both the velocity and the length scale of turbulence. These models are now generally well established, but it was found that their application to certain flow situations remains problematic. The modelling assumptions involved in Reynolds stress-equation models were reviewed next, and new assumptions were proposed. It was generally agreed that, as computing power increases, these more complex models will become more popular also for practical applications. The increase in computing power also allows more and more to resolve the viscous sublayer with low Reynolds numbers models, and the capabilities and problems of these models were discussed. In this connection, special aspects of boundary layer calculations were also discussed, namely those associated with 3D boundary layers, converging and diverging flow and slightly detached boundary layers. The complex physical phenomena prevalent in situations under the influence of buoyancy and rotation were reviewed, and several papers were presented on models for simulating these effects. (orig./HP) [de

  11. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current tre...

  12. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2009-01-01

    This book introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. For the computation of turbulent compressible flows, current methods of averaging and filtering are presented so that the reader is exposed to a consistent development of applicable equation sets for both the mean or resolved fields as well as the transport equations for the turbulent stress field. For the measurement of turbulent compressible flows, current techniques ranging from hot-wire anemometry to PIV are evaluated and limitations assessed. Characterizing dynamic features of free shear flows, including jets, mixing layers and wakes, and wall-bounded flows, including shock-turbulence and shock boundary-layer interactions, obtained from computations, experiments and simulations are discussed. Key features: * Describes prediction methodologies in...

  13. Models for turbulent flows with variable density and combustion

    International Nuclear Information System (INIS)

    Jones, W.P.

    1980-01-01

    Models for transport processes and combustion in turbulent flows are outlined with emphasis on the situation where the fuel and air are injected separately. Attention is restricted to relatively simple flames. The flows investigated are high Reynolds number, single-phase, turbulent high-temperature flames in which radiative heat transfer can be considered negligible. Attention is given to the lower order closure models, algebraic stress and flux models, the k-epsilon turbulence model, the diffusion flame approximation, and finite rate reaction mechanisms

  14. Statistical Mechanics of Turbulent Flows

    International Nuclear Information System (INIS)

    Cambon, C

    2004-01-01

    This is a handbook for a computational approach to reacting flows, including background material on statistical mechanics. In this sense, the title is somewhat misleading with respect to other books dedicated to the statistical theory of turbulence (e.g. Monin and Yaglom). In the present book, emphasis is placed on modelling (engineering closures) for computational fluid dynamics. The probabilistic (pdf) approach is applied to the local scalar field, motivated first by the nonlinearity of chemical source terms which appear in the transport equations of reacting species. The probabilistic and stochastic approaches are also used for the velocity field and particle position; nevertheless they are essentially limited to Lagrangian models for a local vector, with only single-point statistics, as for the scalar. Accordingly, conventional techniques, such as single-point closures for RANS (Reynolds-averaged Navier-Stokes) and subgrid-scale models for LES (large-eddy simulations), are described and in some cases reformulated using underlying Langevin models and filtered pdfs. Even if the theoretical approach to turbulence is not discussed in general, the essentials of probabilistic and stochastic-processes methods are described, with a useful reminder concerning statistics at the molecular level. The book comprises 7 chapters. Chapter 1 briefly states the goals and contents, with a very clear synoptic scheme on page 2. Chapter 2 presents definitions and examples of pdfs and related statistical moments. Chapter 3 deals with stochastic processes, pdf transport equations, from Kramer-Moyal to Fokker-Planck (for Markov processes), and moments equations. Stochastic differential equations are introduced and their relationship to pdfs described. This chapter ends with a discussion of stochastic modelling. The equations of fluid mechanics and thermodynamics are addressed in chapter 4. Classical conservation equations (mass, velocity, internal energy) are derived from their

  15. Computational fluid dynamics incompressible turbulent flows

    CERN Document Server

    Kajishima, Takeo

    2017-01-01

    This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications. • Introduces CFD techniques for incompressible flow and turbulence with a comprehensive approach; • Enr...

  16. A model for reaction rates in turbulent reacting flows

    Science.gov (United States)

    Chinitz, W.; Evans, J. S.

    1984-01-01

    To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.

  17. Exploiting similarity in turbulent shear flows for turbulence modeling

    Science.gov (United States)

    Robinson, David F.; Harris, Julius E.; Hassan, H. A.

    1992-01-01

    It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.

  18. Exploiting similarity in turbulent shear flows for turbulence modeling

    Science.gov (United States)

    Robinson, David F.; Harris, Julius E.; Hassan, H. A.

    1992-12-01

    It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.

  19. Turbulence Modeling of Flows with Extensive Crossflow Separation

    Directory of Open Access Journals (Sweden)

    Argyris G. Panaras

    2015-07-01

    Full Text Available The reasons for the difficulty in simulating accurately strong 3-D shock wave/turbulent boundary layer interactions (SBLIs and high-alpha flows with classical turbulence models are investigated. These flows are characterized by the appearance of strong crossflow separation. In view of recent additional evidence, a previously published flow analysis, which attributes the poor performance of classical turbulence models to the observed laminarization of the separation domain, is reexamined. According to this analysis, the longitudinal vortices into which the separated boundary layer rolls up in this type of separated flow, transfer external inviscid air into the part of the separation adjacent to the wall, decreasing its turbulence. It is demonstrated that linear models based on the Boussinesq equation provide solutions of moderate accuracy, while non-linear ones and others that consider the particular structure of the flow are more efficient. Published and new Reynolds Averaged Navier–Stokes (RANS simulations are reviewed, as well as results from a recent Large Eddy Simulation (LES study, which indicate that in calculations characterized by sufficient accuracy the turbulent kinetic energy of the reverse flow inside the separation vortices is very low, i.e., the flow is almost laminar there.

  20. Specific aspects of turbulent flow in rectangular ducts

    Directory of Open Access Journals (Sweden)

    Stanković Branislav D.

    2017-01-01

    Full Text Available The essential ideas of investigations of turbulent flow in a straight rectangular duct are chronologically presented. Fundamentally significant experimental and theoretical studies for mathematical modeling and numerical computations of this flow configuration are analyzed. An important physical aspect of this type of flow is presence of secondary motion in the plane perpendicular to the streamwise direction, which is of interest from both the engineering and the scientific viewpoints. The key facts for a task of turbulence modeling and optimal choice of the turbulence model are obtained through careful examination of physical mechanisms that generate secondary flows. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no.TR-33018: Increase in Energy and Ecology Efficiency of Processes in Pulverized Coal-Fired Furnace and Optimization of Utility Steam Boiler Air Pre-heater by Using In-House Developed Software Tools

  1. Water circulation in non-isothermal droplet-laden turbulent channel flow

    NARCIS (Netherlands)

    Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.; Simos, T.; Psihoyios, G.; Tsitouras, Ch.

    2013-01-01

    We propose a point-particle model for two-way coupling of water droplets dispersed in turbulent flow of a carrier gas consisting of air and water vapor. An incompressible flow formulation is applied for direct numerical simulation (DNS) of turbulent channel flow with a warm and a cold wall. Compared

  2. Water droplet condensation and evaporation in turbulent channel flow

    NARCIS (Netherlands)

    Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.

    We propose a point-particle model for two-way coupling of water droplets dispersed in the turbulent flow of a carrier gas consisting of air and water vapour. We adopt an Euler–Lagrangian formulation based on conservation laws for the mass, momentum and energy of the continuous phase and on empirical

  3. Instantaneous aerosol dynamics in a turbulent flow

    KAUST Repository

    Zhou, Kun

    2012-01-01

    Dibutyl phthalate aerosol particles evolution dynamics in a turbulent mixing layer is simulated by means of direct numerical simulation for the flow field and the direct quadrature method of moments for the aerosol evolution. Most par

  4. Steady turbulent flow in curved rectangular channels

    NARCIS (Netherlands)

    De Vriend, H.J.

    1979-01-01

    After the study of fully developed and developing steady laminar flow in curved channels of shallow rectangular wet cross-section (see earlier reports in this series), steady turbulent flow in such channels is investigated as a next step towards a mathematical model of the flow in shallow river

  5. Turbulent momentum transport due to neoclassical flows

    International Nuclear Information System (INIS)

    Lee, Jungpyo; Barnes, Michael; Parra, Felix I; Belli, Emily; Candy, Jeff

    2015-01-01

    Intrinsic toroidal rotation in a tokamak can be driven by turbulent momentum transport due to neoclassical flow effects breaking a symmetry of turbulence. In this paper we categorize the contributions due to neoclassical effects to the turbulent momentum transport, and evaluate each contribution using gyrokinetic simulations. We find that the relative importance of each contribution changes with collisionality. For low collisionality, the dominant contributions come from neoclassical particle and parallel flows. For moderate collisionality, there are non-negligible contributions due to neoclassical poloidal electric field and poloidal gradients of density and temperature, which are not important for low collisionality. (paper)

  6. Turbulence in two-phase flows

    International Nuclear Information System (INIS)

    Sullivan, J.P.; Houze, R.N.; Buenger, D.E.; Theofanous, T.G.

    1981-01-01

    Hot film Anemometry and Laser Doppler Velocimetry have been employed in this work to study the turbulence characteristics of Bubbly and Stratified two-phase flows, respectively. Extensive consistency checks were made to establish the reliability and hence the utility of these experimental techniques for the measurement of turbulence in two-phase flows. Buoyancy-driven turbulence in vertical bubbly flows has been identified experimentally and correlated in terms of a shear velocity superposition approach. This approach provides a criterion for the demarcation of the buoyancy-driven turbulence region from the wall shear-generated turbulence region. Our data confirm the roughly isotropic behavior expected for buoyancy-driven turbulence. Upgrading of our experimental system will permit investigations of the wall-shear dominated regime (i.e., isotropy, superposition approach, etc.). The stratified flow data demonstrate clearly that the maximum in the mean velocity profile does not coincide with the zero shear plane, indicating the existence of a negative eddy viscosity region. Previous studies do not take into account this difference and thus they yield incorrect friction factor data in addition to certain puzzling behavior in the upper wall region. The conditioned turbulence data in the wavy region indicate interesting trends and that an appropriate normalization of intensities must take into account the shear velocity at the interfacial (wavy) region

  7. Turbulent Heat Transfer in Curved Pipe Flow

    Science.gov (United States)

    Kang, Changwoo; Yang, Kyung-Soo

    2013-11-01

    In the present investigation, turbulent heat transfer in fully-developed curved pipe flow with axially uniform wall heat flux has been numerically studied. The Reynolds numbers under consideration are Reτ = 210 (DNS) and 1,000 (LES) based on the mean friction velocity and the pipe radius, and the Prandtl number (Pr) is 0.71. For Reτ = 210 , the pipe curvature (κ) was fixed as 1/18.2, whereas three cases of κ (0.01, 0.05, 0.1) were computed in the case of Reτ = 1,000. The mean velocity, turbulent intensities and heat transfer rates obtained from the present calculations are in good agreement with the previous numerical and experimental results. To elucidate the secondary flow structures due to the pipe curvature, the mean quantities and rms fluctuations of the flow and temperature fields are presented on the pipe cross-sections, and compared with those of the straight pipe flow. To study turbulence structures and their influence on turbulent heat transfer, turbulence statistics including but not limited to skewness and flatness of velocity fluctuations, cross-correlation coefficients, an Octant analysis, and turbulence budgets are presented and discussed. Based on our results, we attempt to clarify the effects of Reynolds number and the pipe curvature on turbulent heat transfer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).

  8. Simulation of turbulent flows containing strong shocks

    International Nuclear Information System (INIS)

    Fryxell, Bruce; Menon, Suresh

    2008-01-01

    Simulation of turbulent flows with strong shocks is a computationally challenging problem. The requirements for a method to produce accurate results for turbulence are orthogonal to those needed to treat shocks properly. In order to prevent an unphysical rate of decay of turbulent structures, it is necessary to use a method with very low numerical dissipation. Because of this, central difference schemes are widely used. However, computing strong shocks with a central difference scheme can produce unphysical post-shock oscillations that corrupt the entire flow unless additional dissipation is added. This dissipation can be difficult to localize to the area near the shock and can lead to inaccurate treatment of the turbulence. Modern high-resolution shock-capturing methods usually use upwind algorithms to provide the dissipation necessary to stabilize shocks. However, this upwind dissipation can also lead to an unphysical rate of decay of the turbulence. This paper discusses a hybrid method for simulating turbulent flows with strong shocks that couples a high-order central difference scheme with a high-resolution shock-capturing method. The shock-capturing method is used only in the vicinity of discontinuities in the flow, whereas the central difference scheme is used in the remainder of the computational domain. Results of this new method will be shown for a variety of test problems. Preliminary results for a realistic application involving detonation in gas-particle flows will also be presented.

  9. Air Turbulence and sensation of draught

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Melikov, Arsen Krikor; Hanzawa, H.

    1988-01-01

    the sedentary subjects were exposed to six mean air velocities ranging from 0.05 m/s to 0.40 m/s. The air temperature was kept constant at 23°C. They were asked whether and where they could feel air movement and whether or not it felt uncomfortable. The turbulence intensity had a significant impact...... on the occurence of draught sensation. A model is presented which predicts the percentage of people dissatisfied because of draught as a function of air temperature, mean velocity and turbulence intensity. The model can be a useful tool for quantifying the draught risk in spaces and for developing air distribution...... systems with a low draught risk....

  10. Interfacial structures in confined cap-turbulent and churn-turbulent flows

    International Nuclear Information System (INIS)

    Sun Xiaodong; Kim, Seungjin; Cheng Ling; Ishii, Mamoru; Beus, Stephen G.

    2004-01-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined flow passage. Experiments of a total of 13 flow conditions in cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 200 mm in width and 10 mm in gap. Miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. Bubble characteristics captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired local parameters are time-averaged void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for each group of bubbles. Also, the line-averaged and area-averaged data are presented and discussed in detail. The comparisons of these parameters at different elevations demonstrate the development of interfacial structures along the flow direction due to bubble interactions and the hydrodynamic effects. Furthermore, these data can serve as one part of the experimental data for investigation of the interfacial area transport in a confined two-phase flow

  11. Diffusive separation of particles by diffusion in swirled turbulent flows

    International Nuclear Information System (INIS)

    Arbuzov, V.N.; Shiliaev, M.I.

    1984-01-01

    An analysis of the dynamics of turbulent flow and diffusive separation of solid particles in a centrifugal air separator (consisting of two flat disks rotating at the same angular velocity) is presented. A closed set of balances for all the components of the tensor of turbulent stresses, extended to the entire flow region, is employed in the numerical analysis of transition and turbulent air flows between the rotating disks. The analytical relationships obtained for the case of the mixed flow for the various components of the average velocity, energy of fluctuations, and turbulence level in the circumferential direction agreed well with the theoretical and experimental distributions of Bakke, et al. (1973). It is shown that at high Reynolds numbers the flow is isotropic, the dependence of the circumferential component of the average velocity obeys a power law, and the generation of the radial component is controlled by the local centrifugal field. The sharpness of particle separation was calculated by the eddy diffusion equation and was found to depend on the geometry and the operating conditions. 8 references

  12. Dynamical eigenfunction decomposition of turbulent channel flow

    Science.gov (United States)

    Ball, K. S.; Sirovich, L.; Keefe, L. R.

    1991-01-01

    The results of an analysis of low-Reynolds-number turbulent channel flow based on the Karhunen-Loeve (K-L) expansion are presented. The turbulent flow field is generated by a direct numerical simulation of the Navier-Stokes equations at a Reynolds number Re(tau) = 80 (based on the wall shear velocity and channel half-width). The K-L procedure is then applied to determine the eigenvalues and eigenfunctions for this flow. The random coefficients of the K-L expansion are subsequently found by projecting the numerical flow field onto these eigenfunctions. The resulting expansion captures 90 percent of the turbulent energy with significantly fewer modes than the original trigonometric expansion. The eigenfunctions, which appear either as rolls or shearing motions, possess viscous boundary layers at the walls and are much richer in harmonics than the original basis functions.

  13. Molecular mixing in turbulent flow

    International Nuclear Information System (INIS)

    Kerstein, A.R.

    1993-01-01

    The evolution of a diffusive scalar field subject to turbulent stirring is investigated by comparing two new modeling approaches, the linear-eddy model and the clipped-laminar-profile representation, to results previously obtained by direct numerical simulation (DNS) and by mapping-closure analysis. The comparisons indicate that scalar field evolution is sensitive to the bandwidth of the stirring process, and they suggest that the good agreement between DNS and mapping closure reflects the narrowband character of both. The new models predict qualitatively new behaviors in the wideband stirring regime corresponding to high-Reynolds-number turbulence

  14. Modeling water droplet condensation and evaporation in DNS of turbulent channel flow

    NARCIS (Netherlands)

    Russo, E.; Kuerten, J.G.M.; Geld, van der C.W.M.; Geurts, B.J.

    2011-01-01

    In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an

  15. Modeling water droplet condensation and evaporation in DNS of turbulent channel flow

    NARCIS (Netherlands)

    Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.

    In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an

  16. Surface roughness effects on turbulent Couette flow

    Science.gov (United States)

    Lee, Young Mo; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  17. Analysis of Influence of the Thermal Dependence of Air Thermophysical Properties on the Accuracy of Simulation of Heat Transfer in a Turbulent Flow in Case of Applying Different Methods of Averaging Navier-Stokes Equations

    Directory of Open Access Journals (Sweden)

    A. D. Kliukvin

    2014-01-01

    Full Text Available There is theoretically investigated the influence of thermal dependence of air thermophysical properties on accuracy of heat transfer problems solution in a turbulent flow when using different methods of averaging the Navier-Stokes equations.There is analyzed the practicability of using particular method of averaging the NavierStokes equations when it’s necessary to clarify the solution of heat transfer problem taking into account the variability of air thermophysical properties.It’s shown that Reynolds and Favre averaging (the most common methods of averaging the Navier-Stokes equations are not effective in this case because these methods inaccurately describe behavior of large scale turbulent structures which strongly depends on geometry of particular flow. Thus it’s necessary to use more universal methods of turbulent flow simulation which are not based on averaging of all turbulent scales.In the article it’s shown that instead of Reynold and Favre averaging it’s possible to use large eddy simulation whereby turbulent structures are divided into small-scale and large-scale ones with subsequent modelling of small-scale ones only. But this approach leads to the necessarity of increasing the computational power by 2-3 orders.For different methods of averaging the form of additional terms of averaged Navier-Stokes equations in case of accounting pulsation of thermophysical properties of the air is obtained.On the example of a submerged heated air jet the errors (which occur when neglecting the thermal dependence of air thermophysical properties on averaged flow temperature in determination of convectional and conductive components of heat flux and viscous stresses are evaluated. It’s shown that the greatest increase of solution accuracy can be obtained in case of the flows with high temperature gradients.Finally using infinite Teylor series it’s found that underestimation of convective and conductive components of heat flux and

  18. Magnetic fluctuations in turbulent flow

    International Nuclear Information System (INIS)

    Ruzmaikin, A.A.

    1990-01-01

    For dynamo excitation of the magnetic fluctuations in infinite fluid only a sufficient large magnetic Reynolds number is needed. In a infinite region an additional condition appears. Due to the diffusion of the magnetic field through the boundaries a size of the region must be large enough compare with a correlation length of the turbulence. Author)

  19. Symposium on Turbulent Shear Flows, 7th, Stanford University, CA, Aug. 21-23, 1989, Proceedings. Volumes 1 ampersand 2

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Papers on turbulent shear flows are presented, covering topics such as the structure of pressure fluctuations, fossil two-dimensional turbulence in the ocean, turbulence production and eddy structure in wall turbulence, bypass transition in a heated boundary layer, a turbulent spot in plane Poiseuille flow, the evolution of an axisymmetric jet, plane mixing layer development, vortex models of a pseudoturbulent shear flow, numerical techniques for turbulence studies, Reynolds stress in the wall region of turbulent pipe flow, the turbulent structure of a momentumless wake, the near field of the transverse jet. Additional topics include a turbulent boundary layer disturbed by a cylinder, evolving mixing layers, flow analysis in a vortex flowmeter, ejections and bursts in pulsatile turbulent wall flow measurements, a flat plate oscillating in pitch, turbulent buoyant flows, isothermal lobed mixer flows, flow distortion on a turbulent scalar field, two phase flows. In addition, papers on the applications of turbulent shear flow studies are given, including air pollutant deposition, closures, oceanography, instrumentation, heat transfer, rotating flows, combustion, coherent structures, turbulence control, and scalar transport modeling

  20. Comparison of turbulent particle dispersion models in turbulent shear flows

    Directory of Open Access Journals (Sweden)

    S. Laín

    2007-09-01

    Full Text Available This work compares the performance of two Lagrangian turbulent particle dispersion models: the standard model (e.g., that presented in Sommerfeld et al. (1993, in which the fluctuating fluid velocity experienced by the particle is composed of two components, one correlated with the previous time step and a second one randomly sampled from a Wiener process, and the model proposed by Minier and Peirano (2001, which is based on the PDF approach and performs closure at the level of acceleration of the fluid experienced by the particle. Formulation of a Langevin equation model for the increments of fluid velocity seen by the particle allows capturing some underlying physics of particle dispersion in general turbulent flows while keeping the mathematical manipulation of the stochastic model simple, thereby avoiding some pitfalls and simplifying the derivation of macroscopic relations. The performance of both dispersion models is tested in the configurations of grid-generated turbulence (Wells and Stock (1983 experiments, simple shear flow (Hyland et al., 1999 and confined axisymmetric jet flow laden with solids (Hishida and Maeda (1987 experiments.

  1. Richardson effects in turbulent buoyant flows

    Science.gov (United States)

    Biggi, Renaud; Blanquart, Guillaume

    2010-11-01

    Rayleigh Taylor instabilities are found in a wide range of scientific fields from supernova explosions to underwater hot plumes. The turbulent flow is affected by the presence of buoyancy forces and may not follow the Kolmogorov theory anymore. The objective of the present work is to analyze the complex interactions between turbulence and buoyancy. Towards that goal, simulations have been performed with a high order, conservative, low Mach number code [Desjardins et. al. JCP 2010]. The configuration corresponds to a cubic box initially filled with homogeneous isotropic turbulence with heavy fluid on top and light gas at the bottom. The initial turbulent field was forced using linear forcing up to a Reynolds number of Reλ=55 [Meneveau & Rosales, POF 2005]. The Richardson number based on the rms velocity and the integral length scale was varied from 0.1 to 10 to investigate cases with weak and strong buoyancy. Cases with gravity as a stabilizer of turbulence (gravity pointing up) were also considered. The evolution of the turbulent kinetic energy and the total kinetic energy was analyzed and a simple phenomenological model was proposed. Finally, the energy spectra and the isotropy of the flow were also investigated.

  2. [Statistical modeling studies of turbulent reacting flows

    International Nuclear Information System (INIS)

    Dwyer, H.A.

    1987-01-01

    This paper discusses the study of turbulent wall shear flows, and we feel that this problem is both more difficult and a better challenge for the new methods we are developing. Turbulent wall flows have a wide variety of length and time scales which interact with the transport processes to produce very large fluxes of mass, heat, and momentum. At the present time we have completed the first calculation of a wall diffusion flame, and we have begun a velocity PDF calculation for the flat plate boundary layer. A summary of the various activities is contained in this report

  3. Homogeneous purely buoyancy driven turbulent flow

    Science.gov (United States)

    Arakeri, Jaywant; Cholemari, Murali; Pawar, Shashikant

    2010-11-01

    An unstable density difference across a long vertical tube open at both ends leads to convection that is axially homogeneous with a linear density gradient. We report results from such tube convection experiments, with driving density caused by salt concentration difference or temperature difference. At high enough Rayleigh numbers (Ra) the convection is turbulent with zero mean flow and zero mean Reynolds shear stresses; thus turbulent production is purely by buoyancy. We observe different regimes of turbulent convection. At very high Ra the Nusselt number scales as the square root of the Rayleigh number, giving the so-called "ultimate regime" of convection predicted for Rayleigh-Benard convection in limit of infinite Ra. Turbulent convection at intermediate Ra, the Nusselt number scales as Ra^0.3. In both regimes, the flux and the Taylor scale Reynolds number are more than order of magnitude larger than those obtained in Rayleigh-Benard convection. Absence of a mean flow makes this an ideal flow to study shear free turbulence near a wall.

  4. Upper Meter Processes: Short Wind Waves, Surface Flow, and Micro-Turbulence

    National Research Council Canada - National Science Library

    Jaehne, Bernd

    2000-01-01

    The primary goal of this project was to advance the knowledge of small-scale air-sea interaction processes at the ocean surface, focussing on the dynamics of short waves, the surface flow field and the micro-turbulence...

  5. Experimental studies of occupation times in turbulent flows

    DEFF Research Database (Denmark)

    Mann, J.; Ott, Søren; Pécseli, H.L.

    2003-01-01

    The motion of passively convected particles in turbulent flows is studied experimentally in approximately homogeneous and isotropic turbulent flows, generated in water by two moving grids. The simultaneous trajectories of many small passively convected, neutrally buoyant, polystyrene particles...

  6. Rough flows and homogenization in stochastic turbulence

    OpenAIRE

    Bailleul, I.; Catellier, R.

    2016-01-01

    We provide in this work a tool-kit for the study of homogenisation of random ordinary differential equations, under the form of a friendly-user black box based on the tehcnology of rough flows. We illustrate the use of this setting on the example of stochastic turbulence.

  7. Turbulent Buoyant Jets in Flowing Ambients

    DEFF Research Database (Denmark)

    Chen, Hai-Bo; Larsen, Torben; Petersen, Ole

    1991-01-01

    The mean behaviour of horizontal turbulent buoyant jets in co-flowing currents is investigated experimentally and numerically, in terms of jet trajectory, dilution and centerline density deficit and velocity decay. It is demonstrated in the paper that the laboratory data on the jet trajectory and...

  8. Tackling complex turbulent flows with transient RANS

    NARCIS (Netherlands)

    Kenjeres, S.; Hanjalic, K.

    2009-01-01

    This article reviews some recent applications of the transient-Reynoldsaveraged Navier–Stokes (T-RANS) approach in simulating complex turbulent flows dominated by externally imposed body forces, primarily by thermal buoyancy and the Lorentz force. The T-RANS aims at numerical resolving unsteady

  9. Direct numerical simulation of turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  10. A turbulent two-phase flow model for nebula flows

    International Nuclear Information System (INIS)

    Champney, J.M.; Cuzzi, J.N.

    1990-01-01

    A new and very efficient turbulent two-phase flow numericaly model is described to analyze the environment of a protoplanetary nebula at a stage prior to the formation of planets. Focus is on settling processes of dust particles in flattened gaseous nebulae. The model employs a perturbation technique to improve the accuracy of the numerical simulations of such flows where small variations of physical quantities occur over large distance ranges. The particles are allowed to be diffused by gas turbulence in addition to settling under gravity. Their diffusion coefficients is related to the gas turbulent viscosity by the non-dimensional Schmidt number. The gas turbulent viscosity is determined by the means of the eddy viscosity hypothesis that assumes the Reynolds stress tensor proportional to the mean strain rate tensor. Zero- and two-equation turbulence models are employed. Modeling assumptions are detailed and discussed. The numerical model is shown to reproduce an existing analytical solution for the settling process of particles in an inviscid nebula. Results of nebula flows are presented taking into account turbulence effects of nebula flows. Diffusion processes are found to control the settling of particles. 24 refs

  11. Flow-induced separation in wall turbulence.

    Science.gov (United States)

    Nguyen, Quoc; Srinivasan, Chiranth; Papavassiliou, Dimitrios V

    2015-03-01

    One of the defining characteristics of turbulence is its ability to promote mixing. We present here a case where the opposite happens-simulation results indicate that particles can separate near the wall of a turbulent channel flow, when they have sufficiently different Schmidt numbers without use of any other means. The physical mechanism of the separation is understood when the interplay between convection and diffusion, as expressed by their characteristic time scales, is considered, leading to the determination of the necessary conditions for a successful separation between particles. Practical applications of these results can be found when very small particles need to be separated or removed from a fluid.

  12. Large eddy simulation of bundle turbulent flows

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Barsamian, H.R.

    1995-01-01

    Large eddy simulation may be defined as simulation of a turbulent flow in which the large scale motions are explicitly resolved while the small scale motions are modeled. This results into a system of equations that require closure models. The closure models relate the effects of the small scale motions onto the large scale motions. There have been several models developed, the most popular is the Smagorinsky eddy viscosity model. A new model has recently been introduced by Lee that modified the Smagorinsky model. Using both of the above mentioned closure models, two different geometric arrangements were used in the simulation of turbulent cross flow within rigid tube bundles. An inlined array simulations was performed for a deep bundle (10,816 nodes) as well as an inlet/outlet simulation (57,600 nodes). Comparisons were made to available experimental data. Flow visualization enabled the distinction of different characteristics within the flow such as jet switching effects in the wake of the bundle flow for the inlet/outlet simulation case, as well as within tube bundles. The results indicate that the large eddy simulation technique is capable of turbulence prediction and may be used as a viable engineering tool with the careful consideration of the subgrid scale model. (author)

  13. Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, B F [The Norwegian Univ. of Science and Technology, Trondheim (Norway)

    1998-12-31

    The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.

  14. Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)

    1997-12-31

    The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.

  15. TO THE QUESTION ABOUT THE SIMULATION OF TURBULENT THERMAL FLOWS

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The main purpose of this work was the simulation of turbulent thermal flows, which is aimed at improving the visualization and the modeling of the flow fields of wind flows, which are necessary for aviation. The physical-mathematical model of gas flow in thermal is proposed on the basis of thermodynamic model and dynamic model under the assumption that the condensation energy, when the movement of the thermal is upward, becomes the turbulent fluctuations. A thermal is an air mass, which goes up and is capable to intermix with ambient air. In the work the thermodynamic model of thermal is presented, the equations and the system of equations are derived, that describe the main characteristics of wind flow, which are required for the modeling of airflows. The generation of vertical turbulent gust with von Karman spectrum is shown. The basic assumption in the construction of the dynamic model of generation was that the energy, which is stood out in the thermal due to the condensation of steam, is converted into the energy of turbulent pulsations. Some examples of numerical simulation are given in the article. The visualizations of the generation of the vertical velocity of random wind gust are given depending on the size of the considered space and depending on the pitch of cell partition. The analysis and comparison of the obtained results of the calculation are presented. The conducted studies are aimed at the simulation of the atmospheric background and atmospheric processes and, in the final result, at the increasing of flight safety.

  16. An experimental study of turbulent two-phase flow in hydraulic jumps and application of a triple decomposition technique

    Science.gov (United States)

    Wang, Hang; Felder, Stefan; Chanson, Hubert

    2014-07-01

    Intense turbulence develops in the two-phase flow region of hydraulic jump, with a broad range of turbulent length and time scales. Detailed air-water flow measurements using intrusive phase-detection probes enabled turbulence characterisation of the bubbly flow, although the phenomenon is not a truly random process because of the existence of low-frequency, pseudo-periodic fluctuating motion in the jump roller. This paper presents new measurements of turbulent properties in hydraulic jumps, including turbulence intensity, longitudinal and transverse integral length and time scales. The results characterised very high turbulent levels and reflected a combination of both fast and slow turbulent components. The respective contributions of the fast and slow motions were quantified using a triple decomposition technique. The decomposition of air-water detection signal revealed "true" turbulent characteristics linked with the fast, microscopic velocity turbulence of hydraulic jumps. The high-frequency turbulence intensities were between 0.5 and 1.5 close to the jump toe, and maximum integral turbulent length scales were found next to the bottom. Both decreased in the flow direction with longitudinal turbulence dissipation. The results highlighted the considerable influence of hydrodynamic instabilities of the flow on the turbulence characterisation. The successful application of triple decomposition technique provided the means for the true turbulence properties of hydraulic jumps.

  17. Turbulent flow in a partially filled pipe

    Science.gov (United States)

    Ng, Henry; Cregan, Hope; Dodds, Jonathan; Poole, Robert; Dennis, David

    2017-11-01

    Turbulent flow in a pressure driven pipe running partially full has been investigated using high-speed 2D-3C Stereoscopic Particle Imaging Velocimetry. With the field-of-view spanning the entire pipe cross section we are able to reconstruct the full three dimensional quasi-instantaneous flow field by invoking Taylor's hypothesis. The measurements were carried out over a range of flow depths at a constant Reynolds number based on hydraulic diameter and bulk velocity of Re = 32 , 000 . In agreement with previous studies, the ``velocity dip'' phenomenon, whereby the location of the maximum streamwise velocity occurs below the free surface was observed. A mean flow secondary current is observed near the free surface with each of the counter-rotating rollers filling the half-width of the pipe. Unlike fully turbulent flow in a rectangular open channel or pressurized square duct flow where the secondary flow cells appear in pairs about a corner bisector, the mean secondary motion observed here manifests only as a single pair of vortices mirrored about the pipe vertical centreline.

  18. Redistribution of Kinetic Energy in Turbulent Flows

    Directory of Open Access Journals (Sweden)

    Alain Pumir

    2014-10-01

    Full Text Available In statistically homogeneous turbulent flows, pressure forces provide the main mechanism to redistribute kinetic energy among fluid elements, without net contribution to the overall energy budget. This holds true in both two-dimensional (2D and three-dimensional (3D flows, which show fundamentally different physics. As we demonstrate here, pressure forces act on fluid elements very differently in these two cases. We find in numerical simulations that in 3D pressure forces strongly accelerate the fastest fluid elements, and that in 2D this effect is absent. In 3D turbulence, our findings put forward a mechanism for a possibly singular buildup of energy, and thus may shed new light on the smoothness problem of the solution of the Navier-Stokes equation in 3D.

  19. Statistical theory of turbulent incompressible multimaterial flow

    International Nuclear Information System (INIS)

    Kashiwa, B.

    1987-10-01

    Interpenetrating motion of incompressible materials is considered. ''Turbulence'' is defined as any deviation from the mean motion. Accordingly a nominally stationary fluid will exhibit turbulent fluctuations due to a single, slowly moving sphere. Mean conservation equations for interpenetrating materials in arbitrary proportions are derived using an ensemble averaging procedure, beginning with the exact equations of motion. The result is a set of conservation equations for the mean mass, momentum and fluctuational kinetic energy of each material. The equation system is at first unclosed due to integral terms involving unknown one-point and two-point probability distribution functions. In the mean momentum equation, the unclosed terms are clearly identified as representing two physical processes. One is transport of momentum by multimaterial Reynolds stresses, and the other is momentum exchange due to pressure fluctuations and viscous stress at material interfaces. Closure is approached by combining careful examination of multipoint statistical correlations with the traditional physical technique of κ-ε modeling for single-material turbulence. This involves representing the multimaterial Reynolds stress for each material as a turbulent viscosity times the rate of strain based on the mean velocity of that material. The multimaterial turbulent viscosity is related to the fluctuational kinetic energy κ, and the rate of fluctuational energy dissipation ε, for each material. Hence a set of κ and ε equations must be solved, together with mean mass and momentum conservation equations, for each material. Both κ and the turbulent viscosities enter into the momentum exchange force. The theory is applied to (a) calculation of the drag force on a sphere fixed in a uniform flow, (b) calculation of the settling rate in a suspension and (c) calculation of velocity profiles in the pneumatic transport of solid particles in a pipe

  20. Aggregate formation in 3D turbulent-like flows

    NARCIS (Netherlands)

    Dominguez, A.; Clercx, H.J.H.

    2006-01-01

    Aggregate formation is an important process in industrial and environmental turbulent flows. In oceans turbulence play an important role on Marine Snow (aggregate) formation. For a proper description, the study of aggregate formation in turbulent flows requires a particle based model i.e. following

  1. Fractal flow design how to design bespoke turbulence and why

    CERN Document Server

    Vassilicos, Christos

    2016-01-01

    This book focuses on turbulent flows generated and/or influenced by multiscale/fractal structures. It consists of six chapters which demonstrate, each one in its own way, how such structures and objects can be used to design bespoke turbulence for particular applications and also how they can be used for fundamental studies of turbulent flows.

  2. Blow-out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang; Hu, Longhua; Yoon, Sung Hwan; Lu, Shouxiang; Delichatsios, Michael; Chung, Suk-Ho

    2015-01-01

    The blow-out limits of nonpremixed turbulent jet flames in cross flows were studied, especially concerning the effect of ambient pressure, by conducting experiments at atmospheric and sub-atmospheric pressures. The combined effects of air flow

  3. On the computation of the turbulent flow near rough surface

    Science.gov (United States)

    Matveev, S. K.; Jaychibekov, N. Zh.; Shalabayeva, B. S.

    2018-05-01

    One of the problems in constructing mathematical models of turbulence is a description of the flows near a rough surface. An experimental study of such flows is also difficult because of the impossibility of measuring "inside" the roughness. The theoretical calculation is difficult because of the lack of equations describing the flow in this zone. In this paper, a new turbulence model based on the differential equation of turbulent viscosity balance was used to describe a turbulent flow near a rough surface. The difference between the new turbulence model and the previously known consists in the choice of constants and functions that determine the generation, dissipation and diffusion of viscosity.

  4. Homogeneous wave turbulence driven by tidal flows

    Science.gov (United States)

    Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.

    2017-12-01

    When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.

  5. Signatures of non-universal large scales in conditional structure functions from various turbulent flows

    International Nuclear Information System (INIS)

    Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K

    2011-01-01

    We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)

  6. Mathematical model for the calculation of internal turbulent flow

    International Nuclear Information System (INIS)

    Nicolau, V. de P.; Valle Pereira Filho, H. do

    1981-01-01

    The Navier-Stokes and the turbulent kinetic energy equations for the incompressible, turbulent and fully developed pipe flow, were solved by a finite difference procedure. The distributions of the mean velocity, turbulent shear stress and turbulent kinetic energy were obtained at different Reynolds numbers. Those numerical results were compared with experimental data and the agreement was good in whole cross section of the flow. (Author) [pt

  7. Turbulent structure of stably stratified inhomogeneous flow

    Science.gov (United States)

    Iida, Oaki

    2018-04-01

    Effects of buoyancy force stabilizing disturbances are investigated on the inhomogeneous flow where disturbances are dispersed from the turbulent to non-turbulent field in the direction perpendicular to the gravity force. Attaching the fringe region, where disturbances are excited by the artificial body force, a Fourier spectral method is used for the inhomogeneous flow stirred at one side of the cuboid computational box. As a result, it is found that the turbulent kinetic energy is dispersed as layered structures elongated in the streamwise direction through the vibrating motion. A close look at the layered structures shows that they are flanked by colder fluids at the top and hotter fluids at the bottom, and hence vertically compressed and horizontally expanded by the buoyancy related to the countergradient heat flux, though they are punctuated by the vertical expansion of fluids at the forefront of the layered structures, which is related to the downgradient heat flux, indicating that the layered structures are gravity currents. However, the phase between temperature fluctuations and vertical velocity is shifted by π/2 rad, indicating that temperature fluctuations are generated by the propagation of internal gravity waves.

  8. Adaptive LES Methodology for Turbulent Flow Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Oleg V. Vasilyev

    2008-06-12

    Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulations that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic

  9. Interactions between bedforms, turbulence and pore flow

    Science.gov (United States)

    Blois, G.; Best, J.; Sambrook Smith, G.; Hardy, R. J.; Lead, J.

    2010-12-01

    A widespread occurrence of flow-form interaction in rivers is represented by subaqueous bedforms such as dunes. Many models have been proposed to explain how bedform generation and evolution are driven by turbulent flow structures that control the incipient motion of cohesionless sediments and later bedform development. However, most of these models have assumed such bedforms to be migrating over an impermeable bed, and that any surface-subsurface flow interaction is negligible. However, for some gravel-bed rivers the porosity can be high, up to 43%, which may result in significant flow both through the permeable bed (hyporheic flow) and across the surface-subsurface interface. The mass and momentum exchange occurring at the interface may have a strong impact on the structure of turbulent flow in the near-bed region. In the case of a dune, its topography induces a local pressure gradient that enhances flow across the interface. This results in a flow structure that may be radically different from that commonly proposed by past work. This paper presents results from a simplified laboratory model akin to a fine-grained bedform generated on top of a coarser sediment bed. Particle imaging velocimetry (PIV) measurements were conducted in order to characterise flow both over and underneath an idealised 2-dimensional dune (0.41 m long, 0.056 m high and having a leeside angle of 27°) overlaying a packed bed of uniform size spheres (D = 0.04 m diameter). Experiments were conducted in free surface flow conditions (Froude number = 0.1; Reynolds number = 25,000) for one bedform height: flow depth ratio (0.31). The flow above the dune was measured using a standard PIV technique while a novel endoscopic PIV (EPIV) system allowed collection of flow data within the pore spaces beneath the dune. The results show that topographically-induced subsurface flow significantly modifies the structure of flow in the leeside of the dune, resulting in a flow field that is radically different

  10. On turbulence structure in vertical pipe flow of fiber suspensions [refractivity, flow measurement, turbulent flow, glass fibers, fluid flow

    International Nuclear Information System (INIS)

    Steen, M.

    1989-01-01

    A suspension of glass fibers in alcohol has been used to investigate a upward vertical developing pipe flow. The refractive index of the alcohol was matched to that of the glass fibers, making the whole suspension transparent. Laser Doppler Anemometry (LDA) was applied, and fluid velocities could then be measured for consistencies up to c = 12 g/l. Radial profiles of axial U-velocity and turbulence spectra have been recorded at various positions (z/D = 2, 5, 36) downstream of an orifice (step) with 64% open area. Measurements were taken for different consistencies (c = 1.2, 12 g/l), fiber lengths (l = 1, 3 mm) and Reynolds numbers (R e = 8.5 ⋅ 10 3 , 6.5 ⋅ 10 4 ). The fiber crowding factor (n f ) has been used to discuss the observed effects of the present fibers on momentum transfer and turbulence structure. The results show both an increase (l= 1 mm, c= 1.2 g/l) and decrease (l=3 mm, c = 12 g/l) in turbulence levels in the presence of fibers. Suspensions with long fibers at the highest consistency show plug flow in parts of the core. This causes damping of the turbulence mainly at smaller length scales. For short fibers at low consistency, the increased turbulent energy was mainly observed at small length scales in the spectrum. (author)

  11. Turbulence

    CERN Document Server

    Bailly, Christophe

    2015-01-01

    This book covers the major problems of turbulence and turbulent processes, including  physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...

  12. Instantaneous aerosol dynamics in a turbulent flow

    KAUST Repository

    Zhou, Kun

    2012-01-01

    Dibutyl phthalate aerosol particles evolution dynamics in a turbulent mixing layer is simulated by means of direct numerical simulation for the flow field and the direct quadrature method of moments for the aerosol evolution. Most par-ticles are nucleated in a thin layer region corresponding to a specific narrow temperature range near the cool stream side. However, particles undergo high growth rate on the hot stream side due to condensation. Coagulation decreases the total particle number density at a rate which is highly correlated to the in-stantaneous number density.

  13. CISM-IUTAM School on Advanced Turbulent Flow Computations

    CERN Document Server

    Krause, Egon

    2000-01-01

    This book collects the lecture notes concerning the IUTAM School on Advanced Turbulent Flow Computations held at CISM in Udine September 7–11, 1998. The course was intended for scientists, engineers and post-graduate students interested in the application of advanced numerical techniques for simulating turbulent flows. The topic comprises two closely connected main subjects: modelling and computation, mesh pionts necessary to simulate complex turbulent flow.

  14. Macro-scale turbulence modelling for flows in porous media

    International Nuclear Information System (INIS)

    Pinson, F.

    2006-03-01

    - This work deals with the macroscopic modeling of turbulence in porous media. It concerns heat exchangers, nuclear reactors as well as urban flows, etc. The objective of this study is to describe in an homogenized way, by the mean of a spatial average operator, turbulent flows in a solid matrix. In addition to this first operator, the use of a statistical average operator permits to handle the pseudo-aleatory character of turbulence. The successive application of both operators allows us to derive the balance equations of the kind of flows under study. Two major issues are then highlighted, the modeling of dispersion induced by the solid matrix and the turbulence modeling at a macroscopic scale (Reynolds tensor and turbulent dispersion). To this aim, we lean on the local modeling of turbulence and more precisely on the k - ε RANS models. The methodology of dispersion study, derived thanks to the volume averaging theory, is extended to turbulent flows. Its application includes the simulation, at a microscopic scale, of turbulent flows within a representative elementary volume of the porous media. Applied to channel flows, this analysis shows that even within the turbulent regime, dispersion remains one of the dominating phenomena within the macro-scale modeling framework. A two-scale analysis of the flow allows us to understand the dominating role of the drag force in the kinetic energy transfers between scales. Transfers between the mean part and the turbulent part of the flow are formally derived. This description significantly improves our understanding of the issue of macroscopic modeling of turbulence and leads us to define the sub-filter production and the wake dissipation. A f - f - w >f model is derived. It is based on three balance equations for the turbulent kinetic energy, the viscous dissipation and the wake dissipation. Furthermore, a dynamical predictor for the friction coefficient is proposed. This model is then successfully applied to the study of

  15. Detailed pressure drop measurements in single-and two-phase adiabatic air-water turbulent flows in realistic BWR fuel assembly geometry with spacer grids

    International Nuclear Information System (INIS)

    Caraghiaur, Diana; Frid, Wiktor; Tillmark, Nils

    2004-01-01

    In recent years, advance numerical simulation tools based on CFD methods have been increasingly used in various multi-phase flow applications. One of these is two-phase flow in fuel assemblies of Boiling Water Reactors. The important and often missing aspect of this development is validation of CFD codes against proper experimental data. The purpose of the current paper is to present detailed pressure measurements over a spacer grid in low pressure adiabatic single- and bubbly two-phase flow, which will be used to further develop a CFD code for BWR fuel bundle analysis. The experiments have been carried out in a n asymmetric 24-rod sub-bundle, representing one quarter of a Westinghouse SVEA-96 nuclear reactor fuel assembly. Single-phase flow measurements have been performed at superficial velocities between 0.90-4.50 m/s and in the two-phase flow, which was simulated by air-water mixture, measurements have been performed at void fractions ranging from 4 to 12% and liquid superficial velocity of 4.50 m/s. In order to increase the number of measuring points, five pressure taps were drilled in one of the rods, which was easily moved vertically by a traversing system, covering most of the points in axial direction. Any of the rods in the bundle could be substitute by the pressure sensing rod and the measurements were made for five pressure taps facing-angles. A detailed pressure distribution comparison between single- and two-phase flows for different sub-channel positions and different flow conditions was performed over one of the spacers. In addition, single-phase pressure drop measurements in the upper part of the test section comprising two spacer grids have been carried out. (author)

  16. BOOK REVIEW: Statistical Mechanics of Turbulent Flows

    Science.gov (United States)

    Cambon, C.

    2004-10-01

    This is a handbook for a computational approach to reacting flows, including background material on statistical mechanics. In this sense, the title is somewhat misleading with respect to other books dedicated to the statistical theory of turbulence (e.g. Monin and Yaglom). In the present book, emphasis is placed on modelling (engineering closures) for computational fluid dynamics. The probabilistic (pdf) approach is applied to the local scalar field, motivated first by the nonlinearity of chemical source terms which appear in the transport equations of reacting species. The probabilistic and stochastic approaches are also used for the velocity field and particle position; nevertheless they are essentially limited to Lagrangian models for a local vector, with only single-point statistics, as for the scalar. Accordingly, conventional techniques, such as single-point closures for RANS (Reynolds-averaged Navier-Stokes) and subgrid-scale models for LES (large-eddy simulations), are described and in some cases reformulated using underlying Langevin models and filtered pdfs. Even if the theoretical approach to turbulence is not discussed in general, the essentials of probabilistic and stochastic-processes methods are described, with a useful reminder concerning statistics at the molecular level. The book comprises 7 chapters. Chapter 1 briefly states the goals and contents, with a very clear synoptic scheme on page 2. Chapter 2 presents definitions and examples of pdfs and related statistical moments. Chapter 3 deals with stochastic processes, pdf transport equations, from Kramer-Moyal to Fokker-Planck (for Markov processes), and moments equations. Stochastic differential equations are introduced and their relationship to pdfs described. This chapter ends with a discussion of stochastic modelling. The equations of fluid mechanics and thermodynamics are addressed in chapter 4. Classical conservation equations (mass, velocity, internal energy) are derived from their

  17. Isothermal and Reactive Turbulent Jets in Cross-Flow

    Science.gov (United States)

    Gutmark, Ephraim; Bush, Scott; Ibrahim, Irene

    2004-11-01

    Jets in cross flow have numerous applications including vertical/short takeoff/landing (V/STOL) aircraft, cooling jets for gas turbine blades and combustion air supply inlets in gas turbine engine. The properties exhibited by these jets are dictated by complex three dimensional turbulence structures which form due to the interaction of the jet with the freestream. The isothermal tests are conducted in a wind tunnel measuring the characteristics of air jets injected perpendicular into an otherwise undisturbed air stream. Different nozzle exit geometries of the air jets were tested including circular, triangular and elongated configurations. Jets are injected in single and paired combinations with other jets to measure the effect of mutual interaction on the parameters mentioned. Quantitative velocity fields are obtained using PIV. The data obtained allows the extraction of flow parameters such as jet structure, penetration and mixing. The reacting tests include separate and combined jets of fuel/air mixture utilized to explore the stabilization of combustion at various operating conditions. Different geometrical configurations of transverse jets are tested to determine the shape and combination of jets that will optimize the jets ability to successfully stabilize a flame.

  18. A computer model for dispersed fluid-solid turbulent flows

    International Nuclear Information System (INIS)

    Liu, C.H.; Tulig, T.J.

    1985-01-01

    A computer model is being developed to simulate two-phase turbulent flow phenomena in fluids containing finely dispersed solids. The model is based on a dual-continuum picture of the individual phases and an extension of a two-equation turbulence closure theory. The resulting set of nonlinear partial differential equations are solved using a finite difference procedure with special treatment to promote convergence. The model has been checked against a number of idealized flow problems with known solutions. The authors are currently comparing model predictions with measurements to determine a proper set of turbulence parameters needed for simulating two-phase turbulent flows

  19. Plane waves and structures in turbulent channel flow

    Science.gov (United States)

    Sirovich, L.; Ball, K. S.; Keefe, L. R.

