Aeroheating Test of CEV Entry Vehicle at Turbulent Conditions
Hollis, Brian R.; Berger, Karen T.; Horvath, Thomas J.; Coblish, Joseph J.; Norris, Joseph D.; Lillard, Randolph P.; Kirk, Ben
2008-01-01
An investigation of the aeroheating environment of the Project Orion Crew Entry Vehicle has been performed in the Arnold Engineering Development Center Tunnel 9. Data were measured on a approx. 3.5% scale model (0.1778m/7-inch diam.) of the vehicle using coaxial thermocouples in the Mach 8 and Mach 10 nozzles of Tunnel 9. Runs were performed at free stream Reynolds numbers of 1 106/ft to 20 10(exp 6)/ft in the Mach 10 nozzle and 8 10(exp 6)/ft to 48 10(exp 6)/ft in the Mach 8 nozzle. The test gas in Tunnel 9 is pure N2, which at these operating conditions remains un-dissociated and may be treated as a perfect gas. At these conditions, laminar, transitional, and turbulent flow was produced on the model at Mach 10, and transitional and turbulent conditions were produced on the model at Mach 8. The majority of runs were made on a clean, smooth-surface model configuration and a limited number of runs were made in which inserts with varying boundary-layer trips configurations were used to force the occurrence of transition. Laminar and turbulent predictions were generated for all wind tunnel test conditions and comparisons were performed with the data for the purpose of helping to define uncertainty margins for the computational method. Data from both the wind tunnel test and the computations are presented herein. Figure 1 shows a schematic of the thermocouple locations on the model and figures 2 and 3 show a photo and schematic of the AEDC Hypervelocity Tunnel 9. Figure 4 shows a typical grid used in the computations. From the comparisons shown in figures 5 through 8 it was concluded that for perfect-gas conditions, the computations could predict either fully-laminar or full-turbulent flow to within +/-10% of the experimental data. The experimental data showed that transition began on the leeside of the heatshield at a free stream Reynolds number of 9 10(exp 6)/ft in the Mach 10 nozzle and fully-developed turbulent flow was produced at 20 10(exp 6)/ft. In the Mach 8
Aeroheating Testing and Predictions for Project Orion CEV at Turbulent Conditions
Hollis, Brian R.; Berger, Karen T.; Horvath, Thomas J.; Coblish, Joseph J.; Norris, Joseph D.; Lillard, Randolph P.; Kirk, Benjamin S.
2009-01-01
An investigation of the aeroheating environment of the Project Orion Crew Exploration Vehicle was performed in the Arnold Engineering Development Center Hypervelocity Wind Tunnel No. 9 Mach 8 and Mach 10 nozzles and in the NASA Langley Research Center 20 - Inch Mach 6 Air Tunnel. Heating data were obtained using a thermocouple-instrumented approx.0.035-scale model (0.1778-m/7-inch diameter) of the flight vehicle. Runs were performed in the Tunnel 9 Mach 10 nozzle at free stream unit Reynolds numbers of 1x10(exp 6)/ft to 20x10(exp 6)/ft, in the Tunnel 9 Mach 8 nozzle at free stream unit Reynolds numbers of 8 x 10(exp 6)/ft to 48x10(exp 6)/ft, and in the 20-Inch Mach 6 Air Tunnel at free stream unit Reynolds numbers of 1x10(exp 6)/ft to 7x10(exp 6)/ft. In both facilities, enthalpy levels were low and the test gas (N2 in Tunnel 9 and air in the 20-Inch Mach 6) behaved as a perfect-gas. These test conditions produced laminar, transitional and turbulent data in the Tunnel 9 Mach 10 nozzle, transitional and turbulent data in the Tunnel 9 Mach 8 nozzle, and laminar and transitional data in the 20- Inch Mach 6 Air Tunnel. Laminar and turbulent predictions were generated for all wind tunnel test conditions and comparisons were performed with the experimental data to help define the accuracy of computational method. In general, it was found that both laminar data and predictions, and turbulent data and predictions, agreed to within less than the estimated 12% experimental uncertainty estimate. Laminar heating distributions from all three data sets were shown to correlate well and demonstrated Reynolds numbers independence when expressed in terms of the Stanton number based on adiabatic wall-recovery enthalpy. Transition onset locations on the leeside centerline were determined from the data and correlated in terms of boundary-layer parameters. Finally turbulent heating augmentation ratios were determined for several body-point locations and correlated in terms of the
Features of the Upgraded Imaging for Hypersonic Experimental Aeroheating Testing (IHEAT) Software
Mason, Michelle L.; Rufer, Shann J.
2016-01-01
The Imaging for Hypersonic Experimental Aeroheating Testing (IHEAT) software is used at the NASA Langley Research Center to analyze global aeroheating data on wind tunnel models tested in the Langley Aerothermodynamics Laboratory. One-dimensional, semi-infinite heating data derived from IHEAT are used in the design of thermal protection systems for hypersonic vehicles that are exposed to severe aeroheating loads, such as reentry vehicles during descent and landing procedures. This software program originally was written in the PV-WAVE(Registered Trademark) programming language to analyze phosphor thermography data from the two-color, relative-intensity system developed at Langley. To increase the efficiency, functionality, and reliability of IHEAT, the program was migrated to MATLAB(Registered Trademark) syntax and compiled as a stand-alone executable file labeled version 4.0. New features of IHEAT 4.0 include the options to perform diagnostic checks of the accuracy of the acquired data during a wind tunnel test, to extract data along a specified multi-segment line following a feature such as a leading edge or a streamline, and to batch process all of the temporal frame data from a wind tunnel run. Results from IHEAT 4.0 were compared on a pixel level to the output images from the legacy software to validate the program. The absolute differences between the heat transfer data output from the two programs were on the order of 10(exp -5) to 10(exp -7). IHEAT 4.0 replaces the PV-WAVE(Registered Trademark) version as the production software for aeroheating experiments conducted in the hypersonic facilities at NASA Langley.
An Upgrade of the Imaging for Hypersonic Experimental Aeroheating Testing (IHEAT) Software
Mason, Michelle L.; Rufer, Shann J.
2015-01-01
The Imaging for Hypersonic Experimental Aeroheating Testing (IHEAT) code is used at NASA Langley Research Center to analyze global aeroheating data on wind tunnel models tested in the Langley Aerothermodynamics Laboratory. One-dimensional, semi-infinite heating data derived from IHEAT are used to design thermal protection systems to mitigate the risks due to the aeroheating loads on hypersonic vehicles, such as re-entry vehicles during descent and landing procedures. This code was originally written in the PV-WAVE programming language to analyze phosphor thermography data from the two-color, relativeintensity system developed at Langley. To increase the efficiency, functionality, and reliability of IHEAT, the code was migrated to MATLAB syntax and compiled as a stand-alone executable file labeled version 4.0. New features of IHEAT 4.0 include the options to batch process all of the data from a wind tunnel run, to map the two-dimensional heating distribution to a three-dimensional computer-aided design model of the vehicle to be viewed in Tecplot, and to extract data from a segmented line that follows an interesting feature in the data. Results from IHEAT 4.0 were compared on a pixel level to the output images from the legacy code to validate the program. The differences between the two codes were on the order of 10-5 to 10-7. IHEAT 4.0 replaces the PV-WAVE version as the production code for aeroheating experiments conducted in the hypersonic facilities at NASA Langley.
Hollis, Brian R.
2009-01-01
An investigation of the aeroheating environment of the Project Orion Crew Entry Vehicle has been performed in the Langley Research Center 20-Inch Mach 6 Air Tunnel. Data were measured on a approx.3.5% scale model (0.1778-m/7-inch diameter) of the vehicle using coaxial thermocouples at free stream Reynolds numbers of 2.0 10(exp 6)/ft to 7.30 10(exp 6)/ft and computational predictions were generated for all test conditions. The primary goals of this test were to obtain convective heating data for use in assessing the accuracy of the computational technique and to validate test methodology and heating data from a test of the same wind tunnel model in the Arnold Engineering Development Center Tunnel 9. Secondary goals were to determine the extent of transitional/turbulent data which could be produced on a CEV model in this facility, either with or without boundary-layer trips, and to demonstrate continuous pitch-sweep operation in this tunnel for heat transfer testing.
Experimental Investigation of Project Orion Crew Exploration Vehicle Aeroheating in AEDC Tunnel 9
Hollis, Brian R.; Horvath, Thomas J.; Berger, Karen T.; Lillard, Randolph P.; Kirk, Benjamin S.; Coblish, Joseph J.; Norris, Joseph D.
2008-01-01
An investigation of the aeroheating environment of the Project Orion Crew Entry Vehicle has been performed in the Arnold Engineering Development Center Tunnel 9. The goals of this test were to measure turbulent heating augmentation levels on the heat shield and to obtain high-fidelity heating data for assessment of computational fluid dynamics methods. Laminar and turbulent predictions were generated for all wind tunnel test conditions and comparisons were performed with the data for the purpose of helping to define uncertainty margins for the computational method. Data from both the wind tunnel test and the computational study are presented herein.
Wind Tunnel Aero-Heating and Material Destruction Tests for Improved Debris Re-Entry Analysis
Koppenwallner, G.; Lips, T.; Alwes, D.
2009-03-01
During the S/C re-entry destruction fragments of irregular geometry are released. One finds spheres, boxes and cylinders, which may be hollow and which are flying in tumbling motion. The experimental database on such bodies is limited. Therefore heat transfer test have been conducted in the hypersonic vacuum wind tunnel V2G of DLR Göttingen. With a special model support also rotating models could be tested.Another study objective was the thermal destruction of selected materials and CFRP components under simulated re-entry heat loads. In use are solid CFRP structures, honeycombs with CFRP facesheets, or thin walled titanium tanks with external CFRP reinforcements. The destruction of multilayer structures may be completely different to solid thick CFRP. Therefore samples of 12 CFRP and CFRP honeycombs have been tested in the LBK 2 arc jet facility of DLR.
Testing a missing spectral link in turbulence
Kellay, H.; Tran, Tuan; Goldburg, W.; Goldenfeld, N.; Gioia, G.; Chakraborty, P.
2012-01-01
Although the cardinal attribute of turbulence is the velocity fluctuations, these fluctuations have been ignored in theories of the frictional drag of turbulent flows. Our goal is to test a new theory that links the frictional drag to the spectral exponent , a property of the velocity fluctuations
Turbulence Modeling Validation, Testing, and Development
Bardina, J. E.; Huang, P. G.; Coakley, T. J.
1997-01-01
The primary objective of this work is to provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results. Four popular turbulence models have been tested and validated against experimental data often turbulent flows. The models are: (1) the two-equation k-epsilon model of Wilcox, (2) the two-equation k-epsilon model of Launder and Sharma, (3) the two-equation k-omega/k-epsilon SST model of Menter, and (4) the one-equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been extensively used in model developments. The results are shown in the following four sections: Part A describes the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters, boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the performance of the models in the free-shear flows and the boundary layer flows, respectively.
Numerical test of weak turbulence theory
Payne, G. L.; Nicholson, D. R.; Shen, Mei-Mei
1989-01-01
The analytic theory of weak Langmuir turbulence is well known, but very little has previously been done to compare its predictions with numerical solutions of the basic dynamical evolution equations. In this paper, numerical solutions of the statistical weak turbulence theory are compared with numerical solutions of the Zakharov model of Langmuir turbulence, and good agreement in certain regimes of very weak field strength is found.
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data
Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.
2006-01-01
The use of multi-dimensional finite volume heat conduction techniques for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the standard one-dimensional semi-infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the NASA Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody was investigated. An array of streamwise-orientated heating striations was generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients caused by striation patterns multi-dimensional heat transfer techniques were necessary to obtain more accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates compared to 2-D analysis because it did not account for lateral heat conduction in the model.
Turbulence experiments on the PKU Plasma Test (PPT) device
Xu, Tianchao; Xiao, Chijie; Yang, Xiaoyi; Chen, Yihang; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang
2017-10-01
The PKU Plasma Test (PPT) device is a linear plasma device in Peking University, China. It has a vacuum chamber with 1000mm length and 500mm diameter. A pair of Helmholtz coils can generate toroidal magnetic field up to 2000 Gauss, and plasma was generated by a helicon source. Probes and fast camera were used to diagnose the parameters and got the turbulence spectrums, coherent structure, etc. The dynamics of turbulence, coherent structure and parameter profiles have been analyzed, and it has been found that the turbulence states are related to the equilibrium profiles; Some coherent structures exist and show strongly interactions with the background turbulences; The spatial and temporal evolutions of these coherent structures are related to the amplitude of the density gradient and electric field. These results will help on further studies of plasma transport. This work was supported by the National Natural Science Foundation of China under 11575014 and 11375053, CHINA MOST under 2012YQ030142 and ITER-CHINA program 2015GB120001.
Relevant criteria for testing the quality of turbulence models
DEFF Research Database (Denmark)
Frandsen, Sten Tronæs; Ejsing Jørgensen, Hans; Sørensen, J.D.
2007-01-01
Seeking relevant criteria for testing the quality of turbulence models, the scale of turbulence and the gust factor have been estimated from data and compared with predictions from first-order models of these two quantities. It is found that the mean of the measured length scales is approx. 10......% smaller than the IEC model, for wind turbine hub height levels. The mean is only marginally dependent on trends in time series. It is also found that the coefficient of variation of the measured length scales is about 50%. 3sec and 10sec pre-averaging of wind speed data are relevant for MW-size wind...... turbines when seeking wind characteristics that correspond to one blade and the entire rotor, respectively. For heights exceeding 50-60m the gust factor increases with wind speed. For heights larger the 60-80m, present assumptions on the value of the gust factor are significantly conservative, both for 3...
TESTING THE EFFECTS OF EXPANSION ON SOLAR WIND TURBULENCE
International Nuclear Information System (INIS)
Vech, Daniel; Chen, Christopher H K
2016-01-01
We present a multi-spacecraft approach to test the predictions of recent studies on the effect of solar wind expansion on the radial spectral, variance, and local 3D anisotropies of the turbulence. We found that on small scales (5000–10,000 km) the power levels of the B-trace structure functions do not depend on the sampling direction with respect to the radial suggesting that on this scale the effect of expansion is small possibly due to fast turbulent timescales. On larger scales (110–135 R E ), the fluctuations of the radial magnetic field component are reduced by ∼20% compared to the transverse (perpendicular to radial) ones, which could be due to expansion confining the fluctuations into the plane perpendicular to radial. For the local 3D spectral anisotropy, the B-trace structure functions showed dependence on the sampling direction with respect to radial. The anisotropy in the perpendicular plane is reduced when the increments are taken perpendicular with respect to radial, which could be an effect of expansion.
Testing a random phase approximation for bounded turbulent flow
International Nuclear Information System (INIS)
Ulitsky, M.; Clark, T.; Turner, L.
1999-01-01
Tractable implementation of a spectral closure requires that the modal representation of the energy satisfy a restricted random phase approximation (RRPA). This condition is exactly satisfied when the statistical system is homogeneous and the basis functions are Fourier modes. In this case, the ensemble average of the spectral covariance diagonalizes, i.e., left-angle c(k 1 )c(k 2 )right-angle=δ(k 1 +k 2 )left-angle c(k 1 )c(k 2 )right-angle, where c(k,t) is a Fourier coefficient in a Galerkin representation of the velocity field. However, for inhomogeneous statistical systems in which the Fourier system is inappropriate, the RRPA requires validation. We use direct numerical simulations (DNSs) of the Navier-Stokes and truncated Euler equations to test the degree to which the RRPA is satisfied when applied to a recent representation due to Turner (LANL Unclassified Report No. LA-UR-96-3257) of a bounded turbulent rectangular channel flow with free slip, stress free walls. It is shown that a complete test of the RRPA for a fully inhomogeneous DNS with N 3 grid points actually requires N 3 +1 members in the ensemble. The open-quotes randomnessclose quotes of the phase can be characterized by a probability density function (PDF) of the modulus of the normalized spectral covariance. Results reveal that for both the Navier-Stokes and Euler systems the PDF does not change in time as the turbulence decays, and that the PDF for the Euler system is virtually identical to the one produced from an ensemble of random fields. This result is consistent with the equipartition of energy for the Euler system, in which the RRPA becomes an exact result rather than an approximation as the number of realizations approaches N 3 +1. The slight differences observed between the PDF produced from the random fields and the one from the Navier-Stokes system are thus shown to be entirely a result of the presence of a finite viscosity. It is also shown that there is great variation between
Laminar and Turbulent Flow Calculations for the Hifire-5B Flight Test
2017-11-01
STATES AIR FORCE AFRL-RQ-WP-TP-2017-0172 LAMINAR AND TURBULENT FLOW CALCULATIONS FOR THE HIFIRE-5B FLIGHT TEST Roger L. Kimmel Hypersonic Sciences...LAMINAR AND TURBULENT FLOW CALCULATIONS FOR THE HIFIRE-5B FLIGHT TEST 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Clearance Date: 28 Apr 2017 14. ABSTRACT The HIFiRE-5b program launched an experimental FLight test vehicle to study laminar-turbulent transition
Inviscid/Boundary-Layer Aeroheating Approach for Integrated Vehicle Design
Lee, Esther; Wurster, Kathryn E.
2017-01-01
A typical entry vehicle design depends on the synthesis of many essential subsystems, including thermal protection system (TPS), structures, payload, avionics, and propulsion, among others. The ability to incorporate aerothermodynamic considerations and TPS design into the early design phase is crucial, as both are closely coupled to the vehicle's aerodynamics, shape and mass. In the preliminary design stage, reasonably accurate results with rapid turn-representative entry envelope was explored. Initial results suggest that for Mach numbers ranging from 9-20, a few inviscid solutions could reasonably sup- port surface heating predictions at Mach numbers variation of +/-2, altitudes variation of +/-10 to 20 kft, and angle-of-attack variation of +/- 5. Agreement with Navier-Stokes solutions was generally found to be within 10-15% for Mach number and altitude, and 20% for angle of attack. A smaller angle-of-attack increment than the 5 deg around times for parametric studies and quickly evolving configurations are necessary to steer design decisions. This investigation considers the use of an unstructured 3D inviscid code in conjunction with an integral boundary-layer method; the former providing the flow field solution and the latter the surface heating. Sensitivity studies for Mach number, angle of attack, and altitude, examine the feasibility of using this approach to populate a representative entry flight envelope based on a limited set of inviscid solutions. Each inviscid solution is used to generate surface heating over the nearby trajectory space. A subset of a considered in this study is recommended. Results of the angle-of-attack sensitivity studies show that smaller increments may be needed for better heating predictions. The approach is well suited for application to conceptual multidisciplinary design and analysis studies where transient aeroheating environments are critical for vehicle TPS and thermal design. Concurrent prediction of aeroheating
Energy Technology Data Exchange (ETDEWEB)
Mueller, C.; Kremer, H. [Ruhr-Universitaet Bochum, Lehrstuhl fuer Energieanlagentechnik, Bochum (Germany); Kilpinen, P.; Hupa, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group
1997-12-31
The detailed modelling of turbulent reactive flows with CFD-codes is a major challenge in combustion science. One method of combining highly developed turbulence models and detailed chemistry in CFD-codes is the application of reactor based turbulence chemistry interaction models. In this work the influence of different reactor concepts on methane and NO{sub x} chemistry in turbulent reactive flows was investigated. Besides the classical reactor approaches, a plug flow reactor (PFR) and a perfectly stirred reactor (PSR), the Eddy-Dissipation Combustion Model (EDX) and the Eddy Dissipation Concept (EDC) were included. Based on a detailed reaction scheme and a simplified 2-step mechanism studies were performed in a simplified computational grid consisting of 5 cells. The investigations cover a temperature range from 1273 K to 1673 K and consider fuel-rich and fuel-lean gas mixtures as well as turbulent and highly turbulent flow conditions. All test cases investigated in this study showed a strong influence of the reactor residence time on the species conversion processes. Due to this characteristic strong deviations were found for the species trends resulting from the different reactor approaches. However, this influence was only concentrated on the `near burner region` and after 4-5 cells hardly any deviation and residence time dependence could be found. The importance of the residence time dependence increased when the species conversion was accelerated as it is the case for overstoichiometric combustion conditions and increased temperatures. The study focused furthermore on the fine structure in the EDC. Unlike the classical approach this part of the cell was modelled as a PFR instead of a PSR. For high temperature conditions there was hardly any difference between both reactor types. However, decreasing the temperature led to obvious deviations. Finally, the effect of the selective species transport between the cells on the conversion process was investigated
Numerical Test of Analytical Theories for Perpendicular Diffusion in Small Kubo Number Turbulence
International Nuclear Information System (INIS)
Heusen, M.; Shalchi, A.
2017-01-01
In the literature, one can find various analytical theories for perpendicular diffusion of energetic particles interacting with magnetic turbulence. Besides quasi-linear theory, there are different versions of the nonlinear guiding center (NLGC) theory and the unified nonlinear transport (UNLT) theory. For turbulence with high Kubo numbers, such as two-dimensional turbulence or noisy reduced magnetohydrodynamic turbulence, the aforementioned nonlinear theories provide similar results. For slab and small Kubo number turbulence, however, this is not the case. In the current paper, we compare different linear and nonlinear theories with each other and test-particle simulations for a noisy slab model corresponding to small Kubo number turbulence. We show that UNLT theory agrees very well with all performed test-particle simulations. In the limit of long parallel mean free paths, the perpendicular mean free path approaches asymptotically the quasi-linear limit as predicted by the UNLT theory. For short parallel mean free paths we find a Rechester and Rosenbluth type of scaling as predicted by UNLT theory as well. The original NLGC theory disagrees with all performed simulations regardless what the parallel mean free path is. The random ballistic interpretation of the NLGC theory agrees much better with the simulations, but compared to UNLT theory the agreement is inferior. We conclude that for this type of small Kubo number turbulence, only the latter theory allows for an accurate description of perpendicular diffusion.
Numerical Test of Analytical Theories for Perpendicular Diffusion in Small Kubo Number Turbulence
Energy Technology Data Exchange (ETDEWEB)
Heusen, M.; Shalchi, A., E-mail: husseinm@myumanitoba.ca, E-mail: andreasm4@yahoo.com [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada)
2017-04-20
In the literature, one can find various analytical theories for perpendicular diffusion of energetic particles interacting with magnetic turbulence. Besides quasi-linear theory, there are different versions of the nonlinear guiding center (NLGC) theory and the unified nonlinear transport (UNLT) theory. For turbulence with high Kubo numbers, such as two-dimensional turbulence or noisy reduced magnetohydrodynamic turbulence, the aforementioned nonlinear theories provide similar results. For slab and small Kubo number turbulence, however, this is not the case. In the current paper, we compare different linear and nonlinear theories with each other and test-particle simulations for a noisy slab model corresponding to small Kubo number turbulence. We show that UNLT theory agrees very well with all performed test-particle simulations. In the limit of long parallel mean free paths, the perpendicular mean free path approaches asymptotically the quasi-linear limit as predicted by the UNLT theory. For short parallel mean free paths we find a Rechester and Rosenbluth type of scaling as predicted by UNLT theory as well. The original NLGC theory disagrees with all performed simulations regardless what the parallel mean free path is. The random ballistic interpretation of the NLGC theory agrees much better with the simulations, but compared to UNLT theory the agreement is inferior. We conclude that for this type of small Kubo number turbulence, only the latter theory allows for an accurate description of perpendicular diffusion.
Real-Time Simulation of Aeroheating of the Hyper-X Airplane
Gong, Les
2005-01-01
A capability for real-time computational simulation of aeroheating has been developed in support of the Hyper-X program, which is directed toward demonstrating the feasibility of operating an air-breathing ramjet/scramjet engine at mach 5, mach 7, and mach 10. The simulation software will serve as a valuable design tool for initial trajectory studies in which aerodynamic heating is expected to exert a major influence in the design of the Hyper-X airplane; this tool will aid in the selection of materials, sizing of structural skin thicknesses, and selection of components of a thermal-protection system (TPS) for structures that must be insulated against aeroheating.
TURBULENCE IN THE SOLAR WIND MEASURED WITH COMET TAIL TEST PARTICLES
Energy Technology Data Exchange (ETDEWEB)
DeForest, C. E.; Howard, T. A. [Southwest Research Institute, 1050 Walnut Street Suite 300, Boulder, CO 80302 (United States); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Laboratory, Newark, DE 19711 (United States); Rice, D. R. [Northwestern University, 633 Clark St., Evanston, IL 60208 (United States)
2015-10-20
By analyzing the motions of test particles observed remotely in the tail of Comet Encke, we demonstrate that the solar wind undergoes turbulent processing enroute from the Sun to the Earth and that the kinetic energy entrained in the large-scale turbulence is sufficient to explain the well-known anomalous heating of the solar wind. Using the heliospheric imaging (HI-1) camera on board NASA's STEREO-A spacecraft, we have observed an ensemble of compact features in the comet tail as they became entrained in the solar wind near 0.4 AU. We find that the features are useful as test particles, via mean-motion analysis and a forward model of pickup dynamics. Using population analysis of the ensemble's relative motion, we find a regime of random-walk diffusion in the solar wind, followed, on larger scales, by a surprising regime of semiconfinement that we attribute to turbulent eddies in the solar wind. The entrained kinetic energy of the turbulent motions represents a sufficient energy reservoir to heat the solar wind to observed temperatures at 1 AU. We determine the Lagrangian-frame diffusion coefficient in the diffusive regime, derive upper limits for the small scale coherence length of solar wind turbulence, compare our results to existing Eulerian-frame measurements, and compare the turbulent velocity with the size of the observed eddies extrapolated to 1 AU. We conclude that the slow solar wind is fully mixed by turbulence on scales corresponding to a 1–2 hr crossing time at Earth; and that solar wind variability on timescales shorter than 1–2 hr is therefore dominated by turbulent processing rather than by direct solar effects.
Relevant Criteria for Testing the Quality of Models for Turbulent Wind Speed Fluctuations
DEFF Research Database (Denmark)
Frandsen, Sten Tronæs; Ejsing Jørgensen, Hans; Sørensen, John Dalsgaard
2008-01-01
10% smaller than the IEC model for wind turbine hub height levels. The mean is only marginally dependent on trends in time series. It is also found that the coefficient of variation of the measured length scales is about 50%. 3 s and 10 s preaveraging of wind speed data are relevant for megawatt......Seeking relevant criteria for testing the quality of turbulence models, the scale of turbulence and the gust factor have been estimated from data and compared with predictions from first-order models of these two quantities. It is found that the mean of the measured length scales is approximately...
Splinter, Scott C.; Daryabeigi, Kamran; Horvath, Thomas J.; Mercer, David C.; Ghanbari, Cheryl M.; Ross, Martin N.; Tietjen, Alan; Schwartz, Richard J.
2008-01-01
The NASA Engineering and Safety Center sponsored Hypersonic Thermodynamic Infrared Measurements assessment team has a task to perform radiometric calibration and validation of land-based and airborne infrared imaging assets and tools for remote thermographic imaging. The IR assets and tools will be used for thermographic imaging of the Space Shuttle Orbiter during entry aero-heating to provide flight boundary layer transition thermography data that could be utilized for calibration and validation of empirical and theoretical aero-heating tools. A series of tests at the Sandia National Laboratories National Solar Thermal Test Facility were designed for this task where reflected solar radiation from a field of heliostats was used to heat a 4 foot by 4 foot test panel consisting of LI 900 ceramic tiles located on top of the 200 foot tall Solar Tower. The test panel provided an Orbiter-like entry temperature for the purposes of radiometric calibration and validation. The Solar Tower provided an ideal test bed for this series of radiometric calibration and validation tests because it had the potential to rapidly heat the large test panel to spatially uniform and non-uniform elevated temperatures. Also, the unsheltered-open-air environment of the Solar Tower was conducive to obtaining unobstructed radiometric data by land-based and airborne IR imaging assets. Various thermocouples installed on the test panel and an infrared imager located in close proximity to the test panel were used to obtain surface temperature measurements for evaluation and calibration of the radiometric data from the infrared imaging assets. The overall test environment, test article, test approach, and typical test results are discussed.
Control Surface and Afterbody Experimental Aeroheating for a Proposed Mars Smart Lander Aeroshell
Liechty, Derek S.; Hollis, Brian R.; Edquist, Karl T.
2002-01-01
Several configurations, having a Viking aeroshell heritage and providing lift-to-drag required for precision landing, have been considered for a proposed Mars Smart Lander. An experimental aeroheating investigation of two configurations, one having a blended tab and the other a blended shelf control surface, has been conducted at the NASA Langley Research Center in the 20-Inch Mach 6 Air Tunnel to assess heating levels on these control surfaces and their effects on afterbody heating. The proposed Mars Smart Lander concept is to be attached through its aeroshell to the main spacecraft bus, thereby producing cavities in the forebody heat shield upon separation prior to entry into the Martian atmosphere. The effects these cavities will have on the heating levels experienced by the control surface and the afterbody were also examined. The effects of Reynolds number, angle-of-attack, and cavity location on aeroheating levels and distributions were determined and are presented. At the highest angle-of-attack, blended tab heating was increased due to transitional reattachment of the separated shear layer. The placement of cavities downstream of the control surface greatly influenced aeroheating levels and distributions. Forebody heat shield cavities had no effect on afterbody heating and the presence of control surfaces decreased leeward afterbody heating slightly.
Simulation with Different Turbulence Models in an Annex 20 Benchmark Test using Star-CCM+
DEFF Research Database (Denmark)
Le Dreau, Jerome; Heiselberg, Per; Nielsen, Peter V.
The purpose of this investigation is to compare the different flow patterns obtained for the 2D isothermal test case defined in Annex 20 (1990) using different turbulence models. The different results are compared with the existing experimental data. Similar study has already been performed by Ro...... et al. (2008) using Ansys CFX 11.0. In this report, the software Star-CCM+ has been used....
EuHIT, Collaboration
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.
Alvarez, L. V.; Grams, P.
2017-12-01
We present a parallelized, three-dimensional, turbulence-resolving model using the Detached-Eddy Simulation (DES) technique, tested at the scale of the river-reach in the Colorado River. DES is a hybrid large eddy simulation (LES) and Reynolds-averaged Navier Stokes (RANS). RANS is applied to the near-bed grid cells, where grid resolution is not sufficient to fully resolve wall turbulence. LES is applied in the flow interior. We utilize the Spalart-Allmaras one equation turbulence closure with a rough wall extension. The model resolves large-scale turbulence using DES and simultaneously integrates the suspended sediment advection-diffusion equation. The Smith and McLean suspended sediment boundary condition is used to calculate the upward and downward settling of sediment fluxes in the grid cells attached to the bed. Model results compare favorably with ADCP measurements of flow taken on the Colorado River in Grand Canyon during the High Flow Experiment (HFE) of 2008. The model accurately reproduces the size and position of the major recirculation currents, and the error in velocity magnitude was found to be less than 17% or 0.22 m/s absolute error. The mean deviation of the direction of velocity with respect to the measured velocity was found to be 20 degrees. Large-scale turbulence structures with vorticity predominantly in the vertical direction are produced at the shear layer between the main channel and the separation zone. However, these structures rapidly become three-dimensional with no preferred orientation of vorticity. Cross-stream velocities, into the main recirculation zone just upstream of the point of reattachment and out of the main recirculation region just downstream of the point of separation, are highest near the bed. Lateral separation eddies are more efficient at storing and exporting sediment than previously modeled. The input of sediment to the eddy recirculation zone occurs in the interface of the eddy and main channel. Pulsation of the
International Nuclear Information System (INIS)
Gershgorin, B.; Majda, A.J.
2011-01-01
A statistically exactly solvable model for passive tracers is introduced as a test model for the authors' Nonlinear Extended Kalman Filter (NEKF) as well as other filtering algorithms. The model involves a Gaussian velocity field and a passive tracer governed by the advection-diffusion equation with an imposed mean gradient. The model has direct relevance to engineering problems such as the spread of pollutants in the air or contaminants in the water as well as climate change problems concerning the transport of greenhouse gases such as carbon dioxide with strongly intermittent probability distributions consistent with the actual observations of the atmosphere. One of the attractive properties of the model is the existence of the exact statistical solution. In particular, this unique feature of the model provides an opportunity to design and test fast and efficient algorithms for real-time data assimilation based on rigorous mathematical theory for a turbulence model problem with many active spatiotemporal scales. Here, we extensively study the performance of the NEKF which uses the exact first and second order nonlinear statistics without any approximations due to linearization. The role of partial and sparse observations, the frequency of observations and the observation noise strength in recovering the true signal, its spectrum, and fat tail probability distribution are the central issues discussed here. The results of our study provide useful guidelines for filtering realistic turbulent systems with passive tracers through partial observations.
Turbulent jet erosion of a stably stratified gas layer in a nuclear reactor test containment
Energy Technology Data Exchange (ETDEWEB)
Ishay, Liel [Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Bieder, Ulrich [Commissariat à l’énergie atomique et aux énergies alternatives, Centre de SACLAY DEN/SAC/DANS/DM2S/STMF/LMSF, F-91191 Gif-sur-Yvette (France); Ziskind, Gennady [Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Rashkovan, Alex, E-mail: rashbgu@gmail.com [Physics Department, Nuclear Research Center Negev (NRCN), PO Box 9001, Beer-Sheva 84190 (Israel)
2015-10-15
Highlights: • We model stably stratified layer erosion by vertical turbulent round jet. • Separate effect studies are performed as a platform for choosing modeling approach. • A test performed in MISTRA facility, CEA, Saclay is modeled using Fluent and Trio-U codes. • The proposed modeling approach showed good agreement with the MISTRA facility LOWMA-3 test. - Abstract: A number of integral and separate effect experiments were performed in the last two decades for validation of containment computational tools. The main goal of these benchmark experiments was to assess the ability of turbulence models and computational fluid dynamics codes to predict hydrogen concentration distribution and steam condensation rate in a nuclear reactor containment in the course of severe accidents. It appears from the published literature that the predictive capability of the existing computational tools still needs to be improved. This work examines numerically the temporal evolution of helium concentration in the experiment called LOWMA-3, performed in the MISTRA facility of CEA-Saclay, France. In the experiment, helium is used to mimic hydrogen of a real-case accident. The aim of this separate effect experiment, where steam condensation was not involved, is to predict helium concentration field. The conditions of the experiment are such that both the momentum transport and molecular diffusion contributions to the mixing process are of the same order of magnitude (Fr ∼ 1). A commercial CFD code, Fluent, and a CEA in-house code, Trio-U, are used for flow and helium concentration fields temporal evolution prediction in the present study. The preliminary separate effect studies provide guidance to an optimal modeling approach for the LOWMA-3 experiment. Temporal evolution of helium concentration in the stratification layer is shown, and a comparison to the experiment is discussed. It is shown that correct modeling of the round jet flowfield is essential for a reliable
Turbulent jet erosion of a stably stratified gas layer in a nuclear reactor test containment
International Nuclear Information System (INIS)
Ishay, Liel; Bieder, Ulrich; Ziskind, Gennady; Rashkovan, Alex
2015-01-01
Highlights: • We model stably stratified layer erosion by vertical turbulent round jet. • Separate effect studies are performed as a platform for choosing modeling approach. • A test performed in MISTRA facility, CEA, Saclay is modeled using Fluent and Trio-U codes. • The proposed modeling approach showed good agreement with the MISTRA facility LOWMA-3 test. - Abstract: A number of integral and separate effect experiments were performed in the last two decades for validation of containment computational tools. The main goal of these benchmark experiments was to assess the ability of turbulence models and computational fluid dynamics codes to predict hydrogen concentration distribution and steam condensation rate in a nuclear reactor containment in the course of severe accidents. It appears from the published literature that the predictive capability of the existing computational tools still needs to be improved. This work examines numerically the temporal evolution of helium concentration in the experiment called LOWMA-3, performed in the MISTRA facility of CEA-Saclay, France. In the experiment, helium is used to mimic hydrogen of a real-case accident. The aim of this separate effect experiment, where steam condensation was not involved, is to predict helium concentration field. The conditions of the experiment are such that both the momentum transport and molecular diffusion contributions to the mixing process are of the same order of magnitude (Fr ∼ 1). A commercial CFD code, Fluent, and a CEA in-house code, Trio-U, are used for flow and helium concentration fields temporal evolution prediction in the present study. The preliminary separate effect studies provide guidance to an optimal modeling approach for the LOWMA-3 experiment. Temporal evolution of helium concentration in the stratification layer is shown, and a comparison to the experiment is discussed. It is shown that correct modeling of the round jet flowfield is essential for a reliable
National Research Council Canada - National Science Library
Drikakis, D; Geurts, Bernard
2002-01-01
... discretization 3 A test-case: turbulent channel flow 4 Conclusions 75 75 82 93 98 4 Analysis and control of errors in the numerical simulation of turbulence Sandip Ghosal 1 Introduction 2 Source...
Test Particle Energization and the Anisotropic Effects of Dynamical MHD Turbulence
González, C. A.; Dmitruk, P.; Mininni, P. D.; Matthaeus, W. H.
2017-11-01
In this paper, we analyze the effect of dynamical three-dimensional magnetohydrodynamic (MHD) turbulence on test particle acceleration and compare how this evolving system affects particle energization by current sheet interaction, as opposed to frozen-in-time fields. To do this, we analyze the ensemble particle acceleration for static electromagnetic fields extracted from direct numerical simulations of the MHD equations, and compare it with the dynamical fields. We show that a reduction in particle acceleration in the dynamical model results from particle trapping in field lines, which forces the particles to be advected by the flow and suppresses long exposures to the strong electric field gradients that take place between structures and generate (among other effects) an efficient particle acceleration in the static case. In addition, we analyze the effect of anisotropy caused by the mean magnetic field. It is well known that for sufficiently strong external fields, the system experiences a transition toward a two-dimensional flow. This causes an increment in the size of the coherent structures, resulting in a magnetized state of the particles and a reduction in particle energization.
Observational tests of the properties of turbulence in the Very Local Interstellar Medium
Directory of Open Access Journals (Sweden)
S. R. Spangler
2010-12-01
Full Text Available The Very Local Interstellar Medium (VLISM contains clouds which consist of partially-ionized plasma. These clouds can be effectively diagnosed via high resolution optical and ultraviolet spectroscopy of the absorption lines they form in the spectra of nearby stars. Information provided by these spectroscopic measurements includes values for ξ, the root-mean-square velocity fluctuation due to turbulence in these clouds, and T, the ion temperature, which may be partially determined by dissipation of turbulence. We consider whether this turbulence resembles the extensively studied and well-diagnosed turbulence in the solar wind and solar corona. Published observations are used to determine if the velocity fluctuations are primarily transverse to a large-scale magnetic field, whether the temperature perpendicular to the large scale field is larger than that parallel to the field, and whether ions with larger Larmor radii have higher temperatures than smaller gyroradius ions. We ask if the spectroscopically-deduced parameters such as ξ and T depend on the direction on the sky. We also consider the degree to which a single temperature T and turbulence parameter ξ account for the spectral line widths of ions with a wide range of masses. A preliminary examination of the published data shows no evidence for anisotropy of the velocity fluctuations or temperature, nor Larmor radius-dependent heating. These results indicate differences between solar wind and Local Cloud turbulence. Possible physical reasons for these differences are discussed.
Palmer, Grant; Prabhu, Dinesh; Cruden, Brett A.
2013-01-01
The 2013-2022 Decaedal survey for planetary exploration has identified probe missions to Uranus and Saturn as high priorities. This work endeavors to examine the uncertainty for determining aeroheating in such entry environments. Representative entry trajectories are constructed using the TRAJ software. Flowfields at selected points on the trajectories are then computed using the Data Parallel Line Relaxation (DPLR) Computational Fluid Dynamics Code. A Monte Carlo study is performed on the DPLR input parameters to determine the uncertainty in the predicted aeroheating, and correlation coefficients are examined to identify which input parameters show the most influence on the uncertainty. A review of the present best practices for input parameters (e.g. transport coefficient and vibrational relaxation time) is also conducted. It is found that the 2(sigma) - uncertainty for heating on Uranus entry is no more than 2.1%, assuming an equilibrium catalytic wall, with the uncertainty being determined primarily by diffusion and H(sub 2) recombination rate within the boundary layer. However, if the wall is assumed to be partially or non-catalytic, this uncertainty may increase to as large as 18%. The catalytic wall model can contribute over 3x change in heat flux and a 20% variation in film coefficient. Therefore, coupled material response/fluid dynamic models are recommended for this problem. It was also found that much of this variability is artificially suppressed when a constant Schmidt number approach is implemented. Because the boundary layer is reacting, it is necessary to employ self-consistent effective binary diffusion to obtain a correct thermal transport solution. For Saturn entries, the 2(sigma) - uncertainty for convective heating was less than 3.7%. The major uncertainty driver was dependent on shock temperature/velocity, changing from boundary layer thermal conductivity to diffusivity and then to shock layer ionization rate as velocity increases. While
Structure formation in turbulent plasmas - test of nonlinear processes in plasma experiments
International Nuclear Information System (INIS)
Itoh, S.-I.; Yagi, Masatoshi; Inagaki, Shigeru
2009-01-01
Full text: Recent developments in plasma physics, either in the fusion research in a new era of ITER, or in space and in astro-physics, the world-wide and focused research has been developed on the subject of structural formation in turbulent plasma being associated with electro-magnetic field formation. Keys for the progress were a change of the physics view from the 'linear, local and deterministic' picture to the description based on 'nonlinear instability, nonlocal interaction and probabilistic excitation' for the turbulent state, and the integration of the theory-simulation-experiment. In this presentation, we first briefly summarize the theory of microscopic turbulence and mesoscale fluctuations and selection rules. In addition, the statistical formation of large-scale structure/deformation by turbulence is addressed. Then, the experimental measurements of the mesoscale structures (e.g., zonal flows, zonal fields, streamer and transport interface) and of the nonlinear interactions among them in turbulent plasmas are reported. Confirmations by, and new challenges from, the experiments are overviewed. Work supported by the Grant-in-Aid for Specially-Promoted Research (16002005). (author)
Turbulence model comparisons for a low pressure 1.5 stage test turbine
CSIR Research Space (South Africa)
Dunn, Dwain I
2009-09-01
Full Text Available In a gas turbine engine secondary flows have a detrimental effect on efficiency. The current numerical study is aimed at determining which turbulence model in a commercially available CFD code is best suited to predicting the secondary flows...
Harvey-Knowles, Jacquelyn; Faw, Meara H
2016-01-01
The Relational Turbulence Model (RTM) is a theoretical tool designed to understand how romantic partners navigate tumultuous events. In this article, we explore two RTM constructs, relational uncertainty and partner interference, in the context of romantic partners' human papillomavirus (HPV) diagnosis outcomes. We examine whether self-reported relational uncertainty and partner interference were differentially associated with a negative self-HPV diagnosis, a positive self-diagnosis, or a partner's positive diagnosis. Findings suggest that diagnosis type predicts relational uncertainty and partner interference in different ways. We also argue that partners' reported expression of affect after experiencing a relationally-relevant transition may manifest in both positive and negative ways. Our results support the contention that partners may express both positive and negative affect toward one another, particularly based on the type of HPV diagnosis outcome they receive.
International Nuclear Information System (INIS)
Thiery, Mylene; Coustols, Eric
2006-01-01
The present study deals with recent numerical results from on-going research conducted at ONERA/DMAE regarding the prediction of transonic flows, for which shock wave/boundary layer interaction is important. When this interaction is strong enough (M ≥ 1.3), shock induced oscillations (SIO) appear at the suction side of the airfoil and lead to the formation of unsteady separated areas. The main issue is then to perform unsteady computations applying appropriate turbulence modelling and relevant boundary conditions with respect to the test case. Computations were performed with the ONERA elsA software and the URANS-type approach, closure relationships being achieved from transport-equation models. Applications are provided for the OAT15A airfoil data base, well documented for unsteady CFD validation (mean and r.m.s. pressure, phase-averaged LDA data, ...). In this paper, the capabilities of turbulence models are evaluated with two 2D URANS strategies, under free-stream or confined conditions. The latter takes into account the adaptive upper and lower wind-tunnel walls. A complete 3D URANS simulation was then performed to demonstrate the real impact of all lateral wind-tunnel walls on such a flow
Energy Technology Data Exchange (ETDEWEB)
Grotjans, H.
1998-11-19
In the current Software Engineering Module (SEM-4) new physical model implementations have been tested and additional complex test cases have been investigated with the available models. For all validation test cases it has been shown that the computed results are grid independent. This has been done by systematic grid refinement studies. No grid independence has been shown so far for the Aerospatiale-A airfoil, the draft tube flow, the transonic bump flow and the impinging jet flow. Most of the main objectives of the current SEM, cf. Chapter 1, are fulfilled. These are the verification of the alternative pressure-strain term (SSG-model), the implementation of a swirl correction for the standard-{kappa}-{epsilon} turbulence model and the assembling of additional test cases. However, few results are available so far for the industrial test cases. These have to be provided in the remaining time of this project. The implementation of the Low-Reynolds model has not been completed in this SEM as the other topics were preferred for completion. Additionally to the planned items two models have been implemented and tested. These are the wall distance equation, which is considered to give an important part of a low-Reynolds model implementation, and the {kappa}-{omega} turbulence model. (orig.)
Direct test of a nonlinear constitutive equation for simple turbulent shear flows using DNS data
Schmitt, François G.
2007-10-01
Several nonlinear constitutive equations have been proposed to overcome the limitations of the linear eddy-viscosity models to describe complex turbulent flows. These nonlinear equations have often been compared to experimental data through the outputs of numerical models. Here we perform a priori analysis of nonlinear eddy-viscosity models using direct numerical simulation (DNS) of simple shear flows. In this paper, the constitutive equation is directly checked using a tensor projection which involves several invariants of the flow. This provides a 3 terms development which is exact for 2D flows, and a best approximation for 3D flows. We provide the quadratic nonlinear constitutive equation for the near-wall region of simple shear flows using DNS data, and estimate their coefficients. We show that these coefficients have several common properties for the different simple shear flow databases considered. We also show that in the central region of pipe flows, where the shear rate is very small, the coefficients of the constitutive equation diverge, indicating the failure of this representation for vanishing shears.
Huang, J.; Bou-Zeid, E.; Golaz, J.
2011-12-01
Parameterization of the stably-stratified atmospheric boundary-layer is of crucial importance to different aspects of numerical weather prediction at regional scales and climate modeling at global scales, such as land-surface temperature forecasts, fog and frost prediction, and polar climate. It is well-known that most operational climate models require excessive turbulence mixing of the stable boundary-layer to prevent decoupling of the atmospheric component from the land component under strong stability, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. In this study we develop and test a general turbulence mixing model of the stable boundary-layer which works under different stabilities and for steady as well as unsteady conditions. A-priori large-eddy simulation (LES) tests are presented to motivate and verify the new parameterization. Subsequently, an assessment of this model using the GFDL single-column model (SCM) is performed. Idealized test cases including continuously varying stability, as well as stability discontinuity, are used to test the new SCM against LES results. A good match of mean and flux profiles is found when the new parameterization is used, while other traditional first-order turbulence models using the concept of stability function perform poorly. SCM spatial resolution is also found to have little impact on the performance of the new turbulence closure, but temporal resolution is important and a numerical stability criterion based on the model time step is presented.
Directory of Open Access Journals (Sweden)
J. Bartl
2017-02-01
Full Text Available This is a summary of the results of the fourth blind test workshop that was held in Trondheim in October 2015. Herein, computational predictions on the performance of two in-line model wind turbines as well as the mean and turbulent wake flow are compared to experimental data measured at the wind tunnel of the Norwegian University of Science and Technology (NTNU. A detailed description of the model geometry, the wind tunnel boundary conditions and the test case specifications was published before the workshop. Expert groups within computational fluid dynamics (CFD were invited to submit predictions on wind turbine performance and wake flow without knowing the experimental results at the outset. The focus of this blind test comparison is to examine the model turbines' performance and wake development with nine rotor diameters downstream at three different turbulent inflow conditions. Aside from a spatially uniform inflow field of very low-turbulence intensity (TI = 0.23 % and high-turbulence intensity (TI = 10.0 %, the turbines are exposed to a grid-generated highly turbulent shear flow (TI = 10.1 %.Five different research groups contributed their predictions using a variety of simulation models, ranging from fully resolved Reynolds-averaged Navier–Stokes (RANS models to large eddy simulations (LESs. For the three inlet conditions, the power and the thrust force of the upstream turbine is predicted fairly well by most models, while the predictions of the downstream turbine's performance show a significantly higher scatter. Comparing the mean velocity profiles in the wake, most models approximate the mean velocity deficit level sufficiently well. However, larger variations between the models for higher downstream positions are observed. Prediction of the turbulence kinetic energy in the wake is observed to be very challenging. Both the LES model and the IDDES (improved delayed detached eddy simulation model, however
International Nuclear Information System (INIS)
Horton, W.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
CERN. Geneva. Audiovisual Unit
2005-01-01
Understanding turbulence is vital in astrophysics, geophysics and many engineering applications, with thermal convection playing a central role. I shall describe progress that has recently been made in understanding this ubiquitous phenomenon by making controlled experiments using low-temperature helium, and a brief account of the frontier topic of superfluid turbulence will also be given. CERN might be able to play a unique role in experiments to probe these two problems.
