Observational Consequences of an Interacting Multiverse
Directory of Open Access Journals (Sweden)
Salvador J. Robles-Pérez
2017-05-01
Full Text Available The observability of the multiverse is at the very root of its physical significance as a scientific proposal. In this conference we present, within the third quantization formalism, an interacting scheme between the wave functions of different universes and analyze the effects of some particular values of the coupling function. One of the main consequences of the interaction between universes can be the appearance of a pre-inflationary stage in the evolution of the universes that might leave observable consequences in the properties of the CMB.
Improved observations of turbulence dissipation rates from wind profiling radars
Directory of Open Access Journals (Sweden)
K. McCaffrey
2017-07-01
Full Text Available Observations of turbulence dissipation rates in the planetary boundary layer are crucial for validation of parameterizations in numerical weather prediction models. However, because dissipation rates are difficult to obtain, they are infrequently measured through the depth of the boundary layer. For this reason, demonstrating the ability of commonly used wind profiling radars (WPRs to estimate this quantity would be greatly beneficial. During the XPIA field campaign at the Boulder Atmospheric Observatory, two WPRs operated in an optimized configuration, using high spectral resolution for increased accuracy of Doppler spectral width, specifically chosen to estimate turbulence from a vertically pointing beam. Multiple post-processing techniques, including different numbers of spectral averages and peak processing algorithms for calculating spectral moments, were evaluated to determine the most accurate procedures for estimating turbulence dissipation rates using the information contained in the Doppler spectral width, using sonic anemometers mounted on a 300 m tower for validation. The optimal settings were determined, producing a low bias, which was later corrected. Resulting estimations of turbulence dissipation rates correlated well (R2 = 0. 54 and 0. 41 with the sonic anemometers, and profiles up to 2 km from the 449 MHz WPR and 1 km from the 915 MHz WPR were observed.
Turbulence Heating ObserveR – satellite mission proposal
Czech Academy of Sciences Publication Activity Database
Vaivads, A.; Retinò, A.; Souček, Jan; Khotyaintsev, Y. V.; Valentini, F.; Escoubet, C. P.; Alexandrova, O.; André, M.; Bale, S. D.; Balikhin, M.; Burgess, D.; Camporeale, E.; Caprioli, D.; Chen, C. H. K.; Clacey, E.; Cully, C. M.; Keyser de, J.; Eastwood, J. P.; Fazakerley, A. N.; Eriksson, S.; Goldstein, M. L.; Graham, D. B.; Haaland, S.; Hoshino, M.; Ji, H.; Karimabadi, H.; Kucharek, H.; Lavraud, B.; Marcucci, F.; Matthaeus, W. H.; Moore, T. E.; Nakamura, R.; Narita, Y.; Němeček, Z.; Norgren, C.; Opgenoorth, H.; Palmroth, M.; Perrone, D.; Pinçon, J.-L.; Rathsman, P.; Rothkaehl, H.; Sahraoui, F.; Servidio, S.; Sorriso-Valvo, L.; Vainio, L.; Vörös, Z.; Wimmer-Schweingruber, R. F.
2016-01-01
Roč. 82, č. 5 (2016), 905820501/1-905820501/16 ISSN 0022-3778 Institutional support: RVO:68378289 Keywords : plasma heating * plasma properties * space plasma physics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.160, year: 2016 https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/div-classtitleturbulence-heating-observer-satellite-mission-proposaldiv/01BB69B09206CE04C48BEDA8F24ED33C/core-reader
Observational consequences of unstable stellar interiors
Cantiello, M.
2009-11-01
Stars are responsible for the production of all the elements, aside from hydrogen, that constitute our body. To understand the life and death of such important astrophysical objects, their interiors need to be modeled. The evolution of stars, including the effects of rotation, internal magnetic fields, convection, thermohaline mixing and pair creation is the main topic of this study. Stars often come in pairs, and the consequences of binary interaction have been explored as well. A new channel for the formation of Long Gamma Ray-Bursts has been discovered thanks to the inclusion of the aforementioned effects. This scenario suggests that a possibly large fraction of long GRBs occurs in runaway stars. A novel study of convection in massive stars is also presented, showing that microturbulence in the photosphere of hot stars might be caused by the presence of sub-surface convection zones. Such study suggests that clumping in the winds of OB stars could be caused by the same mechanism, and that magnetic fields produced in such sub-surface convection zones could appear at the surface of OB stars.
The effects of the variations of turbulence parameters on the observable turbulence statistics
Ding, S. Y.
2016-06-01
In order to study how the statistical properties of the observational quantities of the turbulent molecular cloud models vary with different turbulence parameters, I use the artificially generated random numerical models based on Gaussian fields created by the code PYFC with different values of the 1D density Fourier spectral index βn, the turbulence driving parameter, I.e. the b parameter and the 1D Fourier velocity power spectral index βv. Then I calculate the line profiles of 13CO emission on every sight line. I derive the statistical properties of column density N, line intensity W, peak intensity Tpeak and velocity dispersion Vrms on every sight line. I discover that as βn increases, (1) the standard deviations σln (N/) and σln (W/) of the logarithmic column density ln (N/) and the logarithmic integrated intensity ln (W/) increase; (2) the number of the low Tpeak values becomes larger; (3) the probability distribution function (PDF) of Vrms inclines to left a little. As the b parameter increases, (1) the values of both σln (N/) and σln (W/) increase; (2) the numbers of both the low Tpeak values and the saturated Tpeak values become larger; (3) the PDF of Vrms inclines to left obviously. As βv increases, (1) the PDF of ln (W/) remains generally unchanged; (2) the PDF of Tpeak remains generally unchanged; (3) the PDF of Vrms inclines to left obviously. I also discuss the relationship among σN/, Mach number, the b parameter and βn.
Eddy turbulence parameters inferred from radar observations at Jicamarca
Directory of Open Access Journals (Sweden)
M. N. Vlasov
2007-03-01
Full Text Available Significant electron density striations, neutral temperatures 27 K above nominal, and intense wind shear were observed in the E-region ionosphere over the Jicamarca Radio Observatory during an unusual event on 26 July 2005 (Hysell et al., 2007. In this paper, these results are used to estimate eddy turbulence parameters and their effects. Models for the thermal balance in the mesosphere/lower thermosphere and the charged particle density in the E region are developed here. The thermal balance model includes eddy conduction and viscous dissipation of turbulent energy as well as cooling by infrared radiation. The production and recombination of ions and electrons in the E region, together with the production and transport of nitric oxide, are included in the plasma density model. Good agreement between the model results and the experimental data is obtained for an eddy diffusion coefficient of about 1×103 m2/s at its peak, which occurs at an altitude of 107 km. This eddy turbulence results in a local maximum of the temperature in the upper mesosphere/lower thermosphere and could correspond either to an unusually high mesopause or to a double mesosphere. Although complicated by plasma dynamic effects and ongoing controversy, our interpretation of Farley-Buneman wave phase velocity (Hysell et al., 2007 is consistent with a low Brunt-Väisälä frequency in the region of interest. Nitric oxide transport due to eddy diffusion from the lower thermosphere to the mesosphere causes electron density changes in the E region whereas NO density modulation due to irregularities in the eddy diffusion coefficient creates variability in the electron density.
Eddy turbulence parameters inferred from radar observations at Jicamarca
Directory of Open Access Journals (Sweden)
M. N. Vlasov
2007-03-01
Full Text Available Significant electron density striations, neutral temperatures 27 K above nominal, and intense wind shear were observed in the E-region ionosphere over the Jicamarca Radio Observatory during an unusual event on 26 July 2005 (Hysell et al., 2007. In this paper, these results are used to estimate eddy turbulence parameters and their effects. Models for the thermal balance in the mesosphere/lower thermosphere and the charged particle density in the E region are developed here. The thermal balance model includes eddy conduction and viscous dissipation of turbulent energy as well as cooling by infrared radiation. The production and recombination of ions and electrons in the E region, together with the production and transport of nitric oxide, are included in the plasma density model. Good agreement between the model results and the experimental data is obtained for an eddy diffusion coefficient of about 1×10^{3} m^{2}/s at its peak, which occurs at an altitude of 107 km. This eddy turbulence results in a local maximum of the temperature in the upper mesosphere/lower thermosphere and could correspond either to an unusually high mesopause or to a double mesosphere. Although complicated by plasma dynamic effects and ongoing controversy, our interpretation of Farley-Buneman wave phase velocity (Hysell et al., 2007 is consistent with a low Brunt-Väisälä frequency in the region of interest. Nitric oxide transport due to eddy diffusion from the lower thermosphere to the mesosphere causes electron density changes in the E region whereas NO density modulation due to irregularities in the eddy diffusion coefficient creates variability in the electron density.
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Has the ultimate state of turbulent thermal convection been observed?
Czech Academy of Sciences Publication Activity Database
Skrbek, L.; Urban, Pavel
2015-01-01
Roč. 785, DEC (2015), s. 270-282 ISSN 0022-1120 R&D Projects: GA ČR GA14-02005S Institutional support: RVO:68081731 Keywords : turbulent convection * turbulent flows Subject RIV: BK - Fluid Dynamics Impact factor: 2.514, year: 2015
Consequences of Symmetries on the Analysis and Construction of Turbulence Models
Directory of Open Access Journals (Sweden)
Dina Razafindralandy
2006-05-01
Full Text Available Since they represent fundamental physical properties in turbulence (conservation laws, wall laws, Kolmogorov energy spectrum, ..., symmetries are used to analyse common turbulence models. A class of symmetry preserving turbulence models is proposed. This class is refined such that the models respect the second law of thermodynamics. Finally, an example of model belonging to the class is numerically tested.
Energy Technology Data Exchange (ETDEWEB)
Larsen, G.C.
1998-09-01
The fatigue loading of turbines situated in complex terrain is investigated in order to determine the crucial parameters in the spatial structure of the turbulence in such situations. The parameter study is performed by means of numerical calculations, and it embraces three different wind turbine types, representing a pitch controlled concept, a stall controlled concept, and a stall controlled concept with an extremely flexible tower. For each of the turbine concepts, the fatigue load sensibility to the selected turbulence characteristics are investigated for three different mean wind speeds at hub height. The selected mean wind speeds represent the linear-, the stall-, and the post stall aerodynamic region for the stall controlled turbines and analogously the unregulated-, the partly regulated-, and the fully regulated regime for the pitch controlled turbine. Denoting the turbulence component in the mean wind direction by u, the lateral turbulence component by v, and the vertical turbulence component by w, the selected turbulence characteristics comprise the u-turbulence length scale, the ratio between the v- and w-turbulence intensities and the u-turbulence intensity, the uu-coherence decay factor, and finally the u-v and u-w cross-correlations. The turbulence length scale in the mean wind direction gives rise to significant modification of the fatigue loading on all the investigated wind turbine concepts, but for the other selected parameter variations, large individual differences exists between the turbines. With respect to sensitivity to the performed parameter variations, the Vestas V39 wind turbine is the most robust of the investigated turbines. The Nordtank 500/37 turbine, equipped with the (artificial) soft tower, is by far the most sensitive of the investigated turbine concepts - also much more sensitive than the conventional Nordtank 500/37 turbine equipped with a traditional tower. (au) 2 tabs., 43 ills., 7 refs.
Observation of Thermal Equilibrium in Capillary Wave Turbulence.
Michel, Guillaume; Pétrélis, François; Fauve, Stéphan
2017-04-07
We investigate capillary wave turbulence at scales larger than the forcing one. At such scales, our measurements show that the surface waves dynamics is the one of a thermal equilibrium state in which the effective temperature is related to the injected power. We characterize this evolution with a scaling law and report the statistical properties of the large-scale surface elevation depending on this effective temperature.
Multi-Spacecraft Study of Kinetic scale Turbulence Using MMS Observations in the Solar Wind
Chasapis, A.; Matthaeus, W. H.; Parashar, T.; Fuselier, S. A.; Maruca, B.; Burch, J.; Moore, T. E.; Phan, T.; Pollock, C. J.; Gershman, D. J.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.
2017-12-01
We present a study investigating kinetic scale turbulence in the solar wind. Most previous studies relied on single spacecraft measurements, employing the Taylor hypothesis in order to probe different scales. The small separation of MMS spacecraft, well below the ion inertial scale, allow us for the first time to directly probe turbulent fluctuations at the kinetic range. Using multi-spacecraft measurements, we are able to measure the spatial characteristics of turbulent fluctuations and compare with the traditional Taylor-based single spacecraft approach. Meanwhile, combining observations from Cluster and MMS data we were able to cover a wide range of scales from the inertial range where the turbulent cascade takes place, down to the kinetic range where the energy is eventually dissipated. These observations present an important step in understanding the nature of solar wind turbulence and the processes through which turbulent energy is dissipated into particle heating and acceleration. We compute statistical quantities such as the second order structure function and the scale-dependent kurtosis, along with their dependence on the parameters such as the mean magnetic field direction. Overall, we observe an overall agreement between the single spacecraft and the multi-spacecraft approach. However, a small but significant deviation is observed at the smaller scales near the electron inertial scale. The high values of the scale dependent kurtosis at very small scales, observed via two-point measurements, open up a compelling avenue of investigation for theory and numerical modelling.
Pauscher, L.; Callies, D.; Klaas, T.; Foken, T.
2018-01-01
This study investigates turbulence characteristics as observed at a 200 m tall mast at a hilly and complex site. It thereby concentrates on turbulence statistics, which are important for the site suitability analysis of a wind turbine. The directional variations in terrain are clearly reflected in the observed turbulence intensities and drag. Integral turbulence statistics showed some variations from their typical flat terrain values. Footprint modelling was used to model the area of effect a...
Modulations of MLT turbulence by waves observed during the WADIS sounding rocket project.
Strelnikov, Boris; Latteck, Ralph; Strelnikova, Irina; Lübken, Franz-Josef; Baumgarten, Gerd; Rapp, Markus
2017-04-01
The WADIS project (WAve propagation and DISsipation in the middle atmosphere) aimed at studying waves, their dissipation, and effects on trace constituents. Among other things, it addressed the question of the variability of MLT turbulence, both in time and space. A unique feature of the WADIS project was multi-point turbulence sounding applying different measurement techniques including rocket-borne ionization gauges, VHF MAARSY radar, and VHF EISCAT radar in Tromsø. The project comprised two sounding rocket campaigns conducted at the Andøya Space Center (69 °N, 16 °E). One sounding rocket was launched in summer 2013 and one in winter 2015. The joint in-situ and ground-based observations showed horizontal variability of the turbulence field in the MLT at scales from a few to 100 km. We found that the turbulence dissipation rate varied in space in a wave-like manner both horizontally and in the vertical direction. This wave-like modulation reveals the same vertical wavelengths as those seen in gravity waves. We also found that vertical mean value of radar turbulence observations reveals wave-like modulation in time domain. This time variability results in up to two orders of magnitude change of the energy dissipation values with periods of 24 h. It also shows 12 h and shorter ( hours) modulations resulting in one decade variation. In this paper we present recent measurement results of turbulence-mean flow interaction and discuss possible reasons of the observed modulations.
Plasma Turbulence in Earth's Magnetotail Observed by the Magnetospheric Multiscale Mission
Mackler, D. A.; Avanov, L. A.; Boardsen, S. A.; Pollock, C. J.
2017-12-01
Magnetic reconnection, a process in which the magnetic topology undergoes multi-scale changes, is a significant mechanism for particle energization as well as energy dissipation. Reconnection is observed to occur in thin current sheets generated between two regions of magnetized plasma merging with a non-zero shear angle. Within a thinning current sheet, the dominant scale size approaches first the ion and then electron kinetic scale. The plasma becomes demagnetized, field lines transform, then once again the plasma becomes frozen-in. The reconnection process accelerates particles, leading to heated jets of plasma. Turbulence is another fundamental process in collision less plasmas. Despite decades of turbulence studies, an essential science question remains as to how turbulent energy dissipates at small scales by heating and accelerating particles. Turbulence in both plasmas and fluids has a fundamental property in that it follows an energy cascade into smaller scales. Energy introduced into a fluid or plasma can cause large scale motion, introducing vorticity, which merge and interact to make increasingly smaller eddies. It has been hypothesized that turbulent energy in magnetized plasmas may be dissipated by magnetic reconnection, just as viscosity dissipates energy in neutral fluid turbulence. The focus of this study is to use the new high temporal resolution suite of instruments on board the Magnetospheric MultiScale (MMS) mission to explore this hypothesis. An observable feature of the energy cascade in a turbulent magnetized plasma is its similarity to classical hydrodynamics in that the Power Spectral Density (PSD) of turbulent fluctuations follows a Kolmogorov-like power law (Image-5/3). We use highly accurate (0.1 nT) Flux Gate Magnetometer (FGM) data to derive the PSD as a function of frequency in the magnetic fluctuations. Given that we are able to confirm the turbulent nature of the flow field; we apply the method of Partial Variance of Increments (PVI
Impact of Langmuir Turbulence on Upper Ocean Response to Hurricane Edouard: Model and Observations
Blair, A.; Ginis, I.; Hara, T.; Ulhorn, E.
2017-12-01
Tropical cyclone intensity is strongly affected by the air-sea heat flux beneath the storm. When strong storm winds enhance upper ocean turbulent mixing and entrainment of colder water from below the thermocline, the resulting sea surface temperature cooling may reduce the heat flux to the storm and weaken the storm. Recent studies suggest that this upper ocean turbulence is strongly affected by different sea states (Langmuir turbulence), which are highly complex and variable in tropical cyclone conditions. In this study, the upper ocean response under Hurricane Edouard (2014) is investigated using a coupled ocean-wave model with and without an explicit sea state dependent Langmuir turbulence parameterization. The results are compared with in situ observations of sea surface temperature and mixed layer depth from AXBTs, as well as satellite sea surface temperature observations. Overall, the model results of mixed layer deepening and sea surface temperature cooling under and behind the storm are consistent with observations. The model results show that the effects of sea state dependent Langmuir turbulence can be significant, particularly on the mixed layer depth evolution. Although available observations are not sufficient to confirm such effects, some observed trends suggest that the sea state dependent parameterization might be more accurate than the traditional (sea state independent) parameterization.
Observational tests of the properties of turbulence in the Very Local Interstellar Medium
Directory of Open Access Journals (Sweden)
S. R. Spangler
2010-12-01
Full Text Available The Very Local Interstellar Medium (VLISM contains clouds which consist of partially-ionized plasma. These clouds can be effectively diagnosed via high resolution optical and ultraviolet spectroscopy of the absorption lines they form in the spectra of nearby stars. Information provided by these spectroscopic measurements includes values for ξ, the root-mean-square velocity fluctuation due to turbulence in these clouds, and T, the ion temperature, which may be partially determined by dissipation of turbulence. We consider whether this turbulence resembles the extensively studied and well-diagnosed turbulence in the solar wind and solar corona. Published observations are used to determine if the velocity fluctuations are primarily transverse to a large-scale magnetic field, whether the temperature perpendicular to the large scale field is larger than that parallel to the field, and whether ions with larger Larmor radii have higher temperatures than smaller gyroradius ions. We ask if the spectroscopically-deduced parameters such as ξ and T depend on the direction on the sky. We also consider the degree to which a single temperature T and turbulence parameter ξ account for the spectral line widths of ions with a wide range of masses. A preliminary examination of the published data shows no evidence for anisotropy of the velocity fluctuations or temperature, nor Larmor radius-dependent heating. These results indicate differences between solar wind and Local Cloud turbulence. Possible physical reasons for these differences are discussed.
Chan, P. W.
2009-03-01
The Hong Kong International Airport (HKIA) is situated in an area of complex terrain. Turbulent flow due to terrain disruption could occur in the vicinity of HKIA when winds from east to southwest climb over Lantau Island, a mountainous island to the south of the airport. Low-level turbulence is an aviation hazard to the aircraft flying into and out of HKIA. It is closely monitored using remote-sensing instruments including Doppler LIght Detection And Ranging (LIDAR) systems and wind profilers in the airport area. Forecasting of low-level turbulence by numerical weather prediction models would be useful in the provision of timely turbulence warnings to the pilots. The feasibility of forecasting eddy dissipation rate (EDR), a measure of turbulence intensity adopted in the international civil aviation community, is studied in this paper using the Regional Atmospheric Modelling System (RAMS). Super-high resolution simulation (within the regime of large eddy simulation) is performed with a horizontal grid size down to 50 m for some typical cases of turbulent airflow at HKIA, such as spring-time easterly winds in a stable boundary layer and gale-force southeasterly winds associated with a typhoon. Sensitivity of the simulation results with respect to the choice of turbulent kinetic energy (TKE) parameterization scheme in RAMS is also examined. RAMS simulation with Deardorff (1980) TKE scheme is found to give the best result in comparison with actual EDR observations. It has the potential for real-time forecasting of low-level turbulence in short-term aviation applications (viz. for the next several hours).
Turbulent characteristics of a solar quiescent prominence observed by the SOT on board Hinode
Leonardis, E.; Chapman, S. C.; Foullon, C.
2011-12-01
Most of the solar quiescent prominences (QPs) observed by the Solar Optical Telescope (SOT) on board Hinode exhibit highly variable dynamics suggestive of turbulence [1]. Unlike in-situ spacecraft measurements, these QPs offer an opportunity to test statistical measures of turbulence in both space and time. We focus on one of these QPs by analysing images in the Calcium II H-line that cover a sufficient range of scales spatially ( ˜ 0.1-100 arc seconds) and temporally ( ˜ 16.8 s- 4.5 hrs) to allow the application of statistical methods generally used to quantify finite range fluid turbulence. We present such techniques applied for the first time to the spatial intensity field of the QP's flow. Fully evolved inertial range turbulence in an infinite medium has the statistical property of multifractal scale invariance, which implies power law power spectra and scaling of the higher order moments (structure functions) in the non-Gaussian statistics of the fluctuating quantities that characterize the system. Fluctuations δ I(r,L)=I(r+L)-I(r) on lengthscale L along a given direction in observed spatial field I, have indeed moments that scale as ˜ Lζ (p). A generalized scale invariance, or Eextended Self-Similarity (ESS), is instead recovered for turbulent systems of finite size - i.e. in the quiet solar wind [2]- for which the dependence on a single robust scaling function G(L) has been observed such that ˜ G(L)ζ (p). We find that the QP intensity measurements are well described by non-Gaussian statistics and show power law power spectra. We also find ESS and the generalized scaling for the intesity fluctuations δ I(r,L). Finally, we use ESS to obtain ratios of the scaling exponents ζ (p), which are consistent with a multifractal field. The statistical properties found for the intensity fluctuations in the QP are therefore in agreement with those ones expected for finite sized turbulent systems supporting the idea of the turbulent nature of the prominence flow
Flock, Mario; Nelson, Richard P.; Turner, Neal J.; Bertrang, Gesa H.-M.; Carrasco-González, Carlos; Henning, Thomas; Lyra, Wladimir; Teague, Richard
2017-12-01
Planets are born in protostellar disks, which are now observed with enough resolution to address questions about internal gas flows. Magnetic forces are possibly drivers of the flows, but ionization state estimates suggest that much of the gas mass decouples from magnetic fields. Thus, hydrodynamical instabilities could play a major role. We investigate disk dynamics under conditions typical for a T Tauri system, using global 3D radiation-hydrodynamics simulations with embedded particles and a resolution of 70 cells per scale height. Stellar irradiation heating is included with realistic dust opacities. The disk starts in joint radiative balance and hydrostatic equilibrium. The vertical shear instability (VSI) develops into turbulence that persists up to at least 1600 inner orbits (143 outer orbits). Turbulent speeds are a few percent of the local sound speed at the midplane, increasing to 20%, or 100 m s-1, in the corona. These are consistent with recent upper limits on turbulent speeds from optically thin and thick molecular line observations of TW Hya and HD 163296. The predominantly vertical motions induced by the VSI efficiently lift particles upward. Grains 0.1 and 1 mm in size achieve scale heights greater than expected in isotropic turbulence. We conclude that while kinematic constraints from molecular line emission do not directly discriminate between magnetic and nonmagnetic disk models, the small dust scale heights measured in HL Tau and HD 163296 favor turbulent magnetic models, which reach lower ratios of the vertical kinetic energy density to the accretion stress.
Turbulence-wave interactions associated to drainage flows observed during the BLLAST field campaign
Yagüe, Carlos; Sun, Jielun; Román-Cascón, Carlos; Sastre, Mariano; Arrillaga, Jon A.
2016-04-01
Gravity waves are often observed in the Nocturnal Stable Atmospheric Boundary Layer (SBL). One of the main topics in SBL studies, which is still far from being well understood, is the interaction between these waves and the turbulence present at the lower troposphere [1]. However it is not easy to establish the origin of these waves and how they interact with turbulence. Following the case study occurred along the evening transition of 2nd July 2011 over the area of Lannemezan (France) during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign [2], in the present work we have extended the study to all the cases found along the campaign, where the evening transition of the Atmospheric Boundary Layer was followed by the formation of drainage flows. Different multiscale techniques (Wavelet Transform -WT- and MultiResolution Flux Decomposition -MRFD-) have been applied to the extensive records of instrumentation deployed at BLLAST. In this way, we can underline the different features related to surface turbulent parameters in the SBL, where several of the studied processes showed an interaction, producing important variations in turbulence with height and between sites along the steep terrain. [1] Sun, J., C. J. Nappo, L. Mahrt, D. Belusic, B. Grisogono, D. R. Stauffer, M. Pulido, C. Staquet, Q. Jiang, A. Pouquet, C. Yagüe, B. Galperin, R. B. Smith, J. J. Finnigan, S.D. Mayor, G. Svensson, A. A. Grachev, and W.D.Neff. (2015): Review of wave-turbulence interactions in the stable atmospheric boundary layer, Rev. Geophys., 53, 956-993, doi:10.1002/2015RG000487. [2] Román-Cascón, C., Yagüe, C., Mahrt, L., Sastre, M., Steeneveld, G.-J., Pardyjak, E., van de Boer, A., and Hartogensis, O (2015).: Interactions among drainage flows, gravity waves and turbulence: a BLLAST case study, Atmos. Chem. Phys., 15, 9031-9047, doi:10.5194/acp-15-9031-2015.
Croze, Ottavio A; Sardina, Gaetano; Ahmed, Mansoor; Bees, Martin A; Brandt, Luca
2013-04-06
Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, we here study the dispersion of gyrotactic algae in laminar and turbulent channel flows using direct numerical simulation (DNS) and a previously published analytical swimming dispersion theory. Time-resolved dispersion measures are evaluated as functions of the Péclet and Reynolds numbers in upwelling and downwelling flows. For laminar flows, DNS results are compared with theory using competing descriptions of biased swimming cells in shear flow. Excellent agreement is found for predictions that employ generalized Taylor dispersion. The results highlight peculiarities of gyrotactic swimmer dispersion relative to passive tracers. In laminar downwelling flow the cell distribution drifts in excess of the mean flow, increasing in magnitude with Péclet number. The cell effective axial diffusivity increases and decreases with Péclet number (for tracers it merely increases). In turbulent flows, gyrotactic effects are weaker, but discernable and manifested as non-zero drift. These results should have a significant impact on photobioreactor design.
Directory of Open Access Journals (Sweden)
G. Forget
2015-10-01
Full Text Available Although estimation of turbulent transport parameters using inverse methods is not new, there is little evaluation of the method in the literature. Here, it is shown that extended observation of the broad-scale hydrography by Argo provides a path to improved estimates of regional turbulent transport rates. Results from a 20-year ocean state estimate produced with the ECCO v4 (Estimating the Circulation and Climate of the Ocean, version 4 non-linear inverse modeling framework provide supporting evidence. Turbulent transport parameter maps are estimated under the constraints of fitting the extensive collection of Argo profiles collected through 2011. The adjusted parameters dramatically reduce misfits to in situ profiles as compared with earlier ECCO solutions. They also yield a clear reduction in the model drift away from observations over multi-century-long simulations, both for assimilated variables (temperature and salinity and independent variables (biogeochemical tracers. Despite the minimal constraints imposed specifically on the estimated parameters, their geography is physically plausible and exhibits close connections with the upper-ocean stratification as observed by Argo. The estimated parameter adjustments furthermore have first-order impacts on upper-ocean stratification and mixed layer depths over 20 years. These results identify the constraint of fitting Argo profiles as an effective observational basis for regional turbulent transport rate inversions. Uncertainties and further improvements of the method are discussed.
VHF radar observations of turbulent structures in the polar mesopause region
Directory of Open Access Journals (Sweden)
P. Czechowsky
Full Text Available The mobile SOUSY VHF Radar was operated in the summer of 1987 during the MAC/SINE campaign in northern Norway to study the polar mesosphere summer echoes (PMSE. Measurements of the spectral width indicate that two types of structures occur. In general mesospheric layers are bifurcated exhibiting a narrow spectral width and a well-defined aspect sensitivity. However, for about 10% of the observation time cells of enhanced turbulence characterized by extremely broad spectral widths appear predominantly in the upper sublayer above 86 km. Identification and separation of beam and shear broadening allows a determination of the turbulence-induced component of the spectral width. This case study reveals that during several events these cloud-like structures of enhanced turbulence move with an apparent velocity of several tens of meters per second which is almost identical with the phase trace velocity of simultaneously observed waves. Since, at that time, the Richardson number was less than a quarter, it was concluded that these turbulent cells were generated by a Kelvin-Helmholtz mechanism. The horizontal extent of these structures was calculated to be less than 40 km. A general relation between spectral width and echo power was not detected. The turbulent component of the spectral width was used to calculate typical values of the energy dissipation rate at times where narrow spectral width dominates and during periods of enhanced turbulence. In addition, the outer scale of the inertial subrange (buoyancy scale was estimated. For the first time the occurrence and motion of this type of structures of enhanced spectral width is analyzed and discussed in detail.
VHF radar observations of turbulent structures in the polar mesopause region
Directory of Open Access Journals (Sweden)
P. Czechowsky
1997-08-01
Full Text Available The mobile SOUSY VHF Radar was operated in the summer of 1987 during the MAC/SINE campaign in northern Norway to study the polar mesosphere summer echoes (PMSE. Measurements of the spectral width indicate that two types of structures occur. In general mesospheric layers are bifurcated exhibiting a narrow spectral width and a well-defined aspect sensitivity. However, for about 10% of the observation time cells of enhanced turbulence characterized by extremely broad spectral widths appear predominantly in the upper sublayer above 86 km. Identification and separation of beam and shear broadening allows a determination of the turbulence-induced component of the spectral width. This case study reveals that during several events these cloud-like structures of enhanced turbulence move with an apparent velocity of several tens of meters per second which is almost identical with the phase trace velocity of simultaneously observed waves. Since, at that time, the Richardson number was less than a quarter, it was concluded that these turbulent cells were generated by a Kelvin-Helmholtz mechanism. The horizontal extent of these structures was calculated to be less than 40 km. A general relation between spectral width and echo power was not detected. The turbulent component of the spectral width was used to calculate typical values of the energy dissipation rate at times where narrow spectral width dominates and during periods of enhanced turbulence. In addition, the outer scale of the inertial subrange (buoyancy scale was estimated. For the first time the occurrence and motion of this type of structures of enhanced spectral width is analyzed and discussed in detail.
International Nuclear Information System (INIS)
Chapman, S. C.; Nicol, R. M.; Leonardis, E.; Kiyani, K.; Carbone, V.
2009-01-01
We perform statistical analysis of the fluctuating magnetic field observed in-situ by the Ulysses spacecraft, from the perspective of quantitative characterization of the evolving magnetohydrodynamic (MHD) turbulence. We focus on two successive polar passes around solar minimum which provide extended intervals of quiet, fast solar wind at a range of radial distances and latitudes: the south polar pass of 1994 and the north polar pass of 1995. Fully developed inertial range turbulence has a characteristic statistical similarity property of quantities that characterize the flow, such as the magnetic field components B k (t), so that the pth moment of fluctuations has power-law dependence on scale τ such that k (t + τ) - B k (t)| p > ∼ τ ζ(p) . We instead find a generalized similarity k (t + τ) - B k (t)| p > ∼ g(τ/τ 0 ) ζ(p) consistent with extended self-similarity; and in particular all of these Ulysses observations, from both polar passes, share the same single function g(τ/τ 0 ). If these observations are indeed characteristic of MHD turbulence evolving in-situ, then this quantifies for the first time a key aspect of the universal nature of evolving MHD turbulence in a system of finite size, with implications both for theoretical development, and for our understanding of the evolving solar wind.
Nicol, R.; Leonardis, E.; Chapman, S. C.; Foullon, C.
2011-12-01
Fluctuations associated with fully developed magnetohydrodynamic (MHD) turbulent flows in an infinite medium are characterized by non-Gaussian statistics which are scale invariant; this implies power law power spectra and multiscaling for the Generalized Structure Functions (GSFs). Given an observable f(r,t) and assuming statistical stationary, the p'th order moment of the GSF of the fluctuating differences scales as Lzeta(p), where L is the observation scale and ζ (p) are the scaling exponents. For turbulence in a system that is of finite size, or that is not fully developed, the statistical property of scale invariance is replaced by a generalized scale invariance, or extended self- similarity (ESS), for which the various moments of the GSF have a power-law dependence on an initially unknown functions, G, such that Nicol, Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence, Phys. Rev. Lett. 103, 241101 (2009); S. C. Chapman, R. M. Nicol, E. Leonardis, K. Kiyani, V. Carbone, Observation of universality in the generalized similarity of evolving solar wind turbulence as seen by ULYSSES, Ap. J. Letters, 695, L185, (2009)
2D turbulence structure observed by a fast framing camera system in linear magnetized device PANTA
International Nuclear Information System (INIS)
Ohdachi, Satoshi; Inagaki, S.; Kobayashi, T.; Goto, M.
2015-01-01
Mesoscale structure, such as the zonal flow and the streamer plays important role in the drift-wave turbulence. The interaction of the mesoscale structure and the turbulence is not only interesting phenomena but also a key to understand the turbulence driven transport in the magnetically confined plasmas. In the cylindrical magnetized device, PANTA, the interaction of the streamer and the drift wave has been found by the bi-spectrum analysis of the turbulence. In order to study the mesoscale physics directly, the 2D turbulence is studied by a fast-framing visible camera system view from a window located at the end plate of the device. The parameters of the plasma is the following; Te∼3eV, n ∼ 1x10 19 m -3 , Ti∼0.3eV, B=900G, Neutral pressure P n =0.8 mTorr, a∼ 6cm, L=4m, Helicon source (7MHz, 3kW). Fluctuating component of the visible image is decomposed by the Fourier-Bessel expansion method. Several rotating mode is observed simultaneously. From the images, m = 1 (f∼0.7 kHz) and m = 2, 3 (f∼-3.4 kHz) components which rotate in the opposite direction can be easily distinguished. Though the modes rotate constantly in most time, there appear periods where the radially complicated node structure is formed (for example, m=3 component, t = 142.5∼6 in the figure) and coherent mode structures are disturbed. Then, a new rotating period is started again with different phase of the initial rotation until the next event happens. The typical time interval of the event is 0.5 to 1.0 times of the one rotation of the slow m = 1 mode. The wave-wave interaction might be interrupted occasionally. Detailed analysis of the turbulence using imaging technique will be discussed. (author)
Directory of Open Access Journals (Sweden)
Lukas Pauscher
2018-01-01
Full Text Available This study investigates turbulence characteristics as observed at a 200 m tall mast at a hilly and complex site. It thereby concentrates on turbulence statistics, which are important for the site suitability analysis of a wind turbine. The directional variations in terrain are clearly reflected in the observed turbulence intensities and drag. Integral turbulence statistics showed some variations from their typical flat terrain values. Footprint modelling was used to model the area of effect and to relate the observed turbulence characteristics to the ruggedness and roughness within the estimated fetch area. Among the investigated turbulence quantities, the normalised standard deviation of the wind velocity along the streamlines showed the highest correlation with the effective roughness and ruggedness within the footprint followed by the normalised friction velocity and normalised standard deviation of the vertical wind speed. A differentiation between the effects of roughness and ruggedness was not possible, as forest cover and complex orography are highly correlated at the investigated site. An analysis of turbulence intensity by wind speed indicated a strong influence of atmospheric stability. Stable conditions lead to an overall reduction in turbulence intensity for a wind speed range between approx. 6–12 m s−1 when compared to neutral stratification. The variance of the horizontal wind speed strongly varied over the height range which is typical for a modern wind turbine and was in the order of the differences between different standard turbulence classes for wind turbines.
MMS Observations of Ion-Scale Magnetic Island in the Magnetosheath Turbulent Plasma
Huang, S. Y.; Sahraoui, F.; Retino, A.; Contel, O. Le; Yuan, Z. G.; Chasapis, A.; Aunai, N.; Breuillard, H.; Deng, X. H.; Zhou, M.;
2016-01-01
In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 di, where di is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma..
Turbulent Cloud Structure and Power Spectrum from 23 years of HST Observations
Cosentino, Richard; Simon, Amy; Morales-Juberias, Raul
2018-01-01
Images of Jupiter’s clouds show that turbulence is a ubiquitous phenomenon over many orders of scale size. According to Kolmogorov’s theory for turbulence, the frequency/distribution of clouds at various scales can be used to produce an energy power spectrum of a passive tracer. Kolmogorov theory predicts the spectral slopes for “shallow” and “deep” fluids in motion by following how energy is injected and dissipated in the fluid. We are quantifying the turbulent nature of Jupiter’s clouds over 23 years of Hubble Space Telescope (HST) observations using an algorithm first presented in Choi and Showman (2011, Icarus 216). We applied the power spectrum fitting algorithm to a variety of filters from available HST data and tested its sensitivity to free parameters and compare our results to Choi and Showman (2011). We will comment on the evidence for a 2D turbulent regime In Jupiter’s clouds and will report on empirical values found in the spectra and their physical interpretations, such as the Rhines scale. We also will report on the behavior of the passive tracer power spectrum and trends that exist over time for different latitudinal regions, primarily the belts and zones and the north and south equatorial belts.
Directory of Open Access Journals (Sweden)
R. André
2003-08-01
Full Text Available Unusual structures characterized by a very high-velocity divergence have been observed in the high-latitude F-region with SuperDARN radars (André et al., 2000. These structures have been interpreted as due to local demagnetization of the plasma in the ionospheric F-region, during very specific geophysical conditions. In this study, the collective wave scattering theory is used to characterize the decameter-scale turbulence (l approx 15 m inside the structures. The distribution function of the diffusion coefficient is modified when the structures are generated, suggesting that two regimes of turbulence coexist. A temporal analysis decorrelates the two regimes and gives access to the dynamics associated with the structures. It is shown that a high turbulent regime precedes the plasma demagnetization and should be related to an energy deposition. Then a second regime appears when the plasma is demagnetized and disappears simultaneously with the structures. This study is the first application of the collective wave scattering theory to a specific geophysical event.Key words. Ionosphere (auroral ionosphere; ionospheric irregularities – Space plasma physics (turbulence
Intermittency of magnetic field turbulence: Astrophysical applications of in-situ observations
Zelenyi, Lev M.; Bykov, Andrei M.; Uvarov, Yury A.; Artemyev, Anton V.
2015-08-01
We briefly review some aspects of magnetic turbulence intermittency observed in space plasmas. Deviation of statistical characteristics of a system (e.g. its high statistical momenta) from the Gaussian can manifest itself as domination of rare large intensity peaks often associated with the intermittency in the system's dynamics. Thirty years ago, Zeldovich stressed the importance of the non-Gaussian appearance of the sharp values of vector and scalar physical parameters in random media as a factor of magnetic field amplification in cosmic structures. Magnetic turbulence is governing the behavior of collisionless plasmas in space and especially the physics of shocks and magnetic reconnections. Clear evidence of intermittent magnetic turbulence was found in recent in-situ spacecraft measurements of magnetic fields in the near-Earth and interplanetary plasma environments. We discuss the potentially promising approaches of incorporating the knowledge gained from spacecraft in-situ measurements into modern models describing plasma dynamics and radiation in various astrophysical systems. As an example, we discuss supernova remnants (SNRs) which are known to be the sources of energy, momentum, chemical elements, and high-energy cosmic rays (CRs) in galaxies. Supernova shocks accelerate charged particles to very high energies and may strongly amplify turbulent magnetic fields via instabilities driven by CRs. Relativistic electrons accelerated in SNRs radiate polarized synchrotron emission in a broad range of frequencies spanning from the radio to gamma-rays. We discuss the effects of intermittency of magnetic turbulence on the images of polarized synchrotron X-ray emission of young SNRs and emission spectra of pulsar wind nebula.
Fejer, J. A.; Sulzer, M. P.; Djuth, F. T.
1991-09-01
Results are presented of observations of the spectrum of the 430-MHz radar backscatter from HF-induced Langmuir turbulence with height discrimination. During very stable ionospheric conditions under which the height of the below-threshold backscatter spectrum changed by less than 300 m during a 7-min period, a 20-s-long temporary increase in the HF power from 3 MW ERP to 38-MW-equivalent-radiated HF power is found to result in subsequent strong above-threshold spectra extending to heights up to 1200 m greater than the height of the below-threshold spectrum for more than a minute. The generation of irregularities in the plasma density during the 20 s of enhanced HF power is suggested as a possible cause of this persistence of strong above-threshold spectra at greater heights. The initial temporal evolution of the backscatter spectrum from Langmuir turbulence after the start of HF transmissions is observed for different heights. The observational results are compared with the predictions of existing theories of Langmuir turbulence.
Sun, Zheng; Ning, Hui; Song, Shihui; Yan, Dongmei
2016-10-01
Nocturnal radiative cooling is a main driver for atmospheric duct formation. Within this atmospheric process, the impacts of intermittent turbulence on ducting have seldom been studied. In this paper, we reported two confusing ducting events observed in the early morning in August 2014 over Bosten Lake, China, when a stable boundary layer (SBL) still survived, by using tethered high-resolution GPS radiosondes. Elevated ducts with strong humidity inversions were observed during the balloon ascents but were absent during observations made upon the balloon descents several minutes later. This phenomenon was initially hypothesized to be attributable to turbulence motions in the SBL, and the connection between the turbulence event and the radar duct was examined by the statistical Thorpe method. Turbulence patches were detected from the ascent profiles but not from the descent profiles. The possible reasons for the duct formation and elimination were discussed in detail. The turbulent transport of moisture in the SBL and the advection due to airflows coming from the lake are the most probable reasons for duct formation. In one case, the downward transport of moisture by turbulence mixing within a Kelvin-Helmholtz billow at the top of the low-level jet resulted in duct elimination. In another case, the passage of density currents originating from the lake may have caused the elimination of the duct. Few studies have attempted to associate intermittent turbulence with radar ducts; thus, this work represents a pioneering study into the connection between turbulent events and atmospheric ducts in a SBL.
Fitting a Turbulent Cloud Model to CO Observations of Starless Bok Globules
Hegmann, M.; Hengel, C.; Röllig, M.; Kegel, W. H.
We present observations of five starless Bok globules in transitions of 12CO (J=2-1 and {J=3-2}), 13CO (J=2-1), and C18O (J=2-1) which have been obtained at the Heinrich-Hertz-Telescope. For an analysis of the data we use the model of Kegel et al. (see e.g. Piehler & Kegel 1995, A&A 297, 841; Hegmann & Kegel 2000, A&A 359, 405) which describes an isothermal sphere stabilized by turbulent and thermal pressure. This approach deals with the full NLTE radiative transfer problem and accounts for a turbulent velocity field with finite correlation length. By a comparison of observed and calculated line profiles we are able not only to determine the kinetic temperature, hydrogen density and CO coloumn density of the globules, but also to study the properties of the turbulent velocity field, i.e. the variance of its one-point-distribution and its correlation length. We consider our model to be an alternative tool for the evaluation of molecular lines emitted by molecular clouds. The model assumptions are certainly closer to reality than the assumptions behind the standard evaluation models, as for example the LVG model. Our current study shows that that the results obtained from our model can differ significantly from those obtained from a LVG analysis.
Turbulent transport of the Earth magnitisphere: Review of the results of observations and modeling
Ovchinnikov, I. L.; Antonova, E. E.