    1990-01-01

    A direct simulation of turbulent flow in a channel is analyzed by the method of empirical eigenfunctions (Karhunen-Loeve procedure, proper orthogonal decomposition). This analysis reveals the presence of propagating plane waves in the turbulent flow. The velocity of propagation is determined by the flow velocity at the location of maximal Reynolds stress. The analysis further suggests that the interaction of these waves appears to be essential to the local production of turbulence via bursting or sweeping events in the turbulent boundary layer, with the additional suggestion that the fast acting plane waves act as triggers.

  20. Instability of water-ice interface under turbulent flow

    Science.gov (United States)

    Izumi, Norihiro; Naito, Kensuke; Yokokawa, Miwa

    2015-04-01

    It is known that plane water-ice interface becomes unstable to evolve into a train of waves. The underside of ice formed on the water surface of rivers are often observed to be covered with ice ripples. Relatively steep channels which discharge melting water from glaciers are characterized by beds covered with a series of steps. Though the flowing agent inducing instability is not water but gas including water vapor, a similar train of steps have been recently observed on the Polar Ice Caps on Mars (Spiral Troughs). They are expected to be caused by the instability of water-ice interface induced by flowing fluid on ice. There have been some studies on this instability in terms of linear stability analysis. Recently, Caporeale and Ridolfi (2012) have proposed a complete linear stability analysis in the case of laminar flow, and found that plane water-ice interface is unstable in the range of sufficiently large Reynolds numbers, and that the important parameters are the Reynolds number, the slope angle, and the water surface temperature. However, the flow inducing instability on water-ice interface in the field should be in the turbulent regime. Extension of the analysis to the case of fully developed turbulent flow with larger Reynolds numbers is needed. We have performed a linear stability analysis on the instability of water-ice interface under turbulent flow conditions with the use of the Reynolds-averaged Navier-Stokes equations with the mixing length turbulent model, the continuity equation of flow, the diffusion/dispersion equation of heat, and the Stefan equation. In order to reproduce the accurate velocity distribution and the heat transfer in the vicinity of smooth walls with the use of the mixing length model, it is important to take into account of the rapid decrease in the mixing length in the viscous sublayer. We employ the Driest model (1956) to the formulation. In addition, as the thermal boundary condition at the water surface, we describe the

  1. Direct numerical simulation of turbulent, chemically reacting flows

    Science.gov (United States)

    Doom, Jeffrey Joseph

    This dissertation: (i) develops a novel numerical method for DNS/LES of compressible, turbulent reacting flows, (ii) performs several validation simulations, (iii) studies auto-ignition of a hydrogen vortex ring in air and (iv) studies a hydrogen/air turbulent diffusion flame. The numerical method is spatially non-dissipative, implicit and applicable over a range of Mach numbers. The compressible Navier-Stokes equations are rescaled so that the zero Mach number equations are discretely recovered in the limit of zero Mach number. The dependent variables are co--located in space, and thermodynamic variables are staggered from velocity in time. The algorithm discretely conserves kinetic energy in the incompressible, inviscid, non--reacting limit. The chemical source terms are implicit in time to allow for stiff chemical mechanisms. The algorithm is readily applicable to complex chemical mechanisms. Good results are obtained for validation simulations. The algorithm is used to study auto-ignition in laminar vortex rings. A nine species, nineteen reaction mechanism for H2/air combustion proposed by Mueller et al. [37] is used. Diluted H 2 at ambient temperature (300 K) is injected into hot air. The simulations study the effect of fuel/air ratio, oxidizer temperature, Lewis number and stroke ratio (ratio of piston stroke length to diameter). Results show that auto--ignition occurs in fuel lean, high temperature regions with low scalar dissipation at a 'most reactive' mixture fraction, zeta MR (Mastorakos et al. [32]). Subsequent evolution of the flame is not predicted by zetaMR; a most reactive temperature TMR is defined and shown to predict both the initial auto-ignition as well as subsequent evolution. For stroke ratios less than the formation number, ignition in general occurs behind the vortex ring and propagates into the core. At higher oxidizer temperatures, ignition is almost instantaneous and occurs along the entire interface between fuel and oxidizer. For stroke

  2. Mechanics of dense suspensions in turbulent channel flows

    NARCIS (Netherlands)

    Picano, F.; Costa, P.; Breugem, W.P.; Brandt, L.

    2015-01-01

    Dense suspensions are usually investigated in the laminar limit where inertial effects are insignificant. When the flow rate is high enough, i.e. at high Reynolds number, the flow may become turbulent and the interaction between solid and liquid phases modifies the turbulence we know in single-phase

  3. Computational analysis of turbulent flow in hydroelectric plant intakes

    Energy Technology Data Exchange (ETDEWEB)

    Bouhadji, L.; Lemon, D.D.; Billenness, D.; Fissel, D. [ASL Environmental Sciences Inc., Sidney, British Columbia (Canada)]. E-mail: lbouhadji@aslenv.com; Djilali, N. [Univ. of Victoria, Dept. of Mechanical Engineering, Victoria, British Columbia (Canada)]. E-mail: ndjilali@uvic.ca

    2003-07-01

    Turbulent flows in the Lower Monumental powerhouse intake are investigated using computational fluid dynamics. Simulations are carried out to gain an understanding into the impact of a grid-like trash rack on the downstream turbulent flow characteristics within the intake. (author)

  4. Particle Entrainment under Turbulent Flow Conditions

    Science.gov (United States)

    Diplas, Panayiotis

    2009-11-01

    Erosion, transportation and deposition of sediments and pollutants influence the hydrosphere, pedosphere, biosphere and atmosphere in profound ways. The global amount of sediment eroded annually over the continental surface of the earth via the action of water and wind is estimated to be around 80 billion metric tons, with 20 of them delivered by rivers to the oceans. This redistribution of material over the surface of the earth affects most of its physical, chemical and biological processes in ways that are exceedingly difficult to comprehend. The criterion currently in use for predicting particle entrainment, originally proposed by Shields in 1936, emphasizes the time-averaged boundary shear stress and therefore is incapable of accounting for the fluctuating forces encountered in turbulent flows. A new criterion that was developed recently in an effort to overcome the limitations of the previous approach will be presented. It is hypothesized that not only the magnitude, but also the duration of energetic near bed turbulent events is relevant in predicting grain removal from the bed surface. It is therefore proposed that the product of force and its duration, or impulse, is a more appropriate and universal criterion for identifying conditions suitable for particle dislodgement. Analytical formulation of the problem and experimental data are used to examine the validity of the new criterion.

  5. The problem of clear air turbulence: Changing perspectives in the ...

    Indian Academy of Sciences (India)

    observation systems, in most cases, aircraft are able to steer clear of regions of adverse ... that weather is a predominant cause of aviation accidents, accounting for ... clear air turbulence, wind shear and wake-vortex effects. Here .... ters a region of turbulence, the pilot informs the ground control about the location and extent.

  6. Flow Visualization in Supersonic Turbulent Boundary Layers.

    Science.gov (United States)

    Smith, Michael Wayne

    This thesis is a collection of novel flow visualizations of two different flat-plate, zero pressure gradient, supersonic, turbulent boundary layers (M = 2.8, Re _theta ~ 82,000, and M = 2.5, Re_ theta ~ 25,000, respectively). The physics of supersonic shear flows has recently drawn increasing attention with the renewed interest in flight at super and hypersonic speeds. This work was driven by the belief that the study of organized, Reynolds -stress producing turbulence structures will lead to improved techniques for the modelling and control of high-speed boundary layers. Although flow-visualization is often thought of as a tool for providing qualitative information about complex flow fields, in this thesis an emphasis is placed on deriving quantitative results from image data whenever possible. Three visualization techniques were applied--'selective cut-off' schlieren, droplet seeding, and Rayleigh scattering. Two experiments employed 'selective cut-off' schlieren. In the first, high-speed movies (40,000 fps) were made of strong density gradient fronts leaning downstream at between 30^circ and 60^ circ and travelling at about 0.9U _infty. In the second experiment, the same fronts were detected with hot-wires and imaged in real time, thus allowing the examination of the density gradient fronts and their associated single-point mass -flux signals. Two experiments employed droplet seeding. In both experiments, the boundary layer was seeded by injecting a stream of acetone through a single point in the wall. The acetone is atomized by the high shear at the wall into a 'fog' of tiny (~3.5mu m) droplets. In the first droplet experiment, the fog was illuminated with copper-vapor laser sheets of various orientations. The copper vapor laser pulses 'froze' the fog motion, revealing a variety of organized turbulence structures, some with characteristic downstream inclinations, others with large-scale roll-up on the scale of delta. In the second droplet experiment, high

  7. Swirl effect on flow structure and mixing in a turbulent jet

    Science.gov (United States)

    Kravtsov, Z. D.; Sharaborin, D. K.; Dulin, V. M.

    2018-03-01

    The paper reports on experimental study of turbulent transport in the initial region of swirling turbulent jets. The particle image velocimetry and planar laser-induced fluorescence techniques are used to investigate the flow structure and passive scalar concentration, respectively, in free air jet with acetone vapor. Three flow cases are considered, viz., non-swirling jets and swirling jets with and without vortex breakdown and central recirculation zone. Without vortex breakdown, the swirl is shown to promote jet mixing with surrounding air and to decrease the jet core length. The vortex core breakdown further enhances mixing as the jet core disintegrates at the nozzle exit.

  8. Quantitative imaging of turbulent and reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Paul, P.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.

  9. Flowing and heat transfer characteristics of turbulent flow in typical rod bundles at rolling motion

    International Nuclear Information System (INIS)

    Yan Binghuo; Yu Lei; Gu Hanyang

    2011-01-01

    The influence mechanism of rolling motion on the flowing and heat transfer characteristics of turbulent flow in typical four rod bundles was investigated with Fluent code. The flowing and heat transfer characteristics of turbulent flow in rod bundles can be affected by rolling motion. But the flowing similarity of turbulent flow in adiabatic and non-adiabatic can not be affected. If the rolling period is small, the radial additional force can make the parameter profiles, the turbulent flowing and heat transfer change greatly. At rolling motion, as the pitch to diameter ratio decreases, especially if it is less than 1.1, the flowing and heat transfer of turbulent flow at rolling motion change significantly. The variation of pitch to diameter ratio can change the profiles of secondary flow and turbulent kinetic energy in cross-section greatly. (authors)

  10. Stereoscopic measurements of particle dispersion in microgravity turbulent flow

    Science.gov (United States)

    Groszmann, Daniel Eduardo

    2001-08-01

    The presence of particles in turbulent flows adds complexity to an already difficult subject. The work described in this research dissertation was intended to characterize the effects of inertia, isolated from gravity, on the dispersion of solid particles in a turbulent air flow. The experiment consisted of releasing particles of various sizes in an enclosed box of fan- generated, homogenous, isotropic, and stationary turbulent airflow and examining the particle behavior in a microgravity environment. The turbulence box was characterized in ground-based experiments using laser Doppler velocimetry techniques. Microgravity was established by free-floating the experiment apparatus during the parabolic trajectory of NASA's KC-135 reduced gravity aircraft. The microgravity generally lasted about 20 seconds, with about fifty parabolas per flight and one flight per day over a testing period of four days. To cover a broad range of flow regimes of interest, particles with Stokes numbers (St) of 1 to 300 were released in the turbulence box. The three- dimensional measurements of particle motion were made using a three-camera stereo imaging system with a particle-tracking algorithm. Digital photogrammetric techniques were used to determine the particle locations in three-dimensional space from the calibrated camera images. The epipolar geometry constraint was used to identify matching particles from the three different views and a direct spatial intersection scheme determined the coordinates of particles in three-dimensional space. Using velocity and acceleration constraints, particles in a sequence of frames were matched resulting in particle tracks and dispersion measurements. The goal was to compare the dispersion of different Stokes number particles in zero gravity and decouple the effects of inertia and gravity on the dispersion. Results show that higher inertia particles disperse less in zero gravity, in agreement with current models. Particles with St ~ 200

  11. Compressible turbulent flows: aspects of prediction and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, R. [TU Muenchen, Garching (Germany). Fachgebiet Stroemungsmechanik

    2007-03-15

    Compressible turbulent flows are an important element of high-speed flight. Boundary layers developing along fuselage and wings of an aircraft and along engine compressor and turbine blades are compressible and mostly turbulent. The high-speed flow around rockets and through rocket nozzles involves compressible turbulence and flow separation. Turbulent mixing and combustion in scramjet engines is another example where compressibility dominates the flow physics. Although compressible turbulent flows have attracted researchers since the fifties of the last century, they are not completely understood. Especially interactions between compressible turbulence and combustion lead to challenging, yet unsolved problems. Direct numerical simulation (DNS) and large-eddy simulation (LES) represent modern powerful research tools which allow to mimic such flows in great detail and to analyze underlying physical mechanisms, even those which cannot be accessed by the experiment. The present lecture provides a short description of these tools and some of their numerical characteristics. It then describes DNS and LES results of fully-developed channel and pipe flow and highlights effects of compressibility on the turbulence structure. The analysis of pressure fluctuations in such flows with isothermal cooled walls leads to the conclusion that the pressure-strain correlation tensor decreases in the wall layer and that the turbulence anisotropy increases, since the mean density falls off relative to the incompressible flow case. Similar increases in turbulence anisotropy due to compressibility are observed in inert and reacting temporal mixing layers. The nature of the pressure fluctuations is however two-facetted. While inert compressible mixing layers reveal wave-propagation effects in the pressure and density fluctuations, compressible reacting mixing layers seem to generate pressure fluctuations that are controlled by the time-rate of change of heat release and mean density

  12. PDF methods for combustion in high-speed turbulent flows

    Science.gov (United States)

    Pope, Stephen B.

    1995-01-01

    This report describes the research performed during the second year of this three-year project. The ultimate objective of the project is extend the applicability of probability density function (pdf) methods from incompressible to compressible turbulent reactive flows. As described in subsequent sections, progress has been made on: (1) formulation and modelling of pdf equations for compressible turbulence, in both homogeneous and inhomogeneous inert flows; and (2) implementation of the compressible model in various flow configurations, namely decaying isotropic turbulence, homogeneous shear flow and plane mixing layer.

  13. On the turbulent flow in piston engines: Coupling of statistical theory quantities and instantaneous turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Zentgraf, Florian; Baum, Elias; Dreizler, Andreas [Fachgebiet Reaktive Strömungen und Messtechnik (RSM), Center of Smart Interfaces (CSI), Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Böhm, Benjamin [Fachgebiet Energie und Kraftwerkstechnik (EKT), Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Peterson, Brian, E-mail: brian.peterson@ed.ac.uk [Department of Mechanical Engineering, School of Engineering, Institute for Energy Systems, University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, Scotland (United Kingdom)

    2016-04-15

    Planar particle image velocimetry (PIV) and tomographic PIV (TPIV) measurements are utilized to analyze turbulent statistical theory quantities and the instantaneous turbulence within a single-cylinder optical engine. Measurements are performed during the intake and mid-compression stroke at 800 and 1500 RPM. TPIV facilitates the evaluation of spatially resolved Reynolds stress tensor (RST) distributions, anisotropic Reynolds stress invariants, and instantaneous turbulent vortical structures. The RST analysis describes distributions of individual velocity fluctuation components that arise from unsteady turbulent flow behavior as well as cycle-to-cycle variability (CCV). A conditional analysis, for which instantaneous PIV images are sampled by their tumble center location, reveals that CCV and turbulence have similar contributions to RST distributions at the mean tumble center, but turbulence is dominant in regions peripheral to the tumble center. Analysis of the anisotropic Reynolds stress invariants reveals the spatial distribution of axisymmetric expansion, axisymmetric contraction, and 3D isotropy within the cylinder. Findings indicate that the mid-compression flow exhibits a higher tendency toward 3D isotropy than the intake flow. A novel post-processing algorithm is utilized to classify the geometry of instantaneous turbulent vortical structures and evaluate their frequency of occurrence within the cylinder. Findings are coupled with statistical theory quantities to provide a comprehensive understanding of the distribution of turbulent velocity components, the distribution of anisotropic states of turbulence, and compare the turbulent vortical flow distribution that is theoretically expected to what is experimentally observed. The analyses reveal requisites of important turbulent flow quantities and discern their sensitivity to the local flow topography and engine operation.

  14. Using Indirect Turbulence Measurements for Real-Time Parameter Estimation in Turbulent Air

    Science.gov (United States)

    Martos, Borja; Morelli, Eugene A.

    2012-01-01

    The use of indirect turbulence measurements for real-time estimation of parameters in a linear longitudinal dynamics model in atmospheric turbulence was studied. It is shown that measuring the atmospheric turbulence makes it possible to treat the turbulence as a measured explanatory variable in the parameter estimation problem. Commercial off-the-shelf sensors were researched and evaluated, then compared to air data booms. Sources of colored noise in the explanatory variables resulting from typical turbulence measurement techniques were identified and studied. A major source of colored noise in the explanatory variables was identified as frequency dependent upwash and time delay. The resulting upwash and time delay corrections were analyzed and compared to previous time shift dynamic modeling research. Simulation data as well as flight test data in atmospheric turbulence were used to verify the time delay behavior. Recommendations are given for follow on flight research and instrumentation.

  15. Overview of edge turbulence and zonal flow studies on TEXTOR

    International Nuclear Information System (INIS)

    Xu, Y.; Kraemer-Flecken, A.; Reiser, D.

    2008-01-01

    In the TEXTOR tokamak, the edge turbulence properties and turbulence-associated zonal flows have been systematically investigated both experimentally and theoretically. The experimental results include the investigation of self-organized criticality (SOC) behavior, the intermittent blob transport and the geodesic acoustic mode (GAM) zonal flows. During the Dynamic Ergodic Divertor (DED) operation in TEXTOR, the impact of an ergodized plasma boundary on edge turbulence, turbulent transport and the fluctuation propagation has also been studied in detail. The results show substantial influence by the DED on edge turbulence. The theoretical simulations for TEXTOR parameters show characteristic features of the GAM flows and strong reduction of the blob transport by the DED at the plasma periphery. Moreover, the modelling reveals the importance of the Reynolds stress in driving mean (or zonal) flows at the plasma edge in the ohmic discharge phase in TEXTOR. (author)

  16. Turbulent flow simulation of the NREL S809 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Guerri, Ouahiba; Bouhadef, Khadidja; Harhad, Ameziane

    2006-05-15

    Numerical computations are carried out for the NREL S809 airfoil. The flow is modelled using an unsteady incompressible Reynolds Averaged Navier-Stokes solver. Two turbulence models (SST {kappa}/{omega}of Menter and RNG {kappa}/{epsilon}) are applied to close the RANS equations. All computations are performed assuming fully turbulent flow. The flow field is analyzed at various angles of attack from 0 to 20 degrees. Lift and drag forces are obtained from the computations by integrating the pressure and shear stress over the blade surface. The performance of the two turbulence models is compared and the influence of the free stream turbulence intensity is checked. The results confirm the satisfactory performance of the SST {kappa}/{omega} model of Menter for modelling turbulent flow around airfoils. (author)

  17. Experimental study of turbulent flows through pipe bends

    OpenAIRE

    Kalpakli, Athanasia

    2012-01-01

    This thesis deals with turbulent flows in 90 degree curved pipes of circular cross-section. The flow cases investigated experimentally are turbulent flow with and without an additional motion, swirling or pulsating, superposed on the primary flow. The aim is to investigate these complex flows in detail both in terms of statistical quantities as well as vortical structures that are apparent when curvature is present. Such a flow field can contain strong secondary flow in a plane normal to the ...

  18. Numerical simulation of turbulent buoyant flows in horizontal channels

    International Nuclear Information System (INIS)

    Seiter, C.

    1995-09-01

    A numerical method is presented, to calculate the three-dimensional, time-dependent large scale structure of turbulent buoyant flows. The subject of the study is the Rayleigh-Benard-convection with air (Pr=0.71, Ra=2.5 10 6 , 10 7 ) and sodium (Pr=0.006, Ra=8.4 10 4 , 2.5 10 5 , 10 6 , 10 7 ) and a fluid layer with water and an internal heat source (Pr=7.0, Ra I =1.5 10 10 ) at moderate and high Rayleigh-numbers. The goal of the work is both, the analysis of structures of instantaneous as well as the statistical analysis of spatially and/or time averaged data, to give a contribution to the investigation of the characteristics of turbulent natural convection mainly in fluids with small Prandtl-numbers. The large eddy simulation of natural convection requires the development of appropriate momentum and heat subgrid scale models and the formulation of new boundary conditions. The used energy-length-models in the computer code TURBIT are extended methodically by modification of the characteristic length scales of the sub scale turbulence. The reduction or the increase of the sub scale turbulence correlations, caused by the influence of solid boundaries or the stratification, is considered. In the same way the new boundary conditions for the diffusive terms of the conservation equations are seen to be necessary, when the thermal or in the case of liquid metals the more critical hydrodynamic boundary layer is resolved insufficiently or not at all. The extended and new methods, models and boundary conditions, which enabled the realization of the planned simulations, are presented. (orig.)

  19. THE DENSITY DISTRIBUTION IN TURBULENT BISTABLE FLOWS

    International Nuclear Information System (INIS)

    Gazol, Adriana; Kim, Jongsoo

    2013-01-01

    We numerically study the volume density probability distribution function (n-PDF) and the column density probability distribution function (Σ-PDF) resulting from thermally bistable turbulent flows. We analyze three-dimensional hydrodynamic models in periodic boxes of 100 pc by side, where turbulence is driven in the Fourier space at a wavenumber corresponding to 50 pc. At low densities (n ∼ –3 ), the n-PDF is well described by a lognormal distribution for an average local Mach number ranging from ∼0.2 to ∼5.5. As a consequence of the nonlinear development of thermal instability (TI), the logarithmic variance of the distribution of the diffuse gas increases with M faster than in the well-known isothermal case. The average local Mach number for the dense gas (n ∼> 7.1 cm –3 ) goes from ∼1.1 to ∼16.9 and the shape of the high-density zone of the n-PDF changes from a power law at low Mach numbers to a lognormal at high M values. In the latter case, the width of the distribution is smaller than in the isothermal case and grows slower with M. At high column densities, the Σ-PDF is well described by a lognormal for all of the Mach numbers we consider and, due to the presence of TI, the width of the distribution is systematically larger than in the isothermal case but follows a qualitatively similar behavior as M increases. Although a relationship between the width of the distribution and M can be found for each one of the cases mentioned above, these relations are different from those of the isothermal case.

  20. Modeling variable density turbulence in the wake of an air-entraining transom stern

    Science.gov (United States)

    Hendrickson, Kelli; Yue, Dick

    2015-11-01

    This work presents a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flows in the near wake region of a transom stern. This three-dimensional flow is comprised of convergent corner waves that originate from the body and collide on the ship center plane forming the ``rooster tail'' that then widens to form the divergent wave train. These violent free-surface flows and breaking waves are characterized by significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) ~ 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. To whit, this work utilizes high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM) to capture the turbulence and large scale air entrainment. Analysis of the simulation results across and along the wake for the TMF budget and turbulent anisotropy provide the physical basis of the development of multiphase turbulence closure models. Performance of isotropic and anisotropic turbulent mass flux closure models will be presented. Sponsored by the Office of Naval Research.

  1. Two-dimensional turbulent flows on a bounded domain

    NARCIS (Netherlands)

    Kramer, W.

    2006-01-01

    Large-scale flows in the oceans and the atmosphere reveal strong similarities with purely two-dimensional flows. One of the most typical features is the cascade of energy from smaller flow scales towards larger scales. This is opposed to three-dimensional turbulence where larger flow structures

  2. Laminar and Turbulent Flow Calculations for the Hifire-5B Flight Test

    Science.gov (United States)

    2017-11-01

    STATES AIR FORCE AFRL-RQ-WP-TP-2017-0172 LAMINAR AND TURBULENT FLOW CALCULATIONS FOR THE HIFIRE-5B FLIGHT TEST Roger L. Kimmel Hypersonic Sciences...stationary instabilities of the three-dimensional flow as the grid becomes finer. It may not be possible to obtain a strictly laminar basic state on a very...fine grid. A basic state solution was desired for the laminar flow calculations, and the oscillations observed in Fig. 3 were judged to be undesirable

  3. Validation of turbulence models for LMFBR outlet plenum flows

    International Nuclear Information System (INIS)

    Chen, Y.B.; Golay, M.W.

    1977-01-01

    Small scale experiments involving water flows are used to provide mean flow and turbulence field data for LMFBR outlet plenum flows. Measurements are performed at Reynolds number (Re) values of 33000 and 70000 in a 1/15 - scale FFTF geometry and at Re = 35000 in a 3/80-scale CRBR geometry. The experimental behavior is predicted using two different two-equation turbulence model computer programs, TEACH-T and VARR-II. It is found that the qualitative nature of the flow field within the plenum depends strongly upon the distribution of the mean inlet flow field, importantly also upon the degree of inlet turbulence, and also upon the turbulent momentum exchange model used in the calculations. In the FFTF geometry, the TEACH-T predictions agree well with the experiments. 7 refs

  4. Regulation of ETG turbulence by TEM driven zonal flows

    Science.gov (United States)

    Asahi, Yuuichi; Ishizawa, Akihiro; Watanabe, Tomohiko; Tsutsui, Hiroaki; Tsuji-Iio, Shunji

    2013-10-01

    Anomalous heat transport driven by electron temperature gradient (ETG) turbulence is investigated by means of gyrokinetic simulations. It is found that the ETG turbulence can be suppressed by zonal flows driven by trapped electron modes (TEMs). The TEMs appear in a statistically steady state of ETG turbulence and generate zonal flows, while its growth rate is much smaller than those of ETGs. The TEM-driven zonal flows with lower radial wave numbers are more strongly generated than those driven by ETG modes, because of the higher zonal flow response to a density source term. An ExB shearing rate of the TEM-driven zonal flows is strong enough to suppress the long-wavelength ETG modes which make the main contribution to the turbulent transport.

  5. Application of HPCN to direct numerical simulation of turbulent flow

    NARCIS (Netherlands)

    Verstappen, RWCP; Veldman, AEP; van Waveren, GM; Hertzberger, B; Sloot, P

    1997-01-01

    This poster shows how HPCN can be used as a path-finding tool for turbulence research. The parallelization of direct numerical simulation of turbulent flow using the data-parallel model and Fortran 95 constructs is treated, both on a shared memory and a distributed memory computer.

  6. Aggregate formation in 3D turbulent-like flows

    NARCIS (Netherlands)

    Dominguez, A.; Aartrijk, van M.; Castello, Del L.; Clercx, H.J.H.; Geurts, B.; Clercx, H

    2006-01-01

    Aggregate formation is an important process in industrial and environ mental turbulent flows. Two examples in the environmental area, where turbulent aggregate formation takes place, are raindrop formation in clouds and Marine Snow (aggregate) formation in the upper layer in the oceans. The

  7. Direct numerical simulation of the passive scalar field in a two-dimensional turbulent channel flow

    International Nuclear Information System (INIS)

    Kasagi, N.; Tomita, Y.; Kuroda, A.

    1991-01-01

    This paper reports on a direct numerical simulation (DNS) of the fully developed thermal field in a two-dimensional turbulent channel flow of air that was carried out. The iso-flux condition is imposed on the walls so that the local mean temperature linearly increases in the streamwise direction. The computation was executed on 1,589,248 grid points by using a spectral method. The statistics obtained include rms velocity and temperature fluctuations, Reynolds stresses, turbulent heat fluxes and other higher order correlations. They are compared mainly with the DNS data obtained by Kim and Moin (1987) and Kim (1987) in a higher Reynolds number flow with isothermal walls. Agreement between these two results is generally good. Each term in the budget equations of temperature variance, its dissipation rate and turbulent heat fluxes is also calculated in order to establish a data base of convective heat transfer for thermal turbulence modeling

  8. Large-eddy simulations for turbulent flows

    International Nuclear Information System (INIS)

    Husson, S.

    2007-07-01

    The aim of this work is to study the impact of thermal gradients on a turbulent channel flow with imposed wall temperatures and friction Reynolds numbers of 180 and 395. In this configuration, temperature variations can be strong and induce significant variations of the fluid properties. We consider the low Mach number equations and carry out large eddy simulations. We first validate our simulations thanks to comparisons of some of our LES results with DNS data. Then, we investigate the influence of the variations of the conductivity and the viscosity and show that we can assume these properties constant only for weak temperature gradients. We also study the thermal sub-grid-scale modelling and find no difference when the sub-grid-scale Prandtl number is taken constant or dynamically calculated. The analysis of the effects of strongly increasing the temperature ratio mainly shows a dissymmetry of the profiles. The physical mechanism responsible of these modifications is explained. Finally, we use semi-local scaling and the Van Driest transformation and we show that they lead to a better correspondence of the low and high temperature ratios profiles. (author)

  9. Theoretical and numerical study of highly anisotropic turbulent flows

    NARCIS (Netherlands)

    Biferale, L.; Daumont, I.; Lanotte, A.; Toschi, F.

    2004-01-01

    We present a detailed numerical study of anisotropic statistical fluctuations in stationary, homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors, and the relative importance of isotropic and anisotropic fluctuations at different scales on a direct numerical

  10. Distillation and Visualization of Spatiotemporal Structures in Turbulent Flow Fields

    International Nuclear Information System (INIS)

    Hege, Hans-Christian; Hotz, Ingrid; Kasten, Jens

    2011-01-01

    Although turbulence suggests randomness and disorder, organized motions that cause spatiotemporal 'coherent structures' are of particular interest. Revealing such structures in numerically given turbulent or semi-turbulent flows is of interest both for practically working engineers and theoretically oriented physicists. However, as long as there is no common agreement about the mathematical definition of coherent structures, extracting such structures is a vaguely defined task. Instead of searching for a general definition, the data visualization community takes a pragmatic approach and provides various tool chains implemented in flexible software frameworks that allow the user to extract distinct flow field structures. Thus physicists or engineers can select those flow structures which might advance their insight best. We present different approaches to distill important features from turbulent flows and discuss the necessary steps to be taken on the example of Lagrangian coherent structures.

  11. The role of pair dispersion in turbulent flow

    DEFF Research Database (Denmark)

    Bourgoin, M.; Ouellette, N.T.; Xu, H.T.

    2006-01-01

    Mixing and transport in turbulent flows - which have strong local concentration fluctuations - essential in many natural and industrial systems including reactions in chemical mixers, combustion in engines and burners, droplet formation in warm clouds, and biological odor detection and chemotaxis...

  12. Zonal flow generation in collisionless trapped electron mode turbulence

    International Nuclear Information System (INIS)

    Anderson, J; Nordman, H; Singh, R; Weiland, J

    2006-01-01

    In the present work the generation of zonal flows in collisionless trapped electron mode (TEM) turbulence is studied analytically. A reduced model for TEM turbulence is utilized based on an advanced fluid model for reactive drift waves. An analytical expression for the zonal flow growth rate is derived and compared with the linear TEM growth, and its scaling with plasma parameters is examined for typical tokamak parameter values

  13. Chaotic Dynamos Generated by a Turbulent Flow of Liquid Sodium

    International Nuclear Information System (INIS)

    Ravelet, F.; Monchaux, R.; Aumaitre, S.; Chiffaudel, A.; Daviaud, F.; Dubrulle, B.; Berhanu, M.; Fauve, S.; Mordant, N.; Petrelis, F.; Bourgoin, M.; Odier, Ph.; Plihon, N.; Pinton, J.-F.; Volk, R.

    2008-01-01

    We report the observation of several dynamical regimes of the magnetic field generated by a turbulent flow of liquid sodium (VKS experiment). Stationary dynamos, transitions to relaxation cycles or to intermittent bursts, and random field reversals occur in a fairly small range of parameters. Large scale dynamics of the magnetic field result from the interactions of a few modes. The low dimensional nature of these dynamics is not smeared out by the very strong turbulent fluctuations of the flow

  14. Comparison of PDF and Moment Closure Methods in the Modeling of Turbulent Reacting Flows

    Science.gov (United States)

    Norris, Andrew T.; Hsu, Andrew T.

    1994-01-01

    In modeling turbulent reactive flows, Probability Density Function (PDF) methods have an advantage over the more traditional moment closure schemes in that the PDF formulation treats the chemical reaction source terms exactly, while moment closure methods are required to model the mean reaction rate. The common model used is the laminar chemistry approximation, where the effects of turbulence on the reaction are assumed negligible. For flows with low turbulence levels and fast chemistry, the difference between the two methods can be expected to be small. However for flows with finite rate chemistry and high turbulence levels, significant errors can be expected in the moment closure method. In this paper, the ability of the PDF method and the moment closure scheme to accurately model a turbulent reacting flow is tested. To accomplish this, both schemes were used to model a CO/H2/N2- air piloted diffusion flame near extinction. Identical thermochemistry, turbulence models, initial conditions and boundary conditions are employed to ensure a consistent comparison can be made. The results of the two methods are compared to experimental data as well as to each other. The comparison reveals that the PDF method provides good agreement with the experimental data, while the moment closure scheme incorrectly shows a broad, laminar-like flame structure.

  15. Modeling of turbulent bubbly flows; Modelisation des ecoulements turbulents a bulles

    Energy Technology Data Exchange (ETDEWEB)

    Bellakhal, Ghazi

    2005-03-15

    The two-phase flows involve interfacial interactions which modify significantly the structure of the mean and fluctuating flow fields. The design of the two-fluid models adapted to industrial flows requires the taking into account of the effect of these interactions in the closure relations adopted. The work developed in this thesis concerns the development of first order two-fluid models deduced by reduction of second order closures. The adopted reasoning, based on the principle of decomposition of the Reynolds stress tensor into two statistically independent contributions turbulent and pseudo-turbulent parts, allows to preserve the physical contents of the second order relations closure. Analysis of the turbulence structure in two basic flows: homogeneous bubbly flows uniform and with a constant shear allows to deduce a formulation of the two-phase turbulent viscosity involving the characteristic scales of bubbly turbulence, as well as an analytical description of modification of the homogeneous turbulence structure induced by the bubbles presence. The Eulerian two-fluid model was then generalized with the case of the inhomogeneous flows with low void fractions. The numerical results obtained by the application of this model integrated in the computer code MELODIF in the case of free sheared turbulent bubbly flow of wake showed a satisfactory agreement with the experimental data and made it possible to analyze the modification of the characteristic scales of such flow by the interfacial interactions. The two-fluid first order model is generalized finally with the case of high void fractions bubbly flows where the hydrodynamic interactions between the bubbles are not negligible any more. (author)

  16. Impact of large scale flows on turbulent transport

    Energy Technology Data Exchange (ETDEWEB)

    Sarazin, Y [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Grandgirard, V [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Dif-Pradalier, G [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Fleurence, E [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Garbet, X [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Ghendrih, Ph [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Bertrand, P [LPMIA-Universite Henri Poincare Nancy I, Boulevard des Aiguillettes BP239, 54506 Vandoe uvre-les-Nancy (France); Besse, N [LPMIA-Universite Henri Poincare Nancy I, Boulevard des Aiguillettes BP239, 54506 Vandoe uvre-les-Nancy (France); Crouseilles, N [IRMA, UMR 7501 CNRS/Universite Louis Pasteur, 7 rue Rene Descartes, 67084 Strasbourg (France); Sonnendruecker, E [IRMA, UMR 7501 CNRS/Universite Louis Pasteur, 7 rue Rene Descartes, 67084 Strasbourg (France); Latu, G [LSIIT, UMR 7005 CNRS/Universite Louis Pasteur, Bd Sebastien Brant BP10413, 67412 Illkirch (France); Violard, E [LSIIT, UMR 7005 CNRS/Universite Louis Pasteur, Bd Sebastien Brant BP10413, 67412 Illkirch (France)

    2006-12-15

    The impact of large scale flows on turbulent transport in magnetized plasmas is explored by means of various kinetic models. Zonal flows are found to lead to a non-linear upshift of turbulent transport in a 3D kinetic model for interchange turbulence. Such a transition is absent from fluid simulations, performed with the same numerical tool, which also predict a much larger transport. The discrepancy cannot be explained by zonal flows only, despite they being overdamped in fluids. Indeed, some difference remains, although reduced, when they are artificially suppressed. Zonal flows are also reported to trigger transport barriers in a 4D drift-kinetic model for slab ion temperature gradient (ITG) turbulence. The density gradient acts as a source drive for zonal flows, while their curvature back stabilizes the turbulence. Finally, 5D simulations of toroidal ITG modes with the global and full-f GYSELA code require the equilibrium density function to depend on the motion invariants only. If not, the generated strong mean flows can completely quench turbulent transport.

  17. Impact of large scale flows on turbulent transport

    International Nuclear Information System (INIS)

    Sarazin, Y; Grandgirard, V; Dif-Pradalier, G; Fleurence, E; Garbet, X; Ghendrih, Ph; Bertrand, P; Besse, N; Crouseilles, N; Sonnendruecker, E; Latu, G; Violard, E

    2006-01-01

    The impact of large scale flows on turbulent transport in magnetized plasmas is explored by means of various kinetic models. Zonal flows are found to lead to a non-linear upshift of turbulent transport in a 3D kinetic model for interchange turbulence. Such a transition is absent from fluid simulations, performed with the same numerical tool, which also predict a much larger transport. The discrepancy cannot be explained by zonal flows only, despite they being overdamped in fluids. Indeed, some difference remains, although reduced, when they are artificially suppressed. Zonal flows are also reported to trigger transport barriers in a 4D drift-kinetic model for slab ion temperature gradient (ITG) turbulence. The density gradient acts as a source drive for zonal flows, while their curvature back stabilizes the turbulence. Finally, 5D simulations of toroidal ITG modes with the global and full-f GYSELA code require the equilibrium density function to depend on the motion invariants only. If not, the generated strong mean flows can completely quench turbulent transport

  18. Turbulent boundary layer in high Rayleigh number convection in air.

    Science.gov (United States)

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  19. Turbulence-chemistry interactions in reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, R.S.; Carter, C.D. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Interactions between turbulence and chemistry in nonpremixed flames are investigated through multiscalar measurements. Simultaneous point measurements of major species, NO, OH, temperature, and mixture fraction are obtained by combining spontaneous Raman scattering, Rayleigh scattering, and laser-induced fluorescence (LIF). NO and OH fluorescence signals are converted to quantitative concentrations by applying shot-to-shot corrections for local variations of the Boltzmann fraction and collisional quenching rate. These measurements of instantaneous thermochemical states in turbulent flames provide insights into the fundamental nature of turbulence-chemistry interactions. The measurements also constitute a unique data base for evaluation and refinement of turbulent combustion models. Experimental work during the past year has focused on three areas: (1) investigation of the effects of differential molecular diffusion in turbulent combustion: (2) experiments on the effects of Halon CF{sub 3}Br, a fire retardant, on the structure of turbulent flames of CH{sub 4} and CO/H{sub 2}/N{sub 2}; and (3) experiments on NO formation in turbulent hydrogen jet flames.

  20. Turbulent Mixing of Primary and Secondary Flow Streams in a Rocket-Based Combined Cycle Engine

    Science.gov (United States)

    Cramer, J. M.; Greene, M. U.; Pal, S.; Santoro, R. J.; Turner, Jim (Technical Monitor)

    2002-01-01

    This viewgraph presentation gives an overview of the turbulent mixing of primary and secondary flow streams in a rocket-based combined cycle (RBCC) engine. A significant RBCC ejector mode database has been generated, detailing single and twin thruster configurations and global and local measurements. On-going analysis and correlation efforts include Marshall Space Flight Center computational fluid dynamics modeling and turbulent shear layer analysis. Potential follow-on activities include detailed measurements of air flow static pressure and velocity profiles, investigations into other thruster spacing configurations, performing a fundamental shear layer mixing study, and demonstrating single-shot Raman measurements.

  1. Nonlinear Flow Generation By Electrostatic Turbulence In Tokamaks

    International Nuclear Information System (INIS)

    Wang, W.X.; Diamond, P.H.; Hahm, T.S.; Ethier, S.; Rewoldt, G.; Tang, W.M.

    2010-01-01

    Global gyrokinetic simulations have revealed an important nonlinear flow generation process due to the residual stress produced by electrostatic turbulence of ion temperature gradient (ITG) modes and trapped electron modes (TEM). In collisionless TEM (CTEM) turbulence, nonlinear residual stress generation by both the fluctuation intensity and the intensity gradient in the presence of broken symmetry in the parallel wave number spectrum is identified for the first time. Concerning the origin of the symmetry breaking, turbulence self-generated low frequency zonal flow shear has been identified to be a key, universal mechanism in various turbulence regimes. Simulations reported here also indicate the existence of other mechanisms beyond E - B shear. The ITG turbulence driven 'intrinsic' torque associated with residual stress is shown to increase close to linearly with the ion temperature gradient, in qualitative agreement with experimental observations in various devices. In CTEM dominated regimes, a net toroidal rotation is driven in the cocurrent direction by 'intrinsic' torque, consistent with the experimental trend of observed intrinsic rotation. The finding of a 'flow pinch' in CTEM turbulence may offer an interesting new insight into the underlying dynamics governing the radial penetration of modulated flows in perturbation experiments. Finally, simulations also reveal highly distinct phase space structures between CTEM and ITG turbulence driven momentum, energy and particle fluxes, elucidating the roles of resonant and non-resonant particles.

  2. Stability and suppression of turbulence in relaxing molecular gas flows

    CERN Document Server

    Grigoryev, Yurii N

    2017-01-01

    This book presents an in-depth systematic investigation of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The work describes the theoretical foundations of a new way to control stability and laminar turbulent transitions in aerodynamic flows. It develops hydrodynamic models for describing thermal nonequilibrium gas flows which allow the consideration of suppression of inviscid acoustic waves in 2D shear flows. Then, nonlinear evolution of large-scale vortices and Kelvin-Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both linear and nonlinear classical energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of the book is to show the new dissipative effect, which can be used for flo...

  3. The near-field region behaviour of hydrogen-air turbulent non-premixed flame

    Energy Technology Data Exchange (ETDEWEB)

    Tabet, F. [EDF R and D, EIFER (European Institute for Energy Research), Karlsruhe (Germany); Sarh, B. [Centre National de la Recherche Scientifique (CNRS), Institut de Combustion, Aerothermique, Reactivite et Environnement (ICARE), Orleans (France); Universite d' Orleans, Institut Universitaire de Technologie d' Orleans (France); Birouk, M. [University of Manitoba, Department of Mechanical and Manufacturing Engineering, Winnipeg, MB (Canada); Goekalp, I. [Centre National de la Recherche Scientifique (CNRS), Institut de Combustion, Aerothermique, Reactivite et Environnement (ICARE), Orleans (France)

    2012-02-15

    A computational study of mixing process and air entrainment in hydrogen turbulent non-premixed flame characterized by strong gradients of velocity and density at the inlet section is presented. Different approaches for turbulence-combustion interactions are evaluated in the framework of RSM (Reynolds Stress Model) turbulence model and the computational results are compared to experimental data. The combustion models investigated are SLFM (Steady Laminar Flamelet Model) and EDC (Eddy Dissipation Concept). Mixing is described by oxygen atom mixture fraction and air entrainment is characterized by gas mass flow rate. Computational results are compared to measurements in physical space at two locations (the first one represent the near-field region and the second one the far-field region). At the first station, the results showed an overestimation of mixing and air entrainment and an inaccurate consumption of O{sub 2} and H{sub 2}. In addition, the predictions are found to be sensitive to combustion modelling. At the second station, the description of mixing and air entrainment is improved and the predictions are in reasonably agreement with experimental data. Less dependency to combustion modelling is noticed in this location. Further analysis of the near-field region based on the turbulence time scales revealed that turbulence is not well developed in this region of the flame. (orig.)

  4. Multigrid solution of incompressible turbulent flows by using two-equation turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, X.; Liu, C. [Front Range Scientific Computations, Inc., Denver, CO (United States); Sung, C.H. [David Taylor Model Basin, Bethesda, MD (United States)

    1996-12-31

    Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.

  5. A Dual-Plane PIV Study of Turbulent Heat Transfer Flows

    Science.gov (United States)

    Wernet, Mark P.; Wroblewski, Adam C.; Locke, Randy J.

    2016-01-01

    Thin film cooling is a widely used technique in turbomachinery and rocket propulsion applications, where cool injection air protects a surface from hot combustion gases. The injected air typically has a different velocity and temperature from the free stream combustion flow, yielding a flow field with high turbulence and large temperature differences. These thin film cooling flows provide a good test case for evaluating computational model prediction capabilities. The goal of this work is to provide a database of flow field measurements for validating computational flow prediction models applied to turbulent heat transfer flows. In this work we describe the application of a Dual-Plane Particle Image Velocimetry (PIV) technique in a thin film cooling wind tunnel facility where the injection air stream velocity and temperatures are varied in order to provide benchmark turbulent heat transfer flow field measurements. The Dual-Plane PIV data collected include all three components of velocity and all three components of vorticity, spanning the width of the tunnel at multiple axial measurement planes.

  6. Flow in air conditioned rooms

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1974-01-01

    Flow in air conditioned r ooms is examined by means of model experiments . The different gearnetries giving unsteady, steady three- dimensional and steady twodimensional flow are determined . Velacity profiles and temperature profiles are measured in some of the geometries. A numerical solution...... of the flow equations is demonstrated and the flow in air conditioned rooms in case of steady two dimensional flow is predi cted. Compari son with measured results is shown i n the case of small Archimedes numbers, and predictions are shown at high Archimedes numbers. A numerical prediction of f low and heat...

  7. A new energy transfer model for turbulent free shear flow

    Science.gov (United States)

    Liou, William W.-W.

    1992-01-01

    A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.

  8. Turbulent water flow over rough bed - part I

    Energy Technology Data Exchange (ETDEWEB)

    Ksiazek, Leszek; Bartnik, Wojciech; Rumian, Jacek; Zagorowski, Pawel, E-mail: rmksiaze@cyf-kr.edu.pl [Department of Hydraulic Engineering and Geotechnics, University of Agriculture in Krakow, Mickiewicza Avenue 24/28, 30-059 Krakow (Poland)

    2011-12-22

    Restitution of diadromic fish requires restoration of ecological continuity of watercourses, e.g. by building fish ladders. Directions for fish ladders require that ichthyofauna is granted accurate conditions of water flow. To describe them, average values are used, that do not convey e.g. turbulence intensity or its spatial differentiation. The paper presents results of research on the turbulent water flow over the rough bed. The measurements were carried out with high sampling frequency probe for three velocity components. Bed configuration, distribution of average velocities and turbulence intensity were defined. The range of bed influence for the discussed water flow conditions was ascertained to reach the maximum of about 0.25 of height and decline at 0.35. The lowest turbulence and relatively lowest velocities near the bed may promote successive stages of ichthyofauna development.

  9. The structure of turbulence in a rapid tidal flow.

    Science.gov (United States)

    Milne, I A; Sharma, R N; Flay, R G J

    2017-08-01

    The structure of turbulence in a rapid tidal flow is characterized through new observations of fundamental statistical properties at a site in the UK which has a simple geometry and sedate surface wave action. The mean flow at the Sound of Islay exceeded 2.5 m s -1 and the turbulent boundary layer occupied the majority of the water column, with an approximately logarithmic mean velocity profile identifiable close to the seabed. The anisotropic ratios, spectral scales and higher-order statistics of the turbulence generally agree well with values reported for two-dimensional open channels in the laboratory and other tidal channels, therefore providing further support for the application of universal models. The results of the study can assist in developing numerical models of turbulence in rapid tidal flows such as those proposed for tidal energy generation.

  10. Forces on zonal flows in tokamak core turbulence

    International Nuclear Information System (INIS)

    Hallatschek, K.; Itoh, K.

    2005-01-01

    The saturation of stationary zonal flows (ZF) in the core of a tokamak has been analyzed in numerical fluid turbulence computer studies. The model was chosen to properly represent the kinetic global plasma flows, i.e., undamped stationary toroidal or poloidal flows and Landau damped geodesic acoustic modes. Reasonable agreement with kinetic simulations in terms of magnitude of transport and occurrence of the Dimits shift was verified. Contrary to common perception, in the final saturated state of turbulence and ZFs, the customary perpendicular Reynolds stress continues to drive the ZFs. The force balance is established by the essentially quasilinear parallel Reynolds stress acting on the parallel return flows required by incompressibility. (author)

  11. Splitting of turbulent spot in transitional pipe flow

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.

    2017-11-01

    Recent study (Wu et al., PNAS, 1509451112, 2015) demonstrated the feasibility and accuracy of direct computation of the Osborne Reynolds' pipe transition problem without the unphysical, axially periodic boundary condition. Here we use this approach to study the splitting of turbulent spot in transitional pipe flow, a feature first discovered by E.R. Lindgren (Arkiv Fysik 15, 1959). It has been widely believed that spot splitting is a mysterious stochastic process that has general implications on the lifetime and sustainability of wall turbulence. We address the following two questions: (1) What is the dynamics of turbulent spot splitting in pipe transition? Specifically, we look into any possible connection between the instantaneous strain rate field and the spot splitting. (2) How does the passive scalar field behave during the process of pipe spot splitting. In this study, the turbulent spot is introduced at the inlet plane through a sixty degree wide numerical wedge within which fully-developed turbulent profiles are assigned over a short time interval; and the simulation Reynolds numbers are 2400 for a 500 radii long pipe, and 2300 for a 1000 radii long pipe, respectively. Numerical dye is tagged on the imposed turbulent spot at the inlet. Splitting of the imposed turbulent spot is detected very easily. Preliminary analysis of the DNS results seems to suggest that turbulent spot slitting can be easily understood based on instantaneous strain rate field, and such spot splitting may not be relevant in external flows such as the flat-plate boundary layer.