Derkach, Ivan D.; Peuntinger, Christian; Ruppert, László; Heim, Bettina; Gunthner, Kevin; Usenko, Vladyslav C.; Elser, Dominique; Marquardt, Christoph; Filip, Radim; Leuchs, Gerd
2016-10-01
Continuous-variable quantum key distribution is a practical application of quantum information theory that is aimed at generation of secret cryptographic key between two remote trusted parties and that uses multi-photon quantum states as carriers of key bits. Remote parties share the secret key via a quantum channel, that presumably is under control of of an eavesdropper, and which properties must be taken into account in the security analysis. Well-studied fiber-optical quantum channels commonly possess stable transmittance and low noise levels, while free-space channels represent a simpler, less demanding and more flexible alternative, but suffer from atmospheric effects such as turbulence that in particular causes a non-uniform transmittance distribution referred to as fading. Nonetheless free-space channels, providing an unobstructed line-of-sight, are more apt for short, mid-range and potentially long-range (using satellites) communication and will play an important role in the future development and implementation of QKD networks. It was previously theoretically shown that coherent-state CV QKD should be in principle possible to implement over a free-space fading channel, but strong transmittance fluctuations result in the significant modulation-dependent channel excess noise. In this regime the post-selection of highly transmitting sub-channels may be needed, which can even restore the security of the protocol in the strongly turbulent channels. We now report the first proof-of-principle experimental test of coherent state CV QKD protocol using different levels Gaussian modulation over a mid-range (1.6-kilometer long) free-space atmospheric quantum channel. The transmittance of the link was characterized using intensity measurements for the reference but channel estimation using the modulated coherent states was also studied. We consider security against Gaussian collective attacks, that were shown to be optimal against CV QKD protocols . We assumed a
Theiss, Jennifer A.; Knobloch, Leanne K.; Checton, Maria G.; Magsamen-Conrad, Kate
2009-01-01
We employed the relational turbulence model to identify (a) relationship characteristics associated with people's appraisals of hurtful messages, and (b) features of hurtful episodes and relationship characteristics that correspond with the directness of communication about hurt. We conducted a study in which 135 dating couples reported on their…
Tchen, C. M.
1986-01-01
Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.
International Nuclear Information System (INIS)
Laurence, D.
1997-01-01
This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-ε two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the 'standard' (R ij -ε) Reynolds tensions transport model and introduces more recent models called 'feasible'. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author)
Celik, Atac; Ozturk, Ahmet; Ozbek, Kerem; Kadi, Hasan; Koc, Fatih; Ceyhan, Koksal; Erkorkmaz, Unal
2011-12-01
ST segment depression without angina during an exercise stress test causes diagnostic problems, particularly in non-diabetic patients. Heart rate variability (HRV) and heart rate turbulence (HRT) are used to evaluate the changes in cardiac autonomic functions and are also both decreased in patients with coronary artery disease. The aim of this study was determine the values of HRV and HRT that discriminate true coronary artery disease from false positive stress test results. Ninety non-diabetic patients who underwent diagnostic coronary angiography (CA) due to suspected coronary artery disease after ST segment depression without angina during an exercise stress test were enrolled in the study. Prior to CA, 24 hour ambulatory electrocardiogram recordings were taken and HRV and HRT parameters were calculated. Patients were divided into three groups according to the severity of their coronary lesions: (group 1 normal, group 2 non-obstructive and group 3 obstructive. There were no differences among the groups with regards to age, sex, medical history, medications, systolic and diastolic blood pressures, body mass index, fasting glucose, anemia and thyroid status, lipid profile and creatinine clearance. HRV parameters and turbulence slope (TS) were significantly lower while turbulence onset (TO) was significantly higher in group 3 than groups 1 and 2. According to the cut-off values calculated using ROC analysis, SDNN≤69.63 msec, TO > 0.14%, and TS≤2.78 msec/RR have high diagnostic accuracy for predicting obstructive coronary artery disease. HRV and HRT parameters may provide additional information for discriminating between patients who do and do not truly need CA.
DEFF Research Database (Denmark)
Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens
2011-01-01
term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence...
Energy Technology Data Exchange (ETDEWEB)
Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.
Anaïs Schaeffer
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed. The last day of data collection, tired but satisfied after seven intense days of measurements. Around the cryostat, from left to right: Philippe-E. Roche, Éléonore Rusaouen (CNRS), Olivier Pirotte, Jean-Marc Quetsch (CERN), Nicolas Friedlin (CERN), Vladislav Benda (CERN). Not in the photo: Laurent Le Mao (CERN), Jean-Marc Debernard (CERN), Jean-Paul Lamboy (CERN), Nicolas Guillotin (CERN), Benoit Chabaud (Grenoble Uni), and Gregory Garde (CNRS). CERN has a unique cryogenic facility in hall SM18, consisting of 21 liquid-helium-cooled test stations. While this equipment was, of course, designed for testing parts of CERN's acce...
Effect of turbulent collisions on diffusion in stationary plasma turbulence
International Nuclear Information System (INIS)
Xia, H.; Ishihara, O.
1990-01-01
Recently the velocity diffusion process was studied by the generalized Langevin equation derived by the projection operator method. The further study shows that the retarded frictional function plays an important role in suppressing particle diffusion in the velocity space in stronger turbulence as much as the resonance broadening effect. The retarded frictional effect, produced by the effective collisions due to the plasma turbulence is assumed to be a Gaussian, but non-Markovian and non-wide-sense stationary process. The relations between the proposed formulation and the extended resonance broadening theory is discussed. The authors also carry out test particle numerical experiment for Langmuir turbulence to test the theories. In a stronger turbulence a deviation of the diffusion rate from the one predicted by both the quasilinear and the extended resonance theories has been observed and is explained qualitatively by the present formulation
Graphical Turbulence Guidance - Composite
National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...
Magnetohydrodynamic Turbulence
Montgomery, David C.
2004-01-01
Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.
Turbulence modification and multiphase turbulence transport modeling
International Nuclear Information System (INIS)
Besnard, D.C.; Kataoka, I.; Serizawa, A.
1991-01-01
It is shown here that in the derivation of turbulence transport models for multiphase flows, terms naturally appear that can be interpreted as related to turbulence modification of one field by the other. We obtain two such terms, one suggesting turbulence enhancement due to instabilities in two-phase flow, the second one showing turbulence damping due to the presence of the other field, both in gas-particle and gas-liquid cases
Numerical Study of a Convective Turbulence Encounter
Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.
2002-01-01
A numerical simulation of a convective turbulence event is investigated and compared with observational data. The specific case was encountered during one of NASA's flight tests and was characterized by severe turbulence. The event was associated with overshooting convective turrets that contained low to moderate radar reflectivity. Model comparisons with observations are quite favorable. Turbulence hazard metrics are proposed and applied to the numerical data set. Issues such as adequate grid size are examined.
Statistical turbulence theory and turbulence phenomenology
Herring, J. R.
1973-01-01
The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.
Quantify the complexity of turbulence
Tao, Xingtian; Wu, Huixuan
2017-11-01
Many researchers have used Reynolds stress, power spectrum and Shannon entropy to characterize a turbulent flow, but few of them have measured the complexity of turbulence. Yet as this study shows, conventional turbulence statistics and Shannon entropy have limits when quantifying the flow complexity. Thus, it is necessary to introduce new complexity measures- such as topology complexity and excess information-to describe turbulence. Our test flow is a classic turbulent cylinder wake at Reynolds number 8100. Along the stream-wise direction, the flow becomes more isotropic and the magnitudes of normal Reynolds stresses decrease monotonically. These seem to indicate the flow dynamics becomes simpler downstream. However, the Shannon entropy keeps increasing along the flow direction and the dynamics seems to be more complex, because the large-scale vortices cascade to small eddies, the flow is less correlated and more unpredictable. In fact, these two contradictory observations partially describe the complexity of a turbulent wake. Our measurements (up to 40 diameters downstream the cylinder) show that the flow's degree-of-complexity actually increases firstly and then becomes a constant (or drops slightly) along the stream-wise direction. University of Kansas General Research Fund.
A near-wall turbulence model and its application to fully developed turbulent channel and pipe flows
Kim, S.-W.
1988-01-01
A near wall turbulence model and its incorporation into a multiple-time-scale turbulence model are presented. In the method, the conservation of mass, momentum, and the turbulent kinetic energy equations are integrated up to the wall; and the energy transfer rate and the dissipation rate inside the near wall layer are obtained from algebraic equations. The algebraic equations for the energy transfer rate and the dissipation rate inside the near wall layer were obtained from a k-equation turbulence model and the near wall analysis. A fully developed turbulent channel flow and fully developed turbulent pipe flows were solved using a finite element method to test the predictive capability of the turbulence model. The computational results compared favorably with experimental data. It is also shown that the present turbulence model could resolve the over shoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.
High Reynolds Number Turbulence
National Research Council Canada - National Science Library
Smits, Alexander J
2007-01-01
The objectives of the grant were to provide a systematic study to fill the gap between existing research on low Reynolds number turbulent flows to the kinds of turbulent flows encountered on full-scale vehicles...
Clumps in drift wave turbulence
DEFF Research Database (Denmark)
Pecseli, H. L.; Mikkelsen, Torben
1986-01-01
In a statistical analysis pair correlation of particles is eventually destroyed by small scale fluctuations giving rise to relative particle diffusion. However, in any one given realization of the statistical ensemble particles may remain correlated in certain regions of space. A perfectly frozen......, two-dimensional random flow serves as a particularly simple illustration. For this case particles can be trapped for all times in a local vortex (macro-clump). A small test-cloud of particles (micro-clump) chosen arbitrarily in a realization will on the other hand expand on average. A formulation...... is proposed in terms of conditional eddies, in order to discriminate turbulent flows where macro-clumps may be observed. The analysis is illustrated by results from experimental investigations of strongly turbulent, resistive drift-wave fluctuations. The related problem for electrostatic turbulence...
DEFF Research Database (Denmark)
Brand, Arno J.; Peinke, Joachim; Mann, Jakob
2011-01-01
The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....
Numerical Simulation of a Convective Turbulence Encounter
Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.
2002-01-01
A numerical simulation of a convective turbulence event is investigated and compared with observational data. The numerical results show severe turbulence of similar scale and intensity to that encountered during the test flight. This turbulence is associated with buoyant plumes that penetrate the upper-level thunderstorm outflow. The simulated radar reflectivity compares well with that obtained from the aircraft's onboard radar. Resolved scales of motion as small as 50 m are needed in order to accurately diagnose aircraft normal load accelerations. Given this requirement, realistic turbulence fields may be created by merging subgrid-scales of turbulence to a convective-cloud simulation. A hazard algorithm for use with model data sets is demonstrated. The algorithm diagnoses the RMS normal loads from second moments of the vertical velocity field and is independent of aircraft motion.
Progress in turbulence research
International Nuclear Information System (INIS)
Bradshaw, P.
1990-01-01
Recent developments in experiments and eddy simulations, as an introduction to a discussion of turbulence modeling for engineers is reviewed. The most important advances in the last decade rely on computers: microcomputers to control laboratory experiments, especially for multidimensional imaging, and supercomputers to simulate turbulence. These basic studies in turbulence research are leading to genuine breakthroughs in prediction methods for engineers and earth scientists. The three main branches of turbulence research: experiments, simulations (numerically-accurate three-dimensional, time-dependent solutions of the Navier-Stokes equations, with any empiricism confined to the smallest eddies), and modeling (empirical closure of time-averaged equations for turbulent flow) are discussed. 33 refs
Magnetohydrodynamic turbulence model
Hammer, James
2005-10-01
K-epsilon models find wide application as approximate models of fluid turbulence. The models couple equations for the turbulent kinetic energy and dissipation rate to the usual fluid equations, where the turbulence is driven by Reynolds stress or buoyancy source terms. We generalize to the case with magnetic forces in a Z-pinch geometry (azimuthal fields), using simple energy arguments to derive the turbulent source terms. The field is presumed strong enough that 3 dimensional twisting or bending of the field can be ignored, i.e. the flow is of the interchange type. The generalized source terms show the familiar correspondence between magnetic curvature and acceleration as drive terms for Rayleigh-Taylor and sausage instability. The source terms lead naturally to a modification of Ohm's law including a turbulent electric field that allows magnetic field to diffuse through material. The turbulent magnetic diffusion parallels a corresponding ohmic heating term in the equation for the turbulent kinetic energy.
Homogeneous turbulence dynamics
Sagaut, Pierre
2018-01-01
This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obta...
Interdisciplinary aspects of turbulence
Kupka, Friedrich
2008-01-01
What do combustion engines, fusion reactors, weather forecast, ocean flows, our sun, and stellar explosions in outer space have in common? Of course, the physics and the length and time scales are vastly different in all cases, but it is also well known that in all of them, on some relevant length scales, the material flows that govern the dynamical and/or secular evolution of the systems are chaotic and often unpredictable: they are said to be turbulent. The interdisciplinary aspects of turbulence are brought together in this volume containing chapters written by experts from very different fields, including geophysics, astrophysics, and engineering. It covers several subjects on which considerable progress was made during the last decades, from questions concerning the very nature of turbulence to some practical applications. These subjects include: a basic introduction into turbulence, statistical mechanics and nonlinear dynamics, turbulent convection in stars, atmospheric turbulence in the context of nume...
New perspectives on superparameterization for geophysical turbulence
International Nuclear Information System (INIS)
Majda, Andrew J.; Grooms, Ian
2014-01-01
This is a research expository paper regarding superparameterization, a class of multi-scale numerical methods designed to cope with the intermittent multi-scale effects of inhomogeneous geophysical turbulence where energy often inverse-cascades from the unresolved scales to the large scales through the effects of waves, jets, vortices, and latent heat release from moist processes. Original as well as sparse space–time superparameterization algorithms are discussed for the important case of moist atmospheric convection including the role of multi-scale asymptotic methods in providing self-consistent constraints on superparameterization algorithms and related deterministic and stochastic multi-cloud parameterizations. Test models for the statistical numerical analysis of superparameterization algorithms are discussed both to elucidate the performance of the basic algorithms and to test their potential role in efficient multi-scale data assimilation. The very recent development of grid-free seamless stochastic superparameterization methods for geophysical turbulence appropriate for “eddy-permitting” mesoscale ocean turbulence is presented here including a general formulation and illustrative applications to two-layer quasigeostrophic turbulence, and another difficult test case involving one-dimensional models of dispersive wave turbulence. This last test case has randomly generated solitons as coherent structures which collapse and radiate wave energy back to the larger scales, resulting in strong direct and inverse turbulent energy cascades
Studying Magnetohydrodynamic Turbulence with Synchrotron Polarization Dispersion
Zhang, Jian-Fu; Lazarian, Alex; Lee, Hyeseung; Cho, Jungyeon
2016-01-01
We test a new technique of studying magnetohydrodynamic (MHD) turbulence suggested by Lazarian \\& Pogosyan, using synthetic synchrotron polarization observations. This paper focuses on a one-point statistics, which is termed the polarization frequency analysis, that is characterized by the variance of polarized emission as a function of the square of wavelengths along a single line of sight. We adopt a ratio $\\eta$ of the standard deviation of the line-of-sight turbulent magnetic field to the...
Transition and turbulence (hydrodynamic visualizations)
Werle, Henri
The very extensive Reynolds number domain (10 to the 4th power less than or equal to Re sub L greater than or equal to 10 to the 6th power) of the TH2 water tunnel at Chatillon, allowed for laminar-turbulent transition phenomena to be studied systematically by visualizations and with methods previously developed in the TH1 water tunnel. These tests concern a wide variety of models including, Flate plate type models (smooth or grooved, with curved afterbody or right base), cylindrical pod type models (smooth or grooved, with curved afterbody or plane base), and models of different shapes (recall). The purpose of these tests is to provide a visualization of these transition and turbulence phenomena in order to better understand the phenomena.
PDF Modeling of Turbulent Combustion
National Research Council Canada - National Science Library
Pope, Stephen B
2006-01-01
.... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...
Nagendra Prakash, Vivek
2013-01-01
This thesis deals with the broad topic of particles in turbulence, which has applications in a diverse number of fields. A vast majority of fluid flows found in nature and in the industry are turbulent and contain dispersed elements. In this thesis, I have focused on light particles (air bubbles in
Dynamic paradigm of turbulence
International Nuclear Information System (INIS)
Mukhamedov, Alfred M.
2006-01-01
In this paper a dynamic paradigm of turbulence is proposed. The basic idea consists in the novel definition of chaotic structure given with the help of Pfaff system of PDE associated with the turbulent dynamics. A methodological analysis of the new and the former paradigm is produced
An implicit Navier-Stokes code for turbulent flow modeling
Huang, P. G.; Coakley, T. J.
1992-01-01
This paper presents a numerical approach to calculating turbulent flows employing advanced turbulence models. The main features include a line-by-line Gauss-Seidel algorithm using Roe's approximate Riemann solver, TVD numerical schemes, implicit boundary conditions and a decoupled turbulence-model solver. Based on the problems tested so far, the method has consistently demonstrated its ability in offering accuracy, boundedness and a fast rate of convergence to steady-state solution.
Phase space diffusion in turbulent plasmas
DEFF Research Database (Denmark)
Pécseli, Hans
1990-01-01
Turbulent diffusion of charged test particles in electrostatic plasma turbulence is reviewed. Two different types of test particles can be distinguished. First passive particles which are subject to the fluctuating electric fields without themselves contributing to the local space charge....... In terms of these test particle types, two basically different problems can be formulated. One deals with the diffusion of a particle with respect to its point of release in phase space. Alternatively the relative diffusion between many, or just two, particles can be analyzed. Analytical expressions...
Statistical Mechanics of Turbulent Dynamos
Shebalin, John V.
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much
Langley Aerothermodynamic Facilities Complex: Enhancements and Testing Capabilities
Micol, J. R.
1998-01-01
Description, capabilities, recent upgrades, and utilization of the NASA Langley Research Center (LaRC) Aerothermodynamic Facilities Complex (AFC) are presented. The AFC consists of five hypersonic, blow-down-to-vacuum wind tunnels that collectively provide a range of Mach number from 6 to 20, unit Reynolds number from 0.04 to 22 million per foot and, most importantly for blunt configurations, normal shock density ratio from 4 to 12. These wide ranges of hypersonic simulation parameters are due, in part, to the use of three different test gases (air, helium, and tetrafluoromethane), thereby making several of the facilities unique. The Complex represents nearly three-fourths of the conventional (as opposed to impulse)-type hypersonic wind tunnels operational in this country. AFC facilities are used to assess and optimize the hypersonic aerodynamic performance and aeroheating characteristics of aerospace vehicle concepts and to provide benchmark aerodynamic/aeroheating data fr generating the flight aerodynamic databook and final design of the thermal protection system (TPS) (e.g., establishment of flight limitations not to exceed TPS design limits). Modifications and enhancements of AFC hardware components and instrumentation have been pursued to increase capability, reliability, and productivity in support of programmatic goals. Examples illustrating facility utilization in recent years to generate essentially all of the experimental hypersonic aerodynamic and aeroheating information for high-priority, fast-paced Agency programs are presented. These programs include Phase I of the Reusable Launch Vehicle (RLV) Advanced Technology Demonstrator, X-33 program, PHase II of the X-33 program, X-34 program, the Hyper-X program ( a Mach 5,7, and 10 airbreathing propulsion flight experiment), and the X-38 program (Experimental Crew Return Vehicle, X-CRV). Current upgrades/enchancements and future plans for the AFC are discussed.
International Nuclear Information System (INIS)
Childress, S.
1995-01-01
The authors formulate and study an elementary one-dimensional model mimicking some of the features of fluid turbulence. The underlying vorticity field corresponds to a parallel flow. Structure on all scales down to the numerical resolution is generated by the action of baker's maps acting on the vorticity of the flow. These transformations conserve kinetic energy locally in the Euler model, while viscous diffusion of vorticity occurs in the Navier-Stokes case. The authors apply the model to the study of homogeneous fully, developed turbulence, and to turbulent channel flow
Energy Technology Data Exchange (ETDEWEB)
Hoejstrup, J. [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K.S. [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B.J. [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M. [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)
1999-03-01
The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)
Belotserkovskii, OM; Chechetkin, VM
2005-01-01
The authors present the results of numerical experiments carried out to examine the problem of development of turbulence and convection. On the basis of the results, they propose a physical model of the development of turbulence. Numerical algorithms and difference schema for carrying out numerical experiments in hydrodynamics, are proposed. Original algorithms, suitable for calculation of the development of the processes of turbulence and convection in different conditions, even on astrophysical objects, are presented. The results of numerical modelling of several important phenomena having both fundamental and applied importance are described.
Turbulent current drive mechanisms
McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua
2017-08-01
Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.
Simulation of turbulent flows containing strong shocks
Fryxell, Bruce; Menon, Suresh
2008-12-01
Simulation of turbulent flows with strong shocks is a computationally challenging problem. The requirements for a method to produce accurate results for turbulence are orthogonal to those needed to treat shocks properly. In order to prevent an unphysical rate of decay of turbulent structures, it is necessary to use a method with very low numerical dissipation. Because of this, central difference schemes are widely used. However, computing strong shocks with a central difference scheme can produce unphysical post-shock oscillations that corrupt the entire flow unless additional dissipation is added. This dissipation can be difficult to localize to the area near the shock and can lead to inaccurate treatment of the turbulence. Modern high-resolution shock-capturing methods usually use upwind algorithms to provide the dissipation necessary to stabilize shocks. However, this upwind dissipation can also lead to an unphysical rate of decay of the turbulence. This paper discusses a hybrid method for simulating turbulent flows with strong shocks that couples a high-order central difference scheme with a high-resolution shock-capturing method. The shock-capturing method is used only in the vicinity of discontinuities in the flow, whereas the central difference scheme is used in the remainder of the computational domain. Results of this new method will be shown for a variety of test problems. Preliminary results for a realistic application involving detonation in gas-particle flows will also be presented.
Studying Magnetohydrodynamic Turbulence with Synchrotron Polarization Dispersion
Zhang, Jian-Fu; Lazarian, Alex; Lee, Hyeseung; Cho, Jungyeon
2016-07-01
We test a new technique for studying magnetohydrodynamic turbulence suggested by Lazarian & Pogosyan, using synthetic observations of synchrotron polarization. This paper focuses on a one-point statistics, which is termed polarization frequency analysis, that is characterized by the variance of polarized emission as a function of the square of the wavelength along a single line of sight. We adopt the ratio η of the standard deviation of the line-of-sight turbulent magnetic field to the line-of-sight mean magnetic field to depict the level of turbulence. When this ratio is large (η \\gg 1), which characterizes a region dominated by turbulent field, or small (η ≲ 0.2), which characterizes a region dominated by the mean field, we obtain the polarization variance \\propto {λ }-2 or \\propto {λ }-2-2m, respectively. At small η, I.e., in the region dominated by the mean field, we successfully recover the turbulent spectral index from the polarization variance. We find that our simulations agree well with the theoretical prediction of Lazarian & Pogosyan. With existing and upcoming data cubes from the Low-Frequency Array for Radio Astronomy (LOFAR) and the Square Kilometer Array (SKA), this new technique can be applied to study the magnetic turbulence in the Milky Way and other galaxies.
Simulation of turbulent flows containing strong shocks
International Nuclear Information System (INIS)
Fryxell, Bruce; Menon, Suresh
2008-01-01
Simulation of turbulent flows with strong shocks is a computationally challenging problem. The requirements for a method to produce accurate results for turbulence are orthogonal to those needed to treat shocks properly. In order to prevent an unphysical rate of decay of turbulent structures, it is necessary to use a method with very low numerical dissipation. Because of this, central difference schemes are widely used. However, computing strong shocks with a central difference scheme can produce unphysical post-shock oscillations that corrupt the entire flow unless additional dissipation is added. This dissipation can be difficult to localize to the area near the shock and can lead to inaccurate treatment of the turbulence. Modern high-resolution shock-capturing methods usually use upwind algorithms to provide the dissipation necessary to stabilize shocks. However, this upwind dissipation can also lead to an unphysical rate of decay of the turbulence. This paper discusses a hybrid method for simulating turbulent flows with strong shocks that couples a high-order central difference scheme with a high-resolution shock-capturing method. The shock-capturing method is used only in the vicinity of discontinuities in the flow, whereas the central difference scheme is used in the remainder of the computational domain. Results of this new method will be shown for a variety of test problems. Preliminary results for a realistic application involving detonation in gas-particle flows will also be presented.
Modeling of turbulent chemical reaction
Chen, J.-Y.
1995-01-01
Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
Aviation turbulence processes, detection, prediction
Lane, Todd
2016-01-01
Anyone who has experienced turbulence in flight knows that it is usually not pleasant, and may wonder why this is so difficult to avoid. The book includes papers by various aviation turbulence researchers and provides background into the nature and causes of atmospheric turbulence that affect aircraft motion, and contains surveys of the latest techniques for remote and in situ sensing and forecasting of the turbulence phenomenon. It provides updates on the state-of-the-art research since earlier studies in the 1960s on clear-air turbulence, explains recent new understanding into turbulence generation by thunderstorms, and summarizes future challenges in turbulence prediction and avoidance.
Buoyancy effects on turbulent mixing in the LMFBR outlet plenum
International Nuclear Information System (INIS)
Chang, S.H.
1983-01-01
The effect of flow stratification is of particular concern during transient after scram in the outlet plenum of LMFBR. In this case, buoyancy effects on turbulent mixing are the importance to designers. An investigation has been made to identify the appropriate change in the available turbulence models which are necessary to include the effects of buoyancy on turbulence transport equations. The developed physical model of the buoyant turbulent flow are solved through SMAC method. Testing of the developed numerical model was undertaken and compared with experimental results. The results show that the buoyant turbulent effects account for the significant increase in the stability of the stratification, with a strong suppression of turbulence in the outlet plenum. (Author)
Inflow Turbulence Generation Methods
Wu, Xiaohua
2017-01-01
Research activities on inflow turbulence generation methods have been vigorous over the past quarter century, accompanying advances in eddy-resolving computations of spatially developing turbulent flows with direct numerical simulation, large-eddy simulation (LES), and hybrid Reynolds-averaged Navier-Stokes-LES. The weak recycling method, rooted in scaling arguments on the canonical incompressible boundary layer, has been applied to supersonic boundary layer, rough surface boundary layer, and microscale urban canopy LES coupled with mesoscale numerical weather forecasting. Synthetic methods, originating from analytical approximation to homogeneous isotropic turbulence, have branched out into several robust methods, including the synthetic random Fourier method, synthetic digital filtering method, synthetic coherent eddy method, and synthetic volume forcing method. This article reviews major progress in inflow turbulence generation methods with an emphasis on fundamental ideas, key milestones, representative applications, and critical issues. Directions for future research in the field are also highlighted.
MULTIFLUID MAGNETOHYDRODYNAMIC TURBULENT DECAY
International Nuclear Information System (INIS)
Downes, T. P.; O'Sullivan, S.
2011-01-01
It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation that occurs within them. Non-ideal magnetohydrodynamic (MHD) effects are known to influence the nature of this turbulence. We present the results of a suite of 512 3 resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity, and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingly we find that, at least at these resolutions, the majority of the physics of multifluid turbulence can be captured by simply introducing fixed (in time and space) resistive terms into the induction equation without the need for a full multifluid MHD treatment. The velocity dispersion is also examined and, in common with previously published results, it is found not to be power law in nature.
Larval fish feeding and turbulence : A case for the downside
DEFF Research Database (Denmark)
MacKenzie, Brian; Kiørboe, Thomas
2000-01-01
Theory states that small-scale turbulence decreases pursuit success of planktonic predators by advecting the encountered prey from the reactive zone of the predator during the pursuit event. We tested the quantitative predictions of a previously published model describing this phenomenon in larval...... explain the contradictory observations of how turbulence affects larval fish feeding, growth, and survival in the sea....
Resistive fluid turbulence and tokamak edge plasma dynamics
International Nuclear Information System (INIS)
Thayer, D.R.; Diamond, P.H.; Ritz, C.P.
1988-01-01
Electrostatic and electromagnetic turbulence has been linked to particle and heat transport in tokamaks. Here we report on several related theoretical and experimental investigations of edge plasma dynamics. The theory of thermally-driven convective cell edge turbulence has been developed to treat the coupling of the radiative-condensation instability to the resistivity-gradient expansion free energy. This model of edge turbulence has led to theoretical understanding of several anomalies in electrostatic edge turbulence found from experiment: that fluctuation levels and transport coefficients are larger than naively expected, that potential fluctuations are significantly larger than the density. Impurity gas-puffing experiments on the TEXT tokamak have been performed to test this theory, and have indicated favorable results. Resistive fluid turbulence models have also been explored and applied in the hope of understanding the extensive edge magnetic fluctuation studies. We discuss models of electromagnetic microtearing turbulence, resistive-pressure-gradient-driven turbulence, and ion temperature gradient driven turbulence. In particular we study the role of resistive fluid turbulence with separatrix effects in the L /yield/ H mode transition. 36 refs., 2 figs
Consequences of Symmetries on the Analysis and Construction of Turbulence Models
Directory of Open Access Journals (Sweden)
Dina Razafindralandy
2006-05-01
Full Text Available Since they represent fundamental physical properties in turbulence (conservation laws, wall laws, Kolmogorov energy spectrum, ..., symmetries are used to analyse common turbulence models. A class of symmetry preserving turbulence models is proposed. This class is refined such that the models respect the second law of thermodynamics. Finally, an example of model belonging to the class is numerically tested.
Turbulence in Natural Environments
Banerjee, Tirtha
Problems in the area of land/biosphere-atmosphere interaction, hydrology, climate modeling etc. can be systematically organized as a study of turbulent flow in presence of boundary conditions in an increasing order of complexity. The present work is an attempt to study a few subsets of this general problem of turbulence in natural environments- in the context of neutral and thermally stratified atmospheric surface layer, the presence of a heterogeneous vegetation canopy and the interaction between air flow and a static water body in presence of flexible protruding vegetation. The main issue addressed in the context of turbulence in the atmospheric surface layer is whether it is possible to describe the macro-states of turbulence such as mean velocity and turbulent velocity variance in terms of the micro-states of the turbulent flow, i.e., a distribution of turbulent kinetic energy across a multitude of scales. This has been achieved by a `spectral budget approach' which is extended for thermal stratification scenarios as well, in the process unifying the seemingly different and unrelated theories of turbulence such as Kolmogorov's hypothesis, Heisenberg's eddy viscosity, Monin Obukhov Similarity Theory (MOST) etc. under a common framework. In the case of a more complex scenario such as presence of a vegetation canopy with edges and gaps, the question that is addressed is in what detail the turbulence is needed to be resolved in order to capture the bulk flow features such as recirculation patterns. This issue is addressed by a simple numerical framework and it has been found out that an explicit prescription of turbulence is not necessary in presence of heterogeneities such as edges and gaps where the interplay between advection, pressure gradients and drag forces are sufficient to capture the first order dynamics. This result can be very important for eddy-covariance flux calibration strategies in non-ideal environments and the developed numerical model can be
Turbulence introduction to theory and applications of turbulent flows
Westerweel, Jerry; Nieuwstadt, Frans T M
2016-01-01
This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises.
On the decay of homogeneous isotropic turbulence
Skrbek, L.; Stalp, Steven R.
2000-08-01
Decaying homogeneous, isotropic turbulence is investigated using a phenomenological model based on the three-dimensional turbulent energy spectra. We generalize the approach first used by Comte-Bellot and Corrsin [J. Fluid Mech. 25, 657 (1966)] and revised by Saffman [J. Fluid Mech. 27, 581 (1967); Phys. Fluids 10, 1349 (1967)]. At small wave numbers we assume the spectral energy is proportional to the wave number to an arbitrary power. The specific case of power 2, which follows from the Saffman invariant, is discussed in detail and is later shown to best describe experimental data. For the spectral energy density in the inertial range we apply both the Kolmogorov -5/3 law, E(k)=Cɛ2/3k-5/3, and the refined Kolmogorov law by taking into account intermittency. We show that intermittency affects the energy decay mainly by shifting the position of the virtual origin rather than altering the power law of the energy decay. Additionally, the spectrum is naturally truncated due to the size of the wind tunnel test section, as eddies larger than the physical size of the system cannot exist. We discuss effects associated with the energy-containing length scale saturating at the size of the test section and predict a change in the power law decay of both energy and vorticity. To incorporate viscous corrections to the model, we truncate the spectrum at an effective Kolmogorov wave number kη=γ(ɛ/v3)1/4, where γ is a dimensionless parameter of order unity. We show that as the turbulence decays, viscous corrections gradually become more important and a simple power law can no longer describe the decay. We discuss the final period of decay within the framework of our model, and show that care must be taken to distinguish between the final period of decay and the change of the character of decay due to the saturation of the energy containing length scale. The model is applied to a number of experiments on decaying turbulence. These include the downstream decay of turbulence in
Coherent stuctures in geophysical turbulence
Siegel, Andrew Robert
This thesis examines the dynamic role of coherent structures in high Re turbulence. Three settings are chosen: the atmospheric boundary layer (ABL), two- dimensional turbulence, and oceanic gyres. In the ABL, the intermittency of vertical heat and momentum fluxes complicates the use of local drag laws, which in turn has serious implications for large eddy simulations (LES). We develop a method to test the accuracy of local drag laws as a surface boundary condition for LES. When our diagnostic is applied to measurements of ABL turbulence, results indicate that drag-law formulations are only adequate for LES grid spacings dx > 25 km. The most salient aspect of 2-D solutions of the Navier Stokes equations is the appearance of populations of circular vortices and their subsequent dominance of the flow dynamics. To understand these dynamics, one must develop a method of decomposing such flows into their `coherent' and `non-coherent' components. We devise and test such an algorithm on weakly decaying 2-D simulations. We argue that the WPT algorithm is more general and suitable to a wider range of problems than a traditional selection-criteria approach. The decomposed 2-D solutions are then analyzed in light of turbulence theories which fail to take into account the two distinct regimes of the flow. Ocean General Circulation Models (OGCM's) traditionally fail to accurately mimic observed levels of eddy kinetic energy (EKE) and mesoscale vortex activity. A possible explanation is insufficient horizontal resolution due to the huge computational demands of complex ocean models. To test this hypothesis, a highly efficient, parallel numerical algorithm is designed to simulate the wind- driven, closed basin quasigeostrophic (QG) equations. The combination of idealized geometry, simplified equations, and the most recent technology in parallel computing permits us to achieve decade-length integrations at resolutions five times greater than has been possible with OGCM's. These
Implications of Navier-Stokes turbulence theory for plasma turbulence
International Nuclear Information System (INIS)
Montgomery, David
1977-01-01
A brief discussion of Navier-Stokes turbulence theory is given with particular reference to the two dimensional case. The MHD turbulence is introduced with possible applications of techniques developed in Navier-Stokes theory. Turbulence in Vlasov plasma is also discussed from the point of view of the ''direct interaction approximation'' (DIA). (A.K.)
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
Energy Technology Data Exchange (ETDEWEB)
Caldas, Ibere L.; Heller, M.V.A.P.; Brasilio, Z.A. [Sao Paulo Univ., SP, RJ (Brazil). Inst. de Fisica
1997-12-31
Full text. In this work we summarize the results from experiments on electrostatic and magnetic fluctuations in tokamak plasmas. Spectral analyses show that these fluctuations are turbulent, having a broad spectrum of wavectors and a broad spectrum of frequencies at each wavector. The electrostatic turbulence induces unexpected anomalous particle transport that deteriorates the plasma confinement. The relationship of these fluctuations to the current state of plasma theory is still unclear. Furthermore, we describe also attempts to control this plasma turbulence with external magnetic perturbations that create chaotic magnetic configurations. Accordingly, the magnetic field lines may become chaotic and then induce a Lagrangian diffusion. Moreover, to discuss nonlinear coupling and intermittency, we present results obtained by using numerical techniques as bi spectral and wavelet analyses. (author)
Energy Technology Data Exchange (ETDEWEB)
Mann, Jakob [Risoe National Lab., Wind Energy and Atmosheric Physics Dept., Roskilde (Denmark)
1999-03-01
The purpose of this work is to develop a model of the spectral velocity-tensor in neutral flow over complex terrain. The resulting equations are implemented in a computer code using the mean flow generated by a linear mean flow model as input. It estimates turbulence structure over hills (except on the lee side if recirculation is present) in the so-called outer layer and also models the changes in turbulence statistics in the vicinity roughness changes. The generated turbulence fields are suitable as input for dynamic load calculations on wind turbines and other tall structures and is under implementation in the collection of programs called WA{sup s}P Engineering. (au) EFP-97; EU-JOULE-3. 15 refs.
Correlation lengths of electrostatic turbulence
International Nuclear Information System (INIS)
Guiziou, L.; Garbet, X.
1995-01-01
This document deals with correlation length of electrostatic turbulence. First, the model of drift waves turbulence is presented. Then, the radial correlation length is determined analytically with toroidal coupling and non linear coupling. (TEC). 5 refs
Statistical theory of Langmuir turbulence
International Nuclear Information System (INIS)
DuBois, D.F.; Rose, H.A.; Goldman, M.V.
1979-01-01
A statistical theory of Langmuir turbulence is developed by applying a generalization of the direction interaction approximation (DIA) of Kraichnan to the Zakharov equations describing Langmuir turbulence. 7 references
Directory of Open Access Journals (Sweden)
C. M. Hall
2005-03-01
Full Text Available Fading times of radar echoes from underdense meteor trails in the upper mesosphere/lower thermosphere are commonly used to determine ambipolar diffusivities and hence ambient temperature. Diffusivities are generally expected to increase exponentially with height through the region from which the meteor trail echoes are obtained, viz., typically 70-110km altitude for a ~30-MHz radar. In practice, however, this is more the exception: unexpectedly large diffusivities are obtained in the lower part of the regime, and unexpectedly low values are obtained in the upper part; only in the few kilometres on either side of the maximum in echo occurrence (viz., 90km for a 30-MHz radar does the diffusivity profile behave as expected. Hall (2002 hypothesised that neutral turbulence might be enhancing expansion of the meteor trail in the lower part of the regime. In this communication, due to results only available since the publication of Hall's suggestion, we are able to refute the hypothesis.
Plasma turbulence calculations on supercomputers
International Nuclear Information System (INIS)
Carreras, B.A.; Charlton, L.A.; Dominguez, N.; Drake, J.B.; Garcia, L.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Sidikman, K.
1991-01-01
Although the single-particle picture of magnetic confinement is helpful in understanding some basic physics of plasma confinement, it does not give a full description. Collective effects dominate plasma behavior. Any analysis of plasma confinement requires a self-consistent treatment of the particles and fields. The general picture is further complicated because the plasma, in general, is turbulent. The study of fluid turbulence is a rather complex field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples back to the fluid. Since the fluid is not a perfect conductor, this turbulence can lead to changes in the topology of the magnetic field structure, causing the magnetic field lines to wander radially. Because the plasma fluid flows along field lines, they carry the particles with them, and this enhances the losses caused by collisions. The changes in topology are critical for the plasma confinement. The study of plasma turbulence and the concomitant transport is a challenging problem. Because of the importance of solving the plasma turbulence problem for controlled thermonuclear research, the high complexity of the problem, and the necessity of attacking the problem with supercomputers, the study of plasma turbulence in magnetic confinement devices is a Grand Challenge problem
An overview of turbulence compensation
Schutte, K.; Eekeren, A.W.M. van; Dijk, J.; Schwering, P.B.W.; Iersel, M. van; Doelman, N.J.
2012-01-01
In general, long range visual detection, recognition and identification are hampered by turbulence caused by atmospheric conditions. Much research has been devoted to the field of turbulence compensation. One of the main advantages of turbulence compensation is that it enables visual identification
Magnetohydrodynamics turbulence: An astronomical perspective
Indian Academy of Sciences (India)
theories have since found applications in many areas of astrophysics. Spacecraft measurements of solar-wind turbulence show that there is more power in Alfvén waves that travel away from the. Sun than towards it. Theories of imbalanced MHD turbulence have now been proposed to address interplanetary turbulence.
Basic issues of atmospheric turbulence and turbulent diffusion
International Nuclear Information System (INIS)
Fortak, H.
1985-01-01
A major concern of the institutions commissioned with the protection of the environment is the prognostication of the environment's exposure to various pollutant emissions. The transport and turbulent diffusion of air-borne substances largely take place within a planetary boundary layer of a thickness between 500 to 1,500 m in which the atmosphere continues to be in a turbulent state of flow. The basic theories for the origination and formation of turbulence in flow fields, for the application of these theories to turbulent flows over complex terrain structures and, finally, for the turbulent diffusion of air-borne substances within the planetary boundary layer are presented. (orig./PW) [de
Turbulence and Flying Machines
Indian Academy of Sciences (India)
for Advanced Scientific. Research. She is currently working on problems of flow stability, transition to turbulence and vortex dynamics. Rama Govindarajan. This article is intended to introduce the young reader to the ... T applied by the engines and the drag force D due to the resistance of the air, i.e., under cruise condi~ions,.
Incremental Similarity and Turbulence
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole E.; Hedevang, Emil; Schmiegel, Jürgen
This paper discusses the mathematical representation of an empirically observed phenomenon, referred to as Incremental Similarity. We discuss this feature from the viewpoint of stochastic processes and present a variety of non-trivial examples, including those that are of relevance for turbulence...
Stochastic modelling of turbulence
DEFF Research Database (Denmark)
Sørensen, Emil Hedevang Lohse
previously been shown to be closely connected to the energy dissipation. The incorporation of the small scale dynamics into the spatial model opens the door to a fully fledged stochastic model of turbulence. Concerning the interaction of wind and wind turbine, a new method is proposed to extract wind turbine...
Turbulence compressibility corrections
Coakley, T. J.; Horstman, C. C.; Marvin, J. G.; Viegas, J. R.; Bardina, J. E.; Huang, P. G.; Kussoy, M. I.
1994-01-01
The basic objective of this research was to identify, develop and recommend turbulence models which could be incorporated into CFD codes used in the design of the National AeroSpace Plane vehicles. To accomplish this goal, a combined effort consisting of experimental and theoretical phases was undertaken. The experimental phase consisted of a literature survey to collect and assess a database of well documented experimental flows, with emphasis on high speed or hypersonic flows, which could be used to validate turbulence models. Since it was anticipated that this database would be incomplete and would need supplementing, additional experiments in the NASA Ames 3.5-Foot Hypersonic Wind Tunnel (HWT) were also undertaken. The theoretical phase consisted of identifying promising turbulence models through applications to simple flows, and then investigating more promising models in applications to complex flows. The complex flows were selected from the database developed in the first phase of the study. For these flows it was anticipated that model performance would not be entirely satisfactory, so that model improvements or corrections would be required. The primary goals of the investigation were essentially achieved. A large database of flows was collected and assessed, a number of additional hypersonic experiments were conducted in the Ames HWT, and two turbulence models (kappa-epsilon and kappa-omega models with corrections) were determined which gave superior performance for most of the flows studied and are now recommended for NASP applications.
van der Veen, Roeland
2016-01-01
In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study
National Research Council Canada - National Science Library
Labows, Steven
2000-01-01
.... This paper discusses the airborne flight test of the Sikorsky UH-60 Black Hawk helicopter in turbulent conditions to determine disturbance rejection criteria and to develop a low speed turbulence...
Analysis of turbulent boundary layers
Cebeci, Tuncer
1974-01-01
Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati
Gyrokinetic simulation of microtearing turbulence
International Nuclear Information System (INIS)
Doerk, Hauke
2013-01-01
In modern fusion experiments, plasma turbulence is responsible for the radial heat transport and thus determines the plasma confinement within the magnetic field of tokamak devices. Deeper theoretical understanding is needed to explain today's and future fusion experiments. The goal of fusion research is to establish nuclear fusion as a safe and sustainable energy source. In future fusion power plants, and also in large fusion experiments like the presently constructed ITER, plasma heating predominantly affects the electron species. The reason is of fundamental nature: the collisional cross section of fast ions that are produced by the heating systems is larger for thermal electrons than for thermal ions. It is thus essential to correctly predict electron thermal transport, but the overall picture still continues to evolve. Besides microinstabilities on the electron gyroradius scales, also a stochastized magnetic field can contribute to enhanced electron transport. Already since the 1970's, the so-called microtearing instability is discussed as a source of stochastic fields. This microinstability deserves its name for breaking up the magnetic field structure by forming small-scale magnetic islands. The linear microtearing instability and its nonlinear, turbulent behavior is investigated in this thesis by means of numerical simulations with the gyrokinetic turbulence code Gene. The underlying gyrokinetic equations are not only appropriate to predict turbulent transport, but also describe neoclassical transport that is drift-kinetic in nature. Besides revealing interesting physics on long time scales, solving the neoclassical equation serves as an excellent test for the numerical implementation of the collision operator in Gene. Focusing on the local limit, it is found that a modification of this implementation that considers certain symmetries is necessary to obtain a satisfactory agreement with the well-established drift-kinetic neoclassical code Neo. Also the
Magnetosheath electrostatic turbulence
International Nuclear Information System (INIS)
Rodriguez, P.
1979-01-01
By using measurements with the University of Iowa plasma wave experiment on the Imp 6 satellite a study has been conducted of the spectrum of electrostatic plasma waves in the terrestrial magnetosheath. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz to 70 kHz) rms field intensities typically 0.01--1.0 mV m -1 . Peak intensities of about 1.0 mV m -1 near the electron plasma frequency (30--60 kHz) have been detected occasionally. Two or three components can usually be identified in the spectrum of magnetosheath electrostatic turbulence: a high-frequency (> or =30kHz) component peaking at the electron plasma frequency f/sub p/e, a low-frequency component with a broad intensity maximum below the nominal ion plasma frequency f/sub p/i (approx. f/sub p/e/43), and a less well defined intermediate component in the range f/sub p/i < f< f/sub p/e. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low-frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath. Electrostatic waves below 1 kHz are polarized along the magnetic field direction, a result consistent with the polarization of electrostatic waves at the shock. The high- and intermediate-frequency components are features of the magnetosheath spectrum which are not characteristic of the shock spectrum but are often detected in the upstream solar wind. The intensity distribution of electrostatic turbulence at the magnetosheath plasma frequency has no apparent correlation with the shock, indicating that electron plasma oscillations are a general feature of the magnetosheath. The plasma wave noise shows a tendency to decrease toward the dawn and dusk regions, consistent with a general decrease in turbulence away from the subsolar magnetosheath
The dynamics of variable-density turbulence
International Nuclear Information System (INIS)
Sandoval, D.L.
1995-11-01
The dynamics of variable-density turbulent fluids are studied by direct numerical simulation. The flow is incompressible so that acoustic waves are decoupled from the problem, and implying that density is not a thermodynamic variable. Changes in density occur due to molecular mixing. The velocity field, is in general, divergent. A pseudo-spectral numerical technique is used to solve the equations of motion. Three-dimensional simulations are performed using a grid size of 128 3 grid points. Two types of problems are studied: (1) the decay of isotropic, variable-density turbulence, and (2) buoyancy-generated turbulence in a fluid with large density fluctuations. In the case of isotropic, variable-density turbulence, the overall statistical decay behavior, for the cases studied, is relatively unaffected by the presence of density variations when the initial density and velocity fields are statistically independent. The results for this case are in quantitative agreement with previous numerical and laboratory results. In this case, the initial density field has a bimodal probability density function (pdf) which evolves in time towards a Gaussian distribution. The pdf of the density field is symmetric about its mean value throughout its evolution. If the initial velocity and density fields are statistically dependent, however, the decay process is significantly affected by the density fluctuations. For the case of buoyancy-generated turbulence, variable-density departures from the Boussinesq approximation are studied. The results of the buoyancy-generated turbulence are compared with variable-density model predictions. Both a one-point (engineering) model and a two-point (spectral) model are tested against the numerical data. Some deficiencies in these variable-density models are discussed and modifications are suggested
Transitional-turbulent spots and turbulent-turbulent spots in boundary layers.
Wu, Xiaohua; Moin, Parviz; Wallace, James M; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre
2017-07-03
Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional-turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a [Formula: see text] vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional-turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional-turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional-turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent-turbulent spots. These turbulent-turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional-turbulent spots, these turbulent-turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent-turbulent spots.
Transitional-turbulent spots and turbulent-turbulent spots in boundary layers
Wu, Xiaohua; Moin, Parviz; Wallace, James M.; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre
2017-07-01
Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional-turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a ΛΛ vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional-turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional-turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional-turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent-turbulent spots. These turbulent-turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional-turbulent spots, these turbulent-turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent-turbulent spots.
Satellite sensing of submerged fossil turbulence and zombie turbulence
Gibson, Carl H.
2004-11-01
Surface brightness anomalies from a submerged municipal wastewater outfall trapped by buoyancy in an area 0.1 km^2 are surprisingly detected from space satellites in areas > 200 km^2. How is this possible? Microstructure measurements near the outfall diffuser reveal enhanced turbulence and temperature dissipation rates above the 50 m trapping depth. Near-vertical radiation of internal waves by fossil and zombie turbulence microstructure patches produce wind ripple smoothing with 30-50 m internal wave patterns in surface Fourier brightness anomalies near the outfall. Detections at 10-14 km distances are at 100-220 m bottom boundary layer (BBL) fossil turbulence scales. Advected outfall fossils form zombie turbulence patches in internal wave patterns as they extract energy, vorticity, turbulence and ambient vertical internal wavelength information as their density gradients are tilted by the waves. As the zombies fossilize, patterned energy radiates near-vertically to produce the detected Fourier anomalies. Zombie turbulence patches beam extracted energy in a preferred direction with a special frequency, like energized metastable molecules in a chemical maser. Thus, kilowatts to produce the submerged field of advected fossil outfall turbulence patches are amplified by beamed zombie turbulence maser action (BZTMA) into megawatts of turbulence dissipation to affect sea surface brightness on wide surface areas using gigawatts of BBL fossil turbulence wave energy available.
Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels
Energy Technology Data Exchange (ETDEWEB)
Ames, Forrest [University of North Dakota; Kingery, Joseph E. [University of North Dakota
2015-06-17
A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs
Two-equation turbulence modeling for 3-D hypersonic flows
Bardina, J. E.; Coakley, T. J.; Marvin, J. G.