2017-11-01
The results of observations of turbulent transport in the Earth's magnetosphere tail are summarized. The results of recent works on the projection of the auroral oval onto the equatorial plane, according to which the main part of the oval is not projected onto the plasma sheet, are taken into account. Analysis of the eddy diffusion coefficient dependences on the geocentric distance and on the phase of a magnetosphere substorm, both across the sheet and in the azimuthal direction, is carried out. The role of eddy diffusion in the creation of quasi-equilibrium plasma structures and in the plasma transport from the magnetospheric flanks into the plasma sheet is considered. The transport along the sheet is discussed. The problems of turbulent transport that can be solved by analysis the data of multisatellite projects are indicated.
International Nuclear Information System (INIS)
Gershgorin, B.; Majda, A.J.
2011-01-01
A statistically exactly solvable model for passive tracers is introduced as a test model for the authors' Nonlinear Extended Kalman Filter (NEKF) as well as other filtering algorithms. The model involves a Gaussian velocity field and a passive tracer governed by the advection-diffusion equation with an imposed mean gradient. The model has direct relevance to engineering problems such as the spread of pollutants in the air or contaminants in the water as well as climate change problems concerning the transport of greenhouse gases such as carbon dioxide with strongly intermittent probability distributions consistent with the actual observations of the atmosphere. One of the attractive properties of the model is the existence of the exact statistical solution. In particular, this unique feature of the model provides an opportunity to design and test fast and efficient algorithms for real-time data assimilation based on rigorous mathematical theory for a turbulence model problem with many active spatiotemporal scales. Here, we extensively study the performance of the NEKF which uses the exact first and second order nonlinear statistics without any approximations due to linearization. The role of partial and sparse observations, the frequency of observations and the observation noise strength in recovering the true signal, its spectrum, and fat tail probability distribution are the central issues discussed here. The results of our study provide useful guidelines for filtering realistic turbulent systems with passive tracers through partial observations.
An observational investigation of transitory turbulence in the atmospheric boundary layer
Jensen, Derek D.
Within the atmospheric boundary layer (ABL), atmospheric fluid flow is in a constant state of transition in both time and space. Under calm conditions through the mid-daytime hours and over quasi-uniform terrain, the temporal and spatial evolution of the atmosphere is gradual. The structure and governing equations are well understood, allowing for numerical models to accurately forecast the evolution of the ABL. Under nocturnal conditions, the atmospheric processes are more complicated, yet numerical models still perform reasonably well. When changes in the state of the atmosphere occur abruptly, whether in time or space, the fidelity of most numerical weather models diminishes appreciably. This occurs because many of the simplifying assumptions intrinsic in most numerical models are no longer valid. The objective of this dissertation is to use observational data collected within such transitions to gain more insight into the mechanisms responsible for the evolution of the rapidly evolving ABL. First, near-surface turbulence data are used to study countergradient heat fluxes that occur through the evening transition. The countergradient heat flux may be produced by the sign change of the sensible heat flux preceding the sign change of the local temperature gradient and vice versa. The phenomenon is studied by considering the budget equations of both temperature and sensible heat flux. The behaviour of the countergradient heat flux is governed by the surface and subsurface characteristics. The duration of the countergradient flux may be prognosed by considering a ratio of terms in the heat flux budget equation evaluated during the mid- to late afternoon. Next, data collected over an arid shallow slope (2-4°) are used to study the structure and onset of katabatic flow through the evening transition. The katabatic onset, jet velocity and jet height all show a large degree of interdiurnal variability. The slope-aligned budgets of momentum and potential temperature are
Observations of turbulence beneath sea ice in southern McMurdo Sound, Antarctica
Directory of Open Access Journals (Sweden)
C. L. Stevens
2009-10-01
Full Text Available The first turbulence profiler observations beneath land fast sea ice which is directly adjacent to an Antarctic ice shelf are described. The stratification in the 325 m deep water column consisted of a layer of supercooled water in the upper 40 m lying above a quasi-linearly stratified water column with a sharp step in density at mid-depth. Turbulent energy dissipation rates were on average 3×10^{−8} m^{2} s^{−3} with peak bin-averaged values reaching 4×10^{−7} m^{2} s^{−3}. The local dissipation rate per unit area was estimated to be 10 m Wm^{−2} on average with a peak of 50 m Wm^{−2}. These values are consistent with a moderate baroclinic response to the tides. The small-scale turbulent energetics lie on the boundary between isotropy and buoyancy-affected. This will likely influence the formation and aggregation of frazil ice crystals within the supercooled layer. The data suggest that the large crystals observed in McMurdo Sound will transition from initial growth at scales smaller than the Kolmogorov lengthscale to sizes substantially (1–2 orders of magnitude greater than the Kolmogorov scale. An estimate of the experiment-averaged vertical diffusivity of mass Kρ yields a coefficient of around 2×10^{−4} m^{2}s^{−1} although this increased by a factor of 2 near the surface. Combining this estimate of Kρ with available observations of average and maximum currents suggests the layer of supercooled water can persist for a distance of ~250 km from the front of the McMurdo Ice Shelf.
Possible sources of UHECRs. Characteristics, predictions and observational consequences
Energy Technology Data Exchange (ETDEWEB)
Behroozian, Soraya; Risse, Markus; Yushkov, Alexey [University of Siegen (Germany)
2016-07-01
Ultra-high energy cosmic rays (UHECRs) are charged particles with energies above 1 EeV originating from astrophysical sources. Due to interactions with the extragalactic and galactic magnetic fields during propagation the arrival directions of the UHECRs do not point back to the sources and the origin of these particles is an open question. Many models have been developed proposing astrophysical objects such as SNe, AGNs (Cen A being the most addressed one), quasars, blazars and GRBs as plausible acceleration sites. We review some characteristics of such sources and discuss the observational predictions comparing them to the recent results on the mass composition from the Pierre Auger Observatory.
Observations of Mesospheric Turbulence by Rocket Probe and VHF Radar, Part 2.4A
Royrvik, O.; Smith, L. G.
1984-01-01
Data from the Jicamarca VHF radar and from a Languir probe fine-structure on a Nike Orion rocket launched from Punto Lobos, Peru, have been compared. A single mesospheric scattering layer was observed by the radar. The Langmuir probe detected irregularities in the electron-density profile in a narrow region between 85.2 and 86.6 km. It appears from a comparison between these two data sets that turbulence in the neutral atmosphere is the mechanism generating the refractive index irregularities.
The planetesimal-driven migration of planets: Observational consequences
International Nuclear Information System (INIS)
Panichi, F.
2014-01-01
The role of planetary migration in a non–self-gravity planetesimals disk is analyzed in this paper. I calculate the migration rate exerted on a planet due to the gravitational interaction with a planetesimals disk both numerically and analytically. I use two different configurations for the disk-planet interaction: corotating (with an inclination of 0◦ with respect to the plane of motion of the disk) and counter-rotating (with an inclination of 180◦) planet. I perform 2D numerical simulations of disks with 104 planetesimals with or without a Rayleigh distribution in eccentricity. I show that counter- and co-rotating planets have different migration rates: retrograde planets migrate faster than the prograde ones. The migration rate depends on the ratio between the planet to planetesimal mass and on the initial mean eccentricity of planetesimals. I compare numerical simulations with analytical theories of dynamical friction and linear theory of density waves. In both cases each theory can explain only parts of the simulation results. A more general and powerful analytical theory of planet migration must be realized. Finally I simulate the observation of co- and counter-rotating massless disks of planetesimals with the interferometer ALMA. With the high resolution of ALMA it is possible to characterize the gap created by the resonances overlap. I show that in the two cases different resonance conditions create gaps with different extensions which can be observed with ALMA for a distance of 100 parsec and a disk size of 100 A.U., and for disks of 20 A.U. and a distance of 50 parsec. With this simple method it is possible to calculate the planet’s mass in both cases studying the indirect presence of the planet. The case of massive disks are also investigated. In this case planet migration creates a large modification of the planetesimals density profile that can be studied observing the brightness surface profile of the disk. Conversely to other detection
Stawarz, J. E.; Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Pouquet, A.; Burch, J. L.; Giles, B. L.; Khotyaintsev, Y.; Le Contel, O.;
2016-01-01
Spatial and high-time-resolution properties of the velocities, magnetic field, and 3-D electric field within plasma turbulence are examined observationally using data from the Magnetospheric Multiscale mission. Observations from a Kelvin-Helmholtz instability (KHI) on the Earth's magnetopause are examined, which both provides a series of repeatable intervals to analyze, giving better statistics, and provides a first look at the properties of turbulence in the KHI. For the first time direct observations of both the high-frequency ion and electron velocity spectra are examined, showing differing ion and electron behavior at kinetic scales. Temporal spectra exhibit power law behavior with changes in slope near the ion gyrofrequency and lower hybrid frequency. The work provides the first observational evidence for turbulent intermittency and anisotropy consistent with quasi two-dimensional turbulence in association with the KHI. The behavior of kinetic-scale intermittency is found to have differences from previous studies of solar wind turbulence, leading to novel insights on the turbulent dynamics in the KHI.
Origin of the turbulent spectra in the high-altitude cusp: Cluster spacecraft observations
Directory of Open Access Journals (Sweden)
K. Nykyri
2006-05-01
Full Text Available High-resolution magnetic field data from Cluster Flux Gate Magnetometer (FGM and the Spatio-Temporal Analysis of Field Fluctuations (STAFF instruments are used to study turbulent magnetic field fluctuations during the high-altitude cusp crossing on 17 March 2001. Despite the quiet solar wind conditions, the cusp was filled with magnetic field turbulence whose power correlates with the field-aligned ion plasma flux. The magnetic field wave spectra shows power law behavior with both double and single slopes with break in the spectra usually occurring in the vicinity of the local ion cyclotron frequency. Strong peaks in the wave power close to local ion cyclotron frequency were sometimes observed, with secondary peaks at higher harmonics indicative of resonant processes between protons and the waves. We show that the observed spectral break point may be caused partly by damping of obliquely propagating kinetic Alfvén (KAW waves and partly by cyclotron damping of ion cyclotron waves.
Observations of turbulent energy dissipation rate in the upper ocean of the central South China Sea
Chen, G.
2016-02-01
Measurements of turbulent energy dissipation rate, velocity, temperature, and salinity were obtained in the upper ocean of the central South China Sea (14.5˚N, 117.0˚E) during an experimental campaign from May 11th to 13th 2010. Dissipation rate was elevated ( 10-7 Wkg-1) at night by convection mixing and was weakened ( 10-9 Wkg-1) in daytime due to the warming stratification. Thermocline dissipation rate varied with time ( 10-9 Wkg-1 to 10-8 Wkg-1) under the influence of internal waves. Energy was transferred from the diurnal internal tides to high frequency internal waves through nonlinear wave-wave interactions. This energy cascade process was accompanied by elevated shear and enhanced dissipation, which played an important role in the turbulent mixing in thermocline. Compare with the thermocline dissipation, dissipation below the thermocline was more stable and weak ( 10-10 Wkg-1). The observed dissipation rate during the measurement was well parameterized by the MacKinnon-Gregg parameterization (a model based on a reinterpretation of wave-wave interaction theory), whereas the Gregg-Henyey parameterization was not in good agreement with the observed dissipation rate.
Energy Technology Data Exchange (ETDEWEB)
Huang, S. Y.; Yuan, Z. G.; Wang, D. D.; Yu, X. D. [School of Electronic Information, Wuhan University, Wuhan (China); Sahraoui, F.; Contel, O. Le [Laboratoire de Physique des Plasmas, CNRS-Ecole Polytechnique-UPMC, Palaiseau (France); He, J. S. [School of Earth and Space Sciences, Peking University, Beijing (China); Zhao, J. S. [Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); Deng, X. H.; Pang, Y.; Li, H. M. [Institute of Space Science and Technology, Nanchang University, Nanchang (China); Zhou, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA (United States); Fu, H. S.; Yang, J. [School of Space and Environment, Beihang University, Beijing (China); Shi, Q. Q. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai (China); Lavraud, B. [Institut de Recherche and Astrophysique et Planétologie, Université de Toulouse (UPS), Toulouse (France); Pollock, C. J.; Giles, B. L. [NASA, Goddard Space Flight Center, Greenbelt, MD (United States); Torbert, R. B. [University of New Hampshire, Durham, NH (United States); Russell, C. T., E-mail: shiyonghuang@whu.edu.cn [Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA (United States); and others
2017-02-20
We report on the observations of an electron vortex magnetic hole corresponding to a new type of coherent structure in the turbulent magnetosheath plasma using the Magnetospheric Multiscale mission data. The magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region and a peak in the outer region of the magnetic hole. The estimated size of the magnetic hole is about 0.23 ρ {sub i} (∼30 ρ {sub e}) in the quasi-circular cross-section perpendicular to its axis, where ρ {sub i} and ρ {sub e} are respectively the proton and electron gyroradius. There are no clear enhancements seen in high-energy electron fluxes. However, there is an enhancement in the perpendicular electron fluxes at 90° pitch angle inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components V {sub em} and V {sub en} suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the cross-section in the M – N plane. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations.
Gudadze, N.; Chau, J. L.; Stober, G.; Latteck, R.
2016-12-01
Mesosphere-lower-thermosphere (MLT) polar dynamics are interesting and important subject for study in atmospheric physic. It is considered that mesopause region is where the main part of the Atmospheric gravity waves breaks and/or dissipates. However this region is difficult to observe. Continuous Observations of the polar summer mesosphere with the Middle Atmosphere Alomar Radar System (MAARSY) and its predecessor the ALOMAR-Wind-Radar (ALWIN) (before 2010), have been used to investigate dynamical structures of well-known phenomenon - Polar Mesosphere Summer Echoes (PMSE) which is an important tracer in the summer polar mesopause region. Signal to Noise Ratio (SNR) and Doppler radial velocity from the PMSE are used to investigate the wave-like motions with periods larger than 5 minutes. Such oscillations are studied in terms of atmospheric gravity waves (AGWs). Processes also connected with AGWs as PMSE layering, are studied in connection with the background conditions of the neutral atmosphere as well. Background winds are obtained from collocated meteor radar (MR). We used local enhancement method for the processing of altitude-time SNR images to detect layers in the PMSEs and characterised them. Our preliminary results indicate that PMSE strength and behaviour is correlated with the meridional wind. Furthermore we found that the spectral width (SW), which is a proxy of turbulence, is most of the time weakly dependent on SNR strength. However, there are some events where SW is highly dependent on SNR intensity indicating that they could be associated to turbulent-dominated events.
International Nuclear Information System (INIS)
Lazarian, A.; Esquivel, A.; Crutcher, R.
2012-01-01
Recent observational results for magnetic fields in molecular clouds reviewed by Crutcher seem to be inconsistent with the predictions of the ambipolar diffusion theory of star formation. These include the measured decrease in mass to flux ratio between envelopes and cores, the failure to detect any self-gravitating magnetically subcritical clouds, the determination of the flat probability distribution function (PDF) of the total magnetic field strengths implying that there are many clouds with very weak magnetic fields, and the observed scaling B∝ρ 2/3 that implies gravitational contraction with weak magnetic fields. We consider the problem of magnetic field evolution in turbulent molecular clouds and discuss the process of magnetic field diffusion mediated by magnetic reconnection. For this process that we termed 'reconnection diffusion', we provide a simple physical model and explain that this process is inevitable in view of the present-day understanding of MHD turbulence. We address the issue of the expected magnetization of cores and envelopes in the process of star formation and show that reconnection diffusion provides an efficient removal of magnetic flux that depends only on the properties of MHD turbulence in the core and the envelope. We show that as the amplitude of turbulence as well as the scale of turbulent motions decrease from the envelope to the core of the cloud, the diffusion of the magnetic field is faster in the envelope. As a result, the magnetic flux trapped during the collapse in the envelope is being released faster than the flux trapped in the core, resulting in much weaker fields in envelopes than in cores, as observed. We provide simple semi-analytical model calculations which support this conclusion and qualitatively agree with the observational results. Magnetic reconnection is also consistent with the lack of subcritical self-gravitating clouds, with the observed flat PDF of field strengths, and with the scaling of field strength
Energy Technology Data Exchange (ETDEWEB)
Cannon, Bradford E. [Physics Department, Florida State University, Tallahassee, FL 32306 (United States); Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Murphy, Neil [Jet Propulsion Laboratory, Mail Stop 180-600, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Nuno, Raquel G., E-mail: bc13h@my.fsu.edu, E-mail: Charles.Smith@unh.edu, E-mail: Phil.Isenberg@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: cjl46@wildcats.unh.edu, E-mail: Neil.Murphy@jpl.nasa.gov, E-mail: raquel.nuno@asu.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)
2014-06-01
The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.
International Nuclear Information System (INIS)
Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G.
2014-01-01
The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.
Observations of the turbulent kinetic energy dissipation rate in the upper central South China Sea
Liang, Chang-Rong; Chen, Gui-Ying; Shang, Xiao-Dong
2017-05-01
Measurements of the turbulent kinetic energy dissipation rate ( ɛ), velocity, temperature, and salinity were obtained for the upper ocean of the central South China Sea (14.5° N, 117.0° E) during an experimental campaign from May 11 to 13, 2010. Dissipation in the diurnal mixed layer showed a diurnal variability that was strongly affected by the surface buoyancy flux. Dissipation was enhanced ( ɛ ˜ 10-7 W kg-1) at night due to the convective mixing and was weakened ( ɛ ˜ 10-9 W kg-1) in daytime due to the stratification. Dissipation in the thermocline varied with time under the influence of internal waves. Shear from high-frequency internal waves (period ˜8 h) played an important role in enhancing the turbulent mixing in the thermocline. In the period of strong high-frequency internal waves, the shear from high-frequency internal waves became strong and the depth-averaged ɛ in the thermocline was elevated by almost one order of magnitude. Compared with the dissipation in the thermocline, dissipation below was weaker (the time-averaged ɛ ˜ 10-10 W kg-1). The observation indicates that the dissipation rates during the measurements can be parameterized by the MacKinnon-Gregg model that is widely used in the continental shelf but are not in agreement with the Gregg-Henyey model used for the open ocean.
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
Polar spacecraft observations of the turbulent outer cusp/magnetopause boundary layer of Earth
Directory of Open Access Journals (Sweden)
J. S. Pickett
1999-01-01
Full Text Available The orbit of the Polar spacecraft has been ideally suited for studying the turbulent region of the cusp that is located near or just outside the magnetopause current sheet at 7-9 RE. The wave data obtained in this region show that electromagnetic turbulence is dominant in the frequency range 1-10 Hz. The waves responsible for this turbulence usually propagate perpendicular to the local magnetic field and have an index of refraction that generally falls between the estimated cold plasma theoretical values of the electromagnetic lower hybrid and whistler modes and may be composed of both modes in concert with kinetic Alfvén waves and/or fast magnetosonic waves. Fourier spectra of the higher frequency wave data also show the electromagnetic turbulence at frequencies up to and near the electron cyclotron frequency. This higher frequency electromagnetic turbulence is most likely associated with whistler mode waves. The lower hybrid drift and current gradient instabilities are suggested as possible mechanisms for producing the turbulence. The plasma and field environment of this turbulent region is examined and found to be extremely complex. Some of the wave activity is associated with processes occurring locally, such as changes in the DC magnetic field, while others are associated with solar wind and interplanetary magnetic field changes.
Polar Spacecraft Observations of the Turbulent Outer Cusp/Magnetopause Boundary Layer of Earth
Pickett, J. S.; Menietti, J. D.; Dowell, J. H.; Gurnett, D. A.; Scudder, J. D.
1999-01-01
The orbit of the Polar spacecraft has been ideally suited for studying the turbulent region of the cusp that is located near or just outside the magnetopause current sheet at 7-9 R(sub E). The wave data obtained in this region show that electromagnetic turbulence is dominant in the frequency range 1-10 Hz. The waves responsible for this turbulence usually propagate perpendicular to the local magnetic field and have an index of refraction that generally falls between the estimated cold plasma theoretical values of the electromagnetic lower hybrid and whistler modes and may be composed of both modes in concert with kinetic Alfven waves and/or fast magnetosonic waves. Fourier spectra of the higher frequency wave data also show the electromagnetic turbulence at frequencies up to and near the electron cyclotron frequency. This higher frequency electromagnetic turbulence is most likely associated with whistler mode waves. The lower hybrid drift and current gradient instabilities are suggested as possible mechanisms for producing the turbulence. The plasma and field environment of this turbulent region is examined and found to be extremely complex. Some of the wave activity is associated with processes occurring locally, such as changes in the DC magnetic field, while others are associated with solar wind and interplanetary magnetic field changes.
International Nuclear Information System (INIS)
Horton, W.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates
Refractivity Turbulence Observation Using a New Balloon-Ring Platform (Preprint)
National Research Council Canada - National Science Library
Eaton, Frank D; Kelly, Patrick R; Kyrazis, Demos T; Stokes, Sheldon S
2002-01-01
This paper presents new methodology to address critical refractivity turbulence issues for laser propagation using a new measurement system-a portable "balloon-ring" platform with multiple fine wire...
Observations of Turbulent-Burst Geometry and Growth in Supersonic Flow
National Research Council Canada - National Science Library
James, Carlton
1958-01-01
.... A study of the shape, growth, and formation rate of turbulent bursts in supersonic boundary layers has been made using spark shadowgraphs of small gun-launched models in free flight through still air...
International Nuclear Information System (INIS)
Baranowski, D B; Malinowski, S P; Flatau, P J
2011-01-01
Changes in the ocean mixed layer caused by passage of two consecutive typhoons in the Western Pacific are presented. Ocean profiles were measured by a unique Argo float sampling the upper ocean in high repetition cycle with a period of about one day. It is shown that the typhoon passage coincides with cooling of the mixed layer and variations of its salinity. Independent data from satellite measurements of surface winds were used to set-up an and idealized numerical simulation of mixed layer evolution. Results, compared to Argo profiles, confirm known effect that cooling is a result of increased entrainment from the thermocline due to enhancement of turbulence in the upper ocean by the wind stress. Observed pattern of salinity changes in the mixed layer suggest important role of typhoon precipitation. Fast changes of the mixed layer in course of typhoon passage show that fast profiling (at least once a day) is crucial to study response of the upper ocean to tropical cyclone.
Parashar, T.; Yang, Y.; Chasapis, A.; Matthaeus, W. H.
2017-12-01
High resolution Magnetospheric Multiscale (MMS) plasma and magnetic field data obtained in the inhomogeneous turbulent magnetosheath directly reveals the exchanges of energy between electromagnetic, flow and random kinetic energy. The parameters that quantify these exchanges are based on standard manipulations of the collisionless Vlasov model of plasma dynamics [1], without appeal to viscous or other closures. No analysis of heat transport or heat conduction is carried out. Several intervals of burst mode data in the magnetosheath are considered. Time series of the work done by the electromagnetic field, and the pressure-stress interaction enable description of the pathways to dissipation in this low collisionality plasma. Using these examples we demonstrate that the pressure-stress interaction provides important information not readily revealed in other diagnostics concerning the physical processes that are observed. This method does not require any specific mechanism for its application such as reconnection or a selected mode, although with increased experience it will be useful in distinguishing among proposed possibilities. [1] Y. Yang et al, Phys. Plasmas 24, 072306 (2017); doi: 10.1063/1.4990421.
Field observations of turbulent dissipation rate profiles immediately below the air-water interface
Wang, Binbin; Liao, Qian
2016-06-01
Near surface profiles of turbulence immediately below the air-water interface were measured with a free-floating Particle Image Velocimetry (PIV) system on Lake Michigan. The surface-following configuration allowed the system to measure the statistics of the aqueous-side turbulence in the topmost layer immediately below the water surface (z≈0˜15 cm, z points downward with 0 at the interface). Profiles of turbulent dissipation rate (ɛ) were investigated under a variety of wind and wave conditions. Various methods were applied to estimate the dissipation rate. Results suggest that these methods yield consistent dissipation rate profiles with reasonable scattering. In general, the dissipation rate decreases from the water surface following a power law relation in the top layer, ɛ˜z-0.7, i.e., the slope of the decrease was lower than that predicted by the wall turbulence theory, and the dissipation was considerably higher in the top layer for cases with higher wave ages. The measured dissipation rate profiles collapse when they were normalized with the wave speed, wave height, water-side friction velocity, and the wave age. This scaling suggests that the enhanced turbulence may be attributed to the additional source of turbulent kinetic energy (TKE) at the "skin layer" (likely due to micro-breaking), and its downward transport in the water column.
Lehmacher, G. A.; Collins, R. L.; Triplett, C. C.; Strelnikov, B.
2015-12-01
On 26 January 2015, two NASA sounding rockets were launched from Poker Flat Research Range, Alaska, as part of the Mesosphere-lower Thermosphere experiment. The missions were launched at 09:13 UT and 09:46 UT into a perturbed mesosphere with an inversion layer near 80 km as observed by Rayleigh lidar. Each payload carried identical instrumentation to probe plasma and neutral density at sub-meter scales on upleg and downleg portions of the trajectory, which were about 70 km apart for mesospheric altitudes. Neutral density fluctuations obtained by the CONE ionization gauge reveal several structured layers of neutral turbulence associated with regions of relative temperature maxima. This was the first time that four neutral turbulence profiles were observed in such short order and in the same atmospheric conditions. The image shows wavelet spectra for all four profiles indicating layers of high frequency, correspondingly, small scale fluctuations. We present energy dissipation rates derived from the inner scale of the turbulence spectra and discuss possible implications for gravity wave breaking and turbulent heating.
Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.
2017-12-01
Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron
The structure of turbulent jets, vortices and boundary layer: laboratory and field observations
International Nuclear Information System (INIS)
Sekula, E.; Redondo, J.M.
2008-01-01
The main aim of this work is research, understand and describe key aspects of the turbulent jets and effects connected with them such as boundary layer interactions on the effect of a 2D geometry. Work is based principally on experiments but there are also some comparisons between experimental and field results. A series of experiments have been performed consisting in detailed turbulent measurements of the 3 velocity components to understand the processes of interaction that lead to mixing and mass transport between boundaries and free shear layers. The turbulent wall jet configuration occurs often in environmental and industrial processes, but here we apply the laboratory experiments as a tool to understand jet/boundary interactions in the environment. We compare the structure of SAR (Synthetic Aperture Radar) images of coastal jets and vortices and experimental jets (plumes) images searching for the relationship between these two kinds of jets at very different Reynolds numbers taking advantage of the self-similarity of the processes. In order to investigate the structure of ocean surface detected jets (SAR) and vortices near the coast, we compare wall and boundary effects on the structure of turbulent jets (3D and 2D) which are non-homogeneous, developing multifractal and spectral techniques useful for environmental monitoring in space.
Czech Academy of Sciences Publication Activity Database
Yordanova, E.; Vaivads, A.; Andre, M.; Buchert, S. C.; Vörös, Zoltán
2008-01-01
Roč. 100, č. 20 (2008), 205003/1-205003/4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z30420517 Keywords : plasma sheaths * plasma turbulence Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 7.180, year: 2008 http://link.aps.org/doi/10.1103/PhysRevLett.100.205003
Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers
Directory of Open Access Journals (Sweden)
J.-L. Caccia
2004-11-01
Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the
Observation of a current-limited double layer in a linear turbulent-heating device
International Nuclear Information System (INIS)
Inuzuka, H.; Torii, Y.; Nagatsu, M.; Tsukishima, T.
1985-01-01
Time- and space-resolved measurements of strong double layers (DLs) have been carried out for the first time on a linear turbulent-heating device, together with those of fluctuation spectra and precise current measurements. A stable stong DL is formed even when the electric current through the DL is less than the so-called Bohm value. Discussion of the formation and decay processes is given, indicating a transition from an ion-acoustic DL to a monotonic DL
Yang, Wei; Wei, Hao; Zhao, Liang
2017-11-01
Tidal straining describes the straining effect induced by the vertical shear of oscillatory tidal currents that act on horizontal density gradients. It tends to create tidal periodic stratification and modulate the turbulence in the bottom boundary layer (BBL). Here, we present observations of current, hydrology and turbulence obtained at two mooring stations that are characterized by two typical hydrological environments in the East China Sea (ECS). One is located adjacent to the Changjiang River's mouth, and the other is located over a sloping shelf which is far from the freshwater sources. Tidal straining induces a semidiurnal switching between stable and unstable stratification at both stations. Near-bottom high-frequency velocity measurements further reveal that the dissipation rate of turbulent kinetic energy (TKE) is highly elevated during periods when unstable stratification occurs. A comparison between the TKE dissipation rate (ɛ) and the shear production (P) further reveals that the near-bottom mixing is locally shear-induced most of the time except during the unstable stratification period. Within this period, the magnitude of dissipation exceeds the expected value based on the law of the wall by an order of magnitude. The buoyancy flux that calculated by the balance method is too small to compensate for the existing discrepancy between the dissipation and shear production. Another plausible candidate is the advection of TKE, which may play an important role in the TKE budget during the unstable stratification period.
Cho, John Y. N.; Swartz, Wesley E.; Kelley, Michael C.; Miller, Clark A.
1993-01-01
During the first rocket sequence (called Salvo B) of the NLC-91 campaign, the Cornell University Portable Radar Interferometer (CUPRI) observed two simultaneously occurring layers of Polar Mesophere Summer Echoes (PMSE). during the time of the Turbo B flight, the high time-resolution CUPRI Doppler spectra exhibited sawtooth-like discontinuities in the lower layer which we interpret to be a distorted partial reflection layer which was advected across the radar beam. The upper layer, on the other hand, appeared to be caused by turbulent scatter and we estimate the turbulence energy dissipation rate in the upper layer at the time of the Turbo B flight to have been approximately 0.04 W/kg. Futhermore, a shift in the antenna beam direction from vertical to 8 deg off zenith revealed an aspect sensitivity of approximately 5 dB in the lower layer but none in the upper layer. We conclude that, at this particular time, turbulent scatter was responsible for the upper layer while some form of partial reflection was dominant in the lower layer.
An informal conceptual introduction to turbulence
Tsinober, Arkady
2009-01-01
This book is a second completely revised edition of ""An Informal Introduction to Turbulence"". The main emphasis is on conceptual and problematic aspects, physical phenomena, observations, misconceptions and unresolved issues rather than on conventional formalistic aspects, models, etc. Apart from the obvious fundamental importance of turbulent flows such an emphasis is a consequence of the view that without corresponding progress in fundamental aspects there is little chance for progress in any applications such as drag reduction, mixing, control and modeling of turbulence. More generally th
Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers
Directory of Open Access Journals (Sweden)
J.-L. Caccia
2004-11-01
Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.
Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.
In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.
Role and Nature of Intermittency in Solar Wind Alfvénic Turbulence: Wind Observations.
Salem, C. S.; Mangeney, A.; Bale, S. D.
2006-12-01
In the Alfvénic regime, i.e. for frequencies below the local proton cyclotron frequency, solar wind MHD turbulence exhibits what appears like an inertial domain, with power-law spectra and scale-invariance, suggesting as in fluid turbulence, a nonlinear energy cascade from the large "energy containing" scales towards much smaller scales, where dissipation via kinetic effects is presumed to act. However, the intermittent character of the solar wind fluctuations in the inertial range is much more important than in ordinary fluids. Indeed, the fluctuations consist of a mixture of random fluctuations and small-scale "singular" or coherent structures. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. We will discuss here recent results on scaling laws and intermittency based on the use of Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. More specifically, the Haar Wavelet transform is used to compute spectra, structure functions and probability distribution functions (PDFs). We show that this powerful technique allows: (1) for a systematic elimination of intermittency effects on spectra and structure functions and thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. The analysis of structure functions and PDFs will be reviewed and new results on the nature of the intermittent coherent structures will be presented.
Scale-Invariance and Intermittency in the Solar Wind Alfvénic Turbulence: Wind Observations
Salem, C. S.; Mangeney, A.; Bale, S. D.; Veltri, P.
2004-12-01
In the "Alfvénic" regime, i.e. for frequencies below the local proton cyclotron frequency, solar wind MHD turbulence exhibits what appears like an inertial domain, with power-law spectra and scale-invariance, suggesting as in fluid turbulence, a nonlinear energy cascade from the large "energy containing" scales towards the small scales where dissipation by kinetic effects is presumed to act. However, the intermittent character of solar wind fluctuations is much more important than in ordinary fluids. Indeed, the fluctuations consist of a mixture of random fluctuations and small-scale "singular" or coherent structures. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. We present here a new approach to study the scaling laws and intermittency based on the use of Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. Using the Haar wavelet transform, spectra and structure functions are calculated. We show that this powerful technique allows: (1) for a systematic elimination of intermittency effects on spectra and structure functions and thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. We finally discuss the various effects which may be important for the formation of these structures in the absence of collisions.
Bourdin, Philippe-A.; Hofer, Bernhard; Narita, Yasuhito
2018-03-01
Electromotive force is an essential quantity in dynamo theory. During a coronal mass ejection (CME), magnetic helicity gets decoupled from the Sun and advected into the heliosphere with the solar wind. Eventually, a heliospheric magnetic transient event might pass by a spacecraft, such as the Helios space observatories. Our aim is to investigate the electromotive force, the kinetic helicity effect (α term), the turbulent diffusion (β term), and the cross-helicity effect (γ term) in the inner heliosphere below 1 au. We set up a one-dimensional model of the solar wind velocity and magnetic field for a hypothetic interplanetary CME. Because turbulent structures within the solar wind evolve much slower than this structure needs to pass by the spacecraft, we use a reduced curl operator to compute the current density and vorticity. We test our CME shock-front model against an observed magnetic transient that passes by the Helios-2 spacecraft. At the peak of the fluctuations in this event we find strongly enhanced α, β, and γ terms, as well as a strong peak in the total electromotive force. Our method allows us to automatically identify magnetic transient events from any in situ spacecraft observations that contain magnetic field and plasma velocity data of the solar wind.
International Nuclear Information System (INIS)
Chang, Mei-Chu; Tsai, Ya-Yi; I, Lin
2013-01-01
We experimentally demonstrate the direct observation of defect mediated wave turbulence with fluctuating defects and low amplitude hole filaments, from a 3D self-excited plane dust acoustic wave in a dusty plasma by reducing dissipation. The waveform undulation is found to be the origin for the amplitude and the phase modulations of the local dust density oscillation, the broadening of the sharp peaks in the frequency spectrum, and the fluctuating defects. The corrugated wave crest surface also causes the observed high and low density patches in the transverse (xy) plane. Low oscillation amplitude spots (holes) share the same positions with the defects. Their trajectories in the xyt space appear in the form of chaotic filaments without long term predictability, through uncertain pair generation, propagation, and pair annihilation
Chhiber, Rohit; Usmanov, Arcadi V.; DeForest, Craig E.; Matthaeus, William H.; Parashar, Tulasi N.; Goldstein, Melvyn L.
2018-04-01
Recent analysis of Solar-Terrestrial Relations Observatory (STEREO) imaging observations have described the early stages of the development of turbulence in the young solar wind in solar minimum conditions. Here we extend this analysis to a global magnetohydrodynamic (MHD) simulation of the corona and solar wind based on inner boundary conditions, either dipole or magnetogram type, that emulate solar minimum. The simulations have been calibrated using Ulysses and 1 au observations, and allow, within a well-understood context, a precise determination of the location of the Alfvén critical surfaces and the first plasma beta equals unity surfaces. The compatibility of the the STEREO observations and the simulations is revealed by direct comparisons. Computation of the radial evolution of second-order magnetic field structure functions in the simulations indicates a shift toward more isotropic conditions at scales of a few Gm, as seen in the STEREO observations in the range 40–60 R ⊙. We affirm that the isotropization occurs in the vicinity of the first beta unity surface. The interpretation based on early stages of in situ solar wind turbulence evolution is further elaborated, emphasizing the relationship of the observed length scales to the much smaller scales that eventually become the familiar turbulence inertial range cascade. We argue that the observed dynamics is the very early manifestation of large-scale in situ nonlinear couplings that drive turbulence and heating in the solar wind.
Directory of Open Access Journals (Sweden)
N. Engler
2005-06-01
Full Text Available During the MIDAS/MaCWAVE campaign in summer 2002 we have observed turbulence using Doppler beam steering measurements obtained from the ALWIN VHF radar at Andøya/Northern Norway. This radar was operated in the Doppler beam steering mode for turbulence investigations during the campaign, as well as in spaced antenna mode, for continuously measuring the background wind field. The real-time data analysis of the Doppler radar backscattering provided the launch conditions for the sounding rockets. The spectral width data observed during the occurrence of PMSE were corrected for beam and shear broadening caused by the background wind field to obtain the turbulent part of the spectral width. The turbulent energy dissipation rates determined from the turbulent spectral width vary between 5 and 100mW kg^{-1} in the altitude range of 80-92km and increase with altitude. These estimations agree well with the in-situ measurements using the CONE sensor which was launched on 3 sounding rockets during the campaign.
Directory of Open Access Journals (Sweden)
N. Engler
2005-06-01
Full Text Available During the MIDAS/MaCWAVE campaign in summer 2002 we have observed turbulence using Doppler beam steering measurements obtained from the ALWIN VHF radar at Andøya/Northern Norway. This radar was operated in the Doppler beam steering mode for turbulence investigations during the campaign, as well as in spaced antenna mode, for continuously measuring the background wind field. The real-time data analysis of the Doppler radar backscattering provided the launch conditions for the sounding rockets. The spectral width data observed during the occurrence of PMSE were corrected for beam and shear broadening caused by the background wind field to obtain the turbulent part of the spectral width. The turbulent energy dissipation rates determined from the turbulent spectral width vary between 5 and 100mW kg-1 in the altitude range of 80-92km and increase with altitude. These estimations agree well with the in-situ measurements using the CONE sensor which was launched on 3 sounding rockets during the campaign.
Directory of Open Access Journals (Sweden)
Anna Sjöblom
2014-06-01
Full Text Available Different observation techniques for atmospheric turbulent fluxes of momentum and sensible heat were tested in a High-Arctic valley in Svalbard during two consecutive summers (June–August in 2010 and 2011. The gradient method (GM and the bulk method (BM have been compared to the more direct eddy covariance method (ECM in order to evaluate if relatively robust and cheap instrumentation with low power consumption can be used as a means to increase the number of observations, especially at remote locations where instruments need to be left unattended for extended periods. Such campaigns increase knowledge about the snow-free surface exchange processes, an area which is relatively little investigated compared to snow-covered ground. The GM agreed closely to the ECM, especially for momentum flux where the two methods agree within 5%. For sensible heat flux, the GM produces, on average, approximately 40% lower values for unstable stratification and 67% lower for stable stratification. However, this corresponds to only 20 and 12 W m−2, respectively. The BM, however, shows a greater scatter and larger differences for both parameters. In addition to testing these methods, radiation properties were measured and the surface albedo was found to increase through the summer, from approximately 0.1 to 0.2. The surface energy budget shows that the sensible heat flux is usually directed upwards for the whole summer, while the latent heat flux is upwards in June, but becomes downward in July and August.
Osman, M.; Turner, D. D.; Heus, T.; Newsom, R. K.
2016-12-01
The high temporal and vertical resolution and the ability to operate continuously under most atmospheric conditions make Raman lidars outstanding tools for studying turbulence in the convective boundary layer (CBL). Raman lidars have been used to study the turbulent structure of the CBL and the entrainment zone; however, previous studies have been in general based on a limited number of cases, which restricts the representativeness of the results for different atmospheric conditions. This study uses data from the autonomous Raman lidars that measure water vapor over the Southern Great Plains (SGP) site located at Lamont, Oklahoma (USA) and the Tropical Western Pacific (TWP) site located at Darwin (Australia) as part of the Atmospheric Radiation Measurement (ARM) program. The data from SGP used here spans 4 years from January 2012 to December 2015 and the TWP data span 6 years from January 2010 to December 2015. The vertical profiles of turbulent fluctuations have been derived using an auto covariance technique to separate out the instrument random error from the atmospheric variability over a set of 2-h period time series during which the CBL is quasi-stationary and well mixed. The temporal and vertical resolutions of water vapor are 10 s and 37.5 m, respectively. The error analysis of the Raman lidars observations demonstrates that the lidars are capable of resolving the vertical structure of turbulence in the CBL, and the small noise errors allow us to thoroughly examine different moments up to the fourth-order. The monthly, seasonal and yearly variations of the vertical profiles of variance, skewness, kurtosis and integral scale have been carefully analyzed. We particularly highlight noticeable differences between the structure of turbulence in the CBL and the entrainment zone at the SGP and TWP sites.
Directory of Open Access Journals (Sweden)
Remo Cossu
Full Text Available Observations of the interactions of large amplitude internal seiches with the sloping boundary of Lake Simcoe, Canada show a pronounced asymmetry between up- and downwelling. Data were obtained during a 42-day period in late summer with an ADCP and an array of four thermistor chains located in a 5 km line at the depths where the thermocline intersects the shallow slope of the lakebed. The thermocline is located at depths of 12-14 m during the strongly stratified period of late summer. During periods of strong westerly winds the thermocline is deflected as much as 8 m vertically and interacts directly with the lakebed at depth between 14-18 m. When the thermocline was rising at the boundary, the stratification resembles a turbulent bore that propagates up the sloping lakebed with a speed of 0.05-0.15 m s(-1 and a Froude number close to unity. There were strong temperature overturns associated with the abrupt changes in temperature across the bore. Based on the size of overturns in the near bed stratification, we show that the inferred turbulent diffusivity varies by up to two orders of magnitude between up- and downwellings. When the thermocline was rising, estimates of turbulent diffusivity were high with KZ ∼10(-4 m(2s(-1, whereas during downwelling events the near-bed stratification was greatly increased and the turbulence was reduced. This asymmetry is consistent with previous field observations and underlines the importance of shear-induced convection in benthic bottom boundary layers of stratified lakes.
Consequences of Expected and Observed Victim Resistance for Offender Violence during Robbery Events
Lindegaard, M.; Bernasco, W.; Jacques, S.
2015-01-01
Objectives: Drawing on the rational choice perspective, this study aims at explaining why some robberies take place with physical force while others occur only with threat. The focus is how expected and observed victim resistance impact physical force by robbers. Methods: We draw on quantitative and
International Nuclear Information System (INIS)
Comerford, Julia M.; Moustakas, Leonidas A.; Natarajan, Priyamvada
2010-01-01
Scaling relations of observed galaxy cluster properties are useful tools for constraining cosmological parameters as well as cluster formation histories. One of the key cosmological parameters, σ 8 , is constrained using observed clusters of galaxies, although current estimates of σ 8 from the scaling relations of dynamically relaxed galaxy clusters are limited by the large scatter in the observed cluster mass-temperature (M-T) relation. With a sample of eight strong lensing clusters at 0.3 8 , but combining the cluster concentration-mass relation with the M-T relation enables the inclusion of unrelaxed clusters as well. Thus, the resultant gains in the accuracy of σ 8 measurements from clusters are twofold: the errors on σ 8 are reduced and the cluster sample size is increased. Therefore, the statistics on σ 8 determination from clusters are greatly improved by the inclusion of unrelaxed clusters. Exploring cluster scaling relations further, we find that the correlation between brightest cluster galaxy (BCG) luminosity and cluster mass offers insight into the assembly histories of clusters. We find preliminary evidence for a steeper BCG luminosity-cluster mass relation for strong lensing clusters than the general cluster population, hinting that strong lensing clusters may have had more active merging histories.