  12. Chemical Reactions in Turbulent Mixing Flows

    Science.gov (United States)

    1992-07-01

    Chemically-Reacting, Gas-Phase Turbulent Jets (Gilbrech 1991), that explored Reynolds number effects on turbulent flame length and the influence of...and asymptotes to a constant value beyond the flame tip. The main result of the work is that the flame length , as estimated from the temperature...8217. Specifically, the normalized flame length Lf/d* displays a linear dependence on the stoichiometric mixture ratio 0, with a slope that decreases from Re "• 1.0

  13. Turbulent Flow Characteristics and Dynamics Response of a Vertical-Axis Spiral Rotor

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2013-05-01

    Full Text Available The concept of a vertical-axis spiral wind rotor is proposed and implemented in the interest of adapting it to air flows from all directions and improving the rotor’s performance. A comparative study is performed between the proposed rotor and conventional Savonius rotor. Turbulent flow features near the rotor blades are simulated with Spalart-Allmaras turbulence model. The torque coefficient of the proposed rotor is satisfactory in terms of its magnitude and variation through the rotational cycle. Along the height of the rotor, distinct spatial turbulent flow patterns vary with the upstream air velocity. Subsequent experiments involving a disk generator gives an in-depth understanding of the dynamic response of the proposed rotor under different operation conditions. The optimal tip-speed ratio of the spiral rotor is 0.4–0.5, as is shown in both simulation and experiment. Under normal and relative-motion flow conditions, and within the range of upstream air velocity from 1 to 12 m/s, the output voltage of the generator was monitored and statistically analyzed. It was found that normal air velocity fluctuations lead to a non-synchronous correspondence between upstream air velocity and output voltage. In contrast, the spiral rotor’s performance when operating from the back of a moving truck was significantly different to its performance under the natural conditions.

  14. Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis

    KAUST Repository

    Wacks, Daniel H.

    2016-12-02

    The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H-2-air flames with an equivalence ratio phi = 0.7. It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P, Q, and R) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.

  15. Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis

    KAUST Repository

    Wacks, Daniel H.; Chakraborty, Nilanjan; Klein, Markus; Arias, Paul G.; Im, Hong G.

    2016-01-01

    The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H-2-air flames with an equivalence ratio phi = 0.7. It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P, Q, and R) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.

  16. Numerical prediction of local transitional features of turbulent forced gas flows in circular tubes with strong heating

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Kunugi, Tomoaki; Shehata, A.M.; McEligot, D.M.

    1997-03-01

    Previous numerical simulation for the laminarization due to heating of the turbulent flow in pipe were assessed by comparison with only macroscopic characteristics such as heat transfer coefficient and pressure drop, since no experimental data on the local distributions of the velocity and temperature in such flow situation was available. Recently, Shehata and McEligot reported the first measurements of local distributions of velocity and temperature for turbulent forced air flow in a vertical circular tube with strongly heating. They carried out the experiments in three situations from turbulent flow to laminarizing flow according to the heating rate. In the present study, we analyzed numerically the local transitional features of turbulent flow evolving laminarizing due to strong heating in their experiments by using the advanced low-Re two-equation turbulence model. As the result, we successfully predicted the local distributions of velocity and temperature as well as macroscopic characteristics in three turbulent flow conditions. By the present study, a numerical procedure has been established to predict the local characteristics such as velocity distribution of the turbulent flow with large thermal-property variation and laminarizing flow due to strong heating with enough accuracy. (author). 60 refs

  17. Numerical simulation of random stresses on an annular turbulent flow

    International Nuclear Information System (INIS)

    Marti-Moreno, Marta

    2000-01-01

    The flow along a circular cylinder may induce structural vibrations. For the predictive analysis of such vibrations, the turbulent forcing spectrum needs to be characterized. The aim of this work is to study the turbulent fluid forces acting on a single tube in axial flow. More precisely we have performed numerical simulations of an annular flow. These simulations were carried out on a cylindrical staggered mesh by a finite difference method. We consider turbulent flow with Reynolds number up to 10 6 . The Large Eddy Simulation Method has been used. A survey of existent experiments showed that hydraulic diameter acts as an important parameter. We first showed the accuracy of the numerical code by reproducing the experiments of Mulcahy. The agreement between pressure spectra from computations and from experiments is good. Then, we applied this code to simulate new numerical experiments varying the hydraulic diameter and the flow velocity. (author) [fr

  18. Inception of supraglacial channelization under turbulent flow conditions

    Science.gov (United States)

    Mantelli, E.; Camporeale, C.; Ridolfi, L.

    2013-12-01

    Glacier surfaces exhibit an amazing variety of meltwater-induced morphologies, ranging from small scale ripples and dunes on the bed of supraglacial channels to meandering patterns, till to large scale drainage networks. Even though the structure and geometry of these morphologies play a key role in the glacier melting processes, the physical-based modeling of such spatial patterns have attracted less attention than englacial and subglacial channels. In order to partially fill this gap, our work concerns the large scale channelization occurring on the ice slopes and focuses on the role of turbulence on the wavelength selection processes during the channelization inception. In a recent study[1], two of us showed that the morphological instability induced by a laminar film flowing over an ice bed is characterized by transversal length scales of order of centimeters. Being these scales much smaller than the spacing observed in the channelization of supraglacial drainage networks (that are of order of meters) and considering that the water films flowing on glaciers can exhibit Reynolds numbers larger than 104, we investigated the role of turbulence in the inception of channelization. The flow-field is modeled by means of two-dimensional shallow water equations, where Reynolds stresses are also considered. In the depth-averaged heat balance equation an incoming heat flux from air is assumed and forced convection heat exchange with the wall is taken into account, in addition to convection and diffusion in the liquid. The temperature profile in the ice is finally coupled to the liquid through Stefan equation. We then perform a linear stability analysis and, under the assumption of small Stefan number, we solve the differential eigenvalue problem analytically. As main outcome of such an analysis, the morphological instability of the ice-water interface is detected and investigated in a wide range of the independent parameters: longitudinal and transversal wavenumbers

  19. New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence

    CERN Document Server

    Nicolleau, FCGA; Redondo, J-M

    2012-01-01

    This book contains a collection of the main contributions from the first five workshops held by Ercoftac Special Interest Group on Synthetic Turbulence Models (SIG42. It is intended as an illustration of the sig's activities and of the latest developments in the field. This volume investigates the use of Kinematic Simulation (KS) and other synthetic turbulence models for the particular application to environmental flows. This volume offers the best syntheses on the research status in KS, which is widely used in various domains, including Lagrangian aspects in turbulence mixing/stirring, partic

  20. Turbulent flow through a wall subchannel of a rod bundle

    International Nuclear Information System (INIS)

    Rehme, K.

    1978-04-01

    The turbulent flow through a wall subchannel of a rod bundle was investigated experimentally by means of hotwires und Pitot-tubes. The aim of this investigation was to get experimental information on the transport properties of turbulent flow especially on the momentum transport. Detailed data were measured of the distributions of the time-mean velocity, the turbulence intensities and, hence the kinetic of turbulence, of the shear stresses in the directions normal and parallel to the walls, and of the wall shear stresses. The pitch-to-diameter ratio of the rods equal to the wall-to-diameter ratio was 1.15, the Reynolds number of this investigation was Re = 1.23.10 5 . On the basis of the measurements the eddy viscosities normal and parallel to the walls were calculated. The eddy viscosities observed showed a considerable deviation from the data known up-to-now and from the assumptions introduced in the codes. (orig.) [de

  1. A finite-elements method for turbulent flow analysis

    International Nuclear Information System (INIS)

    Autret, A.

    1986-03-01

    The work discussed here covers turbulent flow calculations using GALERKIN's finite-element method. Turbulence effects on the mean field are taken into account by the k-epsilon model with two evolution equations: one for the kinetic energy of the turbulence, and one for the energy dissipation rate. The wall zone is covered by wall laws, and by REICHARDT's law in particular. A law is advanced for the epsilon input profile, and a numerical solution is proposed for the physically aberrant values of k and epsilon generated by the model. Single-equation models are reviewed comparatively with the k-epsilon model. A comparison between calculated and analytical solutions or calculated and experimental results is presented for decreasing turbulence behind a grid, for the flow between parallel flat plates with three REYNOLDS numbers, and for backward facing step. This part contains graphs and curves corresponding to results of the calculations presented in part one [fr

  2. Simulation of turbulent flow in a packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Guo, B.; Yu, A. [Centre for Simulation and Modelling of Particulate Systems and School of Material Science and Engineering, The University of New South Wales, Sydney 2052 (Australia); Wright, B.; Zulli, P. [BlueScope Steel Research Laboratories, P.O. Box 202, Port Kembla, NSW 2505 (Australia)

    2006-05-15

    Numerous models for simulating the flow and transport in packed beds have been proposed in the literature with few reported applications. In this paper, several turbulence models for porous media are applied to the gas flow through a randomly packed bed and are examined by means of a parametric study against some published experimental data. These models predict widely different turbulent eddy viscosity. The analysis also indicates that deficiencies exist in the formulation of some model equations and selection of a suitable turbulence model is important. With this realization, residence time distribution and velocity distribution are then simulated by considering a radial profile of porosity and turbulence induced dispersion, and the results are in good agreement with the available experimental data. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  3. Shear flow generation and energetics in electromagnetic turbulence

    DEFF Research Database (Denmark)

    Naulin, V.; Kendl, A.; Garcia, O.E.

    2005-01-01

    acoustic mode (GAM) transfer in drift-Alfvén turbulence is investigated. By means of numerical computations the energy transfer into zonal flows owing to each of these effects is quantified. The importance of the three driving ingredients in electrostatic and electromagnetic turbulence for conditions...... relevant to the edge of fusion devices is revealed for a broad range of parameters. The Reynolds stress is found to provide a flow drive, while the electromagnetic Maxwell stress is in the cases considered a sink for the flow energy. In the limit of high plasma β, where electromagnetic effects and Alfvén...

  4. Numerical prediction of flow, heat transfer, turbulence and combustion

    CERN Document Server

    Spalding, D Brian; Pollard, Andrew; Singhal, Ashok K

    1983-01-01

    Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion: Selected Works of Professor D. Brian Spalding focuses on the many contributions of Professor Spalding on thermodynamics. This compilation of his works is done to honor the professor on the occasion of his 60th birthday. Relatively, the works contained in this book are selected to highlight the genius of Professor Spalding in this field of interest. The book presents various research on combustion, heat transfer, turbulence, and flows. His thinking on separated flows paved the way for the multi-dimensional modeling of turbu

  5. Flow Topology Transition via Global Bifurcation in Thermally Driven Turbulence

    Science.gov (United States)

    Xie, Yi-Chao; Ding, Guang-Yu; Xia, Ke-Qing

    2018-05-01

    We report an experimental observation of a flow topology transition via global bifurcation in a turbulent Rayleigh-Bénard convection. This transition corresponds to a spontaneous symmetry breaking with the flow becomes more turbulent. Simultaneous measurements of the large-scale flow (LSF) structure and the heat transport show that the LSF bifurcates from a high heat transport efficiency quadrupole state to a less symmetric dipole state with a lower heat transport efficiency. In the transition zone, the system switches spontaneously and stochastically between the two long-lived metastable states.

  6. Energy fluxes and spectra for turbulent and laminar flows

    KAUST Repository

    Verma, Mahendra K.

    2017-05-14

    Two well-known turbulence models to describe the inertial and dissipative ranges simultaneously are by Pao~[Phys. Fluids {\\\\bf 8}, 1063 (1965)] and Pope~[{\\\\em Turbulent Flows.} Cambridge University Press, 2000]. In this paper, we compute energy spectrum $E(k)$ and energy flux $\\\\Pi(k)$ using spectral simulations on grids up to $4096^3$, and show consistency between the numerical results and predictions by the aforementioned models. We also construct a model for laminar flows that predicts $E(k)$ and $\\\\Pi(k)$ to be of the form $\\\\exp(-k)$, and verify the model predictions using numerical simulations. The shell-to-shell energy transfers for the turbulent flows are {\\\\em forward and local} for both inertial and dissipative range, but those for the laminar flows are {\\\\em forward and nonlocal}.

  7. Suboptimal control for drag reduction in turbulent pipe flow

    International Nuclear Information System (INIS)

    Choi, Jung Il; Sung, Hyung Jin; Xu, Chun Xiao

    2001-01-01

    A suboptimal control law in turbulent pipe flow is derived and tested. Two sensing variables ∂ρ/∂θ / w and ∂ν θ /∂r / w are applied with two actuations φ θ and φ γ . To test the suboptimal control law, direct numerical simulations of turbulent pipe flow at Re τ =150 are performed. When the control law is applied, a 13∼23% drag reduction is achieved. The most effective drag reduction is made at the pair of ∂υ θ /∂r / w and φ γ . An impenetrable virtual wall concept is useful for analyzing the near-wall suction and blowing. The virtual wall concept is useful for analyzing the near-wall behavior of the controlled flow. Comparison of the present suboptimal control with that of turbulent channel flow reveals that the curvature effect is insignificant

  8. Flux surface shaping effects on tokamak edge turbulence and flows

    International Nuclear Information System (INIS)

    Kendl, A.; Scott, B.D.

    2004-01-01

    The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 ≤ κ ≥ 2 and triangularity 0 ≤ δ ≤ 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)

  9. Modeling Scramjet Flows with Variable Turbulent Prandtl and Schmidt Numbers

    Science.gov (United States)

    Xiao, X.; Hassan, H. A.; Baurle, R. A.

    2006-01-01

    A complete turbulence model, where the turbulent Prandtl and Schmidt numbers are calculated as part of the solution and where averages involving chemical source terms are modeled, is presented. The ability of avoiding the use of assumed or evolution Probability Distribution Functions (PDF's) results in a highly efficient algorithm for reacting flows. The predictions of the model are compared with two sets of experiments involving supersonic mixing and one involving supersonic combustion. The results demonstrate the need for consideration of turbulence/chemistry interactions in supersonic combustion. In general, good agreement with experiment is indicated.

  10. Flux surface shaping effects on tokamak edge turbulence and flows

    Energy Technology Data Exchange (ETDEWEB)

    Kendl, A. [Innsbruck Univ., Institut fuer Theoretische Physik, Association EURATOM (Austria); Scott, B.D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching bei Muenchen (Germany)

    2004-07-01

    The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 {<=} {kappa} {>=} 2 and triangularity 0 {<=} {delta} {<=} 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)

  11. Dynamics and statistics of heavy particles in turbulent flows

    NARCIS (Netherlands)

    Cencini, M.; Bec, J.; Biferale, L.; Boffetta, G.; Celani, A.; Lanotte, A.; Musacchio, S.; Toschi, F.

    2006-01-01

    We present the results of direct numerical simulations (DNS) of turbulent flows seeded with millions of passive inertial particles. The maximum Reynolds number is Re¿~ 200. We consider particles much heavier than the carrier flow in the limit when the Stokes drag force dominates their dynamical

  12. Numerical modeling of fine particle fractal aggregates in turbulent flow

    Directory of Open Access Journals (Sweden)

    Cao Feifeng

    2015-01-01

    Full Text Available A method for prediction of fine particle transport in a turbulent flow is proposed, the interaction between particles and fluid is studied numerically, and fractal agglomerate of fine particles is analyzed using Taylor-expansion moment method. The paper provides a better understanding of fine particle dynamics in the evolved flows.

  13. A Generalized turbulent dispersion model for bubbly flow numerical simulation in NEPTUNE-CFD

    Energy Technology Data Exchange (ETDEWEB)

    Laviéville, Jérôme, E-mail: Jerome-marcel.lavieville@edf.fr; Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Guingo, Mathieu, E-mail: mathieu.guingo@edf.fr; Baudry, Cyril, E-mail: Cyril.baudry@edf.fr; Mimouni, Stéphane, E-mail: stephane.mimouni@edf.fr

    2017-02-15

    The NEPTUNE-CFD code, based upon an Eulerian multi-fluid model, is developed within the framework of the NEPTUNE project, financially supported by EDF (Electricité de France), CEA (Commissariat à l’Energie Atomique et aux Energies Alternatives), IRSN (Institut de Radioprotection et de Sûreté Nucléaire) and AREVA-NP. NEPTUNE-CFD is mainly focused on Nuclear Safety applications involving two-phase water-steam flows, like two-phase Pressurized Shock (PTS) and Departure from Nucleate Boiling (DNB). Many of these applications involve bubbly flows, particularly, for application to flows in PWR fuel assemblies, including studies related to DNB. Considering a very usual model for interfacial forces acting on bubbles, including drag, virtual mass and lift forces, the turbulent dispersion force is often added to moderate the lift effect in orthogonal directions to the main flow and get the right dispersion shape. This paper presents a formal derivation of this force, considering on the one hand, the fluctuating part of drag and virtual mass, and on the other hand, Turbulent Pressure derivation obtained by comparison between Lagrangian and Eulerian description of bubbles motion. An extension of the Tchen’s theory is used to express the turbulent kinetic energy of bubbles and the two-fluid turbulent covariance tensor in terms of liquid turbulent velocities and time scale. The model obtained by this way, called Generalized Turbulent Dispersion Model (GTD), does not require any user parameter. The model is validated against Liu & Bankoff air-water experiment, Arizona State University (ASU) experiment, DEBORA experiment and Texas A&M University (TAMU) boiling flow experiments.

  14. Flow instability and turbulence - ONERA water tunnel visualizations

    Science.gov (United States)

    Werle, H.

    The experimental technique used for visualizing laminar-turbulent transition phenomena, developed in previous tests in ONERA's small TH1 water tunnel, has been successfully applied in the new TH2 tunnel. With its very extensive Reynold's number domain (10 to the 4th - 10 to the 6th), this tunnel has shown itself to be well adapted to the study of turbulence and of the flow instabilities related to its appearance.

  15. Zonal flow dynamics and control of turbulent transport in stellarators.

    Science.gov (United States)

    Xanthopoulos, P; Mischchenko, A; Helander, P; Sugama, H; Watanabe, T-H

    2011-12-09

    The relation between magnetic geometry and the level of ion-temperature-gradient (ITG) driven turbulence in stellarators is explored through gyrokinetic theory and direct linear and nonlinear simulations. It is found that the ITG radial heat flux is sensitive to details of the magnetic configuration that can be understood in terms of the linear behavior of zonal flows. The results throw light on the question of how the optimization of neoclassical confinement is related to the reduction of turbulence.

  16. STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW

    International Nuclear Information System (INIS)

    Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi

    2015-01-01

    Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence is weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds

  17. STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Tomoaki [Faculty of Humanity and Environment, Hosei University, Fujimi, Chiyoda-ku, Tokyo 102-8160 (Japan); Dobashi, Kazuhito; Shimoikura, Tomomi, E-mail: matsu@hosei.ac.jp [Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan)

    2015-03-10

    Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence is weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.

  18. Turbulent mixing in nonreactive and reactive flows

    CERN Document Server

    1975-01-01

    Turbulence, mixing and the mutual interaction of turbulence and chemistry continue to remain perplexing and impregnable in the fron­ tiers of fluid mechanics. The past ten years have brought enormous advances in computers and computational techniques on the one hand and in measurements and data processing on the other. The impact of such capabilities has led to a revolution both in the understanding of the structure of turbulence as well as in the predictive methods for application in technology. The early ideas on turbulence being an array of complicated phenomena and having some form of reasonably strong coherent struc­ ture have become well substantiated in recent experimental work. We are still at the very beginning of understanding all of the aspects of such coherence and of the possibilities of incorporating such structure into the analytical models for even those cases where the thin shear layer approximation may be valid. Nevertheless a distinguished body of "eddy chasers" has come into existence. T...

  19. Symposium on Turbulent Shear Flows, 6th, Universite de Toulouse III, France, Sept. 7-9, 1987, Proceedings

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This symposium includes topics on wall flows, unsteady flows, scalar and buoyant transport, instrumentation and techniques, combustion, aerodynamic flows, free flows, geophysical flows, complex flows, separated flows, coherent structures, closures, numerical simulation, and two-phase flows. Papers are presented on the effect of favorable pressure gradients on turbulent boundary layers, the models of hydrodynamic resonances in separated shear flows, the transport of passive scalars in a turbulent channel flow, a pulsed hot-wire probe for near-wall measurements, and vortex dynamics in diffusion flames. Consideration is also given to time-dependent structure in wing-body junction flows, bifurcating air jets at high subsonic speeds, the wake of an axisymmetric body with or without tail separation, coherent structures in quasi-geostrophic jets, and separated flow predictions using a new turbulence model. Additional papers are on stochastic estimation of organized structures in turbulent channel flow, a comparative study of eleven models of turbulence, and a numerical study of a stably stratified mixing layer

  20. Influence of fluid-property variation on turbulent convective heat transfer in vertical annular CHANNEL FLOWS

    International Nuclear Information System (INIS)

    Joong Hun Bae; Jung Yul Yoo; Haecheon Choi

    2005-01-01

    Full text of publication follows: The influence of variable fluid property on turbulent convective heat transfer is investigated using direct numerical simulations. We consider thermally-developing flows of air and supercritical-pressure CO 2 in a vertical annular channel where the inner wall is heated with a constant heat flux and the outer wall is insulated. Turbulence statistics show that the heat and momentum transport characteristics of variable-property flows are significantly different from those of constant-property flows. The difference is mainly caused by the spatial and temporal variations of fluid density. The non-uniform density distribution causes fluid particles to be accelerated either by expansion or buoyancy force, while the temporal density fluctuations change the heat and momentum transfer via transport of turbulent mass flux, ρ'u' i . Both effects of the spatial and temporal variations of density are shown to be important in the analysis of turbulent convective heat transfer for supercritical-pressure fluids. For variable-property heated air flows, however, the effect of temporal density fluctuations can be neglected at low Mach number, which is in good accordance with the Morkovin's hypothesis. (authors)

  1. Statistical descriptions of polydisperse turbulent two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Minier, Jean-Pierre, E-mail: jean-pierre.minier@edf.fr

    2016-12-15

    Disperse two-phase flows are flows containing two non-miscible phases where one phase is present as a set of discrete elements dispersed in the second one. These discrete elements, or ‘particles’, can be droplets, bubbles or solid particles having different sizes. This situation encompasses a wide range of phenomena, from nano-particles and colloids sensitive to the molecular fluctuations of the carrier fluid to inertia particles transported by the large-scale motions of turbulent flows and, depending on the phenomenon studied, a broad spectrum of approaches have been developed. The aim of the present article is to analyze statistical models of particles in turbulent flows by addressing this issue as the extension of the classical formulations operating at a molecular or meso-molecular level of description. It has a three-fold purpose: (1) to bring out the thread of continuity between models for discrete particles in turbulent flows (above the hydrodynamical level of description) and classical mesoscopic formulations of statistical physics (below the hydrodynamical level); (2) to reveal the specific challenges met by statistical models in turbulence; (3) to establish a methodology for modeling particle dynamics in random media with non-zero space and time correlations. The presentation is therefore centered on organizing the different approaches, establishing links and clarifying physical foundations. The analysis of disperse two-phase flow models is developed by discussing: first, approaches of classical statistical physics; then, by considering models for single-phase turbulent flows; and, finally, by addressing current formulations for discrete particles in turbulent flows. This brings out that particle-based models do not cease to exist above the hydrodynamical level and offer great interest when combined with proper stochastic formulations to account for the lack of equilibrium distributions and scale separation. In the course of this study, general

  2. Application of PDF methods to compressible turbulent flows

    Science.gov (United States)

    Delarue, B. J.; Pope, S. B.

    1997-09-01

    A particle method applying the probability density function (PDF) approach to turbulent compressible flows is presented. The method is applied to several turbulent flows, including the compressible mixing layer, and good agreement is obtained with experimental data. The PDF equation is solved using a Lagrangian/Monte Carlo method. To accurately account for the effects of compressibility on the flow, the velocity PDF formulation is extended to include thermodynamic variables such as the pressure and the internal energy. The mean pressure, the determination of which has been the object of active research over the last few years, is obtained directly from the particle properties. It is therefore not necessary to link the PDF solver with a finite-volume type solver. The stochastic differential equations (SDE) which model the evolution of particle properties are based on existing second-order closures for compressible turbulence, limited in application to low turbulent Mach number flows. Tests are conducted in decaying isotropic turbulence to compare the performances of the PDF method with the Reynolds-stress closures from which it is derived, and in homogeneous shear flows, at which stage comparison with direct numerical simulation (DNS) data is conducted. The model is then applied to the plane compressible mixing layer, reproducing the well-known decrease in the spreading rate with increasing compressibility. It must be emphasized that the goal of this paper is not as much to assess the performance of models of compressibility effects, as it is to present an innovative and consistent PDF formulation designed for turbulent inhomogeneous compressible flows, with the aim of extending it further to deal with supersonic reacting flows.

  3. Modelling of structural effects on chemical reactions in turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Gammelsaeter, H.R.

    1997-12-31

    Turbulence-chemistry interactions are analysed using algebraic moment closure for the chemical reaction term. The coupling between turbulence and chemical length and time scales generate a complex interaction process. This interaction process is called structural effects in this work. The structural effects are shown to take place on all scales between the largest scale of turbulence and the scales of the molecular motions. The set of equations describing turbulent correlations involved in turbulent reacting flows are derived. Interactions are shown schematically using interaction charts. Algebraic equations for the turbulent correlations in the reaction rate are given using the interaction charts to include the most significant couplings. In the frame of fundamental combustion physics, the structural effects appearing on the small scales of turbulence are proposed modelled using a discrete spectrum of turbulent scales. The well-known problem of averaging the Arrhenius law, the specific reaction rate, is proposed solved using a presumed single variable probability density function and a sub scale model for the reaction volume. Although some uncertainties are expected, the principles are addressed. Fast chemistry modelling is shown to be consistent in the frame of algebraic moment closure when the turbulence-chemistry interaction is accounted for in the turbulent diffusion. The modelling proposed in this thesis is compared with experimental data for an laboratory methane flame and advanced probability density function modelling. The results show promising features. Finally it is shown a comparison with full scale measurements for an industrial burner. All features of the burner are captured with the model. 41 refs., 33 figs.

  4. On the freestream matching condition for stagnation point turbulent flows

    Science.gov (United States)

    Speziale, C. G.

    1989-01-01

    The problem of plane stagnation point flow with freestream turbulence is examined from a basic theoretical standpoint. It is argued that the singularity which arises from the standard kappa-epsilon model is not due to a defect in the model but results from the use of an inconsistent freestream boundary condition. The inconsistency lies in the implementation of a production equals dissipation equilibrium hypothesis in conjunction with a freestream mean velocity field that corresponds to homogeneous plane strain - a turbulent flow which does not reach such a simple equilibrium. Consequently, the adjustment that has been made in the constants of the epsilon-transport equation to eliminate this singularity is not self-consistent since it is tantamount to artificially imposing an equilibrium structure on a turbulent flow which is known not to have one.

  5. Turbulent characteristics of shear-thinning fluids in recirculating flows

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.S. [Inst. Superior de Engenharia do Porto (Portugal). Dept. de Engenharia Quimica; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Mecanica e Gestao Industrial, Faculdade de Engenharia da Universidade do Porto, Rua dos Bragas, 4050-123 Porto (Portugal)

    2000-03-01

    A miniaturised fibre optic laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1-0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. (orig.)

  6. Numerical modeling of buoyancy-driven turbulent flows in enclosures

    International Nuclear Information System (INIS)

    Hsieh, K.J.; Lien, F.S.

    2004-01-01

    Modeling turbulent natural convection in enclosures with differentially heated vertical walls is numerically challenging, in particular, when low-Reynolds-number (low-Re) models are adopted. When the turbulence level in the core region of cavity is low, most low-Re models, particular those showing good performance for bypass transitional flows, tend to relaminarize the flow and, as a consequence, significantly underpredict the near-wall turbulence intensities and boundary-layer thickness. Another challenge associated with low-turbulence buoyancy-driven flows in enclosures is its inherent unsteadiness, which can pose convergence problems when a steady Reynolds-averaged Navier-Stokes (RANS) equation is solved. In the present study, an unsteady RANS approach in conjunction with the low-Re k-ε model of Lien and Leschziner [Int. J. Comput. Fluid Dyn. 12 (1999) 1] is initially adopted and the predicted flow field is found effectively relaminarized. To overcome this difficulty, likely caused by the low-Re functions in the ε-equation, the two-layer approach is attempted, in which ε is prescribed algebraically using the one-equation k-l model of Wolfshtein [Int. J. Heat Mass Transfer 12 (1969) 301]. The two-layer approach combined with a quadratic stress-strain relation gives overall the best performance in terms of mean velocities, temperature and turbulence quantities

  7. Natural Flow Air Cooled Photovoltaics

    Science.gov (United States)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  8. The turbulent flow in rod bundles

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1989-01-01

    Experimental studies have shown that the axial and azimuthal turbulence intensities in the gap regions of rod bundles increase strongly with decreasing rod spacing; the fluctuating velocities in the axial and azimuthal directions have a quasi-periodic behaviour. To determine the origin of this phenomenon, an its characteristics as a function of the geometry and the Reynolds number, an experimental investigation was performed on the turbulent in several rod bundles with different aspect ratios (P/D, W/D). Hot-wires and microsphones were used for the measurements of velocity and wall pressure fluctuations. The data were evaluated to obtain spectra as well as auto and cross correlations. Based on the results, a phenomenological model is presented to explain this phenomenon. By means of the model, the mass exchange between neighbouring subchannels is explained [pt

  9. The role of zonal flows in disc gravito-turbulence

    Science.gov (United States)

    Vanon, R.

    2018-04-01

    The work presented here focuses on the role of zonal flows in the self-sustenance of gravito-turbulence in accretion discs. The numerical analysis is conducted using a bespoke pseudo-spectral code in fully compressible, non-linear conditions. The disc in question, which is modelled using the shearing sheet approximation, is assumed to be self-gravitating, viscous, and thermally diffusive; a constant cooling timescale is also considered. Zonal flows are found to emerge at the onset of gravito-turbulence and they remain closely linked to the turbulent state. A cycle of zonal flow formation and destruction is established, mediated by a slow mode instability (which allows zonal flows to grow) and a non-axisymmetric instability (which disrupts the zonal flow), which is found to repeat numerous times. It is in fact the disruptive action of the non-axisymmetric instability to form new leading and trailing shearing waves, allowing energy to be extracted from the background flow and ensuring the self-sustenance of the gravito-turbulent regime.

  10. The role of zonal flows in disc gravito-turbulence

    Science.gov (United States)

    Vanon, R.

    2018-07-01

    The work presented here focuses on the role of zonal flows in the self-sustenance of gravito-turbulence in accretion discs. The numerical analysis is conducted using a bespoke pseudo-spectral code in fully compressible, non-linear conditions. The disc in question, which is modelled using the shearing sheet approximation, is assumed to be self-gravitating, viscous, and thermally diffusive; a constant cooling time-scale is also considered. Zonal flows are found to emerge at the onset of gravito-turbulence and they remain closely linked to the turbulent state. A cycle of zonal flow formation and destruction is established, mediated by a slow mode instability (which allows zonal flows to grow) and a non-axisymmetric instability (which disrupts the zonal flow), which is found to repeat numerous times. It is in fact the disruptive action of the non-axisymmetric instability to form new leading and trailing shearing waves, allowing energy to be extracted from the background flow and ensuring the self-sustenance of the gravito-turbulent regime.

  11. Chemical Reactions in Turbulent Mixing Flows. Revision.

    Science.gov (United States)

    1983-08-02

    jet diameter F2 fluorine H2 hydrogen HF hydrogen fluoride I(y) instantaneous fluorescence intensity distribution L-s flame length measured from...virtual origin -.4 of turbulent region (L-s). flame length at high Reynolds number LIF laser induced fluorescence N2 nitrogen PI product thickness (defined...mixing is attained as a function of the equivallence ratio. For small values of the equivalence ratio f, the flame length - defined here as the

  12. Study of turbulent natural-circulation flow and low-Prandtl-number forced-convection flow

    International Nuclear Information System (INIS)

    Chung, K.S.; Thompson, D.H.

    1980-01-01

    Calculational methods and results are discussed for the coupled energy and momentum equations of turbulent natural circulation flow and low Prandtl number forced convection flow. The objective of this paper is to develop a calculational method for the study of the thermal-hydraulic behavior of coolant flowing in a liquid metal fast breeder reactor channel under natural circulation conditions. The two-equation turbulence model is used to evaluate the turbulent momentum transport property. Because the analogy between momentum transfer and heat transfer does not generally hold for low Prandtl number fluid and natural circulation flow conditions, the turbulent thermal conductivity is calculated independently using equations similar to the two-equation turbulence model. The numerical technique used in the calculation is the finite element method

  13. Intermittent characteristics in coupling between turbulence and zonal flows

    International Nuclear Information System (INIS)

    Fujisawa, A; Shimizu, A; Nakano, H; Ohshima, S; Itoh, K; Nagashima, Y; Itoh, S-I; Iguchi, H; Yoshimura, Y; Minami, T; Nagaoka, K; Takahashi, C; Kojima, M; Nishimura, S; Isobe, M; Suzuki, C; Akiyama, T; Ido, T; Matsuoka, K; Okamura, S; Diamond, P H

    2007-01-01

    An extended application of Gabour's wavelet to bicoherence analysis succeeds in resolving the instantaneous structure of three wave couplings between disparate scale electric field fluctuations in the high temperature core in a toroidal plasma device named the compact helical system. The obtained results quantify an intermittent linkage between turbulence and zonal flows-a highlighted issue in the present plasma research. This is the first demonstration that the intermittent nature of the three wave coupling should underlie the turbulence power modulation due to zonal flows

  14. Three-dimensional flow and turbulence structure in electrostatic precipitator

    DEFF Research Database (Denmark)

    Ullum, Thorvald Uhrskov; Larsen, Poul Scheel; Özcan, Oktay

    2002-01-01

    Stereo PIV is employed to study the three-dimensional velocity and turbulence fields in a laboratory model of a negative corona, barbed-wire, smooth-plate, electrostatic precipitator (figure 1). The study is focused on determining the parametric effects of axial development, mean current density Jm...... and bulk velocity U0 on secondary flows and turbulence levels and structures due to the action of the three-dimensional electrostatic field on the charged gas. At constant bulk velocity (U0 = 1 m/s) and current density (Jm = 0.4 mA/m2), secondary flows in the form of rolls of axial vorticity with swirl...

  15. Simulation of turbulent flows with and without combustion with emphasis on the impact of coherent structures on the turbulent mixing

    Energy Technology Data Exchange (ETDEWEB)

    Cunha Galeazzo, Flavio Cesar

    2016-07-01

    The analysis of turbulent mixing in complex turbulent flows is a challenging task. The effective mixing of entrained fluids to a molecular level is a vital part of the dynamics of turbulent flows, especially when combustion is involved. The work has shown the limitations of the steady-state simulations and acknowledged the need of applying high-fidelity unsteady methods for the calculation of flows with pronounced unsteadiness promoted by large-scale coherent structures or other sources.

  16. Modeling molecular mixing in a spatially inhomogeneous turbulent flow

    Science.gov (United States)

    Meyer, Daniel W.; Deb, Rajdeep

    2012-02-01

    Simulations of spatially inhomogeneous turbulent mixing in decaying grid turbulence with a joint velocity-concentration probability density function (PDF) method were conducted. The inert mixing scenario involves three streams with different compositions. The mixing model of Meyer ["A new particle interaction mixing model for turbulent dispersion and turbulent reactive flows," Phys. Fluids 22(3), 035103 (2010)], the interaction by exchange with the mean (IEM) model and its velocity-conditional variant, i.e., the IECM model, were applied. For reference, the direct numerical simulation data provided by Sawford and de Bruyn Kops ["Direct numerical simulation and lagrangian modeling of joint scalar statistics in ternary mixing," Phys. Fluids 20(9), 095106 (2008)] was used. It was found that velocity conditioning is essential to obtain accurate concentration PDF predictions. Moreover, the model of Meyer provides significantly better results compared to the IECM model at comparable computational expense.

  17. Heat transfer in initial region of a plane channel at different turbulence levels of inlet flow

    International Nuclear Information System (INIS)

    Sukomel, A.S.; Gutsev, D.F.; Velichko, V.I.

    1976-01-01

    Local heat transfer has been experimentally studied on the initial portion of the flat channel in the turbulent air flow. The channel measures 37.5 mm in height and 212.5 mm in width. The heat transfer measurements have been taken at inlet flow turbulence of epsilon 0 =0.7-0.8%. The charts are plotted showing variation of trannser with inlet and additional agitation of the flow. Critical values are found of the Reynolds number which are characteristic of the zones with various types of flow (laminar, transient and turbulent) at epsilon 0 =0.7-0.8%: Resub(crit 1) = 9.3x10sup(4), Resub(crit 2) = 2.9x10sup(5). With the increase of epsilon 0 up to 5% and above, the flow in the boundary layer becomes turbulent practically from the very beginning of the experimental portion. Considerable increase has been revealed of the heat transfer in this group of the experiments. At epsilon (>=) 5% the heat transfer grows up regularly

  18. Mean Flow and Turbulence Near a Series of Dikes

    Science.gov (United States)

    Yaeger, M. A.; Duan, J. G.

    2008-12-01

    Scour around various structures obstructing flow in an open channel is a common problem faced by river engineers. To better understand why this occurs, two questions must be answered: what are the mean flow and turbulence distributions around these structures and how do these two fields affect sediment transport? In addition, are the mean flow or turbulence properties more important in predicting the local transport rate? To answer these questions, a near-bed turbulence and shear stress study was conducted in a flat, fixed bed laboratory flume. Three dikes were placed on the left wall at right angles to the flow, extending partway into the flow, and remaining fully emerged throughout the experiment. A micro acoustic Doppler velocimeter (ADV) was used to measure velocities near the bed in the x, y, and z directions and then the turbulence intensities and Reynolds stresses were calculated from these measurements. Preliminary results showed that mean velocity has no relation to the formation of scour near the tips of the dikes but that Reynolds stresses and turbulence intensities do. It was shown that the horizontal component of the Reynolds stress near the bed contributed the most to the formation of scour. The maximum value of this component was over 200 times that of the mean bed shear stress of the incoming flow, whereas in a single dike field, the same Reynolds stress is about 60 times that of the incoming flow. The magnitudes of the other two components of the Reynolds stress were less than that of the horizontal component, with magnitudes about 20 times that of the incoming flow. This may be attributed to the very small contribution of the vertical velocity in these components. Turbulence intensity magnitudes were about 3 to 5 times that of the incoming flow, with the largest being u'. The largest values for both Reynolds stresses and turbulence intensities were seen at the tip of the second dike in the series. Better understanding of these flow processes will

  19. Turbulence modeling and surface heat transfer in a stagnation flow region

    Science.gov (United States)

    Wang, C. R.; Yeh, F. C.

    1987-01-01

    Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow.

  20. STRUCTURES OF TURBULENT VORTICES AND THEIR INFLUENCE ON FLOW PROPERTIES

    Directory of Open Access Journals (Sweden)

    Alfonsas Rimkus

    2015-03-01

    Full Text Available In spite of the many investigations that have been conducted on turbulent flows, the generation and development of turbulent vortices has not been investigated sufficiently yet. This prevents to understand well the processes involved in the flow. That is unfavorable for the further investigations. The developing vortex structures are interacting, and this needs to be estimated. Physical summing of velocities, formed by all structures, can be unfavorable for investigations, therefore they must be separated; otherwise bias errors can occur. The difficulty for investigations is that the widely employed Particle Image Velocity (PIV method, when a detailed picture of velocity field picture is necessary, can provide photos covering only a short interval of flow, which can’t include the largest flow structures, i.e. macro whirlpools. Consequently, action of these structures could not be investigated. Therefore, in this study it is tried to obtain the necessary data about the flow structure by analyzing the instantaneous velocity measurements by 3D means, which lasts for several minutes, therefore the existence and interaction of these structures become visible in measurement data. The investigations conducted in this way have been already discussed in the article, published earlier. Mostly the generation and development of bottom vortices was analyzed. In this article, the analysis of these turbulent velocity measurements is continued and the additional data about the structure of turbulent vortices is obtained.

  1. Large eddy simulation of rotating turbulent flows and heat transfer by the lattice Boltzmann method

    Science.gov (United States)

    Liou, Tong-Miin; Wang, Chun-Sheng

    2018-01-01

    Due to its advantage in parallel efficiency and wall treatment over conventional Navier-Stokes equation-based methods, the lattice Boltzmann method (LBM) has emerged as an efficient tool in simulating turbulent heat and fluid flows. To properly simulate the rotating turbulent flow and heat transfer, which plays a pivotal role in tremendous engineering devices such as gas turbines, wind turbines, centrifugal compressors, and rotary machines, the lattice Boltzmann equations must be reformulated in a rotating coordinate. In this study, a single-rotating reference frame (SRF) formulation of the Boltzmann equations is newly proposed combined with a subgrid scale model for the large eddy simulation of rotating turbulent flows and heat transfer. The subgrid scale closure is modeled by a shear-improved Smagorinsky model. Since the strain rates are also locally determined by the non-equilibrium part of the distribution function, the calculation process is entirely local. The pressure-driven turbulent channel flow with spanwise rotation and heat transfer is used for validating the approach. The Reynolds number characterized by the friction velocity and channel half height is fixed at 194, whereas the rotation number in terms of the friction velocity and channel height ranges from 0 to 3.0. A working fluid of air is chosen, which corresponds to a Prandtl number of 0.71. Calculated results are demonstrated in terms of mean velocity, Reynolds stress, root mean square (RMS) velocity fluctuations, mean temperature, RMS temperature fluctuations, and turbulent heat flux. Good agreement is found between the present LBM predictions and previous direct numerical simulation data obtained by solving the conventional Navier-Stokes equations, which confirms the capability of the proposed SRF LBM and subgrid scale relaxation time formulation for the computation of rotating turbulent flows and heat transfer.

  2. The problem of clear air turbulence

    Indian Academy of Sciences (India)

    Due to rapid improvements in on-board instrumentation and atmospheric observation systems, in most cases, aircraft are able to steer clear of regions of adverse weather. However, they still encounter unexpected bumpy flight conditions in regions away from storms and clouds. This is the phenomenon of clear air ...

  3. Dynamics of fibres in a turbulent flow field - A particle-level simulation technique

    International Nuclear Information System (INIS)

    Sasic, Srdjan; Almstedt, Alf-Erik

    2010-01-01

    A particle-level simulation technique has been developed for modelling the flow of fibres in a turbulent flow field. A single fibre is conceived here as a chain of segments, thus enabling the model fibre to have all the degrees of freedom (translation, rotation, bending and twisting) needed to realistically reproduce the dynamics of real fibres. Equations of motion are solved for each segment, accounting for the interaction forces with the fluid, the contact forces with other fibres and the forces that maintain integrity of the fibre. The motion of the fluid is resolved as a combination of 3D mean flow velocities obtained from a CFD code and fluctuating turbulent velocities derived from the Langevin equation. A case of homogeneous turbulence is treated in this paper. The results obtained show that fibre flocs in air-fibre flows can be created even when attractive forces are not present. In such a case, contacts between fibres, properties of an individual fibre (such as flexibility and equilibrium shapes) and properties of the flow of the carrying fluid are shown to govern the physics behind formation and breaking up of fibre flocs. Highly irregular fibre shapes and stiff fibres lead to strong flocculation. The modelling framework applied in this work aims at making possible a numerical model applicable for designing processes involving transport of fibres by air at industrial scale.

  4. Semi-local scaling and turbulence modulation in variable property turbulent channel flows

    NARCIS (Netherlands)

    Patel, A.; Peeters, J.W.R.; Boersma, B.J.; Pecnik, R.

    2015-01-01

    We theoretically and numerically investigate the effect of temperature dependent density and viscosity on turbulence in channel flows. First, a mathematical framework is developed to support the validity of the semi-local scaling as proposed based on heuristic arguments by Huang, Coleman, and

  5. Direct numerical simulation of turbulent channel flow with deformed bubbles

    International Nuclear Information System (INIS)

    Yamamoto, Yoshinobu; Kunugi, Tomoaki

    2010-01-01

    In this study, the direct numerical simulation of a fully-developed turbulent channel flow with deformed bubbles were conducted by means of the refined MARS method, turbulent Reynolds number 150, and Bubble Reynolds number 120. As the results, large-scale wake motions were observed round the bubbles. At the bubble located region, mean velocity was degreased and turbulent intensities and Reynolds shear stress were increased by the effects of the large-scale wake motions round bubbles. On the other hands, near wall region, bubbles might effect on the flow laminarlize and drag reduction. Two types of drag coefficient of bubble were estimated from the accelerated velocity of bubble and correlation equation as a function of Particle Reynolds number. Empirical correlation equation might be overestimated the drag effects in this Particle Reynolds number range. (author)

  6. Experiments in polydisperse two-phase turbulent flows

    International Nuclear Information System (INIS)

    Bachalo, W.D.; Houser, M.J.

    1985-01-01

    Aspects of turbulent two-phase flow measurements obtained with a laser Doppler velocimeter that was modified to also obtain particle size were investigated. Simultaneous measurements of the particle size and velocity allowed the determination of the lag characteristics of particles over a range of sizes. Relatively large particles were found to respond well to the turbulent fluctuations in low speed flows. Measurements of sprays were obtained at various points throughout the spray plume. Velocity measurements for each drop size class were obtained and revealed the relative velocity relaxation with downstream distance. The evolution of the rms velocities for each size class was also examined. Difficulties associated with seeding polydispersions to obtain gas phase turbulence data were discussed. Several approaches for mitigating the errors due to seed particle concentration bias were reviewed

  7. Turbulent flow computation in a circular U-Bend

    Directory of Open Access Journals (Sweden)

    Miloud Abdelkrim

    2014-03-01

    Full Text Available Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds–Averaged Navier–Stokes (RANS equations. The performances of standard k-ε and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.

  8. Turbulent flow computation in a circular U-Bend

    Science.gov (United States)

    Miloud, Abdelkrim; Aounallah, Mohammed; Belkadi, Mustapha; Adjlout, Lahouari; Imine, Omar; Imine, Bachir

    2014-03-01

    Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds-Averaged Navier-Stokes (RANS) equations. The performances of standard k-ɛ and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.

  9. Effects of swirl in turbulent pipe flows : computational studies

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Frode

    2011-07-01

    The primary objective of this doctoral thesis was to investigate the effect of swirl in steady turbulent pipe flows. The work has been carried out by a numerical approach, with direct numerical simulations as the method of choice. A key target to pursue was the effects of the swirl on the wall friction in turbulent pipe flows. The motivation came from studies of rotating pipe flows in which drag reduction was achieved. Drag reduction was reported to be due to the swirl favourably influencing the coherent turbulent structures in the near-wall region. Based on this, it was decided to investigate if similar behaviour could be obtained by inducing a swirl in a pipe with a stationary wall. To do a thorough investigation of the general three-dimensional swirl flow and particularly of the swirl effects; chosen variations of mean and turbulent flow parameters were explored together with complementary flow visualizations. Two different approaches in order to induce the swirl in the turbulent pipe flow, have been carried out. However, the present thesis might be regarded to be comprised of three parts. The first part consists of the first approach to induce the swirl. Here a prescribed circumferential force was implemented in a serial open source Navier-Stokes solver. In the second approach, the swirl was intended induced by implementing structures at the wall. Simulations of flows through a pipe with one or more helical fin(s) at the pipe wall was decided to be performed. In order to pursue this approach, it was found necessary to do a parallelization of the existing serial numerical code. The key element of this parallelization has been included as a part of the present work. Additionally, the helical fin(s) were implemented into the code by use of an immersed boundary method. A validation of this work is also documented in the thesis. The work done by parallelizing the code and implementing an immersed boundary method constitutes the second part of the present thesis. The

  10. Analysis of flame shapes in turbulent hydrogen jet flames with coaxial air

    International Nuclear Information System (INIS)

    Moon, Hee Jang

    2009-01-01

    This paper addresses the characteristics of flame shapes and flame length in three types of coaxial air flames realizable by varying coaxial air and/or fuel velocity. Forcing coaxial air into turbulent jet flames induces substantial changes in flame shapes and NOx emissions through the complex flow interferences that exist within the mixing region. Mixing enhancement driven by coaxial air results in flame volume decrease, and such a diminished flame volume finally reduces NOx emissions significantly by decreasing NOx formation zone where a fuel/air mixture burns. It is found that mixing in the vicinity of high temperature zone mainly results from the increase of diffusive flux than the convective flux, and that the increase of mass diffusion is amplified as coaxial air is increased. Besides, it is reaffirmed that nonequilibrium chemistry including HO 2 /H 2 O 2 should be taken into account for NOx prediction and scaling analysis by comparing turbulent combustion models. In addition, it is found that coaxial air can break down the self-similarity law of flames by changing mixing mechanism, and that EINOx scaling parameters based on the self-similarity law of simple jet flames may not be eligible in coaxial air flames

  11. Analysis of flame shapes in turbulent hydrogen jet flames with coaxial air

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hee Jang [Korea Aerospace University, Goyang (Korea, Republic of)

    2009-06-15

    This paper addresses the characteristics of flame shapes and flame length in three types of coaxial air flames realizable by varying coaxial air and/or fuel velocity. Forcing coaxial air into turbulent jet flames induces substantial changes in flame shapes and NOx emissions through the complex flow interferences that exist within the mixing region. Mixing enhancement driven by coaxial air results in flame volume decrease, and such a diminished flame volume finally reduces NOx emissions significantly by decreasing NOx formation zone where a fuel/air mixture burns. It is found that mixing in the vicinity of high temperature zone mainly results from the increase of diffusive flux than the convective flux, and that the increase of mass diffusion is amplified as coaxial air is increased. Besides, it is reaffirmed that nonequilibrium chemistry including HO{sub 2}/H{sub 2}O{sub 2} should be taken into account for NOx prediction and scaling analysis by comparing turbulent combustion models. In addition, it is found that coaxial air can break down the self-similarity law of flames by changing mixing mechanism, and that EINOx scaling parameters based on the self-similarity law of simple jet flames may not be eligible in coaxial air flames

  12. Tempered fractional time series model for turbulence in geophysical flows

    Science.gov (United States)

    Meerschaert, Mark M.; Sabzikar, Farzad; Phanikumar, Mantha S.; Zeleke, Aklilu

    2014-09-01

    We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model.