1992-01-01
An investigation to verify, incorporate and develop two-equation turbulence models for three-dimensional high speed flows is presented. The current design effort of hypersonic vehicles has led to an intensive study of turbulence models for compressible hypersonic flows. This research complements an extensive review of experimental data and the current development of 2D turbulence models. The review of experimental data on 2D and 3D flows includes complex hypersonic flows with pressure profiles, skin friction, wall heat transfer, and turbulence statistics data. In a parallel effort, turbulence models for high speed flows have been tested against flat plate boundary layers, and are being tested against the 2D database. In the present paper, we present the results of 3D Navier-Stokes numerical simulations with an improved k-omega two-equation turbulence model against experimental data and empirical correlations of an adiabatic flat plate boundary layer, a cold wall flat plate boundary layer, and a 3D database flow, the interaction of an oblique shock wave and a thick turbulent boundary layer with a free stream Mach number = 8.18 and Reynolds number = 5 x 10 to the 6th.
Aerotaxis in Bacterial Turbulence
Fernandez, Vicente; Bisson, Antoine; Bitton, Cindy; Waisbord, Nicolas; Smriga, Steven; Rusconi, Roberto; Stocker, Roman
2012-11-01
Concentrated suspensions of motile bacteria exhibit correlated dynamics on spatial scales much larger than an individual bacterium. The resulting flows, visually similar to turbulence, can increase mixing and decrease viscosity. However, it remains unclear to what degree the collective dynamics depend on the motile behavior of bacteria at the individual level. Using a new microfluidic device to create controlled horizontal oxygen gradients, we studied the two dimensional behavior of dense suspensions of Bacillus subtilis. This system makes it possible to assess the interplay between the coherent large-scale motions of the suspension, oxygen transport, and the directional response of cells to oxygen gradients (aerotaxis). At the same time, this device has enabled us to examine the onset of bacterial turbulence and its influence on the propagation of the diffusing oxygen front, as the bacteria begin in a dormant state and transition to swimming when exposed to oxygen.
Random functions and turbulence
Panchev, S
1971-01-01
International Series of Monographs in Natural Philosophy, Volume 32: Random Functions and Turbulence focuses on the use of random functions as mathematical methods. The manuscript first offers information on the elements of the theory of random functions. Topics include determination of statistical moments by characteristic functions; functional transformations of random variables; multidimensional random variables with spherical symmetry; and random variables and distribution functions. The book then discusses random processes and random fields, including stationarity and ergodicity of random
Suppression of turbulent resistivity in turbulent Couette flow
International Nuclear Information System (INIS)
Si, Jiahe; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.
2015-01-01
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations
Suppression of turbulent resistivity in turbulent Couette flow
Si, Jiahe; Colgate, Stirling A.; Sonnenfeld, Richard G.; Nornberg, Mark D.; Li, Hui; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe
2015-07-01
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
Suppression of turbulent resistivity in turbulent Couette flow
Energy Technology Data Exchange (ETDEWEB)
Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2015-07-15
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
Bruno, Roberto
2016-01-01
This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...
4th European Turbulence Conference
1993-01-01
The European Turbulence Conferences have been organized under the auspices of the European Mechanics Committee (Euromech) to provide a forum for discussion and exchange of recent and new results in the field of turbulence. The first conference was organized in Lyon in 1986 with 152 participants. The second and third conferences were held in Berlin (1988) and Stockholm (1990) with 165 and 172 participants respectively. The fourth was organized in Delft from 30 June to 3 July 1992 by the J.M. Burgers Centre. There were 214 participants from 22 countries. This steadily growing number of participants demonstrates both the success and need for this type of conference. The main topics of the Fourth European Turbulence Conference were: Dynamical Systems and Transition; Statistical Physics and Turbulence; Experiments and Novel Experimental Techniques; Particles and Bubbles in Turbulence; Simulation Methods; Coherent Structures; Turbulence Modelling and Compressibility Effects. In addition a special session was held o...
Single-Phase Bundle Flows Including Macroscopic Turbulence Model
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Jun; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Yoon, Seok Jong; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)
2016-05-15
To deal with various thermal hydraulic phenomena due to rapid change of fluid properties when an accident happens, securing mechanistic approaches as much as possible may reduce the uncertainty arising from improper applications of the experimental models. In this study, the turbulence mixing model, which is well defined in the subchannel analysis code such as VIPRE, COBRA, and MATRA by experiments, is replaced by a macroscopic k-e turbulence model, which represents the aspect of mathematical derivation. The performance of CUPID with macroscopic turbulence model is validated against several bundle experiments: CNEN 4x4 and PNL 7x7 rod bundle tests. In this study, the macroscopic k-e model has been validated for the application to subchannel analysis. It has been implemented in the CUPID code and validated against CNEN 4x4 and PNL 7x7 rod bundle tests. The results showed that the macroscopic k-e turbulence model can estimate the experiments properly.
Emulating bulk turbulence with a liquid-crystal spatial light modulator
Schmidt, Jason D.; Goda, Matthew E.; Duncan, Bradley D.
2006-08-01
We have developed a novel system that emulates the optical effects of bulk atmospheric turbulence in a dynamic, repeatable, and accurate way without moving parts. Such turbulence-emulating systems (TES) are necessary for testing laser systems including laser weapons, free-space optical communications, and atmospheric imaging systems. Most current TESs utilize the layered turbulence model with static phase plates or diffractive optics acting as the turbulent layers. Until now, the only way to emulate bulk turbulence in a laboratory has been by creating real turbulence with a heating element and a fan contained in a miniature wind tunnel. In contrast, the TES that we developed uses phase retrieval-based wavefront control to shape a laser beam into a turbulence-distorted beam. Several important properties of the measured irradiance patterns have shown good agreement with the theoretical expectations.
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Turbulent dispersion of many particles
Pratt, J.; Busse, A.; Muller, W. C.
2017-12-01
We demonstrate the utility of the convex hull to analyze dispersion of groups of many Lagrangian tracer particles in turbulence. We examine dispersion in turbulent flows driven by convection, relevant to geophysical flows and the spread of contaminants in the atmosphere, and in turbulent flows affected by magnetic fields, relevant to stellar winds and stellar interiors. Convex hull analysis can provide new information about local dispersion, in the form of the surface area and volume for a cluster of particles. We use dispersive information to examine the local anisotropy that occurs in these turbulent settings, and to understand fundamental characteristics of heat transfer and the small-scale dynamo.
Flow instability and turbulence - ONERA water tunnel visualizations
Werle, H.
The experimental technique used for visualizing laminar-turbulent transition phenomena, developed in previous tests in ONERA's small TH1 water tunnel, has been successfully applied in the new TH2 tunnel. With its very extensive Reynold's number domain (10 to the 4th - 10 to the 6th), this tunnel has shown itself to be well adapted to the study of turbulence and of the flow instabilities related to its appearance.
Aspects of atmospheric turbulence related to scintillometry
Braam, M.
2014-01-01
Aspects of atmospheric turbulence related to scintillometry Atmospheric turbulence is the main vertical transport mechanism in the atmospheric boundary layer. The surface fluxes related to this turbulent transport are the sensible (
Directory of Open Access Journals (Sweden)
H. Z. Baumert
2009-03-01
Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.
The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E^{2}. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E^{1}. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.
Turbulence Mitigation for Aircraft in Urban Environments
2018-03-02
IMUs used on current aircraft. 4 OVERVIEW AND AIMS (AS PER WHITE PAPER) The research detailed in this report and associated peer -reviewed...tunnel tests of a turbulence mitigation system that is based on measuring upstream velocity perturbation (via multi-hole pressure probes, see Figure...00 01 .d oc x Pr in t: 21 /0 2/ 18 1 6: 10 Figure 2: Prototype pressure -based system implemented on a micro unmanned aircraft The
Phase space diffusion in turbulent plasmas
International Nuclear Information System (INIS)
Pecseli, H.L.
1990-01-01
Turbulent diffusion of charged test particles in electrostatic plasma turbulence is reviewed. Two different types of test particles can be distinguished. First passice particles which are subject to the fluctuating electric fields without themselves contributing to the local space charge. The second type are particles introduced at a prescribed phase space position at a certain time and which then self-consistently participate in the phase space dynamics of the turbulent. The latter ''active'' type of particles can be subjected to an effective frictional force due to radiation of plasma waves. In terms of these test particle types, two basically different problems can be formulated. One deals with the diffusion of a particle with respect to its point of release in phase space. Alternatively the relative diffusion between many, or just two, particles can be analyzed. Analytical expressions for the mean square particle displacements in phase space are discussed. More generally equations for the full probability densities are derived and these are solved analytically in special limits. (orig.)
Conditional Eddies in Plasma Turbulence
DEFF Research Database (Denmark)
Johnsen, Helene; Pécseli, Hans; Trulsen, J.
1986-01-01
Conditional structures, or eddies, in turbulent flows are discussed with special attention to electrostatic turbulence in plasmas. The potential variation of these eddies is obtained by sampling the fluctuations only when a certain condition is satisfied in a reference point. The resulting...
Active turbulence in active nematics
Thampi, S. P.; Yeomans, J. M.
2016-07-01
Dense, active systems show active turbulence, a state characterised by flow fields that are chaotic, with continually changing velocity jets and swirls. Here we review our current understanding of active turbulence. The development is primarily based on the theory and simulations of active liquid crystals, but with accompanying summaries of related literature.
Advances in compressible turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.
1992-01-01
This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.
Magnetized Turbulent Dynamo in Protogalaxies
Energy Technology Data Exchange (ETDEWEB)
Leonid Malyshkin; Russell M. Kulsrud
2002-01-28
The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten times larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached.
A new energy transfer model for turbulent free shear flow
Liou, William W.-W.
1992-01-01
A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.
Turbulent premixed flames on fractal-grid-generated turbulence
Soulopoulos, N.; Kerl, J.; Sponfeldner, T.; Beyrau, F.; Hardalupas, Y.; Taylor, A. M. K. P.; Vassilicos, J. C.
2013-12-01
A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area.
Efficient Turbulence Modeling for CFD Wake Simulations
DEFF Research Database (Denmark)
van der Laan, Paul
, that can accurately and efficiently simulate wind turbine wakes. The linear k-ε eddy viscosity model (EVM) is a popular turbulence model in RANS; however, it underpredicts the velocity wake deficit and cannot predict the anisotropic Reynolds-stresses in the wake. In the current work, nonlinear eddy...... viscosity models (NLEVM) are applied to wind turbine wakes. NLEVMs can model anisotropic turbulence through a nonlinear stress-strain relation, and they can improve the velocity deficit by the use of a variable eddy viscosity coefficient, that delays the wake recovery. Unfortunately, all tested NLEVMs show...... numerically unstable behavior for fine grids, which inhibits a grid dependency study for numerical verification. Therefore, a simpler EVM is proposed, labeled as the k-ε - fp EVM, that has a linear stress-strain relation, but still has a variable eddy viscosity coefficient. The k-ε - fp EVM is numerically...
Statistical theory of subcritically-excited strong turbulence in inhomogeneous plasmas. III
International Nuclear Information System (INIS)
Itoh, Sanae-I.; Itoh, Kimitaka
2000-01-01
A statistical theory of nonlinear-nonequilibrium plasma state with strongly developed turbulence and with strong inhomogeneity of the system has been developed. A unified theory for both the thermally excited fluctuations and the strongly turbulent fluctuations is presented. With respect to the turbulent fluctuations, the coherent part to a certain test mode is renormalized as the drag to the test mode, and the rest, the incoherent part, is considered to be a random noise. The renormalized operator includes the effect of nonlinear destabilization as well as the decorrelation by turbulent fluctuations. Formulation is presented by deriving an Fokker-Planck equation for the probability distribution function. Equilibrium distribution function of fluctuations is obtained. Transition from the thermal fluctuations, that is governed by the Boltzmann distribution, to the turbulent fluctuation is clarified. The distribution function for the turbulent fluctuation has tail component and the width of which is in the same order as the mean fluctuation level itself. The Lyapunov function is constructed for the strongly turbulent plasma, and it is shown that an approach to a certain equilibrium distribution is assured. The result for the most probable state is expressed in terms of 'minimum renormalized dissipation rate', which is given by the ratio of the nonlinear decorrelation rate of fluctuation energy and the random excitation rate which includes both the thermal noise and turbulent self-noise effects. Application is made for example to the current-diffusive interchange mode turbulence in inhomogeneous plasmas. The applicability of this method covers plasma turbulences in much wider circumstance as well as neutral fluid turbulence. This method of analyzing strong turbulence has successfully extended the principles of statistical physics, i.e., Kubo-formula, Prigogine's principle of minimum entropy production rate. The condition for the turbulence transition is analogous to
Turbulent deflagrations, autoignitions, and detonations
Bradley, Derek
2012-09-01
Measurements of turbulent burning velocities in fan-stirred explosion bombs show an initial linear increase with the fan speed and RMS turbulent velocity. The line then bends over to form a plateau of high values around the maximum attainable burning velocity. A further increase in fan speed leads to the eventual complete quenching of the flame due to increasing localised extinctions because of the flame stretch rate. The greater the Markstein number, the more readily does flame quenching occur. Flame propagation along a duct closed at one end, with and without baffles to increase the turbulence, is subjected to a one-dimensional analysis. The flame, initiated at the closed end of the long duct, accelerates by the turbulent feedback mechanism, creating a shock wave ahead of it, until the maximum turbulent burning velocity for the mixture is attained. With the confining walls, the mixture is compressed between the flame and the shock plane up to the point where it might autoignite. This can be followed by a deflagration to detonation transition. The maximum shock intensity occurs with the maximum attainable turbulent burning velocity, and this defines the limit for autoignition of the mixture. For more reactive mixtures, autoignition can occur at turbulent burning velocities that are less than the maximum attainable one. Autoignition can be followed by quasi-detonation or fully developed detonation. The stability of ensuing detonations is discussed, along with the conditions that may lead to their extinction. © 2012 by Pleiades Publishing, Ltd.
Numerical methods for turbulent flow
Turner, James C., Jr.
1988-01-01
It has generally become accepted that the Navier-Strokes equations predict the dynamic behavior of turbulent as well as laminar flows of a fluid at a point in space away form a discontinuity such as a shock wave. Turbulence is also closely related to the phenomena of non-uniqueness of solutions of the Navier-Strokes equations. These second order, nonlinear partial differential equations can be solved analytically for only a few simple flows. Turbulent flow fields are much to complex to lend themselves to these few analytical methods. Numerical methods, therefore, offer the only possibility of achieving a solution of turbulent flow equations. In spite of recent advances in computer technology, the direct solution, by discrete methods, of the Navier-Strokes equations for turbulent flow fields is today, and in the foreseeable future, impossible. Thus the only economically feasible way to solve practical turbulent flow problems numerically is to use statistically averaged equations governing mean-flow quantities. The objective is to study some recent developments relating to the use of numerical methods to study turbulent flow.
Comparison of turbulence mitigation algorithms
Kozacik, Stephen T.; Paolini, Aaron; Sherman, Ariel; Bonnett, James; Kelmelis, Eric
2017-07-01
When capturing imagery over long distances, atmospheric turbulence often degrades the data, especially when observation paths are close to the ground or in hot environments. These issues manifest as time-varying scintillation and warping effects that decrease the effective resolution of the sensor and reduce actionable intelligence. In recent years, several image processing approaches to turbulence mitigation have shown promise. Each of these algorithms has different computational requirements, usability demands, and degrees of independence from camera sensors. They also produce different degrees of enhancement when applied to turbulent imagery. Additionally, some of these algorithms are applicable to real-time operational scenarios while others may only be suitable for postprocessing workflows. EM Photonics has been developing image-processing-based turbulence mitigation technology since 2005. We will compare techniques from the literature with our commercially available, real-time, GPU-accelerated turbulence mitigation software. These comparisons will be made using real (not synthetic), experimentally obtained data for a variety of conditions, including varying optical hardware, imaging range, subjects, and turbulence conditions. Comparison metrics will include image quality, video latency, computational complexity, and potential for real-time operation. Additionally, we will present a technique for quantitatively comparing turbulence mitigation algorithms using real images of radial resolution targets.
International Nuclear Information System (INIS)
Pomeau, Y.
1981-07-01
In this work it is reviewed a few known types of transition to turbulence, as the cascade of period doubling and the intermittent transition. This happens in dynamical systems with a few degrees of freedom, as modelled by the iteration of non linear maps. Then it is presented specific transitions for systems with many degrees of freedom. It is condidered first the occurence of a low frequency broadband noise in large cells at the onset of Rayleigh-Benard convection; then the transition by intermittent bursts in parallel flows. In this last case, one is concerned with localized and finite amplitude perturbations. Simple geometric arguments show that these fluctuations, when they are isolated and with a well definite relative speed, exist for a single value of the Reynolds number only [fr
Statistical properties of turbulence: An overview
Indian Academy of Sciences (India)
the turbulent advection of passive scalars, turbulence in the one-dimensional Burgers equation, and fluid turbulence in the presence of polymer ... However, it is not easy to state what would consti- tute a solution of the turbulence ...... flow with Lagrangian tracers and use a cubic spline interpolation method to calculate their ...
Wind energy impact of turbulence
Hölling, Michae; Ivanell, Stefan
2014-01-01
This book presents the results of the seminar ""Wind Energy and the Impact of Turbulence on the Conversion Process"" which was supported from three societies, namely the EUROMech, EAWE and ERCOFATC and took place in Oldenburg, Germany in spring 2012.The seminar was one of the first scientific meetings devoted to the common topic of wind energy and basic turbulence. The established community of researchers working on the challenging puzzle of turbulence for decades met the quite young community of researchers, who face the upcoming challenges in the fast growing field of wind energy application
Turbulence via information field dynamics
Ensslin, Torsten A.
2015-08-01
Turbulent flows exhibit-scale free regimes, for which information on the statistical properties of the dynamics exists for many length-scales. The simulation of turbulent systems can benefit from the inclusion of such information on sub-grid process. How can statistical information about the flow on small scales be optimally be incorporated into simulation schemes? Information field dynamics (IFD) is a novel information theoretical framework to design schemes that exploit such statistical knowledge on sub-grid flow fluctuations. In this talk, I will introduce the basic idea of IFD, present its first toy applications, and discuss the next steps towards its usage in complex turbulence simulations.
On Lean Turbulent Combustion Modeling
Directory of Open Access Journals (Sweden)
Constantin LEVENTIU
2014-06-01
Full Text Available This paper investigates a lean methane-air flame with different chemical reaction mechanisms, for laminar and turbulent combustion, approached as one and bi-dimensional problem. The numerical results obtained with Cantera and Ansys Fluent software are compared with experimental data obtained at CORIA Institute, France. First, for laminar combustion, the burn temperature is very well approximated for all chemical mechanisms, however major differences appear in the evaluation of the flame front thickness. Next, the analysis of turbulence-combustion interaction shows that the numerical predictions are suficiently accurate for small and moderate turbulence intensity.
Transport of Charged Particles in Turbulent Magnetic Fields
Parashar, T.; Subedi, P.; Sonsrettee, W.; Blasi, P.; Ruffolo, D. J.; Matthaeus, W. H.; Montgomery, D.; Chuychai, P.; Dmitruk, P.; Wan, M.; Chhiber, R.
2017-12-01
Magnetic fields permeate the Universe. They are found in planets, stars, galaxies, and the intergalactic medium. The magnetic field found in these astrophysical systems are usually chaotic, disordered, and turbulent. The investigation of the transport of cosmic rays in magnetic turbulence is a subject of considerable interest. One of the important aspects of cosmic ray transport is to understand their diffusive behavior and to calculate the diffusion coefficient in the presence of these turbulent fields. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here, we will particularly focus on calculating diffusion coefficients of charged particles and magnetic field lines in a fully three-dimensional isotropic turbulent magnetic field with no mean field, which may be pertinent to many astrophysical situations. For charged particles in isotropic turbulence we identify different ranges of particle energy depending upon the ratio of the Larmor radius of the charged particle to the characteristic outer length scale of the turbulence. Different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical ideas are tested against results of detailed numerical experiments using Monte-Carlo simulations of particle propagation in stochastic magnetic fields. We also discuss two different methods of generating random magnetic field to study charged particle propagation using numerical simulation. One method is the usual way of generating random fields with a specified power law in wavenumber space, using Gaussian random variables. Turbulence, however, is non-Gaussian, with variability that comes in bursts called intermittency. We therefore devise a way to generate synthetic intermittent fields which have many properties of realistic turbulence. Possible applications of such synthetically generated intermittent fields are
Intermittent Turbulence in the Very Stable Ekman Layer
Energy Technology Data Exchange (ETDEWEB)
Barnard, James C [Univ. of Washington, Seattle, WA (United States)
2001-01-01
This study describes a Direct Numerical Simulation (DNS) of a very stable Ekman layer in which a constant downward heat flux is applied at the lower boundary, thus cooling the fluid above. Numerical experiments were performed in which the strength of the imposed heat flux was varied. For downward heat fluxes above a certain critical value the turbulence becomes intermittent and, as the heat flux increases beyond this value, the flow tends to relaminarize because of the very strong ambient stratification. We adopt Mahrt?s (1999) definition of the very stable boundary layer as a boundary layer in which intermittent, rather than continuous turbulence, is observed. Numerical experiments were used to test various hypothesis of where in ?stability parameter space? the very stable boundary layer is found. These experiments support the findings of Howell and Sun (1999) that the boundary layer will exhibit intermittency and therefore be categorized as ?very stable?, when the stability parameter, z/L, exceeds unity. Another marker for the very stable boundary layer, Derbyshire?s (1990) maximum heat flux criterion, was also examined. Using a case study drawn from the simulations where turbulence intermittency was observed, the mechanism that causes the intermittence was investigated. It was found that patchy turbulence originates from a vigorous inflectional, Ekman-like instability -- a roll cell -- that lifts colder air over warmer air. The resulting convective instability causes an intense burst of turbulence. This turbulence is short-lived because the lifting motion of the roll cell, as well as the roll cell itself, is partially destroyed after the patchy turbulence is generated. Examples of intermittent turbulence obtained from the simulations appear to be consistent with observations of intermittency even though the Reynolds number of the DNS is relatively low (400).
DNSLab: A gateway to turbulent flow simulation in Matlab
Vuorinen, V.; Keskinen, K.
2016-06-01
Computational fluid dynamics (CFD) research is increasingly much focused towards computationally intensive, eddy resolving simulation techniques of turbulent flows such as large-eddy simulation (LES) and direct numerical simulation (DNS). Here, we present a compact educational software package called DNSLab, tailored for learning partial differential equations of turbulence from the perspective of DNS in Matlab environment. Based on educational experiences and course feedback from tens of engineering post-graduate students and industrial engineers, DNSLab can offer a major gateway to turbulence simulation with minimal prerequisites. Matlab implementation of two common fractional step projection methods is considered: the 2d Fourier pseudo-spectral method, and the 3d finite difference method with 2nd order spatial accuracy. Both methods are based on vectorization in Matlab and the slow for-loops are thus avoided. DNSLab is tested on two basic problems which we have noted to be of high educational value: 2d periodic array of decaying vortices, and 3d turbulent channel flow at Reτ = 180. To the best of our knowledge, the present study is possibly the first to investigate efficiency of a 3d turbulent, wall bounded flow in Matlab. The accuracy and efficiency of DNSLab is compared with a customized OpenFOAM solver called rk4projectionFoam. Based on our experiences and course feedback, the main contribution of DNSLab consists of the following features. (i) The very compact Matlab implementation of present Navier-Stokes solvers provides a gateway to efficient learning of both, physics of turbulent flows, and simulation of turbulence. (ii) Only relatively minor prerequisites on fluid dynamics and numerical methods are required for using DNSLab. (iii) In 2d, interactive results for turbulent flow cases can be obtained. Even for a 3d channel flow, the solver is fast enough for nearly interactive educational use. (iv) DNSLab is made openly available and thus contributing to
Highly turbulent combustion: A study of lifted and shredded flames
Ratner, Albert
The impact of turbulence on flame chemistry in highly turbulent flames has been studied in order to test existing theories and produce data that are useful to the computer modeling community. In these flames, the fuel is injected separately from the air, but a significant amount of premixing occurs prior to combustion. By employing Particle Image Velocimetry (PIV), Planar Laser Induced Fluorescence (PLIF) of chemical species, and exhaust gas sampling, the effect of turbulence on flame chemistry has been quantified for a highly lifted, supersonic flame and for a highly swirled, shredded flame. In the supersonic flame, OH PLIF measurements were combined with combustion efficiency measurements and PIV to help to understand the mixing and flame structure. Negative velocities of more than 200 m/s were identified in the recirculating zones. Mechanisms of fuel-air mixing that result in decreased combustion efficiencies were identified. In the shredded flame, an ultra-high turbulence region was generated to examine what occurs when reaction layers encounter high turbulence levels. The flame was probed with simultaneous CH and OH PLIF and then simultaneous PIV and OH PLIF. It was found that the normalized turbulence level, even though it was ten-times greater than any previous imaging study, still produced no measurable impact on flame reaction layer thickness. This flame was also quantified by measurements of Flame Surface Density (Sigma). The thin flamelet assumption of flamelet theory is found to be valid in these highly turbulent flames. Data are presented that can be used to assess computational models as well as to provide insight into the physical processes of turbulent combustion.
Velocity Statistics Distinguish Quantum Turbulence from Classical Turbulence
International Nuclear Information System (INIS)
Paoletti, M. S.; Fisher, Michael E.; Sreenivasan, K. R.; Lathrop, D. P.
2008-01-01
By analyzing trajectories of solid hydrogen tracers, we find that the distributions of velocity in decaying quantum turbulence in superfluid 4 He are strongly non-Gaussian with 1/v 3 power-law tails. These features differ from the near-Gaussian statistics of homogenous and isotropic turbulence of classical fluids. We examine the dynamics of many events of reconnection between quantized vortices and show by simple scaling arguments that they produce the observed power-law tails
PARTICLE ACCELERATION AND HEATING BY TURBULENT RECONNECTION
Energy Technology Data Exchange (ETDEWEB)
Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis [Department of Physics, Aristotle University of Thessaloniki, GR-52124 Thessaloniki (Greece); Anastasiadis, Anastasios [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Penteli (Greece)
2016-08-10
Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.
Stochastic differential equations and turbulent dispersion
Durbin, P. A.
1983-01-01
Aspects of the theory of continuous stochastic processes that seem to contribute to an understanding of turbulent dispersion are introduced and the theory and philosophy of modelling turbulent transport is emphasized. Examples of eddy diffusion examined include shear dispersion, the surface layer, and channel flow. Modeling dispersion with finite-time scale is considered including the Langevin model for homogeneous turbulence, dispersion in nonhomogeneous turbulence, and the asymptotic behavior of the Langevin model for nonhomogeneous turbulence.
Testbed For Aerothermal Test Technique Development
National Aeronautics and Space Administration — While computational modeling is going to great lengths to reduce the cost of defining aeroheating environments required for space access vehicles, inaccuracies in...
Premixed autoignition in compressible turbulence
Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline
2016-11-01
Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.
Structure and modeling of turbulence
International Nuclear Information System (INIS)
Novikov, E.A.
1995-01-01
The open-quotes vortex stringsclose quotes scale l s ∼ LRe -3/10 (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES)
Energy transfer in compressible turbulence
Bataille, Francoise; Zhou, YE; Bertoglio, Jean-Pierre
1995-01-01
This letter investigates the compressible energy transfer process. We extend a methodology developed originally for incompressible turbulence and use databases from numerical simulations of a weak compressible turbulence based on Eddy-Damped-Quasi-Normal-Markovian (EDQNM) closure. In order to analyze the compressible mode directly, the well known Helmholtz decomposition is used. While the compressible component has very little influence on the solenoidal part, we found that almost all of the compressible turbulence energy is received from its solenoidal counterpart. We focus on the most fundamental building block of the energy transfer process, the triadic interactions. This analysis leads us to conclude that, at low turbulent Mach number, the compressible energy transfer process is dominated by a local radiative transfer (absorption) in both inertial and energy containing ranges.
Turbulence Instrumentation for Stratospheric Airships
National Research Council Canada - National Science Library
Duell, Mark L; Saupe, Lawrence M; Barbeau, Brent E; Robinson, Kris D; Jumper, George Y
2007-01-01
.... The High Altitude Airship is designed to investigate these phenomena. In order to sense atmospheric turbulence at altitudes of the expected flight of the High Altitude Airship of around 65,000ft, a prototype ionic anemometer was constructed...
Stochastic Subspace Modelling of Turbulence
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.
2009-01-01
positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order......, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.......Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...
Turbulence in unmagnetized Vlasov plasmas
International Nuclear Information System (INIS)
Kuo, S.P.
1985-01-01
The classical technique of transformation and characteristics is employed to analyze the problem of strong turbulence in unmagnetized plasmas. The effect of resonance broadening and perturbation expansion are treated simultaneously, without time secularities. The renormalization procedure of Dupree and Tetreault is used in the transformed Vlasov equation to analyze the turbulence and to derive explicitly a diffusion equation. Analyses are extended to inhomogeneous plasmas and the relationship between the transformation and ponderomotive force is obtained. (author)
Momentum transport in gyrokinetic turbulence
Energy Technology Data Exchange (ETDEWEB)
Buchholz, Rico
2016-07-01
In this thesis, the gyrokinetic-Vlasov code GKW is used to study turbulent transport, with a focus on radial transport of toroidal momentum. To support the studies on turbulent transport an eigenvalue solver has been implemented into GKW. This allows to find, not only the most unstable mode, but also subdominant modes. Furthermore it is possible to follow the modes in parameter scans. Furthermore, two fundamental mechanisms that can generate an intrinsic rotation have been investigated: profile shearing and the velocity nonlinearity. The study of toroidal momentum transport in a tokamak due to profile shearing reveals that the momentum flux can not be accurately described by the gradient in the turbulent intensity. Consequently, a description using the profile variation is used. A linear model has been developed that is able to reproduce the variations in the momentum flux as the profiles of density and temperature vary, reasonably well. It uses, not only the gradient length of density and temperature profile, but also their derivative, i.e. the second derivative of the logarithm of the temperature and the density profile. It is shown that both first as well as second derivatives contribute to the generation of a momentum flux. A difference between the linear and nonlinear simulations has been found with respect to the behaviour of the momentum flux. In linear simulations the momentum flux is independent of the normalized Larmor radius ρ{sub *}, whereas it is linear in ρ{sub *} for nonlinear simulations, provided ρ{sub *} is small enough (≤4.10{sup -3}). Nonlinear simulations reveal that the profile shearing can generate an intrinsic rotation comparable to that of current experiments. Under reactor conditions, however, the intrinsic rotation from the profile shearing is expected to be small due to the small normalized Larmor radius ρ{sub *}
Investigation of Turbulence Effects on the Aeroelastic Properties of a Truss Bridge Deck Section
Directory of Open Access Journals (Sweden)
Hoang Trong Lam
2017-12-01
Full Text Available This paper presents the flutter derivatives (FDs extracted from a stochastic system identification (SSI method under different turbulent flows. The objective of the study is to investigate the effects of oncoming turbulence on the flutter of suspended long-span bridges using a section model wind-tunnel test. Several wind-tunnel tests were performed on a truss bridge deck section with different oncoming turbulent properties involving reduced turbulence intensities and turbulent scales. This study includes an investigation of the effect of oncoming flows on modal dynamic responses. The transient and buffeting response data from the wind-tunnel test are analyzed using the system identification technique in extracting FDs, and the difficulties involved in this method are discussed. The time-domain SSI is applied to extract all FDs simultaneously from one and two degree-of-freedom (1DOF and 2DOF systems. Finally, the results under different conditions are discussed and conclusions are formed.
Recent developments in plasma turbulence and turbulent transport
Energy Technology Data Exchange (ETDEWEB)
Terry, P.W. [Univ. of Wisconsin, Madison, WI (United States)
1997-09-22
This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.
Turbulent kinetic energy during wildfires in the north central and north-eastern US
Warren E. Heilman; Xindi. Bian
2010-01-01
The suite of operational fire-weather indices available for assessing the atmospheric potential for extreme fire behaviour typically does not include indices that account for atmospheric boundary-layer turbulence or wind gustiness that can increase the erratic behaviour of fires. As a first step in testing the feasibility of using a quantitative measure of turbulence...
Modeling water droplet condensation and evaporation in DNS of turbulent channel flow
Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.
In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an
Energy Technology Data Exchange (ETDEWEB)
Grotjans, H.
1998-04-01
In the current Software Engineering Module (SEM2) three additional test cases have been investigated, as listed in Chapter 2. For all test cases it has been shown that the computed results are grid independent. This has been done by systematic grid refinement studies. The main objective of the current SEM2 was the verification and validation of the new wall function implementation for the k-{epsilon} mode and the SMC-model. Analytical relations and experimental data have been used for comparison of the computational results. The agreement of the results is good. Therefore, the correct implementation of the new wall function has been demonstrated. As the results in this report have shown, a consistent grid refinement can be done for any test case. This is an important improvement for industrial applications, as no model specific requirements must be considered during grid generation. (orig.)
Li, J.; Collins, R. L.; Newman, D.; Nicolls, M. J.; Varney, R. H.; Thurairajah, B.
2015-12-01
A recent study has shown the ability of the Advanced Modular Incoherent Scatter Radar (AMISR) at Poker Flat Research Range (PFRR, PFISR) to characterize turbulence in the mesosphere (D-Region) [Nicolls et. al, 2011]. We present case studies of AMISR measurements of turbulence where the meteorological conditions are defined by the presence of persistent Mesospheric Inversion Layers (MILs). We consider MILs that are detected by satellite over a day and are also detected by Rayleigh lidar at PFRR [Irving et. al, 2014]. MILs are a signature of large-scale planetary wave breaking in the upper atmosphere, where a region with a temperature inversion lies below a region with an adiabatic lapse rate. The region with the inversion allows small-scale waves to become unstable, break, and generate turbulence. The region with the adiabatic lapse rate is indicative of a well-mixed layer and the presence of turbulence. AMISR-class radars have a steerable narrow beam (1°) and high vertical resolution (750 m). We review the principles and practices of incoherent scatter radar with a focus on detection of D-region turbulence using radar spectra. We present the geometry of the turbulence and the radar, comparing the turbulent, plasma, and radar spatial scales. We develop a turbulence retrieval algorithm using a Voigt function spectral line. We fit the spectra to a Voigt function using the Levenberg-Marquardt method and use the Gaussian component of the Voigt spectra to calculate the RMS velocity, and hence the turbulent energy dissipation rate. With the environmental conditions characterized by satellite and lidar and the turbulence characterized by radar data, we can test the ability of PFISR to characterize mesospheric turbulence under consistent meteorological conditions and develop robust technique for turbulence measurements.
Analytical study of the effects of wind tunnel turbulence on turbofan rotor noise
Gliebe, P. R.
1980-01-01
An analytical study of the effects of wind tunnel turbulence on turbofan rotor noise was carried out to evaluate the effectiveness of the NASA Ames 40 by 80-foot wind tunnel in simulating flight levels of fan noise. A previously developed theory for predicting rotor/turbulence interaction noise, refined and extended to include first-order effects of inlet turbulence anisotropy, was employed to carry out a parametric study of the effects of fan size, blade number, and operating line for outdoor test stand, NASA Ames wind tunnel, and flight inlet turbulence conditions. A major result of this study is that although wind tunnel rotor/turbulence noise levels are not as low as flight levels, they are substantially lower than the outdoor test stand levels and do not mask other sources of fan noise.
TEM turbulence optimisation in stellarators
Proll, J. H. E.; Mynick, H. E.; Xanthopoulos, P.; Lazerson, S. A.; Faber, B. J.
2016-01-01
With the advent of neoclassically optimised stellarators, optimising stellarators for turbulent transport is an important next step. The reduction of ion-temperature-gradient-driven turbulence has been achieved via shaping of the magnetic field, and the reduction of trapped-electron mode (TEM) turbulence is addressed in the present paper. Recent analytical and numerical findings suggest TEMs are stabilised when a large fraction of trapped particles experiences favourable bounce-averaged curvature. This is the case for example in Wendelstein 7-X (Beidler et al 1990 Fusion Technol. 17 148) and other Helias-type stellarators. Using this knowledge, a proxy function was designed to estimate the TEM dynamics, allowing optimal configurations for TEM stability to be determined with the STELLOPT (Spong et al 2001 Nucl. Fusion 41 711) code without extensive turbulence simulations. A first proof-of-principle optimised equilibrium stemming from the TEM-dominated stellarator experiment HSX (Anderson et al 1995 Fusion Technol. 27 273) is presented for which a reduction of the linear growth rates is achieved over a broad range of the operational parameter space. As an important consequence of this property, the turbulent heat flux levels are reduced compared with the initial configuration.
Turbulent/non-turbulent interfaces in jets and wakes
Zecchetto, Marco; Silva, Carlos; Lasef Team
2017-11-01
The characteristics of the turbulent/non-turbulent interface (TNTI) at the edges of jets and wakes at high Reynolds numbers are compared by using new direct numerical simulations (DNS) of temporally evolving planar jets (PJET) and wakes (PWAKE). The new simulations attain a Reynolds number based on the Taylor micro-scale of Reλ 350 which are the highest Reynolds number used so far in numerical investigations of TNTI. The similarities and differences between the TNTIs from PJET and PWAKE are assessed in relation to i) their structure and scaling, ii) the vorticity dynamics and, iii) and entrainment velocity. Portuguese Foundation for Science and Technology (FST); PRACE.
Statistical theory of subcritically-excited strong turbulence in inhomogeneous plasmas (IV)
International Nuclear Information System (INIS)
Itoh, S.I.; Itoh, K.
1999-08-01
A statistical theory of nonlinear-nonequilibrium plasma state with strongly developed turbulence and with strong inhomogeneity of the system has been developed. A Fokker-Planck equation for the probability distribution function of the magnitude of turbulence is deduced. In the statistical description, both the contributions of thermal excitation and turbulence are kept. From the Fokker-Planck equation, the transition probability between the thermal fluctuation and turbulent fluctuation is derived. With respect to the turbulent fluctuations, the coherent part to a certain test mode is renormalized as the drag to the test mode, and the rest, the incoherent part, is considered to be a random noise. The renormalized operator includes the effect of nonlinear destabilization as well as the decorrelation by turbulent fluctuations. The equilibrium distribution function describes the thermal fluctuation, self-sustained turbulence and the hysteresis between them as a function of the plasma gradient. The plasma inhomogeneity is the controlling parameter that governs the turbulence. The formula of transition probability recovers the Arrhenius law in the thermodynamical equilibrium limit. In the presence of self-noise, the transition probability deviates form the exponential law and provides a power law. Application is made to the submarginal interchange mode turbulence, being induced by the turbulent current-diffusivity, in inhomogeneous plasmas. The power law dependence of the transition probability is obtained on the distance between the pressure gradient and the critical gradient for linear instability. Thus a new type of critical exponent is explicitly deduced in the phenomena of subcritical excitation of turbulence. The method provides an extension of the nonequilibrium statistical physics to the far-nonequilibrium states. (orig.)
Coherence in Turbulence: New Perspective
Levich, Eugene
2009-07-01
It is claimed that turbulence in fluids is inherently coherent phenomenon. The coherence shows up clearly as strongly correlated helicity fluctuations of opposite sign. The helicity fluctuations have cellular structure forming clusters that are actually observed as vorticity bands and coherent structures in laboratory turbulence, direct numerical simulations and most obviously in atmospheric turbulence. The clusters are named BCC - Beltrami Cellular Clusters - because of the observed nearly total alignment of the velocity and vorticity fields in each particular cell, and hence nearly maximal possible helicity in each cell; although when averaged over all the cells the residual mean helicity in general is small and does not play active dynamical role. The Beltrami like fluctuations are short-lived and stabilize only in small and generally contiguous sub-domains that are tending to a (multi)fractal in the asymptotic limit of large Reynolds numbers, Re → ∞. For the model of homogeneous isotropic turbulence the theory predicts the leading fractal dimension of BCC to be: DF = 2.5. This particular BCC is responsible for generating the Kolmogorov -5/3 power law energy spectrum. The most obvious role that BCC play dynamically is that the nonlinear interactions in them are relatively reduced, due to strong spatial alignment between the velocity field v(r, t) and the vorticity field ω(r, t) = curlv(r, t), while the physical quantities typically best characterizing turbulence intermittency, such as entrophy, vorticity stretching and generation, and energy dissipation are maximized in and near them. The theory quantitatively relates the reduction of nonlinear inter-actions to the BCC fractal dimension DF and subsequent turbulence intermittency. It is further asserted that BCC is a fundamental feature of all turbulent flows, e.g., wall bounded turbulent flows, atmospheric and oceanic flows, and their leading fractal dimension remains invariant and universal in these flows
Atmospheric turbulence and diffusion research
International Nuclear Information System (INIS)
Hosker, R.P. Jr.
1993-01-01
The Atmospheric Turbulence and Diffusion Division (well known in the atmospheric dispersion community as the Atmospheric Turbulence and Diffusion Laboratory, ATDL) is one of several field facilities of NOAAs Air Resources Laboratory, headquartered in Silver Spring, Maryland. The laboratory conducts research on matters of atmospheric diffusion and turbulent exchange, concerning air quality. ATDD focuses attention on the physics of the lower atmosphere, with special emphasis on the processes contributing to atmospheric transport, dispersion, deposition, and air-surface exchange, and on the development of predictive capabilities using the results of this research. Research is directed toward issues of national and global importance related to the missions of DOE, to DOE's Oak Ridge Field Office, and to NOAA. The program is divided into four major projects: plume transport and diffusion in the planetary boundary layer, complex topography, canopy micrometeorology, and air-surface exchange
Hydrodynamics of Bubble Columns: Turbulence and Population Balance Model
Directory of Open Access Journals (Sweden)
Camila Braga Vieira
2018-03-01
Full Text Available This paper presents an in-depth numerical analysis on the hydrodynamics of a bubble column. As in previous works on the subject, the focus here is on three important parameters characterizing the flow: interfacial forces, turbulence and inlet superficial Gas Velocity (UG. The bubble size distribution is taken into account by the use of the Quadrature Method of Moments (QMOM model in a two-phase Euler-Euler approach using the open-source Computational Fluid Dynamics (CFD code OpenFOAM (Open Field Operation and Manipulation. The interfacial forces accounted for in all the simulations presented here are drag, lift and virtual mass. For the turbulence analysis in the water phase, three versions of the Reynolds Averaged Navier-Stokes (RANS k-ε turbulence model are examined: namely, the standard, modified and mixture variants. The lift force proves to be of major importance for a trustworthy prediction of the gas volume fraction profiles for all the (superficial gas velocities tested. Concerning the turbulence, the mixture k-ε model is seen to provide higher values of the turbulent kinetic energy dissipation rate in comparison to the other models, and this clearly affects the prediction of the gas volume fraction in the bulk region, and the bubble-size distribution. In general, the modified k-ε model proves to be a good compromise between modeling simplicity and accuracy in the study of bubble columns of the kind undertaken here.
Turbulent stress measurements of fibre suspensions in a straight pipe
MacKenzie, Jordan; Söderberg, Daniel; Swerin, Agne; Lundell, Fredrik
2018-02-01
The focus of the present work is an experimental study of the behaviour of semi-dilute, opaque fibre suspensions in fully developed cylindrical pipe flows. Measurements of the normal and turbulent shear stress components and the mean flow were acquired using phase-contrast magnetic resonance velocimetry. Two fibre types, namely, pulp fibre and nylon fibre, were considered in this work and are known to differ in elastic modulus. In total, three different mass concentrations and seven Reynolds numbers were tested to investigate the effects of fibre interactions during the transition from the plug flow to fully turbulent flow. It was found that in fully turbulent flows of nylon fibres, the normal, ⟨uzuz ⟩ +, and shear, ⟨uzur ⟩ + (note that ⟨.⟩ is the temporal average, u is the fluctuating velocity, z is the axial or streamwise component, and r is the radial direction), turbulent stresses increased with Reynolds number regardless of the crowding number (a concentration measure). For pulp fibre, the turbulent stresses increased with Reynolds number when a fibre plug was present in the flow and were spatially similar in magnitude when no fibre plug was present. Pressure spectra revealed that the stiff, nylon fibre reduced the energy in the inertial-subrange with an increasing Reynolds and crowding number, whereas the less stiff pulp fibre effectively cuts the energy cascade prematurely when the network was fully dispersed.
Finite Element Aircraft Simulation of Turbulence
1997-02-01
A Simulation of Rotor Blade Element Turbulence (SORBET) model has been : developed for realtime aircraft simulation that accommodates stochastic : turbulence and distributed discrete gusts as a function of the terrain. This : model is applicable to c...
Chemical Reactions in Turbulent Mixing Flows
National Research Council Canada - National Science Library
Mimotakis, Paul
1998-01-01
.... New measures to characterize level sets in turbulence were developed and successfully employed to characterize experimental data of liquid-phase turbulent-jet flows as well as three-dimensional...
Ion and impurity transport in turbulent, anisotropic magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Negrea, M; Petrisor, I [Department of Physics, Association Euratom-MEdC, Romania, University of Craiova, A.I. Cuza str. 13, Craiova (Romania); Isliker, H; Vogiannou, A; Vlahos, L [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, University of Thessaloniki, Association Euratom-Hellenic Republic, 541 24 Thessaloniki (Greece); Weyssow, B [Physique Statistique-Plasmas, Association Euratom-Etat Belge, Universite Libre de Bruxelles, Campus Plaine, Bd. du Triomphe, 1050 Bruxelles (Belgium)
2011-08-15
We investigate ion and impurity transport in turbulent, possibly anisotropic, magnetic fields. The turbulent magnetic field is modeled as a correlated stochastic field, with Gaussian distribution function and prescribed spatial auto-correlation function, superimposed onto a strong background field. The (running) diffusion coefficients of ions are determined in the three-dimensional environment, using two alternative methods, the semi-analytical decorrelation trajectory (DCT) method, and test-particle simulations. In a first step, the results of the test-particle simulations are compared with and used to validate the results obtained from the DCT method. For this purpose, a drift approximation was made in slab geometry, and relatively good qualitative agreement between the DCT method and the test-particle simulations was found. In a second step, the ion species He, Be, Ne and W, all assumed to be fully ionized, are considered under ITER-like conditions, and the scaling of their diffusivities is determined with respect to varying levels of turbulence (varying Kubo number), varying degrees of anisotropy of the turbulent structures and atomic number. In a third step, the test-particle simulations are repeated without drift approximation, directly using the Lorentz force, first in slab geometry, in order to assess the finite Larmor radius effects, and second in toroidal geometry, to account for the geometric effects. It is found that both effects are important, most prominently the effects due to toroidal geometry and the diffusivities are overestimated in slab geometry by an order of magnitude.
Infulence of atmospheric stability on the spatial structure of turbulence
DEFF Research Database (Denmark)
Chougule, Abhijit S.
This thesis consists of three chapters. In the first chapter, the cross-spectral phases between velocity components at two heights are analyzed from observations at the Høvsøre test site under diabatic conditions. These phases represent the degree to which turbulence sensed at one height leads (or...
Two-scale analysis of intermittency in fully developed turbulence
Energy Technology Data Exchange (ETDEWEB)
Badii, R.; Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
A self-affinity test for turbulent time series is applied to experimental data for the estimation of intermittency exponents. The method employs exact relations satisfied by joint expectations of observables computed across two different length scales. One of these constitutes a verification tool for the existence and the extent of the inertial range. (author) 2 figs., 13 refs.
An experimental investigation of turbulent flow heat transfer through ...
African Journals Online (AJOL)
An experimental investigation has been carried out to study the turbulent flow heat transfer and to determine the pressure drop characteristics of air, flowing through a tube with insert. An insert of special geometry is used inside the tube. The test section is electrically heated, and air is allowed to flow as the working fluid ...
Frontogenesis and turbulent mixing
Zhang, S.; Chen, F.; Shang, Q.
2017-12-01
ageostrophic secondary circulation together with the cross-frontal ageostrophic speed. The mixed characteristic is weak in summer, but the large turbulent dissipation and mixing rate measured in the frontal region, which show that the front promoted exchange of material and energy in the upper ocean.
Phenomenological friction equation for turbulent flow of Bingham fluids.
Anbarlooei, H R; Cruz, D O A; Ramos, F; Santos, Cecilia M M; Silva Freire, A P
2017-08-01
Most discussions in the literature on the friction coefficient of turbulent flows of fluids with complex rheology are empirical. As a rule, theoretical frameworks are not available even for some relatively simple constitutive models. In the present work, a formula is proposed for the evaluation of the friction coefficient of turbulent flows of Bingham fluids. The developments combine a fresh analysis for the description of the microscales of Kolmogorov and the phenomenological turbulence model of Gioia and Chakraborty [G. Gioia and P. Chakraborty, Phys. Rev. Lett. 96, 044502 (2006)PRLTAO0031-900710.1103/PhysRevLett.96.044502]. The resulting Blasius-type friction equation is tested against some experimental data and shows good agreement over a significant range of Hedstrom and Reynolds numbers. Comments on pressure measurements in yielding fluids are made. The limits of the proposed model are also discussed.
Wall pressure signatures of turbulent flow over longitudinal
Directory of Open Access Journals (Sweden)
Abdulbari Hayder A.
2016-01-01
Full Text Available Five triangular riblets longitudinal in the streamwise direction have been studied experimentally. The riblets have pick to pick spaced (s equal to 1000 μm and with groove height to space ratio (h/s 0.4, 0.6, 0.8 and 1. The tests were conducted in a full turbulence water channel on a flat plate for Reynolds numbers 13000 to 53000 based on channel hydraulic diameter. Pressure drop was measured using pressure transmitter gauge with pressure tap points of 12.7 mm in diameter were provided at the bottom of the channel. The main purpose of the present study is to investigate the response of turbulent flow to longitudinal grooves of triangular shaped riblets and compare the effect of the turbulence structure over smoothed and grooved surfaces with pressure drop measurements. 10.20 was the maximum drag reduction appear at h/s equal to (1.
Turbulence transport with nonlocal interactions
Energy Technology Data Exchange (ETDEWEB)
Linn, R.R.; Clark, T.T.; Harlow, F.H.; Turner, L.