Consequences of bursty star formation on galaxy observables at high redshifts
Domínguez, Alberto; Siana, Brian; Brooks, Alyson M.; Christensen, Charlotte R.; Bruzual, Gustavo; Stark, Daniel P.; Alavi, Anahita
2015-07-01
The star formation histories (SFHs) of dwarf galaxies are thought to be bursty, with large - order of magnitude - changes in the star formation rate on time-scales similar to O-star lifetimes. As a result, the standard interpretations of many galaxy observables (which assume a slowly varying SFH) are often incorrect. Here, we use the SFHs from hydrodynamical simulations to investigate the effects of bursty SFHs on sample selection and interpretation of observables and make predictions to confirm such SFHs in future surveys. First, because dwarf galaxies' star formation rates change rapidly, the mass-to-light ratio is also changing rapidly in both the ionizing continuum and, to a lesser extent, the non-ionizing ultraviolet continuum. Therefore, flux limited surveys are highly biased towards selecting galaxies in the burst phase and very deep observations are required to detect all dwarf galaxies at a given stellar mass. Second, we show that a log10[νLν(1500 Å)/LHα] > 2.5 implies a very recent quenching of star formation and can be used as evidence of stellar feedback regulating star formation. Third, we show that the ionizing continuum can be significantly higher than when assuming a constant SFH, which can affect the interpretation of nebular emission line equivalent widths and direct ionizing continuum detections. Finally, we show that a star formation rate estimate based on continuum measurements only (and not on nebular tracers such as the hydrogen Balmer lines) will not trace the rapid changes in star formation and will give the false impression of a star-forming main sequence with low dispersion.
Bhimireddy, Sudheer Reddy; Bhaganagar, Kiran
2016-11-01
Buoyant plumes are common in atmosphere when there exists a difference in temperature or density between the source and its ambience. In a stratified environment, plume rise happens until the buoyancy variation exists between the plume and ambience. In a calm no wind ambience, this plume rise is purely vertical and the entrainment happens because of the relative motion of the plume with ambience and also ambient turbulence. In this study, a plume centroid is defined as the plume mass center and is calculated from the kinematic equation which relates the rate of change of centroids position to the plume rise velocity. Parameters needed to describe the plume are considered as the plume radius, plumes vertical velocity and local buoyancy of the plume. The plume rise velocity is calculated by the mass, momentum and heat conservation equations in their differential form. Our study focuses on the entrainment velocity, as it depicts the extent of plume growth. This entrainment velocity is made up as sum of fractions of plume's relative velocity and ambient turbulence. From the results, we studied the effect of turbulence on the plume growth by observing the variation in the plume radius at different heights and the centroid height reached before loosing its buoyancy.
Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations
Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K.
2013-09-01
In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a ReT,f0.5 scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given ReT,f, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by ReT,M0.5 irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.
Consequences of observed Bd-anti Bd mixing in standard and nonstandard models
International Nuclear Information System (INIS)
Datta, A.; Paschos, E.A.; Tuerke, U.
1987-01-01
Implications of the B d -anti B d mixing report by the ARGUS group are investigated. We show that in order for the standard model to accomodate the result, the B → anti B hadronic matrix element must satisfy lower bounds as a function of top quark mass. In this case B S -anti B S mixing is necessarily large (r S > or approx. 0.74) irrespective of m t . This conclusion remains valid in several popular extensions of the standard model with three generations. In contrast to these models, four generation models can accomodate simultaneously the observed B d -anti B d mixing and a relatively small B S -anti B S mixing. (orig.)
Contemporaneous EMIC and whistler mode waves: Observations and consequences for MeV electron loss
Zhang, X.-J.; Mourenas, D.; Artemyev, A. V.; Angelopoulos, V.; Thorne, R. M.
2017-08-01
The high variability of relativistic (MeV) electron fluxes in the Earth's radiation belts is partly controlled by loss processes involving resonant interactions with electromagnetic ion cyclotron (EMIC) and whistler mode waves. But as previous statistical models were generated independently for each wave mode, whether simultaneous electron scattering by the two wave types has global importance remains an open question. Using >3 years of simultaneous Van Allen Probes and THEMIS measurements, we explore the contemporaneous presence of EMIC and whistler mode waves in the same L shell, albeit at different local times, determining the distribution of wave and plasma parameters as a function of L, Kp, and AE. We derive electron lifetimes from observations and provide the first statistics of combined effects of EMIC and whistler mode wave scattering on MeV electrons as a function of L and geomagnetic activity. We show that MeV electron lifetimes are often strongly reduced by such combined scattering.
Inverse scattering problem in turbulent magnetic fluctuations
Directory of Open Access Journals (Sweden)
R. A. Treumann
2016-08-01
Full Text Available We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand–Levitan–Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes
Bruno, Roberto
2016-01-01
This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...
Transitional-turbulent spots and turbulent-turbulent spots in boundary layers.
Wu, Xiaohua; Moin, Parviz; Wallace, James M; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre
2017-07-03
Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional-turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a [Formula: see text] vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional-turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional-turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional-turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent-turbulent spots. These turbulent-turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional-turbulent spots, these turbulent-turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent-turbulent spots.
Transitional-turbulent spots and turbulent-turbulent spots in boundary layers
Wu, Xiaohua; Moin, Parviz; Wallace, James M.; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre
2017-07-01
Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional-turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a ΛΛ vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional-turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional-turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional-turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent-turbulent spots. These turbulent-turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional-turbulent spots, these turbulent-turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent-turbulent spots.
Lee, Jean T.
1987-01-01
As air traffic increases and aircraft capability increases in range and operating altitude, the exposure to weather hazards increases. Turbulence and wind shears are two of the most important of these hazards that must be taken into account if safe flight operations are to be accomplished. Beginning in the early 1960's, Project Rough Rider began thunderstorm investigations. Past and present efforts at the National Severe Storm Laboratory (NSSL) to measure these flight safety hazards and to describe the use of Doppler radar to detect and qualify these hazards are summarized. In particular, the evolution of the Doppler-measured radial velocity spectrum width and its applicability to the problem of safe flight is presented.
EuHIT, Collaboration
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.
Directory of Open Access Journals (Sweden)
H. Z. Baumert
2009-03-01
Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.
The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E^{2}. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E^{1}. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
Suarez Mullins, Astrid
Terrain-induced gravity waves and rotor circulations have been hypothesized to enhance the generation of submeso motions (i.e., nonstationary shear events with spatial and temporal scales greater than the turbulence scale and smaller than the meso-gamma scale) and to modulate low-level intermittency in the stable boundary layer (SBL). Intermittent turbulence, generated by submeso motions and/or the waves, can affect the atmospheric transport and dispersion of pollutants and hazardous materials. Thus, the study of these motions and the mechanisms through which they impact the weakly to very stable SBL is crucial for improving air quality modeling and hazard predictions. In this thesis, the effects of waves and rotor circulations on submeso and turbulence variability within the SBL is investigated over the moderate terrain of central Pennsylvania using special observations from a network deployed at Rock Springs, PA and high-resolution Weather Research and Forecasting (WRF) model forecasts. The investigation of waves and rotors over central PA is important because 1) the moderate topography of this region is common to most of the eastern US and thus the knowledge acquired from this study can be of significance to a large population, 2) there have been little evidence of complex wave structures and rotors reported for this region, and 3) little is known about the waves and rotors generated by smaller and more moderate topographies. Six case studies exhibiting an array of wave and rotor structures are analyzed. Observational evidence of the presence of complex wave structures, resembling nonstationary trapped gravity waves and downslope windstorms, and complex rotor circulations, resembling trapped and jump-type rotors, is presented. These motions and the mechanisms through which they modulate the SBL are further investigated using high-resolution WRF forecasts. First, the efficacy of the 0.444-km horizontal grid spacing WRF model to reproduce submeso and meso
CERN. Geneva. Audiovisual Unit
2005-01-01
Understanding turbulence is vital in astrophysics, geophysics and many engineering applications, with thermal convection playing a central role. I shall describe progress that has recently been made in understanding this ubiquitous phenomenon by making controlled experiments using low-temperature helium, and a brief account of the frontier topic of superfluid turbulence will also be given. CERN might be able to play a unique role in experiments to probe these two problems.
Kesteren, van A.J.H.; Hartogensis, O.K.; Dinther, van D.; Moene, A.F.; Graf, A.; Holtslag, A.A.M.
2012-01-01
The goal of this study is to test an alternative method for determining turbulent H2O and CO2 fluxes, which has a faster statistical convergence than the classical eddy-covariance method. This enables determining turbulent fluxes during strongly non-stationary conditions, e.g. in the intermittent
Energy Technology Data Exchange (ETDEWEB)
Kelly, N D; Wright, A D
1991-10-01
This paper assesses the accuracy of simulated wind fields for both the natural flow and that within a wind park environment. The simulated fields are compared with the observed ones in both the time and frequency domains. Actual measurements of the wind fields and the derived kinematic scaling parameters upwind and downwind of a large San Gorgonio Pass wind park are used. The deviations in the modeled wind field from the observed are discussed. 10 refs., 6 figs., 2 tabs.
New Theories on Boundary Layer Transition and Turbulence Formation
Directory of Open Access Journals (Sweden)
Chaoqun Liu
2012-01-01
Full Text Available This paper is a short review of our recent DNS work on physics of late boundary layer transition and turbulence. Based on our DNS observation, we propose a new theory on boundary layer transition, which has five steps, that is, receptivity, linear instability, large vortex structure formation, small length scale generation, loss of symmetry and randomization to turbulence. For turbulence generation and sustenance, the classical theory, described with Richardson's energy cascade and Kolmogorov length scale, is not observed by our DNS. We proposed a new theory on turbulence generation that all small length scales are generated by “shear layer instability” through multiple level ejections and sweeps and consequent multiple level positive and negative spikes, but not by “vortex breakdown.” We believe “shear layer instability” is the “mother of turbulence.” The energy transferring from large vortices to small vortices is carried out by multiple level sweeps, but does not follow Kolmogorov's theory that large vortices pass energy to small ones through vortex stretch and breakdown. The loss of symmetry starts from the second level ring cycle in the middle of the flow field and spreads to the bottom of the boundary layer and then the whole flow field.
Tchen, C. M.
1986-01-01
Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.
International Nuclear Information System (INIS)
Laurence, D.
1997-01-01
This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-ε two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the 'standard' (R ij -ε) Reynolds tensions transport model and introduces more recent models called 'feasible'. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author)
Incremental Similarity and Turbulence
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole E.; Hedevang, Emil; Schmiegel, Jürgen
This paper discusses the mathematical representation of an empirically observed phenomenon, referred to as Incremental Similarity. We discuss this feature from the viewpoint of stochastic processes and present a variety of non-trivial examples, including those that are of relevance for turbulence...
DEFF Research Database (Denmark)
Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens
2011-01-01
term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence...
Energy Technology Data Exchange (ETDEWEB)
Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.
ZuHone, J. A.; Miller, E. D.; Bulbul, E.; Zhuravleva, I.
2018-02-01
Hitomi made the first direct measurements of galaxy cluster gas motions in the Perseus cluster, which implied that its core is fairly “quiescent,” with velocities less than ∼200 km s‑1, despite the presence of an active galactic nucleus and sloshing cold fronts. Building on previous work, we use synthetic Hitomi/X-ray Spectrometer (SXS) observations of the hot plasma of a simulated cluster with sloshing gas motions and varying viscosity to analyze its velocity structure in a similar fashion. We find that sloshing motions can produce line shifts and widths similar to those measured by Hitomi. We find these measurements are unaffected by the value of the gas viscosity, since its effects are only manifested clearly on angular scales smaller than the SXS ∼1‧ PSF. The PSF biases the line shift of regions near the core as much as ∼40–50 km s‑1, so it is crucial to model this effect carefully. We also infer that if sloshing motions dominate the observed velocity gradient, Perseus must be observed from a line of sight that is somewhat inclined from the plane of these motions, but one that still allows the spiral pattern to be visible. Finally, we find that assuming isotropy of motions can underestimate the total velocity and kinetic energy of the core in our simulation by as much as ∼60%. However, the total kinetic energy in our simulated cluster core is still less than 10% of the thermal energy in the core, in agreement with the Hitomi observations.
Lipkens, B; Blackstock, D T
1998-09-01
A model experiment was reported to be successful in simulating the propagation of sonic booms through a turbulent atmosphere [B. Lipkens and D. T. Blackstock, J. Acoust. Soc. Am. 103, 148-158 (1998)]. In this study the effect on N wave characteristics of turbulence intensity and propagation distance through turbulence are investigated. The main parameters of interest are the rise time and the peak pressure. The effect of turbulence intensity and propagation distance is to flatten the rise time and peak pressure distributions. Rise time and peak pressure distributions always have positive skewness after propagation through turbulence. Average rise time grows with turbulence intensity and propagation distance. The scattering of rise time data is one-sided, i.e., rise times are almost always increased by turbulence. Average peak pressure decreases slowly with turbulence intensity and propagation distance. For the reported data a threefold increase in average rise time is observed and a maximum decrease of about 20% in average peak pressure. Rise times more than ten times that of the no turbulence value are observed. At most, the maximum peak pressure doubles after propagation through turbulence, and the minimum peak pressure values are about one-half the no-turbulence values. Rounded waveforms are always more common than peaked waveforms.
Kienholz, C.; Amundson, J. M.; Jackson, R. H.; Motyka, R. J.; Nash, J. D.; Sutherland, D.
2017-12-01
Tidewater glacier behavior is driven by poorly understood processes occurring at the ice-ocean interface, including sedimentation and erosion, iceberg calving, and submarine melting. These processes are inherently difficult to observe, calling for innovative field techniques and numerical models. As part of a multi-year field effort to constrain ocean-glacier heat and mass exchange, we deployed an array of high-rate time-lapse cameras (sampling intervals between 15 seconds and 2 minutes) to monitor the terminus of LeConte Glacier and its proglacial fjord. The camera array has operated continuously for more than a year. Our high sampling rates enable tracking of iceberg motion with optical flow algorithms, which have been used widely in computer vision but less so in glaciology and oceanography. Such algorithms track individual features (e.g., corners of icebergs), which is ideal for iceberg-rich fjords, where motion can vary substantially over short temporal and spatial scales (e.g., due to complex surface currents or different iceberg sizes). We process our data to quantify subdaily to seasonal patterns in surface currents and relate them to forcing from tides, wind, and glacier runoff. Flow is most variable close to the glacier terminus due to frequent calving events and turbulent plume dynamics. Farther down fjord, more consistent patterns emerge, driven by tides, wind, and runoff and altered by fjord geometry. Our tracking results compare favorably to and complement our Acoustic Doppler Current Profiler measurements from boats and moorings. Given their high spatial and temporal resolution, our observations will place important surface constraints on forthcoming hydrodynamic modeling efforts. The deployment of the cameras in a harsh environment and the corresponding image processing provided an opportunity to test hardware and software thoroughly, which will prove useful for similar systems at other glaciers.
DEFF Research Database (Denmark)
Jensen, Pernille Rose; Karlsson, Magnus; Lerche, Mathilde Hauge
2013-01-01
Uptake and upshot in vivo: Straightforward methods that permit the real-time observation of organic acid influx, intracellular acidification, and concomitant effects on cellular-reaction networks are crucial for improved bioprocess monitoring and control (see scheme). Herein, dynamic nuclear pola...... polarization (DNP) NMR is used to observe acetate influx, ensuing intracellular acidification and the metabolic consequences on alcoholic fermentation and glycolysis in living cells....
Velocity Statistics Distinguish Quantum Turbulence from Classical Turbulence
International Nuclear Information System (INIS)
Paoletti, M. S.; Fisher, Michael E.; Sreenivasan, K. R.; Lathrop, D. P.
2008-01-01
By analyzing trajectories of solid hydrogen tracers, we find that the distributions of velocity in decaying quantum turbulence in superfluid 4 He are strongly non-Gaussian with 1/v 3 power-law tails. These features differ from the near-Gaussian statistics of homogenous and isotropic turbulence of classical fluids. We examine the dynamics of many events of reconnection between quantized vortices and show by simple scaling arguments that they produce the observed power-law tails
Numerical Study of a Convective Turbulence Encounter
Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.
2002-01-01
A numerical simulation of a convective turbulence event is investigated and compared with observational data. The specific case was encountered during one of NASA's flight tests and was characterized by severe turbulence. The event was associated with overshooting convective turrets that contained low to moderate radar reflectivity. Model comparisons with observations are quite favorable. Turbulence hazard metrics are proposed and applied to the numerical data set. Issues such as adequate grid size are examined.
Oceanic turbulence - Big bangs or continuous creation?
Caldwell, D. R.
1983-01-01
A hypothesis concerning the turbulence characteristics of 'microstructure' patches in the ocean is proposed in which a turbulence field is driven at the same time and scale at which it is observed. The driving energy is converted into turbulence kinetic energy in such a way that the observed overturning thickness scale is linearly related to the length scale. This hypothesis is contrasted with that of Gibson (1982), in which the 'patches' are produced by rare, powerful turbulence generators that have 'fossilized' prior to their observation. Careful attention is given to the sampling process and its assumptions.
Comparison of turbulence mitigation algorithms
Kozacik, Stephen T.; Paolini, Aaron; Sherman, Ariel; Bonnett, James; Kelmelis, Eric
2017-07-01
When capturing imagery over long distances, atmospheric turbulence often degrades the data, especially when observation paths are close to the ground or in hot environments. These issues manifest as time-varying scintillation and warping effects that decrease the effective resolution of the sensor and reduce actionable intelligence. In recent years, several image processing approaches to turbulence mitigation have shown promise. Each of these algorithms has different computational requirements, usability demands, and degrees of independence from camera sensors. They also produce different degrees of enhancement when applied to turbulent imagery. Additionally, some of these algorithms are applicable to real-time operational scenarios while others may only be suitable for postprocessing workflows. EM Photonics has been developing image-processing-based turbulence mitigation technology since 2005. We will compare techniques from the literature with our commercially available, real-time, GPU-accelerated turbulence mitigation software. These comparisons will be made using real (not synthetic), experimentally obtained data for a variety of conditions, including varying optical hardware, imaging range, subjects, and turbulence conditions. Comparison metrics will include image quality, video latency, computational complexity, and potential for real-time operation. Additionally, we will present a technique for quantitatively comparing turbulence mitigation algorithms using real images of radial resolution targets.
Graphical Turbulence Guidance - Composite
National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...
Magnetohydrodynamic Turbulence
Montgomery, David C.
2004-01-01
Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.
Effect of turbulent collisions on diffusion in stationary plasma turbulence
International Nuclear Information System (INIS)
Xia, H.; Ishihara, O.
1990-01-01
Recently the velocity diffusion process was studied by the generalized Langevin equation derived by the projection operator method. The further study shows that the retarded frictional function plays an important role in suppressing particle diffusion in the velocity space in stronger turbulence as much as the resonance broadening effect. The retarded frictional effect, produced by the effective collisions due to the plasma turbulence is assumed to be a Gaussian, but non-Markovian and non-wide-sense stationary process. The relations between the proposed formulation and the extended resonance broadening theory is discussed. The authors also carry out test particle numerical experiment for Langmuir turbulence to test the theories. In a stronger turbulence a deviation of the diffusion rate from the one predicted by both the quasilinear and the extended resonance theories has been observed and is explained qualitatively by the present formulation
Turbulence modification and multiphase turbulence transport modeling
International Nuclear Information System (INIS)
Besnard, D.C.; Kataoka, I.; Serizawa, A.
1991-01-01
It is shown here that in the derivation of turbulence transport models for multiphase flows, terms naturally appear that can be interpreted as related to turbulence modification of one field by the other. We obtain two such terms, one suggesting turbulence enhancement due to instabilities in two-phase flow, the second one showing turbulence damping due to the presence of the other field, both in gas-particle and gas-liquid cases
Turbulence-Free Double-slit Interferometer
Smith, Thomas A.; Shih, Yanhua
2018-02-01
Optical turbulence can be detrimental for optical observations. For instance, atmospheric turbulence may reduce the visibility or completely blur out the interference produced by an interferometer in open air. However, a simple two-photon interference theory based on Einstein's granularity picture of light makes a turbulence-free interferometer possible; i.e., any refraction index, length, or phase variations along the optical paths of the interferometer do not have any effect on its interference. Applying this mechanism, the reported experiment demonstrates a two-photon double-slit interference that is insensitive to atmospheric turbulence. The turbulence-free mechanism and especially the turbulence-free interferometer would be helpful in optical observations that require high sensitivity and stability such as for gravitational-wave detection.
Turbulence-Free Double-slit Interferometer.
Smith, Thomas A; Shih, Yanhua
2018-02-09
Optical turbulence can be detrimental for optical observations. For instance, atmospheric turbulence may reduce the visibility or completely blur out the interference produced by an interferometer in open air. However, a simple two-photon interference theory based on Einstein's granularity picture of light makes a turbulence-free interferometer possible; i.e., any refraction index, length, or phase variations along the optical paths of the interferometer do not have any effect on its interference. Applying this mechanism, the reported experiment demonstrates a two-photon double-slit interference that is insensitive to atmospheric turbulence. The turbulence-free mechanism and especially the turbulence-free interferometer would be helpful in optical observations that require high sensitivity and stability such as for gravitational-wave detection.
TEM turbulence optimisation in stellarators
Proll, J. H. E.; Mynick, H. E.; Xanthopoulos, P.; Lazerson, S. A.; Faber, B. J.
2016-01-01
With the advent of neoclassically optimised stellarators, optimising stellarators for turbulent transport is an important next step. The reduction of ion-temperature-gradient-driven turbulence has been achieved via shaping of the magnetic field, and the reduction of trapped-electron mode (TEM) turbulence is addressed in the present paper. Recent analytical and numerical findings suggest TEMs are stabilised when a large fraction of trapped particles experiences favourable bounce-averaged curvature. This is the case for example in Wendelstein 7-X (Beidler et al 1990 Fusion Technol. 17 148) and other Helias-type stellarators. Using this knowledge, a proxy function was designed to estimate the TEM dynamics, allowing optimal configurations for TEM stability to be determined with the STELLOPT (Spong et al 2001 Nucl. Fusion 41 711) code without extensive turbulence simulations. A first proof-of-principle optimised equilibrium stemming from the TEM-dominated stellarator experiment HSX (Anderson et al 1995 Fusion Technol. 27 273) is presented for which a reduction of the linear growth rates is achieved over a broad range of the operational parameter space. As an important consequence of this property, the turbulent heat flux levels are reduced compared with the initial configuration.
Statistical turbulence theory and turbulence phenomenology
Herring, J. R.
1973-01-01
The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.
Marín-Royo, Gema; Martínez-Martínez, Ernesto; Gutiérrez, Beatriz; Jurado-López, Raquel; Gallardo, Isabel; Montero, Olimpio; Bartolomé, Mª Visitación; Román, José Alberto San; Salaices, Mercedes; Nieto, María Luisa; Cachofeiro, Victoria
To explore the impact of obesity on the cardiac lipid profile in rats with diet-induced obesity, as well as to evaluate whether or not the specific changes in lipid species are associated with cardiac fibrosis. Male Wistar rats were fed either a high-fat diet (HFD, 35% fat) or standard diet (3.5% fat) for 6 weeks. Cardiac lipids were analyzed using by liquid chromatography-tandem mass spectrometry. HFD rats showed cardiac fibrosis and enhanced levels of cardiac superoxide anion (O 2 ), HOMA index, adiposity, and plasma leptin, as well as a reduction in those of cardiac glucose transporter (GLUT 4), compared with control animals. Cardiac lipid profile analysis showed a significant increase in triglycerides, especially those enriched with palmitic, stearic, and arachidonic acid. An increase in levels of diacylglycerol (DAG) was also observed. No changes in cardiac levels of diacyl phosphatidylcholine, or even a reduction in total levels of diacyl phosphatidylethanolamine, diacyl phosphatidylinositol, and sphingomyelins (SM) was observed in HFD, as compared with control animals. After adjustment for other variables (oxidative stress, HOMA, cardiac hypertrophy), total levels of DAG were independent predictors of cardiac fibrosis while the levels of total SM were independent predictors of the cardiac levels of GLUT 4. These data suggest that obesity has a significant impact on cardiac lipid composition, although it does not modulate the different species in a similar manner. Nonetheless, these changes are likely to participate in the cardiac damage in the context of obesity, since total DAG levels can facilitate the development of cardiac fibrosis, and SM levels predict GLUT4 levels. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.
Active control for turbulent premixed flame simulations
Energy Technology Data Exchange (ETDEWEB)
Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.
2004-03-26
Many turbulent premixed flames of practical interest are statistically stationary. They occur in combustors that have anchoring mechanisms to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. As a result, typical detailed simulations are performed in simplified model configurations such as decaying isotropic turbulence or inflowing turbulence. In these configurations, the turbulence seen by the flame either decays or, in the latter case, increases as the flame accelerates toward the turbulent inflow. This limits the duration of the eddy evolutions experienced by the flame at a given level of turbulent intensity, so that statistically valid observations cannot be made. In this paper, we apply a feedback control to computationally stabilize an otherwise unstable turbulent premixed flame in two dimensions. For the simulations, we specify turbulent in flow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm. We use the simulations to study the propagation and the local chemical variability of turbulent flame chemistry.
The turbulent decay of trailing vortex pairs in stably stratified environments
Energy Technology Data Exchange (ETDEWEB)
Holzaepfel, F.; Gerz, T.; Baumann, R.
2000-03-01
The decay of trailing vortex pairs in thermally stably stratified environments is investigated by means of large eddy simulations. Results of in-situ measurements in the wakes of different aircraft are used to find appropriate intitializations for the simulation of wake turbulence in the quiescent atmosphere. Furthermore, cases with weak atmospheric turbulence are investigated. It is shown that the early development of the vortices is not affected by turbulence and develops almost identically as in 2D simulations. In a quiescent atmosphere the subsequent vortex decay is controlled by the interaction of short-wave disturbances, owing to the aircraft induced turbulence, and baroclinic vorticity, owing to stable stratification. As a consequence, vertical vorticity streaks between the vortices are induced which are substantially intensified by vortex stretching and finally lead to rapid turbulent wake-vortex decay. When in addition also atmospheric turbulence is present, the long-wave instability is dominantly promoted. For very strong stratification (Fr < 1) it is observed that wake vortices may rebound but lose most of their strength before reaching the flight level. Finally, the simulation results are compared to the predictive capabilities of Greene's approximate model. (orig.)
Study on turbulent characteristics and transition behavior of combined-convection boundary layer
International Nuclear Information System (INIS)
Hattori, Yasuo
2001-01-01
The stabilizing mechanism of the turbulent combined-convection boundary layer along an isothermally-heated flat plate in air aided by a weak freestream are investigated experimentally and theoretically. The turbulent statistics of the combined-convection boundary layer measured with hot- and cold wires at different Grashof numbers indicates that with an increase in the freestream velocity, a similar change in the turbulent quantities appears independently of local Grashof number. Then based on the such experimental results, it is verified that the laminarization of the boundary layer due to an increase in freestream velocity arises at Grx / Rex 6 . Then, through the experiments with a particle image velocimetry (PIV), the spatio-temporal structure of the turbulent combined-convection boundary layer is investigated. For instantaneous velocity vectors obtained with PIV, large-scale fluid motions, which play a predominant role in the generation of turbulence, are frequently observed in the outer layer, while quasi-coherent structures do not exist in the near-wall region. Thus, it is revealed that increasing freestream restricts large-scale fluid motions in the outer layer, and consequently the generation of turbulence is suppressed and the boundary layer becomes laminar. (author)
Quantify the complexity of turbulence
Tao, Xingtian; Wu, Huixuan
2017-11-01
Many researchers have used Reynolds stress, power spectrum and Shannon entropy to characterize a turbulent flow, but few of them have measured the complexity of turbulence. Yet as this study shows, conventional turbulence statistics and Shannon entropy have limits when quantifying the flow complexity. Thus, it is necessary to introduce new complexity measures- such as topology complexity and excess information-to describe turbulence. Our test flow is a classic turbulent cylinder wake at Reynolds number 8100. Along the stream-wise direction, the flow becomes more isotropic and the magnitudes of normal Reynolds stresses decrease monotonically. These seem to indicate the flow dynamics becomes simpler downstream. However, the Shannon entropy keeps increasing along the flow direction and the dynamics seems to be more complex, because the large-scale vortices cascade to small eddies, the flow is less correlated and more unpredictable. In fact, these two contradictory observations partially describe the complexity of a turbulent wake. Our measurements (up to 40 diameters downstream the cylinder) show that the flow's degree-of-complexity actually increases firstly and then becomes a constant (or drops slightly) along the stream-wise direction. University of Kansas General Research Fund.
Binks, Rachel; De Luca, Enrico; Dierkes, Christine; Franci, Andrea; Herrero, Eva; Niederalt, Georg
2015-11-01
There are limited data on the incidence and management of acute faecal incontinence with diarrhoea in the ICU. The FIRST™ Observational Study was undertaken to obtain data on clinical practices used in the ICU for the management of acute faecal incontinence with diarrhoea in Germany, UK, Spain and Italy. ICU-hospitalised patients ≥18 years of age experiencing a second episode of acute faecal incontinence with diarrhoea in 24 h were recruited, and management practices of acute faecal incontinence with diarrhoea were recorded for up to 15 days. A total of 372 patients had complete data sets; the mean duration of study was 6.8 days. At baseline, 40% of patients experienced mild or moderate-to-severe skin excoriation, which increased to 63% in patients with acute faecal incontinence with diarrhoea lasting >15 days. At baseline, 27% of patients presented with a pressure ulcer, which increased to 37%, 45% and 49% at days 5, 10 and 15, respectively. Traditional methods (pads, sheets and tubes) were more commonly used compared to faecal management systems during days 1-4 (76% vs. 47% faecal management system), while the use of a faecal management system increased to 56% at days 5-9 and 61% at days 10-15. At baseline, only 26% of nurses were satisfied with traditional management methods compared to 69% with faecal management systems. For patients still experiencing acute faecal incontinence with diarrhoea after 15 days, 82% of nurses using a faecal management systems to manage acute faecal incontinence with diarrhoea were satisfied or very satisfied, compared to 37% using traditional methods. These results highlight that acute faecal incontinence with diarrhoea remains an important healthcare challenge in ICUs in Europe; skin breakdown and pressure ulcers remain common complications in patients with acute faecal incontinence with diarrhoea in the ICU.
Current-driven turbulence in plasmas
International Nuclear Information System (INIS)
Kluiver, H. de.
1977-10-01
Research on plasma heating in linear and toroidal systems using current-driven turbulence is reviewed. The motivation for this research is presented. Relations between parameters describing the turbulent plasma state and macroscopic observables are given. Several linear and toroidal devices used in current-driven turbulence studies are described, followed by a discussion of special diagnostic methods used. Experimental results on the measurement of electron and ion heating, anomalous plasma conductivity and associated turbulent fluctuation spectra are reviewed. Theories on current-driven turbulence are discussed and compared with experiments. It is demonstrated from the experimental results that current-driven turbulence occurs not only for extreme values of the electric field but also for an experimentally much more accessible and wide range of parameters. This forms a basis for a discussion on possible future applications in fusion-oriented plasma research
Interactions of Ocean Fronts with Waves and Turbulence
Fox-Kemper, Baylor; Suzuki, Nobuhiro
2015-11-01
High resolution simulations and observations of the ocean surface boundary layer have revealed 100m to 10km frontal and filamentary structures in temperature and other properties worldwide. The formation and evolution of these features, through frontogenesis, instability, and frontolysis is an important and often poorly-simulated part of the climate system, yet fronts and filaments strongly affect surface layer dynamics and the transport of energy, momentum, and gasses through this layer. These features also dominate the transport of oil spills and pollutants over a wide range of scales. Analysis of a multi-scale, non-hydrostatic, large eddy simulation spanning 20km fronts to 5m turbulence will be presented. The theory of the interactions of the fronts with turbulence and surface waves will be illustrated, and the consequences of these interactions on frontal strength and tracer transport will be quantified. Supported by NSF 1258907 and BP/The Gulf of Mexico Research Initiative (CARTHE).
Turbulence spreading, anomalous transport, and pinch effect
DEFF Research Database (Denmark)
Naulin, V.; Nielsen, A.H.; Juul Rasmussen, J.
2005-01-01
, and front propagation are observed. The model accounts for the interaction between the microscale of the turbulence and the meso-, respectively, system scale on which profile modifications occur. Comparison with direct numerical simulations of two-dimensional interchange turbulence shows qualitatively good...
Interaction of a Boundary Layer with a Turbulent Wake
Piomelli, Ugo
2004-01-01
Reynolds number, as a consequence of the high level of the free-stream perturbation. An instantaneous flow visualization for that case is shown. A detailed examination of flow statistics in the transitional and turbulent regions, including the evolution of the turbulent kinetic energy (TKE) budget and frequency spectra showed the formation and evolution of turbulent spots characteristic of the bypass transition mechanism. It was also observed that the turbulent eddies achieved an equilibrium, fully developed turbulent states first, as evidenced by the early agreement achieved by the terms in the TKE budget with those observed in turbulent flows. Once a turbulent Reynolds stress profile had been established, the velocity profile began to resemble a turbulent one, first in the inner region and later in the outer region of the wall layer. An extensive comparison of the three cases, including budgets, mean velocity and Reynolds stress profiles and flow visualization, is included. The results obtained are also presented.
THE SIGNATURE OF INITIAL CONDITIONS ON MAGNETOHYDRODYNAMIC TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Dallas, V.; Alexakis, A., E-mail: vdallas@lps.ens.fr, E-mail: alexakis@lps.ens.fr [Laboratoire de Physique Statistique, École Normale Supérieure, Université Pierre et Marié Curie, Université Paris Diderot, CNRS, 24 rue Lhomond, F-75005 Paris (France)
2014-06-20
We demonstrate that the initial correlation between velocity and current density fluctuations can lead to the formation of enormous current sheets in freely evolving magnetohydrodynamic (MHD) turbulence. These coherent structures are observed at the peak of the energy dissipation rate and are the carriers of long-range correlations despite all of the nonlinear interactions during the formation of turbulence. The size of these structures spans our computational domain, dominating the scaling of the energy spectrum, which follows a E∝k {sup –2} power law. As the Reynolds number increases, the curling of the current sheets due to Kelvin-Helmholtz-type instabilities and reconnection modifies the scaling of the energy spectrum from k {sup –2} toward k {sup –5/3}. This transition occurs due to the decorrelation of the velocity and the current density which is proportional to Re{sub λ}{sup −3/2}. Finite Reynolds number behavior is observed without reaching a finite asymptote for the energy dissipation rate even for a simulation of Re{sub λ} ≅ 440 with 2048{sup 3} grid points. This behavior demonstrates that even state-of-the-art numerical simulations of the highest Reynolds numbers can be influenced by the choice of initial conditions and consequently they are inadequate to deduce unequivocally the fate of universality in MHD turbulence. Implications for astrophysical observations are discussed.
Recent developments in plasma turbulence and turbulent transport
Energy Technology Data Exchange (ETDEWEB)
Terry, P.W. [Univ. of Wisconsin, Madison, WI (United States)
1997-09-22
This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.
Wacks, Daniel H.
2016-12-02
The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H-2-air flames with an equivalence ratio phi = 0.7. It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P, Q, and R) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.
Einfalt, T; Quirmbach, M; Langstädtler, G; Mehlig, B
2011-01-01
Climate change is present in climatological models - but did we already observe changes in the past measurement data? For the state of North Rhine Westphalia, the rainfall measurements since 1950 have been systematically analysed in order to find out whether there have already been trends and whether the behaviour of rainfall has changed in time. More than 600 station series have been screened for use in the project and quality controlled. Implausible data were discarded. For the analysis, standard values such as yearly sums, half-yearly sums, monthly sums, number of dry days, number of days with precipitation above a threshold, partial time series and extreme values statistics have been calculated and evaluated. Results show that also in the past 50 years, changes in precipitation regime could be observed. These changes have been regionally different. Consequences for urban hydrology include a development of more flexible design approaches.
The determination of turbulent structures in the atmospheric surface layer
Schols, J.L.J.
1984-01-01
The turbulent flow in the atmospheric surface layer (ASL) contains turbulent structures, which are defined as spatially coherent, organized flow motions. 'Organized' means that characteristic patterns, observed at a point in space, occur almost simultaneously in more than one turbulence signal and
Interaction of turbulent length scales with wind turbine blades
Torres-Nieves, Sheilla N.
wind turbine blade as a consequence of its geometry) on the behavior of turbulent boundary layers and to identify and quantify the length scales that are affected by these external conditions. Laser Doppler and hot-wire anemometry measurements, for smooth and rough surfaces, confirmed that FST and FPG cause a reduction in the wake of the boundary layer. Moreover, results show a discrepancy in the behavior of the stream-wise and wall-normal variances due to free-stream turbulence. As a result, the addition of FST increases the anisotropy in the body of the boundary layer. For FPG flows, a budget analysis of the Reynolds stresses shows that turbulent transport and pressure strain terms are responsible for the increase in the stream-wise Reynolds stress component when FST is present. Second-order structure functions and energy spectra are examined to identify and quantify which turbulence length-scales contribute mostly to the increased anisotropy, and to compare these effects to the case of a zero pressure gradient (ZPG) boundary layer. For ZPG flows, it is shown that the anisotropy created by adding nearly isotropic turbulence in the free-stream resides mostly in the larger scales of the flow, in a range between r/delta95 = 3 and 10. With an imposed FPG, the effect of FST resides in the very-largest length scales of the flow, r ≥ 4.3delta95, corresponding to scales of the same size, and even larger, than the integral scale of the outer free-stream turbulence. However, the free-stream turbulence is not increasing the anisotropy to the extent that it did for the ZPG case. The effects of surface roughness on the different length scales of the flow, when a FPG and additional levels of FST are present, are also examined. Second-order structure functions and energy spectra analysis suggests that for highly turbulent favorable pressure gradient flows, the effect of roughness at the surface is felt, not only by the small length scales of the flow, but also by large (e.g. r
High Reynolds Number Turbulence
National Research Council Canada - National Science Library
Smits, Alexander J
2007-01-01
The objectives of the grant were to provide a systematic study to fill the gap between existing research on low Reynolds number turbulent flows to the kinds of turbulent flows encountered on full-scale vehicles...
National Research Council Canada - National Science Library
Drikakis, D; Geurts, Bernard
2002-01-01
... discretization 3 A test-case: turbulent channel flow 4 Conclusions 75 75 82 93 98 4 Analysis and control of errors in the numerical simulation of turbulence Sandip Ghosal 1 Introduction 2 Source...
Magnetohydrodynamics turbulence: An astronomical perspective
Indian Academy of Sciences (India)
Since the discovery of pulsars in 1967, many years of work on interstellar scintillation suggested that small-scale interstellar turbulence must have a hydromagnetic origin; but the IK spectrum was too ﬂat and the ideas on anisotropic spectra too qualitative to explain the observations. In response, new theories of balanced ...
Multiscale coherent structures in tokamak plasma turbulence
International Nuclear Information System (INIS)
Xu, G. S.; Wan, B. N.; Zhang, W.; Yang, Q. W.; Wang, L.; Wen, Y. Z.
2006-01-01
A 12-tip poloidal probe array is used on the HT-7 superconducting tokamak [Li, Wan, and Mao, Plasma Phys. Controlled Fusion 42, 135 (2000)] to measure plasma turbulence in the edge region. Some statistical analysis techniques are used to characterize the turbulence structures. It is found that the plasma turbulence is composed of multiscale coherent structures, i.e., turbulent eddies and there is self-similarity in a relative short scale range. The presence of the self-similarity is found due to the structural similarity of these eddies between different scales. These turbulent eddies constitute the basic convection cells, so the self-similar range is just the dominant scale range relevant to transport. The experimental results also indicate that the plasma turbulence is dominated by low-frequency and long-wavelength fluctuation components and its dispersion relation shows typical electron-drift-wave characteristics. Some large-scale coherent structures intermittently burst out and exhibit a very long poloidal extent, even longer than 6 cm. It is found that these large-scale coherent structures are mainly contributed by the low-frequency and long-wavelength fluctuating components and their presence is responsible for the observations of long-range correlations, i.e., the correlation in the scale range much longer than the turbulence decorrelation scale. These experimental observations suggest that the coexistence of multiscale coherent structures results in the self-similar turbulent state
Clumps in drift wave turbulence
DEFF Research Database (Denmark)
Pecseli, H. L.; Mikkelsen, Torben
1986-01-01
In a statistical analysis pair correlation of particles is eventually destroyed by small scale fluctuations giving rise to relative particle diffusion. However, in any one given realization of the statistical ensemble particles may remain correlated in certain regions of space. A perfectly frozen......, two-dimensional random flow serves as a particularly simple illustration. For this case particles can be trapped for all times in a local vortex (macro-clump). A small test-cloud of particles (micro-clump) chosen arbitrarily in a realization will on the other hand expand on average. A formulation...... is proposed in terms of conditional eddies, in order to discriminate turbulent flows where macro-clumps may be observed. The analysis is illustrated by results from experimental investigations of strongly turbulent, resistive drift-wave fluctuations. The related problem for electrostatic turbulence...
Control over multiscale mixing in broadband-forced turbulence
Kuczaj, Arkadiusz K.; Geurts, Bernardus J.
2008-01-01
The effects of explicit flow modulation on the dispersion of a passive scalar field are studied. Broadband forcing is applied to homogeneous isotropic turbulence to modulate the energy cascading and alter the kinetic energy spectrum. Consequently, a manipulation of turbulent flow can be achieved
Wu, Robert C; Lo, Vivian; Morra, Dante; Wong, Brian M; Sargeant, Robert; Locke, Ken; Cavalcanti, Rodrigo; Quan, Sherman D; Rossos, Peter; Tran, Kim; Cheung, Mark
2013-01-01
Effective clinical communication is critical to providing high-quality patient care. Hospitals have used different types of interventions to improve communication between care teams, but there have been few studies of their effectiveness. To describe the effects of different communication interventions and their problems. Prospective observational case study using a mixed methods approach of quantitative and qualitative methods. General internal medicine (GIM) inpatient wards at five tertiary care academic teaching hospitals. Clinicians consisting of residents, attending physicians, nurses, and allied health (AH) staff working on the GIM wards. Ethnographic methods and interviews with clinical staff (doctors, nurses, medical students, and AH professionals) were conducted over a 16-month period from 2009 to 2010. We identified four categories that described the intended and unintended consequences of communication interventions: impacts on senders, receivers, interprofessional collaboration, and the use of informal communication processes. The use of alphanumeric pagers, smartphones, and web-based communication systems had positive effects for senders and receivers, but unintended consequences were seen with all interventions in all four categories. Interventions that aimed to improve clinical communications solved some but not all problems, and unintended effects were seen with all systems.
DEFF Research Database (Denmark)
Brand, Arno J.; Peinke, Joachim; Mann, Jakob
2011-01-01
The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....
Energetics of turbulent transport processes in tokamaks
International Nuclear Information System (INIS)
Haas, F.A.; Thyagaraja, A.