  13. Tempered fractional time series model for turbulence in geophysical flows

    International Nuclear Information System (INIS)

    Meerschaert, Mark M; Sabzikar, Farzad; Phanikumar, Mantha S; Zeleke, Aklilu

    2014-01-01

    We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model. (paper)

  14. Physical mechanisms in shock-induced turbulent separated flow

    Science.gov (United States)

    Dolling, D. S.

    1987-12-01

    It has been demonstrated that the flow downstream of the moving shock is separated and that the foot of the shock is effectively the instantaneous separation point. The shock induced turbulent separation is an intermittant process and the separation line indicated by surface tracer methods, such as kerosene-lampblack, is a downstream boundary of a region of intermittent separation.

  15. Experimental Investigation of Turbulent Flames in Hypersonic Flows

    Science.gov (United States)

    2015-09-01

    the flow direction and (b) typical flame length scales seen in the OH-PLIF image with Mach 4.5 freestream (high turbulence) at P0 = 0.65 bar, T0...flame structures (3 mm) are observed at the upstream location of area 1 where the combustion localization first appears. The typical flame length scale

  16. Direct Numerical Simulations of turbulent flow in a driven cavity

    NARCIS (Netherlands)

    Verstappen, R.; Wissink, J.G.; Cazemier, W.; Veldman, A.E.P.

    Direct numerical simulations (DNS) of 2 and 3D turbulent flows in a lid-driven cavity have been performed. DNS are numerical solutions of the unsteady (here: incompressible) Navier-Stokes equations that compute the evolution of all dynamically significant scales of motion. In view of the large

  17. Investigation of reattachment length for a turbulent flow over a ...

    African Journals Online (AJOL)

    user

    (2D), segregated, renormalized group (RNG) k−ε turbulence model has been chosen ... noise, as it also exhibits an unsteady structure with a large scale vortex in the .... possible because at low Re and high ER, the flow gets enough space and ...

  18. Mass transfer from smooth alabaster surfaces in turbulent flows

    Science.gov (United States)

    Opdyke, Bradley N.; Gust, Giselher; Ledwell, James R.

    1987-11-01

    The mass transfer velocity for alabaster plates in smooth-wall turbulent flow is found to vary with the friction velocity according to an analytic solution of the advective diffusion equation. Deployment of alabaster plates on the sea floor can perhaps be used to estimate the viscous stress, and transfer velocities for other species.

  19. Effect of turbulent flow on the double electric layer

    International Nuclear Information System (INIS)

    Rutten, F. van.

    1978-01-01

    The existence of the double electric layer could explain the local deposition of corrosion products in water cooled reactors. It is shown that turbulent flow tends to drive the ions away from the wall, disturbs the diffuse layer and enables the electric field to extend further into the liquid phase. This electric field attracts the particles to the walls by electrophoresis [fr

  20. Symmetry-preserving discretization of turbulent channel flow

    NARCIS (Netherlands)

    Verstappen, RWCP; Veldman, AEP; Breuer, M; Durst, F; Zenger, C

    2002-01-01

    We propose to perform turbulent flow simulations in such manner that the difference operators do have the same symmetry properties as the underlying differential operators, i.e. the convective operator is represented by a skew-symmetric matrix and the diffusive operator is approximated by a

  1. Scalar statistics in variable property turbulent channel flows

    NARCIS (Netherlands)

    Patel, A.; Boersma, B.J.; Pecnik, R.

    2017-01-01

    Direct numerical simulation of fully developed, internally heated channel flows with isothermal walls is performed using the low-Mach-number approximation of Navier-Stokes equation to investigate the influence of temperature-dependent properties on turbulent scalar statistics. Different constitutive

  2. Instantaneous planar pressure determination from PIV in turbulent flow

    NARCIS (Netherlands)

    De Kat, R.; Van Oudheusden, B.W.

    2011-01-01

    This paper deals with the determination of instantaneous planar pressure fields from velocity data obtained by particle image velocimetry (PIV) in turbulent flow. The operating principles of pressure determination using a Eulerian or a Lagrangian approach are described together with theoretical

  3. Numerical Simulation of Airfoil Vibrations Induced by Turbulent Flow

    Czech Academy of Sciences Publication Activity Database

    Feistauer, M.; Horáček, Jaromír; Sváček, P.

    2015-01-01

    Roč. 17, č. 1 (2015), s. 146-188 ISSN 1815-2406 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : fluid-structure interaction * flow induced vibrations * turbulence models * finite element method Subject RIV: BI - Acoustics Impact factor: 1.778, year: 2015

  4. Numerical simulation of particle-laden turbulent channel flow

    NARCIS (Netherlands)

    Li, Y.; McLaughlin, J.B.; Kontomaris, K.; Portela, L.

    2001-01-01

    This paper presents results for the behavior of particle-laden gases in a small Reynolds number vertical channel down flow. Results will be presented for the effects of particle feedback on the gas-phase turbulence and for the concentration profile of the particles. The effects of density ratio,

  5. On the Values for the Turbulent Schmidt Number in Environmental Flows

    Directory of Open Access Journals (Sweden)

    Carlo Gualtieri

    2017-04-01

    Full Text Available Computational Fluid Dynamics (CFD has consolidated as a tool to provide understanding and quantitative information regarding many complex environmental flows. The accuracy and reliability of CFD modelling results oftentimes come under scrutiny because of issues in the implementation of and input data for those simulations. Regarding the input data, if an approach based on the Reynolds-Averaged Navier-Stokes (RANS equations is applied, the turbulent scalar fluxes are generally estimated by assuming the standard gradient diffusion hypothesis (SGDH, which requires the definition of the turbulent Schmidt number, Sct (the ratio of momentum diffusivity to mass diffusivity in the turbulent flow. However, no universally-accepted values of this parameter have been established or, more importantly, methodologies for its computation have been provided. This paper firstly presents a review of previous studies about Sct in environmental flows, involving both water and air systems. Secondly, three case studies are presented where the key role of a correct parameterization of the turbulent Schmidt number is pointed out. These include: (1 transverse mixing in a shallow water flow; (2 tracer transport in a contact tank; and (3 sediment transport in suspension. An overall picture on the use of the Schmidt number in CFD emerges from the paper.

  6. Evolution of a polydispersed spray in heated and in highly turbulent flow

    Science.gov (United States)

    Moreau, Florian; Bazile, Rudy

    2009-11-01

    This work aims to study experimentally the dispersion and the evaporation of a polydispersed and bi-component spray in highly turbulent and heated flow. A chamber is designed to generate a heated turbulent flow in which two-component droplets are injected. The two components are octane (85%) and 3-pentanone (15%) and are chosen such that the 3-pentanone vapour concentration can be characterized by laser techniques. The experimental setup consists of a vertical channel with optical access. Before the heated air is injected in the channel, it passes through a turbulence generator. The carrier flow is characterized using Laser Doppler Anemometry. The turbulence is shown to have isotropic properties after a distance equal to four times the width of the channel and to have high levels up to 30%. The liquid phase is characterized with Phase Doppler Anemometry which allows to measure the diameter, the longitudinal and the radial velocity of the droplets. The spatial evolution of the diameter probability density function (PDF) and of the rms and mean velocities are obtained. Droplets mass fluxes are also calculated. In the mixture, 3-pentanone is the only component that fluoresces. So the vapour concentration of 3-pentanone in the carrier flow is determined using Laser Induced Fluorescence.

  7. Inner-outer predictive wall model for wall-bounded turbulence in hypersonic flow

    Science.gov (United States)

    Martin, M. Pino; Helm, Clara M.

    2017-11-01

    The inner-outer predictive wall model of Mathis et al. is modified for hypersonic turbulent boundary layers. The model is based on a modulation of the energized motions in the inner layer by large scale momentum fluctuations in the logarithmic layer. Using direct numerical simulation (DNS) data of turbulent boundary layers with free stream Mach number 3 to 10, it is shown that the variation of the fluid properties in the compressible flows leads to large Reynolds number (Re) effects in the outer layer and facilitate the modulation observed in high Re incompressible flows. The modulation effect by the large scale increases with increasing free-stream Mach number. The model is extended to include spanwise and wall-normal velocity fluctuations and is generalized through Morkovin scaling. Temperature fluctuations are modeled using an appropriate Reynolds Analogy. Density fluctuations are calculated using an equation of state and a scaling with Mach number. DNS data are used to obtain the universal signal and parameters. The model is tested by using the universal signal to reproduce the flow conditions of Mach 3 and Mach 7 turbulent boundary layer DNS data and comparing turbulence statistics between the modeled flow and the DNS data. This work is supported by the Air Force Office of Scientific Research under Grant FA9550-17-1-0104.

  8. Finite element analysis of turbulent flow in fast reactor fuel subassembly elementary flow cell

    International Nuclear Information System (INIS)

    Muehlbauer, P.

    1987-03-01

    The method is described of calculating fully developed longitudinal steady-state turbulent flow of an incompressible fluid through an infinite bundle of parallel smooth rods, based on the finite element method and one-equation turbulence model. Theoretical calculation results are compared with experimental results. (author). 5 figs., 3 refs

  9. Turbulent Flow Modification With Thermoacoustic Waves for Separation Control

    Science.gov (United States)

    2017-08-24

    respectively. At the outlet, the time-average flow is set to be the target state of the sponge zone. In this section, the effects of momentum thickness...Turbulent Flow Modification With Thermoacoustic Waves For Separation Control The views, opinions and/or findings contained in this report are those...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Florida State University Sponsored Research Administration 874

  10. Modeling water droplet condensation and evaporation in DNS of turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Russo, E; Kuerten, J G M; Geld, C W M van der [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Geurts, B J, E-mail: e.russo@tue.nl [Faculty EEMCS, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)

    2011-12-22

    In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an Eulerian-Lagrangian approach. The two-way coupling is investigated in terms of the effects of mass and heat transfer on the droplets distributions along the channel wall-normal direction and by comparison of the droplet temperature statistics with respect to the case without evaporation and condensation. A remarkable conclusion is that the presence of evaporating and condensing droplets results in an increase in the non-dimensional heat transfer coefficient of the channel flow represented by the Nusselt number.

  11. Turbulent conductivity in parallel with iso-velocities in a planar established flow

    International Nuclear Information System (INIS)

    Jullien, F.

    1968-02-01

    In this thesis are presented the experimental results obtained during the study of the turbulent diffusion of heat using a wire source in a flat air flow. The Taylor statistical theory laws are well respected in the domain studied. The experiments have made it possible to evaluate the influence of the Reynolds number and of the distance from the wall on the quadratic values of velocity fluctuations and on the Lagrange turbulence scales. In particular, the author has found a correlation between the Lagrange scales and the friction coefficient when the Reynolds number varies. A diffusion law is derived from the Taylor theory; it makes it possible to explain more clearly the idea of turbulent conductivity. (author) [fr

  12. EFFECT OF ION ∇ B DRIFT DIRECTION ON TURBULENCE FLOW AND FLOW SHEAR

    International Nuclear Information System (INIS)

    FENZI, C; McKEE, G.R; BURRELL, K.H; CARLSTROM, T.N; FONCK, R.J; GROEBNER, R.J

    2003-01-01

    The divertor magnetic geometry has a significant effect on the poloidal flow and resulting flow shear of turbulence in the outer region of L-mode tokamak plasmas, as determined via two-dimensional measurements of density fluctuations with Beam Emission Spectroscopy on DIII-D. Plasmas with similar parameters, except that in one case the ion (del)B drift points towards the divertor X-point (lower single-null, LSN), and in the other case, the ion (del)B drift points away from the divertor X-point (upper single-null, USN), are compared. Inside of r/a=0.9, the turbulence characteristics (amplitude, flow direction, correlation lengths) are similar in both cases, while near r/a=0.92, a dramatic reversal of the poloidal flow of turbulence relative to the core flow direction is observed in plasmas with the ion (del)B drift pointing towards the divertor X-point. No such flow reversal is observed in plasmas with the ion (del)B drift pointing away from the divertor X-point. This poloidal flow reversal results in a significantly larger local shear in the poloidal turbulence flow velocity in plasmas with the ion (del)B drift pointing towards the divertor X-point. Additionally, these plasmas locally exhibit significant dispersion, with two distinct and counter-propagating turbulence modes. Likewise, the radial correlation length of the turbulence is reduced in these plasmas, consistent with biorthogonal decomposition measurements of dominant turbulence structures. The naturally occurring turbulence flow shear in these LSN plasmas may facilitate the LH transition that occurs at an input power of roughly one-half to one-third that of corresponding plasmas with the ion (del)B drift pointing away from the X-point

  13. Turbulent jet diffusion flame length evolution with cross flows in a sub-pressure atmosphere

    International Nuclear Information System (INIS)

    Wang, Qiang; Hu, Longhua; Zhang, Xiaozheng; Zhang, Xiaolei; Lu, Shouxiang; Ding, Hang

    2015-01-01

    Highlights: • Quantifying turbulent jet diffusion flame length with cross flows. • Unique data revealed for a sub-atmospheric pressure. • Non-dimensional global correlation proposed for flame trajectory-line length. - Abstract: This paper investigates the evolution characteristics of turbulent jet diffusion flame (flame trajectory-line length, flame height in vertical jet direction) with increasing cross flows in a sub-pressure (64 kPa) atmosphere. The combined effect of cross flow and a special sub-pressure atmosphere condition is revealed, where no data is available in the literatures. Experiments are carried out with a wind tunnel built specially in Lhasa city (altitude: 3650 m; pressure: 64 kPa) and in Hefei city (altitude: 50 m; pressure: 100 kPa), using nozzles with diameter of 3 mm, 4 mm and 5 mm and propane as fuel. It is found that, as cross flow air speed increases from zero, the flame trajectory-line length firstly decreases and then becomes almost stable (for relative small nozzle, 3 mm in this study) or increases (for relative large nozzle, 4 mm and 5 mm in this study) beyond a transitional critical cross flow air speed in normal pressure, however decreases monotonically until being blown-out in the sub-pressure atmosphere. The flame height in jet direction decreases monotonically with cross air flow speed and then reaches a steady value in both pressures. For the transitional state of flame trajectory-line length with increasing cross air flow speed, the corresponding critical cross flow air speed is found to be proportional to the fuel jet velocity, meanwhile independent of nozzle diameter. Correlation models are proposed for the flame height in jet direction and the flame trajectory-line length for both ambient pressures, which are shown to be in good agreement with the experimental results.

  14. Analysis of turbulence spectra in gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Kataoka, Isao; Besnard, D.C.; Serizawa, Akimi.

    1993-01-01

    An analysis was made on the turbulence spectra in bubbly flow. Basic equation for turbulence spectrum in bubbly flow was formulated considering the eddy disintegration induced by bubble. Based on the dimensional analysis and modeling of eddy disintegration by bubble, constitutive equations for eddy disintegration were derived. Using these equations, turbulence spectra in bubbly flow (showing -8/3 power) was successfully explained. (author)

  15. Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces

    Directory of Open Access Journals (Sweden)

    Onur YEMENİCİ

    2013-04-01

    Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights

  16. Turbulence modulation in dilute particle-laden flow

    DEFF Research Database (Denmark)

    Mandø, Matthias; Lightstone, M. F.; Rosendahl, Lasse

    2009-01-01

    augmentation of the carrier phase turbulence is expected, and small particles, for which attenuation is expected. The new model is derived directly from the balance equations of fluid flow and represents a combination of the so-called standard and consistent approaches. The performance of the new model......A new particle source term to account for the effect of particles on the turbulence equations based on the Euler/Lagrange approach is introduced and compared with existing models and experimental data. Three different sizes of particles are considered to cover the range of large particles, where...

  17. The measurement of low air flow velocities

    NARCIS (Netherlands)

    Aghaei, A.; Mao, X.G.; Zanden, van der A.J.J.; Schaik, W.H.J.; Hendriks, N.A.

    2005-01-01

    Air flow velocity is measured with an acoustic sensor, which can be used especially for measuring low air flow velocities as well as the temperature of the air simultaneously. Two opposite transducers send a sound pulse towards each other. From the difference of the transit times, the air flow

  18. Direct Numerical Simulations of Particle-Laden Turbulent Channel Flow

    Science.gov (United States)

    Jebakumar, Anand Samuel; Premnath, Kannan; Abraham, John

    2017-11-01

    In a recent experimental study, Lau and Nathan (2014) reported that the distribution of particles in a turbulent pipe flow is strongly influenced by the Stokes number (St). At St lower than 1, particles migrate toward the wall and at St greater than 10 they tend to migrate toward the axis. It was suggested that this preferential migration of particles is due to two forces, the Saffman lift force and the turbophoretic force. Saffman lift force represents a force acting on the particle as a result of a velocity gradient across the particle when it leads or lags the fluid flow. Turbophoretic force is induced by turbulence which tends to move the particle in the direction of decreasing turbulent kinetic energy. In this study, the Lattice Boltzmann Method (LBM) is employed to simulate a particle-laden turbulent channel flow through Direct Numerical Simulations (DNS). We find that the preferential migration is a function of particle size in addition to the St. We explain the effect of the particle size and St on the Saffman lift force and turbophoresis and present how this affects particle concentration at different conditions.

  19. A finite-elements method for turbulent flow analysis

    International Nuclear Information System (INIS)

    Autret, A.

    1986-03-01

    The work discussed here covers turbulent flow calculations using GALERKIN's finite-element method. In our specific case, we have to deal with monophasic incompressible flow in Boussinesq approximation in the normal operating conditions of a primary circuit of nuclear power plant. Turbulence effects on the mean field are taken into account by the k-epsilon model with two evolution equations: one for the kinetic energy of the turbulence, and one for the energy dissipation rate. The wall zone is covered by wall laws, and by REICHARDT's law in particular. A Law is advanced for the epsilon input profile, and a numerical solution is proposed for the physically aberrant values of k and epsilon generated by the model. Single-equation models are reviewed comparatively with the k-epsilon model. A comparison between calculated and analytical solutions or calculated and experimental results is presented for decreasing turbulence behind a grid, for the flow between parallel flat plates with three REYNOLDS numbers, and for backward facing step [fr

  20. Interaction of turbulent deflagrations with representative flow obstacles

    International Nuclear Information System (INIS)

    Durst, B.; Ardey, N.; Mayinger, F.

    1997-01-01

    In the case of a gradual release of hydrogen in the course of an assumed, severe accident in a light water reactor, the combustion will normally start out as a slow deflagration. Acceleration of an initially slow flame due to interactions of chemical kinetics and turbulent heat and mass transfer can result in very high flame speeds. Therefore, in order to assess hydrogen mitigation techniques, detailed knowledge about flame acceleration and interaction of flames with obstacles is required. The reported investigations are aimed at the investigation of the mechanisms responsible for turbulent flame acceleration and improving present correlations for estimates and models for numerical simulations of hydrogen combustion processes. A medium-scale square cross-section setup is employed, using flow obstacles with shapes representative for reactor containments. The global flame speed is deduced from measurements using thermocouples, pressure transducers and photodiodes. Measurements using a two-component LDA-system are being carried through in order to correlate global flame spread and local turbulence parameters. Results indicate that low blockage-ratio obstacles only marginally influence the flame, as disturbances which are induced remain local to the vicinity of the obstacle and die out very quickly downstream thereof. Flow visualizations by means of a Schlieren setup indicate very complex flow structures in the vicinity of obstacles. The results are being used to validate turbulent reaction models. A model based on probability density functions (pdf) of assumed shape has been developed and initial calculations are presented. (author)

  1. Three dimensional computation of turbulent flow in meandering channels

    Energy Technology Data Exchange (ETDEWEB)

    Van Thinh Nguyen

    2000-07-01

    In this study a finite element calculation procedure together with two-equation turbulent model k-{epsilon} and mixing length are applied to the problem of simulating 3D turbulent flow in closed and open meandering channels. Near the wall a special approach is applied in order to overcome the weakness of the standard k-{epsilon} in the viscous sub-layer. A specialized shape function is used in the special near wall elements to capture accurately the strong variations of the mean flow variables in the viscosity-affected near wall region. Based on the analogy of water and air flows, a few characteristics of hydraulic problems can be examined in aerodynamic models, respectively. To study the relationships between an aerodynamic and a hydraulic model many experiments have been carried out by Federal Waterway Engineering and Research Institute of Karlsruhe, Germany. In order to test and examine the results of these physical models, an appropriated numerical model is necessary. The numerical mean will capture the limitations of the experimental setup. The similarity and the difference between an aerodynamic and a hydraulic model will be found out by the results of numerical computations and will be depicted in this study. Despite the presence of similarities between the flow in closed channels and the flow in open channels, it should be stated that the presence of a free surface in the open channel introduces serious complications to three dimensional computation. A new unknown, which represents the position of nodes on this free surface, is introduced. A special approach is required for solving this unknown. A procedure surface tracking is applied to the free surface boundary like a moving boundary. Grid nodes on the free surface are free to move in such a way that they belong to the spines, which are the generator lines to define the allowed motion of the nodes on the free surface. (orig.) [German] Die numerische Simulation ist heute ein wichtiges Hilfsmittel fuer die

  2. Turbulent mixing between subchannels in a gas-liquid two-phase flow. For the equilibrium flow without net fluid transfer between subchannels

    International Nuclear Information System (INIS)

    Kawahara, Akimaro; Sadatomi, Michio; Sato, Yoshifusa; Saito, Hidetoshi.

    1995-01-01

    To provide data necessary for modeling turbulent mixing between subchannels in a nuclear fuel rod bundle, three experiments were made in series for equilibrium two-phase flows, in which net mass exchange does not occur between subchannels for each phase. The first one was the measurement of turbulent mixing rates of both gas and liquid phases by a tracer technique, using air and water as the working fluids. Three kinds of vertical test channels consisting of two subchannels were used. The data have shown that the turbulent mixing rate of each phase in a two-phase flow is strongly dependent on flow regime. So, to see the relation between turbulent mixing and two-phase flow configuration in the subchannels, the second experiment, flow visualization, was made. It was observed in slug and churn flows that a lateral inter-subchannel liquid flow of a large scale is caused by the successive axial transit of large gas bubbles in each subchannel, and the turbulent mixing for the liquid phase is dominated by this lateral flow. To investigate a driving force of such large scale lateral flow, the third experiment, the measurement of an instantaneous pressure differential between the subchannels, was made. The result showed that there is a close relationship between the liquid phase mixing rate and the magnitude of the pressure differential fluctuation. (author)

  3. Computation of turbulent flow and heat transfer in subassemblies

    International Nuclear Information System (INIS)

    Slagter, W.

    1979-01-01

    This research is carried out in order to provide information on the thermohydraulic behaviour of fast reactor subassemblies. The research work involves the development of versatile computation methods and the evaluation of combined theoretical and experimental work on fluid flow and heat transfer in fuel rod bundles. The computation method described here rests on the application of the distributed parameter approach. The conditions considered cover steady, turbulent flow and heat transfer of incompressible fluids in bundles of bare rods. Throughout 1978 main efforts were given to the development of the VITESSE program and to the validation of the hydrodynamic part of the code. In its present version the VITESSE program is applicable to predict the fully developed turbulent flow and heat transfer in the subchannels of a bundle with bare rods. In this paper the main features of the code are described as well as the present status of development

  4. Turbulent kinetic energy spectrum in very anisothermal flows

    International Nuclear Information System (INIS)

    Serra, Sylvain; Toutant, Adrien; Bataille, Françoise; Zhou, Ye

    2012-01-01

    In this Letter, we find that the Kolmogorov scaling law is no longer valid when the flow is submitted to strong dilatational effects caused by high temperature gradients. As a result, in addition to the nonlinear time scale, there is a much shorter “temperature gradients” time scale. We propose a model that estimates the time scale of the triple decorrelation incorporating the influences of the temperature gradient. The model agrees with the results from the thermal large-eddy simulations of different Reynolds numbers and temperature gradients. This Letter provides a better understanding of the very anisothermal turbulent flow. -- Highlights: ► Turbulent flows subject to high temperature gradients are considered. ► The new “temperature gradients” time scale is determined. ► A generalized energy spectrum is developed to incorporate the effects of temperature gradient.

  5. Turbulent flow with suction in smooth and rough pipes

    International Nuclear Information System (INIS)

    Verdier, Andre.

    1977-11-01

    It concerns an experimental study of turbulent flow inside a pipe with rough and porous wall and suction applied through it. The first part recall the basic knowledge concerning the turbulent flow with roughness. In second part statistical equations of fluid wall stress are written in the case of a permeable rough wall, in order to underline the respective role played by viscosity and pressure terms. In the third part the dynamic equilibrium of the flow is experimentally undertaken in the smooth and rough range with and without wall suction. Some empirical formulae are proposed for the mean velocity profiles in the inertial range and for friction velocity with suction. In the case of the sand roughness used, it does not seem that critical Reynolds number of transition from smooth to rough range is varied [fr

  6. The dimension of attractors underlying periodic turbulent Poiseuille flow

    Science.gov (United States)

    Keefe, Laurence; Moin, Parviz; Kim, John

    1992-01-01

    A lower bound on the Liapunov dimenison, D-lambda, of the attractor underlying turbulent, periodic Poiseuille flow at a pressure-gradient Reynolds number of 3200 is calculated, on the basis of a coarse-grained (16x33x8) numerical solution, to be approximately 352. Comparison of Liapunov exponent spectra from this and a higher-resolution (16x33x16) simulation on the same spatial domain shows these spectra to have a universal shape when properly scaled. On the basis of these scaling properties, and a partial exponent spectrum from a still higher-resolution (32x33x32) simulation, it is argued that the actual dimension of the attractor underlying motion of the given computational domain is approximately 780. It is suggested that this periodic turbulent shear flow is deterministic chaos, and that a strange attractor does underly solutions to the Navier-Stokes equations in such flows.

  7. Large eddy simulation of turbulent and stably-stratified flows

    International Nuclear Information System (INIS)

    Fallon, Benoit

    1994-01-01

    The unsteady turbulent flow over a backward-facing step is studied by mean of Large Eddy Simulations with structure function sub grid model, both in isothermal and stably-stratified configurations. Without stratification, the flow develops highly-distorted Kelvin-Helmholtz billows, undergoing to helical pairing, with A-shaped vortices shed downstream. We show that forcing injected by recirculation fluctuations governs this oblique mode instabilities development. The statistical results show good agreements with the experimental measurements. For stably-stratified configurations, the flow remains more bi-dimensional. We show with increasing stratification, how the shear layer growth is frozen by inhibition of pairing process then of Kelvin-Helmholtz instabilities, and the development of gravity waves or stable density interfaces. Eddy structures of the flow present striking analogies with the stratified mixing layer. Additional computations show the development of secondary Kelvin-Helmholtz instabilities on the vorticity layers between two primary structures. This important mechanism based on baroclinic effects (horizontal density gradients) constitutes an additional part of the turbulent mixing process. Finally, the feasibility of Large Eddy Simulation is demonstrated for industrial flows, by studying a complex stratified cavity. Temperature fluctuations are compared to experimental measurements. We also develop three-dimensional un-stationary animations, in order to understand and visualize turbulent interactions. (author) [fr

  8. Tracking coherent structures in massively-separated and turbulent flows

    Science.gov (United States)

    Rockwood, Matthew; Huang, Yangzi; Green, Melissa

    2018-01-01

    Coherent vortex structures are tracked in simulations of massively-separated and turbulent flows. Topological Lagrangian saddle points are found using intersections of the positive and negative finite-time Lyapunov exponent ridges, and these points are then followed in order to track individual coherent structure motion both in a complex interacting three-dimensional flow (turbulent channel) and during vortex formation (two-dimensional bluff body shedding). For a simulation of wall-bounded turbulence in a channel flow, tracking Lagrangian saddles shows that the average structure convection speed exhibits a similar trend as a previously published result based on velocity and pressure correlations, giving validity to the method. When this tracking method is applied in a study of a circular cylinder in cross-flow it shows that Lagrangian saddles rapidly accelerate away from the cylinder surface as the vortex sheds. This saddle behavior is compared with the time-resolved static pressure distribution on the circular cylinder, yielding locations on a cylinder surface where common sensors could detect this phenomenon, which is not available from force measurements or vortex circulation calculations. The current method of tracking coherent structures yields insight into the behavior of the coherent structures in both of the diverse flows presented, highlighting the breadth of its potential application.

  9. Soap film flows: Statistics of two-dimensional turbulence

    International Nuclear Information System (INIS)

    Vorobieff, P.; Rivera, M.; Ecke, R.E.

    1999-01-01

    Soap film flows provide a very convenient laboratory model for studies of two-dimensional (2-D) hydrodynamics including turbulence. For a gravity-driven soap film channel with a grid of equally spaced cylinders inserted in the flow, we have measured the simultaneous velocity and thickness fields in the irregular flow downstream from the cylinders. The velocity field is determined by a modified digital particle image velocimetry method and the thickness from the light scattered by the particles in the film. From these measurements, we compute the decay of mean energy, enstrophy, and thickness fluctuations with downstream distance, and the structure functions of velocity, vorticity, thickness fluctuation, and vorticity flux. From these quantities we determine the microscale Reynolds number of the flow R λ ∼100 and the integral and dissipation scales of 2D turbulence. We also obtain quantitative measures of the degree to which our flow can be considered incompressible and isotropic as a function of downstream distance. We find coarsening of characteristic spatial scales, qualitative correspondence of the decay of energy and enstrophy with the Batchelor model, scaling of energy in k space consistent with the k -3 spectrum of the Kraichnan endash Batchelor enstrophy-scaling picture, and power-law scalings of the structure functions of velocity, vorticity, vorticity flux, and thickness. These results are compared with models of 2-D turbulence and with numerical simulations. copyright 1999 American Institute of Physics

  10. An experimental and numerical study of developed single phase axial turbulent flow in a smooth rod bundle

    International Nuclear Information System (INIS)

    Hooper, J.D.

    1977-01-01

    A combined experimental and numerical model of a turbulent single phase coolant, flowing axially along the fuel pins of a nuclear reactor, was developed. The experimental rig represented two interconnected subchannels of a square array at a pitch/diameter ratio of 1.193. Air was the working fluid, and measurements were made of the mean radial velocity profiles, wall shear stress variation, turbulence velocity spectra and intensities. The numerically predicted wall shear distribution and mean velocity profiles, obtained using an empirical two-dimensional mixing length and eddy diffusivity concept to represent fluid turbulence, showed good agreement with the experimental results. (Author)

  11. Zonal flows and turbulence in fluids and plasmas

    Science.gov (United States)

    Parker, Jeffrey Bok-Cheung

    In geophysical and plasma contexts, zonal flows are well known to arise out of turbulence. We elucidate the transition from statistically homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence with steady zonal flows. Starting from the Hasegawa--Mima equation, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking 'zonostrophic instability'. Zonostrophic instability can be understood in a very general way as the instability of some turbulent background spectrum to a zonally symmetric coherent mode. As a special case, the background spectrum can consist of only a single mode. We find that in this case the dispersion relation of zonostrophic instability from the CE2 formalism reduces exactly to that of the 4-mode truncation of generalized modulational instability. We then show that zonal flows constitute pattern formation amid a turbulent bath. Zonostrophic instability is an example of a Type I s instability of pattern-forming systems. The broken symmetry is statistical homogeneity. Near the bifurcation point, the slow dynamics of CE2 are governed by a well-known amplitude equation, the real Ginzburg-Landau equation. The important features of this amplitude equation, and therefore of the CE2 system, are multiple. First, the zonal flow wavelength is not unique. In an idealized, infinite system, there is a continuous band of zonal flow wavelengths that allow a nonlinear equilibrium. Second, of these wavelengths, only those within a smaller subband are stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets. These behaviors are shown numerically to hold in the CE2 system, and we calculate a stability diagram. The stability diagram is in agreement with direct numerical simulations of the quasilinear

  12. Density based topology optimization of turbulent flow heat transfer systems

    DEFF Research Database (Denmark)

    Dilgen, Sümer Bartug; Dilgen, Cetin Batur; Fuhrman, David R.

    2018-01-01

    The focus of this article is on topology optimization of heat sinks with turbulent forced convection. The goal is to demonstrate the extendibility, and the scalability of a previously developed fluid solver to coupled multi-physics and large 3D problems. The gradients of the objective and the con...... in the optimization process, while also demonstrating extension of the methodology to include coupling of heat transfer with turbulent flows.......The focus of this article is on topology optimization of heat sinks with turbulent forced convection. The goal is to demonstrate the extendibility, and the scalability of a previously developed fluid solver to coupled multi-physics and large 3D problems. The gradients of the objective...

  13. Analysis of turbulent conical diffuser flow using second moment closures

    International Nuclear Information System (INIS)

    Adane, K.K.; Tachie, M.F.; Ormiston, S.J.

    2004-01-01

    A commercial CFD code, CFX-TASCflow, is used to predict a turbulent conical diffuser flow. The computation was performed using a low-Reynolds number k-ω model, a low-Reynolds number k-ω based non-linear algebraic Reynolds stress model, and a second moment closure with a wall-function. The experimental data of Kassab are used to validate the numerical results. The results show that all the turbulence models reproduce the static pressure coefficient distribution reasonably well. The low Reynolds number k-ω models give better prediction of the friction velocity than the second moment closure. The models also predict the Reynolds shear stress reasonably well but fail to reproduce the correct level of the turbulent kinetic energy. (author)

  14. Strange attractors in weakly turbulent Couette-Taylor flow

    Science.gov (United States)

    Brandstater, A.; Swinney, Harry L.

    1987-01-01

    An experiment is conducted on the transition from quasi-periodic to weakly turbulent flow of a fluid contained between concentric cylinders with the inner cylinder rotating and the outer cylinder at rest. Power spectra, phase-space portraits, and circle maps obtained from velocity time-series data indicate that the nonperiodic behavior observed is deterministic, that is, it is described by strange attractors. Various problems that arise in computing the dimension of strange attractors constructed from experimental data are discussed and it is shown that these problems impose severe requirements on the quantity and accuracy of data necessary for determining dimensions greater than about 5. In the present experiment the attractor dimension increases from 2 at the onset of turbulence to about 4 at a Reynolds number 50-percent above the onset of turbulence.

  15. Large-Eddy-Simulation of turbulent magnetohydrodynamic flows

    Directory of Open Access Journals (Sweden)

    Woelck Johannes

    2017-01-01

    Full Text Available A magnetohydrodynamic turbulent channel flow under the influence of a wallnormal magnetic field is investigated using the Large-Eddy-Simulation technique and k-equation subgrid-scale-model. Therefore, the new solver MHDpisoFoam is implemented in the OpenFOAM CFD-Code. The temporal decay of an initial turbulent field for different magnetic parameters is investigated. The rms values of the averaged velocity fluctuations show a similar, trend for each coordinate direction. 80% of the fluctuations are damped out in the range between 0 < Ha < < 75 at Re = 6675. The trend can be approximated via an exponential of the form exp(−a·Ha, where a is a scaling parameter. At higher Hartmann numbers the fluctuations decrease in an almost linear way. Therefore, the results of this study show that it may be possible to construct a general law for the turbulence damping due to action of magnetic fields.

  16. Constrained dynamics of an inertial particle in a turbulent flow

    International Nuclear Information System (INIS)

    Obligado, M; Baudet, C; Gagne, Y; Bourgoin, M

    2011-01-01

    Most of theoretical and numerical works for free advected particles in a turbulent flow, which only consider the drag force acting on the particles, fails to predict recent experimental results for the transport of finite size particles. These questions have motivated a series of experiments trying to emphasize the actual role of the drag force by imposing this one as an unambiguous leading forcing term acting on a particle in a turbulent background. This is achieved by considering the constrained dynamics of towed particles in a turbulent environment. In the present work, we focus on the influence of particles inertia on its velocity and acceleration Lagrangian statistics and energy spectral density. Our results are consistent with a filtering scenario resulting from the viscous response time of an inertial particle whose dynamics is coupled to the surrounding fluid via strong contribution of drag.

  17. Effect of Free Stream Turbulence on the Flow-Induced Background Noise of In-Flow Microphones

    Science.gov (United States)

    Allen, Christopher S.; Olson, Lawrence E. (Technical Monitor)

    1998-01-01

    When making noise measurements of sound sources in flow using microphones immersed in an air stream or wind tunnel, the factor limiting the dynamic range of the measurement is, in many cases, the noise caused by the flow over the microphone. To lower this self-noise, and to protect the microphone diaphragm, an aerodynamic microphone forebody is usually mounted on the tip of the omnidirectional microphone. The microphone probe is then pointed into the wind stream. Even with a microphone forebody, however, the self-noise persists, prompting further research in the area of microphone forebody design for flow-induced self-noise reduction. The magnitude and frequency characteristics of in-flow microphone probe self-noise is dependent upon the exterior shape of the probe and on the level of turbulence in the onset flow, among other things. Several recent studies present new designs for microphone forebodies, some showing the forbodies' self-noise characteristics when used in a given facility. However, these self-noise characteristics may change when the probes are used in different facilities. The present paper will present results of an experimental investigation to determine an empirical relationship between flow turbulence and self-noise levels for several microphone forebody shapes as a function of frequency. As a result, the microphone probe self-noise for these probes will be known as a function of freestream turbulence, and knowing the freestream turbulence spectra for a given facility, the probe self-noise can be predicted. Flow-induced microphone self-noise is believed to be related to the freestream. turbulence by three separate mechanisms. The first mechanism is produced by large scale, as compared to the probe size, turbulence which appears to the probe as a variation in the angle of attack of the freestream. flow. This apparent angle of attack variation causes the pressure along the probe surface to fluctuate, and at the location of the sensor orifice this

  18. PDF modeling of turbulent flows on unstructured grids

    Science.gov (United States)

    Bakosi, Jozsef

    In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. Because the technique solves a transport equation for the PDF of the velocity and scalars, a mathematically exact treatment of advection, viscous effects and arbitrarily complex chemical reactions is possible; these processes are treated without closure assumptions. A set of algorithms is proposed to provide an efficient solution of the PDF transport equation modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain and to track particles. All three aspects regarding the grid make use of the finite element method. Compared to hybrid methods, the current methodology is stand-alone, therefore it is consistent both numerically and at the level of turbulence closure without the use of consistency conditions. Since both the turbulent velocity and scalar concentration fields are represented in a stochastic way, the method allows for a direct and close interaction between these fields, which is beneficial in computing accurate scalar statistics. Boundary conditions implemented along solid bodies are of the free-slip and no-slip type without the need for ghost elements. Boundary layers at no-slip boundaries are either fully resolved down to the viscous sublayer, explicitly modeling the high anisotropy and inhomogeneity of the low-Reynolds-number wall region without damping or wall-functions or specified via logarithmic wall-functions. As in moment closures and large eddy simulation, these wall-treatments provide the usual trade-off between resolution and computational cost as required by the given application. Particular attention is focused on

  19. Flow and heat transfer in laminar–turbulent transitional flow regime under rolling motion

    International Nuclear Information System (INIS)

    Yuan, Hongsheng; Tan, Sichao; Zhuang, Nailiang; Lan, Shu

    2016-01-01

    Highlights: • Flow and heat transfer experiment in transitional flow regime under rolling motion. • Increases of average friction factor and Nu were found. • Periodic breakdown of laminar flow contributes to the increase. • Nonlinear variation of pressure drop or Nu with Re also contributes to the increase. • Effect of critical Reynolds number shift was discussed. - Abstract: Flow and heat transfer characteristics under rolling motion are extremely important to thermohydraulic analysis of offshore nuclear reactors. An experimental study was conducted in a heated rectangular channel to investigate flow and heat transfer in laminar–turbulent transitional flow regime under rolling motion. The results showed that the average friction factor and Nusselt number are higher than that of the corresponding steady flow as the flow rate fluctuates in transitional flow regime. Larger relative flow rate fluctuation was observed under larger rolling amplitude or higher rolling frequency. In the same manner, larger increases of average friction factor and Nusselt number were achieved under larger rolling amplitude or higher rolling frequency. The increases were mainly caused by the flow rate fluctuation through periodic breakdown of laminar flow and development of turbulence in laminar–turbulent transitional flow regime. First, turbulence, which enhances the rate of momentum and energy exchange, occurs near the crest of flow rate wave even the flow is still in laminar flow regime according to the average Reynolds number. Second, as a result of rapid increases of the friction and heat transfer with Reynolds number in transitional flow regime, the increases of the friction and the heat transfer near the crest of flow rate wave are larger than the decreases of them near the trough of flow rate wave, which also contributes to increases of average friction and heat transfer. Additionally, the effect of critical Reynolds number shift under unsteady flow and heating

  20. Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing.

    Science.gov (United States)

    Burnishev, Yuri; Steinberg, Victor

    2015-08-01

    We report unexpected results of a drastic difference in the transition to fully developed turbulent and turbulent drag reduction (TDR) regimes and in their properties in a von Karman swirling flow with counter-rotating disks of water-based polymer solutions for viscous (by smooth disks) as well as inertial (by bladed disks) forcing and by tracking just torque Γ(t) and pressure p(t) . For the viscous forcing, just a single TDR regime is found with the transition values of the Reynolds number (Re) Re turb c =Re TDR c ≃(4.8±0.2)×10(5) independent of ϕ , whereas for the inertial forcing two turbulent regimes are revealed. The first transition is to fully developed turbulence, and the second one is to the TDR regime with both Re turb c and Re TDR c depending on polymer concentration ϕ . Both regimes differ by the values of C f and C p , by the scaling exponents of the fundamental turbulent characteristics, by the nonmonotonic dependencies of skewness and flatness of the pressure PDFs on Re, and by the different frequency power spectra of p with the different dependencies of the main vortex peak frequency in the p power spectra on ϕ and Re. Thus our experimental results show the transition to the TDR regime in a von Karman swirling flow for the viscous and inertial forcings in a sharp contrast to the recent experiments [Phys. Fluids 10, 426 (1998); Phys. Rev. E 47, R28(R) (1993); and J. Phys.: Condens. Matter 17, S1195 (2005)] where the transition to TDR is observed in the same swirling flow with counter-rotating disks only for the viscous forcing. The latter result has led its authors to the wrong conclusion that TDR is a solely boundary effect contrary to the inertial forcing associated with the bulk effect, and this conception is currently rather widely accepted in literature.

  1. SIMULATION OF TURBULENT FLOW AND HEAT TRANSFER OVER A BACKWARD -FACING STEP WITH RIBS TURBULATORS

    Directory of Open Access Journals (Sweden)

    Khudheyer S Mushatet

    2011-01-01

    Full Text Available Simulation is presented for a backward facing step flow and heat transfer inside a channel with ribs turbulators. The problem was investigated for Reynolds numbers up to 32000. The effect of a step height, the number of ribs and the rib thickness on the flow and thermal field were investigated. The computed results are presented as streamlines counters, velocity vectors and graphs of Nusselt number and turbulent kinetic energy variation. A control volume method employing a staggered grid techniques was imposed to discretize the governing continuity, full Navier Stockes and energy equations. A computer program using a SIMPLE algorithm was developed to handle the considered problem. The effect of turbulence was modeled by using a k-є model with its wall function formulas. The obtained results show that the strength and size of the re-circulation zones behind the step are increased with the increase of contraction ratio(i.e. with the increase of a step height. The size of recirculation regions and the reattachment length after the ribs are decreased with increasing of the contraction ratio. Also the results show that the Reynolds number and contraction ratio have a significant effect on the variation of turbulent kinetic energy and Nusselt number

  2. Transition to turbulence for flows without linear criticality

    International Nuclear Information System (INIS)

    Nagata, Masato

    2010-01-01

    It is well known that plane Couette flow (PCF) and pipe flow (PF) are linearly stable against arbitrary three-dimensional perturbations at any finite Reynolds number, so that transitions from the basic laminar states, if they exist, must be abrupt. Due to this lack of linear criticality, weakly nonlinear analysis does not work in general and numerical approaches must be resorted to. It is only recently that non-trivial nonlinear states for these flows have been discovered numerically at finite Reynolds number as solutions bifurcating from infinity. The onset of turbulence in a subcritical transition is believed to be related to the appearance of steady/travelling wave states caused by disturbances of finite amplitude that take the flows out of the basin of attraction of the laminar state in phase space. In this paper, we introduce other flows that, in a similar way to PCF and PF, exhibit no linear critical point for the laminar states, namely flow in a square duct and sliding Couette flow in an annulus with a certain range of gap ratio. We shall show our recent numerical investigations on these flows where nonlinear travelling wave states are found for the first time by a homotopy approach. We believe that these states constitute the skeleton around which a time-dependent trajectory in the phase space is organized and help in understanding non-equilibrium turbulent processes.

  3. Biomimetic structures for fluid drag reduction in laminar and turbulent flows

    International Nuclear Information System (INIS)

    Jung, Yong Chae; Bhushan, Bharat

    2010-01-01

    Biomimetics allows one to mimic nature to develop materials and devices of commercial interest for engineers. Drag reduction in fluid flow is one of the examples found in nature. In this study, nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated. Drag reduction efficiency studies on the surfaces were systematically carried out using water flow. An experimental flow channel was used to measure the pressure drop in laminar and turbulent flows, and the trends were explained in terms of the measured and predicted values by using fluid dynamics models. The slip length for various surfaces in laminar flow was also investigated based on the measured pressure drop. For comparison, the pressure drop for various surfaces was also measured using air flow.

  4. Modelling and simulation of turbulence and heat transfer in wall-bounded flows

    NARCIS (Netherlands)

    Popovac, M.

    2006-01-01

    At present it is widely accepted that there is no universal turbulence model, i.e. no turbulence model can give acceptably good predictions for all turbulent flows that are found in nature or engineering. Every turbulence model is based on certain assumptions, and hence it is aimed at certain type

  5. Boundary layer attenuation in turbulent sodium flows

    International Nuclear Information System (INIS)

    Tenchine, D.

    1994-01-01

    Temperature fluctuations are produced in the sodium coolant of Liquid Metal Reactors when flows at different temperatures are mixing. That occurs in various areas of the reactor plant, in the primary and the secondary circuits. This paper deals with secondary circuit pipings, specifically the Superphenix steam generator outlet. The possibility of thermal striping in this area is studied because of the mixing of a main 'hot' flow surrounded by a smaller 'cold' flow in the vertical pipe located below the steam generator. This work was developed in the frame of a collaboration between CEA, EDF and FRAMATOME. The purpose of our study is to measure temperature fluctuations in the fluid and on the structures, on a sodium reduced scale model of the outlet region of the steam generator. We want to evidence the boundary layer attenuation by comparing wall and fluid measurements. From these experimental data, we shall propose a methodology to predict the boundary layer attenuation and the temperature fluctuations at the surface of the structure, for pipe flow configurations

  6. Aeroacoustic Computations for Turbulent Airfoil Flows

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zhu, Wei Jun; Sørensen, Jens Nørkær

    2009-01-01

    a NACA 0015 airfoil at a Mach number of 0.2 and a Reynolds number of 1.6 x 10(5) for different angles of attack. The flow solutions are validated by comparing lift and drag characteristics with experimental data. The comparisons show good agreements between the computed and measured airfoil lift...

  7. Tokamak turbulence in self-regulated differentially rotating flow and L-H transition dynamics

    International Nuclear Information System (INIS)

    Terry, P.W.; Carreras, B.A.; Sidikman, K.

    1992-01-01

    An analytical study of turbulence in the presence of turbulently generated differentially rotating flow is presented as a paradigm for fluctuation dynamics in L- and H-mode plasmas. Using a drift wave model, the role of both flow shear and flow curvature (second radial derivative of the poloidal ExB flow) is detailed in linear and saturated turbulence phases. In the strong turbulence saturated state, finite amplitude-induced modification of the fluctuation structure near low order rational surfaces strongly inhibits flow shear suppression. Suppression by curvature is not diminished, but it occurs through a frequency shift. A description of L-H mode transition dynamics based on the self-consistent linking of turbulence suppression by differentially rotating flow and generation of flow by turbulent momentum transport is presented. In this model, rising edge temperature triggers a transition characterized by spontaneous generation of differentially rotating flow and decreasing turbulence intensity

  8. Coherent Structure Phenomena in Drift Wave-Zonal Flow Turbulence

    International Nuclear Information System (INIS)

    Smolyakov, A. I.; Diamond, P. H.; Malkov, M.

    2000-01-01

    Zonal flows are azimuthally symmetric plasma potential perturbations spontaneously generated from small-scale drift-wave fluctuations via the action of Reynolds stresses. We show that, after initial linear growth, zonal flows can undergo further nonlinear evolution leading to the formation of long-lived coherent structures which consist of self-bound wave packets supporting stationary shear layers. Such coherent zonal flow structures constitute dynamical paradigms for intermittency in drift-wave turbulence that manifests itself by the intermittent distribution of regions with a reduced level of anomalous transport. (c) 2000 The American Physical Society

  9. Structure and statistics of turbulent flow over riblets

    Science.gov (United States)

    Henderson, R. D.; Crawford, C. H.; Karniadakis, G. E.

    1993-01-01

    In this paper we present comparisons of turbulence statistics obtained from direct numerical simulation of flow over streamwise aligned triangular riblets with experimental results. We also present visualizations of the instantaneous velocity field inside and around the riblet valleys. In light of the behavior of the statistics and flowfields inside the riblet valleys, we investigate previously reported physical mechanisms for the drag reducing effect of riblets; our results here support the hypothesis of flow anchoring by the riblet valleys and the corresponding inhibition of spanwise flow motions.