1998-03-01
This preliminary report describes a variety of issues in turbulence transport analysis with particular emphasis on closure procedures that are nonlocal in wave-number and/or physical space. Anomalous behavior of the transport equations for large scale parts of the turbulence spectrum are resolved by including the physical space nonlocal interactions. Direct and reverse cascade processes in wave-number space are given a much richer potential for realistic description by the nonlocal formulations. The discussion also describes issues, many still not resolved, regarding new classes of self-similar form functions.
Plasma turbulence effects on aurorae
International Nuclear Information System (INIS)
Mishin, E.V.; Telegin, V.A.
1989-01-01
Analysis of modern state of microprocesses physics in plasma of aurorare, initiated by energetic electron flow intrusion, is presented. It is shown that there is a number of phenomena, which cannot be explained under non-collision (collective) mechanisms of interaction are applied. Effects of plasma turbulence in the area of auroral arcs are considered. Introduction of a new structural element to auroral arc - plasma-turbulence (PT) layer is substantiated. Numerical simulation of electron kinetics, changes in neutral composition, as well as generation of IR- and UV-radiation in PT layer has been realized
Turbulent pressure fluctuations measured during CHATS
Steven P. Oncley; William J. Massman; Edward G. Patton
2008-01-01
Fast-response pressure fluctuations were included in the Canopy Horizontal Array of Turbulence Study (CHATS) at several heights within and just above the canopy in a walnut orchard. Two independent systems were intercompared and then separated. We present an evaluation of turbulence statistics - including the pressure transport term in the turbulence kinetic energy...
PROTOSTELLAR OUTFLOW EVOLUTION IN TURBULENT ENVIRONMENTS
International Nuclear Information System (INIS)
Cunningham, Andrew J.; Frank, Adam; Carroll, Jonathan; Blackman, Eric G.; Quillen, Alice C.
2009-01-01
The link between turbulence in star-forming environments and protostellar jets remains controversial. To explore issues of turbulence and fossil cavities driven by young stellar outflows, we present a series of numerical simulations tracking the evolution of transient protostellar jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. We demonstrate how turbulence will lead to strong modifications in jet morphology. More importantly, we demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Our simulations support a scenario in which the directed energy/momentum associated with cavities is randomized as the cavities are disrupted by dynamical instabilities seeded by the ambient turbulence. Consideration of the energy power spectra of the simulations reveals that the disruption of the cavities powers an energy cascade consistent with Burgers'-type turbulence and produces a driving scale length associated with the cavity propagation length. We conclude that fossil cavities interacting either with a turbulent medium or with other cavities have the capacity to sustain or create turbulent flows in star-forming environments. In the last section, we contrast our work and its conclusions with previous studies which claim that jets cannot be the source of turbulence.
The role of turbulence in explosive magma-water mixing
Mastin, L. G.; Walder, J. S.; Stern, L. A.
2003-12-01
Juvenile tephra from explosive hydromagmatic eruptions differs from that of dry magmatic eruptions by its fine average grain size and highly variable vesicularity. These characteristics are generally interpreted to indicate that fragmentation, which occurs in dry magmas by bubble growth, is supplemented in hydromagmatic eruptions by quench-fracturing. Quench fragmentation is thought to accelerate heat transfer to water, driving violent steam expansion and increasing eruptive violence. Although some observed hydromagmatic events (e.g. at Surtsey) are indeed violent, others (e.g. quiescent entry of lava into the ocean at Kilauea) are not. We suggest that the violence of magma-water mixing and the grain size and dispersal of hydromagmatic tephras are controlled largely by the turbulence of magma-water mixing. At Surtsey, fine-grained, widely dispersed hydromagmatic tephras were produced primarily during continuous uprush events in which turbulent jets of magma and gas passed through shallow water (Thorarinsson, 1967). During Kilauea's current eruption, videos show generation of fine-grained tephras when turbulent jets of magma, steam, and seawater exited through skylights at the coastline. Turbulence intensity, or the fraction of total jet kinetic energy contained in fine-scale turbulent velocity oscillations, has long been known to control the scale of atomization in spray nozzles and the rate of heat transfer and chemical reaction in fuel injectors. We hypothesize that turbulence intensity also influences grain size and heat transfer rate in magma-water mixing, though such processes are complicated by boiling (in water) and quench fracturing (in magma). We are testing this hypothesis in experiments involving turbulent injection of water (a magma analog) into liquid nitrogen (a water analog). We also suggest that turbulent mixing influences relative proportions of magma and water in hydromagmatic eruptions. Empirical studies indicate that pressure-neutral turbulent
Lipkens, B; Blackstock, D T
1998-09-01
A model experiment was reported to be successful in simulating the propagation of sonic booms through a turbulent atmosphere [B. Lipkens and D. T. Blackstock, J. Acoust. Soc. Am. 103, 148-158 (1998)]. In this study the effect on N wave characteristics of turbulence intensity and propagation distance through turbulence are investigated. The main parameters of interest are the rise time and the peak pressure. The effect of turbulence intensity and propagation distance is to flatten the rise time and peak pressure distributions. Rise time and peak pressure distributions always have positive skewness after propagation through turbulence. Average rise time grows with turbulence intensity and propagation distance. The scattering of rise time data is one-sided, i.e., rise times are almost always increased by turbulence. Average peak pressure decreases slowly with turbulence intensity and propagation distance. For the reported data a threefold increase in average rise time is observed and a maximum decrease of about 20% in average peak pressure. Rise times more than ten times that of the no turbulence value are observed. At most, the maximum peak pressure doubles after propagation through turbulence, and the minimum peak pressure values are about one-half the no-turbulence values. Rounded waveforms are always more common than peaked waveforms.
Dissipative structures in magnetorotational turbulence
Ross, Johnathan; Latter, Henrik N.
2018-03-01
Via the process of accretion, magnetorotational turbulence removes energy from a disk's orbital motion and transforms it into heat. Turbulent heating is far from uniform and is usually concentrated in small regions of intense dissipation, characterised by abrupt magnetic reconnection and higher temperatures. These regions are of interest because they might generate non-thermal emission, in the form of flares and energetic particles, or thermally process solids in protoplanetary disks. Moreover, the nature of the dissipation bears on the fundamental dynamics of the magnetorotational instability (MRI) itself: local simulations indicate that the large-scale properties of the turbulence (e.g. saturation levels, the stress-pressure relationship) depend on the short dissipative scales. In this paper we undertake a numerical study of how the MRI dissipates and the small-scale dissipative structures it employs to do so. We use the Godunov code RAMSES and unstratified compressible shearing boxes. Our simulations reveal that dissipation is concentrated in ribbons of strong magnetic reconnection that are significantly elongated in azimuth, up to a scale height. Dissipative structures are hence meso-scale objects, and potentially provide a route by which large scales and small scales interact. We go on to show how these ribbons evolve over time — forming, merging, breaking apart, and disappearing. Finally, we reveal important couplings between the large-scale density waves generated by the MRI and the small-scale structures, which may illuminate the stress-pressure relationship in MRI turbulence.
Turbulent transport in magnetized plasmas
Horton, Wendell
2012-01-01
This book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th century. It describes theory, experiments and simulations in a unified and up-to-date presentation of the issues of achieving nuclear fusion power.
Evaluation of turbulence mitigation methods
van Eekeren, Adam W. M.; Huebner, Claudia S.; Dijk, Judith; Schutte, Klamer; Schwering, Piet B. W.
2014-05-01
Atmospheric turbulence is a well-known phenomenon that diminishes the recognition range in visual and infrared image sequences. There exist many different methods to compensate for the effects of turbulence. This paper focuses on the performance of two software-based methods to mitigate the effects of low- and medium turbulence conditions. Both methods are capable of processing static and dynamic scenes. The first method consists of local registration, frame selection, blur estimation and deconvolution. The second method consists of local motion compensation, fore- /background segmentation and weighted iterative blind deconvolution. A comparative evaluation using quantitative measures is done on some representative sequences captured during a NATO SET 165 trial in Dayton. The amount of blurring and tilt in the imagery seem to be relevant measures for such an evaluation. It is shown that both methods improve the imagery by reducing the blurring and tilt and therefore enlarge the recognition range. Furthermore, results of a recognition experiment using simulated data are presented that show that turbulence mitigation using the first method improves the recognition range up to 25% for an operational optical system.
5th European Turbulence Conference
1995-01-01
Under the auspices of the Euromech Committee, the Fifth European Turbulence Conference was held in Siena on 5-8 July 1994. Following the previous ETC meeting in Lyon (1986), Berlin (1988), Stockholm (1990) and Delft (1992), the Fifth ETC was aimed at providing a review of the fundamental aspects of turbulence from a theoretical, numerical and experimental point of view. In the magnificent town of Siena, more than 250 scientists from all over the world, spent four days discussing new ideas on turbulence. As a research worker in the field of turbulence, I must say that the works presented at the Conference, on which this book is based, covered almost all areas in this field. I also think that this book provides a major opportunity to have a complete overview of the most recent research works. I am extremely grateful to Prof. C. Cercignani, Dr. M. Loffredo, and Prof. R. Piva who, as members of the local organizing committee, share the success of the Conference. I also want to thank Mrs. Liu' Catena, for her inva...
Tackling turbulent flows in engineering
Dewan, Anupam
2011-01-01
Focusing on the engineering aspects of fluid turbulence, this volume offers solutions to the problem in a number of settings. Emphasizing real-world applications rather than mathematics, it will be a must-read text in both industrial and academic environments.
Topology optimization of turbulent flows
DEFF Research Database (Denmark)
Dilgen, Cetin B.; Dilgen, Sumer B.; Fuhrman, David R.
2018-01-01
The aim of this work is to present a fast and viable approach for taking into account turbulence in topology optimization of complex fluid flow systems, without resorting to any simplifying assumptions in the derivation of discrete adjoints. Topology optimization is an iterative gradient...
Magnetic turbulence and anomalous transport
International Nuclear Information System (INIS)
Garbet, X.; Mourgues, F.; Samain, A.
1990-01-01
The self consistency conditions for magnetic turbulence are reviewed. The main features of magnetic topology involving stochastic flux lines are summarized. Two driving sources are considered: thermal effects which require large scale residual islands and electron diamagnetism which involves fluctuation scales smaller than the ion Larmor radius and a β p threshold of order one. Stability criteria and transport coefficients are given
Correlation lengths of electrostatic turbulence
International Nuclear Information System (INIS)
Guiziou, L.; Garbet, X.
1995-01-01
In this paper, the radial correlation length of an electrostatic drift wave turbulence is analytically determined in various regimes. The analysis relies on the calculation of a range of mode non linear interaction, which is an instantaneous correlation length. The link with the usual correlation length has not been investigated yet. (TEC). 5 refs
Turbulent magnetohydrodynamics in liquid metals
International Nuclear Information System (INIS)
Berhanu, Michael
2008-01-01
In electrically conducting fluids, the electromagnetic field is coupled with the fluid motion by induction effects. We studied different magnetohydrodynamic phenomena, using two experiments involving turbulent flows of liquid metal. The first mid-sized uses gallium. The second, using sodium, is conducted within the VKS (Von Karman Sodium) collaboration. It has led to the observation of the dynamo effect, namely converting a part of the kinetic energy of the fluid into magnetic energy. We have shown that, depending on forcing conditions, a statistically stationary dynamo, or dynamical regimes of magnetic field can be generated. In particular, polarity reversals similar to those of Earth's magnetic field were observed. Meanwhile, experiment with Gallium has been developed to study the effects of electromagnetic induction by turbulent flows in a more homogeneous and isotropic configuration than in the VKS experiment. Using data from these two experiments, we studied the advection of magnetic field by a turbulent flow and the induced fluctuations. The development of probes measuring electrical potential difference allowed us to further highlight the magnetic braking of a turbulent flow of Gallium by Lorentz force. This mechanism is involved in the saturation of the dynamo instability. (author) [fr
Turbulence in the Heliospheric Jets
Drake, J. F.; Swisdak, M.; Opher, M.; Hassam, A.; Ohia, O.
2016-12-01
The conventional picture of the heliosphere is that of a comet-shaped structure with an extended tail produced by the relative motion of the sun through the local interstellar medium (LISM). Recent MHD simulations of the global heliosphere have revealed, however, that the heliosphere drives magnetized jets to the North and South similar to those driven by the Crab Nebula and other astrophysical objects. These simulations reveal that the jets become turbulent with scale lengths as large as 100AU [1,2]. An important question is what drives this large-scale turbulence, what are the implications for mixing of interstellar and heliospheric plasma and does this turbulence drive energetic particles? An analytic model of the heliospheric jets in the simple limit in which the interstellar flow and magnetic field are neglected yields an equilibrium state that can be analyzed to explore potential instabilities [3]. Calculations suggest that because the axial magnetic field within the jets is small, the dominant instability is the sausage mode, driven by the azimuthal solar magnetic field. Other drive mechanisms, including Kelvin Helmholtz, are also being explored. 3D MHD and Hall MHD simulations are being carried out to explore the development of this turbulence, its impact on the mixing of interstellar and heliosheath plasma and the production of energetic particles. [1] Opher et al ApJ Lett. 800, L28, 2015[2] Pogorelov et al ApJ Lett. 812,L6, 2015[3] Drake et al ApJ Lett. 808, L44, 2015
Magnetohydrodynamics turbulence: An astronomical perspective
Indian Academy of Sciences (India)
Since the discovery of pulsars in 1967, many years of work on interstellar scintillation suggested that small-scale interstellar turbulence must have a hydromagnetic origin; but the IK spectrum was too ﬂat and the ideas on anisotropic spectra too qualitative to explain the observations. In response, new theories of balanced ...
Wind effect in turbulence parametrization
Colombini, M.; Stocchino, A.
2005-09-01
The action of wind blowing over a closed basin ultimately results in a steady shear-induced circulation pattern and in a leeward rising of the free surface—and a corresponding windward lowering—known as wind set-up. If the horizontal dimensions of the basin are large with respect to the average flow depth, the occurrence of local quasi-equilibrium conditions can be expected, i.e. the flow can be assumed to be locally driven only by the wind stress and by the opposing free surface gradient due to set-up. This wind-induced flow configuration shows a strong similarity with turbulent Couette-Poiseuille flow, the one dimensional flow between parallel plates generated by the simultaneous action of a constant pressure gradient and of the shear induced by the relative motion of the plates. A two-equation turbulence closure is then employed to perform a numerical study of turbulent Couette-Poiseuille flows for different values of the ratio of the shear stresses at the two walls. The resulting eddy viscosity vertical distributions are analyzed in order to devise analytical profiles of eddy viscosity that account for the effect of wind. The results of this study, beside allowing for a physical insight on the turbulence process of this class of flows, will allow for a more accurate description of the wind effect to be included in the formulation of quasi-3D and 3D models of lagoon hydrodynamics.
Turbulent jet in confined counterflow
Indian Academy of Sciences (India)
Abstract. The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct ...
Magnetohydrodynamics turbulence: An astronomical perspective
Indian Academy of Sciences (India)
solar-wind turbulence show that there is more power in Alfvén waves that travel away from the. Sun than towards it. .... to ˆz is called the Alfvén wave, and the other orthogonal component is called the Slow. (magnetosonic) ...... advanced in the text suffices for our phenomenological account in this review. [46] A Beresnyak ...
Turbulent jet in confined counterflow
Indian Academy of Sciences (India)
The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct limit of ...
Stochastic acceleration by hydromagnetic turbulence
International Nuclear Information System (INIS)
Kulsrud, R.M.
1979-03-01
A general theory for particle acceleration by weak hydromagnetic turbulence with a given spectrum of waves is described. Various limiting cases, corresponding to Fermi acceleration and magnetic pumping, are discussed and two numerical examples illustrating them are given. An attempt is made to show that the expression for the rate of Fermi acceleration is valid for finite amplitudes
Study of the blowing impact on a hot turbulent boundary layer using Thermal Large Eddy Simulation
International Nuclear Information System (INIS)
Brillant, G.; Husson, S.; Bataille, F.; Ducros, F.
2008-01-01
We investigate Thermal Large Eddy Simulation in a complex case using Trio U. We develop a thermal turbulent inflow condition based on parallel flows in order to simulate a turbulent thermal boundary layer. This inflow condition is tested with a turbulent channel flow. We show that it produces fine profiles for velocity and temperature. Later, this inlet condition is used in the case of blowing through a porous plate. Two different blowing regimes are studied: the classical turbulent boundary layer and the blown off boundary layer. Comparisons show that we obtain similar experimental and numerical profiles (Brillant, G., Husson, S., Bataille, F., 2008. Experimental study of the blowing impact on a hot turbulent boundary layer. International Journal of Heat and Mass Transfer 51 (7-8), 1996-2005.). We finish with additional results obtained only through numerical simulations
Study of the blowing impact on a hot turbulent boundary layer using Thermal Large Eddy Simulation
Energy Technology Data Exchange (ETDEWEB)
Brillant, G. [CEA/Grenoble DEN/DER/SSTH/LMDL, 17 rue des Martyrs 38054, Grenoble Cedex 9 (France); INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France); Husson, S. [INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France); Bataille, F. [INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France)], E-mail: Francoise.Daumas-Bataille@univ-perp.fr; Ducros, F. [CEA/Grenoble DEN/DER/SSTH/LMDL, 17 rue des Martyrs 38054, Grenoble Cedex 9 (France)
2008-12-15
We investigate Thermal Large Eddy Simulation in a complex case using Trio U. We develop a thermal turbulent inflow condition based on parallel flows in order to simulate a turbulent thermal boundary layer. This inflow condition is tested with a turbulent channel flow. We show that it produces fine profiles for velocity and temperature. Later, this inlet condition is used in the case of blowing through a porous plate. Two different blowing regimes are studied: the classical turbulent boundary layer and the blown off boundary layer. Comparisons show that we obtain similar experimental and numerical profiles (Brillant, G., Husson, S., Bataille, F., 2008. Experimental study of the blowing impact on a hot turbulent boundary layer. International Journal of Heat and Mass Transfer 51 (7-8), 1996-2005.). We finish with additional results obtained only through numerical simulations.
Local Turbulent Energy Dissipation Rate in a Vessel Agitated by a Rushton Turbine
Directory of Open Access Journals (Sweden)
Šulc Radek
2015-06-01
Full Text Available The scaling of turbulence characteristics such as turbulent fluctuation velocity, turbulent kinetic energy and turbulent energy dissipation rate was investigated in a mechanically agitated vessel 300 mm in inner diameter stirred by a Rushton turbine at high Reynolds numbers in the range 50 000 < Re < 100 000. The hydrodynamics and flow field was measured using 2-D TR PIV. The convective velocity formulas proposed by Antonia et al. (1980 and Van Doorn (1981 were tested. The turbulent energy dissipation rate estimated independently in both radial and axial directions using the one-dimensional approach was not found to be the same in each direction. Using the proposed correction, the values in both directions were found to be close to each other. The relation ε/(N3·D2 ∞ const. was not conclusively confirmed.
A Fast-Response Atmospheric Turbulence (FRAT) Probe with Gas-Sampling Ducts, Phase I
National Aeronautics and Space Administration — The objective of this proposal is to design, construct and test a high-frequency-response air-data probe, the Fast Response Atmospheric Turbulence probe (FRAT probe)...
Phase-space diffusion in turbulent plasmas: The random acceleration problem revisited
DEFF Research Database (Denmark)
Pécseli, H.L.; Trulsen, J.
1991-01-01
Phase-space diffusion of test particles in turbulent plasmas is studied by an approach based on a conditional statistical analysis of fluctuating electrostatic fields. Analytical relations between relevant conditional averages and higher-order correlations, , and triple...
Simulation and modeling of turbulent flows
Gatski, Thomas B; Lumley, John L
1996-01-01
This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.
An introduction to turbulence and its measurement
Bradshaw, P
1971-01-01
An Introduction to Turbulence and Its Measurement is an introductory text on turbulence and its measurement. It combines the physics of turbulence with measurement techniques and covers topics ranging from measurable quantities and their physical significance to the analysis of fluctuating signals, temperature and concentration measurements, and the hot-wire anemometer. Examples of turbulent flows are presented. This book is comprised of eight chapters and begins with an overview of the physics of turbulence, paying particular attention to Newton's second law of motion, the Newtonian viscous f
Perry, R.; Farley , M.; Hansen, G.; Morse , J.; Rondorf, D.
2005-01-01
Passage through dams is a major source of mortality of anadromous juvenile salmonids because some populations must negotiate up to eight dams in Columbia and Snake rivers. Dams cause direct mortality when fish pass through turbines, but dams may also cause indirect mortality by altering migration conditions in rivers. Forebays immediately upstream of dams have decreased the water velocity of rivers and may contribute substantially to the total migration delay of juvenile salmonids. Recently, Coutant (2001a) suggested that in addition to low water velocities, lack of natural turbulence may contribute to migration delay by causing fish to lose directional cues. Coutant (2001a) further hypothesized that restoring turbulence in dam forebays may reduce migration delay by providing directional cues that allow fish to find passage routes more quickly (Coutant 2001a). Although field experiments have yielded proof of the concept of using induced turbulence to guide fish to safe passage routes, little is known about mechanisms actually causing behavioral changes. To test hypotheses about how turbulence influences movement and behavior of migrating juvenile salmonids, we conducted two types of controlled experiments at Cowlitz Falls Dam, Washington. A common measure of migration delay is the elapsed time between arrival at, and passage through, a dam. Therefore, for the first set of experiments, we tested the effect of induced turbulence on the elapsed time needed for fish to traverse through a raceway and pass over a weir at its downstream end (time trial experiment). If turbulence helps guide fish to passage routes, then fish should pass through the raceway quicker in the presence of appropriately scaled and directed turbulent cues. Second, little is known about how the physical properties of water movement provide directional cues to migrating juvenile salmonids. To examine the feasibility of guiding fish with turbulence, we tested whether directed turbulence could guide
Energy Technology Data Exchange (ETDEWEB)
Perry, Russell W.; Farley, M. Jared; Hansen, Gabriel S. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)
2005-07-01
Passage through dams is a major source of mortality of anadromous juvenile salmonids because some populations must negotiate up to eight dams in Columbia and Snake rivers. Dams cause direct mortality when fish pass through turbines, but dams may also cause indirect mortality by altering migration conditions in rivers. Forebays immediately upstream of dams have decreased the water velocity of rivers and may contribute substantially to the total migration delay of juvenile salmonids. Recently, Coutant (2001a) suggested that in addition to low water velocities, lack of natural turbulence may contribute to migration delay by causing fish to lose directional cues. Coutant (2001a) further hypothesized that restoring turbulence in dam forebays may reduce migration delay by providing directional cues that allow fish to find passage routes more quickly (Coutant 2001a). Although field experiments have yielded proof of the concept of using induced turbulence to guide fish to safe passage routes, little is known about mechanisms actually causing behavioral changes. To test hypotheses about how turbulence influences movement and behavior of migrating juvenile salmonids, we conducted two types of controlled experiments at Cowlitz Falls Dam, Washington. A common measure of migration delay is the elapsed time between arrival at, and passage through, a dam. Therefore, for the first set of experiments, we tested the effect of induced turbulence on the elapsed time needed for fish to traverse through a raceway and pass over a weir at its downstream end (time trial experiment). If turbulence helps guide fish to passage routes, then fish should pass through the raceway quicker in the presence of appropriately scaled and directed turbulent cues. Second, little is known about how the physical properties of water movement provide directional cues to migrating juvenile salmonids. To examine the feasibility of guiding fish with turbulence, we tested whether directed turbulence could guide
Topics in strong Langmuir turbulence
International Nuclear Information System (INIS)
Skoric, M.M.
1981-01-01
This thesis discusses certain aspects of the turbulence of a fully ionised non-isothermal plasma dominated by the Langmuir mode. Some of the basic properties of strongly turbulent plasmas are reviewed. In particular, interest is focused on the state of Langmuir turbulence, that is the turbulence of a simple externally unmagnetized plasma. The problem of the existence and dynamics of Langmuir collapse is discussed, often met as a non-linear stage of the modulational instability in the framework of the Zakharov equations (i.e. simple time-averaged dynamical equations). Possible macroscopic consequences of such dynamical turbulent models are investigated. In order to study highly non-linear collapse dynamics in its advanced stage, a set of generalized Zakharov equations are derived. Going beyond the original approximation, the author includes the effects of higher electron non-linearities and a breakdown of slow-timescale quasi-neutrality. He investigates how these corrections may influence the collapse stabilisation. Recently, it has been realised that the modulational instability in a Langmuir plasma will be accompanied by the collisionless-generation of a slow-timescale magnetic field. Accordingly, a novel physical situation has emerged which is investigated in detail. The stability of monochromatic Langmuir waves in a self-magnetized Langmuir plasma, is discussed, and the existence of a novel magneto-modulational instability shown. The wave collapse dynamics is investigated and a physical interpretation of the basic results is given. A problem of the transient analysis of an interaction of time-dependent electromagnetic pulses with linear cold plasma media is investigated. (Auth.)
Experiments in turbulent pipe flow
Energy Technology Data Exchange (ETDEWEB)
Torbergsen, Lars Even
1998-12-31
This thesis reports experimental results for the mean velocity and turbulence statistics in two straight pipe sections for bulk Reynolds numbers in the range 22000 to 75000. The flow was found consistent with a fully developed state. Detailed turbulence spectra were obtained for low and moderate turbulent Reynolds number. For the pipe centre line location at R{sub {lambda}} = 112, a narrow range in the streamwise power spectrum applied to the -5/3 inertial subrange. However this range was influenced both by turbulence production and viscous dissipation, and therefore did not reflect a true inertial range. The result indicates how the intermediate range between the production and dissipative scales can be misinterpreted as an inertial range for low and moderate R{sub {lambda}}. To examine the universal behaviour of the inertial range, the inertial scaling of the streamwise power spectrum is compared to the inertial scaling of the second order longitudinal velocity structure function, which relate directly by a Fourier transform. Increasing agreement between the Kolmogorov constant C{sub K} and the second order structure function scaling constant C{sub 2} was observed with increasing R{sub {lambda}}. The result indicates that a true inertial range requires several decades of separation between the energy containing and dissipative scales. A method for examining spectral anisotropy is reported and applied to turbulence spectra in fully developed pipe flow. It is found that the spectral redistribution from the streamwise to the two lateral spectra goes primarily to the circumferential component. Experimental results are reported for an axisymmetric contraction of a fully developed pipe flow. 67 refs., 75 figs., 9 tabs.
Yan, Zheng
This dissertation provides an experimental test of the basic theory of the self-regulating drift wave turbulence (DWT)/sheared zonal flow (ZF) system in a cylindrical plasma device. The work is carried out from three approaches: the first explores the statistical properties of the turbulent Reynolds stress and its link to the ZF generation, the second investigates the dynamical behavior of the DWT/ZF system and the third investigates the variation of the DWT driven ZF verses magnetic field strength and ion-neutral drag. A radially sheared azimuthally symmetric plasma flow is generated by the DWT turbulent Reynolds stress which is directly measured by a multi-tip Langmuir probe. A statistical analysis shows that the cross-phase between the turbulent radial and azimuthal velocity components is the key factor determining the detailed Reynolds stress profile. The coincidence of the radial location of the non-Gaussian distribution of the turbulent Reynolds stress and the ion saturation current, as well as the properties of the joint probability distribution function (PDF) between the radial particle flux and turbulent Reynolds stress suggest that the bursts of the particle transport appear to be associated with radial transport of azimuthal momentum as well. The results link the behavior of the Reynolds stress, its statistical properties, generation of bursty radially going azimuthal momentum transport events, and the formation of the large-scale ZF. From both Langmuir probe and fast-faming imaging measurements this shear flow is found to evolve with low frequency (˜250-300Hz). The envelope of the higher frequency (above 5kHz) floating potential fluctuations associated with the DWT, the density gradient, and the turbulent radial particle flux are all modulated out of phase with the strength of the ZF. The divergence of the turbulent Reynolds stress is also modulated at the same slow time scale in a phase-coherent manner consistent with a turbulence-driven shear flow
Turbulence in Accretion Discs. The Global Baroclinic Instability
Klahr, Hubert; Bodenheimer, Peter
The transport of angular momentum away from the central object is a sufficient condition for a protoplanetary disk to accrete matter onto the star and spin it down. Magnetic fields cannot be of importance for this process in a large part of the cold and dusty disk where the planets supposedly form. Our new hypothesis on the angular momentum transport based on radiation hydro simulations is as follows: We present the global baroclinic instability as a source for vigorous turbulence leading to angular momentum transport in Keplerian accretion disks. We show by analytical considerations and three-dimensional radiation hydro simulations that, in particular, protoplanetary disks have a negative radial entropy gradient, which makes them baroclinic. Two-dimensional numerical simulations show that this baroclinic flow is unstable and produces turbulence. These findings are currently tested for numerical effects by performing barotropic simulations which show that imposed turbulence rapidly decays. The turbulence in baroclinic disks draws energy from the background shear, transports angular momentum outward and creates a radially inward bound accretion of matter, thus forming a self consistent process. Gravitational energy is transformed into turbulent kinetic energy, which is then dissipated, as in the classical accretion paradigm. We measure accretion rates in 2D and 3D simulations of dot M= - 10-9 to -10-7 Msolar yr-1 and viscosity parameters of α = 10-4 - 10-2, which fit perfectly together and agree reasonably with observations. The turbulence creates pressure waves, Rossby waves, and vortices in the (r-φ) plane of the disk. We demonstrate in a global simulation that these vortices tend to form out of little background noise and to be long-lasting features, which have already been suggested to lead to the formation of planets.
Computational simulation of turbulent natural convection in a corium pool
Energy Technology Data Exchange (ETDEWEB)
Vieira, Camila B.; Su, Jian, E-mail: camila@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Cursos de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Niceno, Bojan, E-mail: bojan.niceno@psi.ch [Paul Scherrer Institut (PSI), Villigen (Switzerland). Nuclear Energy and Safety
2013-07-01
After a severe accident in a nuclear power plant, the total thermal loading on the vessel of a nuclear reactor is controlled by the convective heat transfer. Taking that fact into account, this work aimed to analyze the turbulent natural convection inside a representative lower head cavity. By means of an open-source CFD code, OpenFOAM (Open Field Operation and Manipulation), numerical simulations were performed to investigate a volumetrically heated fluid (Pr = 7.0) at internal Rayleigh (Ra) numbers ranging from 10{sup 8} to 10{sup 15}. Bearing in mind that severe accident scenario and the physical-chemical effects are many and complex, the fluid analyzed was considered Newtonian, with constant physical properties, homogeneous and single phase. Even working with that simplifications, the modeling of turbulent natural convection has posed a considerable challenge for the Reynolds Averaged Navier-Stokes (RANS) equations based models, not only because of the complete unsteadiness of the flow and the strong turbulence effects in the near wall regions, but also because of the correct treatment of the turbulent heat fluxes (θu{sub i}). So, this work outlined three approaches for treating the turbulent heat fluxes: the Simple Gradient Diffusion Hypothesis (SGDH), the Generalized Gradient Diffusion Hypothesis (GGDH) and the Algebraic Flux Model (AFM). Simulations performed at BALI test based geometry with a four equations model, k-ε-v{sup 2} -f (commonly called as v{sup 2}-f and V2-f), showed that despite of AFM and GGDH have provided reasonable agreement with experimental data for turbulent natural convection in a differentially heated cavity, they proved to be very unstable for buoyancy-driven flows with internal source in comparison to SGDH model. (author)
Computational simulation of turbulent natural convection in a corium pool
International Nuclear Information System (INIS)
Vieira, Camila B.; Su, Jian; Niceno, Bojan
2013-01-01
After a severe accident in a nuclear power plant, the total thermal loading on the vessel of a nuclear reactor is controlled by the convective heat transfer. Taking that fact into account, this work aimed to analyze the turbulent natural convection inside a representative lower head cavity. By means of an open-source CFD code, OpenFOAM (Open Field Operation and Manipulation), numerical simulations were performed to investigate a volumetrically heated fluid (Pr = 7.0) at internal Rayleigh (Ra) numbers ranging from 10 8 to 10 15 . Bearing in mind that severe accident scenario and the physical-chemical effects are many and complex, the fluid analyzed was considered Newtonian, with constant physical properties, homogeneous and single phase. Even working with that simplifications, the modeling of turbulent natural convection has posed a considerable challenge for the Reynolds Averaged Navier-Stokes (RANS) equations based models, not only because of the complete unsteadiness of the flow and the strong turbulence effects in the near wall regions, but also because of the correct treatment of the turbulent heat fluxes (θu i ). So, this work outlined three approaches for treating the turbulent heat fluxes: the Simple Gradient Diffusion Hypothesis (SGDH), the Generalized Gradient Diffusion Hypothesis (GGDH) and the Algebraic Flux Model (AFM). Simulations performed at BALI test based geometry with a four equations model, k-ε-v 2 -f (commonly called as v 2 -f and V2-f), showed that despite of AFM and GGDH have provided reasonable agreement with experimental data for turbulent natural convection in a differentially heated cavity, they proved to be very unstable for buoyancy-driven flows with internal source in comparison to SGDH model. (author)
Superhydrophobic Drag Reduction in Various Turbulent Flows
Gose, James W.; Tuteja, Anish; Perlin, Marc; Ceccio, Steven L.
2017-11-01
Superhydrophobic surfaces (SHSs) have been studied exhaustively in laminar flow applications while interest in SHS drag reduction in turbulent flow applications has been increasing steadily. In this discussion, we will highlight recent advances of SHS applications in various high-Reynolds number flows. We will address the application of mechanically robust and scalable spray SHSs in three cases: fully-developed internal flow; a near-zero pressure gradient turbulent boundary layer; and an axisymmetric DARPA SUBOFF model. The model will be towed in the University of Michigan's Physical Model Basin. Experimental measurements of streamwise pressure drop and the near-wall flow via Particle Image Velocimetry and Laser Doppler Velocimetry will be discussed where applicable. Moreover, integral measurement of the total resistance of the SUBOFF model, with and without SHS application, will be examined. The SUBOFF model extends 2.6 m and is 0.3 m in diameter, and will be tested at water depths of three to six model diameters. Previous investigation of these SHSs have proven that skin-friction savings of 20% or more can be attained for friction Reynolds numbers greater than of 1,000. This project was carried out as part of the U.S. Office of Naval Research (ONR) MURI (Multidisciplinary University Research Initiatives) program (Grant No. N00014-12-1-0874) managed by Dr. Ki-Han Kim and led by Dr. Steven L. Ceccio.
Turbulent Flow past High Temperature Surfaces
Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald
2014-11-01
Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.
PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert
2008-10-01
The goals of the International Conference `Turbulent Mixing and Beyond' are to expose the generic problem of Turbulence and Turbulent Mixing in Unsteady Flows to a wide scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the non-canonical turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together scientists from the areas which include, but are not limited to, high energy density physics, plasmas, fluid dynamics, turbulence, combustion, material science, geophysics, astrophysics, optics and telecommunications, applied mathematics, probability and statistics, and to have their attention focused on the long-standing formidable task. The Turbulent Mixing and Turbulence in Unsteady Flows, including multiphase flows, plays a key role in a wide variety of phenomena, ranging from astrophysical to nano-scales, under either high or low energy density conditions. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, properties of materials under high strain rates, strong shocks, explosions, blast waves, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, oceanography, atmospheric flows, unsteady boundary layers, hypersonic and supersonic flows, are a few examples to list. A grip on unsteady turbulent processes is crucial for cutting-edge technology such as laser-micromachining and free-space optical telecommunications, and for industrial applications in aeronautics. Unsteady Turbulent Processes are anisotropic, non-local and multi-scale, and their fundamental scaling, spectral and invariant properties depart from the classical Kolmogorov scenario. The singular aspects and similarity of the
Incompressible Turbulent Flow Simulation Using the κ-ɛ Model and Upwind Schemes
Directory of Open Access Journals (Sweden)
V. G. Ferreira
2007-01-01
Full Text Available In the computation of turbulent flows via turbulence modeling, the treatment of the convective terms is a key issue. In the present work, we present a numerical technique for simulating two-dimensional incompressible turbulent flows. In particular, the performance of the high Reynolds κ-ɛ model and a new high-order upwind scheme (adaptative QUICKEST by Kaibara et al. (2005 is assessed for 2D confined and free-surface incompressible turbulent flows. The model equations are solved with the fractional-step projection method in primitive variables. Solutions are obtained by using an adaptation of the front tracking GENSMAC (Tomé and McKee (1994 methodology for calculating fluid flows at high Reynolds numbers. The calculations are performed by using the 2D version of the Freeflow simulation system (Castello et al. (2000. A specific way of implementing wall functions is also tested and assessed. The numerical procedure is tested by solving three fluid flow problems, namely, turbulent flow over a backward-facing step, turbulent boundary layer over a flat plate under zero-pressure gradients, and a turbulent free jet impinging onto a flat surface. The numerical method is then applied to solve the flow of a horizontal jet penetrating a quiescent fluid from an entry port beneath the free surface.
An Experimental Investigation of Premixed Combustion in Extreme Turbulence
Wabel, Timothy Michael
This work has explored various aspects of high Reynolds number combustion that have received much previous speculation. A new high-Reynolds number premixed Bunsen burner, called Hi-Pilot, was designed to produce turbulence intensities in the extreme range of turbulence. The burner was modified several times in order to prevent boundary layer separation in the nozzle, and a large co-flow was designed that was capable of maintaining reactions over the entire flame surface. Velocity and turbulence characteristics were measured using a combination of Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). Flame structure was studied using a combination of formaldehyde (CH2O), hydroxyl (OH), and the CH radical. Planar Laser Induced Fluorescence (PLIF). The spatial Overlap of formaldehyde and OH PLIF qualitatively measures the reaction rate between formaldehyde molecules and OH radicals, and is a measure of the reaction layers of the flame. CH PLIF provides an alternative measure of the reaction zone, and was measured to compare with the Overlap PLIF results. Reaction layers are the full-width at half-maximum of the Overlap or CH PLIF signal, and extinction events were defined as regions where the PLIF signal drops below this threshold. Preheat structures were measured using formaldehyde PLIF, and are defined as beginning at 35% of the local maximum PLIF signal, and continue up to the leading edge of the reaction layer. Previous predictions of regime diagram boundaries were tested at the largest values of turbulent Reynolds number to date. The Overlap and CH PLIF diagnostics allowed extensive testing of the predicted broken reaction zones boundary of Peters. Measurements indicated that all run conditions are in the Broadened Preheat - Thin Reaction layers regime, but several conditions are expected to display a broken reaction zone structure. Therefore the work shows that Peters's predicted boundary is not correct, and therefore a Karlovitz number of 100 is
Active control for turbulent premixed flame simulations
Energy Technology Data Exchange (ETDEWEB)
Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.
2004-03-26
Many turbulent premixed flames of practical interest are statistically stationary. They occur in combustors that have anchoring mechanisms to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. As a result, typical detailed simulations are performed in simplified model configurations such as decaying isotropic turbulence or inflowing turbulence. In these configurations, the turbulence seen by the flame either decays or, in the latter case, increases as the flame accelerates toward the turbulent inflow. This limits the duration of the eddy evolutions experienced by the flame at a given level of turbulent intensity, so that statistically valid observations cannot be made. In this paper, we apply a feedback control to computationally stabilize an otherwise unstable turbulent premixed flame in two dimensions. For the simulations, we specify turbulent in flow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm. We use the simulations to study the propagation and the local chemical variability of turbulent flame chemistry.
John Leask Lumley: Whither Turbulence?
Leibovich, Sidney; Warhaft, Zellman
2018-01-01
John Lumley's contributions to the theory, modeling, and experiments on turbulent flows played a seminal role in the advancement of our understanding of this subject in the second half of the twentieth century. We discuss John's career and his personal style, including his love and deep knowledge of vintage wine and vintage cars. His intellectual contributions range from abstract theory to applied engineering. Here we discuss some of his major advances, focusing on second-order modeling, proper orthogonal decomposition, path-breaking experiments, research on geophysical turbulence, and important contributions to the understanding of drag reduction. John Lumley was also an influential teacher whose books and films have molded generations of students. These and other aspects of his professional career are described.
Model for Simulation Atmospheric Turbulence
DEFF Research Database (Denmark)
Lundtang Petersen, Erik
1976-01-01
A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance...... eigenfunctions and estimates of the distributions of the corresponding expansion coefficients. The simulation method utilizes the eigenfunction expansion procedure to produce preliminary time histories of the three velocity components simultaneously. As a final step, a spectral shaping procedure is then applied....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....
Flux driven turbulence in tokamaks
International Nuclear Information System (INIS)
Garbet, X.; Ghendrih, P.; Ottaviani, M.; Sarazin, Y.; Beyer, P.; Benkadda, S.; Waltz, R.E.
1999-01-01
This work deals with tokamak plasma turbulence in the case where fluxes are fixed and profiles are allowed to fluctuate. These systems are intermittent. In particular, radially propagating fronts, are usually observed over a broad range of time and spatial scales. The existence of these fronts provide a way to understand the fast transport events sometimes observed in tokamaks. It is also shown that the confinement scaling law can still be of the gyroBohm type in spite of these large scale transport events. Some departure from the gyroBohm prediction is observed at low flux, i.e. when the gradients are close to the instability threshold. Finally, it is found that the diffusivity is not the same for a turbulence calculated at fixed flux than at fixed temperature gradient, with the same time averaged profile. (author)
Electromotive force in strongly compressible magnetohydrodynamic turbulence
Yokoi, N.
2017-12-01
Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow
Turbulent diffusion of small particles
Energy Technology Data Exchange (ETDEWEB)
Margolin, L.G.
1977-11-01
The diffusion of small, spherical, rigid particles suspended in an incompressible turbulent fluid, but not interacting with each other, was studied. As a stochastic process, the turbulent fluid velocity field is assumed to be homogeneous, isotropic and stationary. Assuming the Stokes regime, a particle of equation of motion is used which includes only the effects of Stokes drag and a virtual mass force and an exact solution is found for the particle velocity correlation function, for all times and initial conditions, in terms of a fluid velocity correlation function measured along the motion of the particle. This shows that for times larger than a certain time scale, the particle velocity correlation becomes stationary. The effect of small shears in the fluid velocity was considered, under the additional restrictions of a certain high frequency regime for the turbulence. The shears convected past the particle much faster than the growth of the boundary layer. New force terms due to the presence of such shears are calculated and incorporated into the equation of motion. A perturbation solution to this equation is constructed, and the resultant particle velocity correlation function and diffusion coefficient are calculated. To lowest order, the particle diffusivity is found to be unaltered by the presence of small mean flow shears. The last model treated is one in which particles traverse a turbulent fluid with a large mean velocity. Among other restrictions, linearized form drag is assumed. The diffusion coefficient for such particles was calculated, and found to be much smaller than the passive scalar diffusion coefficient. This agrees within 5 percent with the experimental results of Snyder and Lumley.
Turbulent diffusion of small particles
International Nuclear Information System (INIS)
Margolin, L.G.
1977-11-01
The diffusion of small, spherical, rigid particles suspended in an incompressible turbulent fluid, but not interacting with each other, was studied. As a stochastic process, the turbulent fluid velocity field is assumed to be homogeneous, isotropic and stationary. Assuming the Stokes regime, a particle of equation of motion is used which includes only the effects of Stokes drag and a virtual mass force and an exact solution is found for the particle velocity correlation function, for all times and initial conditions, in terms of a fluid velocity correlation function measured along the motion of the particle. This shows that for times larger than a certain time scale, the particle velocity correlation becomes stationary. The effect of small shears in the fluid velocity was considered, under the additional restrictions of a certain high frequency regime for the turbulence. The shears convected past the particle much faster than the growth of the boundary layer. New force terms due to the presence of such shears are calculated and incorporated into the equation of motion. A perturbation solution to this equation is constructed, and the resultant particle velocity correlation function and diffusion coefficient are calculated. To lowest order, the particle diffusivity is found to be unaltered by the presence of small mean flow shears. The last model treated is one in which particles traverse a turbulent fluid with a large mean velocity. Among other restrictions, linearized form drag is assumed. The diffusion coefficient for such particles was calculated, and found to be much smaller than the passive scalar diffusion coefficient. This agrees within 5 percent with the experimental results of Snyder and Lumley
Conditional Eddies in Plasma Turbulence
DEFF Research Database (Denmark)
Johnsen, H.; Pécseli, H.L.; Trulsen, J.
1987-01-01
Low‐frequency electrostatic turbulence generated by the ion–ion beam instability was investigated experimentally in a double‐plasma device. Real time signals were recorded and examined by a conditional statistical analysis. Conditionally averaged potential distributions reveal the formation...... and propagation of structures with a relatively long lifetime. Various methods for making a conditional analysis are discussed and compared. The results are discussed with reference to ion phase space vortices and clump formation in collisionless plasmas....
Numerical experiments modelling turbulent flows
Trefilík, Jiří; Kozel, Karel; Příhoda, Jaromír
2014-03-01
The work aims at investigation of the possibilities of modelling transonic flows mainly in external aerodynamics. New results are presented and compared with reference data and previously achieved results. For the turbulent flow simulations two modifications of the basic k - ω model are employed: SST and TNT. The numerical solution was achieved by using the MacCormack scheme on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability.
Numerical experiments modelling turbulent flows
Directory of Open Access Journals (Sweden)
Trefilík Jiří
2014-03-01
Full Text Available The work aims at investigation of the possibilities of modelling transonic flows mainly in external aerodynamics. New results are presented and compared with reference data and previously achieved results. For the turbulent flow simulations two modifications of the basic k – ω model are employed: SST and TNT. The numerical solution was achieved by using the MacCormack scheme on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability.
Compressible turbulence in one dimension
Fleischer, Jason Wolf
1999-11-01
The Burgers' model of compressible fluid dynamics in one dimension is extended to include the effects of pressure back-reaction. The new system consists of two coupled equations: Burgers' equation with a pressure gradient (essentially the 1-D Navier-Stokes equation) and an advection-diffusion equation for the pressure field. It presents a minimal model of both adiabatic gas dynamics and compressible magnetohydrodynamics. From the magnetic perspective, it is the simplest possible system which allows for Alfvenization, i.e. energy transfer between the fluid and the magnetic field. For the special case of equal fluid viscosity and (magnetic) diffusivity, the system is completely integrable, reducing to two decoupled Burgers' equations in the characteristic variables v +/- vsound ( v +/- vAlfven). For arbitrary diffusivities, renormalized perturbation theory is used to calculate the effective transport coefficients for forced Burgerlence. It is shown that energy equi- dissipation, not equipartition, is fundamental to the turbulent state. Both energy and dissipation are localized to shock-like structures, in which wave steepening is inhibited by small-scale forcing and by pressure back-reaction. The spectral forms predicted by theory are confirmed by numerical simulations. It is shown that the velocity structures lead to an asymmetric velocity PDF, as in Burgers' turbulence. Pressure fluctuations, however, are symmetrically distributed. A Fokker-Planck calculation of these distributions is compared and contrasted with a path integral approach. The latter instanton solution suggests that the system maintains its characteristic directions in steady-state turbulence, supporting the results from perturbation theory. Implications for the spectra of turbulence and self-organization phenomena in compressible fluids and plasmas are also discussed.
Turbulent Liquid Metal Dynamo Experiments
International Nuclear Information System (INIS)
Forest, Cary
2007-01-01
The self-generation of magnetic fields in planets and stars--the dynamo effect--is a long-standing problem of magnetohydrodynamics and plasma physics. Until recently, research on the self-excitation process has been primarily theoretical. In this talk, I will begin with a tutorial on how magnetic fields are generated in planets and stars, describing the 'Standard Model' of self-excitation known as the alpha-omega dynamo. In this model, axisymmetric differential rotation can produce the majority of the magnetic field, but some non-axisymmetric, turbulence driven currents are also necessary. Understanding the conversion of turbulent kinetic energy in the fluid motion into electrical currents and thus magnetic fields, is a major challenge for both experiments and theory at this time. I will then report on recent results from a 1 meter diameter, spherical, liquid sodium dynamo experiment at the University of Wisconsin, in which the first clear evidence for these turbulence driven currents has been observed.
Reduced Models for Gyrokinetic Turbulence
Besse, Nicolas; Bertrand, Pierre; Morel, Pierre; Gravier, Etienne
2009-09-01
Turbulent transport is a key issue for controlled thermonuclear fusion based on magnetic confinement. The thermal confinement of a magnetized fusion plasma is essentially determined by the turbulent heat conduction across the equilibrium magnetic field. It has long been acknowledged, that the prediction of turbulent transport requires to solve Vlasov-type gyrokinetic equations. Although the kinetic description is more accurate than fluid models (Magnetohydrodynamics (MHD), gyro-fluid), because among other things it takes into account nonlinear resonant wave-particle interaction, kinetic modeling has the drawback of a huge demand on computer resources. A unifying approach consists in considering water-bag-like weak solutions of kinetic collisionless equations, which allow to reduce the full kinetic Vlasov equation into a set of hydrodynamic equations, while keeping its kinetic behaviour. As a result this exact reduction induces a multi-fluid numerical resolution cost. Therefore, finding water-bag-like weak solutions of the gyrokinetic equations leads to the birth of the gyro-water-bag model. This model is suitable for studying linear and nonlinear low-frequency micro-instabilities and the associated anomalous transport in magnetically confined plasmas. Here we present the derivation of nonlinear gyro-water-bag models and their numerical approximations by backward Runge-Kutta semi-Lagrangian methods and forward Runge-Kutta discontinuous Galerkin schemes.
Accidental Turbulent Discharge Rate Estimation from Videos
Ibarra, Eric; Shaffer, Franklin; Savaş, Ömer
2015-11-01
A technique to estimate the volumetric discharge rate in accidental oil releases using high speed video streams is described. The essence of the method is similar to PIV processing, however the cross correlation is carried out on the visible features of the efflux, which are usually turbulent, opaque and immiscible. The key step in the process is to perform a pixelwise time filtering on the video stream, in which the parameters are commensurate with the scales of the large eddies. The velocity field extracted from the shell of visible features is then used to construct an approximate velocity profile within the discharge. The technique has been tested on laboratory experiments using both water and oil jets at Re ~105 . The technique is accurate to 20%, which is sufficient for initial responders to deploy adequate resources for containment. The software package requires minimal user input and is intended for deployment on an ROV in the field. Supported by DOI via NETL.