1987-01-01
The effect of electromagnetic turbulence on electrons and ions under Tokamak conditions is considered using a kinetic description. Taking the magnetic fluctuation spectrum as given, the density fluctuation spectrum is self-consistently calculated taking account of quasi-neutrality. The calculation is valid for arbitrary collisionality and appropriate to low frequencies typical of experiment. In addition to the usual enhancement of the radial electron energy transport, it is found that the turbulent fluctuations can heat the plasma at rates comparable to ordinary ohmic heating under well-defined conditions. Interestingly, electromagnetic turbulence appears to imply only an insignificant correction to the toroidal resistance of the plasma as estimated from Spitzer resistivity. The scalings of anomalous transport, fluctuations and heating with temperature and plasma volume are investigated. The assumption that the magnetic fluctuation spectrum of the turbulence is invariant under a wide range of conditions is shown to result in interesting consequences for JET-like plasmas. (author)
Kim, Song-Yi; Lee, Hyejung; Lee, Hyangsook; Park, Ji-Yeun; Park, Sang Kyun; Park, Hi-Joon
2015-04-01
To investigate the consequences and costs of acupuncture in general medical practice for patients with chronic low back pain (CLBP) in Korea. A multicentre observational study was performed. Outpatients with CLBP who received at least one acupuncture session in a Korean Medicine clinic during the study period were included and followed up for 3 months. All patients received regular acupuncture treatments in accordance with the doctors' discretion. The consequences in terms of effects included condition-specific outcomes and preference-based outcome. For cost analysis, the cumulative resource use for direct medical costs at each research clinic during the study period and direct patient data using the self-reported healthcare utilisation questionnaires were used. A total of 157 patients were eligible to participate and 105 were finally included. Significant improvements in condition-specific and preference-based measures were observed after acupuncture treatment. An average of approximately $146 (£93) per patient was reported for direct medical costs in each clinic for 1 month and $231 (£148) for 3 months. Other medical expenses related to CLBP were reduced during this period. The use of acupuncture to manage CLBP in general clinical practice in Korea inexpensively improved pain, functional disability and quality of life. The study results are meaningful and consistent with the results of previous trials performed in other European countries but the power of the study is not strong, having major design weaknesses. A large-scale cohort or registry based on practice may be helpful to strengthen the evidence of the cost-effectiveness of acupuncture. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Coherence in Turbulence: New Perspective
Levich, Eugene
2009-07-01
It is claimed that turbulence in fluids is inherently coherent phenomenon. The coherence shows up clearly as strongly correlated helicity fluctuations of opposite sign. The helicity fluctuations have cellular structure forming clusters that are actually observed as vorticity bands and coherent structures in laboratory turbulence, direct numerical simulations and most obviously in atmospheric turbulence. The clusters are named BCC - Beltrami Cellular Clusters - because of the observed nearly total alignment of the velocity and vorticity fields in each particular cell, and hence nearly maximal possible helicity in each cell; although when averaged over all the cells the residual mean helicity in general is small and does not play active dynamical role. The Beltrami like fluctuations are short-lived and stabilize only in small and generally contiguous sub-domains that are tending to a (multi)fractal in the asymptotic limit of large Reynolds numbers, Re → ∞. For the model of homogeneous isotropic turbulence the theory predicts the leading fractal dimension of BCC to be: DF = 2.5. This particular BCC is responsible for generating the Kolmogorov -5/3 power law energy spectrum. The most obvious role that BCC play dynamically is that the nonlinear interactions in them are relatively reduced, due to strong spatial alignment between the velocity field v(r, t) and the vorticity field ω(r, t) = curlv(r, t), while the physical quantities typically best characterizing turbulence intermittency, such as entrophy, vorticity stretching and generation, and energy dissipation are maximized in and near them. The theory quantitatively relates the reduction of nonlinear inter-actions to the BCC fractal dimension DF and subsequent turbulence intermittency. It is further asserted that BCC is a fundamental feature of all turbulent flows, e.g., wall bounded turbulent flows, atmospheric and oceanic flows, and their leading fractal dimension remains invariant and universal in these flows
Momentum transport in gyrokinetic turbulence
Energy Technology Data Exchange (ETDEWEB)
Buchholz, Rico
2016-07-01
In this thesis, the gyrokinetic-Vlasov code GKW is used to study turbulent transport, with a focus on radial transport of toroidal momentum. To support the studies on turbulent transport an eigenvalue solver has been implemented into GKW. This allows to find, not only the most unstable mode, but also subdominant modes. Furthermore it is possible to follow the modes in parameter scans. Furthermore, two fundamental mechanisms that can generate an intrinsic rotation have been investigated: profile shearing and the velocity nonlinearity. The study of toroidal momentum transport in a tokamak due to profile shearing reveals that the momentum flux can not be accurately described by the gradient in the turbulent intensity. Consequently, a description using the profile variation is used. A linear model has been developed that is able to reproduce the variations in the momentum flux as the profiles of density and temperature vary, reasonably well. It uses, not only the gradient length of density and temperature profile, but also their derivative, i.e. the second derivative of the logarithm of the temperature and the density profile. It is shown that both first as well as second derivatives contribute to the generation of a momentum flux. A difference between the linear and nonlinear simulations has been found with respect to the behaviour of the momentum flux. In linear simulations the momentum flux is independent of the normalized Larmor radius ρ{sub *}, whereas it is linear in ρ{sub *} for nonlinear simulations, provided ρ{sub *} is small enough (≤4.10{sup -3}). Nonlinear simulations reveal that the profile shearing can generate an intrinsic rotation comparable to that of current experiments. Under reactor conditions, however, the intrinsic rotation from the profile shearing is expected to be small due to the small normalized Larmor radius ρ{sub *}
Topics in strong Langmuir turbulence
International Nuclear Information System (INIS)
Skoric, M.M.
1981-01-01
This thesis discusses certain aspects of the turbulence of a fully ionised non-isothermal plasma dominated by the Langmuir mode. Some of the basic properties of strongly turbulent plasmas are reviewed. In particular, interest is focused on the state of Langmuir turbulence, that is the turbulence of a simple externally unmagnetized plasma. The problem of the existence and dynamics of Langmuir collapse is discussed, often met as a non-linear stage of the modulational instability in the framework of the Zakharov equations (i.e. simple time-averaged dynamical equations). Possible macroscopic consequences of such dynamical turbulent models are investigated. In order to study highly non-linear collapse dynamics in its advanced stage, a set of generalized Zakharov equations are derived. Going beyond the original approximation, the author includes the effects of higher electron non-linearities and a breakdown of slow-timescale quasi-neutrality. He investigates how these corrections may influence the collapse stabilisation. Recently, it has been realised that the modulational instability in a Langmuir plasma will be accompanied by the collisionless-generation of a slow-timescale magnetic field. Accordingly, a novel physical situation has emerged which is investigated in detail. The stability of monochromatic Langmuir waves in a self-magnetized Langmuir plasma, is discussed, and the existence of a novel magneto-modulational instability shown. The wave collapse dynamics is investigated and a physical interpretation of the basic results is given. A problem of the transient analysis of an interaction of time-dependent electromagnetic pulses with linear cold plasma media is investigated. (Auth.)
Numerical Simulation of a Convective Turbulence Encounter
Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.
2002-01-01
A numerical simulation of a convective turbulence event is investigated and compared with observational data. The numerical results show severe turbulence of similar scale and intensity to that encountered during the test flight. This turbulence is associated with buoyant plumes that penetrate the upper-level thunderstorm outflow. The simulated radar reflectivity compares well with that obtained from the aircraft's onboard radar. Resolved scales of motion as small as 50 m are needed in order to accurately diagnose aircraft normal load accelerations. Given this requirement, realistic turbulence fields may be created by merging subgrid-scales of turbulence to a convective-cloud simulation. A hazard algorithm for use with model data sets is demonstrated. The algorithm diagnoses the RMS normal loads from second moments of the vertical velocity field and is independent of aircraft motion.
Progress in turbulence research
International Nuclear Information System (INIS)
Bradshaw, P.
1990-01-01
Recent developments in experiments and eddy simulations, as an introduction to a discussion of turbulence modeling for engineers is reviewed. The most important advances in the last decade rely on computers: microcomputers to control laboratory experiments, especially for multidimensional imaging, and supercomputers to simulate turbulence. These basic studies in turbulence research are leading to genuine breakthroughs in prediction methods for engineers and earth scientists. The three main branches of turbulence research: experiments, simulations (numerically-accurate three-dimensional, time-dependent solutions of the Navier-Stokes equations, with any empiricism confined to the smallest eddies), and modeling (empirical closure of time-averaged equations for turbulent flow) are discussed. 33 refs
Magnetohydrodynamic turbulence model
Hammer, James
2005-10-01
K-epsilon models find wide application as approximate models of fluid turbulence. The models couple equations for the turbulent kinetic energy and dissipation rate to the usual fluid equations, where the turbulence is driven by Reynolds stress or buoyancy source terms. We generalize to the case with magnetic forces in a Z-pinch geometry (azimuthal fields), using simple energy arguments to derive the turbulent source terms. The field is presumed strong enough that 3 dimensional twisting or bending of the field can be ignored, i.e. the flow is of the interchange type. The generalized source terms show the familiar correspondence between magnetic curvature and acceleration as drive terms for Rayleigh-Taylor and sausage instability. The source terms lead naturally to a modification of Ohm's law including a turbulent electric field that allows magnetic field to diffuse through material. The turbulent magnetic diffusion parallels a corresponding ohmic heating term in the equation for the turbulent kinetic energy.
Homogeneous turbulence dynamics
Sagaut, Pierre
2018-01-01
This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obta...
Turbulent magnetohydrodynamics in liquid metals
International Nuclear Information System (INIS)
Berhanu, Michael
2008-01-01
In electrically conducting fluids, the electromagnetic field is coupled with the fluid motion by induction effects. We studied different magnetohydrodynamic phenomena, using two experiments involving turbulent flows of liquid metal. The first mid-sized uses gallium. The second, using sodium, is conducted within the VKS (Von Karman Sodium) collaboration. It has led to the observation of the dynamo effect, namely converting a part of the kinetic energy of the fluid into magnetic energy. We have shown that, depending on forcing conditions, a statistically stationary dynamo, or dynamical regimes of magnetic field can be generated. In particular, polarity reversals similar to those of Earth's magnetic field were observed. Meanwhile, experiment with Gallium has been developed to study the effects of electromagnetic induction by turbulent flows in a more homogeneous and isotropic configuration than in the VKS experiment. Using data from these two experiments, we studied the advection of magnetic field by a turbulent flow and the induced fluctuations. The development of probes measuring electrical potential difference allowed us to further highlight the magnetic braking of a turbulent flow of Gallium by Lorentz force. This mechanism is involved in the saturation of the dynamo instability. (author) [fr
Spectral analysis of turbulence propagation mechanisms in solar wind and tokamaks plasmas
International Nuclear Information System (INIS)
Dong, Yue
2014-01-01
This thesis takes part in the study of spectral transfers in the turbulence of magnetized plasmas. We will be interested in turbulence in solar wind and tokamaks. Spacecraft measures, first principle simulations and simple dynamical systems will be used to understand the mechanisms behind spectral anisotropy and spectral transfers in these plasmas. The first part of this manuscript will introduce the common context of solar wind and tokamaks, what is specific to each of them and present some notions needed to understand the work presented here. The second part deals with turbulence in the solar wind. We will present first an observational study on the spectral variability of solar wind turbulence. Starting from the study of Grappin et al. (1990, 1991) on Helios mission data, we bring a new analysis taking into account a correct evaluation of large scale spectral break, provided by the higher frequency data of the Wind mission. This considerably modifies the result on the spectral index distribution of the magnetic and kinetic energy. A second observational study is presented on solar wind turbulence anisotropy using autocorrelation functions. Following the work of Matthaeus et al. (1990); Dasso et al. (2005), we bring a new insight on this statistical, in particular the question of normalisation choices used to build the autocorrelation function, and its consequence on the measured anisotropy. This allows us to bring a new element in the debate on the measured anisotropy depending on the choice of the referential either based on local or global mean magnetic field. Finally, we study for the first time in 3D the effects of the transverse expansion of solar wind on its turbulence. This work is based on a theoretical and numerical scheme developed by Grappin et al. (1993); Grappin and Velli (1996), but never used in 3D. Our main results deal with the evolution of spectral and polarization anisotropy due to the competition between non-linear and linear (Alfven coupling
Flux driven turbulence in tokamaks
International Nuclear Information System (INIS)
Garbet, X.; Ghendrih, P.; Ottaviani, M.; Sarazin, Y.; Beyer, P.; Benkadda, S.; Waltz, R.E.
1999-01-01
This work deals with tokamak plasma turbulence in the case where fluxes are fixed and profiles are allowed to fluctuate. These systems are intermittent. In particular, radially propagating fronts, are usually observed over a broad range of time and spatial scales. The existence of these fronts provide a way to understand the fast transport events sometimes observed in tokamaks. It is also shown that the confinement scaling law can still be of the gyroBohm type in spite of these large scale transport events. Some departure from the gyroBohm prediction is observed at low flux, i.e. when the gradients are close to the instability threshold. Finally, it is found that the diffusivity is not the same for a turbulence calculated at fixed flux than at fixed temperature gradient, with the same time averaged profile. (author)
Transitional–turbulent spots and turbulent–turbulent spots in boundary layers
Wu, Xiaohua; Moin, Parviz; Wallace, James M.; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre
2017-01-01
Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional–turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a Λ vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional–turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional–turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional–turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent–turbulent spots. These turbulent–turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional–turbulent spots, these turbulent–turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent–turbulent spots. PMID:28630304
Turbulent energy losses during orchard heating
Energy Technology Data Exchange (ETDEWEB)
Bland, W.L.
1979-01-01
Two rapid-response drag anemometers and low time constant thermocouples, all at 4 m above a heated orchard floor, sampled wind component in the vertical direction and temperature at 30 Hz. The turbulent heat flux calculated revealed not more than 10% of the heat lost from the orchard was via turbulent transort. The observations failed to support previous estimates that at least a third of the energy applied was lost through turbulent transport. Underestimation of heat loss due to mean flow and a newly revealed flux due to spatial variations in the mean flow may explain the unaccounted for loss.
The Origin of Compressible Magnetic Turbulence in the Very Local Interstellar Medium
Zank, G. P.; Du, S.; Hunana, P.
2017-12-01
Voyager 1 observed compressible magnetic turbulence in the Very Local Interstellar Medium (VLISM). We show that inner heliosheath (IHS) fast- and slow-mode waves incident on the heliopause (HP) generate VLISM fast-mode waves only that propagate into the VLISM. We suggest that this is the origin of compressible turbulence in the VLISM. We show that fast- and slow-mode waves transmitted across a tangential discontinuity such as the HP, are strongly refracted on crossing the HP, and subsequently propagate at highly oblique angles to the VLISM magnetic field. Thus, fast-mode waves in the VLISM contribute primarily to the compressible and not the transverse components of the VLISM fluctuating magnetic field variance. If the fast- and slow-mode waves in the IHS exhibit a Kolmogorov-like power spectral density, as appears to be observed by Voyager 1, then the corresponding transmitted spectral density in the VLISM forms an amplified Kolmogorov power law with -5/3 index. Consequently, the HP "radiates" fast-mode fluctuations into the VLISM, and the heliosphere therefore mediates the character of turbulence in the VLISM. In particular, we predict the form of the VLISM magnetic turbulence power spectral density to be a superposition of the background pristine interstellar turbulence spectrum and the fast-mode spectrum generated by the interaction of fast- and slow-mode IHS waves with the HP, i.e., a power law with an enhanced feature or "bump" corresponding to the contribution by fast-mode turbulence radiated by the HP.
Interdisciplinary aspects of turbulence
Kupka, Friedrich
2008-01-01
What do combustion engines, fusion reactors, weather forecast, ocean flows, our sun, and stellar explosions in outer space have in common? Of course, the physics and the length and time scales are vastly different in all cases, but it is also well known that in all of them, on some relevant length scales, the material flows that govern the dynamical and/or secular evolution of the systems are chaotic and often unpredictable: they are said to be turbulent. The interdisciplinary aspects of turbulence are brought together in this volume containing chapters written by experts from very different fields, including geophysics, astrophysics, and engineering. It covers several subjects on which considerable progress was made during the last decades, from questions concerning the very nature of turbulence to some practical applications. These subjects include: a basic introduction into turbulence, statistical mechanics and nonlinear dynamics, turbulent convection in stars, atmospheric turbulence in the context of nume...
Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows
Energy Technology Data Exchange (ETDEWEB)
Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)
1997-12-31
The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.
Restoration algorithms for imaging through atmospheric turbulence
2017-02-18
the atmosphere. Especially the presence of turbulence, which become non-negligible and affect the final resolution, limiting the efficiency of...groundtruth associated to each sequence and then can be used by some metric to assess the reconstruction efficiency . We categorized the observed turbulence...a combination of SIFT [26] and ORSA [14] algorithms) in order to remove affine transformations (translations, rotations and homothety). The authors
Studying Magnetohydrodynamic Turbulence with Synchrotron Polarization Dispersion
Zhang, Jian-Fu; Lazarian, Alex; Lee, Hyeseung; Cho, Jungyeon
2016-01-01
We test a new technique of studying magnetohydrodynamic (MHD) turbulence suggested by Lazarian \\& Pogosyan, using synthetic synchrotron polarization observations. This paper focuses on a one-point statistics, which is termed the polarization frequency analysis, that is characterized by the variance of polarized emission as a function of the square of wavelengths along a single line of sight. We adopt a ratio $\\eta$ of the standard deviation of the line-of-sight turbulent magnetic field to the...
Cascade of circulations in fluid turbulence.
Eyink, Gregory L
2006-12-01
Kelvin's theorem on conservation of circulations is an essential ingredient of Taylor's theory of turbulent energy dissipation by the process of vortex-line stretching. In previous work, we have proposed a nonlinear mechanism for the breakdown of Kelvin's theorem in ideal turbulence at infinite Reynolds number. We develop here a detailed physical theory of this cascade of circulations. Our analysis is based upon an effective equation for large-scale coarse-grained velocity, which contains a turbulent-induced vortex force that can violate Kelvin's theorem. We show that singularities of sufficient strength, which are observed to exist in turbulent flow, can lead to nonvanishing dissipation of circulation for an arbitrarily small coarse-graining length in the effective equations. This result is an analog for circulation of Onsager's theorem on energy dissipation for singular Euler solutions. The physical mechanism of the breakdown of Kelvin's theorem is diffusion of lines of large-scale vorticity out of the advected loop. This phenomenon can be viewed as a classical analog of the Josephson-Anderson phase-slip phenomenon in superfluids due to quantized vortex lines. We show that the circulation cascade is local in scale and use this locality to develop concrete expressions for the turbulent vortex force by a multiscale gradient expansion. We discuss implications for Taylor's theory of turbulent dissipation and we point out some related cascade phenomena, in particular for magnetic flux in magnetohydrodynamic turbulence.
Learning to soar in turbulent environments.
Reddy, Gautam; Celani, Antonio; Sejnowski, Terrence J; Vergassola, Massimo
2016-08-16
Birds and gliders exploit warm, rising atmospheric currents (thermals) to reach heights comparable to low-lying clouds with a reduced expenditure of energy. This strategy of flight (thermal soaring) is frequently used by migratory birds. Soaring provides a remarkable instance of complex decision making in biology and requires a long-term strategy to effectively use the ascending thermals. Furthermore, the problem is technologically relevant to extend the flying range of autonomous gliders. Thermal soaring is commonly observed in the atmospheric convective boundary layer on warm, sunny days. The formation of thermals unavoidably generates strong turbulent fluctuations, which constitute an essential element of soaring. Here, we approach soaring flight as a problem of learning to navigate complex, highly fluctuating turbulent environments. We simulate the atmospheric boundary layer by numerical models of turbulent convective flow and combine them with model-free, experience-based, reinforcement learning algorithms to train the gliders. For the learned policies in the regimes of moderate and strong turbulence levels, the glider adopts an increasingly conservative policy as turbulence levels increase, quantifying the degree of risk affordable in turbulent environments. Reinforcement learning uncovers those sensorimotor cues that permit effective control over soaring in turbulent environments.
Experiments in turbulent pipe flow
Energy Technology Data Exchange (ETDEWEB)
Torbergsen, Lars Even
1998-12-31
This thesis reports experimental results for the mean velocity and turbulence statistics in two straight pipe sections for bulk Reynolds numbers in the range 22000 to 75000. The flow was found consistent with a fully developed state. Detailed turbulence spectra were obtained for low and moderate turbulent Reynolds number. For the pipe centre line location at R{sub {lambda}} = 112, a narrow range in the streamwise power spectrum applied to the -5/3 inertial subrange. However this range was influenced both by turbulence production and viscous dissipation, and therefore did not reflect a true inertial range. The result indicates how the intermediate range between the production and dissipative scales can be misinterpreted as an inertial range for low and moderate R{sub {lambda}}. To examine the universal behaviour of the inertial range, the inertial scaling of the streamwise power spectrum is compared to the inertial scaling of the second order longitudinal velocity structure function, which relate directly by a Fourier transform. Increasing agreement between the Kolmogorov constant C{sub K} and the second order structure function scaling constant C{sub 2} was observed with increasing R{sub {lambda}}. The result indicates that a true inertial range requires several decades of separation between the energy containing and dissipative scales. A method for examining spectral anisotropy is reported and applied to turbulence spectra in fully developed pipe flow. It is found that the spectral redistribution from the streamwise to the two lateral spectra goes primarily to the circumferential component. Experimental results are reported for an axisymmetric contraction of a fully developed pipe flow. 67 refs., 75 figs., 9 tabs.
Dynamic turbulence mitigation with large moving objects
Nieuwenhuizen, Robert P. J.; van Eekeren, Adam W. M.; Dijk, Judith; Schutte, Klamer
2017-10-01
Long range imaging with visible or infrared observation systems is typically hampered by atmospheric turbulence. The fluctuations in the refractive index of the air produce random shifts and blurs in the recorded imagery that vary across the field of view and over time. This severely complicates their utility for visual detection, recognition and identification at large distances. Software based turbulence mitigation methods aim to restore such recorded image sequences based on the image data only and thereby enable visual identification at larger distances. Although successful restoration has been achieved on static scenes in the past, a significant challenge remains in accounting for moving objects such that they remain visible as moving objects in the output. Under moderate turbulence conditions, the turbulence induced shifts may be several pixels in magnitude and occur on the same length scale as moving objects. This severely complicates the segmentation between these objects and the background. Here we investigate how turbulence mitigation may be accomplished on background as well as large moving objects for both land and sea based imaging under moderate turbulence conditions. We apply optical flow estimation methods to determine both the turbulence induced shifts in image sequences as well as the motion of large moving objects. These motion estimates are used with our TNO turbulence mitigation software to reduce the effects of turbulence and to stabilize the output to a dynamic reference. We apply this approach to both land and sea scenarios. We investigate how different regularization methods for the optical flow affect the accuracy of the segmentation between moving object motion and the background motion. Moreover we qualitatively asses the quality improvement of the resulting imagery in sequences of output images, and show a substantial gain in their apparent sharpness and stability on both the background and moving objects.
PDF Modeling of Turbulent Combustion
National Research Council Canada - National Science Library
Pope, Stephen B
2006-01-01
.... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...
Nagendra Prakash, Vivek
2013-01-01
This thesis deals with the broad topic of particles in turbulence, which has applications in a diverse number of fields. A vast majority of fluid flows found in nature and in the industry are turbulent and contain dispersed elements. In this thesis, I have focused on light particles (air bubbles in
Dynamic paradigm of turbulence
International Nuclear Information System (INIS)
Mukhamedov, Alfred M.
2006-01-01
In this paper a dynamic paradigm of turbulence is proposed. The basic idea consists in the novel definition of chaotic structure given with the help of Pfaff system of PDE associated with the turbulent dynamics. A methodological analysis of the new and the former paradigm is produced
Directory of Open Access Journals (Sweden)
P. Athanasopoulou
2011-01-01
Full Text Available (a Purpose: The purpose of this research is to identify the types of CSR initiatives employed by sports organisations; their antecedents, and their consequences for the company and society. (b Design/methodology/approach: This study is exploratory in nature. Two detailed case studies were conducted involving the football team and the basketball team of one professional, premier league club in Greece and their CSR initiatives. Both teams have the same name, they belong to one of the most popular teams in Greece with a large fan population; have both competed in International Competitions (UEFA’s Champion League; Final Four of the European Tournament and have realised many CSR initiatives in the past. The case studies involved in depth, personal interviews of managers responsible for CSR in each team. Case study data was triangulated with documentation and search of published material concerning CSR actions. Data was analysed with content analysis. (c Findings: Both teams investigated have undertaken various CSR activities the last 5 years, the football team significantly more than the basketball team. Major factors that affect CSR activity include pressure from leagues; sponsors; local community, and global organisations; orientation towards fulfilling their duty to society, and team CSR strategy. Major benefits from CSR include relief of vulnerable groups and philanthropy as well as a better reputation for the firm; increase in fan base; and finding sponsors more easily due to the social profile of the team. However, those benefits are not measured in any way although both teams observe increase in tickets sold; web site traffic and TV viewing statistics after CSR activities. Finally, promotion of CSR is mainly done through web sites; press releases; newspapers, and word-of-mouth communications. (d Research limitations/implications: This study involves only two case studies and has limited generalisability. Future research can extend the
A weakened cascade model for turbulence in astrophysical plasmas
International Nuclear Information System (INIS)
Howes, G. G.; TenBarge, J. M.; Dorland, W.
2011-01-01
A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.
A weakened cascade model for turbulence in astrophysical plasmas
Energy Technology Data Exchange (ETDEWEB)
Howes, G. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Isaac Newton Institute for Mathematical Sciences, Cambridge, CB3 0EH (United Kingdom); TenBarge, J. M. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Dorland, W. [Department of Physics, University of Maryland, College Park, Maryland 20742-3511 (United States); Isaac Newton Institute for Mathematical Sciences, Cambridge, CB3 0EH (United Kingdom)
2011-10-15
A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.
Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation
International Nuclear Information System (INIS)
Saito, S.; Gary, S. Peter; Narita, Y.
2010-01-01
The forward cascade of decaying whistler turbulence is studied in low beta plasma to understand essential properties of the energy spectrum at electron scales, by using a two-dimensional electromagnetic particle-in-cell (PIC) simulation. This simulation demonstrates turbulence in which the energy cascade rate is greater than the dissipation rate at the electron inertial length. The PIC simulation shows that the magnetic energy spectrum of forward-cascaded whistler turbulence at electron inertial scales is anisotropic and develops a very steep power-law spectrum which is consistent with recent solar wind observations. A comparison of the simulated spectrum with that predicted by a phenomenological turbulence scaling model suggests that the energy cascade at the electron inertial scale depends on both magnetic fluctuations and electron velocity fluctuations, as well as on the whistler dispersion relation. Thus, not only kinetic Alfven turbulence but also whistler turbulence may explain recent solar wind observations of very steep magnetic spectra at short scales.
POLARIMETRIC STUDIES OF MAGNETIC TURBULENCE WITH AN INTERFEROMETER
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyeseung; Cho, Jungyeon [Department of Astronomy and Space Science, Chungnam National University, Deajeon (Korea, Republic of); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison (United States)
2016-11-01
We study statistical properties of synchrotron polarization emitted from media with magnetohydrodynamic (MHD) turbulence. We use both synthetic and MHD turbulence simulation data for our studies. We obtain the spatial spectrum and its derivative with respect to the wavelength of synchrotron polarization arising from both synchrotron radiation and Faraday rotation fluctuations. In particular, we investigate how the spectrum changes with frequency. We find that our simulations agree with the theoretical predication in Lazarian and Pogosyan. We conclude that the spectrum of synchrotron polarization and its derivative can be very informative tools to obtain detailed information about the statistical properties of MHD turbulence from radio observations of diffuse synchrotron polarization. They are especially useful for recovering the statistics of a turbulent magnetic field as well as the turbulent density of electrons. We also simulate interferometric observations that incorporate the effects of noise and finite telescope beam size, and demonstrate how we recover statistics of underlying MHD turbulence.
Laser beam propagation in atmospheric turbulence
Murty, S. S. R.
1979-01-01
The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.
Global variation of meteor trail plasma turbulence
Directory of Open Access Journals (Sweden)
L. P. Dyrud
2011-12-01
Full Text Available We present the first global simulations on the occurrence of meteor trail plasma irregularities. These results seek to answer the following questions: when a meteoroid disintegrates in the atmosphere, will the resulting trail become plasma turbulent? What are the factors influencing the development of turbulence? and how do these trails vary on a global scale? Understanding meteor trail plasma turbulence is important because turbulent meteor trails are visible as non-specular trails to coherent radars. Turbulence also influences the evolution of specular radar meteor trails; this fact is important for the inference of mesospheric temperatures from the trail diffusion rates, and their usage for meteor burst communication. We provide evidence of the significant effect that neutral atmospheric winds and ionospheric plasma density have on the variability of meteor trail evolution and on the observation of non-specular meteor trails. We demonstrate that trails are far less likely to become and remain turbulent in daylight, explaining several observational trends for non-specular and specular meteor trails.
Multiple-scale turbulence and bifurcation
Energy Technology Data Exchange (ETDEWEB)
Yagi, M.; Itoh, S.-I.; Kawasaki, M. [Kyushu Univ., Research Institute for Applied Mechanics, Kasuga, Fukuoka (Japan); Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan); Fukuyama, A. [Kyoto Univ., Department of Nuclear Engineering, Kyoto (Japan)
2003-01-01
In this paper, we analyze the turbulence composed of collective modes with different scale lengths. The hierarchical model for multiple-scale turbulence is developed. Nonlinear interactions between different scale length are modeled as turbulent drag, nonlinear noise and nonlinear drive and a set of Langevin equations is formulated. Using this model, a case where two driving mechanisms coexist (one for the micro mode and the other for semi-micro mode) is investigated. It is found that a new type of turbulence transition and a cusp-type catastrophe exist in some parameter regime. Numerical simulations are also performed for neighboring multiple-scale turbulence such as ion temperature gradient driven drift wave (ITG) (k{sub y}{rho}{sub i} < 1) and short wavelength ITG (k{sub y}{rho}{sub i} > 1) modes in the shearless slab geometry. The cascade and inverse cascade in multiple-scale turbulence are investigated. The cascade is mainly observed in k sub(parallel) space. On the other hand, the cascade and the inverse cascade are observed in K sub(perpendicular) space. Another interesting result is that the particle flux is negative (inward pinch) due to the short wavelength ITG modes, while the ion and electron heat flux are positive, which indicates nonlinear interaction between different scale length mode might affect transport. (author)
Bahamas Optical Turbulence Exercise (BOTEX): preliminary results
Hou, Weilin; Jorosz, Ewa; Dalgleish, Fraser; Nootz, Gero; Woods, Sarah; Weidemann, Alan D.; Goode, Wesley; Vuorenkoski, Anni; Metzger, B.; Ramos, B.
2012-06-01
The Bahamas Optical Turbulence Exercise (BOTEX) was conducted in the coastal waters of Florida and the Bahamas from June 30 to July 12 2011, onboard the R/V FG Walton Smith. The primary objective of the BOTEX was to obtain field measurements of optical turbulence structures, in order to investigate the impacts of the naturally occurring turbulence on underwater imaging and optical beam propagation. In order to successfully image through optical turbulence structures in the water and examine their impacts on optical transmission, a high speed camera and targets (both active and passive) were mounted on a rigid frame to form the Image Measurement Assembly for Subsurface Turbulence (IMAST). To investigate the impacts on active imaging systems such as the laser line scan (LLS), the Telescoping Rigid Underwater Sensor Structure (TRUSS) was designed and implemented by Harbor Branch Oceanographic Institute. The experiments were designed to determine the resolution limits of LLS systems as a function of turbulence induced beam wander at the target. The impact of natural turbulence structures on lidar backscatter waveforms was also examined, by means of a telescopic receiver and a short pulse transmitter, co-located, on a vertical profiling frame. To include a wide range of water types in terms of optical and physical conditions, data was collected from four different locations. . Impacts from optical turbulence were observed under both strong and weak physical structures. Turbulence measurements were made by two instruments, the Vertical Microstructure Profiler (VMP) and a 3D acoustical Doppler velocimeter with fast conductivity and temperature probes, in close proximity in the field. Subsequently these were mounted on the IMAST during moored deployments. The turbulence kinetic energy dissipation rate and the temperature dissipation rates were calculated from both setups in order to characterize the physical environments and their impacts. Beam deflection by multiple point
Interstellar MHD Turbulence and Star Formation
Vázquez-Semadeni, Enrique
This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior, causing it to behave approximately isobarically, in spite of spanning several orders of magnitude in density and temperature. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability (TI) in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: (1) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; (2) the nature of the clumps produced by TI, noting that, contrary to classical ideas, they in general accrete mass from their environment in spite of exhibiting sharp discontinuities at their boundaries; (3) the density-magnetic field correlation (and, at low densities, lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; (4) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; (5) the formation of cold, dense clouds aided by TI, in both the hydrodynamic (HD) and the magnetohydrodynamic (MHD) cases; (6) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, as generally believed, and (7) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and disperses
Kendzerska, Tetyana; Leung, Richard S; Gershon, Andrea S; Tomlinson, George; Ayas, Najib
2016-12-01
The interrelationships between obstructive sleep apnea (OSA) and obesity are complex and bidirectional; however, current evidence regarding their combined effect on cardiovascular risk is limited and conflicting. Animal studies suggest that obesity may exacerbate the cardiovascular consequences of intermittent hypoxemia. In this historical observational study, we investigated whether obesity increases the effect of nocturnal hypoxemia on the incidence of cardiovascular events in adults with suspected OSA. All adults with suspected OSA who underwent diagnostic polysomnography at a large academic hospital between 1994 and 2010 were linked to provincial health administrative data to determine a composite cardiovascular outcome (hospitalization due to heart failure, myocardial infarction, stroke, or revascularization procedures). Using a competing-risk model and controlling for confounders, hazards were compared between four groups: group 1 comprised obese patients (body mass index >30 kg/m 2 ) with oxygen desaturation (>9 min of sleep spent with Sa O 2 obese patients without desaturation; group 3 comprised nonobese patients with desaturation; and group 4 comprised nonobese patients without desaturation. Interaction was measured using the relative excess risk due to interaction. A total of 10,149 participants were followed, with 17%, 25%, 8%, and 50% in groups 1-4, respectively. Over a median of 7.8 years, 896 (8.8%) first cardiovascular events occurred. Group 1 was associated with the highest hazard compared with the other groups, using group 4 as a reference (hazard ratio [HR] for group 1, 1.84; 95% confidence interval [CI], 1.46-2.32; HR for group 2, 1.59, 95% CI, 1.29-1.95; HR for group 3, 1.51; 95% CI, 1.15-1.98). The relative excess risk due to interaction was -0.25 (95% CI, -0.78 to 0.27), indicating no interaction. In adults with suspected OSA, the highest cardiovascular risk was found in obese patients with nocturnal oxygen desaturation; however, the effect of
CSIR Research Space (South Africa)
Britz, K
2011-09-01
Full Text Available and explicate one formal framework for a whole spectrum of consequence relations, flexible enough to be tailored for choices from a variety of contexts. They do so by investigating semantic constraints on classical entailment which give rise to a family of infra...
Turbulence in molecular clouds - A new diagnostic tool to probe their origin
Canuto, V. M.; Battaglia, A.
1985-01-01
A method is presented to uncover the instability responsible for the type of turbulence observed in molecular clouds and the value of the physical parameters of the 'placental medium' from which turbulence originated. The method utilizes the observational relation between velocities and sizes of molecular clouds, together with a recent model for large-scale turbulence (constructed by Canuto and Goldman, 1985).
Directory of Open Access Journals (Sweden)
Pier Francesco Biagi
2012-04-01
Full Text Available
Signals from very low frequency (VLF/ low frequency (LF transmitters recorded on the ground station at Petropavlovsk-Kamchatsky and on board the French DEMETER satellite were analyzed for the Simushir earthquake (M 8.3; November 15, 2006. The period of analysis was from October 1, 2006, to January 31, 2007. The ground and satellite data were processed by a method based on the difference between the real signal at night-time and the model signal. The model for the ground observations was the monthly averaged signal amplitudes and phases, as calculated for the quiet days of every month. For the satellite data, a two-dimensional model of the signal distribution over the selected area was constructed. Preseismic effects were found several days before the earthquake, in both the ground and satellite observations.
Turbulent Transport in a Three-dimensional Solar Wind
Energy Technology Data Exchange (ETDEWEB)
Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy); Bruno, R., E-mail: shiota@isee.nagoya-u.ac.jp [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)
2017-03-01
Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.
Aviation Turbulence: Dynamics, Forecasting, and Response to Climate Change
Storer, Luke N.; Williams, Paul D.; Gill, Philip G.
2018-03-01
Atmospheric turbulence is a major hazard in the aviation industry and can cause injuries to passengers and crew. Understanding the physical and dynamical generation mechanisms of turbulence aids with the development of new forecasting algorithms and, therefore, reduces the impact that it has on the aviation industry. The scope of this paper is to review the dynamics of aviation turbulence, its response to climate change, and current forecasting methods at the cruising altitude of aircraft. Aviation-affecting turbulence comes from three main sources: vertical wind shear instabilities, convection, and mountain waves. Understanding these features helps researchers to develop better turbulence diagnostics. Recent research suggests that turbulence will increase in frequency and strength with climate change, and therefore, turbulence forecasting may become more important in the future. The current methods of forecasting are unable to predict every turbulence event, and research is ongoing to find the best solution to this problem by combining turbulence predictors and using ensemble forecasts to increase skill. The skill of operational turbulence forecasts has increased steadily over recent decades, mirroring improvements in our understanding. However, more work is needed—ideally in collaboration with the aviation industry—to improve observations and increase forecast skill, to help maintain and enhance aviation safety standards in the future.
International Nuclear Information System (INIS)
Childress, S.
1995-01-01
The authors formulate and study an elementary one-dimensional model mimicking some of the features of fluid turbulence. The underlying vorticity field corresponds to a parallel flow. Structure on all scales down to the numerical resolution is generated by the action of baker's maps acting on the vorticity of the flow. These transformations conserve kinetic energy locally in the Euler model, while viscous diffusion of vorticity occurs in the Navier-Stokes case. The authors apply the model to the study of homogeneous fully, developed turbulence, and to turbulent channel flow
Energy Technology Data Exchange (ETDEWEB)
Hoejstrup, J. [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K.S. [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B.J. [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M. [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)
1999-03-01
The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)
Belotserkovskii, OM; Chechetkin, VM
2005-01-01
The authors present the results of numerical experiments carried out to examine the problem of development of turbulence and convection. On the basis of the results, they propose a physical model of the development of turbulence. Numerical algorithms and difference schema for carrying out numerical experiments in hydrodynamics, are proposed. Original algorithms, suitable for calculation of the development of the processes of turbulence and convection in different conditions, even on astrophysical objects, are presented. The results of numerical modelling of several important phenomena having both fundamental and applied importance are described.
Turbulent current drive mechanisms
McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua
2017-08-01
Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.
Filamentary fragmentation in a turbulent medium
Clarke, S. D.; Whitworth, A. P.; Duarte-Cabral, A.; Hubber, D. A.
2017-06-01
We present the results of smoothed particle hydrodynamic simulations investigating the evolution and fragmentation of filaments that are accreting from a turbulent medium. We show that the presence of turbulence and the resulting inhomogeneities in the accretion flow play a significant role in the fragmentation process. Filaments that experience a weakly turbulent accretion flow fragment in a two-tier hierarchical fashion, similar to the fragmentation pattern seen in the Orion Integral Shaped Filament. Increasing the energy in the turbulent velocity field results in more sub-structure within the filaments, and one sees a shift from gravity-dominated fragmentation to turbulence-dominated fragmentation. The sub-structure formed in the filaments is elongated and roughly parallel to the longitudinal axis of the filament, similar to the fibres seen in observations of Taurus, and suggests that the fray and fragment scenario is a possible mechanism for the production of fibres. We show that the formation of these fibre-like structures is linked to the vorticity of the velocity field inside the filament and the filament's accretion from an inhomogeneous medium. Moreover, we find that accretion is able to drive and sustain roughly sonic levels of turbulence inside the filaments, but is not able to prevent radial collapse once the filaments become supercritical. However, the supercritical filaments that contain fibre-like structures do not collapse radially, suggesting that fibrous filaments may not necessarily become radially unstable once they reach the critical line-density.
Studying Magnetohydrodynamic Turbulence with Synchrotron Polarization Dispersion
Zhang, Jian-Fu; Lazarian, Alex; Lee, Hyeseung; Cho, Jungyeon
2016-07-01
We test a new technique for studying magnetohydrodynamic turbulence suggested by Lazarian & Pogosyan, using synthetic observations of synchrotron polarization. This paper focuses on a one-point statistics, which is termed polarization frequency analysis, that is characterized by the variance of polarized emission as a function of the square of the wavelength along a single line of sight. We adopt the ratio η of the standard deviation of the line-of-sight turbulent magnetic field to the line-of-sight mean magnetic field to depict the level of turbulence. When this ratio is large (η \\gg 1), which characterizes a region dominated by turbulent field, or small (η ≲ 0.2), which characterizes a region dominated by the mean field, we obtain the polarization variance \\propto {λ }-2 or \\propto {λ }-2-2m, respectively. At small η, I.e., in the region dominated by the mean field, we successfully recover the turbulent spectral index from the polarization variance. We find that our simulations agree well with the theoretical prediction of Lazarian & Pogosyan. With existing and upcoming data cubes from the Low-Frequency Array for Radio Astronomy (LOFAR) and the Square Kilometer Array (SKA), this new technique can be applied to study the magnetic turbulence in the Milky Way and other galaxies.
Modeling of turbulent chemical reaction
Chen, J.-Y.
1995-01-01
Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
Aviation turbulence processes, detection, prediction
Lane, Todd
2016-01-01
Anyone who has experienced turbulence in flight knows that it is usually not pleasant, and may wonder why this is so difficult to avoid. The book includes papers by various aviation turbulence researchers and provides background into the nature and causes of atmospheric turbulence that affect aircraft motion, and contains surveys of the latest techniques for remote and in situ sensing and forecasting of the turbulence phenomenon. It provides updates on the state-of-the-art research since earlier studies in the 1960s on clear-air turbulence, explains recent new understanding into turbulence generation by thunderstorms, and summarizes future challenges in turbulence prediction and avoidance.
Turbulent Boyant Jets and Plumes in Flowing Ambient Environments
DEFF Research Database (Denmark)
Chen, Hai-Bo
Turbulent buoyant jets and plumes in flowing ambient environments have been studied theoretically and experimentally. The mechanics of turbulent buoyant jets and plumes in flowing ambients have been discussed. Dimensional analysis was employed to investigate the mean behaviour of the turbulent....... Comprehensive laboratory experiments were conducted to study the mean behaviour of turbulent buoyant jets and plumes in a flowing ambient by using both fresh and salt receiving waters. The experimental data on the jet trajectories and dilutions, for a horizontal jet in a coflowing ambient and for a vertical jet......, the available field observated data on the initial dilutions for a horizontal jet issuing into a perpendicular crossflowing ambient have been presented and discussed. Mathematical modelling of the turbulent buoyant jets and plumes has been carried out by using both an integral model and a turbulence model...
Turbulent Liquid Metal Dynamo Experiments
International Nuclear Information System (INIS)
Forest, Cary
2007-01-01
The self-generation of magnetic fields in planets and stars--the dynamo effect--is a long-standing problem of magnetohydrodynamics and plasma physics. Until recently, research on the self-excitation process has been primarily theoretical. In this talk, I will begin with a tutorial on how magnetic fields are generated in planets and stars, describing the 'Standard Model' of self-excitation known as the alpha-omega dynamo. In this model, axisymmetric differential rotation can produce the majority of the magnetic field, but some non-axisymmetric, turbulence driven currents are also necessary. Understanding the conversion of turbulent kinetic energy in the fluid motion into electrical currents and thus magnetic fields, is a major challenge for both experiments and theory at this time. I will then report on recent results from a 1 meter diameter, spherical, liquid sodium dynamo experiment at the University of Wisconsin, in which the first clear evidence for these turbulence driven currents has been observed.
A radiosonde thermal sensor technique for measurement of atmospheric turbulence
Bufton, J. L.
1975-01-01
A new system was developed to measure vertical profiles of microthermal turbulence in the free atmosphere. It combines thermal sensor technology with radiosonde balloon systems. The resultant data set from each thermosonde flight is a profile of the strength and distribution of microthermal fluctuations which act as tracers for turbulence. The optical strength of this turbulence is computed and used to predict optical and laser beam propagation statistics. A description of the flight payload, examples of turbulence profiles, and comparison with simultaneous stellar observations are included.
Influence of free stream turbulence on a trailing line vortex
Ash, Robert L.; Stead, Daniel J.
1990-01-01
Low-speed wind tunnel experiments have been conducted to investigate the influence of free stream turbulence on the mean behavior of a trailing line vortex. Perforated plates and screens were used to produce turbulence levels ranging between 0.03 percent and 5 percent of the free stream velocity in the vicinity of the vortex generator. Smoke was used to provide a visual image of the vortex and photographic and videotape records were taken. Experiments have shown that high turbulence levels cause vortices to meander but with little evidence of structural change. At lower turbulence intensities, some types of vortex oscillations were observed which suggest possible instabilities.