  10. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    Science.gov (United States)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  11. Augmentation of Effective Thermal Gain of Solar Air Heater using a Novel Turbulator Design- A CFD Study

    Directory of Open Access Journals (Sweden)

    Dhagat Animesh

    2018-01-01

    Full Text Available Augmentation of thermal performance of solar air heater has been the focus of many researchers over the last decades and the use of turbulator or artificial roughness to provide increased fluid mixing in order to achieve augmented heat transfer has been a widely accepted technique. This work aims to evaluate the effect of a novel turbulator design on the effective thermal performance of solar air heater using the methodology of computational fluid dynamics (CFD. A two dimensional CFD analysis is carried out to evaluate the thermal characteristics of solar air heater at various flow Reynolds number conditions for different geometric parameters of the proposed turbulator design. The pitch of the turbulator is varied as 10mm, 20mm, 30mm, 40mm and 50mm for a fixed turbulator height of 2 mm. The Reynolds number is varied from 6,000 to 27,000. The analysis shows that the lower values of pitch produces higher improvement in heat transfer. The maximum increase in Nusselt number is found to be about 2.98 times as compared to the base model for the flow Reynolds number of about 6000. The highest increase in the friction factor is found to be about 3.05 times relative to the base model. The maximum thermal enhancement factor is found to be about 1.99 for the pitch value of 10 mm at a flow Reynolds number of about 6000.

  12. The impact of traffic-flow patterns on air quality in urban street canyons

    International Nuclear Information System (INIS)

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17–42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. - Highlights: • CFD is used to study impact of traffic-flow patterns on urban air quality. • Facilitating free-flow patterns induce more turbulence in street canyons. • Traffic-generated turbulence alters pollutant levels in urban street canyons. - This study investigates the effect of vehicle-induced-turbulence generated during free-flow traffic pattern in reduction of air pollutant concentrations in urban street canyons.

  13. Numerical investigation on cavitation flow of hydrofoil and its flow noise with emphasis on turbulence models

    Directory of Open Access Journals (Sweden)

    Sanghyeon Kim

    2017-06-01

    Full Text Available In this study, cavitation flow of hydrofoils is numerically investigated to characterize the effects of turbulence models on cavitation-flow patterns and the corresponding radiated sound waves. The two distinct flow conditions are considered by varying the mean flow velocity and angle of attack, which are categorized under the experimentally observed unstable or stable cavitation flows. To consider the phase interchanges between the vapor and the liquid, the flow fields around the hydrofoil are analyzed by solving the unsteady compressible Reynolds-averaged Navier–Stokes equations coupled with a mass-transfer model, also referred to as the cavitation model. In the numerical solver, a preconditioning algorithm with dual-time stepping techniques is employed in generalized curvilinear coordinates. The following three types of turbulence models are employed: the laminar-flow model, standard k − ε turbulent model, and filter-based model. Hydro-acoustic field formed by the cavitation flow of the hydrofoil is predicted by applying the Ffowcs Williams and Hawkings equation to the predicted flow field. From the predicted results, the effects of the turbulences on the cavitation flow pattern and radiated flow noise are quantitatively assessed in terms of the void fraction, sound-pressure-propagation directivities, and spectrum.

  14. Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder

    Science.gov (United States)

    Wang, Chi R.; Yeh, Frederick C.

    1987-01-01

    A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.

  15. Anomalous Chained Turbulence in Actively Driven Flows on Spheres

    Science.gov (United States)

    Mickelin, Oscar; Słomka, Jonasz; Burns, Keaton J.; Lecoanet, Daniel; Vasil, Geoffrey M.; Faria, Luiz M.; Dunkel, Jörn

    2018-04-01

    Recent experiments demonstrate the importance of substrate curvature for actively forced fluid dynamics. Yet, the covariant formulation and analysis of continuum models for nonequilibrium flows on curved surfaces still poses theoretical challenges. Here, we introduce and study a generalized covariant Navier-Stokes model for fluid flows driven by active stresses in nonplanar geometries. The analytical tractability of the theory is demonstrated through exact stationary solutions for the case of a spherical bubble geometry. Direct numerical simulations reveal a curvature-induced transition from a burst phase to an anomalous turbulent phase that differs distinctly from externally forced classical 2D Kolmogorov turbulence. This new type of active turbulence is characterized by the self-assembly of finite-size vortices into linked chains of antiferromagnetic order, which percolate through the entire fluid domain, forming an active dynamic network. The coherent motion of the vortex chain network provides an efficient mechanism for upward energy transfer from smaller to larger scales, presenting an alternative to the conventional energy cascade in classical 2D turbulence.

  16. Large-scale structures in turbulent Couette flow

    Science.gov (United States)

    Kim, Jung Hoon; Lee, Jae Hwa

    2016-11-01

    Direct numerical simulation of fully developed turbulent Couette flow is performed with a large computational domain in the streamwise and spanwise directions (40 πh and 6 πh) to investigate streamwise-scale growth mechanism of the streamwise velocity fluctuating structures in the core region, where h is the channel half height. It is shown that long streamwise-scale structures (> 3 h) are highly energetic and they contribute to more than 80% of the turbulent kinetic energy and Reynolds shear stress, compared to previous studies in canonical Poiseuille flows. Instantaneous and statistical analysis show that negative-u' structures on the bottom wall in the Couette flow continuously grow in the streamwise direction due to mean shear, and they penetrate to the opposite moving wall. The geometric center of the log layer is observed in the centerline with a dominant outer peak in streamwise spectrum, and the maximum streamwise extent for structure is found in the centerline, similar to previous observation in turbulent Poiseuille flows at high Reynolds number. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure in the centerline. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).

  17. The pdf approach to turbulent polydispersed two-phase flows

    Science.gov (United States)

    Minier, Jean-Pierre; Peirano, Eric

    2001-10-01

    The purpose of this paper is to develop a probabilistic approach to turbulent polydispersed two-phase flows. The two-phase flows considered are composed of a continuous phase, which is a turbulent fluid, and a dispersed phase, which represents an ensemble of discrete particles (solid particles, droplets or bubbles). Gathering the difficulties of turbulent flows and of particle motion, the challenge is to work out a general modelling approach that meets three requirements: to treat accurately the physically relevant phenomena, to provide enough information to address issues of complex physics (combustion, polydispersed particle flows, …) and to remain tractable for general non-homogeneous flows. The present probabilistic approach models the statistical dynamics of the system and consists in simulating the joint probability density function (pdf) of a number of fluid and discrete particle properties. A new point is that both the fluid and the particles are included in the pdf description. The derivation of the joint pdf model for the fluid and for the discrete particles is worked out in several steps. The mathematical properties of stochastic processes are first recalled. The various hierarchies of pdf descriptions are detailed and the physical principles that are used in the construction of the models are explained. The Lagrangian one-particle probabilistic description is developed first for the fluid alone, then for the discrete particles and finally for the joint fluid and particle turbulent systems. In the case of the probabilistic description for the fluid alone or for the discrete particles alone, numerical computations are presented and discussed to illustrate how the method works in practice and the kind of information that can be extracted from it. Comments on the current modelling state and propositions for future investigations which try to link the present work with other ideas in physics are made at the end of the paper.

  18. Local measurements in turbulent bubbly flows

    International Nuclear Information System (INIS)

    Suzanne, C.; Ellingsen, K.; Risso, F.; Roig, V.

    1998-01-01

    Local measurements methods in bubbly flows are discussed. Concerning liquid velocity measurement, problems linked to HFA and LDA are first analysed. Then simultaneously recorded velocity signals obtained by both anemometers are compared. New signal processing are developed for the two techniques. Bubble sizes and velocities measurements methods using intrusive double optical sensor probe are presented. Plane bubbly mixing layer has been investigated. Local measurements using the described methods are presented as examples. (author)

  19. Investigation of the propagation characteristics in turbulent dispersed two-phase flow

    International Nuclear Information System (INIS)

    Sami, S.M.

    1980-01-01

    The propagation characteristics of turbulent dispersed two-phase flows have been studied experimentally using the Pitot tube associated with a conical hot-film anemometer. It is found that the mixture velocity increases with decreasing volumetric mixing ratio of the air and water. The void fraction distribution shows homogeneity across the test section in the special case of fully developed boundary layer two-phase flow. An expression is obtained which relates the local mixture velocity to the local void fraction, gas and liquid densities, and volumetric gas-liquid ratio

  20. Turbulence induced lift experienced by large particles in a turbulent flow

    International Nuclear Information System (INIS)

    Zimmermann, Robert; Gasteuil, Yoann; Volk, Romain; Pumir, Alain; Pinton, Jean-François; Bourgoin, Mickaël

    2011-01-01

    The translation and rotation of a large, neutrally buoyant, particle, freely advected by a turbulent flow is determined experimentally. We observe that, both, the orientation the angular velocity with respect to the trajectory and the translational acceleration conditioned on the spinning velocity provides evidence of a lift force, F lift ∝ ω × ν rel , acting on the particle. New results of the dynamics of the coupling between the particle's rotation and its translation are presented.

  1. MEASUREMENTS AND COMPUTATIONS OF FUEL DROPLET TRANSPORT IN TURBULENT FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Katz and Omar Knio

    2007-01-10

    The objective of this project is to study the dynamics of fuel droplets in turbulent water flows. The results are essential for development of models capable of predicting the dispersion of slightly light/heavy droplets in isotropic turbulence. Since we presently do not have any experimental data on turbulent diffusion of droplets, existing mixing models have no physical foundations. Such fundamental knowledge is essential for understanding/modeling the environmental problems associated with water-fuel mixing, and/or industrial processes involving mixing of immiscible fluids. The project has had experimental and numerical components: 1. The experimental part of the project has had two components. The first involves measurements of the lift and drag forces acting on a droplet being entrained by a vortex. The experiments and data analysis associated with this phase are still in progress, and the facility, constructed specifically for this project is described in Section 3. In the second and main part, measurements of fuel droplet dispersion rates have been performed in a special facility with controlled isotropic turbulence. As discussed in detail in Section 2, quantifying and modeling the of droplet dispersion rate requires measurements of their three dimensional trajectories in turbulent flows. To obtain the required data, we have introduced a new technique - high-speed, digital Holographic Particle Image Velocimetry (HPIV). The technique, experimental setup and results are presented in Section 2. Further information is available in Gopalan et al. (2005, 2006). 2. The objectives of the numerical part are: (1) to develop a computational code that combines DNS of isotropic turbulence with Lagrangian tracking of particles based on integration of a dynamical equation of motion that accounts for pressure, added mass, lift and drag forces, (2) to perform extensive computations of both buoyant (bubbles) and slightly buoyant (droplets) particles in turbulence conditions

  2. Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds

    Science.gov (United States)

    Egorov, I. V.; Novikov, A. V.

    2016-06-01

    A method for direct numerical simulation of a laminar-turbulent flow around bodies at hypersonic flow speeds is proposed. The simulation is performed by solving the full three-dimensional unsteady Navier-Stokes equations. The method of calculation is oriented to application of supercomputers and is based on implicit monotonic approximation schemes and a modified Newton-Raphson method for solving nonlinear difference equations. By this method, the development of three-dimensional perturbations in the boundary layer over a flat plate and in a near-wall flow in a compression corner is studied at the Mach numbers of the free-stream of M = 5.37. In addition to pulsation characteristic, distributions of the mean coefficients of the viscous flow in the transient section of the streamlined surface are obtained, which enables one to determine the beginning of the laminar-turbulent transition and estimate the characteristics of the turbulent flow in the boundary layer.

  3. Flow around turbulence promoters in parallel channel, 1

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Takizuka, Takakazu; Okamoto, Yoshizo

    1982-01-01

    Flow characteristics in relation to heat transfer characteristics in parallel channel with turbulence promoters were studied experimentally. Flow visualization experiments were made in paralle channel with one or two turbulence promoters for Reynolds number region of 100 lt = Resub(w) lt = 3,600. The vortex patterns behind one promoter were that a steady vortex was formed for low Reynolds number and vortex was shed for high Reynolds number,. For higher Reynolds number, it was observed that shedding vortex caused other vortices or disappeared itself randomly. The results indicate that the shedding vortices will augment heat transfer, whereas the steady vortex will give rise to deterioration in heat transfer. This inference agrees with the experimental results of Hishida et al. The results of two promoters experiment showed that the maximum performance of promoter would be attained at p/d -- 7. This agrees with the results formerly studied by other investigators. (author)

  4. Neural network modeling for near wall turbulent flow

    International Nuclear Information System (INIS)

    Milano, Michele; Koumoutsakos, Petros

    2002-01-01

    A neural network methodology is developed in order to reconstruct the near wall field in a turbulent flow by exploiting flow fields provided by direct numerical simulations. The results obtained from the neural network methodology are compared with the results obtained from prediction and reconstruction using proper orthogonal decomposition (POD). Using the property that the POD is equivalent to a specific linear neural network, a nonlinear neural network extension is presented. It is shown that for a relatively small additional computational cost nonlinear neural networks provide us with improved reconstruction and prediction capabilities for the near wall velocity fields. Based on these results advantages and drawbacks of both approaches are discussed with an outlook toward the development of near wall models for turbulence modeling and control

  5. Investigation on Effect of Air Velocity in Turbulent Non-Premixed Flames

    Directory of Open Access Journals (Sweden)

    Namazian Zafar

    2016-09-01

    Full Text Available In this study, the turbulent non-premixed methane-air flame is simulated to determine the effect of air velocity on the length of flame, temperature distribution and mole fraction of species. The computational fluid dynamics (CFD technique is used to perform this simulation. To solve the turbulence flow, k-ε model is used. In contrast to the previous works, in this study, in each one of simulations the properties of materials are taken variable and then the results are compared. The results show that at a certain flow rate of fuel, by increasing the air velocity, similar to when the properties are constant, the width of the flame becomes thinner and the maximum temperature is higher; the penetration of oxygen into the fuel as well as fuel consumption is also increased. It is noteworthy that most of the pollutants produced are NOx, which are strongly temperature dependent. The amount of these pollutants rises when the temperature is increased. As a solution, decreasing the air velocity can decrease the amount of these pollutants. Finally, comparing the result of this study and the other work, which considers constant properties, shows that the variable properties assumption leads to obtaining more exact solution but the trends of both results are similar.

  6. Framework for simulating droplet vaporization in turbulent flows

    Science.gov (United States)

    Palmore, John; Desjardins, Olivier

    2017-11-01

    A framework for performing direct numerical simulations of droplet vaporization is presented. The work is motivated by spray combustion in engines wherein fuel droplets vaporize in a turbulent gas flow. The framework is built into a conservative finite volume code for simulating low Mach number turbulent multiphase flows. Phase tracking is performed using a discretely conservative geometric volume of fluid method, while the transport of mass fraction and temperature is performed using the BQUICK scheme. Special attention is given to the implementation of transport equations near the interface to ensure the consistency between fluxes of mass, momentum, and scalars. The effect of evaporation on the flow appears as a system of coupled source terms which depend on the local thermodynamic equilibrium between the phases. The sources are implemented implicitly using an unconditionally stable, monotone scheme. Two methodologies for resolving the system's thermodynamic equilibrium are compared for their accuracy, robustness, and computational expense. Verification is performed by comparing results to known solutions in one and three dimensions. Finally, simulations of droplets vaporizing in turbulence are demonstrated, and trends for mass fraction and temperature fields are discussed.

  7. PIV measurement of turbulent mixing layer flow with polymer additives

    International Nuclear Information System (INIS)

    Ning, T; Guo, F; Chen, B; Zhang, X

    2009-01-01

    Turbulent mixing layer flow with polymer additives was experimentally investigated by PIV in present paper. The velocity ratio between high and low speed is 4:1 and the Reynolds number for pure water case based on the velocity differences of two steams and hydraulic diameter of the channel ranges from 14667∼73333. Flow field and turbulent quantities of turbulent mixing layer with 200ppm polymer additives were measured and compared with pure water mixing layer flow. It is shown that the dynamic development of mixing layer is greatly influenced by polymer addictives. The smaller vortices are eliminated and the coherent structure is much clearer. Similar with pure water case, Reynolds stress and vorticity still concentrate in a coniform area of central part of mixing layer and the width will increase with the Reynolds number increasing. However, compared with pure water case, the coniform width of polymer additives case is larger, which means the polymer additives will lead to the diffusion of coherent structure. The peak value of vorticity in different cross section will decrease with the development of mixing layer. Compared with pure water case, the vorticity is larger at the beginning of the mixing layer but decreases faster in the case with polymer additives.

  8. Turbulent transfer characteristics of radioiodine effluents from air to grass

    Energy Technology Data Exchange (ETDEWEB)

    Markee, E. H. [ARFRO, Environmental Science Services Administration, Idaho Falls, Idaho (United States)

    1967-07-01

    A total of 20 controlled field releases of radioiodine have been performed at the National Reactor Testing Station in Idaho as a portion of a program to study the transmission of gaseous radioiodine through the air-vegetation-cow-milk-human chain. Most of the releases were conducted over typical pasture grasses during different wind and stability conditions. Radioiodine adherence to grass and carbon plates was measured during most of the tests. Vertical air concentration profiles and turbulence parameters were measured to determine flux characteristics. Analysis of the data reveals the complex interdisciplinary nature of transfer of radioiodine from air to a natural surface. The data are in reasonable agreement with the deposition models of Sheppard and Chamberlain when corrections for the physical and biological receptiveness of the grass and grass density are made. The average ratios of momentum to mass flux were found to be 0.9 in stable conditions and 1.4 in unstable conditions. These ratios demonstrate the effect on mass flux in the lowest 4m by a surface that acts as a partial sink for gaseous effluents. This series of releases indicates the need for further research on the biological receptiveness of grass and turbulent transfer within a grass canopy. (author)

  9. Calibration of NASA Turbulent Air Motion Measurement System

    Science.gov (United States)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  10. A parametric study of microjet assisted methane/air turbulent flames

    International Nuclear Information System (INIS)

    Chouaieb, Sirine; Kriaa, Wassim; Mhiri, Hatem; Bournot, Philippe

    2017-01-01

    Highlights: • Microjet assisted methane/air turbulent flames are numerically investigated. • A parametric study concerning the microjet velocity and diameter is carried out. • Previous validation of temperature, mixture fraction and soot is enhanced. • Mixing and soot emission are controlled for higher velocities and lower diameters. • Soot production is reduced by 94% for a microjet velocity equal to 1 m/s. - Abstract: A parametric study of microjet assisted methane/air turbulent flames characteristics is numerically investigated. The Presumed Probability Density Function model and the Discrete Ordinates model are respectively considered for combustion and radiation modeling. The k-epsilon Standard model with Pope Correction is adopted as a turbulence closure model. The two step Tesner model is used to quantify the soot particle production in the flame configuration. Comparison with our previous work using the k-epsilon Realizable model shows that the k-epsilon Standard model with Pope Correction ensures better predictions. The microjet velocity and diameter effects on thermal field, mixing process and soot emission are then discussed. Numerical findings show that the microjet can be used as an efficient tool controlling methane/air turbulent flames. On the one hand, it is shown that the microjet creates an inner flame in the vicinity of the central nozzle exit but does not globally alter the methane/air flame shape. On the other hand, mixing process can be enhanced for high microjet Reynolds number either by increasing the microjet velocity or by decreasing its nozzle diameter for a constant microjet mass flow rate. Soot production can be consequently reduced for low microjet diameter and high velocity values.

  11. Experimental analysis of an oblique turbulent flame front propagating in a stratified flow

    Energy Technology Data Exchange (ETDEWEB)

    Galizzi, C.; Escudie, D. [Universite de Lyon, CNRS, CETHIL, INSA-Lyon, UMR5008, F-69621 Cedex (France)

    2010-12-15

    This paper details the experimental study of a turbulent V-shaped flame expanding in a nonhomogeneous premixed flow. Its aim is to characterize the effects of stratification on turbulent flame characteristics. The setup consists of a stationary V-shaped flame stabilized on a rod and expanding freely in a lean premixed methane-air flow. One of the two oblique fronts interacts with a stratified slice, which has an equivalence ratio close to one and a thickness greater than that of the flame front. Several techniques such as PIV and CH{sup *} chemiluminescence are used to investigate the instantaneous fields, while laser Doppler anemometry and thermocouples are combined with a concentration probe to provide information on the mean fields. First, in order to provide a reference, the homogeneous turbulent case is studied. Next, the stratified turbulent premixed flame is investigated. Results show significant modifications of the whole flame and of the velocity field upstream of the flame front. The analysis of the geometric properties of the stratified flame indicates an increase in flame brush thickness, closely related to the local equivalence ratio. (author)

  12. Characteristics of turbulent particle transport in human airways under steady and cyclic flows

    International Nuclear Information System (INIS)

    Jedelsky, Jan; Lizal, Frantisek; Jicha, Miroslav

    2012-01-01

    Highlights: ► PDA data allow to estimate PSD of particle velocity fluctuations in realistic model. ► PSD of micron-sized particles is independent of their size up to 700 Hz. ► Such particles follow air flow and turb. diffusion contributes to their deposition. ► Cyclic flow PSDs contain more TKE at high freq. than equivalent steady-flow PSDs. ► Exp. breathing phase differs from insp. phase at high frequency part of the spectra. - Abstract: Motion of monodispersed aerosol particles suspended in air flow has been studied on realistic transparent model of human airways using Phase Doppler Particle Analyser (P/DPA). Time-resolved velocity data for particles in size range 1–8 μm were processed using Fuzzy Slotting Technique to estimate the power spectral density (PSD) of velocity fluctuations. The optimum processing setup for our data was found and recommendations for future experiments to improve PSD quality were suggested. Typical PSD plots at mainstream positions of the trachea and the upper bronchi are documented and differences among (1) steady-flow regimes and equivalent cyclic breathing regimes, (2) inspiration and expiration breathing phase and (3) behaviour of particles of different sizes are described in several positions of the airway model. Systematically higher level of velocity fluctuations in the upper part of the frequency range (30–500 Hz) was found for cyclic flows in comparison with corresponding steady flows. Expiratory flows in both the steady and cyclic cases produce more high-frequency fluctuations compared to inspiratory flows. Negligible differences were found for flow of particles in the inspected size range 1–8 μm at frequencies below 500 Hz. This finding was explained by Stokes number analysis. Implied match of the air and particle flows thereby indicates turbulent diffusion as important deposition mechanism and confirms the capability to use the P/DPA data as the air flow velocity estimate.

  13. Turbulent subcooled boiling flow visualization experiments through a rectangular channel

    International Nuclear Information System (INIS)

    Estrada-Perez, Carlos E.; Dominguez-Ontiveros, Elvis E.; Hassan, Yassin A.

    2008-01-01

    Full text of publication follows: Proper characterization of subcooled boiling flow is of importance in many applications. It is of exceptional significance in the development of empirical models for the design of nuclear reactors, steam generators, and refrigeration systems. Most of these models are based on experimental studies that share the characteristics of utilizing point measurement probes with high temporal resolution, e.g. Hot Film Anemometry (HFA), Laser Doppler Velocimetry (LDV), and Fiber Optic Probes (FOP). However there appears to be a scarcity of experimental studies that can capture instantaneous whole-field measurements with a fast time response. Particle Tracking Velocimetry (PTV) may be used to overcome the limitations associated with point measurement techniques. PTV is a whole-flow-field technique providing instantaneous velocity vectors capable of high spatial and temporal resolution. PTV is also an exceptional tool for the analysis of boiling flow due to its ability to differentiate between the gas and liquid phases and subsequently deliver independent velocity fields associated with each phase. In this work, using PTV, liquid velocity fields of a turbulent subcooled boiling flow in a rectangular channel were successfully obtained. The present results agree with similar studies that used point measurement probes. However, the present study provides additional information; not only averaged profiles of the velocity components were obtained, instantaneous 2-D velocity fields were also readily available with a high temporal and spatial resolution. Analysis of fluctuating velocities, Reynolds stresses, and higher order statistics of the flow are presented. This work is an attempt to enrich the database already collected on turbulent subcooled boiling flow, with the hope that it will be useful in turbulence modeling efforts. (authors)

  14. Particle deposition from turbulent flow: Review of published research and its applicability to ventilation ducts in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark R.; Nazaroff, William W.

    2002-06-01

    This report reviews published experimental and theoretical investigations of particle deposition from turbulent flows and considers the applicability of this body of work to the specific case of particle deposition from flows in the ducts of heating, ventilating and air conditioning (HVAC) systems. Particle deposition can detrimentally affect the performance of HVAC systems and it influences the exposure of building occupants to a variety of air pollutants. The first section of this report describes the types of HVAC systems under consideration and discusses the components, materials and operating parameters commonly found in these systems. The second section reviews published experimental investigations of particle deposition rates from turbulent flows and considers the ramifications of the experimental evidence with respect to HVAC ducts. The third section considers the structure of turbulent airflows in ventilation ducts with a particular emphasis on turbulence investigations that have been used as a basis for particle deposition models. The final section reviews published literature on predicting particle deposition rates from turbulent flows.

  15. On soft stability loss in rotating turbulent MHD flows

    International Nuclear Information System (INIS)

    Kapusta, Arkady; Mikhailovich, Boris

    2014-01-01

    The problem of the stability of turbulent flows of liquid metal in a cylindrical cavity against small velocity disturbances under the action of a rotating magnetic field (RMF) has been studied. The flow is considered in the induction-free approximation using the ‘external’ friction model. A system of dimensionless equations is examined in cylindrical coordinates. The results of computations performed on the basis of this mathematical model using the exchange of stabilities principle have shown a good consistency between the critical values of computed and experimental Reynolds numbers. (paper)

  16. Characterization of zonal flow generation in weak electrostatic turbulence

    International Nuclear Information System (INIS)

    Negrea, M; Petrisor, I; Weyssow, B

    2008-01-01

    The influence of the diamagnetic Kubo number, which is proportional to the diamagnetic drift velocity, on the zonal flow generation by an anisotropic stochastic electrostatic potential is considered from a semi-analytic point of view. The analysis is performed in the weak turbulence limit and as an analytical tool the decorrelation trajectory method is used. It is shown that the fragmentation of the drift wave structures (a signature of the zonal flow generation) is influenced not only by the anisotropy parameter and the electrostatic Kubo number as expected, but also by the diamagnetic Kubo number. Global Lagrangian averages of characteristic quantities are calculated and interpreted

  17. Off-wall boundary conditions for turbulent flows obtained from buffer-layer minimal flow units

    Science.gov (United States)

    Garcia-Mayoral, Ricardo; Pierce, Brian; Wallace, James

    2012-11-01

    There is strong evidence that the transport processes in the buffer region of wall-bounded turbulence are common across various flow configurations, even in the embryonic turbulence in transition (Park et al., Phys. Fl. 24). We use this premise to develop off-wall boundary conditions for turbulent simulations. Boundary conditions are constructed from DNS databases using periodic minimal flow units and reduced order modeling. The DNS data was taken from a channel at Reτ = 400 and a zero-pressure gradient transitional boundary layer (Sayadi et al., submitted to J . FluidMech .) . Both types of boundary conditions were first tested on a DNS of the core of the channel flow with the aim of extending their application to LES and to spatially evolving flows. 2012 CTR Summer Program.

  18. Local measurement of interfacial area, interfacial velocity and liquid turbulence in two-phase flow

    International Nuclear Information System (INIS)

    Hibiki, T.; Hogsett, S.; Ishii, M.

    1998-01-01

    Double sensor probe and hotfilm anemometry methods were developed for measuring local flow characteristics in bubbly flow. The formulation for the interfacial area concentration measurement was obtained by improving the formulation derived by Kataoka and Ishii. The assumptions used in the derivation of the equation were verified experimentally. The interfacial area concentration measured by the double sensor probe agreed well with one by the photographic method. The filter to validate the hotfilm anemometry for measuring the liquid velocity and turbulent intensity in bubbly flow was developed based on removing the signal due to the passing bubbles. The local void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter, liquid velocity, and turbulent intensity of vertical upward air-water flow in a round tube with inner diameter of 50.8 mm were measured by using these methods. A total of 54 data sets were acquired consisting of three superficial gas flow rates, 0.039, 0.067, and 0.147 m/s, and three superficial liquid flow rates, 0.60, 1.00, and 1.30 m/s. The measurements were performed at the three locations: L/D=2, 32, and 62. This data is expected to be used for the development of reliable constitutive relations which reflect the true transfer mechanisms in two-phase flow. (author)

  19. DNS of droplet motion in a turbulent flow

    Science.gov (United States)

    Rosso, Michele; Elghobashi, S.

    2013-11-01

    The objective of our research is to study the multi-way interactions between turbulence and vaporizing liquid droplets by performing direct numerical simulations (DNS). The freely-moving droplets are fully resolved in 3D space and time and all the relevant scales of the turbulent motion are simultaneously resolved down to the smallest length- and time-scales. Our DNS solve the unsteady three-dimensional Navier-Stokes and continuity equations throughout the whole computational domain, including the interior of the liquid droplets. The droplet surface motion and deformation are captured accurately by using the Level Set method. The pressure jump condition, density and viscosity discontinuities across the interface as well as surface tension are accounted for. Here, we present only the results of the first stage of our research which considers the effects of turbulence on the shape change of an initially spherical liquid droplet, at density ratio (of liquid to carrier fluid) of 1000, moving in isotropic turbulent flow. We validate our results via comparison with available expe. This research has been supported by NSF-CBET Award 0933085 and NSF PRAC (Petascale Computing Resource Allocation) Award.

  20. Creating Turbulent Flow Realizations with Generative Adversarial Networks

    Science.gov (United States)

    King, Ryan; Graf, Peter; Chertkov, Michael

    2017-11-01

    Generating valid inflow conditions is a crucial, yet computationally expensive, step in unsteady turbulent flow simulations. We demonstrate a new technique for rapid generation of turbulent inflow realizations that leverages recent advances in machine learning for image generation using a deep convolutional generative adversarial network (DCGAN). The DCGAN is an unsupervised machine learning technique consisting of two competing neural networks that are trained against each other using backpropagation. One network, the generator, tries to produce samples from the true distribution of states, while the discriminator tries to distinguish between true and synthetic samples. We present results from a fully-trained DCGAN that is able to rapidly draw random samples from the full distribution of possible inflow states without needing to solve the Navier-Stokes equations, eliminating the costly process of spinning up inflow turbulence. This suggests a new paradigm in physics informed machine learning where the turbulence physics can be encoded in either the discriminator or generator. Finally, we also propose additional applications such as feature identification and subgrid scale modeling.

  1. Description and detection of burst events in turbulent flows

    Science.gov (United States)

    Schmid, P. J.; García-Gutierrez, A.; Jiménez, J.

    2018-04-01

    A mathematical and computational framework is developed for the detection and identification of coherent structures in turbulent wall-bounded shear flows. In a first step, this data-based technique will use an embedding methodology to formulate the fluid motion as a phase-space trajectory, from which state-transition probabilities can be computed. Within this formalism, a second step then applies repeated clustering and graph-community techniques to determine a hierarchy of coherent structures ranked by their persistencies. This latter information will be used to detect highly transitory states that act as precursors to violent and intermittent events in turbulent fluid motion (e.g., bursts). Used as an analysis tool, this technique allows the objective identification of intermittent (but important) events in turbulent fluid motion; however, it also lays the foundation for advanced control strategies for their manipulation. The techniques are applied to low-dimensional model equations for turbulent transport, such as the self-sustaining process (SSP), for varying levels of complexity.

  2. On turbulence models for rod bundle flow computations

    International Nuclear Information System (INIS)

    Hazi, Gabor

    2005-01-01

    In commercial computational fluid dynamics codes there is more than one turbulence model built in. It is the user responsibility to choose one of those models, suitable for the problem studied. In the last decade, several computations were presented using computational fluid dynamics for the simulation of various problems of the nuclear industry. A common feature in a number of those simulations is that they were performed using the standard k-ε turbulence model without justifying the choice of the model. The simulation results were rarely satisfactory. In this paper, we shall consider the flow in a fuel rod bundle as a case study and discuss why the application of the standard k-ε model fails to give reasonable results in this situation. We also show that a turbulence model based on the Reynolds stress transport equations can provide qualitatively correct results. Generally, our aim is pedagogical, we would like to call the readers attention to the fact that turbulence models have to be selected based on theoretical considerations and/or adequate information obtained from measurements

  3. Aerosol deposition in bends with turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    McFarland, A.R.; Gong, H.; Wente, W.B. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01

    The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.

  4. Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schröder, A.; Geisler, R.; Elsinga, G.E.; Scarano, F.; Dierksheide, U.

    2007-01-01

    In this feasibility study the tomographic PIV technique has been applied to time resolved PIV recordings for the study of the growth of a turbulent spot in a laminar flat plate boundary layer and to visualize the topology of coherent flow structures within a tripped turbulent flat plate boundary

  5. Randomness Representation of Turbulence in Canopy Flows Using Kolmogorov Complexity Measures

    Directory of Open Access Journals (Sweden)

    Dragutin Mihailović

    2017-09-01

    Full Text Available Turbulence is often expressed in terms of either irregular or random fluid flows, without quantification. In this paper, a methodology to evaluate the randomness of the turbulence using measures based on the Kolmogorov complexity (KC is proposed. This methodology is applied to experimental data from a turbulent flow developing in a laboratory channel with canopy of three different densities. The methodology is even compared with the traditional approach based on classical turbulence statistics.

  6. Monte-Carlo computation of turbulent premixed methane/air ignition

    Science.gov (United States)

    Carmen, Christina Lieselotte

    The present work describes the results obtained by a time dependent numerical technique that simulates the early flame development of a spark-ignited premixed, lean, gaseous methane/air mixture with the unsteady spherical flame propagating in homogeneous and isotropic turbulence. The algorithm described is based upon a sub-model developed by an international automobile research and manufacturing corporation in order to analyze turbulence conditions within internal combustion engines. Several developments and modifications to the original algorithm have been implemented including a revised chemical reaction scheme and the evaluation and calculation of various turbulent flame properties. Solution of the complete set of Navier-Stokes governing equations for a turbulent reactive flow is avoided by reducing the equations to a single transport equation. The transport equation is derived from the Navier-Stokes equations for a joint probability density function, thus requiring no closure assumptions for the Reynolds stresses. A Monte-Carlo method is also utilized to simulate phenomena represented by the probability density function transport equation by use of the method of fractional steps. Gaussian distributions of fluctuating velocity and fuel concentration are prescribed. Attention is focused on the evaluation of the three primary parameters that influence the initial flame kernel growth-the ignition system characteristics, the mixture composition, and the nature of the flow field. Efforts are concentrated on the effects of moderate to intense turbulence on flames within the distributed reaction zone. Results are presented for lean conditions with the fuel equivalence ratio varying from 0.6 to 0.9. The present computational results, including flame regime analysis and the calculation of various flame speeds, provide excellent agreement with results obtained by other experimental and numerical researchers.

  7. Characterization of turbulent coherent structures in square duct flow

    Science.gov (United States)

    Atzori, Marco; Vinuesa, Ricardo; Lozano-Durán, Adrián; Schlatter, Philipp

    2018-04-01

    This work is aimed at a first characterization of coherent structures in turbulent square duct flows. Coherent structures are defined as connected components in the domain identified as places where a quantity of interest (such as Reynolds stress or vorticity) is larger than a prescribed non-uniform threshold. Firstly, we qualitatively discuss how a percolation analysis can be used to assess the effectiveness of the threshold function, and how it can be affected by statistical uncertainty. Secondly, various physical quantities that are expected to play an important role in the dynamics of the secondary flow of Prandtl’s second kind are studied. Furthermore, a characterization of intense Reynolds-stress events in square duct flow, together with a comparison of their shape for analogous events in channel flow at the same Reynolds number, is presented.

  8. Subgrid-scale turbulence in shock-boundary layer flows

    Science.gov (United States)

    Jammalamadaka, Avinash; Jaberi, Farhad

    2015-04-01

    Data generated by direct numerical simulation (DNS) for a Mach 2.75 zero-pressure gradient turbulent boundary layer interacting with shocks of different intensities are used for a priori analysis of subgrid-scale (SGS) turbulence and various terms in the compressible filtered Navier-Stokes equations. The numerical method used for DNS is based on a hybrid scheme that uses a non-dissipative central scheme in the shock-free turbulent regions and a robust monotonicity-preserving scheme in the shock regions. The behavior of SGS stresses and their components, namely Leonard, Cross and Reynolds components, is examined in various regions of the flow for different shock intensities and filter widths. The backscatter in various regions of the flow is found to be significant only instantaneously, while the ensemble-averaged statistics indicate no significant backscatter. The budgets for the SGS kinetic energy equation are examined for a better understanding of shock-tubulence interactions at the subgrid level and also with the aim of providing useful information for one-equation LES models. A term-by-term analysis of SGS terms in the filtered total energy equation indicate that while each term in this equation is significant by itself, the net contribution by all of them is relatively small. This observation is consistent with our a posteriori analysis.

  9. Measurement of turbulent flow in a narrow open channel

    Directory of Open Access Journals (Sweden)

    Sarkar Sankar

    2016-09-01

    Full Text Available The paper presents the experimental results of turbulent flow over hydraulically smooth and rough beds. Experiments were conducted in a rectangular flume under the aspect ratio b/h = 2 (b = width of the channel 0.5 m, and h = flow depth 0.25 m for both the bed conditions. For the hydraulically rough bed, the roughness was created by using 3/8″ commercially available angular crushed stone chips; whereas sand of a median diameter d50 = 1.9 mm was used as the bed material for hydraulically smooth bed. The three-dimensional velocity components were captured by using a Vectrino (an acoustic Doppler velocimeter. The study focuses mainly on the turbulent characteristics within the dip that were observed towards the sidewall (corner of the channel where the maximum velocity occurs below the free-surface. It was also observed that the nondimensional Reynolds shear stress changes its sign from positive to negative within the dip. The quadrant plots for the turbulent bursting shows that the signs of all the bursting events change within the dip. Below the dip, the probability of the occurrence of sweeps and ejections are more than that of inward and outward interactions. On the other hand, within the dip, the probability of the occurrence of the outward and inward interactions is more than that of sweeps and ejections.

  10. Numerical analysis of hypersonic turbulent film cooling flows

    Science.gov (United States)

    Chen, Y. S.; Chen, C. P.; Wei, H.

    1992-01-01

    As a building block, numerical capabilities for predicting heat flux and turbulent flowfields of hypersonic vehicles require extensive model validations. Computational procedures for calculating turbulent flows and heat fluxes for supersonic film cooling with parallel slot injections are described in this study. Two injectant mass flow rates with matched and unmatched pressure conditions using the database of Holden et al. (1990) are considered. To avoid uncertainties associated with the boundary conditions in testing turbulence models, detailed three-dimensional flowfields of the injection nozzle were calculated. Two computational fluid dynamics codes, GASP and FDNS, with the algebraic Baldwin-Lomax and k-epsilon models with compressibility corrections were used. It was found that the B-L model which resolves near-wall viscous sublayer is very sensitive to the inlet boundary conditions at the nozzle exit face. The k-epsilon models with improved wall functions are less sensitive to the inlet boundary conditions. The testings show that compressibility corrections are necessary for the k-epsilon model to realistically predict the heat fluxes of the hypersonic film cooling problems.

  11. Mach Number effects on turbulent superstructures in wall bounded flows

    Science.gov (United States)

    Kaehler, Christian J.; Bross, Matthew; Scharnowski, Sven

    2017-11-01

    Planer and three-dimensional flow field measurements along a flat plat boundary layer in the Trisonic Wind Tunnel Munich (TWM) are examined with the aim to characterize the scaling, spatial organization, and topology of large scale turbulent superstructures in compressible flow. This facility is ideal for this investigation as the ratio of boundary layer thickness to test section spanwise extent ratio is around 1/25, ensuring minimal sidewall and corner effects on turbulent structures in the center of the test section. A major difficulty in the experimental investigation of large scale features is the mutual size of the superstructures which can extend over many boundary layer thicknesses. Using multiple PIV systems, it was possible to capture the full spatial extent of large-scale structures over a range of Mach numbers from Ma = 0.3 - 3. To calculate the average large-scale structure length and spacing, the acquired vector fields were analyzed by statistical multi-point methods that show large scale structures with a correlation length of around 10 boundary layer thicknesses over the range of Mach numbers investigated. Furthermore, the average spacing between high and low momentum structures is on the order of a boundary layer thicknesses. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures of the Deutsche Forschungsgemeinschaft.

  12. Large Eddy Simulations of turbulent flows at supercritical pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kunik, C.; Otic, I.; Schulenberg, T., E-mail: claus.kunik@kit.edu, E-mail: ivan.otic@kit.edu, E-mail: thomas.schulenberg@kit.edu [Karlsruhe Inst. of Tech. (KIT), Karlsruhe (Germany)

    2011-07-01

    A Large Eddy Simulation (LES) method is used to investigate turbulent heat transfer to CO{sub 2} at supercritical pressure for upward flows. At those pressure conditions the fluid undergoes strong variations of fluid properties in a certain temperature range, which can lead to a deterioration of heat transfer (DHT). In this analysis, the LES method is applied on turbulent forced convection conditions to investigate the influence of several subgrid scale models (SGS-model). At first, only velocity profiles of the so-called inflow generator are considered, whereas in the second part temperature profiles of the heated section are investigated in detail. The results are statistically analyzed and compared with DNS data from the literature. (author)

  13. Large eddy simulations of turbulent flows with heat transfer

    International Nuclear Information System (INIS)

    Chatelain, Alexandre

    2004-01-01

    LES of turbulent flows with heat transfer was used within the framework of conjugate heat transfer problems. The objective of this work lies not only in identifying the various elements likely to impair temperature fluctuations estimations at the fluid/solid interface but also to introduce adequate wall modeling. The choice of a proper convection scheme for the transport of passive scalars led to the adoption of a high order upwind scheme with slope limiter. The use of classical wall models having shown some weaknesses as for the estimation of parietal temperature fluctuations, two new approaches are proposed and tested. The first one relies on a complete resolution of the Navier-Stokes equations on a refined grid close to the wall making it possible to rebuild the temperature fluctuations near the wall. The second one relies on the simultaneous and one dimensional resolution of a turbulent boundary layer equation and a variance transport equation near the wall. (author) [fr

  14. A Method for Measuring Sludge Settling Characteristics in Turbulent Flows

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Larsen, Torben

    1996-01-01

    A method for the determination of the settlilng velocity for sludge as a funktion of turbulence intensity and sludge concentration has been developed. The principle of the method is to continuously feed the top of a settling column with sludge so that a steady state and uniform concentration...... distribution occurs in the middle of the column. This eliminates time scale effects such as flocculation from the measurements, as the resulting settling velocity only can be found at steady state and uniform conditions. The method assumes that flocculated sludge settles faster than disintegratedsludge to make...... a mass balance involving concentration at the top and the middle of the column as well as the inlet sludge flow. The resulting mass balance is used to calculate a lokal settling velocity. The turbulence is introduced by an oscillating grid in the whole depth of the settling column. Settling velocities...

  15. Torque fluctuations caused by upstream mean flow and turbulence

    Science.gov (United States)

    Farr, T. D.; Hancock, P. E.

    2014-12-01

    A series of studies are in progress investigating the effects of turbine-array-wake interactions for a range of atmospheric boundary layer states by means of the EnFlo meteorological wind tunnel. The small, three-blade model wind turbines drive 4-quadrant motor-generators. Only a single turbine in neutral flow is considered here. The motor-generator current can be measured with adequate sensitivity by means of a current sensor allowing the mean and fluctuating torque to be inferred. Spectra of torque fluctuations and streamwise velocity fluctuations ahead of the rotor, between 0.1 and 2 diameters, show that only the large-scale turbulent motions contribute significantly to the torque fluctuations. Time-lagged cross-correlation between upstream velocity and torque fluctuations are largest over the inner part of the blade. They also show the turbulence to be frozen in behaviour over the 2 diameters upstream of the turbine.

  16. Computational fluid dynamic on the temperature simulation of air preheat effect combustion in propane turbulent flame

    Science.gov (United States)

    Elwina; Yunardi; Bindar, Yazid

    2018-04-01

    this paper presents results obtained from the application of a computational fluid dynamics (CFD) code Fluent 6.3 to modelling of temperature in propane flames with and without air preheat. The study focuses to investigate the effect of air preheat temperature on the temperature of the flame. A standard k-ε model and Eddy Dissipation model are utilized to represent the flow field and combustion of the flame being investigated, respectively. The results of calculations are compared with experimental data of propane flame taken from literature. The results of the study show that a combination of the standard k-ε turbulence model and eddy dissipation model is capable of producing reasonable predictions of temperature, particularly in axial profile of all three flames. Both experimental works and numerical simulation showed that increasing the temperature of the combustion air significantly increases the flame temperature.

  17. Effect of mean flow on the interaction between turbulence and zonal flow

    International Nuclear Information System (INIS)

    Uzawa, Ken; Kishimoto, Yasuaki; Li Jiquan

    2006-01-01

    The effects of an external mean flow on the generation of zonal flow in drift wave turbulence are theoretically studied in terms of a modulational instability analysis. A dispersion relation for the zonal flow instability having complex frequency ω q =Ω q +iγ q is derived, which depends on the external mean flow's amplitude |φ f | and radial wave number k f . As an example, we chose an ion temperature gradient (ITG) turbulence-driven zonal flow as the mean flow acting on an electron temperature gradient (ETG) turbulence-zonal flow system. The growth rate of the zonal flow γ q is found to be suppressed, showing a relation γ q =γ q0 (1 - α|φ f | 2 k f 2 ), where γ q0 is the growth rate in the absence of mean flow and α is a positive numerical constant. This formula is applicable to a strong shearing regime where the zonal flow instability is stabilized at α|φ f 2 |k f 2 ≅ 1. Meanwhile, the suppression is accompanied by an increase of the real frequency |Ω q |. The underlying physical mechanism of the suppression is discussed. (author)

  18. Turbulent mixed buoyancy driven flow and heat transfer in lid driven enclosure

    International Nuclear Information System (INIS)

    Mishra, Ajay Kumar; Sharma, Anil Kumar

    2015-01-01

    Turbulent mixed buoyancy driven flow and heat transfer of air in lid driven rectangular enclosure has been investigated for Grashof number in the range of 10 8 to 10 11 and for Richardson number 0.1, 1 and 10. Steady two dimensional Reynolds-Averaged-Navier-Stokes equations and conservation equations of mass and energy, coupled with the Boussinesq approximation, are solved. The spatial derivatives in the equations are discretized using the finite-element method. The SIMPLE algorithm is used to resolve pressure-velocity coupling. Turbulence is modeled with the k-ω closure model with physical boundary conditions along with the Boussinesq approximation, for the flow and heat transfer. The predicted results are validated against benchmark solutions reported in literature. The results include stream lines and temperature fields are presented to understand flow and heat transfer characteristics. There is a marked reduction in mean Nusselt number (about 58%) as the Richardson number increases from 0.1 to 10 for the case of Ra=10 10 signifying the effect of reduction of top lid velocity resulting in reduction of turbulent mixing. (author)

  19. A computational technique for turbulent flow of wastewater sludge.

    Science.gov (United States)

    Bechtel, Tom B

    2005-01-01

    A computational fluid dynamics (CFD) technique applied to the turbulent flow of wastewater sludge in horizontal, smooth-wall, circular pipes is presented. The technique uses the Crank-Nicolson finite difference method in conjunction with the variable secant method, an algorithm for determining the pressure gradient of the flow. A simple algebraic turbulence model is used. A Bingham-plastic rheological model is used to describe the shear stress/shear rate relationship for the wastewater sludge. The method computes velocity gradient and head loss, given a fixed volumetric flow, pipe size, and solids concentration. Solids concentrations ranging from 3 to 10% (by weight) and nominal pipe sizes from 0.15 m (6 in.) to 0.36 m (14 in.) are studied. Comparison of the CFD results for water to established values serves to validate the numerical method. The head loss results are presented in terms of a head loss ratio, R(hl), which is the ratio of sludge head loss to water head loss. An empirical equation relating R(hl) to pipe velocity and solids concentration, derived from the results of the CFD calculations, is presented. The results are compared with published values of Rhl for solids concentrations of 3 and 6%. A new expression for the Fanning friction factor for wastewater sludge flow is also presented.

  20. Velocity distribution in a turbulent flow near a rough wall

    Science.gov (United States)

    Korsun, A. S.; Pisarevsky, M. I.; Fedoseev, V. N.; Kreps, M. V.

    2017-11-01

    Velocity distribution in the zone of developed wall turbulence, regardless of the conditions on the wall, is described by the well-known Prandtl logarithmic profile. In this distribution, the constant, that determines the value of the velocity, is determined by the nature of the interaction of the flow with the wall and depends on the viscosity of the fluid, the dynamic velocity, and the parameters of the wall roughness.In extreme cases depending on the ratio between the thickness of the viscous sublayer and the size of the roughness the constant takes on a value that does not depend on viscosity, or leads to a ratio for a smooth wall.It is essential that this logarithmic profile is the result not only of the Prandtl theory, but can be derived from general considerations of the theory of dimensions, and also follows from the condition of local equilibrium of generation and dissipation of turbulent energy in the wall area. This allows us to consider the profile as a universal law of velocity distribution in the wall area of a turbulent flow.The profile approximation up to the maximum speed line with subsequent integration makes possible to obtain the resistance law for channels of simple shape. For channels of complex shape with rough walls, the universal profile can be used to formulate the boundary condition when applied to the calculation of turbulence models.This paper presents an empirical model for determining the constant of the universal logarithmic profile. The zone of roughness is described by a set of parameters and is considered as a porous structure with variable porosity.