Analysis and comparison of different methods to characterize turbulent environment
Kozak, Liudmyla; Lui, Antony; Kronberg, Elena; Grigorenko, Elena; Savin, Sergey; Budaev, Vyacheslav
2017-04-01
The methods and approaches that can be used to analyze the hydrodynamic and magnetohydrodynamic turbulent flows are selected. It is shown that the best methods to characterize the types of turbulent processes are the methods of statistical physics. Within the statistical approach we considered the fractal analysis (determination of fractal length and height of the maximum of the probability density fluctuations of the studied parameters), and multifractal analysis (study of a power dependence of high order statistical moments and construction of multifractal spectrum). It is indicated that the statistical analysis of properties of turbulent processes can be supplemented by the spectral studies: Fourier and wavelet analysis. In order to test the methods and approaches we have used the magnetic field measurements from the space mission Cluster-II with a sampling frequency of 22.5 Hz in different regions of Earth's magnetosphere and solar wind plasma. We got a good agreement between different approaches and their mutual complementing to provide a general view of the turbulence. The work is done in the frame of the grant Az. 90 312 from the Volkswagen Foundation.
Numerical Analysis of Turbulent Natural Convection In A Cavity
Omri, Mohamed; Galanis, Nicolas
2007-11-01
CFD codes are used extensively to analyse complex flow fields with heat and/or mass transfer, chemical reactions, etc. It is therefore necessary to continuously compare their predictions with experimental values in order to test their validity and eventually improve them. In this work, numerical predictions of turbulent natural convection in a square differentially heated cavity are analysed. Results are confronted to the detailed experimental data of [2] and [1] obtained with a Rayleigh number of 1.5x10^9. The purpose of this study is to evaluate the capacity of second order models to reproduce mean and fluctuating quantities. Thus, we first analyse mean velocities and mean temperature profiles. Then particular attention is given to turbulent quantities. Also, we compare the local Nusselt number along the four walls with the corresponding experimental values. Moreover five different grids are used (50x50, 100x100x100, 150x150, 200x200 and 300x300) to analyse grid-sensitivity. [1] Ampofo F.; Karayiannis T.G. (2003). Experimental benchmark data for turbulent natural convection in an air filled square cavity. Int. J. Heat and Mass Transfer. [2] Tian Y.S.; Karayiannis T.G. (2000) Low turbulence natural convection in an air filled square cavity. Int. J. of Heat and Mass Transfer.
Energy Transfer in Rotating Turbulence
Cambon, Claude; Mansour, Nagi N.; Godeferd, Fabien S.; Rai, Man Mohan (Technical Monitor)
1995-01-01
The influence or rotation on the spectral energy transfer of homogeneous turbulence is investigated in this paper. Given the fact that linear dynamics, e.g. the inertial waves regime tackled in an RDT (Rapid Distortion Theory) fashion, cannot Affect st homogeneous isotropic turbulent flow, the study of nonlinear dynamics is of prime importance in the case of rotating flows. Previous theoretical (including both weakly nonlinear and EDQNM theories), experimental and DNS (Direct Numerical Simulation) results are gathered here and compared in order to give a self-consistent picture of the nonlinear effects of rotation on tile turbulence. The inhibition of the energy cascade, which is linked to a reduction of the dissipation rate, is shown to be related to a damping due to rotation of the energy transfer. A model for this effect is quantified by a model equation for the derivative-skewness factor, which only involves a micro-Rossby number Ro(sup omega) = omega'/(2(OMEGA))-ratio of rms vorticity and background vorticity as the relevant rotation parameter, in accordance with DNS and EDQNM results fit addition, anisotropy is shown also to develop through nonlinear interactions modified by rotation, in an intermediate range of Rossby numbers (Ro(omega) = (omega)' and Ro(omega)w greater than 1), which is characterized by a marco-Rossby number Ro(sup L) less than 1 and Ro(omega) greater than 1 which is characterized by a macro-Rossby number based on an integral lengthscale L and the micro-Rossby number previously defined. This anisotropy is mainly an angular drain of spectral energy which tends to concentrate energy in tile wave-plane normal to the rotation axis, which is exactly both the slow and the two-dimensional manifold. In Addition, a polarization of the energy distribution in this slow 2D manifold enhances horizontal (normal to the rotation axis) velocity components, and underlies the anisotropic structure of the integral lengthscales. Finally is demonstrated the
Mathematical and physical theory of turbulence
Cannon, John
2006-01-01
Although the current dynamical system approach offers several important insights into the turbulence problem, issues still remain that present challenges to conventional methodologies and concepts. These challenges call for the advancement and application of new physical concepts, mathematical modeling, and analysis techniques. Bringing together experts from physics, applied mathematics, and engineering, Mathematical and Physical Theory of Turbulence discusses recent progress and some of the major unresolved issues in two- and three-dimensional turbulence as well as scalar compressible turbulence. Containing introductory overviews as well as more specialized sections, this book examines a variety of turbulence-related topics. The authors concentrate on theory, experiments, computational, and mathematical aspects of Navier-Stokes turbulence; geophysical flows; modeling; laboratory experiments; and compressible/magnetohydrodynamic effects. The topics discussed in these areas include finite-time singularities a...
Current-driven turbulence in plasmas
International Nuclear Information System (INIS)
Kluiver, H. de.
1977-10-01
Research on plasma heating in linear and toroidal systems using current-driven turbulence is reviewed. The motivation for this research is presented. Relations between parameters describing the turbulent plasma state and macroscopic observables are given. Several linear and toroidal devices used in current-driven turbulence studies are described, followed by a discussion of special diagnostic methods used. Experimental results on the measurement of electron and ion heating, anomalous plasma conductivity and associated turbulent fluctuation spectra are reviewed. Theories on current-driven turbulence are discussed and compared with experiments. It is demonstrated from the experimental results that current-driven turbulence occurs not only for extreme values of the electric field but also for an experimentally much more accessible and wide range of parameters. This forms a basis for a discussion on possible future applications in fusion-oriented plasma research
Turbulence-Free Double-slit Interferometer
Smith, Thomas A.; Shih, Yanhua
2018-02-01
Optical turbulence can be detrimental for optical observations. For instance, atmospheric turbulence may reduce the visibility or completely blur out the interference produced by an interferometer in open air. However, a simple two-photon interference theory based on Einstein's granularity picture of light makes a turbulence-free interferometer possible; i.e., any refraction index, length, or phase variations along the optical paths of the interferometer do not have any effect on its interference. Applying this mechanism, the reported experiment demonstrates a two-photon double-slit interference that is insensitive to atmospheric turbulence. The turbulence-free mechanism and especially the turbulence-free interferometer would be helpful in optical observations that require high sensitivity and stability such as for gravitational-wave detection.
Turbulence-Free Double-slit Interferometer.
Smith, Thomas A; Shih, Yanhua
2018-02-09
Optical turbulence can be detrimental for optical observations. For instance, atmospheric turbulence may reduce the visibility or completely blur out the interference produced by an interferometer in open air. However, a simple two-photon interference theory based on Einstein's granularity picture of light makes a turbulence-free interferometer possible; i.e., any refraction index, length, or phase variations along the optical paths of the interferometer do not have any effect on its interference. Applying this mechanism, the reported experiment demonstrates a two-photon double-slit interference that is insensitive to atmospheric turbulence. The turbulence-free mechanism and especially the turbulence-free interferometer would be helpful in optical observations that require high sensitivity and stability such as for gravitational-wave detection.
Sudden viscous dissipation in compressing plasma turbulence
Davidovits, Seth; Fisch, Nathaniel
2015-11-01
Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.
Imposing resolved turbulence in CFD simulations
DEFF Research Database (Denmark)
Gilling, L.; Sørensen, Niels N.
2011-01-01
In large‐eddy simulations, the inflow velocity field should contain resolved turbulence. This paper describes and analyzes two methods for imposing resolved turbulence in the interior of the domain in Computational Fluid Dynamics simulations. The intended application of the methods is to impose...... resolved turbulence immediately upstream of the region or structure of interest. Comparing to the alternative of imposing the turbulence at the inlet, there is a large potential to reduce the computational cost of the simulation by reducing the total number of cells. The reduction comes from a lower demand...... of modifying the source terms. None of the two methods can impose synthetic turbulence with good results, but it is shown that by running the turbulence field through a short precursor simulation, very good results are obtained. Copyright © 2011 John Wiley & Sons, Ltd....
Aperture averaging in strong oceanic turbulence
Gökçe, Muhsin Caner; Baykal, Yahya
2018-04-01
Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.
In situ laser sensing of mixed layer turbulence
Dalgleish, Fraser; Hou, Weilin; Vuorenkoski, Anni; Nootz, Gero; Ouyang, Bing
2013-06-01
This paper will discuss and compare some recent oceanic test results from the Bahamas Optical Turbulence Exercise (BOTEX) cruise, where vertical profiling was conducted with both time-resolved laser backscatter measurements being acquired via a subsurface light detection and ranging (lidar) profiling instrument, and laser beam forward deflection measurements were acquired from a matrix of continuous wave (cw) laser beams (i.e. structured lighting) being imaged in the forward direction with a high speed camera over a one-way path, with both transmitter and camera firmly fixed on a rigid frame. From the latter, it was observed that when within a natural turbulent layer, the laser beams were being deflected from their still water location at the image plane, which was 8.8 meters distance from the laser dot matrix transmitter. As well as suggesting that the turbulent structures being encountered were predominately larger than the beam diameter, the magnitude of the deflection has been confirmed to correlate with the temperature dissipation rate. The profiling lidar measurements which were conducted in similar conditions, also used a narrow collimated laser beam in order to resolve small-scale spatial structure, but with the added attribute that sub-nanosecond short pulse temporal profile could potentially resolve small-scale vertical structure. In the clear waters of the Tongue of the Ocean in the Bahamas, it was hypothesized that the backscatter anomalies due to the effect of refractive index discontinuities (i.e. mixed layer turbulence) would be observable. The processed lidar data presented herein indicates that higher backscatter levels were observed in the regions of the water column which corresponded to higher turbulent mixing which occurs at the first and second themoclines. At the same test stations that the laser beam matrix and lidar measurements were conducted, turbulence measurements were made with two non-optical instruments, the Vertical Microstructure
Near-wall turbulence model and its application to fully developed turbulent channel and pipe flows
Kim, S.-W.
1990-01-01
A near-wall turbulence model and its incorporation into a multiple-timescale turbulence model are presented. The near-wall turbulence model is obtained from a k-equation turbulence model and a near-wall analysis. In the method, the equations for the conservation of mass, momentum, and turbulent kinetic energy are integrated up to the wall, and the energy transfer and the dissipation rates inside the near-wall layer are obtained from algebraic equations. Fully developed turbulent channel and pipe flows are solved using a finite element method. The computational results compare favorably with experimental data. It is also shown that the turbulence model can resolve the overshoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.
National Aeronautics and Space Administration — Shock Wave / Turbulent Boundary Layer Flows at High Mach Numbers. This web page provides data from experiments that may be useful for the validation of turbulence...
Quantitative imaging of turbulent and reacting flows
Energy Technology Data Exchange (ETDEWEB)
Paul, P.H. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.
Sonic boom propagation through atmospheric turbulence
Yamashita, Hiroshi; Obayashi, Shigeru; 山下, 博; 大林, 茂
2009-01-01
The effect of the homogeneous atmospheric turbulence on the sonic boom propagation has been investigated. The turbulence field is represented by a finite sum of discrete Fourier modes based on the von Karman and Pao energy spectrum. The sonic boom signature is calculated by the modified Waveform Parameter Method, considering the turbulent velocities. The results show that in 59 % of the cases, the intensity of the sonic boom had decreased, and in other 41 % of the cases had increased the soni...
Penetration of superfluid turbulence through porous filters
International Nuclear Information System (INIS)
Foreman, L.R.; Snyder, H.A.
1979-01-01
The equilibrium concentration of superfluid turbulence on two sides of small-pore filters is studied as a function of pore size. The filter forms a common wall between two second-sound resonance cavities. The attenuation of standing waves of second sound is used to detect the turbulence which is created in the superfluid with a rotating paddle. We find that superfluid turbulence does not pass through filters of 7.5 nm diameter, but penetrates filters with 50-nm pores
A numerical study of tokamak edge turbulence
International Nuclear Information System (INIS)
Hu Shuanghui; Huang Lin; Qiu Xiaoming
1993-01-01
The tokamak edge turbulence which contains resistivity and impurity gradients and impurity radiation driven sources is studied numerically. The effect of ohmic dissipation on the evolution and saturation of this turbulence is investigated. The ohmic effect drops the saturation levels of fluctuations efficiently in high density tokamaks (such as Alcator), indicating that the ohmic effect plays an important role in the evolution of tokamak edge turbulence in high density devices
Advanced Reentry Aeroheating Simulation Framework, Phase I
National Aeronautics and Space Administration — Vehicle reentry presents numerous challenges that must be carefully addressed to ensure the success of current and future space exploration missions. As they enter...
Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows
Energy Technology Data Exchange (ETDEWEB)
Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)
1997-12-31
The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.
Anisotropy of turbulence in wind turbine wakes
Energy Technology Data Exchange (ETDEWEB)
Gomez-Elvira, Rafael [Comision Nacional de Energia (Spain); Crespo, Antonio; Migoya, Emilio; Manuel, Fernando [Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior de Ingenieros Industriales, Universidad Politecnica de Madrid, Jose Gutierrez Abascal, 2. 28006 Madrid (Spain); Hernandez, Julio [Departamento de Mecanica, ETSII, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria, 28040 Madrid (Spain)
2005-10-01
This work is mainly dedicated to the study of non-isotropic characteristics of turbulence in wind turbine wakes, specifically the shear layer of the near wake. A calculation method based on an explicit algebraic model for the components of the turbulent stress tensor is proposed, and the results are found to be in acceptable agreement with experimental results. Analytical expressions for the estimation of an upper limit of the global turbulence kinetic energy, k, and the individual contributions of each diagonal term in the turbulent stress tensor are proposed. Their predictions are compared with experimental results.
Characteristics of airflow turbulence behind HEPA filter
International Nuclear Information System (INIS)
Fujii, S.; Yuasa, K.; Arai, Y.; Watanabe, T.; Suwa, Y.
1994-01-01
The characteristics of airflow turbulence in unidirectional cleanroom are described in this paper. First, the airflow turbulence distribution is measured in a cleanbooth with a hot-wire anemometer. Through the analysis of turbulence intensity, the shape of pleated HEPA filter is found out to be an important factor of eddy generation in airflow, Secondly, turbulence distribution behind HEPA filter is measured in detail. It concludes that the shear stress, caused by the airflow difference between pleated concave and convex part of HEPA filter, makes eddy generation in airflow behind HEPA filter
Approximate Model for Turbulent Stagnation Point Flow.
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.
Predator-prey encounters in turbulent waters
DEFF Research Database (Denmark)
Mann, J.; Ott, Søren; Pécseli, H.L.
2002-01-01
With reference to studies of predator-prey encounters in turbulent waters, we demonstrate the feasibility of an experimental method for investigations of particle fluxes to an absorbing surface in turbulent flows. A laboratory experiment is carried out, where an approximately homogeneous and isot......With reference to studies of predator-prey encounters in turbulent waters, we demonstrate the feasibility of an experimental method for investigations of particle fluxes to an absorbing surface in turbulent flows. A laboratory experiment is carried out, where an approximately homogeneous...
Oceanic turbulence - Big bangs or continuous creation?
Caldwell, D. R.
1983-01-01
A hypothesis concerning the turbulence characteristics of 'microstructure' patches in the ocean is proposed in which a turbulence field is driven at the same time and scale at which it is observed. The driving energy is converted into turbulence kinetic energy in such a way that the observed overturning thickness scale is linearly related to the length scale. This hypothesis is contrasted with that of Gibson (1982), in which the 'patches' are produced by rare, powerful turbulence generators that have 'fossilized' prior to their observation. Careful attention is given to the sampling process and its assumptions.
Turbulent Reacting Flows at High Speed
National Research Council Canada - National Science Library
Brown, Garry
2001-01-01
.... To accomplish this goal, expertise in chemical kinetics, experimental fluid mechanics and combustion, and computational fluid mechanics were brought together to make a systematic attack on turbulent...
Visible imaging of edge turbulence in NSTX
International Nuclear Information System (INIS)
S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden
2000-01-01
Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence
Distributed Roughness Effects on Blunt-Body Transition and Turbulent Heating
Hollis, Brian R.
2014-01-01
An experimental program has been conducted to obtain data on the effects of surface roughness on blunt bodies at laminar, transitional, and turbulent conditions. Wind tunnel models with distributed surface roughness heights from 0.06 mm to 1.75 mm were tested and heating data were obtained using global surface thermography. Heating rates of up to 85% higher than predicted, smooth-surface turbulent levels were measured.
Free-stream turbulence effects on the flow around an S809 wind turbine airfoil
Energy Technology Data Exchange (ETDEWEB)
Torres-Nieves, Sheilla; Maldonado, Victor; Lebron, Jose [Rensselaer Polytechnic Institute, Troy, NY (United States); Kang, Hyung-Suk [United States Naval Academy, Annapolis, MD (United States); Meneveau, Charles [Johns Hopkins Univ., Baltimore, MD (United States); Castillo, Luciano [Texas Tech Univ., Lubbock, TX (United States)
2012-07-01
Two-dimensional Particle Image Velocimetry (2-D PIV) measurements were performed to study the effect of free-stream turbulence on the flow around a smooth and rough surface airfoil, specifically under stall conditions. A 0.25-m chord model with an S809 profile, common for horizontal-axis wind turbine applications, was tested at a wind tunnel speed of 10 m/s, resulting in Reynolds numbers based on the chord of Re{sub c} {approx} 182,000 and turbulence intensity levels of up to 6.14%. Results indicate that when the flow is fully attached, turbulence significantly decreases aerodynamic efficiency (from L/D {approx} 4.894 to L/D {approx} 0.908). On the contrary, when the flow is mostly stalled, the effect is reversed and aerodynamic performance is slightly improved (from L/D {approx} 1.696 to L/D {approx} 1.787). Analysis of the mean flow over the suction surface shows that, contrary to what is expected, free-stream turbulence is actually advancing separation, particularly when the turbulent scales in the free-stream are of the same order as the chord. This is a result of the complex dynamics between the boundary layer scales and the free-stream turbulence length scales when relatively high levels of active-grid generated turbulence are present. (orig.)
A new low-turbulence wind tunnel for animal and small vehicle flight experiments
Quinn, Daniel B.; Watts, Anthony; Nagle, Tony; Lentink, David
2017-03-01
Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s-1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s-1. To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow.
A new low-turbulence wind tunnel for animal and small vehicle flight experiments.
Quinn, Daniel B; Watts, Anthony; Nagle, Tony; Lentink, David
2017-03-01
Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s -1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s -1 . To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow.
Turbulent Fogwater Flux Measurements Above A Forest
Burkard, R.; Eugster, W.; Buetzberger, P.; Siegwolf, R.
Many forest ecosystems in elevated regions receive a significant fraction of their wa- ter and nutrient input by the interception of fogwater. Recently, several studies have demonstrated the suitability of the eddy covariance technique for the direct measure- ment of turbulent liquid water fluxes. Since summer 2001 a fogwater flux measure- ment equipment has been running at a montane site above a mixed forest canopy in Switzerland. The measurement equipment consists of a high-speed size-resolving droplet spectrometer and a three-dimensional ultrasonic anemometer. The chemical composition of the fogwater was determined from samples collected with a modified Caltech active strand collector. The deposition of nutrients by fog (occult deposition) was calculated by multiplying the total fogwater flux (total of measured turbulent and calculated gravitational flux) during each fog event by the ionic concentrations found in the collected fogwater. Several uncertainties still exist as far as the accuracy of the measurements is con- cerned. Although there is no universal statistical approach for testing the quality of the liquid water flux data directly, results of independent data quality checks of the two time series involved in the flux computation and accordingly the two instruments (ultrasonic anemometer and the droplet spectrometer) are presented. Within the measurement period, over 80 fog events with a duration longer than 2.5 hours were analyzed. An enormous physical and chemical heterogeneity among these fog events was found. We assume that some of this heterogeneity is due to the fact that fog or cloud droplets are not conservative entities: the turbulent flux of fog droplets, which can be referred to as the liquid water flux, is affected by phase change processes and coagulation. The measured coexistence of upward fluxes of small fog droplets (di- ameter < 10 µm) with the downward transport of larger droplets indicates the influ- ence of such processes. With the
Lipkens, Bart
2002-01-01
In previous papers, we have shown that model experiments are successful in simulating the propagation of sonic booms through the atmospheric turbulent boundary layer. The results from the model experiment, pressure wave forms of spark-produced N waves and turbulence characteristics of the plane jet, are used to test various sonic boom models for propagation through turbulence. Both wave form distortion models and rise time prediction models are tested. Pierce's model [A. D. Pierce, "Statistical theory of atmospheric turbulence effects on sonic boom rise times," J. Acoust. Soc. Am. 49, 906-924 (1971)] based on the wave front folding mechanism at a caustic yields an accurate prediction for the rise time of the mean wave form after propagation through the turbulence.
The interaction of synthetic jets with turbulent boundary layers
Cui, Jing
In recent years, a promising approach to the control of wall bounded as well as free shear flows, using synthetic jet (oscillatory jet with zero-net-mass-flux) actuators, has received a great deal of attention. A variety of impressive flow control results have been achieved experimentally by many researchers including the vectoring of conventional propulsive jets, modification of aerodynamic characteristics of bluff bodies, control of lift and drag of airfoils, reduction of skin-friction of a flat plate boundary layer, enhanced mixing in circular jets, and control of external as well as internal flow separation and of cavity oscillations. More recently, attempts have been made to numerically simulate some of these flowfields. Numerically several of the above mentioned flow fields have been simulated primarily by employing the Unsteady Reynolds-Averaged Navier Stokes (URANS) equations with a turbulence model and a limited few by Direct Numerical Simulation (DNS). In simulations, both the simplified boundary conditions at the exit of the jet as well as the details of the cavity and lip have been included. In this dissertation, I describe the results of simulations for several two- and three-dimensional flowfields dealing with the interaction of a synthetic jet with a turbulent boundary layer and control of separation. These simulations have been performed using the URANS equations in conjunction with either one- or a two-equation turbulence model. 2D simulations correspond to the experiments performed by Honohan at Georgia Tech. and 3D simulations correspond to the CFD validation test cases proposed in the NASA Langley Research Center Workshop---"CFD Validation of Synthetic Jets and Turbulent Separation Control" held at Williamsburg VA in March 2004. The sources of uncertainty due to grid resolution, time step, boundary conditions, turbulence modeling etc. have been examined during the computations. Extensive comparisons for various flow variables are made with the
A marketing mix model for a complex and turbulent environment
Directory of Open Access Journals (Sweden)
R. B. Mason
2007-12-01
Full Text Available Purpose: This paper is based on the proposition that the choice of marketing tactics is determined, or at least significantly influenced, by the nature of the companys external environment. It aims to illustrate the type of marketing mix tactics that are suggested for a complex and turbulent environment when marketing and the environment are viewed through a chaos and complexity theory lens. Design/Methodology/Approach: Since chaos and complexity theories are proposed as a good means of understanding the dynamics of complex and turbulent markets, a comprehensive review and analysis of literature on the marketing mix and marketing tactics from a chaos and complexity viewpoint was conducted. From this literature review, a marketing mix model was conceptualised. Findings: A marketing mix model considered appropriate for success in complex and turbulent environments was developed. In such environments, the literature suggests destabilising marketing activities are more effective, whereas stabilising type activities are more effective in simple, stable environments. Therefore the model proposes predominantly destabilising type tactics as appropriate for a complex and turbulent environment such as is currently being experienced in South Africa. Implications: This paper is of benefit to marketers by emphasising a new way to consider the future marketing activities of their companies. How this model can assist marketers and suggestions for research to develop and apply this model are provided. It is hoped that the model suggested will form the basis of empirical research to test its applicability in the turbulent South African environment. Originality/Value: Since businesses and markets are complex adaptive systems, using complexity theory to understand how to cope in complex, turbulent environments is necessary, but has not been widely researched. In fact, most chaos and complexity theory work in marketing has concentrated on marketing strategy, with
Investigation of Turbulators for Fire Tube Boilers Using Exergy Analysis
AYHAN, Betül
2001-01-01
In this paper, an experimental study of five different types of ``turbulator" inserts for fire tube boilers is presented. The experimental setup was constructed in the Department of Mechanical Engineering Laboratory of Karadeniz Technical University. It was tested to evaluate the boiler efficiency according to TS 4040 standard, and to evaluate the second law efficiency of thermodynamics for the cases with and without inserts under the same operating conditions. Four new typ...
Copepod Response Behavior in Turbulence
Krizan, Daniel
The objective of this thesis is to determine copepod response to turbulence generated by obstacles in cross flow. Mainly, flow and copepod response downstream a square fractal grid is examined but experiments downstream a cylinder provides comparison. This is done by simultaneously measuring the copepods position and velocity using 3D-PTV in a measurement volume and measuring the two dimensional three component velocity vectors of the flow using stereo PIV. These measurements are done in a way that does not elicit copepod response. Tomographic PIV is done downstream the square fractal grid without copepods to gain volumetric velocity knowledge of the flow in the measurement volume. Copepods are known to execute sudden high speed jumps (or escapes) in response to sensed hydrodynamic signals. The fractal grid was shown to elicit copepod escape, specifically directly downstream with escape frequency decreasing further downstream where turbulence levels were much lower. It was found that at a slower freestream speed copepods exhibited jumps not in reaction to flow disturbances but to reorient themselves (cruise swimming). There was almost no copepod response in the wake of a cylinder, but copepods again exhibited cruise swimming behavior at a slower freestream speed. In regions with high maximum principal strain rate (MPSR) downstream of the fractal grid, copepods were observed to exhibit multiple escapes. Moreover, copepods were observed to jump towards regions of lower turbulence and against the freestream direction. From stereo PIV, instantaneous 2D MPSR values of less than 3s -1 were shown to create escape in 60% of copepod escapes analyzed. Finally, it was found that on average larger MPSR resulted in larger jumps from copepods.
DEFF Research Database (Denmark)
Bendixen, Carsten
2014-01-01
Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers.......Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers....
Gyrokinetic simulations of ETG Turbulence*
Nevins, William
2005-10-01
Recent gyrokinetic simulations of electron temperature gradient (ETG) turbulence [1,2] produced different results despite similar plasma parameters. Ref.[1] differs from Ref.[2] in that [1] eliminates magnetically trapped particles ( r/R=0 ), while [2] retains magnetically trapped particles ( r/R 0.18 ). Differences between [1] and [2] have been attributed to insufficient phase-space resolution and novel physics associated with toroidicity and/or global simulations[2]. We have reproduced the results reported in [2] using a flux-tube, particle-in-cell (PIC) code, PG3EQ[3], thereby eliminating global effects as the cause of the discrepancy. We observe late-time decay of ETG turbulence and the steady-state heat transport in agreement with [2], and show this results from discrete particle noise. Discrete particle noise is a numerical artifact, so both the PG3EQ simulations reported here and those reported in Ref.[2] have little to say about steady-state ETG turbulence and the associated anomalous electron heat transport. Our attempts to benchmark PIC and continuum[4] codes at the plasma parameters used in Ref.[2] produced very large, intermittent transport. We will present an alternate benchmark point for ETG turbulence, where several codes reproduce the same transport levels. Parameter scans about this new benchmark point will be used to investigate the parameter dependence of ETG transport and to elucidate saturation mechanisms proposed in Refs.[1,2] and elsewhere[5-7].*In collaboration with A. Dimits (LLNL), J. Candy, C. Estrada-Mila (GA), W. Dorland (U of MD), F. Jenko, T. Dannert (Max-Planck Institut), and G. Hammett (PPPL). Work at LLNL performed for US DOE under Contract W7405-ENG-48.[1] F. Jenko and W. Dorland, PRL 89, 225001 (2002).[2] Z. Lin et al, 2004 Sherwood Mtg.; 2004 TTF Mtg.; Fusion Energy 2004 (IAEA, Vienna, 2005); Bull. Am. Phys. Soc. (November, 2004); 2005 TTF Mtg.; 2005 Sherwood Mtg.; Z. Lin, et al, Phys. Plasmas 12, 056125 (2005). [3] A.M. Dimits
Turbulent dynamo action in stars
International Nuclear Information System (INIS)
Brandenburg, A.; Nordlund, A.; Ruokolainen, J.; Stein, R.F.; Tuominen, I.
1990-01-01
The way in which dynamo action amplifies magnetic fields in the Sun, the Earth, and indeed galaxies is a classic problem of theoretical physics. Here we present the results of direct simulations of turbulent compressible hydromagnetic convection with a stable overshoot layer underneath (to model the Sun). We find spontaneous dynamo action followed by saturation, with most of the generated magnetic field appearing as coherent flux tubes in the vicinity of strong downdrafts. Here both the generation and destruction of magnetic field is at its most vigorous, and which process ultimately dominates depends on the sizes of the magnetic Reynolds and magnetic Prandtl numbers. (orig.)
Numerical experiments for turbulent flows
Trefilík, Jiří; Kozel, Karel; Příhoda, Jaromír
2013-04-01
The aim of the work is to explore the possibilities of modelling transonic flows in the internal and external aerodynamics. Several configurations were analyzed and calculations were performed using both inviscid and viscous models of flow. Viscous turbulent flows have been simulated using either zero equation algebraic Baldwin-Lomax model and two equation k—ω model in its basic version and improved TNT variant. The numerical solution was obtained using Lax-Wendroff scheme in the MacCormack form on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability. Achieved results are compared with experimental data.
Numerical experiments for turbulent flows
Directory of Open Access Journals (Sweden)
Příhoda Jaromír
2013-04-01
Full Text Available The aim of the work is to explore the possibilities of modelling transonic flows in the internal and external aerodynamics. Several configurations were analyzed and calculations were performed using both inviscid and viscous models of flow. Viscous turbulent flows have been simulated using either zero equation algebraic Baldwin-Lomax model and two equation k—ω model in its basic version and improved TNT variant. The numerical solution was obtained using Lax-Wendroff scheme in the MacCormack form on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability. Achieved results are compared with experimental data.
Generalized similarity in magnetohydrodynamic turbulence as seen in the solar corona and solar wind
Chapman, S. C.; Leonardis, E.; Nicol, R. M.; Foullon, C.
2010-12-01
A key property of turbulence is that it can be characterized and quantified in a robust and reproducible way in terms of the ensemble averaged statistical properties of fluctuations. Importantly, fluctuations associated with a turbulent field show similarity or scaling in their statistics and we test for this in observations of magnetohydrodynamic turbulence in the solar corona and solar wind with both power spectra and Generalized Structure Functions. Realizations of turbulence that are finite sized are known to exhibit a generalized or extended self-similarity (ESS). ESS was recently demonstrated in magnetic field timeseries of Ulysses single point in-situ observations of fluctuations of quiet solar wind for which a single robust scaling function was found [1-2]. Flows in solar coronal prominences can be highly variable, with dynamics suggestive of turbulence. The Hinode SOT instrument provides observations (images) at simultaneous high spatial and temporal resolution which span several decades in both spatial and temporal scales. We focus on specific Calcium II H-line observations of solar quiescent prominences with dynamic, highly variable small-scale flows. We analyze these images from the perspective of a finite sized turbulent flow. We discuss this evidence of ESS in the SOT images and in Ulysses solar wind observations- is there a single universal scaling of the largest eddies in the finite range magnetohydrodynamic turbulent flow? [1] S. C. Chapman, R. M. Nicol, Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence, Phys. Rev. Lett., 103, 241101 (2009) [2] S. C. Chapman, R. M. Nicol, E. Leonardis, K. Kiyani, V. Carbone, Observation of universality in the generalized similarity of evolving solar wind turbulence as seen by ULYSSES, Ap. J. Letters, 695, L185, (2009)
A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence
Kibbey, Timothy P.
2014-01-01
A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.
Multiscale coherent structures in tokamak plasma turbulence
International Nuclear Information System (INIS)
Xu, G. S.; Wan, B. N.; Zhang, W.; Yang, Q. W.; Wang, L.; Wen, Y. Z.
2006-01-01
A 12-tip poloidal probe array is used on the HT-7 superconducting tokamak [Li, Wan, and Mao, Plasma Phys. Controlled Fusion 42, 135 (2000)] to measure plasma turbulence in the edge region. Some statistical analysis techniques are used to characterize the turbulence structures. It is found that the plasma turbulence is composed of multiscale coherent structures, i.e., turbulent eddies and there is self-similarity in a relative short scale range. The presence of the self-similarity is found due to the structural similarity of these eddies between different scales. These turbulent eddies constitute the basic convection cells, so the self-similar range is just the dominant scale range relevant to transport. The experimental results also indicate that the plasma turbulence is dominated by low-frequency and long-wavelength fluctuation components and its dispersion relation shows typical electron-drift-wave characteristics. Some large-scale coherent structures intermittently burst out and exhibit a very long poloidal extent, even longer than 6 cm. It is found that these large-scale coherent structures are mainly contributed by the low-frequency and long-wavelength fluctuating components and their presence is responsible for the observations of long-range correlations, i.e., the correlation in the scale range much longer than the turbulence decorrelation scale. These experimental observations suggest that the coexistence of multiscale coherent structures results in the self-similar turbulent state
Decaying counterflow turbulence in He II
Czech Academy of Sciences Publication Activity Database
Gordeev, A. V.; Chagovets, Tymofiy; Soukup, František; Skrbek, Ladislav
2005-01-01
Roč. 138, 3/4 (2005), s. 549-554 ISSN 0022-2291 R&D Projects: GA ČR GA202/05/0218 Institutional research plan: CEZ:AV0Z10100520 Keywords : quantum turbulence * decay of turbulence * second sound * superfluid He Subject RIV: BK - Fluid Dynamics Impact factor: 0.753, year: 2005
Dissipation range turbulent cascades in plasmas
International Nuclear Information System (INIS)
Terry, P. W.; Almagri, A. F.; Forest, C. B.; Nornberg, M. D.; Rahbarnia, K.; Sarff, J. S.; Fiksel, G.; Hatch, D. R.; Jenko, F.; Prager, S. C.; Ren, Y.
2012-01-01
Dissipation range cascades in plasma turbulence are described and spectra are formulated from the scaled attenuation in wavenumber space of the spectral energy transfer rate. This yields spectra characterized by the product of a power law and exponential fall-off, applicable to all scales. Spectral indices of the power law and exponential fall-off depend on the scaling of the dissipation, the strength of the nonlinearity, and nonlocal effects when dissipation rates of multiple fluctuation fields are different. The theory is used to derive spectra for MHD turbulence with magnetic Prandtl number greater than unity, extending previous work. The theory is also applied to generic plasma turbulence by considering the spectrum from damping with arbitrary wavenumber scaling. The latter is relevant to ion temperature gradient turbulence modeled by gyrokinetics. The spectrum in this case has an exponential component that becomes weaker at small scale, giving a power law asymptotically. Results from the theory are compared to three very different types of turbulence. These include the magnetic plasma turbulence of the Madison Symmetric Torus, the MHD turbulence of liquid metal in the Madison Dynamo Experiment, and gyrokinetic simulation of ion temperature gradient turbulence.
Review of Four Turbulence Models using Topology
DEFF Research Database (Denmark)
Voigt, Lars Peter Kølgaard; Sørensen, Jens Nørkær; Pedersen, Jakob Martin
2003-01-01
The validation and development of turbulence models are still important issues related to Computational fluid Dynamics for ventilation purpose.The present work continues the work initiated by (Voigt, 2002). Four turbulence models are reviewed, the k-e model, the k-w model and two blending models...
Statistical properties of transport in plasma turbulence
DEFF Research Database (Denmark)
Naulin, V.; Garcia, O.E.; Nielsen, A.H.
2004-01-01
The statistical properties of the particle flux in different types of plasma turbulence models are numerically investigated using probability distribution functions (PDFs). The physics included in the models range from two-dimensional drift wave turbulence to three-dimensional MHD dynamics...
Stochastic models for turbulent reacting flows
Energy Technology Data Exchange (ETDEWEB)
Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.
Resistive drift wave turbulence and transport
International Nuclear Information System (INIS)
Wakatani, M.
1986-01-01
Our efforts for studying the properties of resistive drift wave turbulence by using model mode-coupling equations are shown. It may be related to the edge turbulence and the associated anomalous transport in tokamaks or in stellarator/heliotron. (author)
Current driven by electromagnetic ETG turbulence
He, Wen; Wang, Lu; Peng, Shuitao
2017-10-01
Recently, there has been intensive investigation of turbulence induced spontaneous rotation in tokamak. Naturally, current driven by turbulence has also been considered such as the electron temperature gradient (ETG) instability with a fluid mode. The electrostatic gyrokinetic simulation shows that the ETG turbulence driven current density corresponds to 20% of the local bootstrap current density. In this paper, the quasilinear version of the current evolution equation in the presence of electromagnetic (EM) ETG turbulence is presented using EM gyrokinetic equation. There are two types of current driving mechanisms. The first type is the divergence of stress, while the second type is called turbulent acceleration source. Finally, we compare the turbulent driven current to the background bootstrap current. The results demonstrate that the EM effect is important for the turbulent driven current. And the source term contributes a little to the total current. The modification of the current due to EM ETG turbulence is not dramatic in today's tokamak. However, it may play a significant role in future device.
The Canopy Horizontal Array Turbulence Study (CHATS)
Edward G. Patton; Thomas W. Horst; Donald H. Lenschow; Peter P. Sullivan; Steven Oncley; Sean Burns; Alex Guenther; Andreas Held; Thomas Karl; Shane Mayor; Luciana Rizzo; Scott Spuler; Jielun Sun; Andrew Turnipseed; Eugene Allwine; Steven Edburg; Brian Lamb; Roni Avissar; Heidi E. Holder; Ron Calhoun; Jan Kleissl; William Massman; Kyaw Tha Paw U; Jeffrey C. Weil
2008-01-01
Turbulence in the planetary boundary layer (PBL) well above the surface has been shown to be independent of the details of the surface roughness. In this region well-quantified similarity relationships work well when characterizing turbulent fluxes (e.g., Raupach, 1979). However, in the near-surface layer which is directly influenced by roughness elements, i.e., the...
Beyond scale separation in gyrokinetic turbulence
International Nuclear Information System (INIS)
Garbet, X.; Sarazin, Y.; Grandgirard, V.; Dif-Pradalier, G.; Darmet, G.; Ghendrih, Ph.; Angelino, P.; Bertrand, P.; Besse, N.; Gravier, E.; Morel, P.; Sonnendruecker, E.; Crouseilles, N.; Dischler, J.-M.; Latu, G.; Violard, E.; Brunetti, M.; Brunner, S.; Lapillonne, X.; Tran, T.-M.; Villard, L.; Boulet, M.
2007-01-01
This paper presents the results obtained with a set of gyrokinetic codes based on a semi-Lagrangian scheme. Several physics issues are addressed, namely, the comparison between fluid and kinetic descriptions, the intermittent behaviour of flux driven turbulence and the role of large scale flows in toroidal ITG turbulence. The question of the initialization of full-F simulations is also discussed
Turbulent wedge spreading dynamics and control strategies
Suryanarayanan, Saikishan; Goldstein, David; Brown, Garry
2017-11-01
Turbulent wedges are encountered in some routes to transition in wall bounded flows, particularly those involving surface roughness. They are characterized by strongly turbulent regions that are formed downstream of large disturbances, and spread into the non-turbulent flow. Altering the wedge spreading mechanism is a possible drag reduction strategy. Following recent studies of Goldstein, Chu and Brown (Flow Turbul. Combust. 98(1), 2017) and Kuester and White (Exp. Fluids 57(4), 2016), we explore the relation between the base flow vorticity field and turbulent wedge spreading using immersed boundary direct numerical simulations. The lateral spreading rate of the wedges are similar for high Reynolds number boundary layers and Couette flow, but differences emerge in wall normal propagation of turbulence. We also attempt to utilize the surface texture based strategy suggested by Strand and Goldstein (J. Fluid Mech. 668, 2011) to reduce the spreading of isolated turbulent spots, for turbulent wedge control. The effects of height, spacing and orientation of fins on the dynamics of wedge evolution are studied. The results are interpreted from a vorticity dynamics point of view. Supported by AFOSR # FA9550-15-1-0345.
Turbulence spreading, anomalous transport, and pinch effect
DEFF Research Database (Denmark)
Naulin, V.; Nielsen, A.H.; Juul Rasmussen, J.
2005-01-01
, and front propagation are observed. The model accounts for the interaction between the microscale of the turbulence and the meso-, respectively, system scale on which profile modifications occur. Comparison with direct numerical simulations of two-dimensional interchange turbulence shows qualitatively good...
The collapse of turbulence in the evening
Wiel, van de B.J.H.; Moene, A.F.; Jonker, H.J.J.; Baas, P.; Basu, S.; Sun, J.; Holtslag, A.A.M.
2012-01-01
A common experience in everyday weather is the fact that near-surface wind speeds tend to weaken in the evening, particularly in fair weather conditions. This cessation of wind usually coincides with the collapse of turbulence which leads to a quiet flow near the ground. As the absence of turbulent
Turbulent dispersal promotes species coexistence
Berkley, Heather A; Kendall, Bruce E; Mitarai, Satoshi; Siegel, David A
2010-01-01
Several recent advances in coexistence theory emphasize the importance of space and dispersal, but focus on average dispersal rates and require spatial heterogeneity, spatio-temporal variability or dispersal-competition tradeoffs to allow coexistence. We analyse a model with stochastic juvenile dispersal (driven by turbulent flow in the coastal ocean) and show that a low-productivity species can coexist with a high-productivity species by having dispersal patterns sufficiently uncorrelated from those of its competitor, even though, on average, dispersal statistics are identical and subsequent demography and competition is spatially homogeneous. This produces a spatial storage effect, with an ephemeral partitioning of a ‘spatial niche’, and is the first demonstration of a physical mechanism for a pure spatiotemporal environmental response. ‘Turbulent coexistence’ is widely applicable to marine species with pelagic larval dispersal and relatively sessile adult life stages (and perhaps some wind-dispersed species) and complements other spatial and temporal storage effects previously documented for such species. PMID:20455921
Parallel plasma fluid turbulence calculations
International Nuclear Information System (INIS)
Leboeuf, J.N.; Carreras, B.A.; Charlton, L.A.; Drake, J.B.; Lynch, V.E.; Newman, D.E.; Sidikman, K.L.; Spong, D.A.
1994-01-01
The study of plasma turbulence and transport is a complex problem of critical importance for fusion-relevant plasmas. To this day, the fluid treatment of plasma dynamics is the best approach to realistic physics at the high resolution required for certain experimentally relevant calculations. Core and edge turbulence in a magnetic fusion device have been modeled using state-of-the-art, nonlinear, three-dimensional, initial-value fluid and gyrofluid codes. Parallel implementation of these models on diverse platforms--vector parallel (National Energy Research Supercomputer Center's CRAY Y-MP C90), massively parallel (Intel Paragon XP/S 35), and serial parallel (clusters of high-performance workstations using the Parallel Virtual Machine protocol)--offers a variety of paths to high resolution and significant improvements in real-time efficiency, each with its own advantages. The largest and most efficient calculations have been performed at the 200 Mword memory limit on the C90 in dedicated mode, where an overlap of 12 to 13 out of a maximum of 16 processors has been achieved with a gyrofluid model of core fluctuations. The richness of the physics captured by these calculations is commensurate with the increased resolution and efficiency and is limited only by the ingenuity brought to the analysis of the massive amounts of data generated
International Nuclear Information System (INIS)
Pendergast, M.M.; Gilhousen, D.B.
1980-01-01
The Savannah River Plant's emergency response computer system was improved by the implementation of automatic forecasts of wind and turbulence for periods up to 30 hours. The forecasts include wind direction, wind speed, and horizontal and vertical turbulence intensity at 10, 91, and 243 m above ground for the SRP area, and were obtained by using the Model Output Statistics (MOS) technique. A technique was developed and tested to use the 30-hour MOS forecasts of wind and turbulence issued twice daily from the National Weather Service at Suitland, Maryland, into SRP's emergency response program. The technique for combining MOS forecasts, persistence, and adjusted-MOS forecast is used to generate good forecasts any time of day. Wind speed and turbulence forecasts have been shown to produce smaller root mean square errors (RMSE) than forecasts of persistence for time periods over about two hours. For wind direction, the adjusted-MOS forecasts produce smaller RMSE than persistence for times greater than four hours
Hydromagnetic turbulence in the direct interaction approximation
International Nuclear Information System (INIS)
Nagarajan, S.
1975-01-01
The dissertation is concerned with the nature of turbulence in a medium with large electrical conductivity. Three distinct though inter-related questions are asked. Firstly, the evolution of a weak, random initial magnetic field in a highly conducting, isotropically turbulent fluid is discussed. This was first discussed in the paper 'Growth of Turbulent Magnetic Fields' by Kraichnan and Nagargian. The Physics of Fluids, volume 10, number 4, 1967. Secondly, the direct interaction approximation for hydromagnetic turbulence maintained by stationary, isotropic, random stirring forces is formulated in the wave-number-frequency domain. Thirdly, the dynamical evolution of a weak, random, magnetic excitation in a turbulent electrically conducting fluid is examined under varying kinematic conditions. (G.T.H.)
The density variance-Mach number relation in supersonic turbulence - I. Isothermal, magnetized gas
Molina, F. Z.; Glover, S. C. O.; Federrath, C.; Klessen, R. S.
2012-07-01
It is widely accepted that supersonic, magnetized turbulence plays a fundamental role for star formation in molecular clouds. It produces the initial dense gas seeds out of which new stars can form. However, the exact relation between gas compression, turbulent Mach number and magnetic field strength is still poorly understood. Here, we introduce and test an analytical prediction for the relation between the density variance and the rms Mach number ? in supersonic, isothermal, magnetized turbulent flows. We approximate the density and velocity structure of the interstellar medium as a superposition of shock waves. We obtain the density contrast considering the momentum equation for a single magnetized shock and extrapolate this result to the entire cloud. Depending on the field geometry, we then make three different assumptions based on observational and theoretical constraints: B independent of ρ, B∝ρ1/2 and B∝ρ. We test the analytically derived density variance-Mach number relation with numerical simulations, and find that for B∝ρ1/2, the variance in the logarithmic density contrast, ?, fits very well to simulated data with turbulent forcing parameter b= 0.4, when the gas is super-Alfvénic. However, this result breaks down when the turbulence becomes trans-Alfvénic or sub-Alfvénic, because in this regime the turbulence becomes highly anisotropic. Our density variance-Mach number relations simplify to the purely hydrodynamic relation as the ratio of thermal to magnetic pressure β0→∞.
Gliebe, P. R.; Kerschen, E. J.
1979-01-01
The influence of tunnel turbulence on turbofan rotor noise was carried out to evaluate the effectiveness of the NASA Ames 40 by 80 foot tunnel in simulating flight levels of fan noise. A previously developed theory for predicting rotor/turbulence interaction noise was refined and extended to include first-order effects of inlet turbulence anisotropy. This theory was then verified by carrying out extensive data/theory comparisons. The resulting model computer program was then employed to carry out a parametric study of the effects of fan size, blade number, and operating line on rotor/turbulence noise for outdoor test stand. NASA Ames wind tunnel, and flight inlet turbulence conditions. A major result of this study is that although wind tunnel rotor/turbulence noise levels are not as low as flight levels they are substantially lower than the outdoor test stand levels and do not mask other sources of fan noise.
Density effects on turbulent boundary layer structure: From the atmosphere to hypersonic flow
Williams, Owen J. H.
order of magnitude smaller than estimates made using a standard shock response test. The effect of over-large tripping devices was also found to increase the wake strength of the mean velocity profile as well as freestream turbulence. A final assessment of the data reveals that Morkovin scaling collapses the streamwise turbulence profiles with DNS at the same Mach number. Wall-normal turbulence measurements remain compromised by limited particle frequency response.
PREFACE Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Niemela, Joseph J.
2010-12-01
The goals of the International Conference 'Turbulent Mixing and Beyond', TMB-2009, are to expose the generic problem of non-equilibrium turbulent processes to a broad scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together researchers from different areas, which include but are not limited to fluid dynamics, plasmas, high energy density physics, astrophysics, material science, combustion, atmospheric and Earth sciences, nonlinear and statistical physics, applied mathematics, probability and statistics, data processing and computations, optics and telecommunications, and to have their attention focused on the long-standing formidable task of non-equilibrium processes. Non-equilibrium turbulent processes play a key role in a broad variety of phenomena spanning astrophysical to atomistic scales and high or low energy density regimes. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, strong shocks and explosions, material transformation under high strain rate, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, non-canonical wall-bounded flows, hypersonic and supersonic boundary layers, dynamics of atmosphere and oceanography, are just a few examples. A grip on non-equilibrium turbulent processes is crucial for cutting-edge technology such as laser micro-machining, nano-electronics, free-space optical telecommunications, and for industrial applications in the areas of aeronautics and aerodynamics. Non-equilibrium turbulent processes are anisotropic, non-local, multi-scale and multi-phase, and often are driven by shocks or
Numerical analysis of hypersonic turbulent film cooling flows
Chen, Y. S.; Chen, C. P.; Wei, H.