Inflow Turbulence Generation Methods
Wu, Xiaohua
2017-01-01
Research activities on inflow turbulence generation methods have been vigorous over the past quarter century, accompanying advances in eddy-resolving computations of spatially developing turbulent flows with direct numerical simulation, large-eddy simulation (LES), and hybrid Reynolds-averaged Navier-Stokes-LES. The weak recycling method, rooted in scaling arguments on the canonical incompressible boundary layer, has been applied to supersonic boundary layer, rough surface boundary layer, and microscale urban canopy LES coupled with mesoscale numerical weather forecasting. Synthetic methods, originating from analytical approximation to homogeneous isotropic turbulence, have branched out into several robust methods, including the synthetic random Fourier method, synthetic digital filtering method, synthetic coherent eddy method, and synthetic volume forcing method. This article reviews major progress in inflow turbulence generation methods with an emphasis on fundamental ideas, key milestones, representative applications, and critical issues. Directions for future research in the field are also highlighted.
MULTIFLUID MAGNETOHYDRODYNAMIC TURBULENT DECAY
International Nuclear Information System (INIS)
Downes, T. P.; O'Sullivan, S.
2011-01-01
It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation that occurs within them. Non-ideal magnetohydrodynamic (MHD) effects are known to influence the nature of this turbulence. We present the results of a suite of 512 3 resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity, and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingly we find that, at least at these resolutions, the majority of the physics of multifluid turbulence can be captured by simply introducing fixed (in time and space) resistive terms into the induction equation without the need for a full multifluid MHD treatment. The velocity dispersion is also examined and, in common with previously published results, it is found not to be power law in nature.
Larval fish feeding and turbulence : A case for the downside
DEFF Research Database (Denmark)
MacKenzie, Brian; Kiørboe, Thomas
2000-01-01
Theory states that small-scale turbulence decreases pursuit success of planktonic predators by advecting the encountered prey from the reactive zone of the predator during the pursuit event. We tested the quantitative predictions of a previously published model describing this phenomenon in larval...... explain the contradictory observations of how turbulence affects larval fish feeding, growth, and survival in the sea....
Flaherty, Kevin M.; Hughes, A. Meredith; Teague, Richard; Simon, Jacob B.; Andrews, Sean M.; Wilner, David J.
2018-04-01
Turbulence is a fundamental parameter in models of grain growth during the early stages of planet formation. As such, observational constraints on its magnitude are crucial. Here we self-consistently analyze ALMA CO(2–1), SMA CO(3–2), and SMA CO(6–5) observations of the disk around TW Hya and find an upper limit on the turbulent broadening of hydrostatic equilibrium in the presence of a vertical temperature gradient and/or the confinement of CO to a thin molecular layer above the midplane, although further work is needed to quantify the influence of these prescriptions. Assumptions about hydrostatic equilibrium and the CO distribution are physically motivated, and may have a small influence on measuring the kinematics of the gas, but they become important when constraining small effects such as the strength of the turbulence within a protoplanetary disk.
Anomalous diffusion in geophysical and laboratory turbulence
Directory of Open Access Journals (Sweden)
A. Tsinober
1994-01-01
Full Text Available We present an overview and some new results on anomalous diffusion of passive scalar in turbulent flows (including those used by Richardson in his famous paper in 1926. The obtained results are based on the analysis of the properties of invariant quantities (energy, enstrophy, dissipation, enstrophy generation, helicity density, etc. - i.e. independent of the choice of the system of reference as the most appropriate to describe physical processes - in three different turbulent laboratory flows (grid-flow, jet and boundary layer, see Tsinober et al. (1992 and Kit et al. (1993. The emphasis is made on the relations between the asymptotic properties of the intermittency exponents of higher order moments of different turbulent fields (energy, dissipation, helicity, spontaneous breaking of isotropy and reflexional symmetry and the variability of turbulent diffusion in the atmospheric boundary layer, in the troposphere and in the stratosphere. It is argued that local spontaneous breaking of isotropy of turbulent flow results in anomalous scaling laws for turbulent diffusion (as compared to the scaling law of Richardson which are observed, as a rule, in different atmospheric layers from the atmospheric boundary layer (ABL to the stratosphere. Breaking of rotational symmetry is important in the ABL, whereas reflexional symmetry breaking is dominating in the troposphere locally and in the stratosphere globally. The results are of speculative nature and further analysis is necessary to validate or disprove the claims made, since the correspondence with the experimental results may occur for the wrong reasons as happens from time to time in the field of turbulence.
Anomalous diffusion in geophysical and laboratory turbulence
Tsinober, A.
We present an overview and some new results on anomalous diffusion of passive scalar in turbulent flows (including those used by Richardson in his famous paper in 1926). The obtained results are based on the analysis of the properties of invariant quantities (energy, enstrophy, dissipation, enstrophy generation, helicity density, etc.) - i.e. independent of the choice of the system of reference as the most appropriate to describe physical processes - in three different turbulent laboratory flows (grid-flow, jet and boundary layer, see Tsinober et al. (1992) and Kit et al. (1993). The emphasis is made on the relations between the asymptotic properties of the intermittency exponents of higher order moments of different turbulent fields (energy, dissipation, helicity, spontaneous breaking of isotropy and reflexional symmetry) and the variability of turbulent diffusion in the atmospheric boundary layer, in the troposphere and in the stratosphere. It is argued that local spontaneous breaking of isotropy of turbulent flow results in anomalous scaling laws for turbulent diffusion (as compared to the scaling law of Richardson) which are observed, as a rule, in different atmospheric layers from the atmospheric boundary layer (ABL) to the stratosphere. Breaking of rotational symmetry is important in the ABL, whereas reflexional symmetry breaking is dominating in the troposphere locally and in the stratosphere globally. The results are of speculative nature and further analysis is necessary to validate or disprove the claims made, since the correspondence with the experimental results may occur for the wrong reasons as happens from time to time in the field of turbulence.
Spectral properties of electromagnetic turbulence in plasmas
Directory of Open Access Journals (Sweden)
D. Shaikh
2009-03-01
Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.
International Nuclear Information System (INIS)
Goodman, S.
1993-05-01
Optical pumping of the ionospheric plasma by high-frequency radio waves produces a state of turbulence. Several consequences of the pumping are considered in this thesis. At reflection altitude the plasma is thought to be dominated by parametric instabilities and strong turbulence; these are both encapsulated in the so called Zakharov equations. The Zakharov equations are derived and generalised from kinetic theory. Limits of validity, corrections to the ion sound speed,effective ponderomotive force, nonlinear damping and other generalisation are included. As an example of the difference a kinetic approach makes, the threshold for parametric instabilities is seen to be lowered in a kinetic plasma. Mostly relevant to the upper hybrid layer is the recent discovery in the pumping experiments of stimulated electromagnetic emissions (SEE). In particular one feature of SEE which occurs around the cyclotron harmonics and depends on density striations is investigated. The observed frequency of emission, dependency on striations, time evolution and cutoff frequency below which the feature does not occur, are explained. Two theoretical approaches are taken. The first is a parametric three wave decay instability followed by a nonlinear mixing to produce SEE. Thresholds for the instability are well within experimental capacity. The second, less orthodox, approach, is a finite amplitude model. The finite amplitude model goes beyond the traditional parametric approach by being able to predict radiated power output. Miscellaneous aspects of a turbulent ionosphere are also examined. The dependency of the scattering cross section of a turbulent plasma upon higher order perturbations is considered. In a turbulent plasma, density gradients steeper than characteristic plasma scales may develop. The case of calculating the dielectric permittivity for a linear gradient of arbitrary steepness is considered
The Role of Free Stream Turbulence on the Aerodynamic Performance of a Wind Turbine Blade
Maldonado, Victor; Thormann, Adrien; Meneveau, Charles; Castillo, Luciano; Turbulence Group Collaboration
2012-11-01
In the present research, a 2-D wind turbine blade section based on the S809 airfoil was manufactured and tested at Johns Hopkins University in the Stanley Corrsin wind tunnel facility. A free stream velocity of 10 m/s produced a Reynolds number based on blade chord of 2.08.x105. Free stream turbulence was generated using an active grid placed 5.5 m upstream of the blade which generated a turbulence intensity, Tu of up to 6.1% and an integral length scale, L∞ of about 0.15 m. The blade was pitched to a range of angles of attack, α from 0 to 18 degrees in order to study the effects of the integral length scales on the aerodynamic characteristics of the wind turbine under fully attached and separated flow conditions. Pressure measurements around the blade and wake velocity deficit measurements utilizing a hot-wire probe were acquired to compute the lift and drag coefficient. Results suggest that turbulence generally increases aerodynamic performance as measured by the lift to drag ratio, L / D except at 0 degrees angle of attack. A significant enhancement in L / D results with free stream turbulence at post-stall angles of attack of 16 and 18 degrees, where L / D increase from 2.49 to 5.43 and from 0.64 to 4.00 respectively. This is a consequence of delaying flow separation with turbulence (which is observed in the suction pressure distribution) which in turn reduces the momentum loss in the wake particularly at 18 degrees angle of attack.
The dispersal of phytoplankton populations by enhanced turbulent mixing in a shallow coastal sea
Cross, Jaimie; Nimmo-Smith, W. Alex M.; Hosegood, Philip J.; Torres, Ricardo
2014-08-01
A single tidal cycle survey in a Lagrangian reference frame was conducted in autumn 2010 to evaluate the impact of short-term, episodic and enhanced turbulent mixing on large chain-forming phytoplankton. Observations of turbulence using a free-falling microstructure profiler were undertaken, along with near-simultaneous profiles with an in-line digital holographic camera at station L4 (50° 15‧ N 4° 13‧ W, depth 50 m) in the Western English Channel. Profiles from each instrument were collected hourly whilst following a drogued drifter. Results from an ADCP attached to the drifter showed pronounced vertical shear, indicating that the water column structure consisted of two layers, restricting interpretation of the Lagrangian experiment to the upper ~ 25 m. Atmospheric conditions deteriorated during the mid-point of the survey, resulting in values of turbulent dissipation reaching a maximum of 10- 4 W kg- 1 toward the surface in the upper 10 m. Chain-forming phytoplankton > 200 μm were counted using the data from the holographic camera for the two periods, before and after the enhanced mixing event. As mixing increased phytoplankton underwent chain breakage, were dispersed by advection through their removal from the upper to lower layer and subjected to aggregation with other suspended material. Depth averaged counts of phytoplankton were reduced from a maximum of around 2050 L- 1 before the increased turbulence, to 1070 L- 1 after, with each of these mechanisms contributing to this reduction. These results demonstrate the sensitivity of phytoplantkon populations to moderate increases in turbulent activity, yielding consequences for accurate forecasting of the role played by phytoplankton in climate studies and also for the ecosystem in general in their role as primary producers.
Turbulence in Natural Environments
Banerjee, Tirtha
Problems in the area of land/biosphere-atmosphere interaction, hydrology, climate modeling etc. can be systematically organized as a study of turbulent flow in presence of boundary conditions in an increasing order of complexity. The present work is an attempt to study a few subsets of this general problem of turbulence in natural environments- in the context of neutral and thermally stratified atmospheric surface layer, the presence of a heterogeneous vegetation canopy and the interaction between air flow and a static water body in presence of flexible protruding vegetation. The main issue addressed in the context of turbulence in the atmospheric surface layer is whether it is possible to describe the macro-states of turbulence such as mean velocity and turbulent velocity variance in terms of the micro-states of the turbulent flow, i.e., a distribution of turbulent kinetic energy across a multitude of scales. This has been achieved by a `spectral budget approach' which is extended for thermal stratification scenarios as well, in the process unifying the seemingly different and unrelated theories of turbulence such as Kolmogorov's hypothesis, Heisenberg's eddy viscosity, Monin Obukhov Similarity Theory (MOST) etc. under a common framework. In the case of a more complex scenario such as presence of a vegetation canopy with edges and gaps, the question that is addressed is in what detail the turbulence is needed to be resolved in order to capture the bulk flow features such as recirculation patterns. This issue is addressed by a simple numerical framework and it has been found out that an explicit prescription of turbulence is not necessary in presence of heterogeneities such as edges and gaps where the interplay between advection, pressure gradients and drag forces are sufficient to capture the first order dynamics. This result can be very important for eddy-covariance flux calibration strategies in non-ideal environments and the developed numerical model can be
Turbulence for different background conditions using fuzzy logic and clustering
Directory of Open Access Journals (Sweden)
K. Satheesan
2010-08-01
Full Text Available Wind and turbulence estimated from MST radar observations in Kiruna, in Arctic Sweden are used to characterize turbulence in the free troposphere using data clustering and fuzzy logic. The root mean square velocity, νfca, a diagnostic of turbulence is clustered in terms of hourly wind speed, direction, vertical wind speed, and altitude of the radar observations, which are the predictors. The predictors are graded over an interval of zero to one through an input membership function. Subtractive data clustering has been applied to classify νfca depending on its homogeneity. Fuzzy rules are applied to the clustered dataset to establish a relationship between predictors and the predictant. The accuracy of the predicted turbulence shows that this method gives very good prediction of turbulence in the troposphere. Using this method, the behaviour of νfca for different wind conditions at different altitudes is studied.
Turbulent times : Consequences for crisis management and related future research
van der Molen, I.; Vos, Marita F.; Vos, Marita
In this chapter, we will address the idea that organisational resilience calls for management across organisational and discipline borders. We will also discuss the need for related applied research and technological development. Finally, we will look into future research design.
Copepod Response Behavior in Turbulence
Krizan, Daniel
The objective of this thesis is to determine copepod response to turbulence generated by obstacles in cross flow. Mainly, flow and copepod response downstream a square fractal grid is examined but experiments downstream a cylinder provides comparison. This is done by simultaneously measuring the copepods position and velocity using 3D-PTV in a measurement volume and measuring the two dimensional three component velocity vectors of the flow using stereo PIV. These measurements are done in a way that does not elicit copepod response. Tomographic PIV is done downstream the square fractal grid without copepods to gain volumetric velocity knowledge of the flow in the measurement volume. Copepods are known to execute sudden high speed jumps (or escapes) in response to sensed hydrodynamic signals. The fractal grid was shown to elicit copepod escape, specifically directly downstream with escape frequency decreasing further downstream where turbulence levels were much lower. It was found that at a slower freestream speed copepods exhibited jumps not in reaction to flow disturbances but to reorient themselves (cruise swimming). There was almost no copepod response in the wake of a cylinder, but copepods again exhibited cruise swimming behavior at a slower freestream speed. In regions with high maximum principal strain rate (MPSR) downstream of the fractal grid, copepods were observed to exhibit multiple escapes. Moreover, copepods were observed to jump towards regions of lower turbulence and against the freestream direction. From stereo PIV, instantaneous 2D MPSR values of less than 3s -1 were shown to create escape in 60% of copepod escapes analyzed. Finally, it was found that on average larger MPSR resulted in larger jumps from copepods.
Turbulence introduction to theory and applications of turbulent flows
Westerweel, Jerry; Nieuwstadt, Frans T M
2016-01-01
This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises.
Implications of Navier-Stokes turbulence theory for plasma turbulence
International Nuclear Information System (INIS)
Montgomery, David
1977-01-01
A brief discussion of Navier-Stokes turbulence theory is given with particular reference to the two dimensional case. The MHD turbulence is introduced with possible applications of techniques developed in Navier-Stokes theory. Turbulence in Vlasov plasma is also discussed from the point of view of the ''direct interaction approximation'' (DIA). (A.K.)
Energy Technology Data Exchange (ETDEWEB)
Caldas, Ibere L.; Heller, M.V.A.P.; Brasilio, Z.A. [Sao Paulo Univ., SP, RJ (Brazil). Inst. de Fisica
1997-12-31
Full text. In this work we summarize the results from experiments on electrostatic and magnetic fluctuations in tokamak plasmas. Spectral analyses show that these fluctuations are turbulent, having a broad spectrum of wavectors and a broad spectrum of frequencies at each wavector. The electrostatic turbulence induces unexpected anomalous particle transport that deteriorates the plasma confinement. The relationship of these fluctuations to the current state of plasma theory is still unclear. Furthermore, we describe also attempts to control this plasma turbulence with external magnetic perturbations that create chaotic magnetic configurations. Accordingly, the magnetic field lines may become chaotic and then induce a Lagrangian diffusion. Moreover, to discuss nonlinear coupling and intermittency, we present results obtained by using numerical techniques as bi spectral and wavelet analyses. (author)
Energy Technology Data Exchange (ETDEWEB)
Mann, Jakob [Risoe National Lab., Wind Energy and Atmosheric Physics Dept., Roskilde (Denmark)
1999-03-01
The purpose of this work is to develop a model of the spectral velocity-tensor in neutral flow over complex terrain. The resulting equations are implemented in a computer code using the mean flow generated by a linear mean flow model as input. It estimates turbulence structure over hills (except on the lee side if recirculation is present) in the so-called outer layer and also models the changes in turbulence statistics in the vicinity roughness changes. The generated turbulence fields are suitable as input for dynamic load calculations on wind turbines and other tall structures and is under implementation in the collection of programs called WA{sup s}P Engineering. (au) EFP-97; EU-JOULE-3. 15 refs.
Stably-stratified wall-bounded turbulence
Hadi Sichani, Pejman; Zonta, Francesco; Obabko, Aleksandr; Soldati, Alfredo
2017-11-01
Stably-stratified (bottom-up cooling) turbulent flows are encountered in a number of industrial applications, environmental processes and geophysical flows. Turbulent entrainment and mixing across density interfaces in terrestrial water bodies (oceans, lakes and rivers) and in industrial heat transfer equipments are just some important examples of stably-stratified flows. In this work we use Direct Numerical Simulation to investigate the fundamental physics of stably-stratified channel turbulence under Boussinesq and Non-Oberbeck-Boussinesq (NOB) conditions. Compared to the neutrally-buoyant case, in the stably-stratified case active turbulence survives only in the near-wall region and coexists with internal gravity waves (IGW) moving in the core region of the channel. This induces a general suppression of turbulence levels, momentum and buoyancy fluxes. Our results show also that NOB effects may be important when the flow is subject to large temperature gradients. The most striking feature observed in case of NOB conditions is the generation of a strong flow asymmetry with possible local flow laminarization in the near wall region.
Large eddy simulation of stably stratified turbulence
International Nuclear Information System (INIS)
Shen Zhi; Zhang Zhaoshun; Cui Guixiang; Xu Chunxiao
2011-01-01
Stably stratified turbulence is a common phenomenon in atmosphere and ocean. In this paper the large eddy simulation is utilized for investigating homogeneous stably stratified turbulence numerically at Reynolds number Re = uL/v = 10 2 ∼10 3 and Froude number Fr = u/NL = 10 −2 ∼10 0 in which u is root mean square of velocity fluctuations, L is integral scale and N is Brunt-Vaïsälä frequency. Three sets of computation cases are designed with different initial conditions, namely isotropic turbulence, Taylor Green vortex and internal waves, to investigate the statistical properties from different origins. The computed horizontal and vertical energy spectra are consistent with observation in atmosphere and ocean when the composite parameter ReFr 2 is greater than O(1). It has also been found in this paper that the stratification turbulence can be developed under different initial velocity conditions and the internal wave energy is dominated in the developed stably stratified turbulence.
DEFF Research Database (Denmark)
Wang, H.Q.; Xu, G.S.; Guo, H.Y.
2012-01-01
–500 kHz) turbulences that emerge after the L–H transition or in the inter-ELM phase. The potential fluctuations at the plasma edge are correlated with the limit-cycle oscillations, and the fluctuations in the floating potential signals at different toroidal, poloidal and radial locations are strongly...... correlated with each other, with nearly no phase differences poloidally and toroidally, and finite phase difference radially, thus providing strong evidence for zonal flows. The growth, saturation and disappearance of the zonal flows are strongly correlated with those of the high-frequency turbulence...
Correlation lengths of electrostatic turbulence
International Nuclear Information System (INIS)
Guiziou, L.; Garbet, X.
1995-01-01
This document deals with correlation length of electrostatic turbulence. First, the model of drift waves turbulence is presented. Then, the radial correlation length is determined analytically with toroidal coupling and non linear coupling. (TEC). 5 refs
Statistical theory of Langmuir turbulence
International Nuclear Information System (INIS)
DuBois, D.F.; Rose, H.A.; Goldman, M.V.
1979-01-01
A statistical theory of Langmuir turbulence is developed by applying a generalization of the direction interaction approximation (DIA) of Kraichnan to the Zakharov equations describing Langmuir turbulence. 7 references
Turbulent ventilation of a street canyon
DEFF Research Database (Denmark)
Nielsen, Morten
2000-01-01
A selection of turbulence data corresponding to 185 days of field measurements has een analysed. The non-ideal building geometry influenced the circulation patterns in the street canyon and the largest average vertical velocities were observed in the wake of an unbroken line of buildings. The sta...
On the nature of interstellar turbulence
International Nuclear Information System (INIS)
Altunin, V.I.
1981-01-01
Possible reasons of interstellar medium turbulence manifested in pulsar scintillation and radio-frequency emission scattering of extragalactic sources near by the Galaxy plane, are discussed. Sources and conditions of turbulence emergence in HII region shells, supernova, residue and in stellar wind giving observed scattering effects are considered. It is shown that in the formation of the interstellar scintillation pattern of discrete radio-frequency emission sources a certain role can be played by magnetosound turbulence, which arises due to shock-waves propagating in the interstellar medium at a velocity Vsub(sh) approximately 20-100 km/s as well as by stellar-wind inhomogeneity of OB classes stars [ru
Bridging the gap between atmospheric physics and chemistry in studies of small-scale turbulence
Vilà-Guerau de Arellano, J.
2003-01-01
The current understanding of the influence of atmospheric turbulence on chemical reactions is briefly reviewed. The fundamentals of this influence and the consequences for the transport and mixing of the reactants are discussed. A classification of the turbulent reacting flows is proposed in terms
Experimental Investigation of Premixed Turbulent Hydrocarbon/Air Bunsen Flames
Tamadonfar, Parsa
fuel consumption rate were systematically evaluated from the experimental data. The normalized preheat zone and reaction zone thicknesses decreased with increasing non-dimensional turbulence intensity in ultra-lean premixed turbulent flames under a constant equivalence ratio of 0.6, whereas they increased with increasing equivalence ratios from 0.6 to 1.0 under a constant bulk flow velocity. The normalized preheat zone and reaction zone thicknesses showed no overall trend with increasing non-dimensional longitudinal integral length scale. The normalized preheat zone and reaction zone thicknesses decreased by increasing the Karlovitz number, suggesting that increasing the total stretch rate is the controlling mechanism in the reduction of flame front thickness for the experimental conditions studied in this thesis. In general, the leading edge and half-burning surface turbulent burning velocities were enhanced with increasing equivalence ratio from lean to stoichiometric mixtures, whereas they decreased with increasing equivalence ratio for rich mixtures. These velocities were enhanced with increasing total turbulence intensity. The leading edge and half-burning surface turbulent burning velocities for lean/stoichiometric mixtures were observed to be smaller than that for rich mixtures. The mean turbulent flame stretch factor displayed a dependence on the equivalence ratio and turbulence intensity. Results show that the mean turbulent flame stretch factors for lean/stoichiometric and rich mixtures were not equal when the unstrained premixed laminar burning velocity, non-dimensional bulk flow velocity, non-dimensional turbulence intensity, and non-dimensional longitudinal integral length scale were kept constant.
Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung
2012-11-01
In this work we clarify the role of Markstein diffusivity on turbulent flame speed and it's scaling, from analysis and experimental measurements on constant-pressure expanding flames propagating in near isotropic turbulence. For all C0-C4 hydrocarbon-air mixtures presented in this work and recently published C8 data from Leeds, the normalized turbulent flame speed data of individual mixtures approximately follows the recent theoretical and experimental ReT, f 0 . 5 scaling, where the average radius is the length scale and thermal diffusivity is the transport property. We observe that for a constant ReT, f 0 . 5 , the normalized turbulent flame speed decreases with increasing Mk. This could be explained by considering Markstein diffusivity as the large wavenumber, flame surface fluctuation dissipation mechanism. As originally suggested by the theory, replacing thermal diffusivity with Markstein diffusivity in the turbulence Reynolds number definition above, the present and Leeds dataset could be scaled by the new ReT, f 0 . 5 irrespective of the fuel considered, equivalence ratio, pressure and turbulence intensity for positive Mk flames. This work was supported by the Combustion Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0001198 and by the Air Force Office of Scientific Research.
Direct numerical simulations of two-fluid plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Thyagaraja, A. [UKAEA/Euratom Fusion Association, Abingdon (United Kingdom)
1995-10-01
Electromagnetic turbulence thought to be responsible for anomalous transport in magnetic confinement devices such as tokamaks is very complicated, involving a multitude of physical processes, length and time-scales. It cannot be investigated by traditional linear theories any more than aerodynamic fluid turbulence. The relatively longer wavelength (k {sub perpendicular} {sub to} {sub {rho}{sub i}} << 1), low frequency ({omega} {approx_equal} {omega}{sub *} << {omega}{sub ci}) drift-type modes are, however, susceptible to a direct numerical solution approach pioneered in the case of fluid turbulence by Orszag and Patera. A substantial two-fluid nonlinear code called CUTIE has been developed at Culham in recent years to study the nonlinear saturation and transport consequences of electromagnetic drift wave turbulence in simplified tokamak geometry. This development and some results obtained using such a model are briefly described in this contribution. (orig.).
Magnetic turbulence in a table-top laser-plasma relevant to astrophysical scenarios
Chatterjee, Gourab; Schoeffler, Kevin M.; Kumar Singh, Prashant; Adak, Amitava; Lad, Amit D.; Sengupta, Sudip; Kaw, Predhiman; Silva, Luis O.; Das, Amita; Kumar, G. Ravindra
2017-06-01
Turbulent magnetic fields abound in nature, pervading astrophysical, solar, terrestrial and laboratory plasmas. Understanding the ubiquity of magnetic turbulence and its role in the universe is an outstanding scientific challenge. Here, we report on the transition of magnetic turbulence from an initially electron-driven regime to one dominated by ion-magnetization in a laboratory plasma produced by an intense, table-top laser. Our observations at the magnetized ion scale of the saturated turbulent spectrum bear a striking resemblance with spacecraft measurements of the solar wind magnetic-field spectrum, including the emergence of a spectral kink. Despite originating from diverse energy injection sources (namely, electrons in the laboratory experiment and ion free-energy sources in the solar wind), the turbulent spectra exhibit remarkable parallels. This demonstrates the independence of turbulent spectral properties from the driving source of the turbulence and highlights the potential of small-scale, table-top laboratory experiments for investigating turbulence in astrophysical environments.
Plasma turbulence calculations on supercomputers
International Nuclear Information System (INIS)
Carreras, B.A.; Charlton, L.A.; Dominguez, N.; Drake, J.B.; Garcia, L.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Sidikman, K.
1991-01-01
Although the single-particle picture of magnetic confinement is helpful in understanding some basic physics of plasma confinement, it does not give a full description. Collective effects dominate plasma behavior. Any analysis of plasma confinement requires a self-consistent treatment of the particles and fields. The general picture is further complicated because the plasma, in general, is turbulent. The study of fluid turbulence is a rather complex field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples back to the fluid. Since the fluid is not a perfect conductor, this turbulence can lead to changes in the topology of the magnetic field structure, causing the magnetic field lines to wander radially. Because the plasma fluid flows along field lines, they carry the particles with them, and this enhances the losses caused by collisions. The changes in topology are critical for the plasma confinement. The study of plasma turbulence and the concomitant transport is a challenging problem. Because of the importance of solving the plasma turbulence problem for controlled thermonuclear research, the high complexity of the problem, and the necessity of attacking the problem with supercomputers, the study of plasma turbulence in magnetic confinement devices is a Grand Challenge problem
An overview of turbulence compensation
Schutte, K.; Eekeren, A.W.M. van; Dijk, J.; Schwering, P.B.W.; Iersel, M. van; Doelman, N.J.
2012-01-01
In general, long range visual detection, recognition and identification are hampered by turbulence caused by atmospheric conditions. Much research has been devoted to the field of turbulence compensation. One of the main advantages of turbulence compensation is that it enables visual identification
Magnetohydrodynamics turbulence: An astronomical perspective
Indian Academy of Sciences (India)
theories have since found applications in many areas of astrophysics. Spacecraft measurements of solar-wind turbulence show that there is more power in Alfvén waves that travel away from the. Sun than towards it. Theories of imbalanced MHD turbulence have now been proposed to address interplanetary turbulence.
Gopalswamy, N.; Akiyama, S.; Yashiro, S.; Michalek, G.; Lepping, R. P.
2009-01-01
One of the figures (Fig. 4) in "Solar sources and geospace consequences of interplanetary magnetic Clouds observed during solar cycle 23 -- Paper 1" by Gopalswamy et al. (2008, JASTP, Vol. 70, Issues 2-4, February 2008, pp. 245-253) is incorrect because of a software error in t he routine that was used to make the plot. The source positions of various magnetic cloud (MC) types are therefore not plotted correctly.
Basic issues of atmospheric turbulence and turbulent diffusion
International Nuclear Information System (INIS)
Fortak, H.
1985-01-01
A major concern of the institutions commissioned with the protection of the environment is the prognostication of the environment's exposure to various pollutant emissions. The transport and turbulent diffusion of air-borne substances largely take place within a planetary boundary layer of a thickness between 500 to 1,500 m in which the atmosphere continues to be in a turbulent state of flow. The basic theories for the origination and formation of turbulence in flow fields, for the application of these theories to turbulent flows over complex terrain structures and, finally, for the turbulent diffusion of air-borne substances within the planetary boundary layer are presented. (orig./PW) [de
The structure and statistics of interstellar turbulence
Kritsuk, A. G.; Ustyugov, S. D.; Norman, M. L.
2017-06-01
We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable Hi, the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence.
Statistics of the turbulent/non-turbulent interface in a spatially developing mixing layer
Attili, Antonio
2014-06-02
The thin interface separating the inner turbulent region from the outer irrotational fluid is analysed in a direct numerical simulation of a spatially developing turbulent mixing layer. A vorticity threshold is defined to detect the interface separating the turbulent from the non-turbulent regions of the flow, and to calculate statistics conditioned on the distance from this interface. The conditional statistics for velocity are in remarkable agreement with the results for other free shear flows available in the literature, such as turbulent jets and wakes. In addition, an analysis of the passive scalar field in the vicinity of the interface is presented. It is shown that the scalar has a jump at the interface, even stronger than that observed for velocity. The strong jump for the scalar has been observed before in the case of high Schmidt number (Sc). In the present study, such a strong jump is observed for a scalar with Sc ≈ 1. Conditional statistics of kinetic energy and scalar dissipation are presented. While the kinetic energy dissipation has its maximum far from the interface, the scalar dissipation is characterised by a strong peak very close to the interface. Finally, it is shown that the geometric features of the interfaces correlate with relatively large scale structures as visualised by low-pressure isosurfaces. © 2014 Taylor & Francis.
Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments
Energy Technology Data Exchange (ETDEWEB)
Wang, W.X.; Lin, Z.; Tang, W.M.; Lee, W.W.; Ethier, S.; Lewandowski, J.L.V.; Rewoldt, G.; Hahm, T.S.; Manickam, J.
2006-01-01
A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.
Comparing multiple turbulence restoration algorithms performance on noisy anisoplanatic imagery
Rucci, Michael A.; Hardie, Russell C.; Dapore, Alexander J.
2017-05-01
In this paper, we compare the performance of multiple turbulence mitigation algorithms to restore imagery degraded by atmospheric turbulence and camera noise. In order to quantify and compare algorithm performance, imaging scenes were simulated by applying noise and varying levels of turbulence. For the simulation, a Monte-Carlo wave optics approach is used to simulate the spatially and temporally varying turbulence in an image sequence. A Poisson-Gaussian noise mixture model is then used to add noise to the observed turbulence image set. These degraded image sets are processed with three separate restoration algorithms: Lucky Look imaging, bispectral speckle imaging, and a block matching method with restoration filter. These algorithms were chosen because they incorporate different approaches and processing techniques. The results quantitatively show how well the algorithms are able to restore the simulated degraded imagery.
Turbulence and Flying Machines
Indian Academy of Sciences (India)
for Advanced Scientific. Research. She is currently working on problems of flow stability, transition to turbulence and vortex dynamics. Rama Govindarajan. This article is intended to introduce the young reader to the ... T applied by the engines and the drag force D due to the resistance of the air, i.e., under cruise condi~ions,.
Stochastic modelling of turbulence
DEFF Research Database (Denmark)
Sørensen, Emil Hedevang Lohse
previously been shown to be closely connected to the energy dissipation. The incorporation of the small scale dynamics into the spatial model opens the door to a fully fledged stochastic model of turbulence. Concerning the interaction of wind and wind turbine, a new method is proposed to extract wind turbine...
Turbulence compressibility corrections
Coakley, T. J.; Horstman, C. C.; Marvin, J. G.; Viegas, J. R.; Bardina, J. E.; Huang, P. G.; Kussoy, M. I.
1994-01-01
The basic objective of this research was to identify, develop and recommend turbulence models which could be incorporated into CFD codes used in the design of the National AeroSpace Plane vehicles. To accomplish this goal, a combined effort consisting of experimental and theoretical phases was undertaken. The experimental phase consisted of a literature survey to collect and assess a database of well documented experimental flows, with emphasis on high speed or hypersonic flows, which could be used to validate turbulence models. Since it was anticipated that this database would be incomplete and would need supplementing, additional experiments in the NASA Ames 3.5-Foot Hypersonic Wind Tunnel (HWT) were also undertaken. The theoretical phase consisted of identifying promising turbulence models through applications to simple flows, and then investigating more promising models in applications to complex flows. The complex flows were selected from the database developed in the first phase of the study. For these flows it was anticipated that model performance would not be entirely satisfactory, so that model improvements or corrections would be required. The primary goals of the investigation were essentially achieved. A large database of flows was collected and assessed, a number of additional hypersonic experiments were conducted in the Ames HWT, and two turbulence models (kappa-epsilon and kappa-omega models with corrections) were determined which gave superior performance for most of the flows studied and are now recommended for NASP applications.
van der Veen, Roeland
2016-01-01
In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study
Analysis of turbulent boundary layers
Cebeci, Tuncer
1974-01-01
Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati
Gyrokinetic simulations of ETG Turbulence*
Nevins, William
2005-10-01
Recent gyrokinetic simulations of electron temperature gradient (ETG) turbulence [1,2] produced different results despite similar plasma parameters. Ref.[1] differs from Ref.[2] in that [1] eliminates magnetically trapped particles ( r/R=0 ), while [2] retains magnetically trapped particles ( r/R 0.18 ). Differences between [1] and [2] have been attributed to insufficient phase-space resolution and novel physics associated with toroidicity and/or global simulations[2]. We have reproduced the results reported in [2] using a flux-tube, particle-in-cell (PIC) code, PG3EQ[3], thereby eliminating global effects as the cause of the discrepancy. We observe late-time decay of ETG turbulence and the steady-state heat transport in agreement with [2], and show this results from discrete particle noise. Discrete particle noise is a numerical artifact, so both the PG3EQ simulations reported here and those reported in Ref.[2] have little to say about steady-state ETG turbulence and the associated anomalous electron heat transport. Our attempts to benchmark PIC and continuum[4] codes at the plasma parameters used in Ref.[2] produced very large, intermittent transport. We will present an alternate benchmark point for ETG turbulence, where several codes reproduce the same transport levels. Parameter scans about this new benchmark point will be used to investigate the parameter dependence of ETG transport and to elucidate saturation mechanisms proposed in Refs.[1,2] and elsewhere[5-7].*In collaboration with A. Dimits (LLNL), J. Candy, C. Estrada-Mila (GA), W. Dorland (U of MD), F. Jenko, T. Dannert (Max-Planck Institut), and G. Hammett (PPPL). Work at LLNL performed for US DOE under Contract W7405-ENG-48.[1] F. Jenko and W. Dorland, PRL 89, 225001 (2002).[2] Z. Lin et al, 2004 Sherwood Mtg.; 2004 TTF Mtg.; Fusion Energy 2004 (IAEA, Vienna, 2005); Bull. Am. Phys. Soc. (November, 2004); 2005 TTF Mtg.; 2005 Sherwood Mtg.; Z. Lin, et al, Phys. Plasmas 12, 056125 (2005). [3] A.M. Dimits
Coherent stuctures in geophysical turbulence
Siegel, Andrew Robert
This thesis examines the dynamic role of coherent structures in high Re turbulence. Three settings are chosen: the atmospheric boundary layer (ABL), two- dimensional turbulence, and oceanic gyres. In the ABL, the intermittency of vertical heat and momentum fluxes complicates the use of local drag laws, which in turn has serious implications for large eddy simulations (LES). We develop a method to test the accuracy of local drag laws as a surface boundary condition for LES. When our diagnostic is applied to measurements of ABL turbulence, results indicate that drag-law formulations are only adequate for LES grid spacings dx > 25 km. The most salient aspect of 2-D solutions of the Navier Stokes equations is the appearance of populations of circular vortices and their subsequent dominance of the flow dynamics. To understand these dynamics, one must develop a method of decomposing such flows into their `coherent' and `non-coherent' components. We devise and test such an algorithm on weakly decaying 2-D simulations. We argue that the WPT algorithm is more general and suitable to a wider range of problems than a traditional selection-criteria approach. The decomposed 2-D solutions are then analyzed in light of turbulence theories which fail to take into account the two distinct regimes of the flow. Ocean General Circulation Models (OGCM's) traditionally fail to accurately mimic observed levels of eddy kinetic energy (EKE) and mesoscale vortex activity. A possible explanation is insufficient horizontal resolution due to the huge computational demands of complex ocean models. To test this hypothesis, a highly efficient, parallel numerical algorithm is designed to simulate the wind- driven, closed basin quasigeostrophic (QG) equations. The combination of idealized geometry, simplified equations, and the most recent technology in parallel computing permits us to achieve decade-length integrations at resolutions five times greater than has been possible with OGCM's. These
Magnetosheath electrostatic turbulence
International Nuclear Information System (INIS)
Rodriguez, P.
1979-01-01
By using measurements with the University of Iowa plasma wave experiment on the Imp 6 satellite a study has been conducted of the spectrum of electrostatic plasma waves in the terrestrial magnetosheath. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz to 70 kHz) rms field intensities typically 0.01--1.0 mV m -1 . Peak intensities of about 1.0 mV m -1 near the electron plasma frequency (30--60 kHz) have been detected occasionally. Two or three components can usually be identified in the spectrum of magnetosheath electrostatic turbulence: a high-frequency (> or =30kHz) component peaking at the electron plasma frequency f/sub p/e, a low-frequency component with a broad intensity maximum below the nominal ion plasma frequency f/sub p/i (approx. f/sub p/e/43), and a less well defined intermediate component in the range f/sub p/i < f< f/sub p/e. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low-frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath. Electrostatic waves below 1 kHz are polarized along the magnetic field direction, a result consistent with the polarization of electrostatic waves at the shock. The high- and intermediate-frequency components are features of the magnetosheath spectrum which are not characteristic of the shock spectrum but are often detected in the upstream solar wind. The intensity distribution of electrostatic turbulence at the magnetosheath plasma frequency has no apparent correlation with the shock, indicating that electron plasma oscillations are a general feature of the magnetosheath. The plasma wave noise shows a tendency to decrease toward the dawn and dusk regions, consistent with a general decrease in turbulence away from the subsolar magnetosheath
Zank, G. P.; Adhikari, L.; Hunana, P.; Tiwari, S. K.; Moore, R.; Shiota, D.; Bruno, R.; Telloni, D.
2018-02-01
A new model describing the transport and evolution of turbulence in the quiet solar corona is presented. In the low plasma beta environment, transverse photospheric convective fluid motions drive predominantly quasi-2D (nonpropagating) turbulence in the mixed-polarity “magnetic carpet,” together with a minority slab (Alfvénic) component. We use a simplified sub-Alfvénic flow velocity profile to solve transport equations describing the evolution and dissipation of turbulence from 1\\hspace{0.5em}{{t}}{{o}} 15 {R}ȯ (including the Alfvén surface). Typical coronal base parameters are used, although one model uses correlation lengths derived observationally by Abramenko et al., and the other assumes values 10 times larger. The model predicts that (1) the majority quasi-2D turbulence evolves from a balanced state at the coronal base to an imbalanced state, with outward fluctuations dominating, at and beyond the Alfvén surface, i.e., inward turbulent fluctuations are dissipated preferentially; (2) the initially imbalanced slab component remains imbalanced throughout the solar corona, being dominated by outwardly propagating Alfvén waves, and wave reflection is weak; (3) quasi-2D turbulence becomes increasingly magnetized, and beyond ∼ 6 {R}ȯ , the kinetic energy is mainly in slab fluctuations; (4) there is no accumulation of inward energy at the Alfvén surface; (5) inertial range quasi-2D rather than slab fluctuations are preferentially dissipated within ∼ 3 {R}ȯ ; and (6) turbulent dissipation of quasi-2D fluctuations is sufficient to heat the corona to temperatures ∼ 2× {10}6 K within 2 {R}ȯ , consistent with observations that suggest that the fast solar wind is accelerated most efficiently between ∼ 2\\hspace{0.5em}{{a}}{{n}}{{d}} 4 {R}ȯ .
Conservational PDF Equations of Turbulence
Shih, Tsan-Hsing; Liu, Nan-Suey
2010-01-01
Recently we have revisited the traditional probability density function (PDF) equations for the velocity and species in turbulent incompressible flows. They are all unclosed due to the appearance of various conditional means which are modeled empirically. However, we have observed that it is possible to establish a closed velocity PDF equation and a closed joint velocity and species PDF equation through conditions derived from the integral form of the Navier-Stokes equations. Although, in theory, the resulted PDF equations are neither general nor unique, they nevertheless lead to the exact transport equations for the first moment as well as all higher order moments. We refer these PDF equations as the conservational PDF equations. This observation is worth further exploration for its validity and CFD application
International Nuclear Information System (INIS)
Hahm, T.S.; Lin, Z.; Diamond, P.H.; Rewoldt, G.; Wang, W.X.; Ethier, S.; Gurcan, O.; Lee, W.W.; Tang, W.M.
2004-01-01
An integrated program of gyrokinetic particle simulation and theory has been developed to investigate several outstanding issues in both turbulence and neoclassical physics. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the GTC code and its related dynamical model have been extended to the case with radially increasing ion temperature gradient, to study the inward spreading of edge turbulence toward the core. Due to turbulence spreading from the edge, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only. Even when the core gradient is within the Dimits shift regime (i.e., self-generated zonal flows reduce the transport to a negligible value), a significant level of turbulence and transport is observed in the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from our nonlinear diffusion model than one based on linear toroidal coupling. A calculation of ion poloidal rotation in the presence of sharp density and toroidal angular rotation frequency gradients from the GTC-Neo particle simulation code shows that the results are significantly different from the conventional neoclassical theory predictions. An energy conserving set of a fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to edge turbulence, is being derived via the phase-space action variational Lie perturbation method. Our generalized ordering takes the ion poloidal gyroradius to be on the order of the radial electric field gradient length
Statistics of the turbulent/non-turbulent interface in a spatially evolving mixing layer
Cristancho, Juan
2012-12-01
The thin interface separating the inner turbulent region from the outer irrotational fluid is analyzed in a direct numerical simulation of a spatially developing turbulent mixing layer. A vorticity threshold is defined to detect the interface separating the turbulent from the non-turbulent regions of the flow, and to calculate statistics conditioned on the distance from this interface. Velocity and passive scalar statistics are computed and compared to the results of studies addressing other shear flows, such as turbulent jets and wakes. The conditional statistics for velocity are in remarkable agreement with the results for other types of free shear flow available in the literature. In addition, a detailed analysis of the passive scalar field (with Sc 1) in the vicinity of the interface is presented. The scalar has a jump at the interface, even stronger than that observed for velocity. The strong jump for the scalar has been observed before in the case of high Schmidt number, but it is a new result for Schmidt number of order one. Finally, the dissipation for the kinetic energy and the scalar are presented. While the kinetic energy dissipation has its maximum far from the interface, the scalar dissipation is characterized by a strong peak very close to the interface.