  1. 3-D numerical study of the effect of Reynolds number and baffle angle on heat transfer and pressure drop of turbulent flow of air through rectangular duct of very small height

    Directory of Open Access Journals (Sweden)

    Abhijit Paul

    2016-09-01

    Full Text Available Present article illustrates a computational study of three-dimensional steady state heat transfer and high turbulent flow characteristics through a rectangular duct with constant heat fluxed upper wall and single rectangular cross-sectioned baffle insertion at different angles. RNG k–ɛ model along with standard wall function based computations has been accomplished applying the finite volume method, and SIMPLE algorithm has been executed for solving the governing equations. For a Reynolds number, Re of 10,000 to 50,000, Prandtl Number, Pr of 0.707 and baffle angle, α of 30°, 60°, 90°, 120°, 150°, computational studies are executed, centred onto the hydraulic diameter, Dh, test section and hydrodynamic entry length of the duct. Flow field has been solved using Ansys Fluent 14.0 software. Study exposes that baffled rectangular duct has a higher average Nusselt number, Nu and Darcy friction factor, f compared to a smooth rectangular duct. Nu as well as f are found to be maximum at 90° baffle angle. Results illustrate that both α and Re play a significant role in heat transfer as well as flow characteristics and also effects TEF. The correctness of the results attained in this study is corroborated by comparing the results with those existing in the literature for smooth rectangular duct within a precision of ±2% for f and ±4% for Nu.

  2. Numerical simulation of secondary flow in bubbly turbulent flow in sub-channel

    International Nuclear Information System (INIS)

    Ikeno, Tsutomu; Kataoka, Isao

    2009-01-01

    Secondary flow in bubbly turbulent flow in sub-channel was simulated by using an algebraic turbulence stress model. The mass, momentum, turbulence energy and bubble diffusion equations were used as fundamental equation. The basis for these equations was the two-fluid model: the equation of liquid phase was picked up from the equation system theoretically derived for the gas-liquid two-fluid turbulent flow. The fundamental equation was transformed onto a generalized coordinate system fitted to the computational domain in sub-channel. It was discretized for the SIMPLE algorism using the finite-volume method. The shape of sub-channel causes a distortion of the computational mesh, and orthogonal nature of the mesh is sometimes broken. An iterative method to satisfy a requirement for the contra-variant velocity was introduced to represent accurate symmetric boundary condition. Two-phase flow at a steady state was simulated for different magnitude of secondary flow and void fraction. The secondary flow enhanced the momentum transport in sub-channel and accelerated the liquid phase in the rod gap. This effect was slightly mitigated when the void fraction increased. The acceleration can contribute to effective cooling in the rod gap. The numerical result implied a phenomenon of industrial interest. This suggested that experimental approach is necessary to validate the numerical model and to identify the phenomenon. (author)

  3. Turbulent behaviour of non-cohesive sediment gravity flows at unexpectedly high flow density

    Science.gov (United States)

    Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian

    2016-04-01

    Experimental lock exchange-type turbidity currents laden with non-cohesive silica-flour were found to be highly dynamic at remarkably high suspended sediment concentrations. These experiments were conducted to produce sediment gravity flows of volumetric concentrations ranging from 1% to 52%, to study how changes in suspended sediment concentration affects the head velocities and run-out distances of these flows, in natural seawater. Increasing the volumetric concentration of suspended silica-flour, C, up to C = 46%, within the flows led to a progressive increase in the maximum head velocity. This relationship suggests that suspended sediment concentration intensifies the density difference between the turbulent suspension and the ambient water, which drives the flow, even if almost half of the available space is occupied by sediment particles. However, from C = 46% to C = 52% a rapid reduction in the maximum head velocity was measured. It is inferred that at C = 46%, friction from grain-to-grain interactions begins to attenuate turbulence within the flows. At C > 46%, the frictional stresses become progressively more dominant over the turbulent forces and excess density, thus producing lower maximum head velocities. This grain interaction process started to rapidly reduce the run-out distance of the silica-flour flows at equally high concentrations of C ≥ 47%. All flows with C tank, but the head velocities gradually reduced along the tank. Bagnold (1954, 1963) estimated that, for sand flows, grain-to-grain interactions start to become important in modulating turbulence at C > 9%. Yet, the critical flow concentration at which turbulence modulation commenced for these silica-flour laden flows appeared to be much higher. We suggest that Bagnold's 9% criterion cannot be applied to flows that carry fine-grained sediment, because turbulent forces are more important than dispersive forces, and frictional forces start to affect the flows only at concentrations just

  4. Turbulence, dynamic similarity and scale effects in high-velocity free-surface flows above a stepped chute

    Science.gov (United States)

    Felder, Stefan; Chanson, Hubert

    2009-07-01

    In high-velocity free-surface flows, air entrainment is common through the interface, and intense interactions take place between turbulent structures and entrained bubbles. Two-phase flow properties were measured herein in high-velocity open channel flows above a stepped chute. Detailed turbulence measurements were conducted in a large-size facility, and a comparative analysis was applied to test the validity of the Froude and Reynolds similarities. The results showed consistently that the Froude similitude was not satisfied using a 2:1 geometric scaling ratio. Lesser number of entrained bubbles and comparatively greater bubble sizes were observed at the smaller Reynolds numbers, as well as lower turbulence levels and larger turbulent length and time scales. The results implied that small-size models did underestimate the rate of energy dissipation and the aeration efficiency of prototype stepped spillways for similar flow conditions. Similarly a Reynolds similitude was tested. The results showed also some significant scale effects. However a number of self-similar relationships remained invariant under changes of scale and confirmed the analysis of Chanson and Carosi (Exp Fluids 42:385-401, 2007). The finding is significant because self-similarity may provide a picture general enough to be used to characterise the air-water flow field in large prototype channels.

  5. Flow topology of rare back flow events and critical points in turbulent channels and toroidal pipes

    Science.gov (United States)

    Chin, C.; Vinuesa, R.; Örlü, R.; Cardesa, J. I.; Noorani, A.; Schlatter, P.; Chong, M. S.

    2018-04-01

    A study of the back flow events and critical points in the flow through a toroidal pipe at friction Reynolds number Re τ ≈ 650 is performed and compared with the results in a turbulent channel flow at Re τ ≈ 934. The statistics and topological properties of the back flow events are analysed and discussed. Conditionally-averaged flow fields in the vicinity of the back flow event are obtained, and the results for the torus show a similar streamwise wall-shear stress topology which varies considerably for the spanwise wall-shear stress when compared to the channel flow. The comparison between the toroidal pipe and channel flows also shows fewer back flow events and critical points in the torus. This cannot be solely attributed to differences in Reynolds number, but is a clear effect of the secondary flow present in the toroidal pipe. A possible mechanism is the effect of the secondary flow present in the torus, which convects momentum from the inner to the outer bend through the core of the pipe, and back from the outer to the inner bend through the pipe walls. In the region around the critical points, the skin-friction streamlines and vorticity lines exhibit similar flow characteristics with a node and saddle pair for both flows. These results indicate that back flow events and critical points are genuine features of wall-bounded turbulence, and are not artifacts of specific boundary or inflow conditions in simulations and/or measurement uncertainties in experiments.

  6. Fast Hydrogen-Air Flames for Turbulence Driven Deflagration to Detonation Transition

    Science.gov (United States)

    Chambers, Jessica; Ahmed, Kareem

    2016-11-01

    Flame acceleration to Detonation produces several combustion modes as the Deflagration-to-Detonation Transition (DDT) is initiated, including fast deflagration, auto-ignition, and quasi-detonation. Shock flame interactions and turbulence levels in the reactant mixture drive rapid flame expansion, formation of a leading shockwave and post-shock conditions. An experimental study to characterize the developing shock and flame front behavior of propagating premixed hydrogen-air flames in a square channel is presented. To produce each flame regime, turbulence levels and flame propagation velocity are controlled using perforated plates in several configurations within the experimental facility. High speed optical diagnostics including Schlieren and Particle Image Velocimetry are used to capture the flow field. In-flow pressure measurements acquired post-shock, detail the dynamic changes that occur in the compressed gas directly ahead of the propagating flame. Emphasis on characterizing the turbulent post-shock environment of the various flame regimes helps identify the optimum conditions to initiate the DDT process. The study aims to further the understanding of complex physical mechanisms that drive transient flame conditions for detonation initiation. American Chemical Society.

  7. Correcting for particle counting bias error in turbulent flow

    Science.gov (United States)

    Edwards, R. V.; Baratuci, W.

    1985-01-01

    An ideal seeding device is proposed generating particles that exactly follow the flow out are still a major source of error, i.e., with a particle counting bias wherein the probability of measuring velocity is a function of velocity. The error in the measured mean can be as much as 25%. Many schemes have been put forward to correct for this error, but there is not universal agreement as to the acceptability of any one method. In particular it is sometimes difficult to know if the assumptions required in the analysis are fulfilled by any particular flow measurement system. To check various correction mechanisms in an ideal way and to gain some insight into how to correct with the fewest initial assumptions, a computer simulation is constructed to simulate laser anemometer measurements in a turbulent flow. That simulator and the results of its use are discussed.

  8. Stability of model flocks in turbulent-like flow

    International Nuclear Information System (INIS)

    Khurana, Nidhi; Ouellette, Nicholas T

    2013-01-01

    We report numerical simulations of a simple model of flocking particles in the presence of an uncertain background environment. We consider two types of environmental perturbations: random noise applied separately to each particle, and spatiotemporally correlated ‘noise’ provided by a turbulent-like flow field. The effects of these two types of noise are very different; surprisingly, the applied flow field tends to destroy the global order of the flocking model even for vanishingly small flow amplitudes. Local order, however, is preserved in smaller sub-flocks, although their composition changes dynamically. Our results suggest that realistic perturbations must be considered in assessing the stability of models of collective animal behavior, and that random noise is not a sufficient proxy. (paper)

  9. Transition and Turbulence Modeling for Blunt-Body Wake Flows

    Science.gov (United States)

    Nance, Robert P.; Horvath, Thomas J.; Hassan, H. A.

    1997-01-01

    This study attempts t o improve the modeling and computational prediction of high- speed transitional wake flows. The recently developed kappa - zeta (Enstrophy) turbulence model is coupled with a newly developed transition prediction method and implemented in an implicit flow solver well-suited to hypersonic flows. In this model, transition onset is determined as part of the solution. Results obtained using the new model for a 70- deg blunted cone/sting geometry demonstrate better agreement with experimental heat- transfer measurements when compared to laminar calculations as well as solutions using the kappa - omega model. Results are also presented for the situation where transition onset is preselected. It is shown that, in this case, results are quite sensitive to location of the transition point.

  10. Irregular wall roughness in turbulent Taylor-Couette flow

    Science.gov (United States)

    Berghout, Pieter; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef; Stevens, Richard

    2017-11-01

    Many wall bounded flows in nature, engineering and transport are affected by surface roughness. Often, this has adverse effects, e.g. drag increase leading to higher energy costs. A major difficulty is the infinite number of roughness geometries, which makes it impossible to systematically investigate all possibilities. Here we present Direct Numerical Simulations (DNS) of turbulent Taylor-Couette flow. We focus on the transitionally rough regime, in which both viscous and pressure forces contribute to the total wall stress. We investigate the effect of the mean roughness height and the effective slope on the roughness function, ΔU+ . Also, we present simulations of varying Ta (Re) numbers for a constant mean roughness height (kmean+). Alongside, we show the behavior of the large scale structures (e.g. plume ejection, Taylor rolls) and flow structures in the vicinity of the wall.

  11. Entropic multirelaxation lattice Boltzmann models for turbulent flows

    Science.gov (United States)

    Bösch, Fabian; Chikatamarla, Shyam S.; Karlin, Ilya V.

    2015-10-01

    We present three-dimensional realizations of a class of lattice Boltzmann models introduced recently by the authors [I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Phys. Rev. E 90, 031302(R) (2014), 10.1103/PhysRevE.90.031302] and review the role of the entropic stabilizer. Both coarse- and fine-grid simulations are addressed for the Kida vortex flow benchmark. We show that the outstanding numerical stability and performance is independent of a particular choice of the moment representation for high-Reynolds-number flows. We report accurate results for low-order moments for homogeneous isotropic decaying turbulence and second-order grid convergence for most assessed statistical quantities. It is demonstrated that all the three-dimensional lattice Boltzmann realizations considered herein converge to the familiar lattice Bhatnagar-Gross-Krook model when the resolution is increased. Moreover, thanks to the dynamic nature of the entropic stabilizer, the present model features less compressibility effects and maintains correct energy and enstrophy dissipation. The explicit and efficient nature of the present lattice Boltzmann method renders it a promising candidate for both engineering and scientific purposes for highly turbulent flows.

  12. Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows

    Science.gov (United States)

    Moitra, Stuti; Gatski, Thomas B.

    1997-01-01

    A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.

  13. Occurrence of turbulent flow conditions in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2014-09-26

    Having similar densities as liquids but with viscosities up to 20 times lower (higher diffusion coefficients), supercritical CO2 is the ideal (co-)solvent for fast and/or highly efficient separations without mass-transfer limitations or excessive column pressure drops. Whereas in liquid chromatography the flow remains laminar in both the packed bed and tubing, except in extreme cases (e.g. in a 75 μm tubing, pure acetonitrile at 5 ml/min), a supercritical fluid can experience a transition from laminar to turbulent flow in more typical operation modes. Due to the significant lower viscosity, this transition for example already occurs at 1.3 ml/min for neat CO2 when using connection tubing with an ID of 127 μm. By calculating the Darcy friction factor, which can be plotted versus the Reynolds number in a so-called Moody chart, typically used in fluid dynamics, higher values are found for stainless steel than PEEK tubing, in agreement with their expected higher surface roughness. As a result turbulent effects are more pronounced when using stainless steel tubing. The higher than expected extra-column pressure drop limits the kinetic performance of supercritical fluid chromatography and complicates the optimization of tubing ID, which is based on a trade-off between extra-column band broadening and pressure drop. One of the most important practical consequences is the non-linear increase in extra-column pressure drop over the tubing downstream of the column which leads to an unexpected increase in average column pressure and mobile phase density, and thus decrease in retention. For close eluting components with a significantly different dependence of retention on density, the selectivity can significantly be affected by this increase in average pressure. In addition, the occurrence of turbulent flow is also observed in the detector cell and connection tubing. This results in a noise-increase by a factor of four when going from laminar to turbulent flow (e.g. going

  14. Flow and Heat Transfer Characteristics of Turbulent Gas Flow in Microtube with Constant Heat Flux

    International Nuclear Information System (INIS)

    Hong, Chungpyo; Matsushita, Shinichi; Ueno, Ichiro; Asako, Yutaka

    2012-01-01

    Local friction factors for turbulent gas flows in circular microtubes with constant wall heat flux were obtained numerically. The numerical methodology is based on arbitrary-Lagrangian-Eulerian method to solve two-dimensional compressible momentum and energy equations. The Lam-Bremhorst's Low-Reynolds number turbulence model was employed to calculate eddy viscosity coefficient and turbulence energy. The simulations were performed for a wide flow range of Reynolds numbers and Mach numbers with different constant wall heat fluxes. The stagnation pressure was chosen in such a way that the outlet Mach number ranged from 0.07 to 1.0. Both Darcy friction factor and Fanning friction factor were locally obtained. The result shows that the obtained both friction factors were evaluated as a function of Reynolds number on the Moody chart. The values of Darcy friction factor differ from Blasius correlation due to the compressibility effects but the values of Fanning friction factor almost coincide with Blasius correlation. The wall heat flux varied from 100 to 10000 W/m 2 . The wall and bulk temperatures with positive heat flux are compared with those of incompressible flow. The result shows that the Nusselt number of turbulent gas flow is different from that of incompressible flow.

  15. Double helix vortex breakdown in a turbulent swirling annular jet flow

    NARCIS (Netherlands)

    Vanierschot, M.; Perçin, M.; van Oudheusden, B.W.

    2018-01-01

    In this paper, we report on the structure and dynamics of double helix vortex breakdown in a turbulent annular swirling jet. Double helix breakdown has been reported previously for the laminar flow regime, but this structure has rarely been observed in turbulent flow. The flow field is

  16. Turbulence modeling needs of commercial CFD codes: Complex flows in the aerospace and automotive industries

    Science.gov (United States)

    Befrui, Bizhan A.

    1995-01-01

    This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.

  17. Assessment of three turbulence model performances in predicting water jet flow plunging into a liquid pool

    Directory of Open Access Journals (Sweden)

    Zidouni Kendil Faiza

    2010-01-01

    Full Text Available The main purpose of the current study is to numerically investigate, through computational fluid dynamics modeling, a water jet injected vertically downward through a straight circular pipe into a water bath. The study also aims to obtain a better understanding of jet behavior, air entrainment and the dispersion of bubbles in the developing flow region. For these purposes, three dimensional air and water flows were modeled using the volume of fluid technique. The equations in question were formulated using the density and viscosity of a 'gas-liquid mixture', described in terms of the phase volume fraction. Three turbulence models with a high Reynolds number have been considered i. e. the standard k-e model, realizable k-e model, and Reynolds stress model. The predicted flow patterns for the realizable k-e model match well with experimental measurements found in available literature. Nevertheless, some discrepancies regarding velocity relaxation and turbulent momentum distribution in the pool are still observed for both the standard k-e and the Reynolds stress model.

  18. Effects of forcing time scale on the simulated turbulent flows and turbulent collision statistics of inertial particles

    International Nuclear Information System (INIS)

    Rosa, B.; Parishani, H.; Ayala, O.; Wang, L.-P.

    2015-01-01

    In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynolds number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate

  19. Investigation of particle-laden turbulent flow in free shear turbulent combustion

    International Nuclear Information System (INIS)

    Buckingham, A.C.; Siekhaus, W.J.; Ellzey, J.; Daily, J.W.

    1983-01-01

    Explicit numerical mixed phase simulations are described which couple random gasdynamic motions to inertiallly interactive gas borne particles. Theses simulations are numerical experiments intended to provide data for investigating the interaction between a developing turbulent free shear layer and gas borne solid particles it entrains. The simulations predict most probable distributions of dispersed phase trajectories, standard deviations, and gas phase mixing dynamics which include the concomitant back-influences of the particle phase on the carrier gas flow. Data for refinement of the computational scheme and physical verification are provided by experiment. The experimental evidence is developed in a splitter plate divided, two-channel free shear mixing combustion tube. A variety of particle concentrations and particle size distributions are admitted into non-combusting or combusting flows with selected heat release levels. The computations, in turn, provide guidance on design and selection of new experiments

  20. Experimental study of circle grid fractal pattern on turbulent intensity in pipe flow

    International Nuclear Information System (INIS)

    Manshoor, B; Zaman, I; Othman, M F; Khalid, Amir

    2013-01-01

    Fractal turbulence is deemed much more efficient than grid turbulence in terms of a turbulence generation. In this paper, the hotwire experimental results for the circle grids fractal pattern as a turbulent generator will be presented. The self-similar edge characteristic of the circle grid fractal pattern is thought to play a vital role in the enhancement of turbulent intensity. Three different beta ratios of perforated plates based on circle grids fractal pattern were used in the experimental work and each paired with standard circle grids with similar porosity. The objectives were to study the fractal scaling influence on the flow and also to explore the potential of the circle grids fractal pattern in enhancing the turbulent intensity. The results provided an excellent insight of the fractal generated turbulence and the fractal flow physics. Across the circle grids fractal pattern, the pressure drop was lower but the turbulent intensity was higher than those across the paired standard circle grids

  1. Anisotropic Characteristics of Turbulence Dissipation in Swirling Flow: A Direct Numerical Simulation Study

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2015-01-01

    Full Text Available This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.

  2. Performance assessment of turbulence models for the prediction of moderator thermal flow inside CANDU calandria

    International Nuclear Information System (INIS)

    Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong

    2012-01-01

    The moderator thermal flow in the CANDU calandria is generally complex and highly turbulent because of the interaction of the buoyancy force with the inlet jet inertia. In this study, the prediction performance of turbulence models for the accurate analysis of the moderator thermal flow are assessed by comparing the results calculated with various types of turbulence models in the commercial flow solver FLUENT with experimental data for the test vessel at Sheridan Park Engineering Laboratory (SPEL). Through this comparative study of turbulence models, it is concluded that turbulence models that include the source term to consider the effects of buoyancy on the turbulent flow should be used for the reliable prediction of the moderator thermal flow inside the CANDU calandria

  3. Couette-Poiseuille flow experiment with zero mean advection velocity: Subcritical transition to turbulence

    Science.gov (United States)

    Klotz, L.; Lemoult, G.; Frontczak, I.; Tuckerman, L. S.; Wesfreid, J. E.

    2017-04-01

    We present an experimental setup that creates a shear flow with zero mean advection velocity achieved by counterbalancing the nonzero streamwise pressure gradient by moving boundaries, which generates plane Couette-Poiseuille flow. We obtain experimental results in the transitional regime for this flow. Using flow visualization, we characterize the subcritical transition to turbulence in Couette-Poiseuille flow and show the existence of turbulent spots generated by a permanent perturbation. Due to the zero mean advection velocity of the base profile, these turbulent structures are nearly stationary. We distinguish two regions of the turbulent spot: the active turbulent core, which is characterized by waviness of the streaks similar to traveling waves, and the surrounding region, which includes in addition the weak undisturbed streaks and oblique waves at the laminar-turbulent interface. We also study the dependence of the size of these two regions on Reynolds number. Finally, we show that the traveling waves move in the downstream (Poiseuille) direction.

  4. Transient Air-Water Flow and Air Demand following an Opening Outlet Gate

    Directory of Open Access Journals (Sweden)

    James Yang

    2018-01-01

    Full Text Available In Sweden, the dam-safety guidelines call for an overhaul of many existing bottom outlets. During the opening of an outlet gate, understanding the transient air-water flow is essential for its safe operation, especially under submerged tailwater conditions. Three-dimensional CFD simulations are undertaken to examine air-water flow behaviors at both free and submerged outflows. The gate, hoisted by wire ropes and powered by AC, opens at a constant speed. A mesh is adapted to follow the gate movement. At the free outflow, the CFD simulations and model tests agree well in terms of outlet discharge capacity. Larger air vents lead to more air supply; the increment becomes, however, limited if the vent area is larger than 10 m2. At the submerged outflow, a hydraulic jump builds up in the conduit when the gate reaches approximately 45% of its full opening. The discharge is affected by the tailwater and slightly by the flow with the hydraulic jump. The flow features strong turbulent mixing of air and water, with build-up and break-up of air pockets and collisions of defragmented water bodies. The air demand rate is several times as much as required by steady-state hydraulic jump with free surface.

  5. Measurement of turbulent diffusivity of both gas and liquid phases in quasi-2D two-phase flow

    International Nuclear Information System (INIS)

    Sato, Yoshifusa; Sadatomi, Michio; Kawahara, Akimaro

    1993-01-01

    The turbulent diffusion process has been studied experimentally by observing a tracer plume emitted continuously from a line source in a uniform, quasi-2D two-phase flow. The test section was a vertical, relatively narrow, concentric annular channel consisting of two large pipes. Air and water were used as the working fluids, and methane and acid organge II were used as tracers for the respective phases. Measurements of local, time-averaged tracer concentrations were made by means of a sampling method and image processing for bubbly flows and churn flows, and the turbulent diffusivity, the coefficient of turbulent diffusion, was determined from the concentration distributions measured. The diffusivities for the gas and liquid phases, ε DG and ε DL respectively, are presented and compared with each other in this paper. When a flow is bubbly, ε DG is close to or slightly smaller than ε DL . In a churn flow, on the contrary, ε DG is much greater than ε DL . Regarding bubbly flow, a plausible model on turbulent diffusivity of the liquid phase is presented and examined by the present data. (orig.)

  6. Secondary flow in turbulent ducts with increasing aspect ratio

    Science.gov (United States)

    Vinuesa, R.; Schlatter, P.; Nagib, H. M.

    2018-05-01

    Direct numerical simulations of turbulent duct flows with aspect ratios 1, 3, 5, 7, 10, and 14.4 at a center-plane friction Reynolds number Reτ,c≃180 , and aspect ratios 1 and 3 at Reτ,c≃360 , were carried out with the spectral-element code nek5000. The aim of these simulations is to gain insight into the kinematics and dynamics of Prandtl's secondary flow of the second kind and its impact on the flow physics of wall-bounded turbulence. The secondary flow is characterized in terms of the cross-plane component of the mean kinetic energy, and its variation in the spanwise direction of the flow. Our results show that averaging times of around 3000 convective time units (based on duct half-height h ) are required to reach a converged state of the secondary flow, which extends up to a spanwise distance of around ≃5 h measured from the side walls. We also show that if the duct is not wide enough to accommodate the whole extent of the secondary flow, then its structure is modified as reflected through a different spanwise distribution of energy. Another confirmation of the extent of the secondary flow is the decay rate of kinetic energy of any remnant secondary motions for zc/h >5 (where zc is the spanwise distance from the corner) in aspect ratios 7, 10, and 14.4, which exhibits a decreasing level of energy with increasing averaging time ta, and in its rapid rate of decay given by ˜ta-1 . This is the same rate of decay observed in a spanwise-periodic channel simulation, which suggests that at the core, the kinetic energy of the secondary flow integrated over the cross-sectional area, , behaves as a random variable with zero mean, with rate of decay consistent with central limit theorem. Long-time averages of statistics in a region of rectangular ducts extending about the width of a well-designed channel simulation (i.e., extending about ≃3 h on each side of the center plane) indicate that ducts or experimental facilities with aspect ratios larger than 10 may

  7. Turbulent transport across an interface between dry and humid air in a stratified environment

    Science.gov (United States)

    Gallana, Luca; de Santi, Francesca; di Savino, Silvio; Iovieno, Michele; Ricchiardone, Renzo; Tordella, Daniela

    2014-11-01

    The transport of energy and water vapor across a thin layer which separates two decaying isotropic turbulent flows with different kinetic energy and humidity is considered. The interface is placed in a shearless stratified environment in temporal decay. This system reproduces a few aspects of small scale turbulent transport across a dry air/moist air interface in an atmospheric like context. In our incompressible DNS at Reλ = 250 , Boussinesq's approximation is used for momentum and energy transport while the vapor is modeled as a passive scalar (Kumar, Schumacher & Shaw 2014). We investigated different stratification levels with an initial Fr between 0.8 and 8 in presence of a kinetic energy ratio equal to 7. As the buoyancy term becomes of the same order of the inertial ones, a spatial redistribution of kinetic energy, dissipation and vapor concentration is observed. This eventually leads to the onset of a well of kinetic energy in the low energy side of the mixing layer which blocks the entrainment of dry air. Results are discussed and compared with laboratory and numerical experiments. A posteriori estimates of the eventual compression/expansion of fluid particles inside the interfacial mixing layer are given (Nance & Durran 1994).

  8. Assessment of turbulent flow effects on the vessel wall using four-dimensional flow MRI.

    Science.gov (United States)

    Ziegler, Magnus; Lantz, Jonas; Ebbers, Tino; Dyverfeldt, Petter

    2017-06-01

    To explore the use of MR-estimated turbulence quantities for the assessment of turbulent flow effects on the vessel wall. Numerical velocity data for two patient-derived models was obtained using computational fluid dynamics (CFD) for two physiological flow rates. The four-dimensional (4D) Flow MRI measurements were simulated at three different spatial resolutions and used to investigate the estimation of turbulent wall shear stress (tWSS) using the intravoxel standard deviation (IVSD) of velocity and turbulent kinetic energy (TKE) estimated near the vessel wall. Accurate estimation of tWSS using the IVSD is limited by the spatial resolution achievable with 4D Flow MRI. TKE, estimated near the wall, has a strong linear relationship to the tWSS (mean R 2  = 0.84). Near-wall TKE estimates from MR simulations have good agreement to CFD-derived ground truth (mean R 2  = 0.90). Maps of near-wall TKE have strong visual correspondence to tWSS. Near-wall estimation of TKE permits assessment of relative maps of tWSS, but direct estimation of tWSS is challenging due to limitations in spatial resolution. Assessment of tWSS and near-wall TKE may open new avenues for analysis of different pathologies. Magn Reson Med 77:2310-2319, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Experimental study of particle-driven secondary flow in turbulent pipe flows

    NARCIS (Netherlands)

    Belt, R.J.; Daalmans, A.C.L.M.; Portela, L.M.

    2012-01-01

    In fully developed single-phase turbulent flow in straight pipes, it is known that mean motions can occur in the plane of the pipe cross-section, when the cross-section is non-circular, or when the wall roughness is non-uniform around the circumference of a circular pipe. This phenomenon is known as

  10. Global characteristics of zonal flows generated by ion temperature gradient driven turbulence in tokamak plasmas

    International Nuclear Information System (INIS)

    Miyato, Naoaki; Kishimoto, Yasuaki; Li, Jiquan

    2004-08-01

    Global structure of zonal flows driven by ion temperature gradient driven turbulence in tokamak plasmas is investigated using a global electromagnetic Landau fluid code. Characteristics of the coupled system of the zonal flows and the turbulence change with the safety factor q. In a low q region stationary zonal flows are excited and suppress the turbulence effectively. Coupling between zonal flows and poloidally asymmetric pressure perturbations via a geodesic curvature makes the zonal flows oscillatory in a high q region. Also we identify energy transfer from the zonal flows to the turbulence via the poloidally asymmetric pressure perturbations in the high q region. Therefore in the high q region the zonal flows cannot quench the turbulent transport completely. (author)

  11. Turbulent structure at the midsection of an annular flow

    Science.gov (United States)

    Ghaemi, S.; Rafati, S.; Bizhani, M.; Kuru, E.

    2015-10-01

    The turbulent flow in the midsection of an annular gap between two concentric tubes at Reynolds number of 59 200-90 800 based on hydraulic diameter (dh = 57 mm) and average velocity is experimentally investigated. Measurements are carried out using particle tracking velocimetry (PTV) and planar particle image velocimetry (PIV) with spatial resolution of 0.0068dh (size of the binning window) and 0.0129dh (size of the interrogation window), respectively. Both PTV and PIV results show that the location of maximum mean streamwise velocity (yU) does not coincide with the locations of zero shear stress (yuv), minimum streamwise velocity fluctuation (yu2), and minimum radial velocity fluctuation (yv2). The separation between yU and yuv is 0.013dh based on PTV while PIV underestimates the separation distance as 0.0063dh. Conditional averages of turbulent fluctuations based on the four quadrants across the annulus demonstrate that the inner and outer wall flows overlap in the midsection. In the midsection, the flow is subject to opposing sweep/ejection events originating from both the inner and outer walls. The opposite quadrant events of the two boundary layers cancel out at yuv while the local minimum of spatial correlation of u (maximum mixing of the two wall flows) occurs at yU. Investigation of the budget of Reynolds shear stress showed that production and advection terms act towards the coincidence of the yU and yuv while the dissipation term works against the coincidence of the two points. The location of max also overlaps with zero dissipation of . The production of turbulent kinetic energy is slightly negative in the narrow region between yU and yuv. This negative production acts towards smoothing the mean velocity profile at the joint of the two wall flows by equalizing its curvature (∂2/∂y2) on the two sides of yU. The small separation distance of the yU and yuv is associated with slight deviation from the fully developed condition.

  12. Mathematics of large eddy simulation of turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Berselli, L.C. [Pisa Univ. (Italy). Dept. of Applied Mathematics ' ' U. Dini' ' ; Iliescu, T. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mathematics; Layton, W.J. [Pittsburgh Univ., PA (United States). Dept. of Mathematics

    2006-07-01

    Large eddy simulation (LES) is a method of scientific computation seeking to predict the dynamics of organized structures in turbulent flows by approximating local, spatial averages of the flow. Since its birth in 1970, LES has undergone an explosive development and has matured into a highly-developed computational technology. It uses the tools of turbulence theory and the experience gained from practical computation. This book focuses on the mathematical foundations of LES and its models and provides a connection between the powerful tools of applied mathematics, partial differential equations and LES. Thus, it is concerned with fundamental aspects not treated so deeply in the other books in the field, aspects such as well-posedness of the models, their energy balance and the connection to the Leray theory of weak solutions of the Navier-Stokes equations. The authors give a mathematically informed and detailed treatment of an interesting selection of models, focusing on issues connected with understanding and expanding the correctness and universality of LES. This volume offers a useful entry point into the field for PhD students in applied mathematics, computational mathematics and partial differential equations. Non-mathematicians will appreciate it as a reference that introduces them to current tools and advances in the mathematical theory of LES. (orig.)

  13. Autonomic Closure for Turbulent Flows Using Approximate Bayesian Computation

    Science.gov (United States)

    Doronina, Olga; Christopher, Jason; Hamlington, Peter; Dahm, Werner

    2017-11-01

    Autonomic closure is a new technique for achieving fully adaptive and physically accurate closure of coarse-grained turbulent flow governing equations, such as those solved in large eddy simulations (LES). Although autonomic closure has been shown in recent a priori tests to more accurately represent unclosed terms than do dynamic versions of traditional LES models, the computational cost of the approach makes it challenging to implement for simulations of practical turbulent flows at realistically high Reynolds numbers. The optimization step used in the approach introduces large matrices that must be inverted and is highly memory intensive. In order to reduce memory requirements, here we propose to use approximate Bayesian computation (ABC) in place of the optimization step, thereby yielding a computationally-efficient implementation of autonomic closure that trades memory-intensive for processor-intensive computations. The latter challenge can be overcome as co-processors such as general purpose graphical processing units become increasingly available on current generation petascale and exascale supercomputers. In this work, we outline the formulation of ABC-enabled autonomic closure and present initial results demonstrating the accuracy and computational cost of the approach.

  14. Dynamic evolution process of turbulent channel flow after opposition control

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Mingwei; Tian, De; Yongqian, Liu, E-mail: gmwncepu@163.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Beijing102206 (China)

    2017-02-15

    Dynamic evolution of turbulent channel flow after application of opposition control (OC), together with the mechanism of drag reduction, is studied through direct numerical simulation (DNS). In the simulation, the pressure gradient is kept constant, and the flow rate increases due to drag reduction. In the transport of mean kinetic energy (MKE), one part of the energy from the external pressure is dissipated by the mean shear, and the other part is transported to the turbulent kinetic energy (TKE) through a TKE production term (TKP). It is found that the increase of MKE is mainly induced by the reduction of TKP that is directly affected by OC. Further analysis shows that the suppression of the redistribution term of TKE in the wall normal direction plays a key role in drag reduction, which represses the wall normal velocity fluctuation and then reduces TKP through the attenuation of its main production term. When OC is suddenly applied, an acute imbalance of energy in space is induced by the wall blowing and suction. Both the skin-friction and TKP terms exhibit a transient growth in the initial phase of OC, which can be attributed to the local effect of 〈 v ′ v ′〉 and 〈− u ′ v ′〉 in the viscous sublayer. (paper)

  15. Turbulent flow through channels in a viscously deforming matrix

    Science.gov (United States)

    Meyer, Colin; Hewitt, Ian; Neufeld, Jerome

    2017-11-01

    Channels of liquid melt form within a surrounding solid matrix in a variety of natural settings, for example, lava tubes and water flow through glaciers. Channels of water on the underside of glaciers, known as Rothlisberger (R-) channels, are essential components of subglacial hydrologic systems and can control the rate of glacier sliding. Water flow through these channels is turbulent, and dissipation melts open the channel while viscous creep of the surrounding closes the channel leading to the possibility of a steady state. Here we present an analogous laboratory experiment for R-channels. We pump warm water from the bottom into a tank of corn syrup and a channel forms. The pressure is lower in the water than in the corn syrup, therefore the syrup creeps inward. At the same time, the water ablates the corn syrup through dissolution and shear erosion, which we measure by determining the change in height of the syrup column over the course of the experiment. We find that the creep closure is much stronger than turbulent ablation which leads to traveling solitary waves along the water-syrup interface. These waves or `magmons' have been previously observed in experiments and theory for laminar magma melt conduits. We compliment our experiments with numerical simulations. David Crighton Fellowship.

  16. The lagRST Model: A Turbulence Model for Non-Equilibrium Flows

    Science.gov (United States)

    Lillard, Randolph P.; Oliver, A. Brandon; Olsen, Michael E.; Blaisdell, Gregory A.; Lyrintzis, Anastasios S.

    2011-01-01

    This study presents a new class of turbulence model designed for wall bounded, high Reynolds number flows with separation. The model addresses deficiencies seen in the modeling of nonequilibrium turbulent flows. These flows generally have variable adverse pressure gradients which cause the turbulent quantities to react at a finite rate to changes in the mean flow quantities. This "lag" in the response of the turbulent quantities can t be modeled by most standard turbulence models, which are designed to model equilibrium turbulent boundary layers. The model presented uses a standard 2-equation model as the baseline for turbulent equilibrium calculations, but adds transport equations to account directly for non-equilibrium effects in the Reynolds Stress Tensor (RST) that are seen in large pressure gradients involving shock waves and separation. Comparisons are made to several standard turbulence modeling validation cases, including an incompressible boundary layer (both neutral and adverse pressure gradients), an incompressible mixing layer and a transonic bump flow. In addition, a hypersonic Shock Wave Turbulent Boundary Layer Interaction with separation is assessed along with a transonic capsule flow. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWTBLI flows assessed. Separation predictions are not as good as the baseline models, but the over prediction of the peak heat flux downstream of the reattachment shock that plagues many models is reduced.

  17. Large Eddy Simulation of Turbulent Flows in Wind Energy

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak

    This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite......, should the mesh resolution, numerical discretization scheme, time averaging period, and domain size be chosen wisely. A thorough investigation of the wind turbine wake interactions is also conducted and the simulations are validated against available experimental data from external sources. The effect...... Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number...

  18. Measurement of liquid turbulent structure in bubbly flow at low void fraction using ultrasonic doppler method

    International Nuclear Information System (INIS)

    Murakawa, Hideki; Kikura, Hiroshige; Aritomi, Masanori

    2003-01-01

    Microscopic structure in bubbly flows has been a topic of interest in the study of fluid dynamics. In the present paper, the ultrasonic Doppler method was applied to the measurement of bubbly. The experiments were carried out for an air-water dispersed bubbly flow in a 20 mm x 100 mm vertical rectangular channel having a void fraction smaller than 3%. Two ultrasonic transducers were installed on the outer surface of the test section with a contact angle of 45deg off the vertical axis, one facing upward and the other facing downward. By applying statistical methods to the two directional velocity profiles. Reynolds stress profiles were calculated. Furthermore, to clarify the wake effect induced by the leading bubbles, the velocity profiles were divided into two types of data. The first one is for all of the liquid data and the other is the data which did not include the wake effect. For Re m ≥ 1,593, it was observed that the bubbles suppressed the liquid turbulence. Furthermore, comparing with the Reynolds stress profiles in bubbly flow, it was found that Reynolds stress profiles varied with the amount of bubbles present in the flow and the effect of wake causes turbulence in the liquid. (author)

  19. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    Science.gov (United States)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2017-01-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  20. A numerical method to calculate flow-induced vibrations in a turbulent flow

    International Nuclear Information System (INIS)

    Sadaoka, Noriyuki; Umegaki, Kikuo

    1993-01-01

    An unsteady fluid force on structures in a turbulent flow can cause their vibration. The phenomenon is the most important among various flow-induced vibrations and it is an important subject in design nuclear plant components such as heat exchangers. A new approach to simulate flow-induced vibrations is introduced. A fully coupled analysis of fluid-structure interaction has been realized in a turbulent flow field by integrating the following calculational steps: (a) solving turbulent flow by a direct simulation method where the ALE (arbitrary Lagrangian Eulerian) type approximation is adopted to take account of structure displacements; (b) estimating fluid force on structures by integrating fluid pressure and shear stress; (c) calculating dynamic response of structures and determining the amount of displacement; (d) regenerate curvilinear grids for new geometry using the boundary-fitted coordinate transformation method. Forced vibration of a circular cylinder in a cross flow were successfully simulated and the synchronization phenomena between Karman-vortices and cylinder vibrations were clearly seen

  1. CFD Study of Deteriorated Turbulent Heat Transfer in Upward Flow

    International Nuclear Information System (INIS)

    Nietiadi, Yohanes Setiawan; Lee, Jeong Ik; Addad, Yacine

    2014-01-01

    DTHT regime can be induced by two effects: buoyancy and acceleration. Apart from these two deteriorating effects, another unique behavior of fluid in the DTHT regime is that the convective heat transfer rate will continue to deteriorate until it reaches certain point. The downstream of this point, is known as the recovery region, where the convective heat transfer rate returns back to the high values by recovering turbulence. We called this phenomena as re-turbulization.. The map of the DTHT regime can be seen from fig. 2, where the x-axis is the buoyancy parameter and y-axis is the acceleration parameter which is the agreed governing non-dimensional numbers among the researchers to illustrate the phenomena. The Buoyancy parameter is defind in Eq. (1) and the acceleration parameter is defined in Eq. (2), respectively. The threshold value for both effects to move from the forced turbulent heat transfer to the DTHT regime are found to be Bo* ≥ 2x10 -6 and Kv ≥ 2.5x10 -6 in the previous works. Bo * =Gr q /Re 3 '. 425 Pr 0 '. 8 (1). K v =4q + /Re (2). Many experiments and simulation have been done to investigate this phenomenon and the boundary of the regime. However, very limited number of experiment was conducted in the regime where buoyancy effect and acceleration effect are in the same order of magnitude and high enough to cause DTHT (mixed DTHT). Some important experimental researches that have been done in the gas DTHT regime is Lee et al. who investigated the heat transfer of gas flow in the range of buoyancy parameter from 3x10 -9 to 10 -5 and acceleration parameter span from 6x10 -8 to 5x10 -6 and presented the behavior of Nusselt number ratio from the experiment as fig. 3 and fig. 4. This paper will discuss a Computational Fluid Dynamics analysis on DTHT by assuming hypothetical boundary conditions especially on the mixed DTHT regime. It has been found that a gas cooled fast reactor has a tendency to operate in the Deteriorated Turbulent Heat

  2. Large-eddy simulation of unidirectional turbulent flow over dunes

    Science.gov (United States)

    Omidyeganeh, Mohammad

    We performed large eddy simulation of the flow over a series of two- and three-dimensional dune geometries at laboratory scale using the Lagrangian dynamic eddy-viscosity subgrid-scale model. First, we studied the flow over a standard 2D transverse dune geometry, then bedform three-dimensionality was imposed. Finally, we investigated the turbulent flow over barchan dunes. The results are validated by comparison with simulations and experiments for the 2D dune case, while the results of the 3D dunes are validated qualitatively against experiments. The flow over transverse dunes separates at the dune crest, generating a shear layer that plays a crucial role in the transport of momentum and energy, as well as the generation of coherent structures. Spanwise vortices are generated in the separated shear; as they are advected, they undergo lateral instabilities and develop into horseshoe-like structures and finally reach the surface. The ejection that occurs between the legs of the vortex creates the upwelling and downdrafting events on the free surface known as "boils". The three-dimensional separation of flow at the crestline alters the distribution of wall pressure, which may cause secondary flow across the stream. The mean flow is characterized by a pair of counter-rotating streamwise vortices, with core radii of the order of the flow depth. Staggering the crestlines alters the secondary motion; two pairs of streamwise vortices appear (a strong one, centred about the lobe, and a weaker one, coming from the previous dune, centred around the saddle). The flow over barchan dunes presents significant differences to that over transverse dunes. The flow near the bed, upstream of the dune, diverges from the centerline plane; the flow close to the centerline plane separates at the crest and reattaches on the bed. Away from the centerline plane and along the horns, flow separation occurs intermittently. The flow in the separation bubble is routed towards the horns and leaves

  3. DNS of fully developed turbulent heat transfer of a viscoelastic drag-reducing flow

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Bo [Department of Oil and Gas Storage and Transportation Engineering, China University of Petroleum, Beijing 102249 (China); Kawaguchi, Yasuo [Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)

    2005-10-01

    A direct numerical simulation (DNS) of turbulent heat transfer in a channel flow with a Giesekus model was carried out to investigate turbulent heat transfer mechanism of a viscoelastic drag-reducing flow by additives. The configuration was a fully-developed turbulent channel flow with uniform heat flux imposed on both the walls. The temperature was considered as a passive scalar with the effect of buoyancy force neglected. The Reynolds number based on the friction velocity and half the channel height was 150. Statistical quantities such as root-mean-square temperature fluctuations, turbulent heat fluxes and turbulent Prandtl number were obtained and compared with those of a Newtonian fluid flow. Budget terms of the temperature variance and turbulent heat fluxes were also presented. (author)

  4. Turbulent mass flux closure modeling for variable density turbulence in the wake of an air-entraining transom stern

    Science.gov (United States)

    Hendrickson, Kelli; Yue, Dick

    2016-11-01

    This work presents the development and a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flow in the near wake region of a transom stern. This complex, three-dimensional flow includes three regions with distinctly different flow behavior: (i) the convergent corner waves that originate from the body and collide on the ship center plane; (ii) the "rooster tail" that forms from the collision; and (iii) the diverging wave train. The characteristics of these regions involve violent free-surface flows and breaking waves with significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. Utilizing datasets from high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM), we develop explicit algebraic turbulent mass flux closure models that incorporate the most relevant physical processes. Performance of these models in predicting the turbulent mass flux in all three regions of the wake will be presented. Office of Naval Research.

  5. Turbulence Intensity and the Friction Factor for Smooth- and Rough-Wall Pipe Flow

    OpenAIRE

    Nils T. Basse

    2017-01-01

    Turbulence intensity profiles are compared for smooth- and rough-wall pipe flow measurements made in the Princeton Superpipe. The profile development in the transition from hydraulically smooth to fully rough flow displays a propagating sequence from the pipe wall towards the pipe axis. The scaling of turbulence intensity with Reynolds number shows that the smooth- and rough wall level deviates with increasing Reynolds number. We quantify the correspondence between turbulence intensity and th...

  6. Direct Numerical Simulation of Turbulent Flow Over Complex Bathymetry

    Science.gov (United States)

    Yue, L.; Hsu, T. J.

    2017-12-01

    Direct numerical simulation (DNS) is regarded as a powerful tool in the investigation of turbulent flow featured with a wide range of time and spatial scales. With the application of coordinate transformation in a pseudo-spectral scheme, a parallelized numerical modeling system was created aiming at simulating flow over complex bathymetry with high numerical accuracy and efficiency. The transformed governing equations were integrated in time using a third-order low-storage Runge-Kutta method. For spatial discretization, the discrete Fourier expansion was adopted in the streamwise and spanwise direction, enforcing the periodic boundary condition in both directions. The Chebyshev expansion on Chebyshev-Gauss-Lobatto points was used in the wall-normal direction, assuming there is no-slip on top and bottom walls. The diffusion terms were discretized with a Crank-Nicolson scheme, while the advection terms dealiased with the 2/3 rule were discretized with an Adams-Bashforth scheme. In the prediction step, the velocity was calculated in physical domain by solving the resulting linear equation directly. However, the extra terms introduced by coordinate transformation impose a strict limitation to time step and an iteration method was applied to overcome this restriction in the correction step for pressure by solving the Helmholtz equation. The numerical solver is written in object-oriented C++ programing language utilizing Armadillo linear algebra library for matrix computation. Several benchmarking cases in laminar and turbulent flow were carried out to verify/validate the numerical model and very good agreements are achieved. Ongoing work focuses on implementing sediment transport capability for multiple sediment classes and parameterizations for flocculation processes.

  7. Surface Runoff in Watershed Modeling—Turbulent or Laminar Flows?

    Directory of Open Access Journals (Sweden)

    Mark E. Grismer

    2016-05-01

    Full Text Available Determination of overland sheet flow depths, velocities and celerities across the hillslope in watershed modeling is important towards estimation of surface storage, travel times to streams and soil detachment rates. It requires careful characterization of the flow processes. Similarly, determination of the temporal variation of hillslope-riparian-stream hydrologic connectivity requires estimation of the shallow subsurface soil hydraulic conductivity and soil-water retention (i.e., drainable porosities parameters. Field rainfall and runoff simulation studies provide considerable information and insight into these processes; in particular, that sheet flows are likely laminar and that shallow hydraulic conductivities and storage can be determined from the plot studies. Here, using a 1 m by 2 m long runoff simulation flume, we found that for overland flow rates per unit width of roughly 30–60 mm2/s and bedslopes of 10%–66% with varying sand roughness depths that all flow depths were predicted by laminar flow equations alone and that equivalent Manning’s n values were depth dependent and quite small relative to those used in watershed modeling studies. Even for overland flow rates greater than those typically measured or modeled and using Manning’s n values of 0.30–0.35, often assumed in physical watershed model applications for relatively smooth surface conditions, the laminar flow velocities were 4–5 times greater, while the laminar flow depths were 4–5 times smaller. This observation suggests that travel times, surface storage volumes and surface shear stresses associated with erosion across the landscape would be poorly predicted using turbulent flow assumptions. Filling the flume with fine sand and conducting runoff studies, we were unable to produce sheet flow, but found that subsurface flows were onflow rate, soil depth and slope dependent and drainable porosities were only soil depth and slope dependent. Moreover, both the sand

  8. Computational and experimental analysis of supersonic air ejector: Turbulence modeling and assessment of 3D effects

    International Nuclear Information System (INIS)

    Mazzelli, Federico; Little, Adrienne B.; Garimella, Srinivas; Bartosiewicz, Yann

    2015-01-01

    Highlights: • Computational and experimental assessment of computational techniques for ejector flows. • Comparisons to 2D/3D (k–ε, k–ε realizable, k–ω SST, and stress–ω RSM) turbulence models. • k–ω SST model performs best while ε-based models more accurate at low motive pressures. • Good on-design agreement across 2D and 3D models; off-design needs 3D simulations. - Abstract: Numerical and experimental analyses are performed on a supersonic air ejector to evaluate the effectiveness of commonly-used computational techniques when predicting ejector flow characteristics. Three series of experimental curves at different operating conditions are compared with 2D and 3D simulations using RANS, steady, wall-resolved models. Four different turbulence models are tested: k–ε, k–ε realizable, k–ω SST, and the stress–ω Reynolds Stress Model. An extensive analysis is performed to interpret the differences between numerical and experimental results. The results show that while differences between turbulence models are typically small with respect to the prediction of global parameters such as ejector inlet mass flow rates and Mass Entrainment Ratio (MER), the k–ω SST model generally performs best whereas ε-based models are more accurate at low motive pressures. Good agreement is found across all 2D and 3D models at on-design conditions. However, prediction at off-design conditions is only acceptable with 3D models, making 3D simulations mandatory to correctly predict the critical pressure and achieve reasonable results at off-design conditions. This may partly depend on the specific geometry under consideration, which in the present study has a rectangular cross section with low aspect ratio.