1992-01-01
As a building block, numerical capabilities for predicting heat flux and turbulent flowfields of hypersonic vehicles require extensive model validations. Computational procedures for calculating turbulent flows and heat fluxes for supersonic film cooling with parallel slot injections are described in this study. Two injectant mass flow rates with matched and unmatched pressure conditions using the database of Holden et al. (1990) are considered. To avoid uncertainties associated with the boundary conditions in testing turbulence models, detailed three-dimensional flowfields of the injection nozzle were calculated. Two computational fluid dynamics codes, GASP and FDNS, with the algebraic Baldwin-Lomax and k-epsilon models with compressibility corrections were used. It was found that the B-L model which resolves near-wall viscous sublayer is very sensitive to the inlet boundary conditions at the nozzle exit face. The k-epsilon models with improved wall functions are less sensitive to the inlet boundary conditions. The testings show that compressibility corrections are necessary for the k-epsilon model to realistically predict the heat fluxes of the hypersonic film cooling problems.
Limitations of segmented wavefront control devices in emulating optical turbulence
Plourde, Michael D.; Schmidt, Jason D.
2008-08-01
Using a device to act as a surrogate for atmospheric turbulence in a laboratory is necessary to build and test optical systems for imaging, lidar, laser weapons, and laser communications. Liquid-crystal spatial light modulators (LC SLMs) and segmented micro-electro-mechanical-system (MEMS) deformable mirrors (DMs) are common devices for altering wavefronts to simulate a portion of atmospheric turbulence. The limitations of pixelation effects on a segmented wavefront control device were investigated theoretically. The results of this analysis were then verified by simulation. It was found that while LC SLMs with fine pixel resolution have almost no adverse effects from pixelation, segmented MEMS DMs have limitations related to the number of mirror segments on a DM. The performance capabilities of several available commercial devices are better understood as a result of this research.
3rd International Workshop on Turbulent Spray Combustion
Gutheil, Eva
2014-01-01
This book reflects the results of the 2nd and 3rd International Workshops on Turbulent Spray Combustion. The focus is on progress in experiments and numerical simulations for two-phase flows, with emphasis on spray combustion. Knowledge of the dominant phenomena and their interactions allows development of predictive models and their use in combustor and gas turbine design. Experts and young researchers present the state-of-the-art results, report on the latest developments and exchange ideas in the areas of experiments, modelling and simulation of reactive multiphase flows. The first chapter reflects on flame structure, auto-ignition and atomization with reference to well-characterized burners, to be implemented by modellers with relative ease. The second chapter presents an overview of first simulation results on target test cases, developed at the occasion of the 1st International Workshop on Turbulent Spray Combustion. In the third chapter, evaporation rate modelling aspects are covered, while the fourth ...
Transport of solar electrons in the turbulent interplanetary magnetic field
Energy Technology Data Exchange (ETDEWEB)
Ablaßmayer, J.; Tautz, R. C., E-mail: robert.c.tautz@gmail.com [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Dresing, N., E-mail: dresing@physik.uni-kiel.de [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 11, D-24118 Kiel (Germany)
2016-01-15
The turbulent transport of solar energetic electrons in the interplanetary magnetic field is investigated by means of a test-particle Monte-Carlo simulation. The magnetic fields are modeled as a combination of the Parker field and a turbulent component. In combination with the direct calculation of diffusion coefficients via the mean-square displacements, this approach allows one to analyze the effect of the initial ballistic transport phase. In that sense, the model complements the main other approach in which a transport equation is solved. The major advancement is that, by recording the flux of particles arriving at virtual detectors, intensity and anisotropy-time profiles can be obtained. Observational indications for a longitudinal asymmetry can thus be explained by tracing the diffusive spread of the particle distribution. The approach may be of future help for the systematic interpretation of observations for instance by the solar terrestrial relations observatory (STEREO) and advanced composition explorer (ACE) spacecrafts.
Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow
International Nuclear Information System (INIS)
Xiaodong Sun; Seungjin Kim; Ling Cheng; Mamoru Ishii; Beus, Stephen G.
2002-01-01
The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 200-mm in width and 10-mm in gap. Miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions. (authors)
Cascade of circulations in fluid turbulence.
Eyink, Gregory L
2006-12-01
Kelvin's theorem on conservation of circulations is an essential ingredient of Taylor's theory of turbulent energy dissipation by the process of vortex-line stretching. In previous work, we have proposed a nonlinear mechanism for the breakdown of Kelvin's theorem in ideal turbulence at infinite Reynolds number. We develop here a detailed physical theory of this cascade of circulations. Our analysis is based upon an effective equation for large-scale coarse-grained velocity, which contains a turbulent-induced vortex force that can violate Kelvin's theorem. We show that singularities of sufficient strength, which are observed to exist in turbulent flow, can lead to nonvanishing dissipation of circulation for an arbitrarily small coarse-graining length in the effective equations. This result is an analog for circulation of Onsager's theorem on energy dissipation for singular Euler solutions. The physical mechanism of the breakdown of Kelvin's theorem is diffusion of lines of large-scale vorticity out of the advected loop. This phenomenon can be viewed as a classical analog of the Josephson-Anderson phase-slip phenomenon in superfluids due to quantized vortex lines. We show that the circulation cascade is local in scale and use this locality to develop concrete expressions for the turbulent vortex force by a multiscale gradient expansion. We discuss implications for Taylor's theory of turbulent dissipation and we point out some related cascade phenomena, in particular for magnetic flux in magnetohydrodynamic turbulence.
Turbulence and cloud droplets in cumulus clouds
Saito, Izumi; Gotoh, Toshiyuki
2018-02-01
In this paper, we report on the successful and seamless simulation of turbulence and the evolution of cloud droplets to raindrops over 10 minutes from microscopic viewpoints by using direct numerical simulation. Included processes are condensation-evaporation, collision-coalescence of droplets with hydrodynamic interaction, Reynolds number dependent drag, and turbulent flow within a parcel that is ascending within a self-consistently determined updraft inside a cumulus cloud. We found that the altitude and the updraft velocity of the parcel, the mean supersaturation, and the liquid water content are insensitive to the turbulence intensity, and that when the turbulence intensity increases, the droplet number density swiftly decreases while the spectral width of droplets rapidly increases. This study marks the first time the evolution of the mass density distribution function has been successfully calculated from microscopic computations. The turbulence accelerated to form a second peak in the mass density distribution function, leading to the raindrop formation, and the radius of the largest drop was over 300 μm at the end of the simulation. We also found that cloud droplets modify the turbulence in a way that is unlike the Kolmogorov-Obukhov-Corrsin theory. For example, the temperature and water vapor spectra at low wavenumbers become shallower than {k}-5/3 in the inertial-convective range, and decrease slower than exponentially in the diffusive range. This spectra modification is explained by nonlinear interactions between turbulent mixing and the evaporation-condensation process associated with large numbers of droplets.
Turbulence-chemistry interactions in reacting flows
Energy Technology Data Exchange (ETDEWEB)
Barlow, R.S.; Carter, C.D. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
Interactions between turbulence and chemistry in nonpremixed flames are investigated through multiscalar measurements. Simultaneous point measurements of major species, NO, OH, temperature, and mixture fraction are obtained by combining spontaneous Raman scattering, Rayleigh scattering, and laser-induced fluorescence (LIF). NO and OH fluorescence signals are converted to quantitative concentrations by applying shot-to-shot corrections for local variations of the Boltzmann fraction and collisional quenching rate. These measurements of instantaneous thermochemical states in turbulent flames provide insights into the fundamental nature of turbulence-chemistry interactions. The measurements also constitute a unique data base for evaluation and refinement of turbulent combustion models. Experimental work during the past year has focused on three areas: (1) investigation of the effects of differential molecular diffusion in turbulent combustion: (2) experiments on the effects of Halon CF{sub 3}Br, a fire retardant, on the structure of turbulent flames of CH{sub 4} and CO/H{sub 2}/N{sub 2}; and (3) experiments on NO formation in turbulent hydrogen jet flames.
Learning to soar in turbulent environments.
Reddy, Gautam; Celani, Antonio; Sejnowski, Terrence J; Vergassola, Massimo
2016-08-16
Birds and gliders exploit warm, rising atmospheric currents (thermals) to reach heights comparable to low-lying clouds with a reduced expenditure of energy. This strategy of flight (thermal soaring) is frequently used by migratory birds. Soaring provides a remarkable instance of complex decision making in biology and requires a long-term strategy to effectively use the ascending thermals. Furthermore, the problem is technologically relevant to extend the flying range of autonomous gliders. Thermal soaring is commonly observed in the atmospheric convective boundary layer on warm, sunny days. The formation of thermals unavoidably generates strong turbulent fluctuations, which constitute an essential element of soaring. Here, we approach soaring flight as a problem of learning to navigate complex, highly fluctuating turbulent environments. We simulate the atmospheric boundary layer by numerical models of turbulent convective flow and combine them with model-free, experience-based, reinforcement learning algorithms to train the gliders. For the learned policies in the regimes of moderate and strong turbulence levels, the glider adopts an increasingly conservative policy as turbulence levels increase, quantifying the degree of risk affordable in turbulent environments. Reinforcement learning uncovers those sensorimotor cues that permit effective control over soaring in turbulent environments.
Coshcous turbulence and its thermalization
Energy Technology Data Exchange (ETDEWEB)
Zhu, Jian-zhou [Los Alamos National Laboratory; Taylor, Mark [SNL
2008-01-01
Dissipation rate {mu}[cosh(k/k{sub c}) - 1] in Fourier space, which reduces to the Newtonian viscosity dissipation rate {nu}k{sup 2} for small k/k{sub c}, can be scaled to make a hydrodynamic system either actually or potentially converge to its Galerkin truncation. The former case acquires convergence to the truncation at a finite wavenumber k{sub G}; the latter realizes as the wavenumber grows to infinity. Intermittency reduction and vitiation of extended self-similarity (ESS) in the partially thermalized regime of turbulence are confirmed and clarified. Onsager's pictures of intermittent versus nonintermittent flows are visualized from thermalized numerical fields, showing cleanly spotty versus mistily uniform properties, the latter of which destroys self-organization and so the ESS property.
Conservational PDF Equations of Turbulence
Shih, Tsan-Hsing; Liu, Nan-Suey
2010-01-01
Recently we have revisited the traditional probability density function (PDF) equations for the velocity and species in turbulent incompressible flows. They are all unclosed due to the appearance of various conditional means which are modeled empirically. However, we have observed that it is possible to establish a closed velocity PDF equation and a closed joint velocity and species PDF equation through conditions derived from the integral form of the Navier-Stokes equations. Although, in theory, the resulted PDF equations are neither general nor unique, they nevertheless lead to the exact transport equations for the first moment as well as all higher order moments. We refer these PDF equations as the conservational PDF equations. This observation is worth further exploration for its validity and CFD application
Turbulence modeling for hypersonic flows
Marvin, J. G.; Coakley, T. J.
1992-01-01
Turbulence modeling for high-speed compressible flows is described and discussed. Starting with the compressible Navier-Stokes equations, methods of statistical averaging are described by means of which the Reynolds-averaged Navier-Stokes equations are developed. Unknown averages in these equations are approximated using various closure concepts. Zero-, one-, and two-equation eddy viscosity models, algebraic stress models, and Reynolds stress transport models are discussed. Computations of supersonic and hypersonic flows obtained using several of the models are discussed and compared with experimental results. Specific examples include attached boundary-layer flows, shock-wave boundary-layer interactions, and compressible shear layers. From these examples, conclusions regarding the status of modeling and recommendations for future studies are discussed.
Dynamic turbulence mitigation with large moving objects
Nieuwenhuizen, Robert P. J.; van Eekeren, Adam W. M.; Dijk, Judith; Schutte, Klamer
2017-10-01
Long range imaging with visible or infrared observation systems is typically hampered by atmospheric turbulence. The fluctuations in the refractive index of the air produce random shifts and blurs in the recorded imagery that vary across the field of view and over time. This severely complicates their utility for visual detection, recognition and identification at large distances. Software based turbulence mitigation methods aim to restore such recorded image sequences based on the image data only and thereby enable visual identification at larger distances. Although successful restoration has been achieved on static scenes in the past, a significant challenge remains in accounting for moving objects such that they remain visible as moving objects in the output. Under moderate turbulence conditions, the turbulence induced shifts may be several pixels in magnitude and occur on the same length scale as moving objects. This severely complicates the segmentation between these objects and the background. Here we investigate how turbulence mitigation may be accomplished on background as well as large moving objects for both land and sea based imaging under moderate turbulence conditions. We apply optical flow estimation methods to determine both the turbulence induced shifts in image sequences as well as the motion of large moving objects. These motion estimates are used with our TNO turbulence mitigation software to reduce the effects of turbulence and to stabilize the output to a dynamic reference. We apply this approach to both land and sea scenarios. We investigate how different regularization methods for the optical flow affect the accuracy of the segmentation between moving object motion and the background motion. Moreover we qualitatively asses the quality improvement of the resulting imagery in sequences of output images, and show a substantial gain in their apparent sharpness and stability on both the background and moving objects.
Turbulent transport in low-beta plasmas
DEFF Research Database (Denmark)
Nielsen, A.H.; Pécseli, H.L.; Juul Rasmussen, J.
1996-01-01
Low-frequency electrostatic fluctuations are studied experimentally in a low-P plasma, with particular attention to their importance for the anomalous plasma transport across magnetic field lines. The presence of large coherent structures in a turbulent background at the edge of the plasma column...... is demonstrated by a statistical analysis. The importance of these structures for the turbulent transport is investigated. The study is extended by a multichannel conditional analysis to illustrate detailed properties and parameter dependences of the turbulent transport. (C) 1996 American Institute of Physics....
Synchronization of two coupled turbulent fires
Takagi, Kazushi; Gotoda, Hiroshi; Miyano, Takaya; Murayama, Shogo; Tokuda, Isao T.
2018-04-01
We numerically study the scale-free nature of a buoyancy-induced turbulent fire and synchronization of two coupled turbulent fires. A scale-free structure is detected in weighted networks between vortices, while its lifetime obeys a clear power law, indicating intermittent appearances, disappearances, and reappearances of the scale-free property. A significant decrease in the distance between the two fire sources gives rise to a synchronized state in the near field dominated by the unstable motion of large-scale of transverse vortex rings. The synchronized state vanishes in the far field forming well-developed turbulent plumes, regardless of the distance between the two fire sources.
Turbulent energy losses during orchard heating
Energy Technology Data Exchange (ETDEWEB)
Bland, W.L.
1979-01-01
Two rapid-response drag anemometers and low time constant thermocouples, all at 4 m above a heated orchard floor, sampled wind component in the vertical direction and temperature at 30 Hz. The turbulent heat flux calculated revealed not more than 10% of the heat lost from the orchard was via turbulent transort. The observations failed to support previous estimates that at least a third of the energy applied was lost through turbulent transport. Underestimation of heat loss due to mean flow and a newly revealed flux due to spatial variations in the mean flow may explain the unaccounted for loss.
Secondary turbulent flow in an infinte bend
DEFF Research Database (Denmark)
Christensen, H. Bo; Gislason, Kjartan; Fredsøe, Jørgen
1999-01-01
The flow in an infinite circular bend is inverstigated in both the laminar and fully turbulent flow case, by use of laminar flow solver, a k-e turbulence model, and a fully Reynolds stress turbulence model. The topic of the analysis is to investigate whether a counter-rotating secondary flow cell...... is formed near the surface at the outer bank. This cell might help to stabilise the bank and hereby be an important factor for the morphology in a meandering river. In the laminar runs stability criterion related to a Dean number was estabilshed. In the simulations with the k-e model and the Reynolds stress...
Air Turbulence and sensation of draught
DEFF Research Database (Denmark)
Fanger, Povl Ole; Melikov, Arsen Krikor; Hanzawa, H.
1988-01-01
The impact of turbulence intensity (Tu) on sensation of draught has been investigated. Fifty subjects, dressed to obtain a neutral thermal sensation, were in three experiments exposed to air flow with low (Tu55%) turbulence intensity. In each experiment...... on the occurence of draught sensation. A model is presented which predicts the percentage of people dissatisfied because of draught as a function of air temperature, mean velocity and turbulence intensity. The model can be a useful tool for quantifying the draught risk in spaces and for developing air distribution...
Turbulent pipe flow at extreme Reynolds numbers.
Hultmark, M; Vallikivi, M; Bailey, S C C; Smits, A J
2012-03-02
Both the inherent intractability and complex beauty of turbulence reside in its large range of physical and temporal scales. This range of scales is captured by the Reynolds number, which in nature and in many engineering applications can be as large as 10(5)-10(6). Here, we report turbulence measurements over an unprecedented range of Reynolds numbers using a unique combination of a high-pressure air facility and a new nanoscale anemometry probe. The results reveal previously unknown universal scaling behavior for the turbulent velocity fluctuations, which is remarkably similar to the well-known scaling behavior of the mean velocity distribution.
An informal conceptual introduction to turbulence
Tsinober, Arkady
2009-01-01
This book is a second completely revised edition of ""An Informal Introduction to Turbulence"". The main emphasis is on conceptual and problematic aspects, physical phenomena, observations, misconceptions and unresolved issues rather than on conventional formalistic aspects, models, etc. Apart from the obvious fundamental importance of turbulent flows such an emphasis is a consequence of the view that without corresponding progress in fundamental aspects there is little chance for progress in any applications such as drag reduction, mixing, control and modeling of turbulence. More generally th
Bahamas Optical Turbulence Exercise (BOTEX): preliminary results
Hou, Weilin; Jorosz, Ewa; Dalgleish, Fraser; Nootz, Gero; Woods, Sarah; Weidemann, Alan D.; Goode, Wesley; Vuorenkoski, Anni; Metzger, B.; Ramos, B.
2012-06-01
The Bahamas Optical Turbulence Exercise (BOTEX) was conducted in the coastal waters of Florida and the Bahamas from June 30 to July 12 2011, onboard the R/V FG Walton Smith. The primary objective of the BOTEX was to obtain field measurements of optical turbulence structures, in order to investigate the impacts of the naturally occurring turbulence on underwater imaging and optical beam propagation. In order to successfully image through optical turbulence structures in the water and examine their impacts on optical transmission, a high speed camera and targets (both active and passive) were mounted on a rigid frame to form the Image Measurement Assembly for Subsurface Turbulence (IMAST). To investigate the impacts on active imaging systems such as the laser line scan (LLS), the Telescoping Rigid Underwater Sensor Structure (TRUSS) was designed and implemented by Harbor Branch Oceanographic Institute. The experiments were designed to determine the resolution limits of LLS systems as a function of turbulence induced beam wander at the target. The impact of natural turbulence structures on lidar backscatter waveforms was also examined, by means of a telescopic receiver and a short pulse transmitter, co-located, on a vertical profiling frame. To include a wide range of water types in terms of optical and physical conditions, data was collected from four different locations. . Impacts from optical turbulence were observed under both strong and weak physical structures. Turbulence measurements were made by two instruments, the Vertical Microstructure Profiler (VMP) and a 3D acoustical Doppler velocimeter with fast conductivity and temperature probes, in close proximity in the field. Subsequently these were mounted on the IMAST during moored deployments. The turbulence kinetic energy dissipation rate and the temperature dissipation rates were calculated from both setups in order to characterize the physical environments and their impacts. Beam deflection by multiple point
Spectral line profiles in weakly turbulent plasmas
International Nuclear Information System (INIS)
Capes, H.; Voslamber, D.
1976-07-01
The unified theory of line broadening by electron perturbers is generalized to include the case of a weakly turbulent plasma. The collision operator in the line shape expression is shown to be the sum of two terms, both containing effects arising from the non-equilibrium nature of the plasma. One of the two terms represents the influence of individual atom-particle interactions occuring via the nonequilibrium dielectric plasma medium. The other term is due to the interaction of the atom with the turbulent waves. Both terms contain damping and diffusion effects arising from the plasma turbulence
Turbulent energy generated by accelerations and shocks
International Nuclear Information System (INIS)
Mikaelian, K.O.
1986-01-01
The turbulent energy generated at the interface between two fluids undergoing a constant acceleration or a shock is calculated. Assuming linear density profiles in the mixed region we find E/sub turbulent//E/sub directed/ = 2.3A 2 % (constant acceleration) and 9.3A 2 % (shock), where A is the Atwood number. Diffusion models predict somewhat less turbulent energy and a density profile with a tail extending into the lower density fluid. Eddy sizes are approximately 27% (constant acceleration) and 17% (shock) of the mixing depth into the heavier fluid. 6 refs., 3 figs
Puleo, J.A.; Mouraenko, O.; Hanes, D.M.
2004-01-01
Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.
Implementation and Validation of the BHR Turbulence Model in the FLAG Hydrocode
Energy Technology Data Exchange (ETDEWEB)
Denissen, Nicholas A. [Los Alamos National Laboratory; Fung, Jimmy [Los Alamos National Laboratory; Reisner, Jon M. [Los Alamos National Laboratory; Andrews, Malcolm J. [Los Alamos National Laboratory
2012-08-29
The BHR-2 turbulence model, developed at Los Alamos National Laboratory for variable density and compressible flows, is implemented in an Arbitrary Lagrangian-Eulerian hydrocode, FLAG. The BHR-2 formulation is discussed, with emphasis on its connection to multi-component flow formulations that underlie FLAG's treatment of multi-species flow. One-dimensional and two-dimensional validation tests are performed and compared to experiment and Eulerian simulations. Turbulence is an often studied and ubiquitous phenomenon in nature, and modeling its effects is essential in many practical applications. Specifically the behavior of turbulence in the presence of strong density gradients and compressibility is of fundamental importance in applications ranging from Inertial Confinement Fusion (ICF) [1], supernovae [2], and atmospheric flows. The BHR closure approach [3] seeks to model the physical processes at work in variable density turbulence including Kelvin-Helmholtz (KH) [4], Rayleigh-Taylor (RT) [5], and Richtmyer-Meshkov (RM) [6], driven turbulence. The effectiveness of the BHR-2 implementation has been demonstrated for variable density mixing in the KH, RT, and RM cases in an Eulerian framework [7]. The primary motivation of the present work is to implement the BHR-2 turbulence model in the Arbitrary Lagrangian-Eulerian (ALE) hydrodynamics code FLAG. The goal is not only to demonstrate results in agreement with previous Eulerian calculations, but also document behavior that arises from the underlying differences in code philosophy.
A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows
Bui, Trong T.
1999-01-01
A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed.
Energy Technology Data Exchange (ETDEWEB)
Toutant, A
2006-12-15
The complex interactions between interfaces and turbulence strongly impact the flow properties. Unfortunately, Direct Numerical Simulations (DNS) have to entail a number of degrees of freedom proportional to the third power of the Reynolds number to correctly describe the flow behaviour. This extremely hard constraint makes it impossible to use DNS for industrial applications. Our strategy consists in using and improving DNS method in order to develop the Interfaces and Sub-grid Scales concept. ISS is a two-phase equivalent to the single-phase Large Eddy Simulation (LES) concept. The challenge of ISS is to integrate the two-way coupling phenomenon into sub-grid models. Applying a space filter, we have exhibited correlations or sub-grid terms that require closures. We have shown that, in two-phase flows, the presence of a discontinuity leads to specific sub-grid terms. Comparing the maximum of the norm of the sub-grid terms with the maximum of the norm of the advection tensor, we have found that sub-grid terms related to interfacial forces and viscous effect are negligible. Consequently, in the momentum balance, only the sub-grid terms related to inertia have to be closed. Thanks to a priori tests performed on several DNS data, we demonstrate that the scale similarity hypothesis, reinterpreted near discontinuity, provides sub-grid models that take into account the two-way coupling phenomenon. These models correspond to the first step of our work. Indeed, in this step, interfaces are smooth and, interactions between interfaces and turbulence occur in a transition zone where each physical variable varies sharply but continuously. The next challenge has been to determine the jump conditions across the sharp equivalent interface corresponding to the sub-grid models of the transition zone. We have used the matched asymptotic expansion method to obtain the jump conditions. The first tests on the velocity of the sharp equivalent interface are very promising (author)
Towards CFD modeling of turbulent pipeline material transportation
Shahirpour, Amir; Herzog, Nicoleta; Egbers, Cristoph
2013-04-01
to generate an optimized LES solver to model turbulent pipe flow for larger Reynolds numbers. The validations are carried out using experiments conducted in Cottbus Large Pipe Test Facility at BTU as a reference [3]. In the mentioned experimental research, evolution of statistical pipe flow quantities, such as turbulence intensity, skewness and flatness are investigated to clarify the development length needed to achieve fully developed turbulence. These observations take place in a relatively large pipe test facility with an inner pipe diameter of Di = 0.19 m and a total length of L = 27 m where a bulk Reynolds number of 8.5×105 can be reached. 1. CO2 pipeline Infrastructure: An analysis of global challenges and opportunities, Final Report For International Energy Agency of Greenhouse Gas Program (2010) 2. J. Kim, P. Moin, R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds number, J.Fluid Mech. 177, 133-166, (1987) 3. F. Zimmer, E.-S. Zanoun and C. Egbers, A study on the influence of triggering pipe flow regarding mean and higher order statistics, Journal of Physics: Conference Series 318 (2011) 032039
Assessment of a hybrid finite element and finite volume code for turbulent incompressible flows
International Nuclear Information System (INIS)
Xia, Yidong; Wang, Chuanjin; Luo, Hong; Christon, Mark; Bakosi, Jozsef
2016-01-01
Hydra-TH is a hybrid finite-element/finite-volume incompressible/low-Mach flow simulation code based on the Hydra multiphysics toolkit being developed and used for thermal-hydraulics applications. In the present work, a suite of verification and validation (V&V) test problems for Hydra-TH was defined to meet the design requirements of the Consortium for Advanced Simulation of Light Water Reactors (CASL). The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of the Hydra-TH solution methods. The simulation problems vary in complexity from laminar to turbulent flows. A set of RANS and LES turbulence models were used in the simulation of four classical test problems. Numerical results obtained by Hydra-TH agreed well with either the available analytical solution or experimental data, indicating the verified and validated implementation of these turbulence models in Hydra-TH. Where possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using the Hydra-TH code. -- Highlights: •We performed a comprehensive study to verify and validate the turbulence models in Hydra-TH. •Hydra-TH delivers 2nd-order grid convergence for the incompressible Navier–Stokes equations. •Hydra-TH can accurately simulate the laminar boundary layers. •Hydra-TH can accurately simulate the turbulent boundary layers with RANS turbulence models. •Hydra-TH delivers high-fidelity LES capability for simulating turbulent flows in confined space.
Turbulent dispersion from line sources in grid turbulence
Viswanathan, Sharadha; Pope, Stephen B.
2008-10-01
Probability density function (PDF) calculations are reported for the dispersion from line sources in decaying grid turbulence. The calculations are performed using a modified form of the interaction by exchange with the conditional mean (IECM) mixing model. These flows pose a significant challenge to statistical models because the scalar length scale (of the initial plume) is much smaller than the turbulence integral scale. Consequently, this necessitates incorporating the effects of molecular diffusion in order to model laboratory experiments. Previously, Sawford [Flow Turb. Combust. 72, 133 (2004)] performed PDF calculations in conjunction with the IECM mixing model, modeling the effects of molecular diffusion as a random walk in physical space and using a mixing time scale empirically fit to the experimental data of Warhaft [J. Fluid Mech. 144, 363 (1984)]. The resulting transport equation for the scalar variance contains a spurious production term. In the present work, the effects of molecular diffusion are instead modeled by adding a conditional mean scalar drift term, thus avoiding the spurious production of scalar variance. A laminar wake model is used to obtain an analytic expression for the mixing time scale at small times, and this is used as part of a general specification of the mixing time scale. Based on this modeling, PDF calculations are performed, and comparison is made primarily with the experimental data of Warhaft on single and multiple line sources and with the previous calculations of Sawford. A heated mandoline is also considered with comparison to the experimental data of Warhaft and Lumley [J. Fluid Mech. 88, 659 (1978)]. This establishes the validity of the proposed model and the significant effect of molecular diffusion on the decay of scalar fluctuations. The following are the significant predictions of the model. For the line source, the effect of the source size is limited to early times and can be completely accounted for by simple
Hwang, Danny P.
1999-01-01
A new turbulent skin friction reduction technology, called the microblowing technique has been tested in supersonic flow (Mach number of 1.9) on specially designed porous plates with microholes. The skin friction was measured directly by a force balance and the boundary layer development was measured by a total pressure rake at the tailing edge of a test plate. The free stream Reynolds number was 1.0(10 exp 6) per meter. The turbulent skin friction coefficient ratios (C(sub f)/C(sub f0)) of seven porous plates are given in this report. Test results showed that the microblowing technique could reduce the turbulent skin friction in supersonic flow (up to 90 percent below a solid flat plate value, which was even greater than in subsonic flow).
Evaluation of the Effects of Turbulence on the Behavior of Migratory Fish, 2002 Final Report.
Energy Technology Data Exchange (ETDEWEB)
Odeh, Mufeed.
2002-03-01
biological effects. Furthermore, this report describes an experimental apparatus designed to test the effect of turbulence on fish, and defines its hydraulics. It gives the results of experiments in which three different fish species were exposed to representative levels of turbulence in the laboratory.
Evaluation of the effects of turbulence on the behavior of migratory fish, final report 2002.; FINAL
International Nuclear Information System (INIS)
Odeh, Mufeed.
2002-01-01
biological effects. Furthermore, this report describes an experimental apparatus designed to test the effect of turbulence on fish, and defines its hydraulics. It gives the results of experiments in which three different fish species were exposed to representative levels of turbulence in the laboratory
Analysis of flame surface density measurements in turbulent premixed combustion
Energy Technology Data Exchange (ETDEWEB)
Halter, Fabien [Institut PRISME, Universite d' Orleans, 45072 Orleans (France); Chauveau, Christian; Goekalp, Iskender [Institut de Combustion, Aerothermique, Reactivite et Environnement, Centre National de la Recherche Scientifique, 45071 Orleans (France); Veynante, Denis [Laboratoire E.M2.C, Centre National de la Recherche Scientifique, Ecole Centrale Paris, 92295 Chatenay-Malabry (France)
2009-03-15
In premixed turbulent combustion, reaction rates can be estimated from the flame surface density. This parameter, which measures the mean flame surface area available per unit volume, may be obtained from algebraic expressions or by solving a transport equation. In this study, detailed measurements were performed on a Bunsen-type burner fed with methane/air mixtures in order to determine the local flame surface density experimentally. This burner, located in a high-pressure combustion chamber, allows investigation of turbulent premixed flames under various flow, mixture, and pressure conditions. In the present work, equivalence ratio was varied from 0.6 to 0.8 and pressure from 0.1 to 0.9 MPa. Flame front visualizations by Mie scattering laser tomography are used to obtain experimental data on the instantaneous flame front dynamics. The exact equation given by Pope is used to obtain flame surface density maps for different flame conditions. Some assumptions are made in order to access three-dimensional information from our two-dimensional experiments. Two different methodologies are proposed and tested in term of global mass balance (what enters compared to what is burned). The detailed experimental flame surface data provided for the first time in this work should progressively allow improvement of turbulent premixed flame modeling approaches. (author)
Turbulent Simulations of Divertor Detachment Based On BOUT + + Framework
Chen, Bin; Xu, Xueqiao; Xia, Tianyang; Ye, Minyou
2015-11-01
China Fusion Engineering Testing Reactor is under conceptual design, acting as a bridge between ITER and DEMO. The detached divertor operation offers great promise for a reduction of heat flux onto divertor target plates for acceptable erosion. Therefore, a density scan is performed via an increase of D2 gas puffing rates in the range of 0 . 0 ~ 5 . 0 ×1023s-1 by using the B2-Eirene/SOLPS 5.0 code package to study the heat flux control and impurity screening property. As the density increases, it shows a gradually change of the divertor operation status, from low-recycling regime to high-recycling regime and finally to detachment. Significant radiation loss inside the confined plasma in the divertor region during detachment leads to strong parallel density and temperature gradients. Based on the SOLPS simulations, BOUT + + simulations will be presented to investigate the stability and turbulent transport under divertor plasma detachment, particularly the strong parallel gradient driven instabilities and enhanced plasma turbulence to spread heat flux over larger surface areas. The correlation between outer mid-plane and divertor turbulence and the related transport will be analyzed. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675075.
Directory of Open Access Journals (Sweden)
R. Silva
2015-12-01
Full Text Available In this manuscript, Computational Fluid Dynamics (CFD studies applying the Mixture Model coupled with both a High Reynolds and a Low Reynolds k-ε turbulence closures, were used to describe experimental pressure gradients and particle concentration profiles from the literature, for concentrated solid-liquid flows of settling particles in a horizontal pipe above the critical deposition velocity. With this work a new Mixture Model formulation is presented, incorporating the Jones-Launder Low Reynolds k-ε turbulence closure, to overcome the excessive turbulence production observed in the numerical studies using the High Reynolds k-ε turbulence model. Additionally, this formulation provides a more accurate representation of the wall turbulence damping phenomena, observed in the experimental testing for the flow of higher particle concentrations suspensions and higher flow velocities. Knowledge on the conditions that cause turbulence attenuation on solid-liquid flows is still scarce in the literature and of considerable value for industrial applications.
Determining the Spatial Coherence of Turbulence at MHK Sites
Kilcher, Levi F.; Thomson, Jim; Colby, Jonathan
2014-01-01
Although turbulence is thought to be a key variable in the performance and survivability of Marine Hydrokinetic turbines, it has not been fully characterized at sites where they will be deployed. In particular, the conventional metrics of turbulence intensity and turbulent kinetic energy spectra only describe the turbulence at a point. Spatial information is required to estimate the loading across a rotor, for example, and to understand the short-term evolution of turbulence in the vicinity o...
Influence of turbulent motions on non-radial oscillations
International Nuclear Information System (INIS)
Durney, B.R.
1984-01-01
The effect of turbulent motions on oscillations is studied, considering only the coupling between turbulent and oscillatory velocities. In this case, the turbulence affects the oscillations through the Reynolds stresses in the momentum equation for the pulsations. A simple model of turbulence is adopted to evaluate these Reynolds stresses and the perturbed eigenfrequencies are expressed as a function of certain averages of the turbulent velocities
Momentum and scalar transport at the turbulent/non-turbulent interface of a jet
DEFF Research Database (Denmark)
Westerweel, J.; Fukushima, C.; Pedersen, Jakob Martin
2009-01-01
and well-defined bounding interface between the turbulent and non-turbulent regions of flow. The jet carries a fluorescent dye measured with planar laser-induced fluorescence (LIF), and the surface discontinuity in the scalar concentration is identified as the fluctuating turbulent jet interface. Thence...... velocity and mean scalar and a tendency towards a singularity in mean vorticity. These actual or asymptotic discontinuities are consistent with the conditional mean momentum and scalar transport equations integrated across the interface. Measurements of the fluxes of turbulent kinetic energy and enstrophy...
Development of CO2 laser Doppler instrumentation for detection of clear air turbulence, volume 1
Harris, C. E.; Jelalian, A. V.
1979-01-01
Modification, construction, test and operation of an advanced airborne carbon dioxide laser Doppler system for detecting clear air turbulence are described. The second generation CAT program and those auxiliary activities required to support and verify such a first-of-a-kind system are detailed: aircraft interface; ground and flight verification tests; data analysis; and laboratory examinations.
Deconstructing quantum decoherence in atmospheric turbulence
CSIR Research Space (South Africa)
Roux, FS
2012-06-01
Full Text Available This report present the presentation on deconstructing quantum decoherence in atmospheric turbulence. The focus was on the classical and quantum scintillation, time vs propagation distance, current paradigm: Paterson model, infinitesimal approach...
A dynamics investigation into edge plasma turbulence
International Nuclear Information System (INIS)
Thomsen, H.
2002-08-01
The present experimental work investigates plasma turbulence in the edge region of magnetized high-temperature plasmas. A main topic is the turbulent dynamics parallel to the magnetic field, where hitherto only a small data basis existed, especially for very long scale lengths in the order of ten of meters. A second point of special interest is the coupling of the dynamics parallel and perpendicular to the magnetic field. This anisotropic turbulent dynamics is investigated by two different approaches. Firstly, spatially and temporally high-resolution measurements of fluctuating plasma parameters are investigated by means of two-point correlation analysis. Secondly, the propagation of signals externally imposed into the turbulent plasma background is studied. For both approaches, Langmuir probe arrays were utilized for diagnostic purposes. (orig.)
Coherent Structures in Numerically Simulated Plasma Turbulence
DEFF Research Database (Denmark)
Kofoed-Hansen, O.; Pécseli, H.L.; Trulsen, J.
1989-01-01
Low level electrostatic ion acoustic turbulence generated by the ion-ion beam instability was investigated numerically. The fluctuations in potential were investigated by a conditional statistical analysis revealing propagating coherent structures having the form of negative potential wells which...
De-trending of turbulence measurements
DEFF Research Database (Denmark)
Hansen, Kurt Schaldemose; Larsen, Gunner Chr.
2006-01-01
depends primarily on site characteristics and local mean wind speed variations. Reduced turbulence intensity will result in lower design fatigue loads. This aspect of de-trending is discussed by use of a simple heuristic load model. Finally an empirical model for de-trending wind resource data......The paper presents the results of a comparison between long term raw and de-trended turbulence intensity values recorded at offshore and coastal sites under different weather systems. Within the traditional framework of turbulence interpretation, where turbulence is considered as a stationary...... measurements usually include statistics of ten-minute mean and standard deviation, and it is not possible to calculate the trend contribution afterwards, because this requires access to the time-series. A huge amount of time-series, stored in the database WindData.com, are used to calculate the trend...
Theory of incremental turbulent transport in tokamaks
International Nuclear Information System (INIS)
Similon, P.L.
1991-01-01
The goal of this research is to understand how the various aspect of turbulent transport operate in tokamaks, in the presence of low frequency fluctuations such as drift waves or trapped electron modes
Laguerre Gaussian beam multiplexing through turbulence
CSIR Research Space (South Africa)
Trichili, A
2014-08-17
Full Text Available We analyze the effect of atmospheric turbulence on the propagation of multiplexed Laguerre Gaussian modes. We present a method to multiplex Laguerre Gaussian modes using digital holograms and decompose the resulting field after encountering a...
Robust entangled qutrit states in atmospheric turbulence
CSIR Research Space (South Africa)
Brunner, T
2013-06-01
Full Text Available The entangled quantum state of a photon pair propagating through atmospheric turbulence suffers decay of entanglement due to the scintillation it experiences. Here we investigate the robustness against this decay for different qutrit states. We use...
Vortices and turbulence at very low temperatures
Schneider, Wilhelm; Sergeev, Yuri
2009-01-01
Recent investigations have highlighted the similarities between turbulence in cryogenic fluids at temperatures close to absolute zero. This book contains lectures on various theoretical and experimental aspects of the problem.
Energetics of turbulent transport processes in tokamaks
International Nuclear Information System (INIS)
Haas, F.A.; Thyagaraja, A.
1987-01-01
The effect of electromagnetic turbulence on electrons and ions under Tokamak conditions is considered using a kinetic description. Taking the magnetic fluctuation spectrum as given, the density fluctuation spectrum is self-consistently calculated taking account of quasi-neutrality. The calculation is valid for arbitrary collisionality and appropriate to low frequencies typical of experiment. In addition to the usual enhancement of the radial electron energy transport, it is found that the turbulent fluctuations can heat the plasma at rates comparable to ordinary ohmic heating under well-defined conditions. Interestingly, electromagnetic turbulence appears to imply only an insignificant correction to the toroidal resistance of the plasma as estimated from Spitzer resistivity. The scalings of anomalous transport, fluctuations and heating with temperature and plasma volume are investigated. The assumption that the magnetic fluctuation spectrum of the turbulence is invariant under a wide range of conditions is shown to result in interesting consequences for JET-like plasmas. (author)
Computational fluid dynamics incompressible turbulent flows
Kajishima, Takeo
2017-01-01
This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications. • Introduces CFD techniques for incompressible flow and turbulence with a comprehensive approach; • Enr...
Influence of atmospheric turbulence on Lidar performance
Chai, Guo-bei; Sun, Xiao; Yang, Jian; Yang, Wen-fu; Bao, Wen-zhuo; Xie, Xiao-yang
2017-11-01
In the interference analysis of LIDAR system, atmospheric turbulence model is indispensable. To improve the accuracy of atmospheric effects in the LADAR simulator, Exponential Weibull model is adopted to calculate atmospheric turbulence, achieving a physically-based simulation of a LADAR system integrated with quantitative atmospheric turbulence. The feasibility of the proposed method is verified by comparing simulated and field data. To evaluate LIDAR performance in complex environments, the method of analyzing the system performance based on a general simulation framework is proposed. A general and systematic physically reasonable imaging LADAR simulation model combining "laser - target - atmosphere: LADAR imaging" is achieved for assessment of LADAR imaging system. Experimental results show that the turbulence can cause energy dispersion, leading to the detection of false alarm
TIDAL TURBULENCE SPECTRA FROM A COMPLIANT MOORING
Energy Technology Data Exchange (ETDEWEB)
Thomson, Jim; Kilcher, Levi; Richmond, Marshall C.; Talbert, Joe; deKlerk, Alex; Polagye, Brian; Guerra, Maricarmen; Cienfuegos, Rodrigo
2013-06-13
A compliant mooring to collect high frequency turbulence data at a tidal energy site is evaluated in a series of short demon- stration deployments. The Tidal Turbulence Mooring (TTM) improves upon recent bottom-mounted approaches by suspend- ing Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are more relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion cor- rection (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are dis- cussed.
Quasi-Wavelet Models for Atmospheric Turbulence
National Research Council Canada - National Science Library
Goedecke, George
2002-01-01
...). The "quasi-wavelet" (QW) model discussed in this paper is an attempt to develop a mathematical representation for the turbulence that more closely resembles this physical picture than Fourier modes or customary wavelets...
High Altitude Clear Air Turbulence Project
National Oceanic and Atmospheric Administration, Department of Commerce — The Air Force Flight Dynamics Laboratory conducted the High Altitude Clear Air Turbulence Project in the mid 1960s with the intention of better understanding air...
Energy Technology Data Exchange (ETDEWEB)
Arbeiter, F. [Forschungszentrum Karlsruhe GmbH, Postfach 3640, D-76021 Karlsruhe (Germany); Gordeev, S. [Forschungszentrum Karlsruhe GmbH, Postfach 3640, D-76021 Karlsruhe (Germany)]. E-mail: gordeev@irs.fzk.de; Heinzel, V. [Forschungszentrum Karlsruhe GmbH, Postfach 3640, D-76021 Karlsruhe (Germany); Slobodtchouk, V. [Forschungszentrum Karlsruhe GmbH, Postfach 3640, D-76021 Karlsruhe (Germany)
2006-02-15
The aim of the present work is to choose an optimal use of CFD codes for thermohydraulic calculation of the helium cooled fusion reactor components, such as divertor module, test blanket module and International Fusion Materials Irradiation Facility (IFMIF) test modules. In spite of common features (intense heat flux, nuclear heating of the structure, helium-cooling), all these components have different boundary conditions, such as helium temperature, pressure and heating rate and different geometries. It is the reason for the appearance of some effects in the flow influencing significantly the heat transfer. A number of turbulence models offered by the commercial STAR-CD code were tested on the experiments carried out in the Forschungszentrum Karlsruhe (FZK) and on the experimental data from the scientific publications. Results of different turbulence models are compared and analysed. For geometrically simple channel flows with significant gas property variation low-Re number k-{epsilon} models with damping functions give more accurate results and are more appropriate for the conditions of the IFMIF HFTM. The heat transfer in regions with flow impingement is well predicted by turbulence models, which include different limiters in the turbulence production. Most reliable turbulence models were chosen for the thermohydraulic analysis.
Non-equilibrium turbulence scalings in turbulent planar jets
Cafiero, Gioacchino; Vassilicos, John Christos; Turbulence, Mixing; Flow Control Group Team
2017-11-01
A revised version of the Townsend George theory, as proposed by Dairay et al. 2015, is applied to the study of turbulent planar jets (Cafiero and Vassilicos 2017). Requiring the self-similarity of only few quantities along with the non-equilibrium dissipation scaling law (Vassilicos 2015), it implies new mean flow and jet width scalings. In particular, the ratio of characteristic cross-stream to centreline streamwise velocities decays as the -1/3 power of streamwise distance in the region where the non-equilibrium dissipation scaling holds. In the definition of Cɛ both in Dairay et al. 2015 and in Cafiero and Vassilicos 2017 the local Reynolds number is based on the local flow width rather than on the integral lengthscale. We verify that the ratio of the integral lengthscale to the flow width is constant, thus enabling the use of the integral flow width in place of the integral lengthscale for defining Cɛ. The importance of this result is twofold: firstly it further strengthens the scalings obtained in the works of Dairay et al. 2015 and Cafiero and Vassilicos 2017; secondly the flow width is immediately accessible by any mean flow measurement, whereas the estimation of the integral lengthscale often requires an additional hypothesis. ERC Advanced Grant 320560.
Effective kinematic viscosity of turbulent He II
Czech Academy of Sciences Publication Activity Database
Chagovets, Tymofiy; Gordeev, A. V.; Skrbek, L.
2007-01-01
Roč. 76, č. 2 (2007), 027301/1-027301/4 ISSN 1539-3755 R&D Projects: GA ČR GA202/05/0218 Institutional research plan: CEZ:AV0Z10100520 Keywords : ĺiquid helium II * decaying counetrflow turbulence * mutual friction * grid turbulence * rotating helium * finite channel * heat current Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.483, year: 2007
[Turbulence and spatio-temporal chaos
International Nuclear Information System (INIS)
1990-01-01
This report discusses Saffman-Taylor instability; cylinder wake; Levy walk and turbulent channel flow; bubble motion and bubble streams; spinal turbulent and wetting; collective behavior of a coupled map system with a conserved quantity; stability of temporally periodic states; generic nonergodic behavior in continuous systems; characterization of unstable periodic orbits; in low-dimensional chaotic attractors and repellers; and Ginzburg-Landau theory for oil-water-surfactant mixture
Restoration algorithms for imaging through atmospheric turbulence
2017-02-18
the atmosphere. Especially the presence of turbulence, which become non-negligible and affect the final resolution, limiting the efficiency of...groundtruth associated to each sequence and then can be used by some metric to assess the reconstruction efficiency . We categorized the observed turbulence...a combination of SIFT [26] and ORSA [14] algorithms) in order to remove affine transformations (translations, rotations and homothety). The authors
Turbulence of high-beta plasma
International Nuclear Information System (INIS)
Khvesyuk, V.I.; Chirkov, A.Y.
1999-01-01
Principals of numerical modelling of turbulence in high-beta plasma (β > 0.1) are discussed. Creation of transport model for axial symmetric nonuniform confining magnetic field is considered. Numerical model of plasma turbulence in FRC is presented. The physical and mathematical models are formulated from nonuniform axial symmetric high-beta plasma. It is shown that influence of waves arise under this plasma conditions lead to chaotic motion of charged particles across magnetic field. (author)
Direct numerical simulation of turbulent reacting flows
Energy Technology Data Exchange (ETDEWEB)
Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
Generation of Synthetic Turbulence in Arbitrary Domains
DEFF Research Database (Denmark)
Gilling, Lasse; Nielsen, Søren R.K.; Sørensen, Niels
2009-01-01
A new method for generating synthetic turbulence is presented. The method is intended for generating a turbulent velocity field with a fine spatial resolution but only covering a small moving part of the rotor area of a wind turbine. For this application the Mann and Sandia methods cannot be used......-spectra a realization of a velocity field is determined by factorization and Fourier transform as in the Sandia method....
Improved Nonequilibrium Algebraic Model Of Turbulence
Johnson, D. A.; Coakley, T. J.
1993-01-01
Blend of previous models predicts pressure distributions more accurately. Improved algebraic model represents some of time-averaged effects of turbulence in transonic flow of air over airfoil. Based partly on comparisons among various eddy-viscosity formulations for turbulence and partly on premise that law of wall more universally valid in immediate region of surface in presence of adverse gradient of pressure than mixing-length theory and original Johnson and King model.
Turbulent Mixing in Stably Stratified Flows
2008-03-01
Turbulent fluid motions are typically characterized by several features including randomness in both space and time, vorticity, an energy cascade ...drawback of this method is that the portion of the flow identified as a turbulent structure is dependent on the type of wavelet filter used (e.g., Haar ...the mesoscale variability of the atmosphere. J. Atmos. Sci., 40:749-761, 1983. E. Lindborg. The energy cascade in a strongly stratified fluid. J
Energy Technology Data Exchange (ETDEWEB)
Hotchkiss, Rollin H. (Washington State University, Department of Civil and Environmental Engineers, Albrook Hydraulics Laboratory)
2002-12-01
Turbulence in gravel bed rivers plays a critical role in most stream processes including contaminant and nutrient transport, aquatic habitat selection, and natural channel design. While most hydraulic designs and fluid models are based on bulk velocity, migrating juvenile salmon experience and react to the temporally varied turbulent fluctuations. Without properly understanding and accounting for the continuous turbulent motions proper fishway design and guidance are impossible. Matching temporally varied flow to fish reactions is the key to guiding juvenile salmonids to safe passageways. While the ideal solution to fish guidance design would be to use specific fluid action-fish reaction mechanisms, such concrete cause and effect relations have not been established. One way to approach the problem of guidance is to hypothesize that in an environment lacking obvious bulk flow cues (like the reservoir environment), turbulent flow conditions similar to those experienced by juvenile salmonids in natural migration corridors will be attractive to juvenile salmonids. Proof of this hypothesis requires three steps: (1) gathering data on turbulence characteristics in natural migration corridors, (2) reproduction of the turbulence parameters in a controlled environment, and (3) testing the reproduced turbulence on actively migrating juvenile salmonids for increased passage efficiencies. The results from the third step have not been finalized, therefore this report will focus on understanding turbulent processes in gravel bed rivers and reproduction of turbulence in controlled environments for use in fish passage technologies. The purposes of this report are to (1) present data collected in natural gravel bed rivers, (2) present a simple method for reproduction of appropriate turbulence levels in a controlled environment, (3) compare these results to those from one prototype surface collector (PSC), and (4) discuss the implications on fish passage design.
a Numerical Method for Turbulent Combustion Problems
Song, Yu.