Satellite sensing of submerged fossil turbulence and zombie turbulence
Gibson, Carl H.
2004-11-01
Surface brightness anomalies from a submerged municipal wastewater outfall trapped by buoyancy in an area 0.1 km^2 are surprisingly detected from space satellites in areas > 200 km^2. How is this possible? Microstructure measurements near the outfall diffuser reveal enhanced turbulence and temperature dissipation rates above the 50 m trapping depth. Near-vertical radiation of internal waves by fossil and zombie turbulence microstructure patches produce wind ripple smoothing with 30-50 m internal wave patterns in surface Fourier brightness anomalies near the outfall. Detections at 10-14 km distances are at 100-220 m bottom boundary layer (BBL) fossil turbulence scales. Advected outfall fossils form zombie turbulence patches in internal wave patterns as they extract energy, vorticity, turbulence and ambient vertical internal wavelength information as their density gradients are tilted by the waves. As the zombies fossilize, patterned energy radiates near-vertically to produce the detected Fourier anomalies. Zombie turbulence patches beam extracted energy in a preferred direction with a special frequency, like energized metastable molecules in a chemical maser. Thus, kilowatts to produce the submerged field of advected fossil outfall turbulence patches are amplified by beamed zombie turbulence maser action (BZTMA) into megawatts of turbulence dissipation to affect sea surface brightness on wide surface areas using gigawatts of BBL fossil turbulence wave energy available.
Global turbulence and Nigeria's citizen diplomacy: 2007-2016 ...
African Journals Online (AJOL)
Relying on a careful reformulation of J. David Singers (1962) Level of Analysis Problem in International Relations, the research came to the conclusion that it was the consequences of global turbulence seen in Boko Haram and other ethnic separatist movements and militias that made it impossible for Nigeria to devote any ...
Optimal interpolation schemes for particle tracking in turbulence
van Hinsberg, M.A.T.; ten Thije Boonkkamp, J.H.M.; Toschi, F.; Clercx, H.J.H.
2013-01-01
An important aspect in numerical simulations of particle-laden turbulent flows is the interpolation of the flow field needed for the computation of the Lagrangian trajectories. The accuracy of the interpolation method has direct consequences for the acceleration spectrum of the fluid particles and
Simultaneous Measurements of Turbulence over Land and Water
DEFF Research Database (Denmark)
Jensen, Niels Otto
1978-01-01
Turbulence and mean flow variables under unstable conditions are examined with special emphasis on the consequences of roughness and surface elevation change. An interpolation formula for Σ w 2, between neutral and free convection, is shown to bring order to the data. The spectral distribution of...
Feeding behaviour of Centropages typicus in calm and turbulent conditions
DEFF Research Database (Denmark)
Caparroy, Philippe; Perez, M.T.; Carlotti, F.
1998-01-01
Feeding of the copepod Centropages typicus on the oligotrich ciliate Strombidium sulcatum was studied in the laboratory under controlled, measured conditions of grid generated small scale turbulence. High levels of turbulence, epsilon (kinetic energy dissipation sate) = 2.9 x 10(-2) to 3 x 10......(-1) cm(2) s(- 3) increased the clearance rate of C, typicus feeding on S. sulcatum by up to a factor of 4 in comparison to calm water values. At a level of turbulence of 4.4 cm(2) s(-3), we observed a drastic decrease in clearance rates to values equivalent to those in calm water. We suggest...... an explanation for the observed changes in predation rates with levels of turbulence. Video recorded observations of the behaviour of free swimming C. typicus conducted in calm conditions suggest that the copepod uses a cruising strategy to search and encounter S. sulcatum. In the presence of this ciliate, C...
The Theory of Nearly Incompressible Magnetohydrodynamic Turbulence: Homogeneous Description
Zank, G. P.; Adhikari, L.; Hunana, P.; Shiota, D.; Bruno, R.; Telloni, D.; Avinash, K.
2017-09-01
The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed to understand the apparent incompressibility of the solar wind and other plasma environments, particularly the relationship of density fluctuations to incompressible manifestations of turbulence in the solar wind and interstellar medium. Of interest was the identification of distinct leading-order incompressible descriptions for plasma beta β ≫ 1 and β ∼ 1 or ≪ 1 environments. In the first case, the “dimensionality” of the MHD description is 3D whereas for the latter two, there is a collapse of dimensionality in that the leading-order incompressible MHD description is 2D in a plane orthogonal to the large-scale or mean magnetic field. Despite the success of NI MHD in describing fluctuations in a low-frequency plasma environment such as the solar wind, a basic turbulence description has not been developed. Here, we rewrite the NI MHD system in terms of Elsässer variables. We discuss the distinction that emerges between the three cases. However, we focus on the β ∼ 1 or ≪ 1 regimes since these are appropriate to the solar wind and solar corona. In both cases, the leading-order turbulence model describes 2D turbulence and the higher-order description corresponds to slab turbulence, which forms a minority component. The Elsäasser β ∼ 1 or ≪ 1 formulation exhibits the nonlinear couplings between 2D and slab components very clearly, and shows that slab fluctuations respond in a passive scalar sense to the turbulently evolving majority 2D component fluctuations. The coupling of 2D and slab fluctuations through the β ∼ 1 or ≪ 1 NI MHD description leads to a very natural emergence of the “Goldreich-Sridhar” critical balance scaling parameter, although now with a different interpretation. Specifically, the critical balance parameter shows that the energy flux in wave number space is a consequence of the intensity of Alfvén wave sweeping versus passive scalar
Analysis of mean velocity and turbulence measurements with ADCPs
De Serio, Francesca; Mossa, Michele
2015-07-01
The present study examines the vertical structure of the coastal current in the inner part of the Gulf of Taranto, located in the Ionian Sea (Southern Italy), including both the Mar Grande and Mar Piccolo basins. To this aim, different measuring stations investigated by both a Vessel Mounted Acoustic Doppler Current Profiler (VM-ADCP) and a bottom fixed ADCP were taken into consideration. Two surveys were carried out in the target area on 29.12.2006 and on 11.06.2007 by the research unit of the Technical University of Bari (DICATECh Department), using a VM-ADCP to acquire the three velocity components along the water column in selected stationing points. The measurements were taken in shallow waters, under non-breaking wave conditions, offshore the surf zone. Due to the recording frequency of the instrument time-averaged vertical velocity profiles could be evaluated in these measuring stations. Water temperature and salinity were also measured at the same time and locations by means of a CTD recorder. A rigidly mounted ADCP, located on the seabed in the North-Eastern area of the Mar Grande basin, provided current data relative to the period 10-20 February 2014. Set to acquire the three velocity components with higher frequency with respect to the VM-ADCP, it allowed us to estimate the turbulent quantities such as Reynolds stresses and turbulent kinetic energy by means of the variance method. Therefore, the present research is made up of two parts. The first part examines the current pattern measured by the VM-ADCP and verifies that, for each station, the classical log law reproduces well the vertical profile of the experimental streamwise velocities extending beyond its typical limit of validity up to the surface i.e. reaching great heights above the sea bed. This behavior is quite new and not always to be expected, being generally limited to boundary layers. It has been convincingly observed in only few limited experimental works. In the present study this
Is the isotope effect a consequence of magnetic transport?
International Nuclear Information System (INIS)
Zurro, B.; Rodriguez-Rodrigo, L.; Castejon, F.
1994-01-01
The isotope effect, i.e. the improved confinement of deuterium fuelling compared with hydrogen fuelling, shows up in nearly all tokamaks with various type of wall conditioning and in various confinement regimes. Many empirical scalings for energy confinement include a dependence of the energy replacement time τ E ∝ A i α where α ∼ 1/2, and A i is the atomic mass of the plasma ion species. However, no convincing theoretical justification has so far been found for such a dependence; classical transport would lead us to expect α 1/2, as would some theories for anomalous transport (e.g. those based on drift wave turbulence). This empirical scaling effect has been reviewed along with other relevant theories in a recent paper. The main conclusion drawn therein was that this effect was an unsolved fundamental problem in tokamak transport theory. In this paper, we put forward the hypothesis that the isotope effect is a consequence of magnetic transport in the plasma which we can support by observed reductions in the magnetic turbulence level in deuterium operated plasmas. The proposition is supported by data which we claim give some information about the level of stochastic magnetic turbulence within the plasma. These data show a reduction for the deuterium in the difference between the apparent temperature of a central ion (C V) and that of the main ion, hydrogen or deuterium. This can account for the isotope enhancement factors. In addition, preliminary results from sawtooth propagation in both hard and soft X-ray monitors supports the former proposition. To outline this, firstly the isotope documentation in the TJ-I tokamak is reported and then a plausible interpretation within a magnetic transport model is discussed. (author) 6 refs., 4 figs
Particle-turbulence interaction; Partikkelitihentymien ja turbulenssin vuorovaikutus
Energy Technology Data Exchange (ETDEWEB)
Karvinen, R.; Savolainen, K. [Tampere Univ. of Technology (Finland). Energy and Process Technology
1997-10-01
In this work the interaction between solid particles and turbulence of the carrier fluid in two-phase flow is studied. The aim of the study is to find out prediction methods for the interaction of particles and fluid turbulence. Accurate measured results are needed in order to develop numerical simulations. There are very few good experimental data sets concerning the particulate matter and its effect on the gas turbulence. Turbulence of the gas phase in a vertical, dilute gas-particle pipe flow has been measured with the laser-Doppler anemometer in Tampere University of Technology. Special attention was paid to different components of the fluctuating velocity. Numerical simulations were done with the Phoenics-code in which the models of two-phase flows suggested in the literature were implemented. It has been observed that the particulate phase increases the rate of anisotropy of the fluid turbulence. It seems to be so that small rigid particles increase the intensity of the axial and decrease the intensity of the radial component in a vertical pipe flow. The change of the total kinetic energy of turbulence obviously depends on the particle size. In the case of 150 ,{mu} spherical glass particles flowing upwards with air, it seems to be slightly positive near the centerline of the pipe. This observation, i.e. the particles decrease turbulence in the radial direction, is very important; because mass and heat transfer in flows is strongly dependent on the component of fluctuating velocity perpendicular to the main flow direction
Anaïs Schaeffer
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed. The last day of data collection, tired but satisfied after seven intense days of measurements. Around the cryostat, from left to right: Philippe-E. Roche, Éléonore Rusaouen (CNRS), Olivier Pirotte, Jean-Marc Quetsch (CERN), Nicolas Friedlin (CERN), Vladislav Benda (CERN). Not in the photo: Laurent Le Mao (CERN), Jean-Marc Debernard (CERN), Jean-Paul Lamboy (CERN), Nicolas Guillotin (CERN), Benoit Chabaud (Grenoble Uni), and Gregory Garde (CNRS). CERN has a unique cryogenic facility in hall SM18, consisting of 21 liquid-helium-cooled test stations. While this equipment was, of course, designed for testing parts of CERN's acce...
Aerotaxis in Bacterial Turbulence
Fernandez, Vicente; Bisson, Antoine; Bitton, Cindy; Waisbord, Nicolas; Smriga, Steven; Rusconi, Roberto; Stocker, Roman
2012-11-01
Concentrated suspensions of motile bacteria exhibit correlated dynamics on spatial scales much larger than an individual bacterium. The resulting flows, visually similar to turbulence, can increase mixing and decrease viscosity. However, it remains unclear to what degree the collective dynamics depend on the motile behavior of bacteria at the individual level. Using a new microfluidic device to create controlled horizontal oxygen gradients, we studied the two dimensional behavior of dense suspensions of Bacillus subtilis. This system makes it possible to assess the interplay between the coherent large-scale motions of the suspension, oxygen transport, and the directional response of cells to oxygen gradients (aerotaxis). At the same time, this device has enabled us to examine the onset of bacterial turbulence and its influence on the propagation of the diffusing oxygen front, as the bacteria begin in a dormant state and transition to swimming when exposed to oxygen.
Random functions and turbulence
Panchev, S
1971-01-01
International Series of Monographs in Natural Philosophy, Volume 32: Random Functions and Turbulence focuses on the use of random functions as mathematical methods. The manuscript first offers information on the elements of the theory of random functions. Topics include determination of statistical moments by characteristic functions; functional transformations of random variables; multidimensional random variables with spherical symmetry; and random variables and distribution functions. The book then discusses random processes and random fields, including stationarity and ergodicity of random
Turbulent spectra and spectral kinks in the transition range from MHD to kinetic Alfvén turbulence
Directory of Open Access Journals (Sweden)
Y. Voitenko
2011-09-01
Full Text Available A weakly dispersive range (WDR of kinetic Alfvén turbulence is identified and investigated for the first time in the context of the MHD/kinetic turbulence transition. We find perpendicular wavenumber spectra ∝ k_{⊥}^{−3} and ∝ k_{⊥}^{−4} formed in WDR by strong and weak turbulence of kinetic Alfvén waves (KAWs, respectively. These steep WDR spectra connect shallower spectra in the MHD and strongly dispersive KAW ranges, which results in a specific double-kink (2-k pattern often seen in observed turbulent spectra. The first kink occurs where MHD turbulence transforms into weakly dispersive KAW turbulence; the second one is between weakly and strongly dispersive KAW ranges. Our analysis suggests that partial turbulence dissipation due to amplitude-dependent non-adiabatic ion heating may occur in the vicinity of the first spectral kink. The threshold-like nature of this process results in a conditional selective dissipation that affects only the largest over-threshold amplitudes and that decreases the intermittency in the range below the first spectral kink. Several recent counter-intuitive observational findings can be explained by the coupling between such a selective dissipation and the nonlinear interaction among weakly dispersive KAWs.
Suppression of turbulent resistivity in turbulent Couette flow
International Nuclear Information System (INIS)
Si, Jiahe; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.
2015-01-01
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations
Suppression of turbulent resistivity in turbulent Couette flow
Si, Jiahe; Colgate, Stirling A.; Sonnenfeld, Richard G.; Nornberg, Mark D.; Li, Hui; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe
2015-07-01
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
Suppression of turbulent resistivity in turbulent Couette flow
Energy Technology Data Exchange (ETDEWEB)
Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2015-07-15
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
The Solar Wind as a Turbulence Laboratory
Directory of Open Access Journals (Sweden)
Vincenzo Carbone
2013-05-01
Full Text Available In this review we will focus on a topic of fundamental importance for both astrophysics and plasma physics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Helios inner heliosphere and Ulysses' high latitude observations, recent multi-spacecrafts measurements in the solar wind (Cluster four satellites and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.
4th European Turbulence Conference
1993-01-01
The European Turbulence Conferences have been organized under the auspices of the European Mechanics Committee (Euromech) to provide a forum for discussion and exchange of recent and new results in the field of turbulence. The first conference was organized in Lyon in 1986 with 152 participants. The second and third conferences were held in Berlin (1988) and Stockholm (1990) with 165 and 172 participants respectively. The fourth was organized in Delft from 30 June to 3 July 1992 by the J.M. Burgers Centre. There were 214 participants from 22 countries. This steadily growing number of participants demonstrates both the success and need for this type of conference. The main topics of the Fourth European Turbulence Conference were: Dynamical Systems and Transition; Statistical Physics and Turbulence; Experiments and Novel Experimental Techniques; Particles and Bubbles in Turbulence; Simulation Methods; Coherent Structures; Turbulence Modelling and Compressibility Effects. In addition a special session was held o...
Stochastic method for turbulence estimation from Doppler lidar measurements
Rottner, Lucie; Baehr, Christophe; Dabas, Alain; Hammoud, Linda
2017-10-01
The Doppler lidar technology is known for its ability to measure accurate winds with fine time and space resolutions. The derivation of turbulence parameters from lidar wind measurement has been attempted by several authors. All of them relate the turbulence parameters to long-time series (several tens of minutes) of wind measurements. The method presented here retrieves estimations of the atmospheric turbulence at much finer time scales. The technique is based on a wind reconstruction method applied to a five-beam wind Doppler lidar (namely the WindCube model by Leosphere). The method relies on a particle filter. The suggested reconstruction algorithm links the lidar observations to numerical particles to obtain turbulence estimations every time new observations are available. The high frequency of the estimations is an innovation and is detailed and discussed here. Moreover, the presented algorithm enables reconstruction of the wind in three dimensions in the observed volume. Thus, we locally have access to the spatial variability of the turbulent atmosphere. The suggested algorithm is applied to a set of real observations. The results show that the estimation of the turbulent parameters is significantly improved. They open the way to the use of lidars for scientific and industrial purposes such as site studies for wind farms.
Evaluation of turbulence measurement techniques from a single Doppler lidar
Bonin, Timothy A.; Choukulkar, Aditya; Brewer, W. Alan; Sandberg, Scott P.; Weickmann, Ann M.; Pichugina, Yelena L.; Banta, Robert M.; Oncley, Steven P.; Wolfe, Daniel E.
2017-08-01
Measurements of turbulence are essential to understand and quantify the transport and dispersal of heat, moisture, momentum, and trace gases within the planetary boundary layer (PBL). Through the years, various techniques to measure turbulence using Doppler lidar observations have been proposed. However, the accuracy of these measurements has rarely been validated against trusted in situ instrumentation. Herein, data from the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) are used to verify Doppler lidar turbulence profiles through comparison with sonic anemometer measurements. For 17 days at the end of the experiment, a single scanning Doppler lidar continuously cycled through different turbulence measurement strategies: velocity-azimuth display (VAD), six-beam scans, and range-height indicators (RHIs) with a vertical stare.Measurements of turbulence kinetic energy (TKE), turbulence intensity, and stress velocity from these techniques are compared with sonic anemometer measurements at six heights on a 300 m tower. The six-beam technique is found to generally measure turbulence kinetic energy and turbulence intensity the most accurately at all heights (r2 ≈ 0.78), showing little bias in its observations (slope of ≈ 0. 95). Turbulence measurements from the velocity-azimuth display method tended to be biased low near the surface, as large eddies were not captured by the scan. None of the methods evaluated were able to consistently accurately measure the shear velocity (r2 = 0.15-0.17). Each of the scanning strategies assessed had its own strengths and limitations that need to be considered when selecting the method used in future experiments.
Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA
Energy Technology Data Exchange (ETDEWEB)
Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.
2012-06-05
Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.
Timerman, David; Greene, David F; Urzay, Javier; Ackerman, Josef D
2014-12-06
In wind pollination, the release of pollen from anthers into airflows determines the quantity and timing of pollen available for pollination. Despite the ecological and evolutionary importance of pollen release, wind-stamen interactions are poorly understood, as are the specific forces that deliver pollen grains into airflows. We present empirical evidence that atmospheric turbulence acts directly on stamens in the cosmopolitan, wind-pollinated weed, Plantago lanceolata, causing resonant vibrations that release episodic bursts of pollen grains. In laboratory experiments, we show that stamens have mechanical properties corresponding to theoretically predicted ranges for turbulence-driven resonant vibrations. The mechanical excitation of stamens at their characteristic resonance frequency caused them to resonate, shedding pollen vigorously. The characteristic natural frequency of the stamens increased over time with each shedding episode due to the reduction in anther mass, which increased the mechanical energy required to trigger subsequent episodes. Field observations of a natural population under turbulent wind conditions were consistent with these laboratory results and demonstrated that pollen is released from resonating stamens excited by small eddies whose turnover periods are similar to the characteristic resonance frequency measured in the laboratory. Turbulence-driven vibration of stamens at resonance may be a primary mechanism for pollen shedding in wind-pollinated angiosperms. The capacity to release pollen in wind can be viewed as a primary factor distinguishing animal- from wind-pollinated plants, and selection on traits such as the damping ratio and flexural rigidity may be of consequence in evolutionary transitions between pollination systems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2014-06-10
We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are
Observational consequences of a dark interaction model
Energy Technology Data Exchange (ETDEWEB)
Campos, M. de, E-mail: campos@if.uff.b [Roraima Federal University (UFRR), Paricarana, Boa Vista, RO (Brazil). Physics Dept.
2010-12-15
We study a model with decay of dark energy and creation of the dark matter particles. We integrate the field equations and find the transition redshift where the evolution process of the universe change the accelerated expansion, and discuss the luminosity distance, acoustic oscillations and the state finder parameters. (author)
Observational Consequences of Coronal Heating Mechanisms
Winebarger, Amy R.; Cirtain, Jonathan C.; Golub, Leon; Kobayashi, Ken
2014-01-01
The coronal heating problem remains unsolved today, 80 years after its discovery, despite 50 years of suborbital and orbital coronal observatories. Tens of theoretical coronal heating mechanisms have been suggested, but only a few have been able to be ruled out. In this talk, we will explore the reasons for the slow progress and discuss the measurements that will be needed for potential breakthrough, including imaging the solar corona at small spatial scales, measuring the chromospheric magnetic fields, and detecting the presence of high temperature, low emission measure plasma. We will discuss three sounding rocket instruments developed to make these measurements: the High resolution Resolution Coronal Imager (Hi-C), the Chromospheric Lyman-Alpha Spectropolarimeter (CLASP), and the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS).
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Turbulent dispersion of many particles
Pratt, J.; Busse, A.; Muller, W. C.
2017-12-01
We demonstrate the utility of the convex hull to analyze dispersion of groups of many Lagrangian tracer particles in turbulence. We examine dispersion in turbulent flows driven by convection, relevant to geophysical flows and the spread of contaminants in the atmosphere, and in turbulent flows affected by magnetic fields, relevant to stellar winds and stellar interiors. Convex hull analysis can provide new information about local dispersion, in the form of the surface area and volume for a cluster of particles. We use dispersive information to examine the local anisotropy that occurs in these turbulent settings, and to understand fundamental characteristics of heat transfer and the small-scale dynamo.
Atmospheric Turbulence Mitigation using Complex Wavelet-based Fusion
Anantrasirichai, N; Achim, Alin M; Kingsbury, Nick; Bull, David R
2013-01-01
Restoring a scene distorted by atmospheric turbulence is a challenging problem in video surveillance. The effect, caused by random, spatially varying, perturbations, makes a model-based solution difficult and in most cases, impractical. In this paper, we propose a novel method for mitigating the effects of atmospheric distortion on observed images, particularly airborne turbulence which can severely degrade a region of interest (ROI). In order to extract accurate detail about objects behind t...
Understanding turbulent free-surface vortex flows using a Taylor-Couette flow analogy.
Mulligan, Sean; De Cesare, Giovanni; Casserly, John; Sherlock, Richard
2018-01-16
Free-surface vortices have long been studied to develop an understanding of similar rotating flow phenomena observed in nature and technology. However, a complete description of its turbulent three-dimensional flow field still remains elusive. In contrast, the related Taylor-Couette flow system has been well explicated which classically exhibits successive instability phases manifested in so-called Taylor vortices. In this study, observations made on the turbulent free-surface vortex revealed distinguishable, time-dependent "Taylor-like" vortices in the secondary flow field similar to the Taylor-Couette flow system. The observations were enabled by an original application of 2D ultrasonic Doppler velocity profiling complemented with laser induced fluorescence dye observations. Additional confirmation was provided by three-dimensional numerical simulations. Using Rayleigh's stability criterion, we analytically show that a wall bounded free-surface vortex can indeed become unstable due to a centrifugal driving force in a similar manner to the Taylor-Couette flow. Consequently, it is proposed that the free-surface vortex can be treated analogously to the Taylor-Couette flow permitting advanced conclusions to be drawn on its flow structure and the various states of free-surface vortex flow stability.
Turbulent dispersion from line sources in grid turbulence
Viswanathan, Sharadha; Pope, Stephen B.
2008-10-01
Probability density function (PDF) calculations are reported for the dispersion from line sources in decaying grid turbulence. The calculations are performed using a modified form of the interaction by exchange with the conditional mean (IECM) mixing model. These flows pose a significant challenge to statistical models because the scalar length scale (of the initial plume) is much smaller than the turbulence integral scale. Consequently, this necessitates incorporating the effects of molecular diffusion in order to model laboratory experiments. Previously, Sawford [Flow Turb. Combust. 72, 133 (2004)] performed PDF calculations in conjunction with the IECM mixing model, modeling the effects of molecular diffusion as a random walk in physical space and using a mixing time scale empirically fit to the experimental data of Warhaft [J. Fluid Mech. 144, 363 (1984)]. The resulting transport equation for the scalar variance contains a spurious production term. In the present work, the effects of molecular diffusion are instead modeled by adding a conditional mean scalar drift term, thus avoiding the spurious production of scalar variance. A laminar wake model is used to obtain an analytic expression for the mixing time scale at small times, and this is used as part of a general specification of the mixing time scale. Based on this modeling, PDF calculations are performed, and comparison is made primarily with the experimental data of Warhaft on single and multiple line sources and with the previous calculations of Sawford. A heated mandoline is also considered with comparison to the experimental data of Warhaft and Lumley [J. Fluid Mech. 88, 659 (1978)]. This establishes the validity of the proposed model and the significant effect of molecular diffusion on the decay of scalar fluctuations. The following are the significant predictions of the model. For the line source, the effect of the source size is limited to early times and can be completely accounted for by simple
Turbulent regimes in the tokamak scrape-off layer
International Nuclear Information System (INIS)
Mosetto, A.
2014-01-01
The tokamak scrape-off layer (SOL) is the plasma region characterized by open field lines that start and end on the vessel walls. The plasma dynamics in the SOL plays a crucial role in determining the overall performance of a tokamak, since it controls the plasma-wall interactions, being responsible of exhausting the tokamak power, it regulates the overall plasma confinement, and it governs the plasma refueling and the removal of fusion ashes. Scrape-off layer physics is intrinsically non-linear and characterized by phenomena that occur on a wide range of spatio-temporal scales. Free energy sources drive a number of unstable modes that develop into turbulence and lead to transport of particles and heat across the magnetic field lines. Depending on the driving instability, different SOL turbulent regimes can be identified. As the SOL turbulent regimes determine the plasma confinement properties and the SOL width (and, consequently, the power flux on the vessel wall, for example), it is of crucial importance to understand which turbulent regimes are active in the SOL, under which conditions they develop, and which are the main properties of the associated turbulent transport. In the present thesis we define the SOL turbulent regimes, and we provide a framework to identify them, given the operational SOL parameters. Our study is based on the drift-reduced Braginskii equations and it is focused on a limited tokamak SOL configuration. We first describe the main SOL linear instabilities, such as the inertial and resistive branches of the drift waves, the resistive, inertial and ideal branches of the ballooning modes, and the ion temperature gradient mode. Then, we find the SOL turbulent regimes depending on the instability driving turbulent transport, assuming that turbulence saturates when the radial gradient associated to the pressure fluctuations is comparable to the equilibrium one. Our methodology for the turbulent regime identification is supported by the analysis
Marlton, Graeme; Harrison, Giles; Nicoll, Keri; Williams, Paul
2017-04-01
This work describes the instrument development, characterisation and data analysis from 51 radiosondes specially equipped with accelerometers to measure atmospheric turbulence. Turbulence is hazardous to aircraft as it cannot be observed in advance. It is estimated that turbulence costs the airline industry millions of US dollars a year through damage to aircraft and injuries to passengers and crew. To avoid turbulence pilots and passengers rely on Clear Air Turbulence forecasts, which have limited skill. One limitation in this area is lack of quantitative unbiased observations. The main source of turbulence observations is from commercial airline pilot reports, which are subjective, biased by the size of aircraft and pilot experience. This work seeks to improve understanding of turbulence through a standardised method of turbulence observations amenable throughout the troposphere. A sensing package has been developed to measure the acceleration of the radiosonde as it swings in response to turbulent agitation of its carrier balloon. The accelerometer radiosonde has been compared against multiple turbulence remote sensing methods to characterise its measurements including calibration with Doppler lidar eddy dissipation rate in the boundary layer. A further relationship has been found by comparison with the spectral width of a Mesospheric, Stratospheric and Tropospheric (MST) radar. From the full dataset of accelerometer sonde ascents a standard deviation of 5 m s-2 is defined as a threshold for significant turbulence. The dataset spans turbulence generated in meteorological phenomena such as jet streams, clouds and in the presence of convection. The analysis revealed that 77% of observed turbulence could be explained by the aforementioned phenomena. In jet streams, turbulence generation was often caused by horizontal processes such as deformation. In convection, turbulence is found to form when CAPE >150 J kg-1. Deeper clouds were found to be more turbulent due to
Aspects of atmospheric turbulence related to scintillometry
Braam, M.
2014-01-01
Aspects of atmospheric turbulence related to scintillometry Atmospheric turbulence is the main vertical transport mechanism in the atmospheric boundary layer. The surface fluxes related to this turbulent transport are the sensible (
DEFF Research Database (Denmark)
D'Angelo, N.; Pécseli, Hans; Petersen, P. I.
1974-01-01
Spectral measurements are reported of plasma turbulence in the Cs plasma of a Q device, modified to a magnetic cusp geometry. The excitation mechanism for the fluctuations appears to be the centrifugal instability discussed by Chen. A transition from an f−5 to an f−3 power spectrum is observed...... as one moves from the hot plates to the midplane of the cusp. ©1974 American Institute of Physics...
Improvements to a nonequilibrium algebraic turbulence model
Johnson, D. A.; Coakley, T. J.
1990-01-01
It has been noted that while the nonequilibrium turbulence model of Johnson and King (1985, 1987) performed significantly better than alternative methods, differences between predicted and observed shock locations for certain weak interactions are produced due to a defficiency in the model's inner eddy viscosity formulation. A novel formulation for the model is presented which removes this deficiency, while satisfying the law of the wall for adverse pressure-gradient conditions better than either the original formulation or mixing-length theory.
Intermittent Turbulence in the Very Stable Ekman Layer
Energy Technology Data Exchange (ETDEWEB)
Barnard, James C [Univ. of Washington, Seattle, WA (United States)
2001-01-01
This study describes a Direct Numerical Simulation (DNS) of a very stable Ekman layer in which a constant downward heat flux is applied at the lower boundary, thus cooling the fluid above. Numerical experiments were performed in which the strength of the imposed heat flux was varied. For downward heat fluxes above a certain critical value the turbulence becomes intermittent and, as the heat flux increases beyond this value, the flow tends to relaminarize because of the very strong ambient stratification. We adopt Mahrt?s (1999) definition of the very stable boundary layer as a boundary layer in which intermittent, rather than continuous turbulence, is observed. Numerical experiments were used to test various hypothesis of where in ?stability parameter space? the very stable boundary layer is found. These experiments support the findings of Howell and Sun (1999) that the boundary layer will exhibit intermittency and therefore be categorized as ?very stable?, when the stability parameter, z/L, exceeds unity. Another marker for the very stable boundary layer, Derbyshire?s (1990) maximum heat flux criterion, was also examined. Using a case study drawn from the simulations where turbulence intermittency was observed, the mechanism that causes the intermittence was investigated. It was found that patchy turbulence originates from a vigorous inflectional, Ekman-like instability -- a roll cell -- that lifts colder air over warmer air. The resulting convective instability causes an intense burst of turbulence. This turbulence is short-lived because the lifting motion of the roll cell, as well as the roll cell itself, is partially destroyed after the patchy turbulence is generated. Examples of intermittent turbulence obtained from the simulations appear to be consistent with observations of intermittency even though the Reynolds number of the DNS is relatively low (400).
Poludnenko, Alexei
2016-11-01
Turbulent reacting flows are pervasive both in our daily lives on Earth and in the Universe. They power modern society being at the heart of many energy generation and propulsion systems, such as gas turbines, internal combustion and jet engines. On astronomical scales, thermonuclear turbulent flames are the driver of some of the most powerful explosions in the Universe, knows as Type Ia supernovae. Despite this ubiquity in Nature, turbulent reacting flows still pose a number of fundamental questions often exhibiting surprising and unexpected behavior. In this talk, we will discuss several such phenomena observed in direct numerical simulations of high-speed, premixed, turbulent flames. We show that turbulent flames in certain regimes are intrinsically unstable even in the absence of the surrounding combustor walls or obstacles, which can support the thermoacoustic feedback. Such instability can fundamentally change the structure and dynamics of the turbulent cascade, resulting in a significant (and anisotropic) redistribution of kinetic energy from small to large scales. In particular, three effects are observed. 1) The turbulent burning velocity can develop pulsations with significant peak-to-peak amplitudes. 2) Unstable burning can result in pressure build-up and the formation of pressure waves or shocks when the flame speed approaches or exceeds the speed of a Chapman-Jouguet deflagration. 3) Coupling of pressure and density gradients across the flame can lead to the anisotropic generation of turbulence inside the flame volume and flame acceleration. We extend our earlier analysis, which relied on a simplified single-step reaction model, by demonstrating existence of these effects in realistic chemical flames (hydrogen and methane) and in thermonuclear flames in degenerate, relativistic plasmas found in stellar interiors. Finally, we discuss the implications of these results for subgrid-scale LES combustion models. This work was supported by the Air Force
Characterizing Ocean Turbulence from Argo, Acoustic Doppler, and Simulation Data
McCaffrey, Katherine
Turbulence is inherently chaotic and unsteady, so observing it and modeling it are no easy tasks. The ocean's sheer size makes it even more difficult to observe, and its unpredictable and ever-changing forcings introduce additional complexities. Turbulence in the oceans ranges from basin scale to the scale of the molecular viscosity. The method of energy transfer between scales is, however, an area of active research, so observations of the ocean at all scales are crucial to understanding the basic dynamics of its motions. In this collection of work, I use a variety of datasets to characterize a wide range of scales of turbulence, including observations from multiple instruments and from models with different governing equations. I analyzed the largest scales of the turbulent range using the global salinity data of the Argo profiling float network. Taking advantage of the scattered and discontinuous nature of this dataset, the second-order structure function was calculated down to 2000m depth, and shown to be useful for predicting spectral slopes. Results showed structure function slopes of 2/3 at small scales, and 0 at large scales, which corresponds with spectral slopes of -5/3 at small scales, and -1 at large scales. Using acoustic Doppler velocity measurements, I characterized the meter- to kilometer-scale turbulence at a potential tidal energy site in the Puget Sound, WA. Acoustic Doppler current profiler (ADCP) and acoustic Doppler velocimeter (ADV) observations provided the data for an analysis that includes coherence, anisotropy, and intermittency. In order to more simply describe these features, a parameterization was done with four turbulence metrics, and the anisotropy magnitude, introduced here, was shown to most closely capture the coherent events. Then, using both the NREL TurbSim stochastic turbulence generator and the NCAR large-eddy simulation (LES) model, I calculated turbulence statistics to validate the accuracy of these methods in reproducing
Conditional Eddies in Plasma Turbulence
DEFF Research Database (Denmark)
Johnsen, Helene; Pécseli, Hans; Trulsen, J.
1986-01-01
Conditional structures, or eddies, in turbulent flows are discussed with special attention to electrostatic turbulence in plasmas. The potential variation of these eddies is obtained by sampling the fluctuations only when a certain condition is satisfied in a reference point. The resulting...
Active turbulence in active nematics
Thampi, S. P.; Yeomans, J. M.
2016-07-01
Dense, active systems show active turbulence, a state characterised by flow fields that are chaotic, with continually changing velocity jets and swirls. Here we review our current understanding of active turbulence. The development is primarily based on the theory and simulations of active liquid crystals, but with accompanying summaries of related literature.
Advances in compressible turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.
1992-01-01
This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.
Magnetized Turbulent Dynamo in Protogalaxies
Energy Technology Data Exchange (ETDEWEB)
Leonid Malyshkin; Russell M. Kulsrud
2002-01-28
The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten times larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached.
The structure of turbulence in a rapid tidal flow.
Milne, I A; Sharma, R N; Flay, R G J
2017-08-01
The structure of turbulence in a rapid tidal flow is characterized through new observations of fundamental statistical properties at a site in the UK which has a simple geometry and sedate surface wave action. The mean flow at the Sound of Islay exceeded 2.5 m s -1 and the turbulent boundary layer occupied the majority of the water column, with an approximately logarithmic mean velocity profile identifiable close to the seabed. The anisotropic ratios, spectral scales and higher-order statistics of the turbulence generally agree well with values reported for two-dimensional open channels in the laboratory and other tidal channels, therefore providing further support for the application of universal models. The results of the study can assist in developing numerical models of turbulence in rapid tidal flows such as those proposed for tidal energy generation.
DRIVING TURBULENCE AND TRIGGERING STAR FORMATION BY IONIZING RADIATION
International Nuclear Information System (INIS)
Gritschneder, Matthias; Naab, Thorsten; Walch, Stefanie; Burkert, Andreas; Heitsch, Fabian
2009-01-01
We present high-resolution simulations on the impact of ionizing radiation of massive O stars on the surrounding turbulent interstellar medium (ISM). The simulations are performed with the newly developed software iVINE which combines ionization with smoothed particle hydrodynamics (SPH) and gravitational forces. We show that radiation from hot stars penetrates the ISM, efficiently heats cold low-density gas and amplifies overdensities seeded by the initial turbulence. The formation of observed pillar-like structures in star-forming regions (e.g. in M16) can be explained by this scenario. At the tip of the pillars gravitational collapse can be induced, eventually leading to the formation of low-mass stars. Detailed analysis of the evolution of the turbulence spectra shows that UV radiation of O stars indeed provides an excellent mechanism to sustain and even drive turbulence in the parental molecular cloud.
Log-Normal Turbulence Dissipation in Global Ocean Models
Pearson, Brodie; Fox-Kemper, Baylor
2018-03-01
Data from turbulent numerical simulations of the global ocean demonstrate that the dissipation of kinetic energy obeys a nearly log-normal distribution even at large horizontal scales O (10 km ) . As the horizontal scales of resolved turbulence are larger than the ocean is deep, the Kolmogorov-Yaglom theory for intermittency in 3D homogeneous, isotropic turbulence cannot apply; instead, the down-scale potential enstrophy cascade of quasigeostrophic turbulence should. Yet, energy dissipation obeys approximate log-normality—robustly across depths, seasons, regions, and subgrid schemes. The distribution parameters, skewness and kurtosis, show small systematic departures from log-normality with depth and subgrid friction schemes. Log-normality suggests that a few high-dissipation locations dominate the integrated energy and enstrophy budgets, which should be taken into account when making inferences from simplified models and inferring global energy budgets from sparse observations.
Intermittent heating of the solar corona by MHD turbulence
Directory of Open Access Journals (Sweden)
É. Buchlin
2007-10-01
Full Text Available As the dissipation mechanisms considered for the heating of the solar corona would be sufficiently efficient only in the presence of small scales, turbulence is thought to be a key player in the coronal heating processes: it allows indeed to transfer energy from the large scales to these small scales. While Direct numerical simulations which have been performed to investigate the properties of magnetohydrodynamic turbulence in the corona have provided interesting results, they are limited to small Reynolds numbers. We present here a model of coronal loop turbulence involving shell-models and Alfvén waves propagation, allowing the much faster computation of spectra and turbulence statistics at higher Reynolds numbers. We also present first results of the forward-modelling of spectroscopic observables in the UV.
Coherent structures, dissipation and intermittency in plasma turbulence
Wan, M.; Matthaeus, W. H.; Roytershteyn, V.; Parashar, T.; Shay, M. A.; Karimabadi, H.; Wu, P.
2015-12-01
The nature of collisionless dissipation in turbulent plasmas such as the solar wind and the solar corona has been hotly debated recently. Here we report results from high resolution, fully kinetic simulations of plasmas turbulence in both two and three dimensions. The simulations show development of turbulent coherent structures, characterized by sheet-like current density structures spanning a range of scales. Results from particle-in-cell (PIC) simulations are also compared with MHD simulations in terms of coherent structures, dissipation and intermittency. An important conclusion, for all simulations examined, is that the dissipation is concentrated in very small volumes, reminiscent of the scenario that motivates the Kolmogorov refined similarity hypothesis in hydrodynamic turbulence. Extrapolated to large heliospheric system sizes, this leads to the expectation of significant departures from heating processes that operate uniformly in space. Results from latest 3D driven PIC simulations, as well as the connection to solar wind observations, will also be discussed.
Turbulent flow through a wall subchannel of a rod bundle
International Nuclear Information System (INIS)
Rehme, K.
1978-04-01
The turbulent flow through a wall subchannel of a rod bundle was investigated experimentally by means of hotwires und Pitot-tubes. The aim of this investigation was to get experimental information on the transport properties of turbulent flow especially on the momentum transport. Detailed data were measured of the distributions of the time-mean velocity, the turbulence intensities and, hence the kinetic of turbulence, of the shear stresses in the directions normal and parallel to the walls, and of the wall shear stresses. The pitch-to-diameter ratio of the rods equal to the wall-to-diameter ratio was 1.15, the Reynolds number of this investigation was Re = 1.23.10 5 . On the basis of the measurements the eddy viscosities normal and parallel to the walls were calculated. The eddy viscosities observed showed a considerable deviation from the data known up-to-now and from the assumptions introduced in the codes. (orig.) [de
Energy partitioning constraints at kinetic scales in low-β turbulence
Gershman, Daniel J.; F.-Viñas, Adolfo; Dorelli, John C.; Goldstein, Melvyn L.; Shuster, Jason; Avanov, Levon A.; Boardsen, Scott A.; Stawarz, Julia E.; Schwartz, Steven J.; Schiff, Conrad; Lavraud, Benoit; Saito, Yoshifumi; Paterson, William R.; Giles, Barbara L.; Pollock, Craig J.; Strangeway, Robert J.; Russell, Christopher T.; Torbert, Roy B.; Moore, Thomas E.; Burch, James L.
2018-02-01
Turbulence is a fundamental physical process through which energy injected into a system at large scales cascades to smaller scales. In collisionless plasmas, turbulence provides a critical mechanism for dissipating electromagnetic energy. Here, we present observations of plasma fluctuations in low-β turbulence using data from NASA's Magnetospheric Multiscale mission in Earth's magnetosheath. We provide constraints on the partitioning of turbulent energy density in the fluid, ion-kinetic, and electron-kinetic ranges. Magnetic field fluctuations dominated the energy density spectrum throughout the fluid and ion-kinetic ranges, consistent with previous observations of turbulence in similar plasma regimes. However, at scales shorter than the electron inertial length, fluctuation power in electron kinetic energy significantly exceeded that of the magnetic field, resulting in an electron-motion-regulated cascade at small scales. This dominance is highly relevant for the study of turbulence in highly magnetized laboratory and astrophysical plasmas.
Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence
Energy Technology Data Exchange (ETDEWEB)
Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Bruno, R. [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy)
2017-02-01
The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed largely in the early 1990s, together with an important extension to inhomogeneous flows in 2010. Much of the focus in the earlier work was to understand the apparent incompressibility of the solar wind and other plasma environments, and the relationship of density fluctuations to apparently incompressible manifestations of turbulence in the solar wind and interstellar medium. Further important predictions about the “dimensionality” of solar wind turbulence and its relationship to the plasma beta were made and subsequently confirmed observationally. However, despite the initial success of NI MHD in describing fluctuations in the solar wind, a detailed application to solar wind turbulence has not been undertaken. Here, we use the equations of NI MHD to describe solar wind turbulence, rewriting the NI MHD system in terms of Elsässer variables. Distinct descriptions of 2D and slab turbulence emerge naturally from the Elsässer formulation, as do the nonlinear couplings between 2D and slab components. For plasma beta order 1 or less regions, predictions for 2D and slab spectra result from the NI MHD description, and predictions for the spectral characteristics of density fluctuations can be made. We conclude by presenting a NI MHD formulation describing the transport of majority 2D and minority slab turbulence throughout the solar wind. A preliminary comparison of theory and observations is presented.
A New Look at Some Solar Wind Turbulence Puzzles
Roberts, Aaron
2006-01-01
Some aspects of solar wind turbulence have defied explanation. While it seems likely that the evolution of Alfvenicity and power spectra are largely explained by the shearing of an initial population of solar-generated Alfvenic fluctuations, the evolution of the anisotropies of the turbulence does not fit into the model so far. A two-component model, consisting of slab waves and quasi-two-dimensional fluctuations, offers some ideas, but does not account for the turning of both wave-vector-space power anisotropies and minimum variance directions in the fluctuating vectors as the Parker spiral turns. We will show observations that indicate that the minimum variance evolution is likely not due to traditional turbulence mechanisms, and offer arguments that the idea of two-component turbulence is at best a local approximation that is of little help in explaining the evolution of the fluctuations. Finally, time-permitting, we will discuss some observations that suggest that the low Alfvenicity of many regions of the solar wind in the inner heliosphere is not due to turbulent evolution, but rather to the existence of convected structures, including mini-clouds and other twisted flux tubes, that were formed with low Alfvenicity. There is still a role for turbulence in the above picture, but it is highly modified from the traditional views.