  9. Entrainment at a sediment concentration interface in turbulent channel flow

    Science.gov (United States)

    Salinas, Jorge; Shringarpure, Mrugesh; Cantero, Mariano; Balachandar, S.

    2016-11-01

    In this work we address the role of turbulence on entrainment at a sediment concentration interface. This process can be conceived as the entrainment of sediment-free fluid into the bottom sediment-laden flow, or alternatively, as the entrainment of sediment into the top sediment-free flow. We have performed direct numerical simulations for fixed Reynolds and Schmidt numbers while varying the values of Richardson number and particle settling velocity. The analysis performed shows that the ability of the flow to pick up a given sediment size decreases with the distance from the bottom, and thus only fine enough sediment particles are entrained across the sediment concentration interface. For these cases, the concentration profiles evolve to a final steady state in good agreement with the well-known Rouse profile. The approach towards the Rouse profile happens through a transient self-similar state. Detailed analysis of the three dimensional structure of the sediment concentration interface shows the mechanisms by which sediment particles are lifted up by tongues of sediment-laden fluid with positive correlation between vertical velocity and sediment concentration. Finally, the mixing ability of the flow is addressed by monitoring the center of mass of the sediment-laden layer. With the support of ExxonMobil, NSF, ANPCyT, CONICET.

  10. Turbulence and secondary motions in square duct flow

    Science.gov (United States)

    Pirozzoli, Sergio; Modesti, Davide; Orlandi, Paolo; Grasso, Francesco

    2017-11-01

    We study turbulent flows in pressure-driven ducts with square cross-section through DNS up to Reτ 1050 . Numerical simulations are carried out over extremely long integration times to get adequate convergence of the flow statistics, and specifically high-fidelity representation of the secondary motions which arise. The intensity of the latter is found to be in the order of 1-2% of the bulk velocity, and unaffected by Reynolds number variations. The smallness of the mean convection terms in the streamwise vorticity equation points to a simple characterization of the secondary flows, which in the asymptotic high-Re regime are found to be approximated with good accuracy by eigenfunctions of the Laplace operator. Despite their effect of redistributing the wall shear stress along the duct perimeter, we find that secondary motions do not have large influence on the mean velocity field, which can be characterized with good accuracy as that resulting from the concurrent effect of four independent flat walls, each controlling a quarter of the flow domain. As a consequence, we find that parametrizations based on the hydraulic diameter concept, and modifications thereof, are successful in predicting the duct friction coefficient. This research was carried out using resources from PRACE EU Grants.

  11. Computation of a turbulent channel flow using PDF method

    International Nuclear Information System (INIS)

    Minier, J.P.; Pozorski, J.

    1997-05-01

    The purpose of the present paper is to present an analysis of a PDF model (Probability Density Function) and an illustration of the possibilities offered by such a method for a high-Reynolds turbulent channel flow. The first part presents the principles of the PDF approach and the introduction of stochastic processes along with a Lagrangian point of view. The model retained is the one put forward by Pope (1991) and includes evolution equations for location, velocity and dissipation of a large number of particles. Wall boundary conditions are then developed for particles. These conditions allow statistical results of the logarithmic region to be correctly reproduced. Simulation of non-homogeneous flows require a pressure-gradient algorithm which is briefly described. Developments are validated by analysing numerical predictions with respect to Comte Bellot experimental data (1965) on a channel flow. This example illustrates the ability of the approach to simulate wall-bounded flows and to provide detailed information such as skewness and flatness factors. (author)

  12. Flow in a circular expansion pipe flow: effect of a vortex perturbation on localised turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, Kamal; Peixinho, Jorge [Laboratoire Ondes Milieux Complexes, CNRS and Université du Havre, F-76600 Le Havre (France); Willis, Ashley P, E-mail: jorge.peixinho@univ-lehavre.fr [School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2016-12-15

    We report the results of three-dimensional direct numerical simulations for incompressible viscous fluid in a circular pipe flow with a sudden expansion. At the inlet, a parabolic velocity profile is applied together with a finite amplitude perturbation in the form of a vortex with its axis parallel to the axis of the pipe. At sufficiently high Reynolds numbers the recirculation region breaks into a turbulent patch that changes position axially, depending on the strength of the perturbation. This vortex perturbation is believed to produce a less abrupt transition than in previous studies, which applied a tilt perturbation, as the localised turbulence is observed via the formation of a wavy structure at a low order azimuthal mode, which resembles an optimally amplified perturbation. For large vortex amplitude, the localised turbulence remains at a constant axial position. It is further investigated using proper orthogonal decomposition, which indicates that the centre region close to the expansion is highly energetic. (paper)

  13. Organized Oscillations of Initially-Turbulent Flow Past a Cavity

    Energy Technology Data Exchange (ETDEWEB)

    J.C. Lin; D. Rockwell

    2002-09-17

    Flow past an open cavity is known to give rise to self-sustained oscillations in a wide variety of configurations, including slotted-wall, wind and water tunnels, slotted flumes, bellows-type pipe geometries, high-head gates and gate slots, aircraft components and internal piping systems. These cavity-type oscillations are the origin of coherent and broadband sources of noise and, if the structure is sufficiently flexible, flow-induced vibration as well. Moreover, depending upon the state of the cavity oscillation, substantial alterations of the mean drag may be induced. In the following, the state of knowledge of flow past cavities, based primarily on laminar inflow conditions, is described within a framework based on the flow physics. Then, the major unresolved issues for this class of flows will be delineated. Self-excited cavity oscillations have generic features, which are assessed in detail in the reviews of Rockwell and Naudascher, Rockwell, Howe and Rockwell. These features, which are illustrated in the schematic of Figure 1, are: (i) interaction of a vorticity concentration(s) with the downstream corner, (ii) upstream influence from this corner interaction to the sensitive region of the shear layer formed from the upstream corner of the cavity; (iii) conversion of the upstream influence arriving at this location to a fluctuation in the separating shear layer; and (iv) amplification of this fluctuation in the shear layer as it develops in the streamwise direction. In view of the fact that inflow shear-layer in the present investigation is fully turbulent, item (iv) is of particular interest. It is generally recognized, at least for laminar conditions at separation from the leading-corner of the cavity, that the disturbance growth in the shear layer can be described using concepts of linearized, inviscid stability theory, as shown by Rockwell, Sarohia, and Knisely and Rockwell. As demonstrated by Knisely and Rockwell, on the basis of experiments interpreted

  14. Compressible turbulent channel flow with impedance boundary conditions

    Science.gov (United States)

    Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.

    2015-03-01

    We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with

  15. Comparative study of turbulence model performance for axisymmetric sudden expansion flow

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo; Yoon, Juhyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, the performance of turbulence models in predicting the turbulent flow in an axisymmetric sudden expansion with an expansion ratio of 4 is assessed for a Reynolds number of 5.6 Χ 10{sup 4}. The comparisons show that the standard k-ε and RSM models provide the best agreement with the experimental data, whereas the standard k-ω model gives poor predictions. Owing to its computational efficiency, the Reynolds Averaged Navier-Stokes (RANS) approach has been widely used for the prediction of turbulent flows and associated pressure losses in a variety of internal flow systems such as a diffuser, orifice, converging nozzle, and pipes with sudden expansion. However, the lack of a general turbulence model often leads to limited applications of a RANS approach, i. e., the accuracy and validity of solutions obtained from RANS equations vary with the turbulence model, flow regime, near-wall treatment, and configuration of the problem. In light of the foregoing, a large amount of turbulence research has been conducted to assess the performance of existing turbulence models for different flow fields. In this paper, the turbulent flow in an axisymmetric sudden expansion is numerically investigated for a Reynolds number of 5.6 Χ 10{sup 4}, with the aim of examining the performance of several turbulence models.

  16. Comparative study of turbulence model performance for axisymmetric sudden expansion flow

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo; Yoon, Juhyeon

    2013-01-01

    In this study, the performance of turbulence models in predicting the turbulent flow in an axisymmetric sudden expansion with an expansion ratio of 4 is assessed for a Reynolds number of 5.6 Χ 10 4 . The comparisons show that the standard k-ε and RSM models provide the best agreement with the experimental data, whereas the standard k-ω model gives poor predictions. Owing to its computational efficiency, the Reynolds Averaged Navier-Stokes (RANS) approach has been widely used for the prediction of turbulent flows and associated pressure losses in a variety of internal flow systems such as a diffuser, orifice, converging nozzle, and pipes with sudden expansion. However, the lack of a general turbulence model often leads to limited applications of a RANS approach, i. e., the accuracy and validity of solutions obtained from RANS equations vary with the turbulence model, flow regime, near-wall treatment, and configuration of the problem. In light of the foregoing, a large amount of turbulence research has been conducted to assess the performance of existing turbulence models for different flow fields. In this paper, the turbulent flow in an axisymmetric sudden expansion is numerically investigated for a Reynolds number of 5.6 Χ 10 4 , with the aim of examining the performance of several turbulence models

  17. Turbulent heat transfer to longitudinal flow through a triangular array of circular rods

    International Nuclear Information System (INIS)

    Pfann, J.

    1975-01-01

    Temperature distribution and heat transfer to longitudinal turbulent, fully developed flow through triangular arrays of smooth circular rods are analysed for liquids with Prandtl number approximately 1 and << 1. Nusselt number is plotted versus pitch and turbulence for constant heat flow and for constant temperature on the rod surface, and the optimum pitch is determined. The influence of Prandtl number is analysed. (Auth.)

  18. Numerical Simulations of Competitive-Consecutive Reactions in Turbulent Channel Flow

    NARCIS (Netherlands)

    Vrieling, A.J.

    2003-01-01

    This thesis deals with mixing of passive scalars in a turbulent flow. The passive scalars are released in a turbulent plane channel flow and interpreted as either non-reactive components or reactive components that are involved in a competitive-consecutive reaction system. The evolution of these

  19. Understanding the sub-critical transition to turbulence in wall flows

    Indian Academy of Sciences (India)

    In contrast with free shear flows presenting velocity profiles with injection points which cascade to turbulence in a relatively mild way, wall bounded flows are deprived of (inertial) instability modes at low Reynolds numbers and become turbulent in a much wilder way, most often marked by the coexistence of laminar and ...

  20. Turbulent flow field structure of initially asymmetric jets

    International Nuclear Information System (INIS)

    Kim, Kyung Hoon; Kim, Bong Whan; Kim, Suk Woo

    2000-01-01

    The near field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemomentry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. Three pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the pipe exit, secondary flow through the bend and mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameterlong straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases

  1. Spectrally-consistent regularization modeling of turbulent natural convection flows

    International Nuclear Information System (INIS)

    Trias, F Xavier; Gorobets, Andrey; Oliva, Assensi; Verstappen, Roel

    2012-01-01

    The incompressible Navier-Stokes equations constitute an excellent mathematical modelization of turbulence. Unfortunately, attempts at performing direct simulations are limited to relatively low-Reynolds numbers because of the almost numberless small scales produced by the non-linear convective term. Alternatively, a dynamically less complex formulation is proposed here. Namely, regularizations of the Navier-Stokes equations that preserve the symmetry and conservation properties exactly. To do so, both convective and diffusive terms are altered in the same vein. In this way, the convective production of small scales is effectively restrained whereas the modified diffusive term introduces a hyperviscosity effect and consequently enhances the destruction of small scales. In practice, the only additional ingredient is a self-adjoint linear filter whose local filter length is determined from the requirement that vortex-stretching must stop at the smallest grid scale. In the present work, the performance of the above-mentioned recent improvements is assessed through application to turbulent natural convection flows by means of comparison with DNS reference data.

  2. Numerical simulation of stratified flows with different k-ε turbulence models

    International Nuclear Information System (INIS)

    Dagestad, S.

    1991-01-01

    The thesis comprises the numerical simulation of stratified flows with different k-ε models. When using the k-ε model, two equations are solved to describe the turbulence. The k-equation represents the turbulent kinetic energy of the turbulence and the ε-equation is the turbulent dissipation. Different k-ε models predict stratified flows differently. The standard k-ε model leads to higher turbulent mixing than the low-Reynolds model does. For lower Froude numbers, F 0 , this effect becomes enhanced. Buoyancy extension of the k-ε model also leads to less vertical mixing in cases with strong stratification. When the stratification increases, buoyancy-extension becomes larger influence. The turbulent Prandtl number effects have large impact on the transport of heat and the development of the flow. Two different formulae which express the turbulent Prandtl effects have been tested. For unstably stratified flows, the rapid mixing and three-dimensionality of the flow can in fact be computed using a k-ε model when buoyancy-extended is employed. The turbulent heat transfer and thus turbulent production in unstable stratified flows depends strongly upon the turbulent Prandtl number effect. The main conclusions are: Stable stratified flows should be computed with a buoyancy-extended low-Reynolds k-ε model; Unstable stratified flows should be computed with a buoyancy-extended standard k-ε model; The turbulent Prandtl number effects should be included in the computations; Buoyancy-extension has lead to more correct description of the physics for all of the investigated flows. 78 refs., 128 figs., 17 tabs

  3. CFD Numerical Simulation of the Complex Turbulent Flow Field in an Axial-Flow Water Pump

    Directory of Open Access Journals (Sweden)

    Wan-You Li

    2014-09-01

    Full Text Available Further optimal design of an axial-flow water pump calls for a thorough recognition of the characteristics of the complex turbulent flow field in the pump, which is however extremely difficult to be measured using the up-to-date experimental techniques. In this study, a numerical simulation procedure based on computational fluid dynamics (CFD was elaborated in order to obtain the fully three-dimensional unsteady turbulent flow field in an axial-flow water pump. The shear stress transport (SST k-ω model was employed in the CFD calculation to study the unsteady internal flow of the axial-flow pump. Upon the numerical simulation results, the characteristics of the velocity field and pressure field inside the impeller region were discussed in detail. The established model procedure in this study may provide guidance to the numerical simulations of turbomachines during the design phase or the investigation of flow and pressure field characteristics and performance. The presented information can be of reference value in further optimal design of the axial-flow pump.

  4. Generation of parasitic axial flow by drift wave turbulence with broken symmetry: Theory and experiment

    Science.gov (United States)

    Hong, R.; Li, J. C.; Hajjar, R.; Chakraborty Thakur, S.; Diamond, P. H.; Tynan, G. R.

    2018-05-01

    Detailed measurements of intrinsic axial flow generation parallel to the magnetic field in the controlled shear decorrelation experiment linear plasma device with no axial momentum input are presented and compared to theory. The results show a causal link from the density gradient to drift-wave turbulence with broken spectral symmetry and development of the axial mean parallel flow. As the density gradient steepens, the axial and azimuthal Reynolds stresses increase and radially sheared azimuthal and axial mean flows develop. A turbulent axial momentum balance analysis shows that the axial Reynolds stress drives the radially sheared axial mean flow. The turbulent drive (Reynolds power) for the azimuthal flow is an order of magnitude greater than that for axial flow, suggesting that the turbulence fluctuation levels are set by azimuthal flow shear regulation. The direct energy exchange between axial and azimuthal mean flows is shown to be insignificant. Therefore, the axial flow is parasitic to the turbulence-zonal flow system and is driven primarily by the axial turbulent stress generated by that system. The non-diffusive, residual part of the axial Reynolds stress is found to be proportional to the density gradient and is formed due to dynamical asymmetry in the drift-wave turbulence.

  5. Turbulence spectra, transport, and E × B flows in helical plasmas

    International Nuclear Information System (INIS)

    Watanabe, T.-H.; Nunami, M.; Sugama, H.; Satake, S.; Matsuoka, S.; Ishizawa, A.; Tanaka, K.; Maeyama, Shinya

    2012-11-01

    Gyrokinetic simulation of ion temperature gradient turbulence and zonal flows for helical plasmas has been validated against the Large Helical Device experiments with high ion temperature, where a reduced modeling of ion heat transport is also considered. It is confirmed by the entropy transfer analysis that the turbulence spectrum elongated in the radial wavenumber space is associated with successive interactions with zonal flows. A novel multi-scale simulation for turbulence and zonal flows in poloidally-rotating helical plasmas has demonstrated strong zonal flow generation by turbulence, which implies that turbulent transport processes in non-axisymmetric systems are coupled to neoclassical transport through the macroscopic E × B flows determined by the ambipolarty condition for neoclassical particle fluxes. (author)

  6. Numerical solution of inviscid and viscous laminar and turbulent flow around the airfoil

    Directory of Open Access Journals (Sweden)

    Slouka Martin

    2016-01-01

    Full Text Available This work deals with the 2D numerical solution of inviscid compressible flow and viscous compressible laminar and turbulent flow around the profile. In a case of turbulent flow algebraic Baldwin-Lomax model is used and compared with Wilcox k-omega model. Calculations are done for NACA 0012 and RAE 2822 airfoil profile for the different angles of upstream flow. Numerical results are compared and discussed with experimental data.

  7. Numerical Investigation of the Turbulent Wind Flow Through Elevated Windbreak

    Science.gov (United States)

    Agarwal, Ashish; Irtaza, Hassan

    2018-04-01

    Analysis of airflow through elevated windbreaks is presented in this paper. Permeable nets and impermeable film increases considerable wind forces on the windbreaks which is susceptible to damage during high wind. A comprehensive numerical investigation has been carried out to analyze the effects of wind on standalone elevated windbreak clad with various permeable nets and an impermeable film. The variation of airflow behavior around and through permeable nets and airflow behavior around impermeable film were also been investigated. Computational fluid dynamics techniques using Reynolds Averaged Navier-Stokes equations has been used to predict the wind force coefficient and thus wind forces on panels supporting permeable nets and impermeable film for turbulent wind flow. Elevated windbreak panels were analyzed for seven different permeable nets having various solidity ratio, specific permeability and aerodynamic resistant coefficients. The permeable nets were modelled as porous jump media obeying Forchheimer's law and an impermeable film modelled as rigid wall.

  8. A mathematical model for turbulent incompressible flows through mixing grids

    International Nuclear Information System (INIS)

    Allaire, G.

    1989-01-01

    A mathematical model is proposed for the computation of turbulent incompressible flows through mixing grids. This model is obtained as follows: in a three-dimentional-domain we represent a mixing grid by small identical wings of size ε 2 periodically distributed at the nodes of a plane regular mesh of size ε, and we consider incompressible Navier-Stokes equations with a no-slip condition on the wings. Using an appropriate homogenization process we pass to the limit when ε tends to zero and we obtain a Brinkman equation, i.e. a Navier-Stokes equation plus a zero-order term for the velocity, in a homogeneous domain without anymore wings. The interest of this model is that the spatial discretization is simpler in a homogeneous domain, and, moreover, the new term, which expresses the grid's mixing effect, can be evaluated with a local computation around a single wing

  9. Numerical Investigation of the Turbulent Wind Flow Through Elevated Windbreak

    Science.gov (United States)

    Agarwal, Ashish; Irtaza, Hassan

    2018-06-01

    Analysis of airflow through elevated windbreaks is presented in this paper. Permeable nets and impermeable film increases considerable wind forces on the windbreaks which is susceptible to damage during high wind. A comprehensive numerical investigation has been carried out to analyze the effects of wind on standalone elevated windbreak clad with various permeable nets and an impermeable film. The variation of airflow behavior around and through permeable nets and airflow behavior around impermeable film were also been investigated. Computational fluid dynamics techniques using Reynolds Averaged Navier-Stokes equations has been used to predict the wind force coefficient and thus wind forces on panels supporting permeable nets and impermeable film for turbulent wind flow. Elevated windbreak panels were analyzed for seven different permeable nets having various solidity ratio, specific permeability and aerodynamic resistant coefficients. The permeable nets were modelled as porous jump media obeying Forchheimer's law and an impermeable film modelled as rigid wall.

  10. Turbulent flows at very large Reynolds numbers: new lessons learned

    International Nuclear Information System (INIS)

    Barenblatt, G I; Prostokishin, V M; Chorin, A J

    2014-01-01

    The universal (Reynolds-number-independent) von Kármán–Prandtl logarithmic law for the velocity distribution in the basic intermediate region of a turbulent shear flow is generally considered to be one of the fundamental laws of engineering science and is taught universally in fluid mechanics and hydraulics courses. We show here that this law is based on an assumption that cannot be considered to be correct and which does not correspond to experiment. Nor is Landau's derivation of this law quite correct. In this paper, an alternative scaling law explicitly incorporating the influence of the Reynolds number is discussed, as is the corresponding drag law. The study uses the concept of intermediate asymptotics and that of incomplete similarity in the similarity parameter. Yakov Borisovich Zeldovich played an outstanding role in the development of these ideas. This work is a tribute to his glowing memory. (100th anniversary of the birth of ya b zeldovich)

  11. Bounded energy states in homogeneous turbulent shear flow - An alternative view

    Science.gov (United States)

    Bernard, P. S.; Speziale, C. G.

    1992-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if a residual vortex stretching term is maintained in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are presented for a k-epsilon model modified to account for net vortex stretching.

  12. EINOx scaling in a non-premixed turbulent hydrogen jet with swirled coaxial air

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jeongseog; Hwang, Jeongjae; Yoon, Youngbin [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742 (Korea)

    2010-08-15

    The effect of swirl flow on pollutant emission (nitrous oxide) was studied in a non-premixed turbulent hydrogen jet with coaxial air. A swirl vane was equipped in a coaxial air feeding line and the angle of the swirl vane was varied from 30 to 90 degrees. Under a fixed global equivalence ratio of {phi}{sub G} = 0.5, fuel jet air velocity and coaxial air velocity were varied in an attached flame region as u{sub F} = 85.7-160.2 m/s and u{sub A} = 7.4-14.4 m/s. In the present study, two mixing variables of coaxial air and swirl flow were considered: the flame residence time and global strain rate. The objective of the current study was to analyze the flame length behavior, and the characteristics of nitrous oxide emissions under a swirl flow conditions, and to suggest a new parameter for EINOx (the emission index of nitrous oxide) scaling. From the experimental results, EINOx decreased with the swirl vane angle and increased with the flame length (L). We found the scaling variables for the flame length and EINOx using the effective diameter (d{sub F,eff}) in a far-field concept. Normalized flame length (L divided by d{sub F,eff}) fitted well with the theoretical expectations. EINOx increased in proportion to the flame residence time ({proportional_to}{tau}{sub R}{sup 1/2.8}) and the global strain rate ({proportional_to}S{sub G}{sup 1/2.8}). (author)

  13. Numerical simulation of turbulent convective flow over wavy terrain

    Science.gov (United States)

    Dörnbrack, A.; Schumann, U.

    1993-09-01

    By means of a large-eddy simulation, the convective boundary layer is investigated for flows over wavy terrain. The lower surface varies sinusoidally in the downstream direction while remaining constant in the other. Several cases are considered with amplitude δ up to 0.15 H and wavelength λ of H to 8 H, where H is the mean fluid-layer height. At the lower surface, the vertical heat flux is prescribed to be constant and the momentum flux is determined locally from the Monin-Obukhov relationship with a roughness length z o=10-4 H. The mean wind is varied between zero and 5 w *, where w * is the convective velocity scale. After rather long times, the flow structure shows horizontal scales up to 4 H, with a pattern similar to that over flat surfaces at corresponding shear friction. Weak mean wind destroys regular spatial structures induced by the surface undulation at zero mean wind. The surface heating suppresses mean-flow recirculation-regions even for steep surface waves. Short surface waves cause strong drag due to hydrostatic and dynamic pressure forces in addition to frictional drag. The pressure drag increases slowly with the mean velocity, and strongly with δ/ H. The turbulence variances increase mainly in the lower half of the mixed layer for U/w *>2.

  14. Computational Investigation of Soot and Radiation in Turbulent Reacting Flows

    Science.gov (United States)

    Lalit, Harshad

    This study delves into computational modeling of soot and infrared radiation for turbulent reacting flows, detailed understanding of both of which is paramount in the design of cleaner engines and pollution control. In the first part of the study, the concept of Stochastic Time and Space Series Analysis (STASS) as a numerical tool to compute time dependent statistics of radiation intensity is introduced for a turbulent premixed flame. In the absence of high fidelity codes for large eddy simulation or direct numerical simulation of turbulent flames, the utility of STASS for radiation imaging of reacting flows to understand the flame structure is assessed by generating images of infrared radiation in spectral bands dominated by radiation from gas phase carbon dioxide and water vapor using an assumed PDF method. The study elucidates the need for time dependent computation of radiation intensity for validation with experiments and the need for accounting for turbulence radiation interactions for correctly predicting radiation intensity and consequently the flame temperature and NOx in a reacting fluid flow. Comparison of single point statistics of infrared radiation intensity with measurements show that STASS can not only predict the flame structure but also estimate the dynamics of thermochemical scalars in the flame with reasonable accuracy. While a time series is used to generate realizations of thermochemical scalars in the first part of the study, in the second part, instantaneous realizations of resolved scale temperature, CO2 and H2O mole fractions and soot volume fractions are extracted from a large eddy simulation (LES) to carry out quantitative imaging of radiation intensity (QIRI) for a turbulent soot generating ethylene diffusion flame. A primary motivation of the study is to establish QIRI as a computational tool for validation of soot models, especially in the absence of conventional flow field and measured scalar data for sooting flames. Realizations of

  15. A Numerical Assessment of the Air Flow Behaviour in a Conventional Compact Dry Kiln

    OpenAIRE

    Paulo Zdanski; Daniel Possamai; Miguel Vaz Jr.

    2015-01-01

    Convective drying is the most common drying strategy used in timber manufacturing industries in the developing world. In convective drying, the reduction rate of the moisture content is directly affected by the flow topology in the inlet and exit plenums and the air flow velocity in the channels formed by timber layers.Turbulence, boundary layer separation, vortex formation and recirculation regions are flow features that are intrinsically associated with the kiln geometry, which in turn dict...

  16. Complexity analysis of the turbulent environmental fluid flow time series

    Science.gov (United States)

    Mihailović, D. T.; Nikolić-Đorić, E.; Drešković, N.; Mimić, G.

    2014-02-01

    We have used the Kolmogorov complexities, sample and permutation entropies to quantify the randomness degree in river flow time series of two mountain rivers in Bosnia and Herzegovina, representing the turbulent environmental fluid, for the period 1926-1990. In particular, we have examined the monthly river flow time series from two rivers (the Miljacka and the Bosnia) in the mountain part of their flow and then calculated the Kolmogorov complexity (KL) based on the Lempel-Ziv Algorithm (LZA) (lower-KLL and upper-KLU), sample entropy (SE) and permutation entropy (PE) values for each time series. The results indicate that the KLL, KLU, SE and PE values in two rivers are close to each other regardless of the amplitude differences in their monthly flow rates. We have illustrated the changes in mountain river flow complexity by experiments using (i) the data set for the Bosnia River and (ii) anticipated human activities and projected climate changes. We have explored the sensitivity of considered measures in dependence on the length of time series. In addition, we have divided the period 1926-1990 into three subintervals: (a) 1926-1945, (b) 1946-1965, (c) 1966-1990, and calculated the KLL, KLU, SE, PE values for the various time series in these subintervals. It is found that during the period 1946-1965, there is a decrease in their complexities, and corresponding changes in the SE and PE, in comparison to the period 1926-1990. This complexity loss may be primarily attributed to (i) human interventions, after the Second World War, on these two rivers because of their use for water consumption and (ii) climate change in recent times.

  17. Turbulent structure of three-dimensional flow behind a model car: 1. Exposed to uniform approach flow

    Science.gov (United States)

    Kozaka, Orçun E.; Özkan, Gökhan; Özdemir, Bedii I.

    2004-01-01

    Turbulent structure of flow behind a model car is investigated with local velocity measurements with emphasis on large structures and their relevance to aerodynamic forces. Results show that two counter-rotating helical vortices, which are formed within the inner wake region, play a key role in determining the flux of kinetic energy. The turbulence is generated within the outermost shear layers due to the instabilities, which also seem to be the basic drive for these relatively organized structures. The measured terms of the turbulent kinetic energy production, which are only part of the full expression, indicate that vortex centres act similar to the manifolds draining the energy in the streamwise direction. As the approach velocity increases, the streamwise convection becomes the dominant means of turbulent transport and, thus, the acquisition of turbulence by relatively non-turbulent flow around the wake region is suppressed.

  18. Special course on modern theoretical and experimental approaches to turbulent flow structure and its modelling

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    The large eddy concept in turbulent modeling and techniques for direct simulation are discussed. A review of turbulence modeling is presented along with physical and numerical aspects and applications. A closure model for turbulent flows is presented and routes to chaos by quasi-periodicity are discussed. Theoretical aspects of transition to turbulence by space/time intermittency are covered. The application to interpretation of experimental results of fractal dimensions and connection of spatial temporal chaos are reviewed. Simulation of hydrodynamic flow by using cellular automata is discussed.

  19. Analysis of Hydrogen/Air Turbulent Premixed Flames at Different Karlovitz Numbers Using Computational Singular Perturbation

    KAUST Repository

    Manias, Dimitrios; Tingas, Alexandros-Efstathios; Hernandez Perez, Francisco E.; Im, Hong G.; Galassi, Riccardo Malpica; Ciottoli, Pietro Paolo; Valorani, Mauro

    2018-01-01

    The dynamics and structure of two turbulent H2/air premixed flames, representative of the corrugated flamelet (Case 1) and thin reaction zone (Case 2) regimes, are analyzed and compared, using the computational singular perturbation (CSP) tools

  20. The Relationship Between Turbulence and Air Quality in California's Central Valley

    Science.gov (United States)

    Caputi, D.; Faloona, I. C.; Trousdell, J.; Conley, S. A.

    2017-12-01

    The San Joaquin valley is known for excessive air pollution, owing to local production combined with flow patterns that channel in air from the bay area, with surrounding mountains trapping the air inside. Understanding the role of boundary layer in the context of these dynamics is a particular challenge that will aid in effective air quality attainment planning. During the summers of 2015 and 2016, a Mooney aircraft operated by Scientific Aviation Inc. collected 170 hours of airborne data between Fresno and Bakersfield, CA. Combining this data with WRF forecast output, it is possible to use a simple budget technique to estimate the kinematic surface heat fluxes and thus the convective velocity scale. The 1 Hz wind measurements on the aircraft are provided by a newly developed low-cost system that utilizes the placement of dual GPS antennae on fixed positions of the airframe. Power spectra from the data indicates that the inertial subrange of turbulence is detectable from wavelengths of 150-500 m. Using Kolmogorov scaling laws, it is possible to estimate that about 20% of the total variance is not being captured by the system (at spatial scales under 150 m). Similarity relationships can then be employed to estimate the convective velocity scale as a function of sampling length, which levels off at about 22 km to a value within 5% of the estimate obtained by the budgeting method. A larger goal of this work is to connect these turbulence parameters with observations of air quality, noting that a major finding of the field campaign is that the entrainment between the polluted boundary layer and cleaner free troposphere plays a significant role in the local daytime pollutant concentration. Nighttime dynamics are being explored as well. Using a combination of 915 MHz sounder data from Visalia, ground ozone monitors, and flight data, a relationship can be seen between the nocturnal low level jet speed and ozone concentrations the following day. This suggests a

  1. Forces on stationary particles in near-bed turbulent flows

    Science.gov (United States)

    Schmeeckle, Mark W.; Nelson, Jonathan M.; Shreve, Ronald L.

    2007-06-01

    In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The

  2. The effect of fan-induced turbulence on the combustion of hydrogen-air mixtures

    International Nuclear Information System (INIS)

    Kumar, R.K.; Tamm, H.

    1984-01-01

    The effect of fan-induced turbulence on the combustion of hydrogen-air mixtures has been studied in a 2.3-m diameter sphere over a hydrogen concentration range of 4 to 42% (by volume). Two fans were used to produce the turbulence, which was measured at various lacations by hot-wire anemometry. For low hydrogen concentrations (< 7%), turbulence increases the rate and extent of combustion; for large turbulence intensities the extent of combustion approaches 100%, and combustion times are reduced by factors of 8 to 10 from those observed under quiescent conditions. At high hydrogen concentrations, the effect of turbulence on combustion time is less pronounced than at low hydrogen concentrations. Flame-generated turbulence has a significant effect on the combustion rate. (orig.)

  3. Liquid velocity in upward and downward air-water flows

    International Nuclear Information System (INIS)

    Sun Xiaodong; Paranjape, Sidharth; Kim, Seungjin; Ozar, Basar; Ishii, Mamoru

    2004-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral laser Doppler anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void-weighted area-averaged drift velocity were obtained based on the definitions

  4. Effects of traveling waves on flow separation and turbulence

    Science.gov (United States)

    Akbarzadeh, Amir Mahdi; Borazjani, Iman; scientific computing; biofluids laboratory Team

    2017-11-01

    Stable leading edge vortex (LEV) is observed in many flying, hovering and also some aquatic creatures. However, the LEV stability in aquatic animal, in contrast to hovering ones, is not well understood. Here, we study the flow over an inclined plate with an undulatory motion inspired from aquatic swimmers using our immersed boundary, large-eddy simulations (LES). The angle of attack is five degrees and Reynolds number (Re) is 20,000. The undulation is a traveling wave, which has a constant amplitude of 0.01 with respect to chord length and a different wavelength and Strouhal number (St =fA/U, f: frequency, A: amplitude, and U: free stream velocity) for each case. Over a fixed plate the LEV becomes unstable as it reaches the trailing edge and sheds to the wake, whereas over the undulating plate with St =0.2 the LEV becomes stable. The visualization of time average results shows there is a favorable pressure gradient along the tangential direction in cases the LEV becomes stable, which we explain analytically by showing the correlation between the average pressure gradient, St, and wavelength. Finally, the effects of undulatory moving walls of a channel flow on the turbulent statistics is shown. This work was partly supported by the National Science Foundation (NSF) CAREER Grant CBET 1453982, and the Center of Computational Research (CCR) of University at Buffalo.

  5. An adaptative finite element method for turbulent flow simulations

    International Nuclear Information System (INIS)

    Arnoux-Guisse, F.; Bonnin, O.; Leal de Sousa, L.; Nicolas, G.

    1995-05-01

    After outlining the space and time discretization methods used in the N3S thermal hydraulic code developed at EDF/NHL, we describe the possibilities of the peripheral version, the Adaptative Mesh, which comprises two separate parts: the error indicator computation and the development of a module subdividing elements usable by the solid dynamics code ASTER and the electromagnetism code TRIFOU also developed by R and DD. The error indicators implemented in N3S are described. They consist of a projection indicator quantifying the space error in laminar or turbulent flow calculations and a Navier-Stokes residue indicator calculated on each element. The method for subdivision of triangles into four sub-triangles and tetrahedra into eight sub-tetrahedra is then presented with its advantages and drawbacks. It is illustrated by examples showing the efficiency of the module. The last concerns the 2 D case of flow behind a backward-facing step. (authors). 9 refs., 5 figs., 1 tab

  6. Brazing retort manifold design concept may minimize air contamination and enhance uniform gas flow

    Science.gov (United States)

    Ruppe, E. P.

    1966-01-01

    Brazing retort manifold minimizes air contamination, prevents gas entrapment during purging, and provides uniform gas flow into the retort bell. The manifold is easily cleaned and turbulence within the bell is minimized because all manifold construction lies outside the main enclosure.

  7. Application of two-equation turbulence models to turbulent gas flow heated by a high heat flux

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi

    1978-01-01

    Heat transfer in heated turbulent gas flow is analyzed using two-equation turbulence models. Four kinds of two-equation models are examined; that is, k-epsilon model by Jones-Launder, k-w model by Wilcox-Traci, k-kL model by Rotta, k-ω model by Saffman-Wilcox. The results are compared with more than ten experiments by seven authors. The k-kL model proposed originally by Rotta and modified by the present author is found to give relatively the best results. It well predicts the decrease in the heat transfer coefficient found in the heated turbulent gas flow; however, it fails to predict the laminarization due to a strong heating. (author)

  8. Analysis of the flow structure of a turbulent thermal plasma jet

    International Nuclear Information System (INIS)

    Spores, R.A.

    1989-01-01

    The goal of this research project is to attain a better understanding of the fluid mechanics associated with the high temperature jet of a thermal plasma torch. The analysis of a plasma, which has the ability to vaporize anything placed inside it without proper cooling, presents a unique research challenge. Several types of non-intrusive diagnostic techniques has been used to examine the jet from different perspectives. To actually map out the mean gas velocities and turbulence intensities throughout the jet, laser Doppler anemometry has been employed. The plasma gas and entrained air him been seeded separately in order to conditionally sample the two fluids and attain information about the gas mixing process. Both radial and axial turbulence levels have been measured in order to analyze the non-isotropic nature of the jet. A parabolic numerical code has been modified and compared with the obtained experimental results. A new diagnostic technique for plasma torches, which involves the spectral analysis of voltage, optical (temperature), and acoustical (pressure) fluctuations, has been implemented. The acoustical spectrum can provide information about the existence of coherent structures in the flow while the cross correlation of the acoustical signal with the voltage fluctuations can tell one to what extent perturbations of the internal arc affect the external flow. Since temperature is a scalar that is dependent on the flow field, observing temperature fluctuations can likewise help one to understand the mechanics of the flow. Flow visualization of the plasma jet using a high speed video camera has also been undertaken in order to better understand the entrainment process

  9. Validation Plan of Turbulence Models for Internal Gas Flow Analysis in a Heated Rectangular Riser Duct

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sin-Yeob; Shin, Dong-Ho; Park, Goon-Cherl; Cho, Hyoung Kyu [Seoul National Univ., Seoul (Korea, Republic of); Kim, Chan-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    VHTR being developed at Korea Atomic Energy Research Institute adopts an air-cooled Reactor Cavity Cooling System (RCCS) incorporating rectangular riser channels to remove the afterheat emitted from the reactor vessel. Because the performance of RCCS is determined by heat removal rate through the RCCS riser, it is important to understand the heat transfer phenomena in the RCCS riser to ensure the safety of the reactor. In the mixed convection, due to the buoyance force induced by temperature and density differences, local flow structure and heat transfer mode near the heated wall have significantly dissimilar characteristics from both forced convection and free convection. In this study, benchmark calculation was conducted to reproduce the previous statements that V2F turbulence model can capture the mixed convection phenomena with the Shehata's experimental data. Then, the necessity of the model validation for the mixed convection phenomena was confirmed with the CFD analyses for the geometry of the prototype RCCS riser. For the purpose of validating the turbulence models for mixed convection phenomena in the heated rectangular riser duct, validation plan with three experimental tests was introduced. Among them, the flow visualization test facility with preserved cross-section geometry was introduced and a preliminary test result was shown.

  10. Preferential Concentration Of Solid Particles In Turbulent Horizontal Circular Pipe Flow

    Science.gov (United States)

    Kim, Jaehee; Yang, Kyung-Soo

    2017-11-01

    In particle-laden turbulent pipe flow, turbophoresis can lead to a preferential concentration of particles near the wall. To investigate this phenomenon, one-way coupled Direct Numerical Simulation (DNS) has been performed. Fully-developed turbulent pipe flow of the carrier fluid (air) is at Reτ = 200 based on the pipe radius and the mean friction velocity, whereas the Stokes numbers of the particles (solid) are St+ = 0.1 , 1 , 10 based on the mean friction velocity and the kinematic viscosity of the fluid. The computational domain for particle simulation is extended along the axial direction by duplicating the domain of the fluid simulation. By doing so, particle statistics in the spatially developing region as well as in the fully-developed region can be obtained. Accumulation of particles has been noticed at St+ = 1 and 10 mostly in the viscous sublayer, more intensive in the latter case. Compared with other authors' previous results, our results suggest that drag force on the particles should be computed by using an empirical correlation and a higher-order interpolation scheme even in a low-Re regime in order to improve the accuracy of particle simulation. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2015R1A2A2A01002981).

  11. Experimental study of particle-driven secondary flow in turbulent pipe flows

    OpenAIRE

    Belt, R.J.; Daalmans, A.C.L.M.; Portela, L.M.

    2012-01-01

    In fully developed single-phase turbulent flow in straight pipes, it is known that mean motions can occur in the plane of the pipe cross-section, when the cross-section is non-circular, or when the wall roughness is non-uniform around the circumference of a circular pipe. This phenomenon is known as secondary flow of the second kind and is associated with the anisotropy in the Reynolds stress tensor in the pipe cross-section. In this work, we show, using careful laser Doppler anemometry exper...

  12. Particles in wall-bounded turbulent flows deposition, re-suspension and agglomeration

    CERN Document Server

    Pozorski, Jacek

    2017-01-01

    The book presents an up-to-date review of turbulent two-phase flows with the dispersed phase, with an emphasis on the dynamics in the near-wall region. New insights to the flow physics are provided by direct numerical simuation and by fine experimental techniques. Also included are models of particle dynamics in wall-bounded turbulent flows, and a description of particle surface interactions including muti-layer deposition and re-suspension.

  13. Transport coefficients for laminar and turbulent flow through a four-cusp channel

    International Nuclear Information System (INIS)

    Souza Dutra, A. de; Parise, J.A.R.; Souza Mendes, P.R. de.

    1986-01-01

    The heat transfer coefficients for laminar and turbulent flow in a four-cusp channel were determined. A numerical solution was developed for laminar flow an and experimental study for turbulent flow was carried out. Systematic variations of the Reynolds number were done in the range 900-30000. The results show that the heat transfer coefficients for the four-cusp channel are much lower than the coefficients for the circular tube. (author) [pt

  14. Incompressible Turbulent Flow Simulation Using the κ-ɛ Model and Upwind Schemes

    Directory of Open Access Journals (Sweden)

    V. G. Ferreira

    2007-01-01

    Full Text Available In the computation of turbulent flows via turbulence modeling, the treatment of the convective terms is a key issue. In the present work, we present a numerical technique for simulating two-dimensional incompressible turbulent flows. In particular, the performance of the high Reynolds κ-ɛ model and a new high-order upwind scheme (adaptative QUICKEST by Kaibara et al. (2005 is assessed for 2D confined and free-surface incompressible turbulent flows. The model equations are solved with the fractional-step projection method in primitive variables. Solutions are obtained by using an adaptation of the front tracking GENSMAC (Tomé and McKee (1994 methodology for calculating fluid flows at high Reynolds numbers. The calculations are performed by using the 2D version of the Freeflow simulation system (Castello et al. (2000. A specific way of implementing wall functions is also tested and assessed. The numerical procedure is tested by solving three fluid flow problems, namely, turbulent flow over a backward-facing step, turbulent boundary layer over a flat plate under zero-pressure gradients, and a turbulent free jet impinging onto a flat surface. The numerical method is then applied to solve the flow of a horizontal jet penetrating a quiescent fluid from an entry port beneath the free surface.

  15. Effects of Schmidt number on near-wall turbulent mass transfer in pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Woo; Yang, Kyung Soo [Inha University, Incheon (Korea, Republic of)

    2014-12-15

    Large Eddy simulation (LES) of turbulent mass transfer in circular-pipe flow has been performed to investigate the characteristics of turbulent mass transfer in the near-wall region. We consider a fully-developed turbulent pipe flow with a constant wall concentration. The Reynolds number under consideration is Re{sub r} = 500 based on the friction velocity and the pipe radius, and the selected Schmidt numbers (Sc) are 0.71, 5, 10, 20 and 100. Dynamic subgrid-scale (SGS) models for the turbulent SGS stresses and turbulent mass fluxes were employed to close the governing equations. The current paper reports a comprehensive characterization of turbulent mass transfer in circular-pipe flow, focusing on its near-wall characteristics and Sc dependency. We start with mean fields by presenting mean velocity and concentration profiles, mean Sherwood numbers and mean mass transfer coefficients for the selected values of the parameters. After that, we present the characteristics of fluctuations including root-mean-square (rms) profiles of velocity, concentration, and mass transfer coefficient fluctuations. Turbulent mass fluxes and correlations between velocity and concentration fluctuations are also discussed. The near-wall behaviour of turbulent diffusivity and turbulent Schmidt number is shown, and other authors' correlations on their limiting behaviour towards the pipe wall are evaluated based on our LES results. The intermittent characteristics of turbulent mass transfer in pipe flow are depicted by probability density functions (pdf) of velocity and concentration fluctuations; joint pdfs between them are also presented. Instantaneous snapshots of velocity and concentration fluctuations are shown to supplement our discussion on the turbulence statistics. Finally, we report the results of octant analysis and budget calculation of concentration variance to clarify Sc-dependency of the correlation between near-wall turbulence structures and concentration fluctuation in

  16. Establishment of DNS database in a turbulent channel flow by large-scale simulations

    OpenAIRE

    Abe, Hiroyuki; Kawamura, Hiroshi; 阿部 浩幸; 河村 洋

    2008-01-01

    In the present study, we establish statistical DNS (Direct Numerical Simulation) database in a turbulent channel flow with passive scalar transport at high Reynolds numbers and make the data available at our web site (http://murasun.me.noda.tus.ac.jp/turbulence/). The established database is reported together with the implementation of large-scale simulations, representative DNS results and results on turbulence model testing using the DNS data.

  17. Evanescent-Wave Visualizations of the Viscous Sublayer in Turbulent Channel Flow

    Science.gov (United States)

    2015-09-02

    SECURITY CLASSIFICATION OF: The study of wall turbulence dates back more than a century. Recently, however, a number of studies suggest that the flow...in the inner region (i.e., the viscous sublayer and buffer layer) is not “universal”—and actually depends upon the specific type of wall turbulence ...Many of these new insights on wall turbulence are recent because we have only recently developed the experimental techniques, such as volumetric

  18. Effects of Schmidt number on near-wall turbulent mass transfer in pipe flow

    International Nuclear Information System (INIS)

    Kang, Chang Woo; Yang, Kyung Soo

    2014-01-01

    Large Eddy simulation (LES) of turbulent mass transfer in circular-pipe flow has been performed to investigate the characteristics of turbulent mass transfer in the near-wall region. We consider a fully-developed turbulent pipe flow with a constant wall concentration. The Reynolds number under consideration is Re r = 500 based on the friction velocity and the pipe radius, and the selected Schmidt numbers (Sc) are 0.71, 5, 10, 20 and 100. Dynamic subgrid-scale (SGS) models for the turbulent SGS stresses and turbulent mass fluxes were employed to close the governing equations. The current paper reports a comprehensive characterization of turbulent mass transfer in circular-pipe flow, focusing on its near-wall characteristics and Sc dependency. We start with mean fields by presenting mean velocity and concentration profiles, mean Sherwood numbers and mean mass transfer coefficients for the selected values of the parameters. After that, we present the characteristics of fluctuations including root-mean-square (rms) profiles of velocity, concentration, and mass transfer coefficient fluctuations. Turbulent mass fluxes and correlations between velocity and concentration fluctuations are also discussed. The near-wall behaviour of turbulent diffusivity and turbulent Schmidt number is shown, and other authors' correlations on their limiting behaviour towards the pipe wall are evaluated based on our LES results. The intermittent characteristics of turbulent mass transfer in pipe flow are depicted by probability density functions (pdf) of velocity and concentration fluctuations; joint pdfs between them are also presented. Instantaneous snapshots of velocity and concentration fluctuations are shown to supplement our discussion on the turbulence statistics. Finally, we report the results of octant analysis and budget calculation of concentration variance to clarify Sc-dependency of the correlation between near-wall turbulence structures and concentration fluctuation in the

  19. LES of turbulent jet in cross-flow: Part 1 – A numerical validation study

    DEFF Research Database (Denmark)

    Cavar, Dalibor; Meyer, Knud Erik

    2012-01-01

    The paper presents results of a LES based numerical simulation of the turbulent jet-in-cross-flow (JICF) flowfield, with Reynolds number based on cross-flow velocity and jet diameter Re=2400 and jet-to-cross-flow velocity ratio of R=3.3. The JICF flow case has been investigated in great detail...

  20. Modified distribution parameter for churn-turbulent flows in large diameter channels

    International Nuclear Information System (INIS)

    Schlegel, J.P.; Macke, C.J.; Hibiki, T.; Ishii, M.

    2013-01-01

    Highlights: • Void fraction data collected in pipe sizes up to 0.304 m using impedance void meters. • Flow conditions extend to transition between churn-turbulent and annular flow. • Flow regime identification results agree with previous studies. • A new model for the distribution parameter in churn-turbulent flow is proposed. -- Abstract: Two phase flows in large diameter channels are important in a wide range of industrial applications, but especially in analysis of nuclear reactor safety for the prediction of BWR behavior and safety analysis in PWRs. To remedy an inability of current drift-flux models to accurately predict the void fraction in churn-turbulent flows in large diameter pipes, extensive experiments have been performed in pipes with diameters of 0.152 m, 0.203 m and 0.304 m to collect area-averaged void fraction data using electrical impedance void meters. The standard deviation and skewness of the impedance meter signal have been used to characterize the flow regime and confirm previous flow regime transition results. By treating churn-turbulent flow as a transition between cap-bubbly dispersed flow and annular separated flow and using a linear ramp, the distribution parameter has been modified for churn-turbulent flow. The modified distribution parameter has been evaluated through comparison of the void fraction predicted by the drift-flux model and the measured void fraction

  1. Modified distribution parameter for churn-turbulent flows in large diameter channels

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, J.P., E-mail: jschlege@purdue.edu; Macke, C.J.; Hibiki, T.; Ishii, M.