This dissertation presents a random numerical method which combines a random vortex method and a random choice method. With the assumption of incompressibility, the equations governing the fluid motion can be uncoupled from the equations governing the chemical reaction. A hybrid random vortex method is used for solving Navier -Stokes equation which governs the fluid motion. Combustion process is governed by reaction-diffusion system for the conservation of energy and the various chemical species participating in reaction. A random choice method is used for the modeling reaction-diffusion equations. The random choice method is tested and the numerical solutions are compared with the results by either the other numerical methods or exact solutions, good improvement and agreement have been obtained. For physical problem in two or more space dimensions, extension of the random choice method requires splitting the source terms into an x-sweep followed by a y-sweep. The splitting of the source term is also examined for an equation with an exact solution. The combustion model is applied to the problem of combustion in a circular cylinder with cylinder heated or kept cold. The flame profiles are obtained and effect of the turbulent is observed. The method is also applied to the ignition of a Bunsen burner. The correct modeling of mixing layer at the edge of the burner is found important in this application. Flame propagation profiles are obtained and have good agreement with experiments.
4-wave dynamics in kinetic wave turbulence
Chibbaro, Sergio; Dematteis, Giovanni; Rondoni, Lamberto
2018-01-01
A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function Z is obtained within an ;interaction representation; and a perturbation expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove linear terms that do not appear in the 3-wave case. Feynman-Wyld diagrams are used to average over phases, leading to a first order differential evolution equation for Z. A hierarchy of equations, analogous to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of random phases and amplitudes. This amounts to a general formalism for both the N-mode and the 1-mode PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating intermittency. Some of the main results which are developed here in detail have been tested numerically in a recent work.
Filamentary fragmentation in a turbulent medium
Clarke, S. D.; Whitworth, A. P.; Duarte-Cabral, A.; Hubber, D. A.
2017-06-01
We present the results of smoothed particle hydrodynamic simulations investigating the evolution and fragmentation of filaments that are accreting from a turbulent medium. We show that the presence of turbulence and the resulting inhomogeneities in the accretion flow play a significant role in the fragmentation process. Filaments that experience a weakly turbulent accretion flow fragment in a two-tier hierarchical fashion, similar to the fragmentation pattern seen in the Orion Integral Shaped Filament. Increasing the energy in the turbulent velocity field results in more sub-structure within the filaments, and one sees a shift from gravity-dominated fragmentation to turbulence-dominated fragmentation. The sub-structure formed in the filaments is elongated and roughly parallel to the longitudinal axis of the filament, similar to the fibres seen in observations of Taurus, and suggests that the fray and fragment scenario is a possible mechanism for the production of fibres. We show that the formation of these fibre-like structures is linked to the vorticity of the velocity field inside the filament and the filament's accretion from an inhomogeneous medium. Moreover, we find that accretion is able to drive and sustain roughly sonic levels of turbulence inside the filaments, but is not able to prevent radial collapse once the filaments become supercritical. However, the supercritical filaments that contain fibre-like structures do not collapse radially, suggesting that fibrous filaments may not necessarily become radially unstable once they reach the critical line-density.
Multi-Spacecraft Turbulence Analysis Methods
Horbury, Tim S.; Osman, Kareem T.
Turbulence is ubiquitous in space plasmas, from the solar wind to supernova remnants, and on scales from the electron gyroradius to interstellar separations. Turbulence is responsible for transporting energy across space and between scales and plays a key role in plasma heating, particle acceleration and thermalisation downstream of shocks. Just as with other plasma processes such as shocks or reconnection, turbulence results in complex, structured and time-varying behaviour which is hard to measure with a single spacecraft. However, turbulence is a particularly hard phenomenon to study because it is usually broadband in nature: it covers many scales simultaneously. One must therefore use techniques to extract information on multiple scales in order to quantify plasma turbulence and its effects. The Cluster orbit takes the spacecraft through turbulent regions with a range of characteristics: the solar wind, magnetosheath, cusp and magnetosphere. In each, the nature of the turbulence (strongly driven or fully evolved; dominated by kinetic effects or largely on fluid scales), as well as characteristics of the medium (thermalised or not; high or low plasma sub- or super-Alfvenic) mean that particular techniques are better suited to the analysis of Cluster data in different locations. In this chapter, we consider a range of methods and how they are best applied to these different regions. Perhaps the most studied turbulent space plasma environment is the solar wind, see Bruno and Carbone [2005]; Goldstein et al. [2005] for recent reviews. This is the case for a number of reasons: it is scientifically important for cosmic ray and solar energetic particle scattering and propagation, for example. However, perhaps the most significant motivations for studying solar wind turbulence are pragmatic: large volumes of high quality measurements are available; the stability of the solar wind on the scales of hours makes it possible to identify statistically stationary intervals to
Scaling, Intermittency and Decay of MHD Turbulence
International Nuclear Information System (INIS)
Lazarian, A.; Cho, Jungyeon
2005-01-01
We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field
Silent inflow condition for turbulent boundary layers
Gloerfelt, X.; Robinet, J.-C.
2017-12-01
The generation of a turbulent inflow is a tricky problem. In the framework of aeroacoustics, another important constraint is that the numerical strategy used to reach a turbulent state induces a spurious noise which is lower than the acoustic field of interest. For the study of noise radiated directly by a turbulent boundary layer on a flat plate, this constraint is severe since wall turbulence is a very inefficient source. That is why a method based on a transition by modal interaction using a base flow with an inflection point is proposed to cope with that. The base flow must be a solution of the equations so we use a profile behind a backward-facing step representative of experimental trip bands. A triad of resonant waves is selected by a local stability analysis of the linearized compressible equations and is added with a weak amplitude in the inlet plane. The compressible stability calculation allows the specification of the thermodynamic quantities at the inlet, which turns out to be fundamental to ensure a quiet inflow. A smooth transition is achieved with the rapid formation of Λ -shape vortices in a staggered organization as in subharmonic transition. The dominance of oblique waves promotes a rapid breakdown by the liftup mechanism of low-speed streaks. The quality of the fully turbulent state is assessed and the direct noise radiation from a turbulent boundary layer at Mach 0.5 is obtained with a very low level of spurious noise.
TURBULENT OXYGEN FLAMES IN TYPE Ia SUPERNOVAE
International Nuclear Information System (INIS)
Aspden, A. J.; Bell, J. B.; Woosley, S. E.
2011-01-01
In previous studies, we examined turbulence-flame interactions in carbon-burning thermonuclear flames in Type Ia supernovae. In this study, we consider turbulence-flame interactions in the trailing oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen flame. Scaling arguments analogous to the carbon flames are presented and then compared against three-dimensional simulations for a range of Damkoehler numbers (Da 16 ) at a fixed Karlovitz number. The simulations suggest that turbulence does not significantly affect the oxygen flame when Da 16 16 >1, turbulence enhances heat transfer and drives the propagation of a flame that is narrower than the corresponding inductive flame would be. Furthermore, burning under these conditions appears to occur as part of a combined carbon-oxygen turbulent flame with complex compound structure. The simulations do not appear to support the possibility of a transition to detonation in the oxygen flame, but do not preclude it either.
Laser beam propagation in atmospheric turbulence
Murty, S. S. R.
1979-01-01
The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.
Global variation of meteor trail plasma turbulence
Directory of Open Access Journals (Sweden)
L. P. Dyrud
2011-12-01
Full Text Available We present the first global simulations on the occurrence of meteor trail plasma irregularities. These results seek to answer the following questions: when a meteoroid disintegrates in the atmosphere, will the resulting trail become plasma turbulent? What are the factors influencing the development of turbulence? and how do these trails vary on a global scale? Understanding meteor trail plasma turbulence is important because turbulent meteor trails are visible as non-specular trails to coherent radars. Turbulence also influences the evolution of specular radar meteor trails; this fact is important for the inference of mesospheric temperatures from the trail diffusion rates, and their usage for meteor burst communication. We provide evidence of the significant effect that neutral atmospheric winds and ionospheric plasma density have on the variability of meteor trail evolution and on the observation of non-specular meteor trails. We demonstrate that trails are far less likely to become and remain turbulent in daylight, explaining several observational trends for non-specular and specular meteor trails.
Multiple-scale turbulence and bifurcation
Energy Technology Data Exchange (ETDEWEB)
Yagi, M.; Itoh, S.-I.; Kawasaki, M. [Kyushu Univ., Research Institute for Applied Mechanics, Kasuga, Fukuoka (Japan); Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan); Fukuyama, A. [Kyoto Univ., Department of Nuclear Engineering, Kyoto (Japan)
2003-01-01
In this paper, we analyze the turbulence composed of collective modes with different scale lengths. The hierarchical model for multiple-scale turbulence is developed. Nonlinear interactions between different scale length are modeled as turbulent drag, nonlinear noise and nonlinear drive and a set of Langevin equations is formulated. Using this model, a case where two driving mechanisms coexist (one for the micro mode and the other for semi-micro mode) is investigated. It is found that a new type of turbulence transition and a cusp-type catastrophe exist in some parameter regime. Numerical simulations are also performed for neighboring multiple-scale turbulence such as ion temperature gradient driven drift wave (ITG) (k{sub y}{rho}{sub i} < 1) and short wavelength ITG (k{sub y}{rho}{sub i} > 1) modes in the shearless slab geometry. The cascade and inverse cascade in multiple-scale turbulence are investigated. The cascade is mainly observed in k sub(parallel) space. On the other hand, the cascade and the inverse cascade are observed in K sub(perpendicular) space. Another interesting result is that the particle flux is negative (inward pinch) due to the short wavelength ITG modes, while the ion and electron heat flux are positive, which indicates nonlinear interaction between different scale length mode might affect transport. (author)
Reaction and diffusion in turbulent combustion
Energy Technology Data Exchange (ETDEWEB)
Pope, S.B. [Mechanical and Aerospace Engineering, Ithaca, NY (United States)
1993-12-01
The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.
Transitional–turbulent spots and turbulent–turbulent spots in boundary layers
Wu, Xiaohua; Moin, Parviz; Wallace, James M.; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre
2017-01-01
Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional–turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a Λ vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional–turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional–turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional–turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent–turbulent spots. These turbulent–turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional–turbulent spots, these turbulent–turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent–turbulent spots. PMID:28630304
Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Watanabe, T., E-mail: watanabe.tomoaki@c.nagoya-u.jp; Nagata, K. [Department of Aerospace Engineering, Nagoya University, Nagoya (Japan)
2016-08-15
We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting a value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES–LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.
Environmental turbulence and climate-weather scaling
Ben Mahjoub, Otman; Cherubini, Claudia; Jebbad, Raghda; Mosso, Cessar; Benjamin, Juan Jose; Jorge, Joan; Diez, Margarita; Redondo, Jose M.
2017-04-01
Climate changes in Harbours, coastal areas and ROFI are key to Environmental flows. Ocean and Atmospheric turbulence is an energetic, eddying state of motion that disperses material at rates far higher than those of molecular processes alone; The role of intermittency and understanding of how turbulence is modified at Climatic and Weather scales in shallow seas, the deep ocean, and in the mixed layers is of great importance and practical applications. The larger-scale and time coherent structures associated with large Stommel diagram processes akin to turbulence that also have intermittency. With the aid of remote sensing we also use surface signatures[1,2] that can be detected and used to infer ocean parameters. Such effects dominate mesoscale vorticity, the role of Rossby deformation radius, Spiral eddies, convective cells, or the spacing of Langmuir turbulence, related to the depth of the mixed layer, or to cloud tops. The dominant instability processes can generate different intermittency , detected often as bursts or in variations in the scale to scale transfer of turbulence. We include climatic scales where Extended Self Simmilarity is used also in these scales in a fractal way. Global experiments, even with a wide range of new configurations are possible[3-6]. Such complex flows are known to generate nonequilbrium and non-local turbulence which produces different turbulence properties and varying intermittency. Applications to enhanced mixing and drag reduction are still being investigated [6, 7], and how do the turbulence and mixing properties change in Lagrangian and Eulerian descriptors with generalized Rayleigh, Rossby, Richardson and Reynolds numbers? in complex Poincare like, parameter spaces. [1]. Redondo J.M., Mixing efficiencies of different kinds of turbulent processes and instabilities, Applications to the environment in Turbulent mixing in geophysical flows. Eds. Linden P.F. and Redondo J.M. 131-157. 2002. [2]. Ben Mahjoub, Redondo J
Kesteren, van A.J.H.; Hartogensis, O.K.; Dinther, van D.; Moene, A.F.; Graf, A.; Holtslag, A.A.M.
2012-01-01
The goal of this study is to test an alternative method for determining turbulent H2O and CO2 fluxes, which has a faster statistical convergence than the classical eddy-covariance method. This enables determining turbulent fluxes during strongly non-stationary conditions, e.g. in the intermittent
Kesteren, van A.J.H.; Hartogensis, O.K.; Dinther, van D.; Moene, A.F.; Graf, A.
2012-01-01
The goal of this study is to test an alternative method for determining turbulent H2O and CO2 fluxes, which has a faster statistical convergence than the classical eddy-covariance method. This enables determining turbulent fluxes during strongly non-stationary conditions, e.g. in the intermittent
Marvin, J. G.; Horstman, C. C.; Rubesin, M. W.; Coakley, T. J.; Kussoy, M. I.
1975-01-01
A thoroughly documented experiment is reported that was specifically designed to test and guide computations of the interaction of an impinging shock wave with a turbulent boundary layer. Detailed mean flow field and surface data are presented for two shock strengths which resulted in attached and separated flows, respectively. Numerical computations are used to illustrate the dependence of the computations on the particulars of the turbulence models. Models appropriate for zero pressure gradient flows predicted the overall features of the flow fields, but were deficient in predicting many of the details of the interaction regions. Improvements to the turbulence model parameters were sought through a combination of detailed data analysis and computer simulations which tested the sensitivity of the solutions to model parameter changes. Computer simulations using these improvements are presented and discussed.
International Nuclear Information System (INIS)
Reuss, J.D.; Misguich, J.H.
1996-02-01
An important point for turbulent transport consists in determining the scaling law for the diffusion coefficient D due to electrostatic turbulence. It is well-known that for weak amplitudes or large frequencies, the reduced diffusion coefficient has a quasi-linear like (or gyro-Bohm like) scaling, while for large amplitudes or small frequencies it has been traditionally believed that the scaling is Bohm-like. The aim of this work consists to test this prediction for a given realistic model. This problem is studied by direct simulation of particle trajectories. Guiding centre diffusion in a spectrum of electrostatic turbulence is computed for test particles in a model spectrum, by means of a new parallelized code RADIGUET 2. The results indicate a continuous transition for large amplitudes toward a value which is compatible with the Isichenko percolation prediction. (author)
Turbulent flux and the diffusion of passive tracers in electrostatic turbulence
DEFF Research Database (Denmark)
Basu, R.; Jessen, T.; Naulin, V.
2003-01-01
The connection between the diffusion of passive tracer particles and the anomalous turbulent flux in electrostatic drift-wave turbulence is investigated by direct numerical solutions of the 2D Hasegawa-Wakatani equations. The probability density functions for the point-wise and flux surface...
Fokker-Planck description of the inverse cascade in two-dimensional turbulence
Kamps, Oliver; Vosskuhle, Michel
2012-11-01
In many approaches the mathematical description of fully developed turbulence relies on the statistical properties of the longitudinal velocity increments ξ (r) = U (x + r) - U (x) . In the increment statistics is described as a Markov process in scale, leading to a Fokker-Planck description of the probability density functions (PDFs) for the velocity increments. The universality of this approach was tested for different kinds of three-dimensional flows like inhomogeneous turbulence, fractal grid generated turbulence and for the transition of a flow from a vortex street to fully developed turbulence in a cylinder wake the flow. In this talk we want to extend the test for the universality of the Markov description by analyzing data from numerical simulations of the inverse energy cascade in two-dimensional turbulence. The central question is whether the velocity field of the inverse cascade can be modeled as Markov process in scale similar to the three-dimensional case. By estimating the coefficients of the Fokker-Planck equation we are able to discuss the role of intermittency and differences to three-dimensional flows.
Evaluation of Industry Standard Turbulence Models on an Axisymmetric Supersonic Compression Corner
DeBonis, James R.
2015-01-01
Reynolds-averaged Navier-Stokes computations of a shock-wave/boundary-layer interaction (SWBLI) created by a Mach 2.85 flow over an axisymmetric 30-degree compression corner were carried out. The objectives were to evaluate four turbulence models commonly used in industry, for SWBLIs, and to evaluate the suitability of this test case for use in further turbulence model benchmarking. The Spalart-Allmaras model, Menter's Baseline and Shear Stress Transport models, and a low-Reynolds number k- model were evaluated. Results indicate that the models do not accurately predict the separation location; with the SST model predicting the separation onset too early and the other models predicting the onset too late. Overall the Spalart-Allmaras model did the best job in matching the experimental data. However there is significant room for improvement, most notably in the prediction of the turbulent shear stress. Density data showed that the simulations did not accurately predict the thermal boundary layer upstream of the SWBLI. The effect of turbulent Prandtl number and wall temperature were studied in an attempt to improve this prediction and understand their effects on the interaction. The data showed that both parameters can significantly affect the separation size and location, but did not improve the agreement with the experiment. This case proved challenging to compute and should provide a good test for future turbulence modeling work.
Marvin, J. G.; Horstman, C. C.; Rubesin, M. W.; Coakley, T. J.; Kussoy, M. I.
1975-01-01
An experiment designed to test and guide computations of the interaction of an impinging shock wave with a turbulent boundary layer is described. Detailed mean flow-field and surface data are presented for two shock strengths which resulted in attached and separated flows, respectively. Numerical computations, employing the complete time-averaged Navier-Stokes equations along with algebraic eddy-viscosity and turbulent Prandtl number models to describe shear stress and heat flux, are used to illustrate the dependence of the computations on the particulars of the turbulence models. Models appropriate for zero-pressure-gradient flows predicted the overall features of the flow fields, but were deficient in predicting many of the details of the interaction regions. Improvements to the turbulence model parameters were sought through a combination of detailed data analysis and computer simulations which tested the sensitivity of the solutions to model parameter changes. Computer simulations using these improvements are presented and discussed.
Energy Technology Data Exchange (ETDEWEB)
Vermorel, O.
2003-11-15
This work is devoted to the numerical and theoretical study of turbulence modulation by particles using direct numerical simulation for the continuous phase coupled with a Lagrangian prediction of trajectories of discrete particles. The configuration corresponds to a slab of particles injected at high velocity into an isotropic decaying turbulence. The motion of a particle is supposed to be governed only by the drag force. The particle mass loading is large so that momentum exchange between particles and fluid results in a significant modulation of the turbulence. Collisions are neglected. The momentum transfer between particles and gas causes a strong acceleration of the gas in the slab. In the periphery of the slab, the turbulence is enhanced due to the production by the mean gas velocity gradients. The analysis of the interphase transfer terms in the gas turbulent kinetic energy equation shows that the direct effect of the particles is to damp the turbulence in the core of the slab but to enhance it in the periphery. This last effect is due to a strong correlation between the particle distribution and the instantaneous gas velocity. Another issue concerns the k-{epsilon} model and the validity of its closure assumptions in two phase flows. A new eddy viscosity expression, function of particle parameters, is used to model the Reynolds stress tensor. The modelling of the gas turbulent dissipation rate is questioned. A two-phase Langevin equation is also tested to model drift velocity and fluid-particles velocity covariance equations. (author)
Anomalous diffusion in geophysical and laboratory turbulence
Directory of Open Access Journals (Sweden)
A. Tsinober
1994-01-01
Full Text Available We present an overview and some new results on anomalous diffusion of passive scalar in turbulent flows (including those used by Richardson in his famous paper in 1926. The obtained results are based on the analysis of the properties of invariant quantities (energy, enstrophy, dissipation, enstrophy generation, helicity density, etc. - i.e. independent of the choice of the system of reference as the most appropriate to describe physical processes - in three different turbulent laboratory flows (grid-flow, jet and boundary layer, see Tsinober et al. (1992 and Kit et al. (1993. The emphasis is made on the relations between the asymptotic properties of the intermittency exponents of higher order moments of different turbulent fields (energy, dissipation, helicity, spontaneous breaking of isotropy and reflexional symmetry and the variability of turbulent diffusion in the atmospheric boundary layer, in the troposphere and in the stratosphere. It is argued that local spontaneous breaking of isotropy of turbulent flow results in anomalous scaling laws for turbulent diffusion (as compared to the scaling law of Richardson which are observed, as a rule, in different atmospheric layers from the atmospheric boundary layer (ABL to the stratosphere. Breaking of rotational symmetry is important in the ABL, whereas reflexional symmetry breaking is dominating in the troposphere locally and in the stratosphere globally. The results are of speculative nature and further analysis is necessary to validate or disprove the claims made, since the correspondence with the experimental results may occur for the wrong reasons as happens from time to time in the field of turbulence.
Anomalous diffusion in geophysical and laboratory turbulence
Tsinober, A.
We present an overview and some new results on anomalous diffusion of passive scalar in turbulent flows (including those used by Richardson in his famous paper in 1926). The obtained results are based on the analysis of the properties of invariant quantities (energy, enstrophy, dissipation, enstrophy generation, helicity density, etc.) - i.e. independent of the choice of the system of reference as the most appropriate to describe physical processes - in three different turbulent laboratory flows (grid-flow, jet and boundary layer, see Tsinober et al. (1992) and Kit et al. (1993). The emphasis is made on the relations between the asymptotic properties of the intermittency exponents of higher order moments of different turbulent fields (energy, dissipation, helicity, spontaneous breaking of isotropy and reflexional symmetry) and the variability of turbulent diffusion in the atmospheric boundary layer, in the troposphere and in the stratosphere. It is argued that local spontaneous breaking of isotropy of turbulent flow results in anomalous scaling laws for turbulent diffusion (as compared to the scaling law of Richardson) which are observed, as a rule, in different atmospheric layers from the atmospheric boundary layer (ABL) to the stratosphere. Breaking of rotational symmetry is important in the ABL, whereas reflexional symmetry breaking is dominating in the troposphere locally and in the stratosphere globally. The results are of speculative nature and further analysis is necessary to validate or disprove the claims made, since the correspondence with the experimental results may occur for the wrong reasons as happens from time to time in the field of turbulence.
Spectral properties of electromagnetic turbulence in plasmas
Directory of Open Access Journals (Sweden)
D. Shaikh
2009-03-01
Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.
An error reduction algorithm to improve lidar turbulence estimates for wind energy
Directory of Open Access Journals (Sweden)
J. F. Newman
2017-02-01
Full Text Available Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidars in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine
Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields
Energy Technology Data Exchange (ETDEWEB)
John A. Krommes
2001-02-16
A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which provides a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations
Stereoscopic measurements of particle dispersion in microgravity turbulent flow
Groszmann, Daniel Eduardo
2001-08-01
The presence of particles in turbulent flows adds complexity to an already difficult subject. The work described in this research dissertation was intended to characterize the effects of inertia, isolated from gravity, on the dispersion of solid particles in a turbulent air flow. The experiment consisted of releasing particles of various sizes in an enclosed box of fan- generated, homogenous, isotropic, and stationary turbulent airflow and examining the particle behavior in a microgravity environment. The turbulence box was characterized in ground-based experiments using laser Doppler velocimetry techniques. Microgravity was established by free-floating the experiment apparatus during the parabolic trajectory of NASA's KC-135 reduced gravity aircraft. The microgravity generally lasted about 20 seconds, with about fifty parabolas per flight and one flight per day over a testing period of four days. To cover a broad range of flow regimes of interest, particles with Stokes numbers (St) of 1 to 300 were released in the turbulence box. The three- dimensional measurements of particle motion were made using a three-camera stereo imaging system with a particle-tracking algorithm. Digital photogrammetric techniques were used to determine the particle locations in three-dimensional space from the calibrated camera images. The epipolar geometry constraint was used to identify matching particles from the three different views and a direct spatial intersection scheme determined the coordinates of particles in three-dimensional space. Using velocity and acceleration constraints, particles in a sequence of frames were matched resulting in particle tracks and dispersion measurements. The goal was to compare the dispersion of different Stokes number particles in zero gravity and decouple the effects of inertia and gravity on the dispersion. Results show that higher inertia particles disperse less in zero gravity, in agreement with current models. Particles with St ~ 200
Transport barrier fluctuations governed by SOL turbulence spreading
International Nuclear Information System (INIS)
Ghendrih, Ph.; Sarazin, Y.; Ciraolo, G.; Darmet, G.; Garbet, X.; Grangirard, V.; Tamain, P.; Benkadda, S.; Beyer, P.
2007-01-01
Turbulence spreading, namely turbulent transport extending into a stable region is reported both for the flat density profiles in the far SOL and into a modeled H-mode barrier. It is shown that due to turbulence penetration, the pedestal width fluctuates and that its effective width is a factor 2 smaller than the linear predicted width. Turbulence overshooting throughout the pedestal leads to a non-vanishing turbulent transport within the barrier and provides a coupling of core and SOL turbulence despite the transport barrier
DEFF Research Database (Denmark)
Kiørboe, Thomas; MacKenzie, Brian
1995-01-01
Turbulent water motion has several effects on the feeding ecology of larval fish and other planktivorous predators. In this paper, we consider the appropriate spatial scales for estimating relative velocities between larval fish predators and their prey, and the effect that different choices of s...... in the range in which turbulent intensity has an overall positive effect on larval fish ingestion rate probability. However, experimental data to test the model predictions are lacking. We suggest that the model inputs require further empirical study....
Strategic thinking in turbulent times
Directory of Open Access Journals (Sweden)
Bratianu Constantin
2017-07-01
Full Text Available The purpose of this paper is to present a structural analysis of strategic thinking spectrum in turbulent times. Business excellence cannot be achieved without a well-defined strategic thinking spectrum able to elaborate and implement strategies in a fast changeable and unpredictable business environment. Strategic thinking means to think for a desirable future which can be ahead 4-5 years of the present time and to make decisions to the best of our knowledge for that unknown business environment. Thus, the research question is: How can we conceive the spectrum of strategic thinking such that we shall be able to deal with a complex and unknown future in achieving a competitive advantage? The methodology used to answer this question is based on metaphorical thinking, and multidimensional analysis. I shall consider four main dimensions: time, complexity, uncertainty, and novelty. On each of these dimensions I shall analyze the known thinking models and their attributes with respect to request formulated in the research question. Then, I shall choose those thinking models that correspond to the future characteristics and integrate them in a continuous spectrum. On each dimension I shall consider three basic thinking models. On the time dimension they are: inertial, dynamic and entropic thinking. On the complexity dimension they are: linear, nonlinear and systemic thinking. On the uncertainty dimension they are: deterministic, probabilistic and chaotic thinking. Finally, on the novelty dimension we have: template, intelligent and creative thinking. Considering all requirements for the unknown future, we conclude that strategic thinking spectrum should contain: entropic, nonlinear and systemic, probabilistic and chaotic, intelligent and creative thinking models. Such a spectrum increases the capacity of our understanding and as a consequence it enhances the capability of making adequate decisions in conditions of complexity and uncertainty.
Meteorology Associated with Turbulence Encounters During NASA's Fall-2000 Flight Experiments
Hamilton, David W.; Proctor, Fred H.
2002-01-01
Initial flight experiments have been conducted to investigate convectively induced turbulence and to test technologies for its airborne detection. Turbulence encountered during the experiments is described with sources of data measured from in situ sensors, groundbased and airborne Doppler radars, and aircraft video. Turbulence measurements computed from the in situ system were quantified in terms of RMS normal loads (sigma(sub Delta n)), where 0.20 g is less than or equal to sigma(sub Delta n) is less than or equal to 0.30 g is considered moderate and sigma(sub Delta n) is greater than 0.30 g is severe. During two flights, 18 significant turbulence encounters (sigma(sub Delta) is greater than or equal to 0.20 g) occurred in the vicinity of deep convection; 14 moderate and 4 severe. In all cases, the encounters with turbulence occurred along the periphery of cumulus convection. These events were associated with relatively low values of radar reflectivity, i.e. RRF is less than 35 dBz, with most levels being below 20 dBz. The four cases of severe turbulence occurred in precipitation and were centered at the interface between a cumulus updraft turret and a downwind downdraft. Horizontal gradients of vertical velocity at this interface were found to be strongest on the downwind side of the cumulus turrets. Furthermore, the greatest loads to the aircraft occurred while flying along, not orthogonal to, the ambient environmental wind vector. During the two flights, no significant turbulence was encountered in the clear air (visual meteorological conditions), not even in the immediate vicinity of the deep convection.
The flux tube paradigm and its role in MHD turbulence in the solar atmosphere
Matthaeus, W. H.; Greco, A.; Servidio, S.; Wan, M.; Osman, K.; Ruffolo, D. J.
2011-12-01
Descriptions of magnetic field and plasma structures in terms of flux tubes, plasmoids and other bundles of magnetic field lines are familiar in the vocabulary of observational and theoretical space physics. "Spaghetti models" and flux ropes are well known examples. Flux tubes and families of field lines can also be defined in a medium that admits magnetic fluctuations, including strong MHD turbulence, but their behavior can become complicated. In 3D fluctuations the smooth flux tube description itself becomes in some sense unstable, as nearby field lines diverge and flux surfaces shred. This lends complexity to the structure of flux tubes, and can give rise to temporarily trapped field lines and charged test particle trajectories, with immediate implications for transport, e.g., of solar energetic particles. The properties of the turbulent magnetic field can also be strongly influenced by the dynamics of turbulence. Large scale self organizing behavior, or inverse cascade, can enhance very long wavelength structure, favoring Bohm scaling of diffusion coefficients. Meanwhile smaller scale flux tube structures are integral features of the inertial range of turbulence, giving rise to a cellularization of the plasma due to rapid dynamical relaxation processes. These drive the turbulent system locally towards low-acceleration states, including Alfvenic, Beltrami and force-free states. Cell boundaries are natural positions for formation of near discontinuous boundaries, where dynamical activity can be enhanced. A primary example is appearance of numerous discontinuities and active reconnection sites in turbulence, which appear to support a wide distribution of reconnection rates associated with coherent current structures. These discontinuities are also potential sites of enhanced heating, as expected in Kolmogorov's Refined Similarity Hypothesis. All of these features are related to self organization, cascade and intermittency of the turbulence. Examples of these
A turbulent quarter century of active grids: from Makita (1991) to the present
Mydlarski, Laurent
2017-12-01
A quarter of a century ago, following a series of investigations with his colleagues, Makita published a paper (Makita 1991 Fluid Dyn. Res. 8, 53–64) in which the production of high-Reynolds-number, homogeneous, isotropic turbulence in a typical laboratory-sized wind tunnel by way of a novel ‘active grid’ was demonstrated. Until this time, classical (‘passive’) grids had been used to generate homogeneous, isotropic turbulence, which was almost invariably of low Reynolds number. In the years following the publication of Makita’s paper, active grids have played a major role in experimental studies of turbulence, given their ability to generate the most fundamental expression of a turbulent flow (homogeneous, isotropic turbulence) at Reynolds numbers large enough to (i) test Kolmogorov theory (posed in the limit of infinite Reynolds number), and (ii) match those of many natural and industrial flows. The present paper aims to review the research related to active grids undertaken since Makita’s seminal work. To this end, it firstly summarizes the key elements involved in the design, construction and operation of active grids, with the aim of providing a useful reference for those interested in studying or building active grids. Secondly, it discusses how active grids are now being customized to generate novel flows. Lastly, it reviews the accomplishments that have been achieved as a result of the invention of the active grid. It is hoped that the contribution to the field of turbulence brought by active grids a quarter of a century ago will moreover serve to inspire current fluid dynamicists to generate other simple and elegant innovations—like the active grid—to further advance our understanding of turbulent flows.
Inverse scattering problem in turbulent magnetic fluctuations
Directory of Open Access Journals (Sweden)
R. A. Treumann
2016-08-01
Full Text Available We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand–Levitan–Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes
Eaton, John; Hwang, Wontae; Cabral, Patrick
2002-11-01
This research addresses turbulent gas flows laden with fine solid particles at sufficiently large mass loading that strong two-way coupling occurs. By two-way coupling we mean that the particle motion is governed largely by the flow, while the particles affect the gas-phase mean flow and the turbulence properties. Our main interest is in understanding how the particles affect the turbulence. Computational techniques have been developed which can accurately predict flows carrying particles that are much smaller than the smallest scales of turbulence. Also, advanced computational techniques and burgeoning computer resources make it feasible to fully resolve very large particles moving through turbulent flows. However, flows with particle diameters of the same order as the Kolmogorov scale of the turbulence are notoriously difficult to predict. Some simple flows show strong turbulence attenuation with reductions in the turbulent kinetic energy by up to a factor of five. On the other hand, some seemingly similar flows show almost no modification. No model has been proposed that allows prediction of when the strong attenuation will occur. Unfortunately, many technological and natural two-phase flows fall into this regime, so there is a strong need for new physical understanding and modeling capability. Our objective is to study the simplest possible turbulent particle-laden flow, namely homogeneous, isotropic turbulence with a uniform dispersion of monodisperse particles. We chose such a simple flow for two reasons. First, the simplicity allows us to probe the interaction in more detail and offers analytical simplicity in interpreting the results. Secondly, this flow can be addressed by numerical simulation, and many research groups are already working on calculating the flow. Our detailed data can help guide some of these efforts. By using microgravity, we can further simplify the flow to the case of no mean velocity for either the turbulence or the particles. In fact
Placidi, M.; Ganapathisubramani, B.
2018-04-01
Wind-tunnel experiments were carried out on fully-rough boundary layers with large roughness (δ /h ≈ 10, where h is the height of the roughness elements and δ is the boundary-layer thickness). Twelve different surface conditions were created by using LEGO™ bricks of uniform height. Six cases are tested for a fixed plan solidity (λ _P) with variations in frontal density (λ _F), while the other six cases have varying λ _P for fixed λ _F. Particle image velocimetry and floating-element drag-balance measurements were performed. The current results complement those contained in Placidi and Ganapathisubramani (J Fluid Mech 782:541-566, 2015), extending the previous analysis to the turbulence statistics and spatial structure. Results indicate that mean velocity profiles in defect form agree with Townsend's similarity hypothesis with varying λ _F, however, the agreement is worse for cases with varying λ _P. The streamwise and wall-normal turbulent stresses, as well as the Reynolds shear stresses, show a lack of similarity across most examined cases. This suggests that the critical height of the roughness for which outer-layer similarity holds depends not only on the height of the roughness, but also on the local wall morphology. A new criterion based on shelter solidity, defined as the sheltered plan area per unit wall-parallel area, which is similar to the `effective shelter area' in Raupach and Shaw (Boundary-Layer Meteorol 22:79-90, 1982), is found to capture the departure of the turbulence statistics from outer-layer similarity. Despite this lack of similarity reported in the turbulence statistics, proper orthogonal decomposition analysis, as well as two-point spatial correlations, show that some form of universal flow structure is present, as all cases exhibit virtually identical proper orthogonal decomposition mode shapes and correlation fields. Finally, reduced models based on proper orthogonal decomposition reveal that the small scales of the turbulence
Stably-stratified wall-bounded turbulence
Hadi Sichani, Pejman; Zonta, Francesco; Obabko, Aleksandr; Soldati, Alfredo
2017-11-01
Stably-stratified (bottom-up cooling) turbulent flows are encountered in a number of industrial applications, environmental processes and geophysical flows. Turbulent entrainment and mixing across density interfaces in terrestrial water bodies (oceans, lakes and rivers) and in industrial heat transfer equipments are just some important examples of stably-stratified flows. In this work we use Direct Numerical Simulation to investigate the fundamental physics of stably-stratified channel turbulence under Boussinesq and Non-Oberbeck-Boussinesq (NOB) conditions. Compared to the neutrally-buoyant case, in the stably-stratified case active turbulence survives only in the near-wall region and coexists with internal gravity waves (IGW) moving in the core region of the channel. This induces a general suppression of turbulence levels, momentum and buoyancy fluxes. Our results show also that NOB effects may be important when the flow is subject to large temperature gradients. The most striking feature observed in case of NOB conditions is the generation of a strong flow asymmetry with possible local flow laminarization in the near wall region.
Scour monitoring via turbulent open channel flow
International Nuclear Information System (INIS)
Fisher, M; Khan, A; Atamturktur, S
2013-01-01
Scour is the leading cause of bridge failure in the United States. It can result in the loss of lives and costs millions to repair the damage. A novel method is proposed for monitoring scour that exploits the turbulence in natural channels. The method utilizes the dynamic pressure associated with the turbulent velocity fluctuations in the flow to excite a flexible plate. A semi-empirical model is developed to describe the interaction of turbulent open channel flow with the plate. The model describes the variation of turbulent velocity fluctuations across the flow depth in an open channel resulting in a method for determining the average dynamic pressure on the flexible plate. The dynamic response of the plate is then modeled by superimposing the response of multiple modes of the disk to the random, turbulent dynamic pressure spectrum. The model is verified considering the pressure integration across the plate surface to ensure converged solutions. Due to the uncertainties in the material properties of the plate, the experimentally determined natural frequencies and vibration measurements are used to calibrate the model. The calibrated model predictions are then compared against an independent dataset for validation. In addition to describing the physical operation of the device, the semi-empirical model is also employed to optimize the field device. Measurements made using the field device also confirmed the model results, even in a non-design, misaligned flow condition. (paper)
Sources of nonadiabaticity in tokamak turbulence
International Nuclear Information System (INIS)
Thyagaraja, A.; Haas, F.A.
1993-01-01
The two-fluid equations governing the nonlinear evolution and saturation of drift wave-like turbulence and transport in tokamaks under quasi-neutral conditions in periodic cylinder geometry are investigated. Using experiment as guide and employing appropriate orderings, two non-adiabaticity parameters, Υ es and Υ em are derived as functions of the reduced frequency ωa/v thi and wave number ρ i k r characteristic of the turbulent fluctuation spectrum. These parameters correspond respectively to the electrostatic limit and the general electromagnetic case. It is shown that they must be O(1) if significant particle and ion energy transport are to be expected from the turbulence. In other words, they are measures of the departure from neo-classical particle and ion energy transport due to the turbulence. These analytic results are complementary to, and serve as guidelines for, any future direct numerical simulations of the set of seven nonlinear partial differential equations which must be solved with suitable sources of particles, momentum and energy to determine the turbulence evolution and resultant saturated power spectra of density, pressure, electrostatic potential and magnetic field. The nonadiabaticity parameters discussed suggest possible qualitative explanations of the isotope effect and reduction of anomalous transport noted in H-mode tokamak discharges. (orig.)
Large eddy simulation of stably stratified turbulence
International Nuclear Information System (INIS)
Shen Zhi; Zhang Zhaoshun; Cui Guixiang; Xu Chunxiao
2011-01-01
Stably stratified turbulence is a common phenomenon in atmosphere and ocean. In this paper the large eddy simulation is utilized for investigating homogeneous stably stratified turbulence numerically at Reynolds number Re = uL/v = 10 2 ∼10 3 and Froude number Fr = u/NL = 10 −2 ∼10 0 in which u is root mean square of velocity fluctuations, L is integral scale and N is Brunt-Vaïsälä frequency. Three sets of computation cases are designed with different initial conditions, namely isotropic turbulence, Taylor Green vortex and internal waves, to investigate the statistical properties from different origins. The computed horizontal and vertical energy spectra are consistent with observation in atmosphere and ocean when the composite parameter ReFr 2 is greater than O(1). It has also been found in this paper that the stratification turbulence can be developed under different initial velocity conditions and the internal wave energy is dominated in the developed stably stratified turbulence.
Surface roughness effects on turbulent Couette flow
Lee, Young Mo; Lee, Jae Hwa
2017-11-01
Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).
Turbulence Modeling of Torsional Couette Flows
Directory of Open Access Journals (Sweden)
Sofia Haddadi
2008-01-01
Full Text Available The present study considers the numerical modeling of the turbulent flow inside a rotor-stator cavity subjected or not to a superimposed throughflow. Extensive numerical predictions based on one-point statistical modeling using a low Reynolds number second-order full stress transport closure (RSM model are performed mainly in the case of turbulent flows with merged boundary layers known as turbulent torsional Couette flows and belonging to regime III of Daily and Nece (1960. The RSM model has already shown its capability of predicting accurately the mean and turbulent fields in various rotating disk configurations (Poncet, 2005; Poncet et al., 2005, 2007, 2008. For the first time, a detailed mapping of the hydrodynamic flow over a wide range of rotational Reynolds numbers (180 000≤Re≤10 000 000, aspect ratios of the cavity (0.02≤G≤0.05, and flow rate coefficients (−10000≤Cw≤10000 is here provided in the turbulent torsional Couette flow regime.
A LES-Langevin model for turbulence
Dolganov, Rostislav; Dubrulle, Bérengère; Laval, Jean-Philippe
2006-11-01
The rationale for Large Eddy Simulation is rooted in our inability to handle all degrees of freedom (N˜10^16 for Re˜10^7). ``Deterministic'' models based on eddy-viscosity seek to reproduce the intensification of the energy transport. However, they fail to reproduce backward energy transfer (backscatter) from small to large scale, which is an essentiel feature of the turbulence near wall or in boundary layer. To capture this backscatter, ``stochastic'' strategies have been developed. In the present talk, we shall discuss such a strategy, based on a Rapid Distorsion Theory (RDT). Specifically, we first divide the small scale contribution to the Reynolds Stress Tensor in two parts: a turbulent viscosity and the pseudo-Lamb vector, representing the nonlinear cross terms of resolved and sub-grid scales. We then estimate the dynamics of small-scale motion by the RDT applied to Navier-Stockes equation. We use this to model the cross term evolution by a Langevin equation, in which the random force is provided by sub-grid pressure terms. Our LES model is thus made of a truncated Navier-Stockes equation including the turbulent force and a generalized Langevin equation for the latter, integrated on a twice-finer grid. The backscatter is automatically included in our stochastic model of the pseudo-Lamb vector. We apply this model to the case of homogeneous isotropic turbulence and turbulent channel flow.
NO concentration imaging in turbulent nonpremixed flames
Energy Technology Data Exchange (ETDEWEB)
Schefer, R.W. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.
Energy Technology Data Exchange (ETDEWEB)
Randall, David A. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Atmospheric Science
2015-11-01
We proposed to implement, test, and evaluate recently developed turbulence parameterizations, using a wide variety of methods and modeling frameworks together with observations including ARM data. We have successfully tested three different turbulence parameterizations in versions of the Community Atmosphere Model: CLUBB, SHOC, and IPHOC. All three produce significant improvements in the simulated climate. CLUBB will be used in CAM6, and also in ACME. SHOC is being tested in the NCEP forecast model. In addition, we have achieved a better understanding of the strengths and limitations of the PDF-based parameterizations of turbulence and convection.
Measurement of the Noise Resulting from the Interaction of Turbulence with a Lifting Surface
Hutcheson, Florence V.; Brooks, Thomas F.; Burley, Casey L.; Stead, Daniel J.
2011-01-01
An experimental study of the noise resulting from the interaction of an airfoil with incident turbulence is presented. The test models include NACA0015 airfoils of different chord lengths, a flat plate with a sharp leading edge, and an airfoil of same section as a reference Fowler flap. The airfoils are immersed in nearly isotropic turbulence. Two approaches for performing the noise measurements are used and compared. The effects that turbulence intensity and scales, airfoil geometry, velocity and angle of attack have on the incident turbulence interaction noise are examined. Detailed directivity measurements are presented. It is found that noise spectral levels beyond the peak frequency decrease more with decreasing airfoil leading edge sharpness, and that spectral peak level (at 0 deg. angle of attack) appears to be mostly controlled by the airfoil fs thickness and chord. Increase in turbulence scale and intensity are observed to lead to a uniform increase of the noise spectral levels with an LI(sup 2) dependence (where L is the turbulence longitudinal integral scale and I is the turbulence intensity). Noise levels are found to scale with the 6th power of velocity and the 2nd power of the airfoil chord. Sensitivity to changes in angle of attack appears to have a turbulence longitudinal integral scale to chord (C) ratio dependence, with large effects on noise for L/C greater than or equal to 1 and decreased effects as L/C becomes smaller than 1. For all L/C values, the directivity pattern of the noise resulting from the incident turbulence is seen to remain symmetric with respect to the direction of the mean flow until stall, at which point, the directivity becomes symmetric with respect to the airfoil chord. It is also observed that sensitivity to angle of attack changes is more pronounced on the model suction side than on the model pressure side, and in the higher frequency range of the spectra for the largest airfoils tested (L/C less than 0.24).
Energy extraction from atmospheric turbulence to improve flight vehicle performance
Patel, Chinmay Karsandas
Small 'bird-sized' Unmanned Aerial Vehicles (UAVs) have now become practical due to technological advances in embedded electronics, miniature sensors and actuators, and propulsion systems. Birds are known to take advantage of wind currents to conserve energy and fly long distances without flapping their wings. This dissertation explores the possibility of improving the performance of small UAVs by extracting the energy available in atmospheric turbulence. An aircraft can gain energy from vertical gusts by increasing its lift in regions of updraft and reducing its lift in downdrafts - a concept that has been known for decades. Starting with a simple model of a glider flying through a sinusoidal gust, a parametric optimization approach is used to compute the minimum gust amplitude and optimal control input required for the glider to sustain flight without losing energy. For small UAVs using optimal control inputs, sinusoidal gusts with amplitude of 10--15% of the cruise speed are sufficient to keep the aircraft aloft. The method is then modified and extended to include random gusts that are representative of natural turbulence. A procedure to design optimal control laws for energy extraction from realistic gust profiles is developed using a Genetic Algorithm (GA). A feedback control law is designed to perform well over a variety of random gusts, and not be tailored for one particular gust. A small UAV flying in vertical turbulence is shown to obtain average energy savings of 35--40% with the use of a simple control law. The design procedure is also extended to determine optimal control laws for sinusoidal as well as turbulent lateral gusts. The theoretical work is complemented by experimental validation using a small autonomous UAV. The development of a lightweight autopilot and UAV platform is presented. Flight test results show that active control of the lift of an autonomous glider resulted in approximately 46% average energy savings compared to glides with fixed
Performance evaluation of RANS-based turbulence models in simulating a honeycomb heat sink
Subasi, Abdussamet; Ozsipahi, Mustafa; Sahin, Bayram; Gunes, Hasan
2017-07-01
As well-known, there is not a universal turbulence model that can be used to model all engineering problems. There are specific applications for each turbulence model that make it appropriate to use, and it is vital to select an appropriate model and wall function combination that matches the physics of the problem considered. Therefore, in this study, performance of six well-known Reynolds-Averaged Navier-Stokes ( RANS) based turbulence models which are the Standard k {{-}} ɛ, the Renormalized Group k- ɛ, the Realizable k- ɛ, the Reynolds Stress Model, the k- ω and the Shear Stress Transport k- ω and accompanying wall functions which are the standard, the non-equilibrium and the enhanced are evaluated via 3D simulation of a honeycomb heat sink. The CutCell method is used to generate grid for the part including heat sink called test section while a hexahedral mesh is employed to discretize to inlet and outlet sections. A grid convergence study is conducted for verification process while experimental data and well-known correlations are used to validate the numerical results. Prediction of pressure drop along the test section, mean base plate temperature of the heat sink and temperature at the test section outlet are regarded as a measure of the performance of employed models and wall functions. The results indicate that selection of turbulence models and wall functions has a great influence on the results and, therefore, need to be selected carefully. Hydraulic and thermal characteristics of the honeycomb heat sink can be determined in a reasonable accuracy using RANS- based turbulence models provided that a suitable turbulence model and wall function combination is selected.
Turbulent heat transfer for heating of water in a short vertical tube
International Nuclear Information System (INIS)
Hata, Koichi; Noda, Nobuaki
2007-01-01
The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by the experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thicknesses (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influences of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer are investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15% difference. (author)
Turbulent heat transfer for heating of water in a short vertical tube
International Nuclear Information System (INIS)
Hata, Koichi; Noda, Nobuaki
2008-01-01
The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by an experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thickness (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influence of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer is investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for the wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15%, difference. (author)
Spectral Cascade-Transport Turbulence Model Development for Two-Phase Flows
Brown, Cameron Scott
-CFD codes. To aid in SCTM development and validation a spectral analysis of single and two-phase bubbly DNS data in different geometries was performed with investigation of the modulation of the turbulent kinetic energy spectrum slope due to the presence of bubbles. A new spectral analysis technique was developed to show that modifications to the energy spectrum slope are due to the presence of bubble wakes. Spectral analysis results are essential aids in turbulence model development and validation. Further work on the one-dimensional (1D) SCTM formulation was performed to improve model behavior for higher Reynolds number channel flow than previously examined, where the boundary layer close to the solid wall is now resolved and good agreement was achieved between the SCTM and DNS data. The SCTM was then implemented into the 3D MCFD package NPHASE-CMFD and tested for turbulent single-phase, monodispersed bubbly twophase, and polydispersed bubbly two-phase flow in various geometries. The SCTM predictions were compared with the k-a model, experimental data, and DNS data. The objective of the work is to improve and develop the SCTM and subsequently provide the numerical framework for the SCTM to be used in M-CFD predictions of multiphase flow in complex nuclear reactor geometries.
Hegna, C. C.; Terry, P. W.; Faber, B. J.