The poloidal distribution of turbulent fluctuations in the Mega-Ampere Spherical Tokamak
International Nuclear Information System (INIS)
Antar, G.Y.; Counsell, G.; Ahn, J.-W.; Yang, Y.; Price, M.; Tabasso, A.; Kirk, A.
2005-01-01
Recently, it was shown that intermittency observed in magnetic fusion devices is caused by large-scales events with high radial velocity reaching about 1/10th of the sound speed (called avaloids or blobs) [G. Antar et al., Phys. Rev. Lett. 87 065001 (2001)]. In the present paper, the poloidal distribution of turbulence is investigated on the Mega-Ampere Spherical Tokamak [A. Sykes et al., Phys. Plasmas 8 2101 (2001)]. To achieve our goal, target probes that span the divertor strike points are used and one reciprocating probe at the midplane. Moreover, a fast imaging camera that can reach 10 μs exposure time looks tangentially at the plasma allowing us to view a poloidal cut of the plasma. The two diagnostics allow us to have a rather accurate description of the particle transport in the poloidal plane for L-mode discharges. Turbulence properties at the low-field midplane scrape-off layer are discussed and compared to other poloidal positions. On the low-field target divertor plates, avaloids bursty signature is not detected but still intermittency is observed far from the strike point. This is a consequence of the field line expansion which transforms a structure localized in the poloidal plane into a structure which expands over several tens of centimeters at the divertor target plates. Around the X point and in the high-field side, however, different phenomena enter into play suppressing the onset of convective transport generation. No signs of intermittency are observed in these regions. Accordingly, like 'normal' turbulence, the onset of convective transport is affected by the local magnetic curvature and shear
Turbulent premixed flames on fractal-grid-generated turbulence
Soulopoulos, N.; Kerl, J.; Sponfeldner, T.; Beyrau, F.; Hardalupas, Y.; Taylor, A. M. K. P.; Vassilicos, J. C.
2013-12-01
A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area.
On the structure of acceleration in turbulence
DEFF Research Database (Denmark)
Liberzon, A.; Lüthi, B.; Holzner, M.
2012-01-01
Acceleration and spatial velocity gradients are obtained simultaneously in an isotropic turbulent flow via three dimensional particle tracking velocimetry. We observe two distinct populations of intense acceleration events: one in flow regions of strong strain and another in regions of strong...... vorticity. Geometrical alignments with respect to vorticity vector and to the strain eigenvectors, curvature of Lagrangian trajectories and of streamlines for total acceleration, and for its convective part, , are studied in detail. We discriminate the alignment features of total and convective acceleration...... statistics, which are genuine features of turbulent nature from those of kinematic nature. We find pronounced alignment of acceleration with vorticity. Similarly, and especially are predominantly aligned at 45°with the most stretching and compressing eigenvectors of the rate of the strain tensor...
Active Control for Statistically Stationary Turbulent PremixedFlame Simulations
Energy Technology Data Exchange (ETDEWEB)
Bell, J.B.; Day, M.S.; Grcar, J.F.; Lijewski, M.J.
2005-08-30
The speed of propagation of a premixed turbulent flame correlates with the intensity of the turbulence encountered by the flame. One consequence of this property is that premixed flames in both laboratory experiments and practical combustors require some type of stabilization mechanism to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. Furthermore, the stabilization introduces additional fluid mechanical complexity into the overall combustion process that can complicate the analysis of fundamental flame properties. To circumvent these difficulties we introduce a feedback control algorithm that allows us to computationally stabilize a turbulent premixed flame in a simple geometric configuration. For the simulations, we specify turbulent inflow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm on methane flames at various equivalence ratios in two dimensions. The simulation data are used to study the local variation in the speed of propagation due to flame surface curvature.
Issues in direct numerical simulation of plasma turbulence and transport
Thyagaraja, A.; Arter, W.; Haas, F. A.
1991-04-01
The problem of direct numerical simulation of plasma turbulence in magnetic confinement systems such as a tokamak is important in gaining a theoretical understanding of anomalous transport of particles, energy, momentum and impurities in such systems. Two approaches to this question are being developed. The design philosophy and the basic numerical problems encountered and solved in the construction of a two-fluid, 3-D, electro-magnetic, finite difference, time evolution code, CUTIE, are outlined. The importance of qualitative consistency, time-reversal, conservation properties, phase mixing, and boundary conditions are illustrated in the context of both passive and active electrostatic turbulence. A separate study was undertaken to aid in the understanding of drift wave turbulence in tokamak plasmas. In this connection a 3-D, time-dependant, electrostatic drift wave code called DRIFT was written. This has features which take account of toroidicity, non-adiabaticity and magnetic shear. The resulting code is very flexible, and was used to solve the Hasegawa-Mima equation efficiently in 2-D. Results from time-dependant, 3-D calculation run on a Cray-2 are presented. The aim is to obtain a proper physical understanding of plasma turbulence in typical tokamak conditions by calculating the power spectra of the turbulent fluctuations and their transport consequences. It is believed that this can only be achieved by a step-by-step approach to the numerics, making sure that the calculated effects represent genuine physics and are not mere artifacts of the numerical simulation.
Cognitive Consequences of Trilingualism.
Schroeder, Scott R; Marian, Viorica
2017-01-01
The objectives of the present research were to examine the cognitive consequences of trilingualism and explain them relative to the cognitive consequences of bilingualism. A comparison of cognitive abilities in trilinguals and bilinguals was conducted. In addition, we proposed a cognitive plasticity framework to account for cognitive differences and similarities between trilinguals and bilinguals. Three aspects of cognition were analyzed: (1) cognitive reserve in older adults, as measured by age of onset of Alzheimer's disease and mild cognitive impairment; (2) inhibitory control in children and younger adults, as measured by response times on behavioral Simon and flanker tasks; and (3) memory generalization in infants and toddlers, as measured by accuracy on behavioral deferred imitation tasks. Results were considered within a framework of cognitive plasticity, which took into account several factors that may affect plasticity, including the age of learning a third language and the extent to which additional cognitive resources are needed to learn the third language. A mixed pattern of results was observed. In some cases, such as cognitive reserve in older adults, trilinguals showed larger advantages than bilinguals. On other measures, for example inhibitory control in children and younger adults, trilinguals were found to exhibit the same advantages as bilinguals. In still other cases, like memory generalization in infants and toddlers, trilinguals did not demonstrate the advantages seen in bilinguals. This study is the first comprehensive analysis of how learning a third language affects the cognitive abilities that are modified by bilingual experience, and the first to propose a cognitive plasticity framework that can explain and predict trilingual-bilingual differences. This research shows that the cognitive consequences of trilingualism are not simply an extension of bilingualism's effects; rather, trilingualism has distinct consequences, with theoretical
Turbulent deflagrations, autoignitions, and detonations
Bradley, Derek
2012-09-01
Measurements of turbulent burning velocities in fan-stirred explosion bombs show an initial linear increase with the fan speed and RMS turbulent velocity. The line then bends over to form a plateau of high values around the maximum attainable burning velocity. A further increase in fan speed leads to the eventual complete quenching of the flame due to increasing localised extinctions because of the flame stretch rate. The greater the Markstein number, the more readily does flame quenching occur. Flame propagation along a duct closed at one end, with and without baffles to increase the turbulence, is subjected to a one-dimensional analysis. The flame, initiated at the closed end of the long duct, accelerates by the turbulent feedback mechanism, creating a shock wave ahead of it, until the maximum turbulent burning velocity for the mixture is attained. With the confining walls, the mixture is compressed between the flame and the shock plane up to the point where it might autoignite. This can be followed by a deflagration to detonation transition. The maximum shock intensity occurs with the maximum attainable turbulent burning velocity, and this defines the limit for autoignition of the mixture. For more reactive mixtures, autoignition can occur at turbulent burning velocities that are less than the maximum attainable one. Autoignition can be followed by quasi-detonation or fully developed detonation. The stability of ensuing detonations is discussed, along with the conditions that may lead to their extinction. © 2012 by Pleiades Publishing, Ltd.
Numerical methods for turbulent flow
Turner, James C., Jr.
1988-01-01
It has generally become accepted that the Navier-Strokes equations predict the dynamic behavior of turbulent as well as laminar flows of a fluid at a point in space away form a discontinuity such as a shock wave. Turbulence is also closely related to the phenomena of non-uniqueness of solutions of the Navier-Strokes equations. These second order, nonlinear partial differential equations can be solved analytically for only a few simple flows. Turbulent flow fields are much to complex to lend themselves to these few analytical methods. Numerical methods, therefore, offer the only possibility of achieving a solution of turbulent flow equations. In spite of recent advances in computer technology, the direct solution, by discrete methods, of the Navier-Strokes equations for turbulent flow fields is today, and in the foreseeable future, impossible. Thus the only economically feasible way to solve practical turbulent flow problems numerically is to use statistically averaged equations governing mean-flow quantities. The objective is to study some recent developments relating to the use of numerical methods to study turbulent flow.
International Nuclear Information System (INIS)
Pomeau, Y.
1981-07-01
In this work it is reviewed a few known types of transition to turbulence, as the cascade of period doubling and the intermittent transition. This happens in dynamical systems with a few degrees of freedom, as modelled by the iteration of non linear maps. Then it is presented specific transitions for systems with many degrees of freedom. It is condidered first the occurence of a low frequency broadband noise in large cells at the onset of Rayleigh-Benard convection; then the transition by intermittent bursts in parallel flows. In this last case, one is concerned with localized and finite amplitude perturbations. Simple geometric arguments show that these fluctuations, when they are isolated and with a well definite relative speed, exist for a single value of the Reynolds number only [fr
Strategic thinking in turbulent times
Directory of Open Access Journals (Sweden)
Bratianu Constantin
2017-07-01
Full Text Available The purpose of this paper is to present a structural analysis of strategic thinking spectrum in turbulent times. Business excellence cannot be achieved without a well-defined strategic thinking spectrum able to elaborate and implement strategies in a fast changeable and unpredictable business environment. Strategic thinking means to think for a desirable future which can be ahead 4-5 years of the present time and to make decisions to the best of our knowledge for that unknown business environment. Thus, the research question is: How can we conceive the spectrum of strategic thinking such that we shall be able to deal with a complex and unknown future in achieving a competitive advantage? The methodology used to answer this question is based on metaphorical thinking, and multidimensional analysis. I shall consider four main dimensions: time, complexity, uncertainty, and novelty. On each of these dimensions I shall analyze the known thinking models and their attributes with respect to request formulated in the research question. Then, I shall choose those thinking models that correspond to the future characteristics and integrate them in a continuous spectrum. On each dimension I shall consider three basic thinking models. On the time dimension they are: inertial, dynamic and entropic thinking. On the complexity dimension they are: linear, nonlinear and systemic thinking. On the uncertainty dimension they are: deterministic, probabilistic and chaotic thinking. Finally, on the novelty dimension we have: template, intelligent and creative thinking. Considering all requirements for the unknown future, we conclude that strategic thinking spectrum should contain: entropic, nonlinear and systemic, probabilistic and chaotic, intelligent and creative thinking models. Such a spectrum increases the capacity of our understanding and as a consequence it enhances the capability of making adequate decisions in conditions of complexity and uncertainty.
Statistical properties of turbulence: An overview
Indian Academy of Sciences (India)
the turbulent advection of passive scalars, turbulence in the one-dimensional Burgers equation, and fluid turbulence in the presence of polymer ... However, it is not easy to state what would consti- tute a solution of the turbulence ...... flow with Lagrangian tracers and use a cubic spline interpolation method to calculate their ...
Wind energy impact of turbulence
Hölling, Michae; Ivanell, Stefan
2014-01-01
This book presents the results of the seminar ""Wind Energy and the Impact of Turbulence on the Conversion Process"" which was supported from three societies, namely the EUROMech, EAWE and ERCOFATC and took place in Oldenburg, Germany in spring 2012.The seminar was one of the first scientific meetings devoted to the common topic of wind energy and basic turbulence. The established community of researchers working on the challenging puzzle of turbulence for decades met the quite young community of researchers, who face the upcoming challenges in the fast growing field of wind energy application
Turbulence via information field dynamics
Ensslin, Torsten A.
2015-08-01
Turbulent flows exhibit-scale free regimes, for which information on the statistical properties of the dynamics exists for many length-scales. The simulation of turbulent systems can benefit from the inclusion of such information on sub-grid process. How can statistical information about the flow on small scales be optimally be incorporated into simulation schemes? Information field dynamics (IFD) is a novel information theoretical framework to design schemes that exploit such statistical knowledge on sub-grid flow fluctuations. In this talk, I will introduce the basic idea of IFD, present its first toy applications, and discuss the next steps towards its usage in complex turbulence simulations.
On Lean Turbulent Combustion Modeling
Directory of Open Access Journals (Sweden)
Constantin LEVENTIU
2014-06-01
Full Text Available This paper investigates a lean methane-air flame with different chemical reaction mechanisms, for laminar and turbulent combustion, approached as one and bi-dimensional problem. The numerical results obtained with Cantera and Ansys Fluent software are compared with experimental data obtained at CORIA Institute, France. First, for laminar combustion, the burn temperature is very well approximated for all chemical mechanisms, however major differences appear in the evaluation of the flame front thickness. Next, the analysis of turbulence-combustion interaction shows that the numerical predictions are suficiently accurate for small and moderate turbulence intensity.
Limits on the ions temperature anisotropy in turbulent intracluster medium
Energy Technology Data Exchange (ETDEWEB)
Santos-Lima, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Yan, H. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Gouveia Dal Pino, E.M. de [Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Lazarian, A. [Wisconsin Univ., Madison, WI (United States). Dept. of Astronomy
2016-05-15
Turbulence in the weakly collisional intracluster medium of galaxies (ICM) is able to generate strong thermal velocity anisotropies in the ions (with respect to the local magnetic field direction), if the magnetic moment of the particles is conserved in the absence of Coulomb collisions. In this scenario, the anisotropic pressure magnetohydrodynamic (AMHD) turbulence shows a very different statistical behaviour from the standard MHD one and is unable to amplify seed magnetic fields, in disagreement with previous cosmological MHD simulations which are successful to explain the observed magnetic fields in the ICM. On the other hand, temperature anisotropies can also drive plasma instabilities which can relax the anisotropy. This work aims to compare the relaxation rate with the growth rate of the anisotropies driven by the turbulence. We employ quasilinear theory to estimate the ions scattering rate due to the parallel firehose, mirror, and ion-cyclotron instabilities, for a set of plasma parameters resulting from AMHD simulations of the turbulent ICM. We show that the ICM turbulence can sustain only anisotropy levels very close to the instabilities thresholds. We argue that the AMHD model which bounds the anisotropies at the marginal stability levels can describe the Alfvenic turbulence cascade in the ICM.
What is turbulence and which way does it cascade?
Gibson, Carl
2017-11-01
Turbulence is defined as an eddy-like state of fluid motion, where the inertial vortex forces v x curl v of the eddies are larger than any other forces that tend to damp the eddies out. In the beginning at Planck conditions, it is assumed that the relevant dimensional parameters were the speed of light c, the Planck constant h, the Newton constant G, and the Boltzmann constant k. The first turbulence appeared at 10-43 s, 10-35 m, 1032 K when the Kolmogorov scale first matched the horizon scale ct. Inertial vortex forces of adjacent fluid particles with the same spin cause them to merge, so the turbulence cascade is always from small scales to large, as observed, contrary to the standard Taylor-Lumley model which must be abandoned. Adjacent fluid particles with opposite spin repel each other and are repelled by walls, which explains boundary layer separation and turbulent diffusion. The second turbulence appeared at 1012 seconds at density 10-17 kg m-3 with the fragmentation of protogalaxies along fossil big bang turbulence vortex lines. Life began at 1013 seconds in Jeans mass clumps of a trillion planets.
ON THE GRAVITATIONAL STABILITY OF GRAVITO-TURBULENT ACCRETION DISKS
Energy Technology Data Exchange (ETDEWEB)
Lin, Min-Kai; Kratter, Kaitlin M., E-mail: minkailin@email.arizona.edu [Department of Astronomy and Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)
2016-06-20
Low mass, self-gravitating accretion disks admit quasi-steady, “gravito-turbulent” states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support; and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity, and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ∼60 au dynamically unstable on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state itself.
Damköhler number effects on soot formation and growth in turbulent nonpremixed flames
Attili, Antonio
2015-01-01
The effect of Damköhler number on turbulent nonpremixed sooting flames is investigated via large scale direct numerical simulation in three-dimensional n-heptane/air jet flames at a jet Reynolds number of 15,000 and at three different Damköhler numbers. A reduced chemical mechanism, which includes the soot precursor naphthalene, and a high-order method of moments are employed. At the highest Damköhler number, local extinction is negligible, while flames holes are observed in the two lowest Damköhler number cases. Compared to temperature and other species controlled by fuel oxidation chemistry, naphthalene is found to be affected more significantly by the Damköhler number. Consequently, the overall soot mass fraction decreases by more than one order of magnitude for a fourfold decrease of the Damköhler number. On the contrary, the overall number density of soot particles is approximately the same, but its distribution in mixture fraction space is different in the three cases. The total soot mass growth rate is found to be proportional to the Damköhler number. In the two lowest Da number cases, soot leakage across the flame is observed. Leveraging Lagrangian statistics, it is concluded that soot leakage is due to patches of soot that cross the stoichiometric surface through flame holes. These results show the leading order effects of turbulent mixing in controlling the dynamics of soot in turbulent flames. © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Potential landscape and flux field theory for turbulence and nonequilibrium fluid systems
Wu, Wei; Zhang, Feng; Wang, Jin
2018-02-01
Turbulence is a paradigm for far-from-equilibrium systems without time reversal symmetry. To capture the nonequilibrium irreversible nature of turbulence and investigate its implications, we develop a potential landscape and flux field theory for turbulent flow and more general nonequilibrium fluid systems governed by stochastic Navier-Stokes equations. We find that equilibrium fluid systems with time reversibility are characterized by a detailed balance constraint that quantifies the detailed balance condition. In nonequilibrium fluid systems with nonequilibrium steady states, detailed balance breaking leads directly to a pair of interconnected consequences, namely, the non-Gaussian potential landscape and the irreversible probability flux, forming a 'nonequilibrium trinity'. The nonequilibrium trinity characterizes the nonequilibrium irreversible essence of fluid systems with intrinsic time irreversibility and is manifested in various aspects of these systems. The nonequilibrium stochastic dynamics of fluid systems including turbulence with detailed balance breaking is shown to be driven by both the non-Gaussian potential landscape gradient and the irreversible probability flux, together with the reversible convective force and the stochastic stirring force. We reveal an underlying connection of the energy flux essential for turbulence energy cascade to the irreversible probability flux and the non-Gaussian potential landscape generated by detailed balance breaking. Using the energy flux as a center of connection, we demonstrate that the four-fifths law in fully developed turbulence is a consequence and reflection of the nonequilibrium trinity. We also show how the nonequilibrium trinity can affect the scaling laws in turbulence.
Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence
DEFF Research Database (Denmark)
Priego, M.; Garcia, O.E.; Naulin, V.
2005-01-01
The turbulent transport of impurity particles in plasma edge turbulence is investigated. The impurities are modeled as a passive fluid advected by the electric and polarization drifts, while the ambient plasma turbulence is modeled using the two-dimensional Hasegawa-Wakatani paradigm for resistive......-diffusion analysis of the evolution of impurity puffs. Additional effects appear for inertial impurities as a consequence of compressibility. First, the density of inertial impurities is found to correlate with the vorticity of the electric drift velocity, that is, impurities cluster in vortices of a precise...
Ambient and Wake Turbulence Measurements at Marine Energy Sites from a Five Beam AD2CP
Guerra, M. A.; Thomson, J. M.
2016-02-01
Ambient turbulence at hydrokinetic energy sites is a key input for turbine design and for their performance determination. Added turbulence from rotating blades to the flow affects the environment surrounding the turbine and has an impact in turbine array distribution. We present two approaches of turbulence measurements: stationary and drifting. Stationary measurements allow for time and frequency analysis of turbulent velocities, while drifting measurements give a spatial characterization of turbulence. For both approaches we used the new five beam Nortek Signature AD2CP. This instrument captures turbulent flow along the water column at high sampling rates (8 Hz) with low Doppler noise level; the use of five beams also makes it possible to fully calculate the Reynolds Stresses. Both sets of measurements require Doppler noise removal for consistent results. Stationary measurements of ambient turbulence were carried out in Admiralty Inlet, WA, in May 2015. The Signature was deployed up looking on a sea spider tripod in a 50 m depth tidal channel during two tidal cycles. This data set allowed us to characterize the turbulence in terms of spectra and Reynolds Stresses in order to evaluate the turbulent kinetic energy balance along the water column and to compare results to other tidal energy sites with similar characteristics where turbulence measurements were taken as well. Drifting measurements of ambient and wake turbulence were conducted in the vicinity of the ORPC RivGen® turbine deployed on the Kvichak River in Alaska in July 2015. The Signature was mounted down looking onboard an anchor buoy equipped with two GPS data receivers for georefference. The cross-sectional river span was covered by releasing the drifter at different positions across the river. More than 300 drifts were performed to spatially characterize turbulence before and after turbine's deployment and grid connection. Results indicate an increased turbulent wake extending up to 75 m downstream
EVOLUTION OF SHOCKS AND TURBULENCE IN MAJOR CLUSTER MERGERS
International Nuclear Information System (INIS)
Paul, S.; Mannheim, K.; Iapichino, L.; Miniati, F.; Bagchi, J.
2011-01-01
We performed a set of cosmological simulations of major mergers in galaxy clusters, in order to study the evolution of merger shocks and the subsequent injection of turbulence in the post-shock region and in the intra-cluster medium (ICM). The computations have been performed with the grid-based, adaptive mesh refinement hydrodynamical code Enzo, using a refinement criterion especially designed for refining turbulent flows in the vicinity of shocks. When a major merger event occurs, a substantial amount of turbulence energy is injected in the ICM of the newly formed cluster. Our simulations show that the shock launched after a major merger develops an ellipsoidal shape and gets broken by the interaction with the filamentary cosmic web around the merging cluster. The size of the post-shock region along the direction of shock propagation is of the order of 300 kpc h -1 , and the turbulent velocity dispersion in this region is larger than 100 km s -1 . We performed a scaling analysis of the turbulence energy within our cluster sample. The best fit for the scaling of the turbulence energy with the cluster mass is consistent with M 5/3 , which is also the scaling law for the thermal energy in the self-similar cluster model. This clearly indicates the close relation between virialization and injection of turbulence in the cluster evolution. As for the turbulence in the cluster core, we found that within 2 Gyr after the major merger (the timescale for the shock propagation in the ICM), the ratio of the turbulent to total pressure is larger than 10%, and after about 4 Gyr it is still larger than 5%, a typical value for nearly relaxed clusters. Turbulence at the cluster center is thus sustained for several gigayears, which is substantially longer than typically assumed in the turbulent re-acceleration models, invoked to explain the statistics of observed radio halos. Striking similarities in the morphology and other physical parameters between our simulations and the
The effect of fan-induced turbulence on the combustion of hydrogen-air mixtures
International Nuclear Information System (INIS)
Kumar, R.K.; Tamm, H.
1984-01-01
The effect of fan-induced turbulence on the combustion of hydrogen-air mixtures has been studied in a 2.3-m diameter sphere over a hydrogen concentration range of 4 to 42% (by volume). Two fans were used to produce the turbulence, which was measured at various lacations by hot-wire anemometry. For low hydrogen concentrations (< 7%), turbulence increases the rate and extent of combustion; for large turbulence intensities the extent of combustion approaches 100%, and combustion times are reduced by factors of 8 to 10 from those observed under quiescent conditions. At high hydrogen concentrations, the effect of turbulence on combustion time is less pronounced than at low hydrogen concentrations. Flame-generated turbulence has a significant effect on the combustion rate. (orig.)
Absorption of turbulent laser plasma radiation
International Nuclear Information System (INIS)
Silin, V.P.
1979-02-01
Some theoretical results relating to the interaction of high-power laser radiation with a plasma are presented including the development of a theory of parametric instabilities in an inhomogeneous laser plasma which shows that the size of the spatial region in which the turbulent state develops is comparable with the characteristic dimension of a several-fold fluctuation in the plasma density close to its critical value. The conditions are identified under which parametric turbulence gives an anomalous effective collision frequency substantially greater than the normal electron-ion collision frequency. Even during the build-up of strong parametric turbulence, conditions are found for the development of anomalous dissipation which results in heating of the bulk of the electrons. Under opposite conditions, the dynamic behaviour due to the influence of the ponderomotive forces associated with the p component of the radiation field shows that under slow plasma flow conditions, a considerable proportion of the laser energy absorbed by the plasma is transferred to the fast electrons. Suppression of the Cherenkov mechanism for generation of the fast electron component is observed on transition to fast plasma flow conditions. (author)
Negative probability of random multiplier in turbulence
Bai, Xuan; Su, Weidong
2017-11-01
The random multiplicative process (RMP), which has been proposed for over 50 years, is a convenient phenomenological ansatz of turbulence cascade. In the RMP, the fluctuation in a large scale is statistically mapped to the one in a small scale by the linear action of an independent random multiplier (RM). Simple as it is, the RMP is powerful enough since all of the known scaling laws can be included in this model. So far as we know, however, a direct extraction for the probability density function (PDF) of RM has been absent yet. The reason is the deconvolution during the process is ill-posed. Nevertheless, with the progress in the studies of inverse problems, the situation can be changed. By using some new regularization techniques, for the first time we recover the PDFs of the RMs in some turbulent flows. All the consistent results from various methods point to an amazing observation-the PDFs can attain negative values in some intervals; and this can also be justified by some properties of infinitely divisible distributions. Despite the conceptual unconventionality, the present study illustrates the implications of negative probability in turbulence in several aspects, with emphasis on its role in describing the interaction between fluctuations at different scales. This work is supported by the NSFC (No. 11221062 and No. 11521091).
Modeling the Emission from Turbulent Relativistic Jets in Active ...
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... We present a numerical model developed to calculate observed fluxes of relativistic jets in active galactic nuclei. The observed flux of each turbulent eddy is dependent upon its variable Doppler boosting factor, computed as a function of the relativistic sum of the individual eddy and bulk jet velocities, and ...
Measurements of Turbulent Convection Speeds in Multistream Jets Using Time-Resolved PIV
Bridges, James; Wernet, Mark P.
2017-01-01
Convection speeds of turbulent velocities in jets, including multi-stream jets with and without flight stream, were measured using an innovative application of time-resolved particle image velocimetry. The paper describes the unique instrumentation and data analysis that allows the measurement to be made. Extensive data is shown that relates convection speed, mean velocity, and turbulent velocities for multiple jet cases. These data support the overall observation that the local turbulent convection speed is roughly that of the local mean velocity, biased by the relative intensity of turbulence.
Measurements of Turbulence Convection Speeds in Multistream Jets Using Time-Resolved PIV
Bridges, James; Wernet, Mark P.
2017-01-01
Convection speeds of turbulent velocities in jets, including multi-stream jets with and without flight stream, were measured using an innovative application of time-resolved particle image velocimetry. The paper describes the unique instrumentation and data analysis that allows the measurement to be made. Extensive data is shown that relates convection speed, mean velocity, and turbulent velocities for multiple jet cases. These data support the overall observation that the local turbulent convection speed is roughly that of the local mean velocity, biased by the relative intensity of turbulence.
Stochastic differential equations and turbulent dispersion
Durbin, P. A.
1983-01-01
Aspects of the theory of continuous stochastic processes that seem to contribute to an understanding of turbulent dispersion are introduced and the theory and philosophy of modelling turbulent transport is emphasized. Examples of eddy diffusion examined include shear dispersion, the surface layer, and channel flow. Modeling dispersion with finite-time scale is considered including the Langevin model for homogeneous turbulence, dispersion in nonhomogeneous turbulence, and the asymptotic behavior of the Langevin model for nonhomogeneous turbulence.
Universal equations and constants of turbulent motion
Baumert, H. Z.
2013-07-01
This paper presents a parameter-free theory of shear-generated turbulence at asymptotically high Reynolds numbers in incompressible fluids. It is based on a two-fluids concept. Both components are materially identical and inviscid. The first component is an ensemble of quasi-rigid dipole-vortex tubes (vortex filaments, excitations) as quasi-particles in chaotic motion. The second is a superfluid performing evasive motions between the tubes. The local dipole motions follow Helmholtz' law. The vortex radii scale with the energy-containing length scale. Collisions between quasi-particles lead either to annihilation (likewise rotation, turbulent dissipation) or to scattering (counterrotation, turbulent diffusion). There are analogies with birth and death processes of population dynamics and their master equations and with Landau's two-fluid theory of liquid helium. For free homogeneous decay the theory predicts the turbulent kinetic energy to follow t-1. With an adiabatic wall condition it predicts the logarithmic law with von Kármán's constant as 1/\\sqrt {2\\,\\pi }= 0.399 . Likewise rotating couples form localized dissipative patches almost at rest (→ intermittency) wherein under local quasi-steady conditions the spectrum evolves into an ‘Apollonian gear’ as discussed first by Herrmann (1990 Correlation and Connectivity (Dordrecht: Kluwer) pp 108-20). Dissipation happens exclusively at scale zero and at finite scales this system is frictionless and reminds of Prigogine's (1947 Etude Thermodynamique des Phenomenes Irreversibles (Liege: Desoer) p 143) law of minimum (here: zero) entropy production. The theory predicts further the prefactor of the 3D-wavenumber spectrum (a Kolmogorov constant) as \\frac {1}{3}(4\\,\\pi )^{2/3}=1.802 , well within the scatter range of observational, experimental and direct numerical simulation results.
Dhariwal, Rohit; Bragg, Andrew D.
2018-03-01
In this paper, we consider how the statistical moments of the separation between two fluid particles grow with time when their separation lies in the dissipation range of turbulence. In this range, the fluid velocity field varies smoothly and the relative velocity of two fluid particles depends linearly upon their separation. While this may suggest that the rate at which fluid particles separate is exponential in time, this is not guaranteed because the strain rate governing their separation is a strongly fluctuating quantity in turbulence. Indeed, Afik and Steinberg [Nat. Commun. 8, 468 (2017), 10.1038/s41467-017-00389-8] argue that there is no convincing evidence that the moments of the separation between fluid particles grow exponentially with time in the dissipation range of turbulence. Motivated by this, we use direct numerical simulations (DNS) to compute the moments of particle separation over very long periods of time in a statistically stationary, isotropic turbulent flow to see if we ever observe evidence for exponential separation. Our results show that if the initial separation between the particles is infinitesimal, the moments of the particle separation first grow as power laws in time, but we then observe convincing evidence that at sufficiently long times the moments do grow exponentially. However, this exponential growth is only observed after extremely long times ≳200 τη , where τη is the Kolmogorov time scale. This is due to fluctuations in the strain rate about its mean value measured along the particle trajectories, the effect of which on the moments of the particle separation persists for very long times. We also consider the backward-in-time (BIT) moments of the article separation, and observe that they too grow exponentially in the long-time regime. However, a dramatic consequence of the exponential separation is that at long times the difference between the rate of the particle separation forward in time (FIT) and BIT grows
Premixed autoignition in compressible turbulence
Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline
2016-11-01
Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.
Structure and modeling of turbulence
International Nuclear Information System (INIS)
Novikov, E.A.
1995-01-01
The open-quotes vortex stringsclose quotes scale l s ∼ LRe -3/10 (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES)
Energy transfer in compressible turbulence
Bataille, Francoise; Zhou, YE; Bertoglio, Jean-Pierre
1995-01-01
This letter investigates the compressible energy transfer process. We extend a methodology developed originally for incompressible turbulence and use databases from numerical simulations of a weak compressible turbulence based on Eddy-Damped-Quasi-Normal-Markovian (EDQNM) closure. In order to analyze the compressible mode directly, the well known Helmholtz decomposition is used. While the compressible component has very little influence on the solenoidal part, we found that almost all of the compressible turbulence energy is received from its solenoidal counterpart. We focus on the most fundamental building block of the energy transfer process, the triadic interactions. This analysis leads us to conclude that, at low turbulent Mach number, the compressible energy transfer process is dominated by a local radiative transfer (absorption) in both inertial and energy containing ranges.
Turbulence Instrumentation for Stratospheric Airships
National Research Council Canada - National Science Library
Duell, Mark L; Saupe, Lawrence M; Barbeau, Brent E; Robinson, Kris D; Jumper, George Y
2007-01-01
.... The High Altitude Airship is designed to investigate these phenomena. In order to sense atmospheric turbulence at altitudes of the expected flight of the High Altitude Airship of around 65,000ft, a prototype ionic anemometer was constructed...
Stochastic Subspace Modelling of Turbulence
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.
2009-01-01
positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order......, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.......Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...
Emergence of a turbulent cascade in a quantum gas
Navon, Nir; Gaunt, Alexander L.; Smith, Robert P.; Hadzibabic, Zoran
2016-11-01
A central concept in the modern understanding of turbulence is the existence of cascades of excitations from large to small length scales, or vice versa. This concept was introduced in 1941 by Kolmogorov and Obukhov, and such cascades have since been observed in various systems, including interplanetary plasmas, supernovae, ocean waves and financial markets. Despite much progress, a quantitative understanding of turbulence remains a challenge, owing to the interplay between many length scales that makes theoretical simulations of realistic experimental conditions difficult. Here we observe the emergence of a turbulent cascade in a weakly interacting homogeneous Bose gas—a quantum fluid that can be theoretically described on all relevant length scales. We prepare a Bose-Einstein condensate in an optical box, drive it out of equilibrium with an oscillating force that pumps energy into the system at the largest length scale, study its nonlinear response to the periodic drive, and observe a gradual development of a cascade characterized by an isotropic power-law distribution in momentum space. We numerically model our experiments using the Gross-Pitaevskii equation and find excellent agreement with the measurements. Our experiments establish the uniform Bose gas as a promising new medium for investigating many aspects of turbulence, including the interplay between vortex and wave turbulence, and the relative importance of quantum and classical effects.
Turbulence: A Corporate Perspective on Collaborating for Resilience
Kupers, Roland
2014-01-01
The ever tighter coupling of our food, water and energy systems, in the context of a changing climate is leading to increasing turbulence in the world. As a consequence, it becomes ever more crucial to develop cities, regions, and economies with resilience in mind. Because of their global reach, substantial resources, and information-driven leadership structures, multinational corporations can play a major, constructive role in improving our understanding and design of resilient systems. ...
The Fiftieth Anniversary of Brookhaven National Laboratory: A Turbulent Time
Bond, Peter D.
2018-03-01
The fiftieth anniversary year of Brookhaven National Laboratory was momentous, but for reasons other than celebrating its scientific accomplishments. Legacy environmental contamination, community unrest, politics, and internal Department of Energy issues dominated the year. It was the early days of perhaps the most turbulent time in the lab's history. The consequences resulted in significant changes at the lab, but in addition they brought a change to contracts to manage the Department of Energy laboratories.
International Nuclear Information System (INIS)
Kleiner, S.C.; Dickman, R.L.
1985-01-01
The velocity autocorrelation function (ACF) of observed spectral line centroid fluctuations is noted to effectively reproduce the actual ACF of turbulent gas motions within an interstellar cloud, thereby furnishing a framework for the study of the large scale velocity structure of the Taurus dark cloud complex traced by the present C-13O J = 1-0 observations of this region. The results obtained are discussed in the context of recent suggestions that widely observed correlations between molecular cloud widths and cloud sizes indicate the presence of a continuum of turbulent motions within the dense interstellar medium. Attention is then given to a method for the quantitative study of these turbulent motions, involving the mapping of a source in an optically thin spectral line and studying the spatial correlation properties of the resulting velocity centroid map. 61 references
Turbulence in unmagnetized Vlasov plasmas
International Nuclear Information System (INIS)
Kuo, S.P.
1985-01-01
The classical technique of transformation and characteristics is employed to analyze the problem of strong turbulence in unmagnetized plasmas. The effect of resonance broadening and perturbation expansion are treated simultaneously, without time secularities. The renormalization procedure of Dupree and Tetreault is used in the transformed Vlasov equation to analyze the turbulence and to derive explicitly a diffusion equation. Analyses are extended to inhomogeneous plasmas and the relationship between the transformation and ponderomotive force is obtained. (author)
Capturing inertial particle transport in turbulent flows
Stott, Harry; Lawrie, Andrew; Szalai, Robert
2017-11-01
The natural world is replete with examples of particle advection; mankind is both a beneficiary from and sufferer of the consequences. As such, the study of inertial particle dynamics, both aerosol and bubble, is vitally important. In many interesting examples such as cloud microphysics, sedimentation, or sewage transport, many millions of particles are advected in a relatively small volume of fluid. It is impossible to model these processes computationally and simulate every particle. Instead, we advect the probability density field of particle positions allowing unbiased sampling of particle behaviour across the domain. Given a 3-dimensional space discretised into cubes, we construct a transport operator that encodes the flow of particles through the faces of the cubes. By assuming that the dynamics of the particles lie close to an inertial manifold, it is possible to preserve the majority of the inertial properties of the particles between the time steps. We demonstrate the practical use of this method in a pair of instances: the first is an analogue to cloud microphysics- the turbulent breakdown of Taylor Green vortices; the second example is the case of a turbulent jet which has application both in sewage pipe outflow and pesticide spray dynamics. EPSRC.
Meneguz, Elena; Turp, Debi; Wells, Helen
2015-04-01
It is well known that encounters with moderate or severe turbulence can lead to passenger injuries and incur high costs for airlines from compensation and litigation. As one of two World Area Forecast Centres (WAFCs), the Met Office has responsibility for forecasting en-route weather hazards worldwide for aviation above a height of 10,000 ft. Observations from commercial aircraft provide a basis for gaining a better understanding of turbulence and for improving turbulence forecasts through verification. However there is currently a lack of information regarding the possible cause of the observed turbulence, or whether the turbulence occurred within cloud. Such information would be invaluable for the development of forecasting techniques for particular types of turbulence and for forecast verification. Of all the possible sources of turbulence, convective activity is believed to be a major cause of turbulence. Its relative importance over the Europe and North Atlantic area has not been yet quantified in a systematic way: in this study, a new approach is developed to automate identification of turbulent encounters in the proximity of convective clouds. Observations of convection are provided from two independent sources: a surface based lightning network and satellite imagery. Lightning observations are taken from the Met Office Arrival Time Detections network (ATDnet). ATDnet has been designed to identify cloud-to-ground flashes over Europe but also detects (a smaller fraction of) strikes over the North Atlantic. Meteosat Second Generation (MSG) satellite products are used to identify convective clouds by applying a brightness temperature filtering technique. The morphological features of cold cloud tops are also investigated. The system is run for all in situ turbulence reports received from airlines for a total of 12 months during summer 2013 and 2014 for the domain of interest. Results of this preliminary short term climatological study show significant intra
Double helix vortex breakdown in a turbulent swirling annular jet flow
Vanierschot, M.; Perçin, M.; van Oudheusden, B.W.
2018-01-01
In this paper, we report on the structure and dynamics of double helix vortex breakdown in a turbulent annular swirling jet. Double helix breakdown has been reported previously for the laminar flow regime, but this structure has rarely been observed in turbulent flow. The flow field is
Ossenkopf, V.; Krips, M.; Stutzki, J.
Context. The Delta-variance analysis is an efficient tool for measuring the structural scaling behaviour of interstellar turbulence in astronomical maps. It has been applied both to simulations of interstellar turbulence and to observed molecular cloud maps. In Paper I we proposed essential
Fine Scale Modeling and Forecasts of Upper Atmospheric Turbulence for Operational Use
2014-11-30
performance expectations were assessed to evaluate the suitability of various languages and architectures for software development. Operational...the same plain English Turbulence Report as from the ’Solver Complete’ dialog a. Observe that the instability lines are visually approximate to the...controlling the size, distribution, variability and morphology of high impact stratospheric turbulent layers. Investigated detailed temporal and spatial
Direct Numerical Simulation of heat transfer in a turbulent flume
International Nuclear Information System (INIS)
Bergant, R.; Tiselj, I.
2001-01-01
Direct Numerical Simulation (DNS) can be used for the description of turbulent heat transfer in the fluid at low Reynolds numbers. DNS means precise solving of Navier-Stoke's equations without any extra turbulent models. DNS should be able to describe all relevant length scales and time scales in observed turbulent flow. The largest length scale is actually dimension of system and the smallest length and time scale is equal to Kolmogorov scale. In the present work simulations of fully developed turbulent velocity and temperature fields were performed in a turbulent flume (open channel) with pseudo-spectral approach at Reynolds number 2670 (friction Reynolds number 171) and constant Prandtl number 5.4, considering the fluid temperature as a passive scalar. Two ideal thermal boundary conditions were taken into account on the heated wall. The first one was an ideal isothermal boundary condition and the second one an ideal isoflux boundary condition. We observed different parameters like mean temperature and velocity, fluctuations of temperature and velocity, and auto-correlation functions.(author)
Liquid holdup in turbulent contact absorber
International Nuclear Information System (INIS)
Haq, A.; Zaman, M.; Inayat, M.H.; Chughtai, I.R.
2009-01-01
Dynamic liquid holdup in a turbulent contact absorber was obtained through quick shut off valves technique. Experiments were carried out in a Perspex column. Effects of liquid velocity, gas velocity, packing diameter packing density and packing height on dynamic liquid holdup were studied. Hollow spherical high density polyethylene (HDPE) balls were used as inert fluidized packing. Experiments were performed at practical range of liquid and gas velocities. Holdup was calculated on the basis of static bed height. Liquid holdup increases with increasing both liquid and gas velocities both for type 1 and type 2 modes of fluidization. Liquid holdup increases with packing density. No effect of dia was observed on liquid holdup. (author)
Periodic Boundary Motion in Thermal Turbulence
International Nuclear Information System (INIS)
Zhang, Jun; Libchaber, Albert
2000-01-01
A free-floating plate is introduced in a Benard convection cell with an open surface. It partially covers the cell and distorts the local heat flux, inducing a coherent flow that in turn moves the plate. Remarkably, the plate can be driven to a periodic motion even under the action of a turbulent fluid. The period of the oscillation depends on the coverage ratio, and on the Rayleigh number of the convective system. The plate oscillatory behavior observed in this experiment may be related to a geological model, in which continents drift in a quasiperiodic fashion. (c) 2000 The American Physical Society
Horimoto, Yasufumi; Simonet-Davin, Gabriel; Katayama, Atsushi; Goto, Susumu
2018-04-01
We experimentally investigate the flow transition to developed turbulence in a precessing spheroid with a small ellipticity. Fully developed turbulence appears through a subcritical transition when we fix the Reynolds number (the spin rate) and gradually increase the Poincaré number (the precession rate). In the transitional range of the Poincaré number, two qualitatively different turbulent states (i.e., fully developed turbulence and quiescent turbulence with a spin-driven global circulation) are stable and they are connected by a hysteresis loop. This discontinuous transition is in contrast to the continuous transition in a precessing sphere, for which neither bistable turbulent states nor hysteresis loops are observed. The small ellipticity of the container makes the global circulation of the confined fluid more stable, and it requires much stronger precession of the spheroid, than a sphere, for fully developed turbulence to be sustained. Nevertheless, once fully developed turbulence is sustained, its flow structures are almost identical in the spheroid and sphere. The argument [Lorenzani and Tilgner, J. Fluid Mech. 492, 363 (2003), 10.1017/S002211200300572X; Noir et al., Geophys. J. Int. 154, 407 (2003), 10.1046/j.1365-246X.2003.01934.x] on the basis of the analytical solution [Busse, J. Fluid Mech. 33, 739 (1968), 10.1017/S0022112068001655] of the steady global circulation in a weak precession range well describes the onset of the fully developed turbulence in the spheroid.