    2013-10-15

    Highlights: • Void fraction data collected in pipe sizes up to 0.304 m using impedance void meters. • Flow conditions extend to transition between churn-turbulent and annular flow. • Flow regime identification results agree with previous studies. • A new model for the distribution parameter in churn-turbulent flow is proposed. -- Abstract: Two phase flows in large diameter channels are important in a wide range of industrial applications, but especially in analysis of nuclear reactor safety for the prediction of BWR behavior and safety analysis in PWRs. To remedy an inability of current drift-flux models to accurately predict the void fraction in churn-turbulent flows in large diameter pipes, extensive experiments have been performed in pipes with diameters of 0.152 m, 0.203 m and 0.304 m to collect area-averaged void fraction data using electrical impedance void meters. The standard deviation and skewness of the impedance meter signal have been used to characterize the flow regime and confirm previous flow regime transition results. By treating churn-turbulent flow as a transition between cap-bubbly dispersed flow and annular separated flow and using a linear ramp, the distribution parameter has been modified for churn-turbulent flow. The modified distribution parameter has been evaluated through comparison of the void fraction predicted by the drift-flux model and the measured void fraction.

  2. 40 CFR 89.414 - Air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in understated...

  3. Light particles in turbulence

    NARCIS (Netherlands)

    Nagendra Prakash, Vivek

    2013-01-01

    This thesis deals with the broad topic of particles in turbulence, which has applications in a diverse number of fields. A vast majority of fluid flows found in nature and in the industry are turbulent and contain dispersed elements. In this thesis, I have focused on light particles (air bubbles in

  4. A generalized sound extrapolation method for turbulent flows

    Science.gov (United States)

    Zhong, Siyang; Zhang, Xin

    2018-02-01

    Sound extrapolation methods are often used to compute acoustic far-field directivities using near-field flow data in aeroacoustics applications. The results may be erroneous if the volume integrals are neglected (to save computational cost), while non-acoustic fluctuations are collected on the integration surfaces. In this work, we develop a new sound extrapolation method based on an acoustic analogy using Taylor's hypothesis (Taylor 1938 Proc. R. Soc. Lon. A 164, 476-490. (doi:10.1098/rspa.1938.0032)). Typically, a convection operator is used to filter out the acoustically inefficient components in the turbulent flows, and an acoustics dominant indirect variable Dcp‧ is solved. The sound pressure p' at the far field is computed from Dcp‧ based on the asymptotic properties of the Green's function. Validations results for benchmark problems with well-defined sources match well with the exact solutions. For aeroacoustics applications: the sound predictions by the aerofoil-gust interaction are close to those by an earlier method specially developed to remove the effect of vortical fluctuations (Zhong & Zhang 2017 J. Fluid Mech. 820, 424-450. (doi:10.1017/jfm.2017.219)); for the case of vortex shedding noise from a cylinder, the off-body predictions by the proposed method match well with the on-body Ffowcs-Williams and Hawkings result; different integration surfaces yield close predictions (of both spectra and far-field directivities) for a co-flowing jet case using an established direct numerical simulation database. The results suggest that the method may be a potential candidate for sound projection in aeroacoustics applications.

  5. 3D Measurements of coupled freestream turbulence and secondary flow effects on film cooling

    Science.gov (United States)

    Ching, David S.; Xu, Haosen H. A.; Elkins, Christopher J.; Eaton, John K.

    2018-06-01

    The effect of freestream turbulence on a single round film cooling hole is examined at two turbulence levels of 5 and 8% and compared to a baseline low freestream turbulence case. The hole is inclined at 30° and has length to diameter ratio L/D=4 and unity blowing ratio. Turbulence is generated with grid upstream of the hole in the main channel. The three-dimensional, three-component mean velocity field is acquired with magnetic resonance velocimetry (MRV) and the three-dimensional temperature field is acquired with magnetic resonance thermometry (MRT). The 8% turbulence grid produces weak mean secondary flows in the mainstream (peak crossflow velocities are 7% of U_bulk) which push the jet close to the wall and significantly change the adiabatic effectiveness distribution. By contrast, the 5% grid has a simpler structure and does not produce a measurable secondary flow structure. The grid turbulence causes little change to the temperature field, indicating that the turbulence generated in the shear layers around the jet dominates the freestream turbulence. The results suggest that secondary flows induced by complex turbulence generators may have caused some of the contradictory results in previous works.

  6. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    Science.gov (United States)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  7. Pipe Flow and Wall Turbulence Using a Modified Navier-Stokes Equation

    International Nuclear Information System (INIS)

    Jirkovsky, L.; Muriel, A.

    2012-01-01

    We use a derived incompressible modified Navier-Stokes equation to model pipe flow and wall turbulence. We reproduce the observed flattened paraboloid velocity profiles of turbulence that cannot be obtained directly using standard incompressible Navier-Stokes equation. The solutions found are in harmony with multi-valued velocity fields as a definition of turbulence. Repeating the procedure for the flow of turbulent fluid between two parallel flat plates we find similar flattened velocity profiles. We extend the analysis to the turbulent flow along a single wall and compare the results with experimental data and the established controversial von Karman logarithmic law of the wall. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Numerical predictions and measurements of Reynolds normal stresses in turbulent pipe flow of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Resende, P.R. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal)]. E-mail: resende@fe.up.pt; Escudier, M.P. [Department of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GH (United Kingdom)]. E-mail: escudier@liv.ac.uk; Presti, F [Department of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GH (United Kingdom); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEM, Universidade do Minho Campus de Azurem, 4800-058 Guimaraes (Portugal)]. E-mail: fpinho@dem.uminho.pt; Cruz, D.O.A. [Departamento de Engenharia Mecanica, Universidade Federal do Para-UFPa Campus Universitario do Guama, 66075-900 Belem, Para (Brazil)]. E-mail: doac@ufpa.br

    2006-04-15

    An anisotropic low Reynolds number k-{epsilon} turbulence model has been developed and its performance compared with experimental data for fully-developed turbulent pipe flow of four different polymer solutions. Although the predictions of friction factor, mean velocity and turbulent kinetic energy show only slight improvements over those of a previous isotropic model [Cruz, D.O.A., Pinho, F.T., Resende, P.R., 2004. Modeling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J. Non-Newt. Fluid Mech. 121, 127-141], the new turbulence model is capable of predicting the enhanced anisotropy of the Reynolds normal stresses that accompanies polymer drag reduction in turbulent flow.

  9. Numerical predictions and measurements of Reynolds normal stresses in turbulent pipe flow of polymers

    International Nuclear Information System (INIS)

    Resende, P.R.; Escudier, M.P.; Presti, F; Pinho, F.T.; Cruz, D.O.A.

    2006-01-01

    An anisotropic low Reynolds number k-ε turbulence model has been developed and its performance compared with experimental data for fully-developed turbulent pipe flow of four different polymer solutions. Although the predictions of friction factor, mean velocity and turbulent kinetic energy show only slight improvements over those of a previous isotropic model [Cruz, D.O.A., Pinho, F.T., Resende, P.R., 2004. Modeling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J. Non-Newt. Fluid Mech. 121, 127-141], the new turbulence model is capable of predicting the enhanced anisotropy of the Reynolds normal stresses that accompanies polymer drag reduction in turbulent flow

  10. The flow over a thin airfoil subjected to elevated levels of freestream turbulence at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, Sridhar [University of Tuebingen, Tuebingen (Germany); Watkins, Simon; Watmuff, Jon; Massey, Kevin; Petersen, Phred; Marino, Matthew [RMIT University, Melbourne, VIC (Australia); Ravi, Anuradha [Vellore Institute of Technology, Vellore, Tamilnadu (India)

    2012-09-15

    Micro Air Vehicles (MAVs) can be difficult to control in the outdoor environment as they fly at relatively low speeds and are of low mass, yet exposed to high levels of freestream turbulence present within the Atmospheric Boundary Layer. In order to examine transient flow phenomena, two turbulence conditions of nominally the same longitudinal integral length scale (Lxx/c = 1) but with significantly different intensities (Ti = 7.2 % and 12.3 %) were generated within a wind tunnel; time-varying surface pressure measurements, smoke flow visualization, and wake velocity measurements were made on a thin flat plate airfoil. Rapid changes in oncoming flow pitch angle resulted in the shear layer to separate from the leading edge of the airfoil even at lower geometric angles of attack. At higher geometric angles of attack, massive flow separation occurred at the leading edge followed by enhanced roll up of the shear layer. This lead to the formation of large Leading Edge Vortices (LEVs) that advected at a rate much lower than the mean flow speed while imparting high pressure fluctuations over the airfoil. The rate of LEV formation was dependent on the angle of attack until 10 and it was independent of the turbulence properties tested. The fluctuations in surface pressures and consequently aerodynamic loads were considerably limited on the airfoil bottom surface due to the favorable pressure gradient. (orig.)

  11. Modeling of turbulent flows in porous media and at the interface with a free fluid medium

    International Nuclear Information System (INIS)

    Chandesris, M.

    2006-12-01

    This work deals with the numerical simulation of turbulent flows in the whole nuclear reactor core, using multi-scale approaches. First, a macroscopic turbulence model is built, based on a porous media approach, to describe the flow in the fuel assemblies part of the nuclear core. Then, we study the jump conditions that have to be applied at a free fluid/porous interface. A thorough analytical study is carried out for laminar flows. This study allows to answer some fundamental questions about the physical meaning of the jump conditions, the values of the jump parameters and the location of the interface. Using these results, jump conditions for turbulent flows are proposed. The model is then applied to the simulation of a turbulent flow in a simplified model of a reactor core. (author)

  12. Multiphase Flow Dynamics 4 Turbulence, Gas Adsorption and Release, Diesel Fuel Properties

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 4 of the successful monograh package “Multiphase Flow Dynamics”is devoted to selected Chapters of the multiphase fluid dynamics that are important for practical applications but did not find place in the previous volumes. The state of the art of the turbulence modeling in multiphase flows is presented. As introduction, some basics of the single phase boundary layer theory including some important scales and flow oscillation characteristics in pipes and rod bundles are presented. Then the scales characterizing the dispersed flow systems are presented. The description of the turbulence is provided at different level of complexity: simple algebraic models for eddy viscosity, simple algebraic models based on the Boussinesq hypothesis, modification of the boundary layer share due to modification of the bulk turbulence, modification of the boundary layer share due to nucleate boiling. The role of the following forces on the mathematical description of turbulent flows is discussed: the lift fo...

  13. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    International Nuclear Information System (INIS)

    Gilmore, Mark Allen

    2017-01-01

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB's)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB's] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  14. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-02-05

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  15. Air flow around suspended cables

    Directory of Open Access Journals (Sweden)

    Gołębiowska Irena

    2017-01-01

    Full Text Available The impact of wind on construction structures is essential issue in design and operation. In particular, the wind can cause the dengerous vibrations of slender structures with low rigidity, eg. vibrations of cables of suspension and cable-stayed bridges or high voltage transmision lines, thus understanding of wind flow around such constructions is significant. In the paper the results of the analysis of wind flow around the cables for different Reynolds number is presented. The analysed flow meets the Navier-Stokes and continuity equations. The circle and elipse section of the cable is analysed. The discusion of vorticity, drag and lift coefficients and cases due to different angle of wind flow action is presented. The boundary layer and its infuence on total flow is analysed.

  16. Reynolds number effects in a turbulent pipe flow for low to moderate Re

    NARCIS (Netherlands)

    Toonder, den J.M.J.; Nieuwstadt, F.T.M.

    1997-01-01

    We present in this paper high resolution, two-dimensional LDV measurements in a turbulent pipe flow of water over the Reynolds number range 500025000. Results for the turbulence statistics up to the fourth moment are presented, as well as power spectra in the near-wall region. These results clearly

  17. Sustained turbulence and magnetic energy in non-rotating shear flows

    DEFF Research Database (Denmark)

    Nauman, Farrukh; Blackman, Eric G.

    2017-01-01

    From numerical simulations, we show that non-rotating magnetohydrodynamic shear flows are unstable to finite amplitude velocity perturbations and become turbulent, leading to the growth and sustenance of magnetic energy, including large scale fields. This supports the concept that sustained...... magnetic energy from turbulence is independent of the driving mechanism for large enough magnetic Reynolds numbers....

  18. DNS of Turbulent Flow and Heat Transfer in a Channel with Surface Mounted Cubes

    NARCIS (Netherlands)

    Verstappen, R.W.C.P.; Velde, R.M. van der; Veldman, A.E.P.

    2000-01-01

    The turbulent flow and heat transfer in a channel with surface mounted cubical obstacles forms a generic example of a problem that occurs in many engineering applications, for instance in the design of cooling devices. We have performed a numerical simulation of it without using any turbulence

  19. DNS of turbulent flow and heat transfer in a channel with surface mounted cubes

    NARCIS (Netherlands)

    Verstappen, R.W.C.P.; Velde, R.M. van der; Veldman, A.E.P.

    2000-01-01

    The turbulent flow and heat transfer in a channel with surface mounted cubical obstacles forms a generic example of a problem that occurs in many engineering applications, for instance in the design of cooling devices. We have performed a numerical simulation of it without using any turbulence

  20. Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows

    KAUST Repository

    Sihao, L. V.; Yang, Weihua; Li, Xiangli; Li, Guohui

    2013-01-01

    A second-order moment two-phase turbulence model incorporating a particle temperature model based on the kinetic theory of granular flow is applied to investigate the effects of particles collision on separating gas–particle two-phase turbulent

  1. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, G. M.; Candy, J. [General Atomics, San Diego, California 92186 (United States); Howard, N. T. [Oak Ridge Institute for Science Education (ORISE), Oak Ridge, Tennessee 37831 (United States); Holland, C. [University of California San Diego, San Diego, California 92093 (United States)

    2016-06-15

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the threshold for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.

  2. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    International Nuclear Information System (INIS)

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    2014-01-01

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re D = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data

  3. Large Eddy Simulation of turbulence induced secondary flows in stationary and rotating straight square ducts

    Science.gov (United States)

    Sudjai, W.; Juntasaro, V.; Juttijudata, V.

    2018-01-01

    The accuracy of predicting turbulence induced secondary flows is crucially important in many industrial applications such as turbine blade internal cooling passages in a gas turbine and fuel rod bundles in a nuclear reactor. A straight square duct is popularly used to reveal the characteristic of turbulence induced secondary flows which consists of two counter rotating vortices distributed in each corner of the duct. For a rotating duct, the flow can be divided into the pressure side and the suction side. The turbulence induced secondary flows are converted to the Coriolis force driven two large circulations with a pair of additional vortices on the pressure wall due to the rotational effect. In this paper, the Large Eddy Simulation (LES) of turbulence induced secondary flows in a straight square duct is performed using the ANSYS FLUENT CFD software. A dynamic kinetic energy subgrid-scale model is used to describe the three-dimensional incompressible turbulent flows in the stationary and the rotating straight square ducts. The Reynolds number based on the friction velocity and the hydraulic diameter is 300 with the various rotation numbers for the rotating cases. The flow is assumed fully developed by imposing the constant pressure gradient in the streamwise direction. For the rotating cases, the rotational axis is placed perpendicular to the streamwise direction. The simulation results on the secondary flows and the turbulent statistics are found to be in good agreement with the available Direct Numerical Simulation (DNS) data. Finally, the details of the Coriolis effects are discussed.

  4. Two-phase wall function for modeling of turbulent boundary layer in subcooled boiling flow

    International Nuclear Information System (INIS)

    Bostjan Koncar; Borut Mavko; Yassin A Hassan

    2005-01-01

    Full text of publication follows: The heat transfer and phase-change mechanisms in the subcooled flow boiling are governed mainly by local multidimensional mechanisms near the heated wall, where bubbles are generated. The structure of such 'wall boiling flow' is inherently non-homogeneous and is further influenced by the two-phase flow turbulence, phase-change effects in the bulk, interfacial forces and bubble interactions (collisions, coalescence, break-up). In this work the effect of two-phase flow turbulence on the development of subcooled boiling flow is considered. Recently, the modeling of two-phase flow turbulence has been extensively investigated. A notable progress has been made towards deriving reliable models for description of turbulent behaviour of continuous (liquid) and dispersed phase (bubbles) in the bulk flow. However, there is a lack of investigation considering the modeling of two-phase flow boundary layer. In most Eulerian two-fluid models standard single-phase wall functions are used for description of turbulent boundary layer of continuous phase. That might be a good approximation at adiabatic flows, but their use for boundary layers with high concentration of dispersed phase is questionable. In this work, the turbulent boundary layer near the heated wall will be modeled with the so-called 'two-phase' wall function, which is based on the assumption of additional turbulence due to bubble-induced stirring in the boundary layer. In the two-phase turbulent boundary layer the wall function coefficients strongly depend on the void fraction. Moreover, in the turbulent boundary layer with nucleating bubbles, the bubble size variation also has a significant impact on the liquid phase. As a basis, the wall function of Troshko and Hassan (2001), developed for adiabatic bubbly flows will be used. The simulations will be performed by a general-purpose CFD code CFX-4.4 using additional models provided by authors. The results will be compared to the boiling

  5. NUMERICAL SIMULATION OF CAVITY FLOW AND FLOW OVER AIRCRAFT COMPARTMENT USING SEMI-EMPIRICAL TURBULENCE MODELS

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The article is devoted to the validation and application of CFD code for turbulent flows. Two-dimensional un- steady flows in the cavities and compartments and three-dimensional flow in the compartment of complex geometry have been considered. Two turbulence parameter oriented models are used.Numerical simulation of unsteady transonic flow (Mоо=0.74 in a narrow channel with a cavity inside has been conducted. The dependence of the static pressure on time at fixed points in space has been obtained. The fast Fourier trans- form has been applied for processing data of static pressure. The difference of 6-10% between the numerical and experi-mental data has been obtained.The computations of unsteady transonic cavity flow with Mach number Mоо=0.85 have been performed. Low fre- quency oscillations of the static pressure in several fixed points in space have been obtained. Power spectrum of oscilla- tions at the center of the cavity is compared with experimental data and Rossiter modes. An acceptable agreement between experimental and computed data has been achieved. The influence of geometrical factors on the frequency characteristics of the flow has been investigated. For this purpose two round flaps have been added to the cavity. The most low-frequency oscillation modes changed by the presence of the flaps. The first mode was gone, the second mode amplitude decreased and the third mode amplitude significantly decreased. The changes in height of protruding part of the geometry to the external flow have led to changes in pressure pulsation amplitude without changing the frequency. The spectral functions obtained while using the two considered models of turbulence have been compared for this case. It is found that the frequency values are only slightly different; the main difference is present at the amplitude of pulsations.The effect of deflection of flat flap on the non-stationary subsonic flow parameters in a cylindrical body with an inner

  6. Simulation of a Wall-Bounded Flow using a Hybrid LES/RAS Approach with Turbulence Recycling

    Science.gov (United States)

    Quinlan, Jesse R.; Mcdaniel, James; Baurle, Robert A.

    2012-01-01

    Simulations of a supersonic recessed-cavity flow are performed using a hybrid large-eddy/ Reynolds-averaged simulation approach utilizing an inflow turbulence recycling procedure and hybridized inviscid flux scheme. Calorically perfect air enters the three-dimensional domain at a free stream Mach number of 2.92. Simulations are performed to assess grid sensitivity of the solution, efficacy of the turbulence recycling, and effect of the shock sensor used with the hybridized inviscid flux scheme. Analysis of the turbulent boundary layer upstream of the rearward-facing step for each case indicates excellent agreement with theoretical predictions. Mean velocity and pressure results are compared to Reynolds-averaged simulations and experimental data for each case, and these comparisons indicate good agreement on the finest grid. Simulations are repeated on a coarsened grid, and results indicate strong grid density sensitivity. The effect of turbulence recycling on the solution is illustrated by performing coarse grid simulations with and without inflow turbulence recycling. Two shock sensors, one of Ducros and one of Larsson, are assessed for use with the hybridized inviscid flux reconstruction scheme.

  7. An algebraic stress/flux model for two-phase turbulent flow

    International Nuclear Information System (INIS)

    Kumar, R.

    1995-12-01

    An algebraic stress model (ASM) for turbulent Reynolds stress and a flux model for turbulent heat flux are proposed for two-phase bubbly and slug flows. These mathematical models are derived from the two-phase transport equations for Reynolds stress and turbulent heat flux, and provide C μ , a turbulent constant which defines the level of eddy viscosity, as a function of the interfacial terms. These models also include the effect of heat transfer. When the interfacial drag terms and the interfacial momentum transfer terms are absent, the model reduces to a single-phase model used in the literature

  8. Thermal Radiation Properties of Turbulent Lean Premixed Methane Air Flames

    National Research Council Canada - National Science Library

    Ji, Jun; Sivathanu, Y. R; Gore, J. P

    2000-01-01

    ... of turbulent premixed flames. Reduced cooling airflows in lean premixed combustors, miniaturization of combustors, and the possible use of radiation sensors in combustion control schemes are some of the practical reasons...

  9. Turbulent transport of toroidal angular momentum in low flow gyrokinetics

    International Nuclear Information System (INIS)

    Parra, Felix I; Catto, Peter J

    2010-01-01

    We derive a self-consistent equation for the turbulent transport of toroidal angular momentum in tokamaks in the low flow ordering that only requires solving gyrokinetic Fokker-Planck and quasineutrality equations correct to second order in an expansion on the gyroradius over scale length. We also show that according to our orderings the long wavelength toroidal rotation and the long wavelength radial electric field satisfy the neoclassical relation that gives the toroidal rotation as a function of the radial electric field and the radial gradients of pressure and temperature. Thus, the radial electric field can be solved for once the toroidal rotation is calculated from the transport of toroidal angular momentum. Unfortunately, even though this methodology only requires a gyrokinetic model correct to second order in gyroradius over scale length, current gyrokinetic simulations are only valid to first order. To overcome this difficulty, we exploit the smallish ratio B p /B, where B is the total magnetic field and B p is its poloidal component. When B p /B is small, the usual first order gyrokinetic equation provides solutions that are accurate enough to employ for our expression for the transport of toroidal angular momentum. We show that current δf and full f simulations only need small corrections to achieve this accuracy. Full f simulations, however, are still unable to determine the long wavelength, radial electric field from the quasineutrality equation.

  10. Instantaneous three-dimensional visualization of concentration distributions in turbulent flows with crossed-plane laser-induced fluorescence imaging

    Science.gov (United States)

    Hoffmann, A.; Zimmermann, F.; Scharr, H.; Krömker, S.; Schulz, C.

    2005-01-01

    A laser-based technique for measuring instantaneous three-dimensional species concentration distributions in turbulent flows is presented. The laser beam from a single laser is formed into two crossed light sheets that illuminate the area of interest. The laser-induced fluorescence (LIF) signal emitted from excited species within both planes is detected with a single camera via a mirror arrangement. Image processing enables the reconstruction of the three-dimensional data set in close proximity to the cutting line of the two light sheets. Three-dimensional intensity gradients are computed and compared to the two-dimensional projections obtained from the two directly observed planes. Volume visualization by digital image processing gives unique insight into the three-dimensional structures within the turbulent processes. We apply this technique to measurements of toluene-LIF in a turbulent, non-reactive mixing process of toluene and air and to hydroxyl (OH) LIF in a turbulent methane-air flame upon excitation at 248 nm with a tunable KrF excimer laser.

  11. Turbulence, transport, and zonal flows in the Madison symmetric torus reversed-field pinch

    Science.gov (United States)

    Williams, Z. R.; Pueschel, M. J.; Terry, P. W.; Hauff, T.

    2017-12-01

    The robustness and the effect of zonal flows in trapped electron mode (TEM) turbulence and Ion Temperature Gradient (ITG) turbulence in the reversed-field pinch (RFP) are investigated from numerical solutions of the gyrokinetic equations with and without magnetic external perturbations introduced to model tearing modes. For simulations without external magnetic field perturbations, zonal flows produce a much larger reduction of transport for the density-gradient-driven TEM turbulence than they do for the ITG turbulence. Zonal flows are studied in detail to understand the nature of their strong excitation in the RFP and to gain insight into the key differences between the TEM- and ITG-driven regimes. The zonal flow residuals are significantly larger in the RFP than in tokamak geometry due to the low safety factor. Collisionality is seen to play a significant role in the TEM zonal flow regulation through the different responses of the linear growth rate and the size of the Dimits shift to collisionality, while affecting the ITG only minimally. A secondary instability analysis reveals that the TEM turbulence drives zonal flows at a rate that is twice that of the ITG turbulence. In addition to interfering with zonal flows, the magnetic perturbations are found to obviate an energy scaling relation for fast particles.

  12. Characteristics of Air Flow through Windows

    DEFF Research Database (Denmark)

    Heiselberg, Per; Dam, Henrik; Sørensen, Lars C.

    This paper describes the first results of a series of laboratory investigations that is performed to characterise three different window types. The results show the air flow conditions for different ventilation strategies and temperature differences. For one of the windows values of the discharge...... coefficient are shown for both isothermal and non-isothermal flow conditions and the thermal comfort conditions are evaluated by measurements of velocity and temperature levels in the air flow in the occupied zone.......This paper describes the first results of a series of laboratory investigations that is performed to characterise three different window types. The results show the air flow conditions for different ventilation strategies and temperature differences. For one of the windows values of the discharge...

  13. Characteristics of coal mine ventilation air flows.

    Science.gov (United States)

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  14. Radially sheared azimuthal flows and turbulent transport in a cylindrical helicon plasma device

    International Nuclear Information System (INIS)

    Tynan, G R; Burin, M J; Holland, C; Antar, G; Diamond, P H

    2004-01-01

    A radially sheared azimuthal flow is observed in a cylindrical helicon plasma device. The shear flow is roughly azimuthally symmetric and contains both time-stationary and slowly varying components. The turbulent radial particle flux is found to peak near the density gradient maximum and vanishes at the shear layer location. The shape of the radial plasma potential profile associated with the azimuthal E x B flow is predicted accurately by theory. The existence of the mean shear flow in a plasma with finite flow damping from ion-neutral collisions and no external momentum input implies the existence of radial angular momentum transport from the turbulent Reynolds-stress

  15. Zonal Detached-Eddy Simulation of Turbulent Unsteady Flow over Iced Airfoils

    KAUST Repository

    Zhang, Yue; Habashi, Wagdi G.; Khurram, Rooh Ul Amin

    2015-01-01

    scales to the grid (resolved) scales. The stabilization terms arise naturally and are free of userdefined stability parameters. Validation of the method is accomplished via the turbulent flow over tandem cylinders. The boundary-layer separation, free

  16. A High Order Accuracy Computational Tool for Unsteady Turbulent Flows and Acoustics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this research effort is to develop a higher order unsteady turbulent flow solver based on the FDV method, and to exploit its attributes of...

  17. Turbulent Scalar Transport Model Validation for High Speed Propulsive Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort entails the validation of a RANS turbulent scalar transport model (SFM) for high speed propulsive flows, using new experimental data sets and...

  18. A dynamic globalization model for large eddy simulation of complex turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hae Cheon; Park, No Ma; Kim, Jin Seok [Seoul National Univ., Seoul (Korea, Republic of)

    2005-07-01

    A dynamic subgrid-scale model is proposed for large eddy simulation of turbulent flows in complex geometry. The eddy viscosity model by Vreman [Phys. Fluids, 16, 3670 (2004)] is considered as a base model. A priori tests with the original Vreman model show that it predicts the correct profile of subgrid-scale dissipation in turbulent channel flow but the optimal model coefficient is far from universal. Dynamic procedures of determining the model coefficient are proposed based on the 'global equilibrium' between the subgrid-scale dissipation and viscous dissipation. An important feature of the proposed procedures is that the model coefficient determined is globally constant in space but varies only in time. Large eddy simulations with the present dynamic model are conducted for forced isotropic turbulence, turbulent channel flow and flow over a sphere, showing excellent agreements with previous results.

  19. Turbulence Models: Data from Other Experiments: FAITH Hill 3-D Separated Flow

    Data.gov (United States)

    National Aeronautics and Space Administration — Exp: FAITH Hill 3-D Separated Flow. This web page provides data from experiments that may be useful for the validation of turbulence models. This resource is...

  20. Turbulent diffusion of chemically reacting flows: Theory and numerical simulations.

    Science.gov (United States)

    Elperin, T; Kleeorin, N; Liberman, M; Lipatnikov, A N; Rogachevskii, I; Yu, R

    2017-11-01

    The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014)PLEEE81539-375510.1103/PhysRevE.90.053001] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damköhler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.

  1. Numerical investigation of flow over a sphere using LES and the Spalart-Allmaras turbulence model

    International Nuclear Information System (INIS)

    Wang, Y.Q.; Jackson, P.L.; Ackerman, J.D.

    2005-01-01

    Numerical simulations of forced convection of air for flow over a sphere are presented. The primary aim is to determine if FLUENT, a commercial computational fluid dynamics software package, is capable of providing the solution for heat transfer in a three dimensional massively separating flow. Spalart-Allmaras, a one-equation turbulence model and Large Eddy Simulation (LES) are used in the present study. Simulations are performed in the range of Reynolds numbers from 10 3 to 1.5 x 10 5 with a Prandtl number of 0.71. The mean Nusselt number over the sphere predicted by both models are in good agreement with both measurements and empirical correlations. For Reynolds number of 10 4 , the mean Nusselt number over the sphere predicted by LES is 92.92 and predicted by the Spalart-Allmaras model is 94.55 on a coarse grid and 92.94 on a finer grid. The differences between the predicted values and one of the well-established empirical corrections is 0%, 1.7% and 0.02% respectively. In addition, the agreement with previous observations is reasonable for pressure coefficients and skin friction coefficients along the sphere. The present study has established that commercially-available software like FLUENT can provide a reasonable good solution of complicated flow structures, including flow with separation. (author)

  2. Numerical investigation of thermal-hydraulic performance of channel with protrusions by turbulent cross flow jet

    Science.gov (United States)

    Sahu, M. K.; Pandey, K. M.; Chatterjee, S.

    2018-05-01

    In this two dimensional numerical investigation, small rectangular channel with right angled triangular protrusions in the bottom wall of test section is considered. A slot nozzle is placed at the middle of top wall of channel which impinges air normal to the protruded surface. A duct flow and nozzle flow combined to form cross flow which is investigated for heat transfer enhancement of protruded channel. The governing equations for continuity, momentum, energy along with SST k-ω turbulence model are solved with finite volume based Computational fluid dynamics code ANSYS FLUENT 14.0. The range of duct Reynolds number considered for this analysis is 8357 to 51760. The ratios of pitch of protrusion to height of duct considered are 0.5, 0.64 and 0.82. The ratios of height of protrusion to height of duct considered are 0.14, 0.23 and 0.29. The effect of duct Reynolds number, pitch and height of protrusion on thermal-hydraulic performance is studied under cross flow condition. It is found that heat transfer rate is more at relatively larger pitch and small pressure drop is found in case of low height of protrusion.

  3. Laminar or turbulent boundary-layer flows of perfect gases or reacting gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Lewis, C. H.

    1971-01-01

    Turbulent boundary layer flows of non-reacting gases are predicted for both interal (nozzle) and external flows. Effects of favorable pressure gradients on two eddy viscosity models were studied in rocket and hypervelocity wind tunnel flows. Nozzle flows of equilibrium air with stagnation temperatures up to 10,000 K were computed. Predictions of equilibrium nitrogen flows through hypervelocity nozzles were compared with experimental data. A slender spherically blunted cone was studied at 70,000 ft altitude and 19,000 ft/sec. in the earth's atmosphere. Comparisons with available experimental data showed good agreement. A computer program was developed and fully documented during this investigation for use by interested individuals.

  4. Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces

    Science.gov (United States)

    Wang, Chi R.

    2005-01-01

    This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one

  5. The mechanism by which nonlinearity sustains turbulence in plane Couette flow

    Science.gov (United States)

    Nikolaidis, M.-A.; Farrell, B. F.; Ioannou, P. J.

    2018-04-01

    Turbulence in wall-bounded shear flow results from a synergistic interaction between linear non-normality and nonlinearity in which non-normal growth of a subset of perturbations configured to transfer energy from the externally forced component of the turbulent state to the perturbation component maintains the perturbation energy, while the subset of energy-transferring perturbations is replenished by nonlinearity. Although it is accepted that both linear non-normality mediated energy transfer from the forced component of the mean flow and nonlinear interactions among perturbations are required to maintain the turbulent state, the detailed physical mechanism by which these processes interact in maintaining turbulence has not been determined. In this work a statistical state dynamics based analysis is performed on turbulent Couette flow at R = 600 and a comparison to DNS is used to demonstrate that the perturbation component in Couette flow turbulence is replenished by a non-normality mediated parametric growth process in which the fluctuating streamwise mean flow has been adjusted to marginal Lyapunov stability. It is further shown that the alternative mechanism in which the subspace of non-normally growing perturbations is maintained directly by perturbation-perturbation nonlinearity does not contribute to maintaining the turbulent state. This work identifies parametric interaction between the fluctuating streamwise mean flow and the streamwise varying perturbations to be the mechanism of the nonlinear interaction maintaining the perturbation component of the turbulent state, and identifies the associated Lyapunov vectors with positive energetics as the structures of the perturbation subspace supporting the turbulence.

  6. RANS Modeling of Stably Stratified Turbulent Boundary Layer Flows in OpenFOAM®

    Directory of Open Access Journals (Sweden)

    Wilson Jordan M.

    2015-01-01

    Full Text Available Quantifying mixing processes relating to the transport of heat, momentum, and scalar quantities of stably stratified turbulent geophysical flows remains a substantial task. In a stably stratified flow, such as the stable atmospheric boundary layer (SABL, buoyancy forces have a significant impact on the flow characteristics. This study investigates constant and stability-dependent turbulent Prandtl number (Prt formulations linking the turbulent viscosity (νt and diffusivity (κt for modeling applications of boundary layer flows. Numerical simulations of plane Couette flow and pressure-driven channel flow are performed using the Reynolds-averaged Navier-Stokes (RANS framework with the standard k-ε turbulence model. Results are compared with DNS data to evaluate model efficacy for predicting mean velocity and density fields. In channel flow simulations, a Prandtl number formulation for wall-bounded flows is introduced to alleviate overmixing of the mean density field. This research reveals that appropriate specification of Prt can improve predictions of stably stratified turbulent boundary layer flows.

  7. Blow-out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang

    2015-07-22

    The blow-out limits of nonpremixed turbulent jet flames in cross flows were studied, especially concerning the effect of ambient pressure, by conducting experiments at atmospheric and sub-atmospheric pressures. The combined effects of air flow and pressure were investigated by a series of experiments conducted in an especially built wind tunnel in Lhasa, a city on the Tibetan plateau where the altitude is 3650 m and the atmospheric pressure condition is naturally low (64 kPa). These results were compared with results obtained from a wind tunnel at standard atmospheric pressure (100 kPa) in Hefei city (altitude 50 m). The size of the fuel nozzles used in the experiments ranged from 3 to 8 mm in diameter and propane was used as the fuel. It was found that the blow-out limit of the air speed of the cross flow first increased (“cross flow dominant” regime) and then decreased (“fuel jet dominant” regime) as the fuel jet velocity increased in both pressures; however, the blow-out limit of the air speed of the cross flow was much lower at sub-atmospheric pressure than that at standard atmospheric pressure whereas the domain of the blow-out limit curve (in a plot of the air speed of the cross flow versus the fuel jet velocity) shrank as the pressure decreased. A theoretical model was developed to characterize the blow-out limit of nonpremixed jet flames in a cross flow based on a Damköhler number, defined as the ratio between the mixing time and the characteristic reaction time. A satisfactory correlation was obtained at relative strong cross flow conditions (“cross flow dominant” regime) that included the effects of the air speed of the cross flow, fuel jet velocity, nozzle diameter and pressure.

  8. Aqueous turbulence structure immediately adjacent to the air - water interface and interfacial gas exchange

    Science.gov (United States)

    Wang, Binbin

    Air-sea interaction and the interfacial exchange of gas across the air-water interface are of great importance in coupled atmospheric-oceanic environmental systems. Aqueous turbulence structure immediately adjacent to the air-water interface is the combined result of wind, surface waves, currents and other environmental forces and plays a key role in energy budgets, gas fluxes and hence the global climate system. However, the quantification of turbulence structure sufficiently close to the air-water interface is extremely difficult. The physical relationship between interfacial gas exchange and near surface turbulence remains insufficiently investigated. This dissertation aims to measure turbulence in situ in a complex environmental forcing system on Lake Michigan and to reveal the relationship between turbulent statistics and the CO2 flux across the air-water interface. The major objective of this dissertation is to investigate the physical control of the interfacial gas exchange and to provide a universal parameterization of gas transfer velocity from environmental factors, as well as to propose a mechanistic model for the global CO2 flux that can be applied in three dimensional climate-ocean models. Firstly, this dissertation presents an advanced measurement instrument, an in situ free floating Particle Image Velocimetry (FPIV) system, designed and developed to investigate the small scale turbulence structure immediately below the air-water interface. Description of hardware components, design of the system, measurement theory, data analysis procedure and estimation of measurement error were provided. Secondly, with the FPIV system, statistics of small scale turbulence immediately below the air-water interface were investigated under a variety of environmental conditions. One dimensional wave-number spectrum and structure function sufficiently close to the water surface were examined. The vertical profiles of turbulent dissipation rate were intensively studied

  9. Large Eddy Simulations of Two-phase Turbulent Reactive Flows in IC Engines

    Science.gov (United States)

    Banaeizadeh, Araz; Schock, Harold; Jaberi, Farhad

    2008-11-01

    The two-phase filtered mass density function (FMDF) subgrid-scale (SGS) model is used for large-eddy simulation (LES) of turbulent spray combustion in internal combustion (IC) engines. The LES/FMDF is implemented via an efficient, hybrid numerical method. In this method, the filtered compressible Navier-Stokes equations in curvilinear coordinate systems are solved with a generalized, high-order, multi-block, compact differencing scheme. The spray and the FMDF are implemented with Lagrangian methods. The reliability and the consistency of the numerical methods are established for different IC engines and the complex interactions among mean and turbulent velocity fields, fuel droplets and combustion are shown to be well captured with the LES/FMDF. In both spark-ignition/direct-injection and diesel engines, the droplet size and velocity distributions are found to be modified by the unsteady, vortical motions generated by the incoming air during the intake stroke. In turn, the droplets are found to change the in-cylinder flow structure. In the spark-ignition engine, flame propagation is similar to the experiment. In the diesel engine, the maximum evaporated fuel concentration is near the cylinder wall where the flame starts, which is again consistent with the experiment.

  10. Turbulent flow over an interactive alternating land-water surface

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  11. On the modelling of turbulent heat and mass transfer for the computation of buoyancy affected flows

    International Nuclear Information System (INIS)

    Viollet, P.-L.

    1981-02-01

    The k - epsilon eddy viscosity turbulence model is applied to simple test cases of buoyant flows. Vertical as horizontal stable flows are nearly well represented by the computation, and in unstable flows the mixing is underpredicted. The general agreement is good enough for allowing application to thermal-fluid engineering problems

  12. SYMPOSIUM ON TURBULENCE AND COMBUSTION - SPECIAL SYMPOSIUM TO BRING TOGETHER TOP RESEARCHERS IN THE FIELDS OF FLUID TURBULENCE AND COMBUSTION TO PROMOTE ADVANCES IN TURBULENT, REACTING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Caughey, David

    2010-10-08

    A Symposium on Turbulence and Combustion was held at Cornell University on August 3-4, 2009. The overall goal of the Symposium was to promote future advances in the study of turbulence and combustion, through an unique forum intended to foster interactions between leading members of these two research communities. The Symposium program consisted of twelve invited lectures given by world-class experts in these fields, two poster sessions consisting of nearly 50 presentations, an open forum, and other informal activities designed to foster discussion. Topics covered in the lectures included turbulent dispersion, wall-bounded flows, mixing, finite-rate chemistry, and others, using experiment, modeling, and computations, and included perspectives from an international community of leading researchers from academia, national laboratories, and industry.

  13. Assessment of a turbulence model for numerical predictions of sheet-cavitating flows in centrifugal pumps

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Houlin; Wang, Yong; Liu, Dongxi; Yuan, Shouqi; Wang, Jian [Jiangsu University, Zhenjiang (China)

    2013-09-15

    Various approaches have been developed for numerical predictions of unsteady cavitating turbulent flows. To verify the influence of a turbulence model on the simulation of unsteady attached sheet-cavitating flows in centrifugal pumps, two modified RNG k-ε models (DCM and FBM) are implemented in ANSYS-CFX 13.0 by second development technology, so as to compare three widespread turbulence models in the same platform. The simulation has been executed and compared to experimental results for three different flow coefficients. For four operating conditions, qualitative comparisons are carried out between experimental and numerical cavitation patterns, which are visualized by a high-speed camera and depicted as isosurfaces of vapor volume fraction α{sub v} = 0.1, respectively. The comparison results indicate that, for the development of the sheet attached cavities on the suction side of the impeller blades, the numerical results with different turbulence models are very close to each other and overestimate the experiment ones slightly. However, compared to the cavitation performance experimental curves, the numerical results have obvious difference: the prediction precision with the FBM is higher than the other two turbulence models. In addition, the loading distributions around the blade section at midspan are analyzed in detail. The research results suggest that, for numerical prediction of cavitating flows in centrifugal pumps, the turbulence model has little influence on the development of cavitation bubbles, but the advanced turbulence model can significantly improve the prediction precision of head coefficients and critical cavitation numbers.

  14. Free-stream turbulence effects on the flow around an S809 wind turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Nieves, Sheilla; Maldonado, Victor; Lebron, Jose [Rensselaer Polytechnic Institute, Troy, NY (United States); Kang, Hyung-Suk [United States Naval Academy, Annapolis, MD (United States); Meneveau, Charles [Johns Hopkins Univ., Baltimore, MD (United States); Castillo, Luciano [Texas Tech Univ., Lubbock, TX (United States)

    2012-07-01

    Two-dimensional Particle Image Velocimetry (2-D PIV) measurements were performed to study the effect of free-stream turbulence on the flow around a smooth and rough surface airfoil, specifically under stall conditions. A 0.25-m chord model with an S809 profile, common for horizontal-axis wind turbine applications, was tested at a wind tunnel speed of 10 m/s, resulting in Reynolds numbers based on the chord of Re{sub c} {approx} 182,000 and turbulence intensity levels of up to 6.14%. Results indicate that when the flow is fully attached, turbulence significantly decreases aerodynamic efficiency (from L/D {approx} 4.894 to L/D {approx} 0.908). On the contrary, when the flow is mostly stalled, the effect is reversed and aerodynamic performance is slightly improved (from L/D {approx} 1.696 to L/D {approx} 1.787). Analysis of the mean flow over the suction surface shows that, contrary to what is expected, free-stream turbulence is actually advancing separation, particularly when the turbulent scales in the free-stream are of the same order as the chord. This is a result of the complex dynamics between the boundary layer scales and the free-stream turbulence length scales when relatively high levels of active-grid generated turbulence are present. (orig.)

  15. Turbulence characteristics of flow in an open channel with temporally varying mobile bedforms

    Directory of Open Access Journals (Sweden)

    Hanmaiahgari Prashanth Reddy

    2017-03-01

    Full Text Available Turbulence of flow over mobile bedforms in natural open channels is not yet clearly understood. An attempt is made in this paper to determine the effect of naturally formed mobile bedforms on velocities, turbulent intensities and turbulent stresses. Instantaneous velocities are measured using a two-dimensional particle image velocimetry (PIV to evaluate the turbulence structure of free surface flow over a fixed (immobile bed, a weakly mobile bed and a temporally varying mobile bed with different stages of bedform development. This paper documents the vertical distribution of velocity, turbulence intensities, Reynolds shear stress and higher-order moments including skewness and turbulent diffusion factors. Analysis of the velocity distributions shows a substantial decrease of velocity near the bed with increasing bedform mobility due to increased friction. A modified logarithmic law with a reduced von Kármán constant and increased velocity shift is proposed for the case of the mobile bedforms. A significant increase in the Reynolds shear stress is observed in the mobile bedforms experiments accompanied by changes over the entire flow depth compared to an immobile bed. The skewness factor distribution was found to be different in the case of the flow over the mobile bedforms. All higher-order turbulence descriptors are found to be significantly affected by the formation of temporally varying and non-equilibrium mobile bedforms. Quadrant analysis indicates that sweep and outward events are found to be dominant in strongly mobile bedforms and govern the bedform mobility.

  16. 40 CFR 91.416 - Intake air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  17. Experimental study of drop breakup in a turbulent flow; Etude experimentale de la rupture de gouttes dans un ecoulement turbulent

    Energy Technology Data Exchange (ETDEWEB)

    Galinat, S.

    2005-04-15

    This work presents the drop breakup phenomenon in a turbulent flow induced by a cross-section restriction in a pipe. A global analysis of single-drop breakup, in a finite volume downstream of the orifice, has allowed deriving statistical quantities such as the break-up probability and the daughter-drop distribution. These parameters are function of a global Weber number based on the maximal pressure drop through the orifice. At a local scale, the locations of breakup events are distributed heterogeneously and depend on the flow Reynolds number. The local hydrodynamic study in downstream of the orifice, which has been done by using Particle Image Velocimetry, reveals the specific breakup zones. Otherwise, this analysis has proved that the turbulence is the predominant external stress at the drop scale. The relation between drop deformation and the external stress along the trajectory has been simulated numerically by the response of a damped oscillator to the locally measured instantaneous turbulence forcing. The results of statistical analysis have allowed to introduce a breakup criterion, based on a unique deformation threshold value for all experiments. This multi-scale approach has been conducted to study drop breakup mechanisms in a concentrated dispersion. The breakup probability decrease with the increase of dispersed phase concentration, which influences the turbulent Weber number distribution in downstream of the orifice. (author)

  18. Studies on turbulence structure and liquid film behavior in annular two-phase flow flowing in a throat section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Miyabe, Masaya; Matsumoto, Tadayoshi; Kataoka, Isao; Ohmori, Shuichi; Mori, Michitsugu

    2004-01-01

    Experimental studies on turbulence structure and liquid film behavior in annular two-phase flow were carried out concerned with the steam injector systems for a next-generation nuclear reactor. In the steam injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design for high-performance steam injector system, it is very important to accumulate the fundamental data of thermo-hydro dynamic characteristics of annular flow in the steam injector. Especially, the turbulence modification in multi-phase flow due to the phase interaction is one of the most important phenomena and has attracted research attention. In this study, the liquid film behavior and the resultant turbulence modification due to the phase interaction were investigated. The behavior of the interfacial waves on liquid film flow such as the ripple or disturbance waves were observed to make clear the interfacial velocity and the special structure of the interfacial waves by using the high-speed video camera and the digital camera. The measurements for gas-phase velocity profiles and turbulent intensity in annular flow passing through the throat section were precisely performed to investigate quantitatively the turbulent modification in annular flow by using the constant temperature hot-wire anemometer. The measurements for liquid film thickness by the electrode needle method were also carried out. (author)

  19. LES of turbulent flow in a concentric annulus with rotating outer wall

    International Nuclear Information System (INIS)

    Hadžiabdić, M.; Hanjalić, K.; Mullyadzhanov, R.

    2013-01-01

    Highlights: • High rotation up to N = 2 dampens progressively the turbulence near the rotating outer wall. • At 2 2.8, while tending to laminarize, the flow exhibits distinct Taylor-Couette vortical rolls. -- Abstract: Fully-developed turbulent flow in a concentric annulus, r 1 /r 2 = 0.5, Re h = 12,500, with the outer wall rotating at a range of rotation rates N = U θ,wall /U b from 0.5 up to 4 is studied by large-eddy simulations. The focus is on the effects of moderate to very high rotation rates on the mean flow, turbulence statistics and eddy structure. For N up to ∼2, an increase in the rotation rate dampens progressively the turbulence near the rotating outer wall, while affecting only mildly the inner-wall region. At higher rotation rates this trend is reversed: for N = 2.8 close to the inner wall turbulence is dramatically reduced while the outer wall region remains turbulent with discernible helical vortices as the dominant turbulent structure. The turbulence parameters and eddy structures differ significantly for N = 2 and 2.8. This switch is attributed to the centrifuged turbulence (generated near the inner wall) prevailing over the axial inertial force as well as over the counteracting laminarizing effects of the rotating outer wall. At still higher rotation, N = 4, the flow gets laminarized but with distinct spiralling vortices akin to the Taylor–Couette rolls found between the two counter-rotating cylinders without axial flow, which is the limiting case when N approaches to infinity. The ratio of the centrifugal to axial inertial forces, Ta/Re 2 ∝ N 2 (where Ta is the Taylor number) is considered as a possible criterion for defining the conditions for the above regime change

  20. Dissipation, intermittency, and singularities in incompressible turbulent flows

    Science.gov (United States)

    Debue, P.; Shukla, V.; Kuzzay, D.; Faranda, D.; Saw, E.-W.; Daviaud, F.; Dubrulle, B.

    2018-05-01

    We examine the connection between the singularities or quasisingularities in the solutions of the incompressible Navier-Stokes equation (INSE) and the local energy transfer and dissipation, in order to explore in detail how the former contributes to the phenomenon of intermittency. We do so by analyzing the velocity fields (a) measured in the experiments on the turbulent von Kármán swirling flow at high Reynolds numbers and (b) obtained from the direct numerical simulations of the INSE at a moderate resolution. To compute the local interscale energy transfer and viscous dissipation in experimental and supporting numerical data, we use the weak solution formulation generalization of the Kármán-Howarth-Monin equation. In the presence of a singularity in the velocity field, this formulation yields a nonzero dissipation (inertial dissipation) in the limit of an infinite resolution. Moreover, at finite resolutions, it provides an expression for local interscale energy transfers down to the scale where the energy is dissipated by viscosity. In the presence of a quasisingularity that is regularized by viscosity, the formulation provides the contribution to the viscous dissipation due to the presence of the quasisingularity. Therefore, our formulation provides a concrete support to the general multifractal description of the intermittency. We present the maps and statistics of the interscale energy transfer and show that the extreme events of this transfer govern the intermittency corrections and are compatible with a refined similarity hypothesis based on this transfer. We characterize the probability distribution functions of these extreme events via generalized Pareto distribution analysis and find that the widths of the tails are compatible with a similarity of the second kind. Finally, we make a connection between the topological and the statistical properties of the extreme events of the interscale energy transfer field and its multifractal properties.