2018-02-01
A three-field fluid model that allows for general three-dimensional equilibrium geometry is developed to describe ion temperature gradient turbulent saturation processes in stellarators. The theory relies on the paradigm of nonlinear transfer of energy from unstable to damped modes at comparable wavelength as the dominant saturation mechanism. The unstable-to-damped mode interaction is enabled by a third mode that for dominant energy transfer channels primarily serves as a regulator of the nonlinear energy transfer rate. The identity of the third wave in the interaction defines different scenarios for turbulent saturation with the dominant scenario depending upon the properties of the 3D geometry. The nonlinear energy transfer physics is quantified by the product of a turbulent correlation lifetime and a geometric coupling coefficient. The turbulent correlation time is determined by a three-wave frequency mismatch, which at long wavelength can be calculated from the sum of the linear eigenfrequencies of the three modes. Larger turbulent correlation times denote larger levels of nonlinear energy transfer and hence smaller turbulent transport. The theory provides an analytic prediction for how 3D shaping can be tuned to lower turbulent transport through saturation processes.
Multigrid solution of incompressible turbulent flows by using two-equation turbulence models
Energy Technology Data Exchange (ETDEWEB)
Zheng, X.; Liu, C. [Front Range Scientific Computations, Inc., Denver, CO (United States); Sung, C.H. [David Taylor Model Basin, Bethesda, MD (United States)
1996-12-31
Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.
Strong Turbulence in Low-beta Plasmas
DEFF Research Database (Denmark)
Tchen, C. M.; Pécseli, Hans; Larsen, Søren Ejling
1980-01-01
An investigation of the spectral structure of turbulence in a plasma confined by a strong homogeneous magnetic field was made by means of a fluid description. The turbulent spectrum is divided into subranges. Mean gradients of velocity and density excite turbulent motions, and govern the production...... subrange. The spectra of velocity and potential fluctuations interact in the coupling subrange, and the energy is transferred along the spectrum in the inertia subrange. Applying the method of cascade decomposition, the spectral laws k-3, k-3, k-2 are obtained for the velocity fluctuations, and k-3, k-5, k......-3/2 for the potential fluctuations in the production, coupling and inertia subranges, respectively. The coefficient of Bohm diffusion is reproduced, and its role in electrostatic coupling is derived. Comparison is made with measured power laws reported in the literature, from Q-devices, hot...
Holographic thermal relaxation in superfluid turbulence
Energy Technology Data Exchange (ETDEWEB)
Du, Yiqiang [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Niu, Chao [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); Tian, Yu [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China); Zhang, Hongbao [Department of Physics, Beijing Normal University,Beijing 100875 (China); Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)
2015-12-02
Holographic duality provides a first-principles approach to investigate real time processes in quantum many-body systems, in particular at finite temperature and far-from-equilibrium. We use this approach to study the dynamical evolution of vortex number in a two-dimensional (2D) turbulent superfluid through numerically solving its gravity dual. We find that the temporal evolution of the vortex number can be well fit statistically by two-body decay due to the vortex pair annihilation featured relaxation process, thus confirm the previous suspicion based on the experimental data for turbulent superfluid in highly oblate Bose-Einstein condensates. Furthermore, the decay rate near the critical temperature is in good agreement with the recently developed effective theory of 2D superfluid turbulence.
On the nature of interstellar turbulence
International Nuclear Information System (INIS)
Altunin, V.I.
1981-01-01
Possible reasons of interstellar medium turbulence manifested in pulsar scintillation and radio-frequency emission scattering of extragalactic sources near by the Galaxy plane, are discussed. Sources and conditions of turbulence emergence in HII region shells, supernova, residue and in stellar wind giving observed scattering effects are considered. It is shown that in the formation of the interstellar scintillation pattern of discrete radio-frequency emission sources a certain role can be played by magnetosound turbulence, which arises due to shock-waves propagating in the interstellar medium at a velocity Vsub(sh) approximately 20-100 km/s as well as by stellar-wind inhomogeneity of OB classes stars [ru
3rd Turbulence and Interactions Conference
Estivalezes, Jean-Luc; Gleize, Vincent; Lê, Thien-Hiep; Terracol, Marc; Vincent, Stéphane
2014-01-01
The book presents a snapshot of the state-of-art in the field of turbulence modeling and covers the latest developments concerning direct numerical simulations, large eddy simulations, compressible turbulence, coherent structures, two-phase flow simulation, and other related topics. It provides readers with a comprehensive review of both theory and applications, describing in detail the authors’ own experimental results. The book is based on the proceedings of the third Turbulence and Interactions Conference (TI 2012), which was held on June 11-14 in La Saline-les-Bains, La Réunion, France, and includes both keynote lectures and outstanding contributed papers presented at the conference. This multifaceted collection, which reflects the conference´s emphasis on the interplay of theory, experiments and computing in the process of understanding and predicting the physics of complex flows and solving related engineering problems, offers a practice-oriented guide for students, researchers and professionals in ...
Electrostatic turbulence in strongly magnetized plasmas
International Nuclear Information System (INIS)
Nielsen, A.H.
1993-01-01
Turbulence in plasmas has been investigated experimentally and numerically. On the experimental side the turbulent nature of the Kelvin-Helmholtz instability has been studied in a single-ended Q-machine. The development of coherent structures in the background of the turbulent flow has been demonstrated and the capability of structures of transporting plasma across the magnetic field-lines is explained in detail. The numerical investigations are divided into two parts: Numerical simulations of the dynamics from the Q-machine experiments using spectral methods to solve the two-dimensional Navier-Stokes equations in a cylindrical geometry. A numerical study of the Eulerian-Lagrangian transformation in a two-dimensional flow. Here the flow is made up by a large number of structures, where each individual structure is convected by the superposed flow field of all the others. (au) (33 ills., 67 refs.)
Flaherty, Kevin M.; Hughes, A. Meredith; Teague, Richard; Simon, Jacob B.; Andrews, Sean M.; Wilner, David J.
2018-04-01
Turbulence is a fundamental parameter in models of grain growth during the early stages of planet formation. As such, observational constraints on its magnitude are crucial. Here we self-consistently analyze ALMA CO(2–1), SMA CO(3–2), and SMA CO(6–5) observations of the disk around TW Hya and find an upper limit on the turbulent broadening of hydrostatic equilibrium in the presence of a vertical temperature gradient and/or the confinement of CO to a thin molecular layer above the midplane, although further work is needed to quantify the influence of these prescriptions. Assumptions about hydrostatic equilibrium and the CO distribution are physically motivated, and may have a small influence on measuring the kinematics of the gas, but they become important when constraining small effects such as the strength of the turbulence within a protoplanetary disk.
Boundary Plasma Turbulence Simulations for Tokamaks
International Nuclear Information System (INIS)
Xu, X.; Umansky, M.; Dudson, B.; Snyder, P.
2008-05-01
The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T e ; T i ) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics
Single-particle dispersion in compressible turbulence
Zhang, Qingqing; Xiao, Zuoli
2018-04-01
Single-particle dispersion statistics in compressible box turbulence are studied using direct numerical simulation. Focus is placed on the detailed discussion of effects of the particle Stokes number and turbulent Mach number, as well as the forcing type. When solenoidal forcing is adopted, it is found that the single-particle dispersion undergoes a transition from the ballistic regime at short times to the diffusive regime at long times, in agreement with Taylor's particle dispersion argument. The strongest dispersion of heavy particles is announced when the Stokes number is of order 1, which is similar to the scenario in incompressible turbulence. The dispersion tends to be suppressed as the Mach number increases. When hybrid solenoidal and compressive forcing at a ratio of 1/2 is employed, the flow field shows apparent anisotropic property, characterized by the appearance of large shock wave structures. Accordingly, the single-particle dispersion shows extremely different behavior from the solenoidal forcing case.
Compound algorithm for restoration of heavy turbulence-degraded image for space target
Wang, Liang-liang; Wang, Ru-jie; Li, Ming; Kang, Zi-qian; Xu, Xiao-qin; Gao, Xin
2012-11-01
Restoration of atmospheric turbulence degraded image is needed to be solved as soon as possible in the field of astronomical space technology. Owing to the fact that the point spread function of turbulence is unknown, changeable with time, hard to be described by mathematics models, withal, kinds of noises would be brought during the imaging processes (such as sensor noise), the image for space target is edge blurred and heavy noised, which making a single restoration algorithm to reach the requirement of restoration difficult. Focusing the fact that the image for space target which was fetched during observation by ground-based optical telescopes is heavy noisy turbulence degraded, this paper discusses the adjustment and reformation of various algorithm structures as well as the selection of various parameters, after the combination of the nonlinear filter algorithm based on noise spatial characteristics, restoration algorithm of heavy turbulence degrade image for space target based on regularization, and the statistics theory based EM restoration algorithm. In order to test the validity of the algorithm, a series of restoration experiments are performed on the heavy noisy turbulence-degraded images for space target. The experiment results show that the new compound algorithm can achieve noise restriction and detail preservation simultaneously, which is effective and practical. Withal, the definition measures and relative definition measures show that the new compound algorithm is better than the traditional algorithms.
DNS of turbulent heat transfer in a channel flow with a high spatial resolution
Energy Technology Data Exchange (ETDEWEB)
Kozuka, Makoto [Department of Mechanical Engineering, Tokyo University of Science, Noda-shi, Chiba 278-8510 (Japan)], E-mail: kozuka.makoto@gmail.com; Seki, Yohji [Department of Mechanical Engineering, Tokyo University of Science, Noda-shi, Chiba 278-8510 (Japan); Kawamura, Hiroshi [Department of Mechanical Engineering, Tokyo University of Science, Noda-shi, Chiba 278-8510 (Japan)], E-mail: kawa@rs.noda.tus.ac.jp
2009-06-15
Direct numerical simulations of turbulent heat transfer in a channel flow are performed to investigate the effects of Reynolds and Prandtl numbers on higher-order turbulence statistics such as a turbulent Prandtl number and the budget for the dissipation rate of the temperature variance. The Reynolds numbers based on the friction velocity and the channel half width are 180 and 395, and the molecular Prandtl numbers Pr's 0.71-10.0. Careful attention is paid to ensure accuracy of the higher-order statistics through the use of a high spatial resolution comparable to Batchelor length scale. The wall-asymptotic value of the turbulent Prandtl number is mostly independent of Reynolds number for the current range of Pr's. The budget for the dissipation rate of the temperature variance has been computed, and the negligible effect of a Reynolds number on the sum of all source and sink terms in near-wall region in the current computational range is found. This result is quite similar to the one in the budget for the dissipation rate of turbulent energy. In addition, a priori test for existing models is also performed to assess the Pr dependence on the individual terms and their summations in the budget.
Jackson, R. H.; Nash, J. D.; Sutherland, D. A.; Amundson, J. M.; Kienholz, C.; Skyllingstad, E. D.; Motyka, R. J.
2017-12-01
The exchanges of heat and freshwater at tidewater glacier termini are modulated by small-scale turbulent processes. However, few observations have been obtained near the ocean-glacier interface, limiting our ability to quantify turbulent fluxes or test melt parameterizations in ocean-glacier models. Here, we explore the turbulent plume dynamics at LeConte Glacier, Alaska with three extensive field campaigns in May, August and September (2016-17). Two autonomous vessels collected repeat transects of velocity and water properties near the glacier, often within 20 m of the terminus. Concurrent shipboard surveying measured turbulence with a vertical microstructure profiler, along with water properties and velocity. These high-resolution surveys provide a 3D view of the circulation and allow us to quantify turbulent fluxes in the near-glacier region. We observe two regimes at the terminus: an energetic upwelling plume driven by subglacial discharge at a persistent location, and submarine melt-driven convection along other parts of the terminus. We trace the evolution of the subglacial discharge plume as it flows away from the glacier, from an initial stage of vigorous mixing to a more quiescent outflow downstream. Resolving these spatial patterns of upwelling and mixing near glaciers is a key step towards understanding submarine melt rates and glacial fjord circulation.
International Nuclear Information System (INIS)
Jeromin, A; Schaffarczyk, A P; Puczylowski, J; Peinke, J; Hölling, M
2014-01-01
For the investigation of atmospheric turbulent flows on small scales a new anemometer was developed, the so-called 2d-Atmospheric Laser Cantilever Anemometer (2d-ALCA). It performs highly resolved measurements with a spatial resolution in millimeter range and temporal resolution in kHz range, thus detecting very small turbulent structures. The anemometer is a redesign of the successfully operating 2d-LCA for laboratory application. The new device was designed to withstand hostile operating environments (rain and saline, humid air). In February 2012, the 2d-ALCA was used for the first time in a test field. The device was mounted in about 53 m above ground level on a lattice tower near the German North Sea coast. Wind speed was measured by the 2d-ALCA at 10 kHz sampling rate and by cup anemometers at 1 Hz. The instantaneous wind speed ranged from 8 m/s to 19 m/s at an average turbulence level of about 7 %. Wind field characteristics were analyzed based on cup anemometer as well as 2d-ALCA. The combination of both devices allowed the study of atmospheric turbulence over several magnitudes in turbulent scales
DNS of turbulent heat transfer in a channel flow with a high spatial resolution
International Nuclear Information System (INIS)
Kozuka, Makoto; Seki, Yohji; Kawamura, Hiroshi
2009-01-01
Direct numerical simulations of turbulent heat transfer in a channel flow are performed to investigate the effects of Reynolds and Prandtl numbers on higher-order turbulence statistics such as a turbulent Prandtl number and the budget for the dissipation rate of the temperature variance. The Reynolds numbers based on the friction velocity and the channel half width are 180 and 395, and the molecular Prandtl numbers Pr's 0.71-10.0. Careful attention is paid to ensure accuracy of the higher-order statistics through the use of a high spatial resolution comparable to Batchelor length scale. The wall-asymptotic value of the turbulent Prandtl number is mostly independent of Reynolds number for the current range of Pr's. The budget for the dissipation rate of the temperature variance has been computed, and the negligible effect of a Reynolds number on the sum of all source and sink terms in near-wall region in the current computational range is found. This result is quite similar to the one in the budget for the dissipation rate of turbulent energy. In addition, a priori test for existing models is also performed to assess the Pr dependence on the individual terms and their summations in the budget.
Turbulence measurements in the compressor exit flow of a General Electric CF6-50 engine
Taylor, J. R.
1979-01-01
Ruggedized cooled film probes were used to measure CF6-50 compressor exit turbulence properties at three different engine idle condition test points. The turbulence probe was coupled to a constant temperature anemometer and signal conditioning system. An on-line readout system connected to the anemometer was used to check the data as it was acquired. At engine idle conditions, the turbulence intensity ranged from 4.8 percent to 5.6 percent and the length scale ranged from 5.64 cm to 6.95 cm. The length scale values are somewhat larger than the passage height at the measurement plane (5.54 cm), which indicates that the shape of the turbulent eddies are elongated in the axial direction. The microscale values range from about 0.73 cm to about 0.98 cm. Power spectral density distributions show that a large proportion of the turbulent energy at the measurement plane is concentrated at frequencies below one kilohertz.
Data set from chemical sensor array exposed to turbulent gas mixtures.
Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Huerta, Ramón
2015-06-01
A chemical detection platform composed of 8 chemo-resistive gas sensors was exposed to turbulent gas mixtures generated naturally in a wind tunnel. The acquired time series of the sensors are provided. The experimental setup was designed to test gas sensors in realistic environments. Traditionally, chemical detection systems based on chemo-resistive sensors include a gas chamber to control the sample air flow and minimize turbulence. Instead, we utilized a wind tunnel with two independent gas sources that generate two gas plumes. The plumes get naturally mixed along a turbulent flow and reproduce the gas concentration fluctuations observed in natural environments. Hence, the gas sensors can capture the spatio-temporal information contained in the gas plumes. The sensor array was exposed to binary mixtures of ethylene with either methane or carbon monoxide. Volatiles were released at four different rates to induce different concentration levels in the vicinity of the sensor array. Each configuration was repeated 6 times, for a total of 180 measurements. The data is related to "Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry", by Fonollosa et al. [1]. The dataset can be accessed publicly at the UCI repository upon citation of [1]: http://archive.ics.uci.edu/ml/datasets/Gas+senso+rarray+exposed+to+turbulent+gas+mixtures.
Prediction of hypersonic shock-wave/turbulent-boundary-layer interaction flows
Horstman, C. C.
1987-01-01
Solutions of the Reynolds-averaged Navier-Stokes equations are presented and compared with experimental surface data for a series of hypersonic shock-wave/turbulent-boundary-layer interaction flows. The turbulence models used include algebraic and two-equation eddy-viscosity models developed for transonic and supersonic flows. Also several additional modifications to the two-equation model to account for compressibility effects are developed and used. Although the modifications improve the agreement with the experimental data, no single model or modification correctly predicts all the test cases.
Mitigating effect on turbulent scintillation using non-coherent multi-beam overlapped illumination
Zhou, Lu; Tian, Yuzhen; Wang, Rui; Wang, Tingfeng; Sun, Tao; Wang, Canjin; Yang, Xiaotian
2017-12-01
In order to find an effective method to mitigate the turbulent scintillation for applications involved laser propagation through atmosphere, we demonstrated one model using non-coherent multi-beam overlapped illumination. Based on lognormal distribution and the statistical moments of overlapped field, the reduction effect on turbulent scintillation of this method was discussed and tested against numerical wave optics simulation and laboratory experiments with phase plates. Our analysis showed that the best mitigating effect, the scintillation index of overlapped field reduced to 1/N of that when using single beam illuminating, could be obtained using this method when the intensity of N emitting beams equaled to each other.
Hydrocarbon characterization experiments in fully turbulent fires.
Energy Technology Data Exchange (ETDEWEB)
Ricks, Allen; Blanchat, Thomas K.
2007-05-01
As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuel evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. A set of experiments are outlined in this report which will provide data for the development and validation of models for the fuel regression rates in liquid hydrocarbon fuel fires. The experiments will be performed on fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool will be investigated and the total heat flux to the pool surface will be measured. The importance of convection within the liquid fuel will be assessed by restricting large scale liquid motion in some tests. These data sets will provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.
Improving Lidar Turbulence Estimates for Wind Energy
Energy Technology Data Exchange (ETDEWEB)
Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; Klein, Petra
2016-10-06
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. This presentation primarily focuses on the physics-based corrections, which include corrections for instrument noise, volume averaging, and variance contamination. As different factors affect TI under different stability conditions, the combination of physical corrections applied in L-TERRA changes depending on the atmospheric stability during each 10-minute time period. This stability-dependent version of L-TERRA performed well at both sites, reducing TI error and bringing lidar TI estimates closer to estimates from instruments on towers. However, there is still scatter evident in the lidar TI estimates, indicating that there are physics that are not being captured in the current version of L-TERRA. Two options are discussed for modeling the remainder of the TI error physics in L-TERRA: machine learning and lidar simulations. Lidar simulations appear to be a better approach, as they can help improve understanding of atmospheric effects on TI error and do not require a large training data set.
The Research of Optical Turbulence Model in Underwater Imaging System
Directory of Open Access Journals (Sweden)
Liying Sun
2014-01-01
Full Text Available In order to research the effect of turbulence on underwater imaging system and image restoration, the underwater turbulence model is simulated by computer fluid dynamics. This model is obtained in different underwater turbulence intensity, which contains the pressure data that influences refractive index distribution. When the pressure value is conversed to refractive index, the refractive index distribution can be received with the refraction formula. In the condition of same turbulent intensity, the distribution of refractive index presents gradient in the whole region, with disorder and mutations in the local region. With the turbulence intensity increase, the holistic variation of the refractive index in the image is larger, and the refractive index change more tempestuously in the local region. All the above are illustrated by the simulation results with he ray tracing method and turbulent refractive index model. According to different turbulence intensity analysis, it is proved that turbulence causes image distortion and increases noise.
Richardson Number, stability and turbulence- A coherent view
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
As turbulence in water is governed by vertical mobility controlled by static stability and horizontal mobility controlled by currents, the Richardson Number should give a measure of turbulence also. It is argued in this note that inverse...
Onset of meso-scale turbulence in active nematics
Doostmohammadi, Amin; Shendruk, Tyler N.; Thijssen, Kristian; Yeomans, Julia M.
2017-05-01
Meso-scale turbulence is an innate phenomenon, distinct from inertial turbulence, that spontaneously occurs at low Reynolds number in fluidized biological systems. This spatiotemporal disordered flow radically changes nutrient and molecular transport in living fluids and can strongly affect the collective behaviour in prominent biological processes, including biofilm formation, morphogenesis and cancer invasion. Despite its crucial role in such physiological processes, understanding meso-scale turbulence and any relation to classical inertial turbulence remains obscure. Here we show how the motion of active matter along a micro-channel transitions to meso-scale turbulence through the evolution of locally disordered patches (active puffs) from an ordered vortex-lattice flow state. We demonstrate that the stationary critical exponents of this transition to meso-scale turbulence in a channel coincide with the directed percolation universality class. This finding bridges our understanding of the onset of low-Reynolds-number meso-scale turbulence and traditional scale-invariant turbulence in confinement.
Statistical theory of turbulent incompressible multimaterial flow
International Nuclear Information System (INIS)
Kashiwa, B.
1987-10-01
Interpenetrating motion of incompressible materials is considered. ''Turbulence'' is defined as any deviation from the mean motion. Accordingly a nominally stationary fluid will exhibit turbulent fluctuations due to a single, slowly moving sphere. Mean conservation equations for interpenetrating materials in arbitrary proportions are derived using an ensemble averaging procedure, beginning with the exact equations of motion. The result is a set of conservation equations for the mean mass, momentum and fluctuational kinetic energy of each material. The equation system is at first unclosed due to integral terms involving unknown one-point and two-point probability distribution functions. In the mean momentum equation, the unclosed terms are clearly identified as representing two physical processes. One is transport of momentum by multimaterial Reynolds stresses, and the other is momentum exchange due to pressure fluctuations and viscous stress at material interfaces. Closure is approached by combining careful examination of multipoint statistical correlations with the traditional physical technique of κ-ε modeling for single-material turbulence. This involves representing the multimaterial Reynolds stress for each material as a turbulent viscosity times the rate of strain based on the mean velocity of that material. The multimaterial turbulent viscosity is related to the fluctuational kinetic energy κ, and the rate of fluctuational energy dissipation ε, for each material. Hence a set of κ and ε equations must be solved, together with mean mass and momentum conservation equations, for each material. Both κ and the turbulent viscosities enter into the momentum exchange force. The theory is applied to (a) calculation of the drag force on a sphere fixed in a uniform flow, (b) calculation of the settling rate in a suspension and (c) calculation of velocity profiles in the pneumatic transport of solid particles in a pipe
Interstellar MHD Turbulence and Star Formation
Vázquez-Semadeni, Enrique
This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior, causing it to behave approximately isobarically, in spite of spanning several orders of magnitude in density and temperature. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability (TI) in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: (1) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; (2) the nature of the clumps produced by TI, noting that, contrary to classical ideas, they in general accrete mass from their environment in spite of exhibiting sharp discontinuities at their boundaries; (3) the density-magnetic field correlation (and, at low densities, lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; (4) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; (5) the formation of cold, dense clouds aided by TI, in both the hydrodynamic (HD) and the magnetohydrodynamic (MHD) cases; (6) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, as generally believed, and (7) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and disperses
Phase-space diffusion in turbulent plasmas: The random acceleration problem revisited
DEFF Research Database (Denmark)
Pécseli, H.L.; Trulsen, J.
1991-01-01
Phase-space diffusion of test particles in turbulent plasmas is studied by an approach based on a conditional statistical analysis of fluctuating electrostatic fields. Analytical relations between relevant conditional averages and higher-order correlations,
Numerical investigation of turbulent flow and heat transfer in channel with ribs
DEFF Research Database (Denmark)
Myllerup, Lisbeth; Larsen, Poul Scheel
1999-01-01
The performance of three different low-Reynolds number turbulence models has been explored for the benchmark test of fully developed (periodic) flow in a ribbed plane channel. Results are presented for two values of the Reynolds number (based on mean velocity and hydraulic diameter), Re = 37...
Effects of turbulence and flow inclination on the performance of cup anemometers in the field
DEFF Research Database (Denmark)
Papadopoulos, K.H.; Stefantos, N.C.; Schmidt Paulsen, U.
2001-01-01
Four commercial and one research cup anemometers were comparatively tested in a complex terrain site to quantify the effects of turbulence and flow inclination on the wind speed measurements. The difference of the mean wind speed reading between the anemometers was as much as 2% for wind directio...
Hot Wire Anemometer Turbulence Measurements in the wind Tunnel of LM Wind Power
DEFF Research Database (Denmark)
Fischer, Andreas
Flow measurements were carried out in the wind tunnel of LM Wind Power A/S with a Dantec Streamline CTA system to characterize the flow turbulence. Besides the free tunnel flow with empty test section we also investigated the tunnel flow when two grids with different mesh size were introduced dow...
Time-Series Analysis of Intermittent Velocity Fluctuations in Turbulent Boundary Layers
Zayernouri, Mohsen; Samiee, Mehdi; Meerschaert, Mark M.; Klewicki, Joseph
2017-11-01
Classical turbulence theory is modified under the inhomogeneities produced by the presence of a wall. In this regard, we propose a new time series model for the streamwise velocity fluctuations in the inertial sub-layer of turbulent boundary layers. The new model employs tempered fractional calculus and seamlessly extends the classical 5/3 spectral model of Kolmogorov in the inertial subrange to the whole spectrum from large to small scales. Moreover, the proposed time-series model allows the quantification of data uncertainties in the underlying stochastic cascade of turbulent kinetic energy. The model is tested using well-resolved streamwise velocity measurements up to friction Reynolds numbers of about 20,000. The physics of the energy cascade are briefly described within the context of the determined model parameters. This work was supported by the AFOSR Young Investigator Program (YIP) award (FA9550-17-1-0150) and partially by MURI/ARO (W911NF-15-1-0562).
Solar seismology. II - The stochastic excitation of the solar p-modes by turbulent convection
Goldreich, P.; Keeley, D. A.
1977-01-01
We test the hypothesis that the solar p-modes are stabilized by damping due to turbulent viscosity in the convective zone. Starting from the assumption that the modes are stable, we calculate expectation values for the modal energies. We find that the interaction between a p-mode and the turbulent convection is such that the modal energy tends toward equipartition with the kinetic energy of turbulent eddies whose lifetimes are comparable to the modal period. From the calculated values of the modal energies, we compute rms surface velocity amplitudes. Our predicted rms surface velocities range from 0.01 cm/sec for the fundamental radial mode to 0.6 cm/sec for the radial mode whose period is approximately 5 minutes. The predicted surface velocities for the low order p-modes are much smaller than the velocities inferred from recent observations.
Shock-wave-induced turbulent boundary-layer separation at hypersonic speeds
Horstman, C. C.; Kussoy, M. I.; Coakley, T. J.; Rubesin, M. W.; Marvin, J. G.
1975-01-01
An experiment is described that tests and guides computations of the interaction of a shock wave with a turbulent boundary layer. Numerical solutions of the time-averaged Navier-Stokes equations for the entire flow field employing algebraic eddy viscosity and turbulent Prandtl number models for shear stress and heat flux are presented and used to illustrate the dependence of the computations on the particulars of the turbulence models. To guide modifications in the models, the mean flow profiles and surface measurements of pressure, shear, and heat flux are analyzed critically. The results show that the models of eddy viscosity require substantial modifications in the interaction region. Improved solutions employing the experimentally modified models are presented.
Accounting for External Turbulence of Logistics Organizations via Performance Measurement Systems
DEFF Research Database (Denmark)
Bühler, Andreas; Wallenburg, Carl Marcus; Wieland, Andreas
2016-01-01
distribution service performance. Originality/value: This paper is the first to introduce the concept of PMS design for turbulence to the literature and to show that it is relevant for supply chain risk management by fostering the capabilities and the performance of logistics organizations. Further......Purpose: This paper aims to investigate the role of upper management in designing performance measurement systems (PMS) that account for external turbulence of the organization and to show how this PMS design for turbulence impacts organizational resilience and distribution service performance....... Design/methodology/approach: Hypotheses are developed by integrating management accounting and strategic management perspectives into supply chain management and subsequently tested based on data from 431 logistics organizations (i.e. both logistics companies and internal logistics departments...
Nicolleau, FCGA; Redondo, J-M
2012-01-01
This book contains a collection of the main contributions from the first five workshops held by Ercoftac Special Interest Group on Synthetic Turbulence Models (SIG42. It is intended as an illustration of the sig's activities and of the latest developments in the field. This volume investigates the use of Kinematic Simulation (KS) and other synthetic turbulence models for the particular application to environmental flows. This volume offers the best syntheses on the research status in KS, which is widely used in various domains, including Lagrangian aspects in turbulence mixing/stirring, partic
In-Service Evaluation of the Turbulence Auto-PIREP System and Enhanced Turbulence Radar Technologies
Prince, Jason B.; Buck, Bill K.; Robinson, Paul A.; Ryan, Tim
2007-01-01
From August 2003 to December 2006, In-Service Evaluations (ISE) of the Turbulence Auto-PIREP System (TAPS) and Enhanced Turbulence (E-Turb) Radar, technologies developed in NASA's Turbulence Prediction and Warning System (TPAWS) element of its Aviation Safety and Security Program (AvSSP), were conducted. NASA and AeroTech Research established an industry team comprising AeroTech, Delta Air Lines, Rockwell Collins, and ARINC to conduct the ISEs. The technologies were installed on Delta aircraft and their effectiveness was evaluated in day-to-day operations. This report documents the establishment and conduct of the ISEs and presents results and feedback from various users.
Two-dimensional electron magnetohydrodynamic turbulence
Energy Technology Data Exchange (ETDEWEB)
Biskamp, D.; Schwarz, E.; Drake, J.F.
1995-11-01
A novel type of turbulence, which arises in 2D electron magnetohydrodynamics, is studied by numerical simulation. Energy dissipation rates are found to be independent of the dissipation coefficients. The energy spectrum E{sub k} follows the basic Kolmogorov-type predictions, k{sup -5/3} for kd{sub e} > 1 and k{sup -7/3} for kd{sub e} < 1 (d{sub e} = electron inertial length) and is hence independent of the linear wave properties. Results are compared with other 2D turbulent systems. (author).
Bursting frequency prediction in turbulent boundary layers
Energy Technology Data Exchange (ETDEWEB)
LIOU,WILLIAM W.; FANG,YICHUNG
2000-02-01
The frequencies of the bursting events associated with the streamwise coherent structures of spatially developing incompressible turbulent boundary layers were predicted using global numerical solution of the Orr-Sommerfeld and the vertical vorticity equations of hydrodynamic stability problems. The structures were modeled as wavelike disturbances associated with the turbulent mean flow. The global method developed here involves the use of second and fourth order accurate finite difference formula for the differential equations as well as the boundary conditions. An automated prediction tool, BURFIT, was developed. The predicted resonance frequencies were found to agree very well with previous results using a local shooting technique and measured data.
Lidar for Wind and Optical Turbulence Profiling
Directory of Open Access Journals (Sweden)
Fastig Shlomo
2018-01-01
Full Text Available A field campaign for the comparison investigation of systems to measure wind and optical turbulence profiles was conducted in northern Germany. The experimental effort was to compare the performance of the LIDAR, SODAR-RASS and ultrasonic anemometers for the measurement of the above mentioned atmospheric parameters. Soreq's LIDAR is a fiber laser based system demonstrator for the vertical profiling of the wind and turbulence, based on the correlation of aerosol density variations. It provides measurements up to 350m with 20m resolution.
Large Eddy Simulation of turbulent combustion processes
Jones, W. P.
2002-08-01
The application of Large Eddy Simulation to Turbulent Combusting flows is described and results are presented for a turbulent hydrogen-air jet flame and for a model can-type gas turbine Combustion chamber. In both cases the results are in good agreement with measurements. For the hydrogen flame and in contrast to the results of other approaches the profiles of all quantities and the rate of spread of the jet were all accurately reproduced by the computations without any modification to the model constants being necessary.
Characterization of transition to turbulence in microchannels
Energy Technology Data Exchange (ETDEWEB)
Rands, C.; Webb, B.W.; Maynes, D. [Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602-4201 (United States)
2006-08-15
This paper reports on an experimental study characterizing the laminar-turbulent transition for water flow in circular microtubes. Microtubes with diameters in the range 16.6-32.2{mu}m of varying length were employed over the Reynolds number range 300-3400. The volume flowrate was measured for an imposed pressure differential using a timed displacement technique. Additionally, the viscous heating-induced mean fluid temperature rise was measured. Two independent approaches were used to identify transition from laminar to turbulent flow. Both methods showed transition to occur in the Reynolds number range 2100-2500, consistent with macroscale tube flow behavior. (author)
A new maser effect in plasma turbulence
International Nuclear Information System (INIS)
Nambu, M.
1983-01-01
The present state of understanding of a new maser effect is reviewed. The new maser effect, the idea that the resonant electrons in a turbulent plasma can radiate amplified electromagnetic radiation, does not require population inversion of electrons. The new maser effect always coexists with Landau (or cyclotron) damping; thus it is a fundamental effect in plasma turbulence. In nuclear fusion, magnetic confinement will be at a disadvantage due to the enhanced radiation losses in the long wave length region, while inertial confinement will be improved by the laser effect in the X-ray region. (author)
Turbulence models for compressible boundary layers
Huang, P. G.; Bradshaw, P.; Coakley, T. J.
1994-01-01
It is shown that to satisfy the general accepted compressible law of the wall derived from the Van Driest transformation, turbulence modeling coefficients must actually be functions of density gradients. The transformed velocity profiles obtained by using standard turbulence model constants have too small a value of the effective von Karman constant kappa in the log-law region (inner layer). Thus, if the model is otherwise accurate, the wake component is overpredicted and the predicted skin friction is lower than the expected value.
Turbulence models for compressible boundary layers
Energy Technology Data Exchange (ETDEWEB)
Huang, P.G.; Bradshaw, P.; Coakley, T.J. [Eloret Institute, Palo Alto, CA (United States)]|[Stanford Univ., CA (United States)]|[NASA, Ames Research Center, Moffet Field, CA (United States)
1994-04-01
It is shown that to satisfy the general accepted compressible law of the wall derived from the Van Driest transformation, turbulence modeling coefficients must actually be functions of density gradients. The transformed velocity profiles obtained by using standard turbulence model constants have too small a value of the effective von Karman constant kappa in the log-law region (inner layer). Thus, if the model is otherwise accurate, the wake component is overpredicted and the predicted skin friction is lower than the expected value.
Theory of resistivity-gradient-driven turbulence
Energy Technology Data Exchange (ETDEWEB)
Garcia, L.; Diamond, P.H.; Carreras, B.A.; Callen, J.D.
1985-07-01
A theory of the nonlinear evolution and saturation of resistivity driven turbulence, which evolves from linear rippling instabilities, is presented. The nonlinear saturation mechanism is identified both analytically and numerically. Saturation occurs when the turbulent diffusion of the resistivity is large enough so that dissipation due to parallel electron thermal conduction balances the nonlinearly modified resistivity gradient driving term. The levels of potential, resistivity, and density fluctuations at saturation are calculated. A combination of computational modeling and analytic treatment is used in this investigation.
Fundamentals of Turbulent and Multi-Phase Combustion
Kuo, Kenneth Kuan-yun
2012-01-01
Detailed coverage of advanced combustion topics from the author of Principles of Combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form-until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence
Mathematical model for the calculation of internal turbulent flow
International Nuclear Information System (INIS)
Nicolau, V. de P.; Valle Pereira Filho, H. do
1981-01-01
The Navier-Stokes and the turbulent kinetic energy equations for the incompressible, turbulent and fully developed pipe flow, were solved by a finite difference procedure. The distributions of the mean velocity, turbulent shear stress and turbulent kinetic energy were obtained at different Reynolds numbers. Those numerical results were compared with experimental data and the agreement was good in whole cross section of the flow. (Author) [pt
Turbulent spark-jet ignition in SI gas fuelled engine
Directory of Open Access Journals (Sweden)
Pielecha Ireneusz
2017-01-01
Full Text Available The article contains a thermodynamic analysis of a new combustion system that allows the combustion of stratified gas mixtures with mean air excess coefficient in the range 1.4-1.8. Spark ignition was used in the pre-chamber that has been mounted in the engine cylinder head and contained a rich mixture out of which a turbulent flow of ignited mixture is ejected. It allows spark-jet ignition and the turbulent combustion of the lean mixture in the main combustion chamber. This resulted in a two-stage combustion system for lean mixtures. The experimental study has been conducted using a single-cylinder test engine with a geometric compression ratio ε = 15.5 adapted for natural gas supply. The tests were performed at engine speed n = 2000 rpm under stationary engine load when the engine operating parameters and toxic compounds emissions have been recorded. Analysis of the results allowed to conclude that the evaluated combustion system offers large flexibility in the initiation of charge ignition through an appropriate control of the fuel quantities supplied into the pre-chamber and into the main combustion chamber. The research concluded with determining the charge ignition criterion for a suitably divided total fuel dose fed to the cylinder.
Large-eddy simulation in a mixing tee junction: High-order turbulent statistics analysis
International Nuclear Information System (INIS)
Howard, Richard J.A.; Serre, Eric
2015-01-01
Highlights: • Mixing and thermal fluctuations in a junction are studied using large eddy simulation. • Adiabatic and conducting steel wall boundaries are tested. • Wall thermal fluctuations are not the same between the flow and the solid. • Solid thermal fluctuations cannot be predicted from the fluid thermal fluctuations. • High-order turbulent statistics show that the turbulent transport term is important. - Abstract: This study analyses the mixing and thermal fluctuations induced in a mixing tee junction with circular cross-sections when cold water flowing in a pipe is joined by hot water from a branch pipe. This configuration is representative of industrial piping systems in which temperature fluctuations in the fluid may cause thermal fatigue damage on the walls. Implicit large-eddy simulations (LES) are performed for equal inflow rates corresponding to a bulk Reynolds number Re = 39,080. Two different thermal boundary conditions are studied for the pipe walls; an insulating adiabatic boundary and a conducting steel wall boundary. The predicted flow structures show a satisfactory agreement with the literature. The velocity and thermal fields (including high-order statistics) are not affected by the heat transfer with the steel walls. However, predicted thermal fluctuations at the boundary are not the same between the flow and the solid, showing that solid thermal fluctuations cannot be predicted by the knowledge of the fluid thermal fluctuations alone. The analysis of high-order turbulent statistics provides a better understanding of the turbulence features. In particular, the budgets of the turbulent kinetic energy and temperature variance allows a comparative analysis of dissipation, production and transport terms. It is found that the turbulent transport term is an important term that acts to balance the production. We therefore use a priori tests to evaluate three different models for the triple correlation
A new subgrid characteristic length for turbulence simulations on anisotropic grids
Trias, F. X.; Gorobets, A.; Silvis, M. H.; Verstappen, R. W. C. P.; Oliva, A.
2017-11-01
Direct numerical simulations of the incompressible Navier-Stokes equations are not feasible yet for most practical turbulent flows. Therefore, dynamically less complex mathematical formulations are necessary for coarse-grained simulations. In this regard, eddy-viscosity models for Large-Eddy Simulation (LES) are probably the most popular example thereof. This type of models requires the calculation of a subgrid characteristic length which is usually associated with the local grid size. For isotropic grids, this is equal to the mesh step. However, for anisotropic or unstructured grids, such as the pancake-like meshes that are often used to resolve near-wall turbulence or shear layers, a consensus on defining the subgrid characteristic length has not been reached yet despite the fact that it can strongly affect the performance of LES models. In this context, a new definition of the subgrid characteristic length is presented in this work. This flow-dependent length scale is based on the turbulent, or subgrid stress, tensor and its representations on different grids. The simplicity and mathematical properties suggest that it can be a robust definition that minimizes the effects of mesh anisotropies on simulation results. The performance of the proposed subgrid characteristic length is successfully tested for decaying isotropic turbulence and a turbulent channel flow using artificially refined grids. Finally, a simple extension of the method for unstructured meshes is proposed and tested for a turbulent flow around a square cylinder. Comparisons with existing subgrid characteristic length scales show that the proposed definition is much more robust with respect to mesh anisotropies and has a great potential to be used in complex geometries where highly skewed (unstructured) meshes are present.
Detached Eddy Simulations of an Airfoil in Turbulent Inflow
DEFF Research Database (Denmark)
Gilling, Lasse; Sørensen, Niels; Davidson, Lars
2009-01-01
The effect of resolving inflow turbulence in detached eddy simulations of airfoil flows is studied. Synthetic turbulence is used for inflow boundary condition. The generated turbulence fields are shown to decay according to experimental data as they are convected through the domain with the free ...
Behaviour of organised disturbances in fully developed turbulent ...
Indian Academy of Sciences (India)
In our earlier work we have shown the relevance of stability theory in understanding the sustenance of turbulence in turbulent boundary layers. Here we adopt the same model to study the evolution of organised disturbances in turbulent channel flow. Since the dominant modes are wall modes we find that the stability ...
Highly turbulent Taylor-Couette flow: direct numerical simulations
Ostilla Monico, Rodolfo
2015-01-01
Turbulence is all around us. Even if we are familiar with every day instances of turbulence, like the smoke coming out of a chimney, it remains a not-well-understood phenomenum. As it is impossible to fully simulate turbulence to precisely take into account its effect, models must be used. These
The determination of turbulent structures in the atmospheric surface layer
Schols, J.L.J.
1984-01-01
The turbulent flow in the atmospheric surface layer (ASL) contains turbulent structures, which are defined as spatially coherent, organized flow motions. 'Organized' means that characteristic patterns, observed at a point in space, occur almost simultaneously in more than one turbulence signal and
Behaviour of organised disturbances in fully developed turbulent ...
Indian Academy of Sciences (India)
Abstract. In our earlier work we have shown the relevance of stability theory in understanding the sustenance of turbulence in turbulent boundary layers. Here we adopt the same model to study the evolution of organised disturbances in turbulent channel flow. Since the dominant modes are wall modes we find that the ...
Influence of turbulence on bed load sediment transport
DEFF Research Database (Denmark)
Sumer, B. Mutlu; Chua, L.; Cheng, N. S.
2003-01-01
-bed experiments and the ripple-covered-bed experiments. In the former case, the flow in the presence of the turbulence generator was adjusted so that the mean bed shear stress was the same as in the case without the turbulence generator in order to single out the effect of the external turbulence on the sediment...
Fractal flow design how to design bespoke turbulence and why
Vassilicos, Christos
2016-01-01
This book focuses on turbulent flows generated and/or influenced by multiscale/fractal structures. It consists of six chapters which demonstrate, each one in its own way, how such structures and objects can be used to design bespoke turbulence for particular applications and also how they can be used for fundamental studies of turbulent flows.
Turbulent characteristics of a solar quiescent prominence observed by the SOT on board Hinode
Leonardis, E.; Chapman, S. C.; Foullon, C.
2011-12-01
Most of the solar quiescent prominences (QPs) observed by the Solar Optical Telescope (SOT) on board Hinode exhibit highly variable dynamics suggestive of turbulence [1]. Unlike in-situ spacecraft measurements, these QPs offer an opportunity to test statistical measures of turbulence in both space and time. We focus on one of these QPs by analysing images in the Calcium II H-line that cover a sufficient range of scales spatially ( ˜ 0.1-100 arc seconds) and temporally ( ˜ 16.8 s- 4.5 hrs) to allow the application of statistical methods generally used to quantify finite range fluid turbulence. We present such techniques applied for the first time to the spatial intensity field of the QP's flow. Fully evolved inertial range turbulence in an infinite medium has the statistical property of multifractal scale invariance, which implies power law power spectra and scaling of the higher order moments (structure functions) in the non-Gaussian statistics of the fluctuating quantities that characterize the system. Fluctuations δ I(r,L)=I(r+L)-I(r) on lengthscale L along a given direction in observed spatial field I, have indeed moments that scale as ˜ Lζ (p). A generalized scale invariance, or Eextended Self-Similarity (ESS), is instead recovered for turbulent systems of finite size - i.e. in the quiet solar wind [2]- for which the dependence on a single robust scaling function G(L) has been observed such that ˜ G(L)ζ (p). We find that the QP intensity measurements are well described by non-Gaussian statistics and show power law power spectra. We also find ESS and the generalized scaling for the intesity fluctuations δ I(r,L). Finally, we use ESS to obtain ratios of the scaling exponents ζ (p), which are consistent with a multifractal field. The statistical properties found for the intensity fluctuations in the QP are therefore in agreement with those ones expected for finite sized turbulent systems supporting the idea of the turbulent nature of the prominence flow
Improved model of quasi-particle turbulence (with applications to Alfven and drift wave turbulence)
International Nuclear Information System (INIS)
Mendonca, J. T.; Hizanidis, K.
2011-01-01
We consider the classical problem of wave stability and dispersion in a turbulent plasma background. We adopt a kinetic description for the quasi-particle turbulence. We describe an improved theoretical approach, which goes beyond the geometric optics approximation and retains the recoil effects associated with the emission and absorption of low frequency waves by nearly resonant quasi-particles. We illustrate the present approach by considering two particular examples. One is the excitation of zonal flows by drift wave turbulence or driftons. The other is the coupling between ion acoustic waves and Alfven wave turbulence, eventually leading to saturation of Alfven wave growth. Both examples are relevant to anomalous transport in magnetic fusion devices. Connection with previous results is established. We show that these results are recovered in the geometric optics approximation.
On Challenges for Hypersonic Turbulent Simulations
International Nuclear Information System (INIS)
Yee, H.C.; Sjogreen, B.
2009-01-01
This short note discusses some of the challenges for design of suitable spatial numerical schemes for hypersonic turbulent flows, including combustion, and thermal and chemical nonequilibrium flows. Often, hypersonic turbulent flows in re-entry space vehicles and space physics involve mixed steady strong shocks and turbulence with unsteady shocklets. Material mixing in combustion poses additional computational challenges. Proper control of numerical dissipation in numerical methods beyond the standard shock-capturing dissipation at discontinuities is an essential element for accurate and stable simulations of the subject physics. On one hand, the physics of strong steady shocks and unsteady turbulence/shocklet interactions under the nonequilibrium environment is not well understood. On the other hand, standard and newly developed high order accurate (fourth-order or higher) schemes were developed for homogeneous hyperbolic conservation laws and mixed hyperbolic and parabolic partial differential equations (PDEs) (without source terms). The majority of finite rate chemistry and thermal nonequilibrium simulations employ methods for homogeneous time-dependent PDEs with a pointwise evaluation of the source terms. The pointwise evaluation of the source term might not be the best choice for stability, accuracy and minimization of spurious numerics for the overall scheme
Chaotic radiation/turbulence interactions in flames
Energy Technology Data Exchange (ETDEWEB)
Menguec, M.P.; McDonough, J.M.
1998-11-01
In this paper, the authors present a review of their recent efforts to model chaotic radiation-turbulence interactions in flames. The main focus is to characterize soot volume fraction fluctuations in turbulent diffusion flames, as they strongly contribute to these interaction. The approach is based on the hypothesis that the fluctuations of properties in turbulent flames are deterministic in nature, rather than random. The authors first discuss the theoretical details and then they briefly outline the experiments conducted to measure the scattered light signals from fluctuating soot particles along the axis of an ethylene-air diffusion flame. They compare the power spectra and time series obtained from experiments against the ad-hoc and rigorous models derived using a series of logistic maps. These logistic maps can be used in simulation of the fluctuations in these type of flames, without extensive computational effort or sacrifice of physical detail. Availability of accurate models of these kinds allows investigation of radiation-turbulence interactions at a more fundamental level than it was previously possible.
Turbulence beneath finite amplitude water waves
Energy Technology Data Exchange (ETDEWEB)
Beya, J.F. [Universidad de Valparaiso, Escuela de Ingenieria Civil Oceanica, Facultad de Ingenieria, Valparaiso (Chile); The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Peirson, W.L. [The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Banner, M.L. [The University of New South Wales, School of Mathematics and Statistics, Sydney, NSW (Australia)
2012-05-15
Babanin and Haus (J Phys Oceanogr 39:2675-2679, 2009) recently presented evidence of near-surface turbulence generated below steep non-breaking deep-water waves. They proposed a threshold wave parameter a {sup 2}{omega}/{nu} = 3,000 for the spontaneous occurrence of turbulence beneath surface waves. This is in contrast to conventional understanding that irrotational wave theories provide a good approximation of non-wind-forced wave behaviour as validated by classical experiments. Many laboratory wave experiments were carried out in the early 1960s (e.g. Wiegel 1964). In those experiments, no evidence of turbulence was reported, and steep waves behaved as predicted by the high-order irrotational wave theories within the accuracy of the theories and experimental techniques at the time. This contribution describes flow visualisation experiments for steep non-breaking waves using conventional dye techniques in the wave boundary layer extending above the wave trough level. The measurements showed no evidence of turbulent mixing up to a value of a {sup 2}{omega}/{nu} = 7,000 at which breaking commenced in these experiments. These present findings are in accord with the conventional understandings of wave behaviour. (orig.)
The structure and statistics of interstellar turbulence
Kritsuk, A. G.; Ustyugov, S. D.; Norman, M. L.
2017-06-01
We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable Hi, the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence.
Shallow Turbulence in Rivers and Estuaries
2013-09-30
Shallow Turbulence in Rivers and Estuaries 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...The data spans an approximately 11x11 km grid is available at half-hourly increments with a 400m resolution from 2009-2013. The length and spatial
Turbulent Buoyant Jets in Flowing Ambients
DEFF Research Database (Denmark)
Chen, Hai-Bo; Larsen, Torben; Petersen, Ole
1991-01-01
The mean behaviour of horizontal turbulent buoyant jets in co-flowing currents is investigated experimentally and numerically, in terms of jet trajectory, dilution and centerline density deficit and velocity decay. It is demonstrated in the paper that the laboratory data on the jet trajectory and...
Thermalized solutions, statistical mechanics and turbulence
Indian Academy of Sciences (India)
2015-02-20
Feb 20, 2015 ... Furthermore, the idea of the Galerkin truncation can be generalized for studying turbulence in non-integer (fractal) dimensions to yield a new, critical dimension with an equilibrium Gibbs state coinciding with a Kolmogorov spectrum. In this paper, we discuss these very exciting and recent developments in ...