Computational Investigation of Soot and Radiation in Turbulent Reacting Flows
Lalit, Harshad
This study delves into computational modeling of soot and infrared radiation for turbulent reacting flows, detailed understanding of both of which is paramount in the design of cleaner engines and pollution control. In the first part of the study, the concept of Stochastic Time and Space Series Analysis (STASS) as a numerical tool to compute time dependent statistics of radiation intensity is introduced for a turbulent premixed flame. In the absence of high fidelity codes for large eddy simulation or direct numerical simulation of turbulent flames, the utility of STASS for radiation imaging of reacting flows to understand the flame structure is assessed by generating images of infrared radiation in spectral bands dominated by radiation from gas phase carbon dioxide and water vapor using an assumed PDF method. The study elucidates the need for time dependent computation of radiation intensity for validation with experiments and the need for accounting for turbulence radiation interactions for correctly predicting radiation intensity and consequently the flame temperature and NOx in a reacting fluid flow. Comparison of single point statistics of infrared radiation intensity with measurements show that STASS can not only predict the flame structure but also estimate the dynamics of thermochemical scalars in the flame with reasonable accuracy. While a time series is used to generate realizations of thermochemical scalars in the first part of the study, in the second part, instantaneous realizations of resolved scale temperature, CO2 and H2O mole fractions and soot volume fractions are extracted from a large eddy simulation (LES) to carry out quantitative imaging of radiation intensity (QIRI) for a turbulent soot generating ethylene diffusion flame. A primary motivation of the study is to establish QIRI as a computational tool for validation of soot models, especially in the absence of conventional flow field and measured scalar data for sooting flames. Realizations of
Energy Technology Data Exchange (ETDEWEB)
Vauclair, Sylvie; Theado, Sylvie, E-mail: sylvie.vauclair@irap.omp.eu [Universite de Toulouse, UPS-OMP and CNRS, Institut de Recherche en Astrophysique et Planetologie, 14 avenue Edouard Belin, F-31400 Toulouse (France)
2012-07-01
We have derived a new expression for the thermohaline mixing coefficient in stars, including the effects of radiative levitation and external turbulence, by solving Boussinesq equations in a nearly incompressible stratified fluid with a linear approximation. It is well known that radiative levitation of individual elements can lead to their accumulation in specific stellar layers. In some cases, it can induce important effects on the stellar structure. Here we confirm that this accumulation is moderated by thermohaline convection due to the resulting inverse {mu}-gradient. The new coefficient that we have derived shows that the effect of radiative accelerations on the thermohaline instability itself is small. This effect must however be checked in all computations. We also confirm that the presence of large horizontal turbulence can reduce or even suppress the thermohaline convection. These results are important as they concern all the cases of heavy element accumulation in stars. Computations of radiative diffusion must be revisited to include thermohaline convection and its consequences. It may be one of the basic reasons for the fact that the observed abundances are always smaller than those predicted by pure atomic diffusion. In any case, these processes have to compete with rotation-induced mixing, but this competition is more complex than previously thought due to their mutual interaction.
International Nuclear Information System (INIS)
Proulx, M.U.; Nicolet, R.; Dufour, J.
1998-01-01
On July 19 and 20 of 1996, torrential rains provoked catastrophic floods in the Saguenay Region of Quebec. The overflowing waters of the region's rivers damaged 3000 residential buildings, completely destroyed another 426, and seriously affected the activities of 850 business establishments. In this comprehensive report, the physical causes and the social, economic, psychological, cultural, political and administrative consequences of this natural catastrophe are discussed by several experts. The report is divided into three parts. The first part describes the actual flooding conditions and the immediate response of local emergency services such as the Red Cross and the Saint-Vincent-de-Paul agencies. Reactions of the various public agencies and governments to the disaster are described in Part Two. Part Three of the document focuses on lessons to be drawn from this natural disaster, in particular the need to improve emergency relief strategies. The legal implications and consequences of the disaster are also discussed. refs., tabs., figs
Object recognition through turbulence with a modified plenoptic camera
Wu, Chensheng; Ko, Jonathan; Davis, Christopher
2015-03-01
Atmospheric turbulence adds accumulated distortion to images obtained by cameras and surveillance systems. When the turbulence grows stronger or when the object is further away from the observer, increasing the recording device resolution helps little to improve the quality of the image. Many sophisticated methods to correct the distorted images have been invented, such as using a known feature on or near the target object to perform a deconvolution process, or use of adaptive optics. However, most of the methods depend heavily on the object's location, and optical ray propagation through the turbulence is not directly considered. Alternatively, selecting a lucky image over many frames provides a feasible solution, but at the cost of time. In our work, we propose an innovative approach to improving image quality through turbulence by making use of a modified plenoptic camera. This type of camera adds a micro-lens array to a traditional high-resolution camera to form a semi-camera array that records duplicate copies of the object as well as "superimposed" turbulence at slightly different angles. By performing several steps of image reconstruction, turbulence effects will be suppressed to reveal more details of the object independently (without finding references near the object). Meanwhile, the redundant information obtained by the plenoptic camera raises the possibility of performing lucky image algorithmic analysis with fewer frames, which is more efficient. In our work, the details of our modified plenoptic cameras and image processing algorithms will be introduced. The proposed method can be applied to coherently illuminated object as well as incoherently illuminated objects. Our result shows that the turbulence effect can be effectively suppressed by the plenoptic camera in the hardware layer and a reconstructed "lucky image" can help the viewer identify the object even when a "lucky image" by ordinary cameras is not achievable.
DEFF Research Database (Denmark)
Naulin, V.; Juul Rasmussen, J.; Nycander, J.
2003-01-01
Self-consistent development of transport barriers is investigated analytically and numerically in flux driven interchange turbulence with highly intermittent turbulent fluxes. Numerical simulations on a bounded domain show turbulence leading to a homogenization of Lagrangian invariants by mixing,......, and constitute transport barriers for the turbulent fluxes, but are intermittently disrupted by strong bursts in the transport, which may be related to the strong edge localized modes observed in toroidal devices. (C) 2003 American Institute of Physics....
Turbulent flow in a partially filled pipe
Ng, Henry; Cregan, Hope; Dodds, Jonathan; Poole, Robert; Dennis, David
2017-11-01
Turbulent flow in a pressure driven pipe running partially full has been investigated using high-speed 2D-3C Stereoscopic Particle Imaging Velocimetry. With the field-of-view spanning the entire pipe cross section we are able to reconstruct the full three dimensional quasi-instantaneous flow field by invoking Taylor's hypothesis. The measurements were carried out over a range of flow depths at a constant Reynolds number based on hydraulic diameter and bulk velocity of Re = 32 , 000 . In agreement with previous studies, the ``velocity dip'' phenomenon, whereby the location of the maximum streamwise velocity occurs below the free surface was observed. A mean flow secondary current is observed near the free surface with each of the counter-rotating rollers filling the half-width of the pipe. Unlike fully turbulent flow in a rectangular open channel or pressurized square duct flow where the secondary flow cells appear in pairs about a corner bisector, the mean secondary motion observed here manifests only as a single pair of vortices mirrored about the pipe vertical centreline.
STRUCTURES OF TURBULENT VORTICES AND THEIR INFLUENCE ON FLOW PROPERTIES
Directory of Open Access Journals (Sweden)
Alfonsas Rimkus
2015-03-01
Full Text Available In spite of the many investigations that have been conducted on turbulent flows, the generation and development of turbulent vortices has not been investigated sufficiently yet. This prevents to understand well the processes involved in the flow. That is unfavorable for the further investigations. The developing vortex structures are interacting, and this needs to be estimated. Physical summing of velocities, formed by all structures, can be unfavorable for investigations, therefore they must be separated; otherwise bias errors can occur. The difficulty for investigations is that the widely employed Particle Image Velocity (PIV method, when a detailed picture of velocity field picture is necessary, can provide photos covering only a short interval of flow, which can’t include the largest flow structures, i.e. macro whirlpools. Consequently, action of these structures could not be investigated. Therefore, in this study it is tried to obtain the necessary data about the flow structure by analyzing the instantaneous velocity measurements by 3D means, which lasts for several minutes, therefore the existence and interaction of these structures become visible in measurement data. The investigations conducted in this way have been already discussed in the article, published earlier. Mostly the generation and development of bottom vortices was analyzed. In this article, the analysis of these turbulent velocity measurements is continued and the additional data about the structure of turbulent vortices is obtained.
RADIAL EVOLUTION OF SOLAR WIND TURBULENCE DURING EARTH AND ULYSSES ALIGNMENT OF 2007 AUGUST
International Nuclear Information System (INIS)
D'Amicis, R.; Bruno, R.; Pallocchia, G.; Bavassano, B.; Telloni, D.; Carbone, V.; Balogh, A.
2010-01-01
At the end of 2007 August, during the minimum of solar cycle 23, a lineup of Earth and Ulysses occurred, giving the opportunity to analyze, for the first time, the same plasma sample at different observation points, namely at 1 and 1.4 AU. In particular, it allowed us to study the radial evolution of solar wind turbulence typical of fast wind streams as proposed in a Coordinated Investigation Programme for the International Heliophysical Year. This paper describes both the macrostructure and the fluctuations at small scales of this event. We find that soon after detecting the same fast stream, the Advanced Composition Explorer (ACE) observed a change of magnetic polarity being the interplanetary current sheet located between the orbits of the two spacecraft. Moreover, we observe that the compression region formed in front of the fast stream detected at ACE's location evolves in a fast forward shock at Ulysses' orbit. On the other hand, small-scale analysis shows that turbulence is evolving. The presence of a shift of the frequency break separating the injection range from the inertial range toward lower frequencies while distance increases is a clear indication that nonlinear interactions are at work. Moreover, we observe that intermittency, as measured by the flatness factor, increases with distance. This study confirms previous analyses performed using Helios observations of the same fast wind streams at different heliocentric distances, allowing us to relax about the hypothesis of the stationarity of the source regions adopted in previous studies. Consequently, any difference noticed in the solar wind parameters would be ascribed to radial (time) evolution.
Turbulent/non-turbulent interfaces in jets and wakes
Zecchetto, Marco; Silva, Carlos; Lasef Team
2017-11-01
The characteristics of the turbulent/non-turbulent interface (TNTI) at the edges of jets and wakes at high Reynolds numbers are compared by using new direct numerical simulations (DNS) of temporally evolving planar jets (PJET) and wakes (PWAKE). The new simulations attain a Reynolds number based on the Taylor micro-scale of Reλ 350 which are the highest Reynolds number used so far in numerical investigations of TNTI. The similarities and differences between the TNTIs from PJET and PWAKE are assessed in relation to i) their structure and scaling, ii) the vorticity dynamics and, iii) and entrainment velocity. Portuguese Foundation for Science and Technology (FST); PRACE.
The role of turbulence in explosive magma-water mixing
Mastin, L. G.; Walder, J. S.; Stern, L. A.
2003-12-01
Juvenile tephra from explosive hydromagmatic eruptions differs from that of dry magmatic eruptions by its fine average grain size and highly variable vesicularity. These characteristics are generally interpreted to indicate that fragmentation, which occurs in dry magmas by bubble growth, is supplemented in hydromagmatic eruptions by quench-fracturing. Quench fragmentation is thought to accelerate heat transfer to water, driving violent steam expansion and increasing eruptive violence. Although some observed hydromagmatic events (e.g. at Surtsey) are indeed violent, others (e.g. quiescent entry of lava into the ocean at Kilauea) are not. We suggest that the violence of magma-water mixing and the grain size and dispersal of hydromagmatic tephras are controlled largely by the turbulence of magma-water mixing. At Surtsey, fine-grained, widely dispersed hydromagmatic tephras were produced primarily during continuous uprush events in which turbulent jets of magma and gas passed through shallow water (Thorarinsson, 1967). During Kilauea's current eruption, videos show generation of fine-grained tephras when turbulent jets of magma, steam, and seawater exited through skylights at the coastline. Turbulence intensity, or the fraction of total jet kinetic energy contained in fine-scale turbulent velocity oscillations, has long been known to control the scale of atomization in spray nozzles and the rate of heat transfer and chemical reaction in fuel injectors. We hypothesize that turbulence intensity also influences grain size and heat transfer rate in magma-water mixing, though such processes are complicated by boiling (in water) and quench fracturing (in magma). We are testing this hypothesis in experiments involving turbulent injection of water (a magma analog) into liquid nitrogen (a water analog). We also suggest that turbulent mixing influences relative proportions of magma and water in hydromagmatic eruptions. Empirical studies indicate that pressure-neutral turbulent
Is Molecular Cloud Turbulence Driven by External Supernova Explosions?
Seifried, Daniel; Walch, Stefanie; Haid, Sebastian; Girichidis, Philipp; Naab, Thorsten
2018-03-01
We present high-resolution (∼0.1 pc), hydrodynamical and magnetohydrodynamical simulations to investigate whether the observed level of molecular cloud (MC) turbulence can be generated and maintained by external supernova (SN) explosions. The MCs are formed self-consistently within their large-scale galactic environment following the non-equilibrium formation of H2 and CO, including (self-) shielding and important heating and cooling processes. The MCs inherit their initial level of turbulence from the diffuse ISM, where turbulence is injected by SN explosions. However, by systematically exploring the effect of individual SNe going off outside the clouds, we show that at later stages the importance of SN-driven turbulence is decreased significantly. This holds for different MC masses as well as for MCs with and without magnetic fields. The SN impact also decreases rapidly with larger distances. Nearby SNe (d ∼ 25 pc) boost the turbulent velocity dispersions of the MC by up to 70% (up to a few km s‑1). For d > 50 pc, however, their impact decreases fast with increasing d and is almost negligible. For all probed distances the gain in velocity dispersion decays rapidly within a few 100 kyr. This is significantly shorter than the average timescale for an MC to be hit by a nearby SN under solar neighborhood conditions (∼2 Myr). Hence, at these conditions SNe are not able to sustain the observed level of MC turbulence. However, in environments with high gas surface densities and SN rates, like the Central Molecular Zone, observed elevated MC dispersions could be triggered by external SNe.
Alhamdi, Sabah F. H.; Bailey, Sean C. C.
2017-11-01
Measurements of the small-scale dissipation statistics of turbulent boundary layer flows with and without free-stream turbulence are reported for Reτ ≈ 1000 (Reθ ≈ 2000). The scaling of the dissipation scale distribution is examined in these two boundary conditions. Results demonstrated that the local large-scale Reynolds number based on the measured longitudinal integral length scale fails to properly normalize the dissipation scale distribution near the wall in these two free-stream conditions due to the imperfect characterization of the upper bound of the inertial cascade by the integral length scale. A surrogate found from turbulent kinetic energy and mean dissipation rate only moderately improved the scaling of the dissipation scales, relative to the measured integral length scale. When a length scale based on the distance from the wall [as suggested by Bailey and Witte, "On the universality of local dissipation scales in turbulent channel flow," J. Fluid Mech. 786, 234-252 (2015)] was utilized to scale the dissipation scale distribution, in the region near the wall, there was a noticeable improvement in the collapse of the normalized distribution of dissipation scales. In addition, unlike in channel flows, in the outer layer of the turbulent boundary layer, the normalized distributions of the local dissipation scales were observed to be dependent on the wall-normal position. This was found to be attributable to the presence of external intermittency in the outer layer as the presence of free-stream turbulence was found to restore the scaling behavior by replacing the intermittent laminar flow with turbulent flow.
Tíjaro Rojas, Omar J.; Torres Moreno, Yezid; Rhodes, William T.
2017-06-01
Different theories including Kolmogorov have been valid to explain and model physic phenomenal like vertical atmospheric turbulence. In horizontal path, we still have many questions, due to weather problems and consequences that it generates. To emulate some conditions of environment, we built an Optical Turbulence Generator (OTG) having spatial, humidity and temperature, measurements that were captured in the same time from optical synchronization. This development was made using digital modules as ADC (Analog to Digital Converters) and communications protocol as SPI. We all made from microcontrollers. On the other hand, to measure optical signal, we used a photomultiplier tube (PMT) where captured the intensity of fringes that shifted with a known frequency. Outcomes show temporal shift and phase drive from dependent samples (in time domain) that correspond with frozen turbulence given by Taylor theory. Parameters studied were C2n, scintillation and inner scale in temporal patterns and analysis of their relationship with the physical associated variables. These patterns were taken from Young Interferometer in laboratory room scale. In the future, we hope with these studies, we will can implement an experiment to characterize atmospheric turbulence in a long distance, placed in the equatorial weather zone.
Atmospheric turbulence and diffusion research
International Nuclear Information System (INIS)
Hosker, R.P. Jr.
1993-01-01
The Atmospheric Turbulence and Diffusion Division (well known in the atmospheric dispersion community as the Atmospheric Turbulence and Diffusion Laboratory, ATDL) is one of several field facilities of NOAAs Air Resources Laboratory, headquartered in Silver Spring, Maryland. The laboratory conducts research on matters of atmospheric diffusion and turbulent exchange, concerning air quality. ATDD focuses attention on the physics of the lower atmosphere, with special emphasis on the processes contributing to atmospheric transport, dispersion, deposition, and air-surface exchange, and on the development of predictive capabilities using the results of this research. Research is directed toward issues of national and global importance related to the missions of DOE, to DOE's Oak Ridge Field Office, and to NOAA. The program is divided into four major projects: plume transport and diffusion in the planetary boundary layer, complex topography, canopy micrometeorology, and air-surface exchange
Funnel-shaped vortical structures in wall turbulence
International Nuclear Information System (INIS)
Kaftori, D.; Hetsroni, G.; Banerjee, S.
1994-01-01
The structure of the turbulent boundary layer in a horizontal open channel was investigated experimentally by means of laser Doppler anemometry (LDA) and by flow visualization synchronized with the LDA. These experiments indicate that the dominant structures in the wall region are large scale streamwise vortices which originate at the wall and grow and expand into the outer flow region. The shape of the vortices is that of an expanding spiral, wound around a funnel which is laid sideways in the direction of flow. Most of the observations of wall turbulence phenomena made over the years, such as quasistreamwise vortices, ejections, and sweeps seem to be part of these funnel-shaped vortices
Magnetostrophic balance as the optimal state for turbulent magnetoconvection.
King, Eric M; Aurnou, Jonathan M
2015-01-27
The magnetic fields of Earth and other planets are generated by turbulent convection in the vast oceans of liquid metal within them. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of planetary rotation and magnetic fields through the Coriolis and Lorentz forces. Theory famously predicts that planetary dynamo systems naturally settle into the so-called magnetostrophic state, where the Coriolis and Lorentz forces partially cancel, and convection is optimally efficient. Although this magnetostrophic theory correctly predicts the strength of Earth's magnetic field, no laboratory experiments have reached the magnetostrophic regime in turbulent liquid metal convection. Furthermore, computational dynamo simulations have as yet failed to produce a magnetostrophic dynamo, which has led some to question the existence of the magnetostrophic state. Here, we present results from the first, to our knowledge, turbulent, magnetostrophic convection experiments using the liquid metal gallium. We find that turbulent convection in the magnetostrophic regime is, in fact, maximally efficient. The experimental results clarify these previously disparate results, suggesting that the dynamically optimal magnetostrophic state is the natural expression of turbulent planetary dynamo systems.
Compression of turbulent magnetized gas in giant molecular clouds
Birnboim, Yuval; Federrath, Christoph; Krumholz, Mark
2018-01-01
Interstellar gas clouds are often both highly magnetized and supersonically turbulent, with velocity dispersions set by a competition between driving and dissipation. This balance has been studied extensively in the context of gases with constant mean density. However, many astrophysical systems are contracting under the influence of external pressure or gravity, and the balance between driving and dissipation in a contracting, magnetized medium has yet to be studied. In this paper, we present three-dimensional magnetohydrodynamic simulations of compression in a turbulent, magnetized medium that resembles the physical conditions inside molecular clouds. We find that in some circumstances the combination of compression and magnetic fields leads to a rate of turbulent dissipation far less than that observed in non-magnetized gas, or in non-compressing magnetized gas. As a result, a compressing, magnetized gas reaches an equilibrium velocity dispersion much greater than would be expected for either the hydrodynamic or the non-compressing case. We use the simulation results to construct an analytic model that gives an effective equation of state for a coarse-grained parcel of the gas, in the form of an ideal equation of state with a polytropic index that depends on the dissipation and energy transfer rates between the magnetic and turbulent components. We argue that the reduced dissipation rate and larger equilibrium velocity dispersion has important implications for the driving and maintenance of turbulence in molecular clouds and for the rates of chemical and radiative processes that are sensitive to shocks and dissipation.
Turbulence Modeling of Flows with Extensive Crossflow Separation
Directory of Open Access Journals (Sweden)
Argyris G. Panaras
2015-07-01
Full Text Available The reasons for the difficulty in simulating accurately strong 3-D shock wave/turbulent boundary layer interactions (SBLIs and high-alpha flows with classical turbulence models are investigated. These flows are characterized by the appearance of strong crossflow separation. In view of recent additional evidence, a previously published flow analysis, which attributes the poor performance of classical turbulence models to the observed laminarization of the separation domain, is reexamined. According to this analysis, the longitudinal vortices into which the separated boundary layer rolls up in this type of separated flow, transfer external inviscid air into the part of the separation adjacent to the wall, decreasing its turbulence. It is demonstrated that linear models based on the Boussinesq equation provide solutions of moderate accuracy, while non-linear ones and others that consider the particular structure of the flow are more efficient. Published and new Reynolds Averaged Navier–Stokes (RANS simulations are reviewed, as well as results from a recent Large Eddy Simulation (LES study, which indicate that in calculations characterized by sufficient accuracy the turbulent kinetic energy of the reverse flow inside the separation vortices is very low, i.e., the flow is almost laminar there.
Transition from weak wave turbulence regime to solitonic regime
Hassani, Roumaissa; Mordant, Nicolas
2017-11-01
The Weak Turbulence Theory (WTT) is a statistical theory describing the interaction of a large ensemble of random waves characterized by very different length scales. For both weak non-linearity and weak dispersion a different regime is predicted where solitons propagate while keeping their shape unchanged. The question under investigation here is which regime between weak turbulence or soliton gas does the system choose ? We report an experimental investigation of wave turbulence at the surface of finite depth water in the gravity-capillary range. We tune the wave dispersion and the level of nonlinearity by modifying the depth of water and the forcing respectively. We use space-time resolved profilometry to reconstruct the deformed surface of water. When decreasing the water depth, we observe a drastic transition between weak turbulence at the weakest forcing and a solitonic regime at stronger forcing. We characterize the transition between both states by studying their Fourier Spectra. We also study the efficiency of energy transfer in the weak turbulence regime. We report a loss of efficiency of angular transfer as the dispersion of the wave is reduced until the system bifurcates into the solitonic regime. This project has recieved funding from the European Research Council (ERC, Grant Agreement No. 647018-WATU).
Effects of polymers on the spatial structure of turbulent flows
Sinhuber, Michael; Ballouz, Joseph G.; Ouellette, Nicholas T.
2017-11-01
It is well known that the addition of minor amounts of polymers to a turbulent water flow can significantly change its properties. One of the most prominent effects is the observed drastic reduction of drag in wall-bounded flows that is utilized in many engineering applications. Much of the research on polymers in turbulence has focused on their influence on the turbulent energy cascade and their interaction with the energy transfer processes. Much less investigated are their effects on the spatial structure of turbulent flows. In a classical von-Kárman swirling flow setup, we used Lagrangian particle tracking to obtain three-dimensional particle trajectories, velocities, and accelerations and find that polymers have a significant effect on Lagrangian measures of the turbulence structure such as radial distribution functions and the curvature of particle trajectories. We find that not only do the statistical distributions change, but also that polymers appear to affect the spatial statistics well beyond the size of the polymers themselves.
Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame
Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.
2016-09-01
In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing
Finite Element Aircraft Simulation of Turbulence
1997-02-01
A Simulation of Rotor Blade Element Turbulence (SORBET) model has been : developed for realtime aircraft simulation that accommodates stochastic : turbulence and distributed discrete gusts as a function of the terrain. This : model is applicable to c...
Chemical Reactions in Turbulent Mixing Flows
National Research Council Canada - National Science Library
Mimotakis, Paul
1998-01-01
.... New measures to characterize level sets in turbulence were developed and successfully employed to characterize experimental data of liquid-phase turbulent-jet flows as well as three-dimensional...
The problem of clear air turbulence: Changing perspectives in the ...
Indian Academy of Sciences (India)
http://www.ias.ac.in/article/fulltext/sadh/038/04/0707-0722. Keywords. Clear air turbulence; aviation weather hazards; ﬂuid dynamic instabilities; atmospheric waves. Abstract. Due to rapid improvements in on-board instrumentation and atmospheric observation systems, in most cases, aircraft are able to steer clear of regions ...
Evaluation of turbulent dissipation rate retrievals from Doppler Cloud Radar
Directory of Open Access Journals (Sweden)
M. D. Shupe
2012-06-01
Full Text Available Turbulent dissipation rate retrievals from cloud radar Doppler velocity measurements are evaluated using independent, in situ observations in Arctic stratocumulus clouds. In situ validation data sets of dissipation rate are derived using sonic anemometer measurements from a tethered balloon and high frequency pressure variation observations from a research aircraft, both flown in proximity to stationary, ground-based radars. Modest biases are found among the data sets in particularly low- or high-turbulence regimes, but in general the radar-retrieved values correspond well with the in situ measurements. Root mean square differences are typically a factor of 4–6 relative to any given magnitude of dissipation rate. These differences are no larger than those found when comparing dissipation rates computed from tethered-balloon and meteorological tower-mounted sonic anemometer measurements made at spatial distances of a few hundred meters. Temporal lag analyses suggest that approximately half of the observed differences are due to spatial sampling considerations, such that the anticipated radar-based retrieval uncertainty is on the order of a factor of 2–3. Moreover, radar retrievals are clearly able to capture the vertical dissipation rate structure observed by the in situ sensors, while offering substantially more information on the time variability of turbulence profiles. Together these evaluations indicate that radar-based retrievals can, at a minimum, be used to determine the vertical structure of turbulence in Arctic stratocumulus clouds.
Infulence of atmospheric stability on the spatial structure of turbulence
DEFF Research Database (Denmark)
Chougule, Abhijit S.
This thesis consists of three chapters. In the first chapter, the cross-spectral phases between velocity components at two heights are analyzed from observations at the Høvsøre test site under diabatic conditions. These phases represent the degree to which turbulence sensed at one height leads (or...
Simulation of core turbulence measurement in Tore Supra ohmic regimes
Hacquin, S.; Citrin, J.; Arnichand, H.; Sabot, R.; Bourdelle, C.; Garbet, X.; Kramer-Flecken, A.; Tore Supra team,
2016-01-01
This paper reports on a simulation of reflectometry measurement in Tore Supra ohmic discharges, for which the experimental observations as well as gyrokinetic non-linear computations predict a modification of turbulence spectrum between the linear (LOC) and the saturated ohmic confinement (SOC)
Turbulence characteristics of open channel flow over non ...
Indian Academy of Sciences (India)
The considerable magnitudes of transverse velocities over mobile bedforms necessitate measurement of 3-D velocity components to analyze the flow field. Computed turbulence intensities are found to be maximum in the region consisting of the trough and the reattachment point of the dunes. It is observed that streamwise ...
Two-scale analysis of intermittency in fully developed turbulence
Energy Technology Data Exchange (ETDEWEB)
Badii, R.; Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
A self-affinity test for turbulent time series is applied to experimental data for the estimation of intermittency exponents. The method employs exact relations satisfied by joint expectations of observables computed across two different length scales. One of these constitutes a verification tool for the existence and the extent of the inertial range. (author) 2 figs., 13 refs.
Frontogenesis and turbulent mixing
Zhang, S.; Chen, F.; Shang, Q.
2017-12-01
ageostrophic secondary circulation together with the cross-frontal ageostrophic speed. The mixed characteristic is weak in summer, but the large turbulent dissipation and mixing rate measured in the frontal region, which show that the front promoted exchange of material and energy in the upper ocean.
Electrostatic and electromagnetic turbulence associated with the Earth's bow shock
International Nuclear Information System (INIS)
Rodriguez, P.
1974-01-01
The electric and magnetic field spectral densities of plasma waves in the earth's bow shock have been measured in the frequency range 20 Hz to 200 kHz using two 16-channel spectrum analyzers on the IMP-6 spacecraft. Electrostatic noise with a spectrum similar to the turbulence in the shock, but with lower intensities, is observed throughout the magnetosheath region, downstream of the shock. The intensity of the electrostatic component of turbulence in the bow shock increases as the upstream electron to ion temperature ratio increases, and decreases as the upstream sound velocity increases; both of these variations for the electrostatic component are consistent with ion sound wave turbulence. (U.S.)
Exact law for homogeneous compressible Hall magnetohydrodynamics turbulence
Andrés, N.; Galtier, S.; Sahraoui, F.
2018-01-01
We derive an exact law for three-dimensional (3D) homogeneous compressible isothermal Hall magnetohydrodynamic turbulence, without the assumption of isotropy. The Hall current is shown to introduce new flux and source terms that act at the small scales (comparable or smaller than the ion skin depth) to significantly impact the turbulence dynamics. The law provides an accurate means to estimate the energy cascade rate over a broad range of scales covering the magnetohydrodynamic inertial range and the sub-ion dispersive range in 3D numerical simulations and in in situ spacecraft observations of compressible turbulence. This work is particularly relevant to astrophysical flows in which small-scale density fluctuations cannot be ignored such as the solar wind, planetary magnetospheres, and the interstellar medium.
TSALLIS STATISTICS AS A TOOL FOR STUDYING INTERSTELLAR TURBULENCE
International Nuclear Information System (INIS)
Esquivel, A.; Lazarian, A.
2010-01-01
We used magnetohydrodynamic (MHD) simulations of interstellar turbulence to study the probability distribution functions (PDFs) of increments of density, velocity, and magnetic field. We found that the PDFs are well described by a Tsallis distribution, following the same general trends found in solar wind and electron MHD studies. We found that the PDFs of density are very different in subsonic and supersonic turbulence. In order to extend this work to ISM observations, we studied maps of column density obtained from three-dimensional MHD simulations. From the column density maps, we found the parameters that fit to Tsallis distributions and demonstrated that these parameters vary with the sonic and Alfven Mach numbers of turbulence. This opens avenues for using Tsallis distributions to study the dynamical and perhaps magnetic states of interstellar gas.
Turbulence transport with nonlocal interactions
Energy Technology Data Exchange (ETDEWEB)
Linn, R.R.; Clark, T.T.; Harlow, F.H.; Turner, L.
1998-03-01
This preliminary report describes a variety of issues in turbulence transport analysis with particular emphasis on closure procedures that are nonlocal in wave-number and/or physical space. Anomalous behavior of the transport equations for large scale parts of the turbulence spectrum are resolved by including the physical space nonlocal interactions. Direct and reverse cascade processes in wave-number space are given a much richer potential for realistic description by the nonlocal formulations. The discussion also describes issues, many still not resolved, regarding new classes of self-similar form functions.
Plasma turbulence effects on aurorae
International Nuclear Information System (INIS)
Mishin, E.V.; Telegin, V.A.
1989-01-01
Analysis of modern state of microprocesses physics in plasma of aurorare, initiated by energetic electron flow intrusion, is presented. It is shown that there is a number of phenomena, which cannot be explained under non-collision (collective) mechanisms of interaction are applied. Effects of plasma turbulence in the area of auroral arcs are considered. Introduction of a new structural element to auroral arc - plasma-turbulence (PT) layer is substantiated. Numerical simulation of electron kinetics, changes in neutral composition, as well as generation of IR- and UV-radiation in PT layer has been realized
Turbulence vertical structure of the boundary layer during the afternoon transition
Darbieu, Clara; Lohou, Fabienne; Lothon, Marie; Vilà-Guerau de Arellano, Jordi; Couvreux, Fleur; Durand, Pierre; Pino, David; Patton, Ned; Nilsson, Erik; Blay-Carreras, Estel; Gioli, Beniamino
2015-04-01
The transition from a well-mixed convective boundary layer to a residual layer overlying a stabilized nocturnal layer raises several issues, which remain difficult to address from both modeling and observational perspectives. The well mixed convective boundary layer is mainly forced by buoyancy, with fully developed turbulence. The daily decrease of the surface buoyancy flux leads to the decay of the turbulence kinetic energy (TKE), and a possible change of the structure of the turbulence before it reaches the stable regime, with more anisotropy and intermittency. It is important to better understand these processes, as they can impact on the dispersion of tracers in the atmosphere, and on the development of the nocturnal and daytime boundary layers of the following days. The presented work is based on both observations from the BLLAST (Boundary Layer Later Afternoon and Sunset Turbulence) experiment and Large-Eddy Simulation (NCAR LES code). The field campaign took place in summer 2011 in France, on the northern side of the Pyrenean foothills. A well-documented cloud-free weak wind day is considered here to analyze in details the evolution of the turbulence along the day, from midday to sunset. The case study combines observations of the mean structure and of the turbulence. It is the base of a complementary idealized numerical study with a large eddy simulation. From both observations and numerical simulations, the turbulence is described, according to time and height, with the characteristics of the spectral energy density, especially the typical turbulence lengthscales and the sharpness of the transition from energy-containing eddies to the inertial subrange. An analytical model proposed by Kristensen and Lenschow (1988) for homogeneous nonisotropic turbulence is used to approximate the observed and LES-modeled spectra and estimate their characteristics. The study points out the LES ability to reproduce the turbulence evolution throughout the afternoon. Two
International Nuclear Information System (INIS)
Yoshimura, Koki; Minato, Daiju; Sato, Yohei; Hishida, Koichi
2004-01-01
The objective of the present study is to obtain detailed information on the effects of bubbles on modification of turbulent structure by time-series measurements using a high speed time-resolved PIV. The experiments were carried out in a fully-developed vertical pipe with upflow of water at the Reynolds number of 9700 and the void fraction of 0.5%. It is observed that turbulence production was decreased and the dissipation rate was enhanced in the whole domain. We analyzed the effects of bubbles on modification of the energy cascade process from power spectra of velocity fluctuation of the continuous phase. (author)
Turbulent Kinetic Energy (TKE) Budgets Using 5-beam Doppler Profilers
Guerra, M. A.; Thomson, J. M.
2016-12-01
Field observations of turbulence parameters are important for the development of hydrodynamic models, understanding contaminant mixing, and predicting sediment transport. The turbulent kinetic energy (TKE) budget quantifies where turbulence is being produced, dissipated or transported at a specific site. The Nortek Signature 5-beam AD2CP was used to measure velocities at high sampling rates (up to 8 Hz) at Admiralty Inlet and Rich Passage in Puget Sound, WA, USA. Raw along-beam velocity data is quality controlled and is used to estimate TKE spectra, spatial structure functions, and Reynolds stress tensors. Exceptionally low Doppler noise in the data enables clear observations of the inertial sub-range of isotropic turbulence in both the frequency TKE spectra and the spatial structure functions. From these, TKE dissipation rates are estimated following Kolmogorov's theory of turbulence. The TKE production rates are estimated using Reynolds stress tensors together with the vertical shear in the mean flow. The Reynolds stress tensors are estimated following the methodology of Dewey and Stinger (2007), which is significantly improved by inclusion of the 5th beam (as opposed to the conventional 4). These turbulence parameters are used to study the TKE budget along the water column at the two sites. Ebb and flood production and dissipation rates are compared through the water column at both sites. At Admiralty Inlet, dissipation exceeds production during ebb while the opposite occurs during flood because the proximity to a lateral headland. At Rich Passage, production exceeds dissipation through the water column for all tidal conditions due to a vertical sill in the vicinity of the measurement site.
Turbulent pressure fluctuations measured during CHATS
Steven P. Oncley; William J. Massman; Edward G. Patton
2008-01-01
Fast-response pressure fluctuations were included in the Canopy Horizontal Array of Turbulence Study (CHATS) at several heights within and just above the canopy in a walnut orchard. Two independent systems were intercompared and then separated. We present an evaluation of turbulence statistics - including the pressure transport term in the turbulence kinetic energy...
PROTOSTELLAR OUTFLOW EVOLUTION IN TURBULENT ENVIRONMENTS
International Nuclear Information System (INIS)
Cunningham, Andrew J.; Frank, Adam; Carroll, Jonathan; Blackman, Eric G.; Quillen, Alice C.
2009-01-01
The link between turbulence in star-forming environments and protostellar jets remains controversial. To explore issues of turbulence and fossil cavities driven by young stellar outflows, we present a series of numerical simulations tracking the evolution of transient protostellar jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. We demonstrate how turbulence will lead to strong modifications in jet morphology. More importantly, we demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Our simulations support a scenario in which the directed energy/momentum associated with cavities is randomized as the cavities are disrupted by dynamical instabilities seeded by the ambient turbulence. Consideration of the energy power spectra of the simulations reveals that the disruption of the cavities powers an energy cascade consistent with Burgers'-type turbulence and produces a driving scale length associated with the cavity propagation length. We conclude that fossil cavities interacting either with a turbulent medium or with other cavities have the capacity to sustain or create turbulent flows in star-forming environments. In the last section, we contrast our work and its conclusions with previous studies which claim that jets cannot be the source of turbulence.
Generalized similarity in magnetohydrodynamic turbulence as seen in the solar corona and solar wind
Chapman, S. C.; Leonardis, E.; Nicol, R. M.; Foullon, C.
2010-12-01
A key property of turbulence is that it can be characterized and quantified in a robust and reproducible way in terms of the ensemble averaged statistical properties of fluctuations. Importantly, fluctuations associated with a turbulent field show similarity or scaling in their statistics and we test for this in observations of magnetohydrodynamic turbulence in the solar corona and solar wind with both power spectra and Generalized Structure Functions. Realizations of turbulence that are finite sized are known to exhibit a generalized or extended self-similarity (ESS). ESS was recently demonstrated in magnetic field timeseries of Ulysses single point in-situ observations of fluctuations of quiet solar wind for which a single robust scaling function was found [1-2]. Flows in solar coronal prominences can be highly variable, with dynamics suggestive of turbulence. The Hinode SOT instrument provides observations (images) at simultaneous high spatial and temporal resolution which span several decades in both spatial and temporal scales. We focus on specific Calcium II H-line observations of solar quiescent prominences with dynamic, highly variable small-scale flows. We analyze these images from the perspective of a finite sized turbulent flow. We discuss this evidence of ESS in the SOT images and in Ulysses solar wind observations- is there a single universal scaling of the largest eddies in the finite range magnetohydrodynamic turbulent flow? [1] S. C. Chapman, R. M. Nicol, Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence, Phys. Rev. Lett., 103, 241101 (2009) [2] S. C. Chapman, R. M. Nicol, E. Leonardis, K. Kiyani, V. Carbone, Observation of universality in the generalized similarity of evolving solar wind turbulence as seen by ULYSSES, Ap. J. Letters, 695, L185, (2009)
Siebert, H.; Shaw, R. A.; Ditas, J.; Schmeissner, T.; Malinowski, S. P.; Bodenschatz, E.; Xu, H.
2015-01-01
Mountain research stations are advantageous not only for long-term sampling of cloud properties, but also for measurements that prohibitively difficult to perform on airborne platforms due to the true air speed or adverse factors such as weight and complexity of the equipment necessary. Some cloud-turbulence measurements, especially Lagrangian in nature, fall into this category. We report results from simultaneous, high-resolution and collocated measurements of cloud microphysical and turbulence properties during several warm cloud events at the Umweltforschungsstation Schneefernerhaus (UFS) on Zugspitze in the German Alps. The data gathered was found to be representative of observations made with similar instrumentation in free clouds. The turbulence observed, shared all features known for high Reynolds number flows: it exhibited approximately Gaussian fluctuations for all three velocity components, a clearly defined inertial subrange following Kolmogorov scaling (power spectrum, and second and third order Eulerian structure functions), and highly intermittent velocity gradients, as well as approximately lognormal kinetic energy dissipation rates. The clouds were observed to have liquid water contents of order 1 g m-3, and size distributions typical of continental clouds, sometimes exhibiting long positive tails indicative of large drop production through turbulent mixing or coalescence growth. Dimensionless parameters relevant to cloud-turbulence interactions, the Stokes number and settling parameter, are in the range typically observed in atmospheric clouds. Observed fluctuations in droplet number concentration and diameter suggest a preference for inhomogeneous mixing. Finally, enhanced variance in liquid water content fluctuations is observed at high frequencies, and the scale break occurs at a value consistent with the independently estimated phase relaxation time from microphysical measurements.
Schneider, Andreas; Wagner, Johannes; Söder, Jens; Gerding, Michael; Lübken, Franz-Josef
2017-06-01
Measurements of turbulent energy dissipation rates obtained from wind fluctuations observed with the balloon-borne instrument LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere) are combined with simulations with the Weather Research and Forecasting (WRF) model to study the breakdown of waves into turbulence. One flight from Kiruna (68° N, 21° E) and two flights from Kühlungsborn (54° N, 12° E) are analysed. Dissipation rates are of the order of 0. 1 mW kg-1 (˜ 0.01 K d-1) in the troposphere and in the stratosphere below 15 km, increasing in distinct layers by about 2 orders of magnitude. For one flight covering the stratosphere up to ˜ 28 km, the measurement shows nearly no turbulence at all above 15 km. Another flight features a patch with highly increased dissipation directly below the tropopause, collocated with strong wind shear and wave filtering conditions. In general, small or even negative Richardson numbers are affirmed to be a sufficient condition for increased dissipation. Conversely, significant turbulence has also been observed in the lower stratosphere under stable conditions. Observed energy dissipation rates are related to wave patterns visible in the modelled vertical winds. In particular, the drop in turbulent fraction at 15 km mentioned above coincides with a drop in amplitude in the wave patterns visible in the WRF. This indicates wave saturation being visible in the LITOS turbulence data.
Alignment of Disks with Lagrangian Stretching in Turbulence
Hunt, Conor; Tierney, Lydia; Kramel, Stefan; Voth, Greg
2015-11-01
We study Lagrangian stretching in isotropic turbulence in order to understand both the rotations of disks and the preferential alignment of vorticity with the intermediate strain rate eigenvector. Using velocity gradient tensors from a numerical simulation of homogeneous isotropic turbulence at Rλ = 180, we calculate the Cauchy-Green strain tensors whose eigenvectors provide a natural basis for studying stretching phenomenon. Previous work has shown that rods preferentially align with the vorticity as a result of both quantities independently aligning with the extensional Cauchy-Green eigenvector. In contrast, disks orient with their symmetry axis perpendicular to vorticity and preferentially align with the compressional Cauchy-Green eigenvector. We also find that the intermediate strain rate eigenvector is aligned with the extensional Cauchy-Green eigenvector. A natural consequence is that the intermediate strain rate eigenvector is aligned with the vorticity vector since conservation of angular momentum aligns vorticity with the direction it has been stretched.
Large Eddy Simulation of Turbulent Flow and Heat Transfer in a Ribbed Coolant Passage
Directory of Open Access Journals (Sweden)
Abhishek G. Ramgadia
2012-01-01
Full Text Available Numerical simulations of hydrodynamic and thermally fully developed turbulent flow are presented for flow through a stationary duct with periodic array of inline transverse rib turbulators. The rib height to hydraulic diameter ratio (/ℎ is 0.1 and the rib pitch to rib height ratio (/ is 10. The effect of secondary flow due to presence of rib turbulators on heat and mass transfer has been investigated. The present work reviews the use of a large eddy simulation (LES turbulence model, known as shear-improved Smagorinsky model (SISM, for predicting flow and heat transfer characteristics in the fully developed periodic flow region. The computations are performed for Reynolds number of 2,053 and the working fluid chosen to be air, the Prandtl number of which is 0.7. Instantaneous flow field, time-mean, and turbulent quantities are reported together with heat transfer and a close match with experiments has been observed.
Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales
International Nuclear Information System (INIS)
Howes, G. G.; TenBarge, J. M.; Dorland, W.; Numata, R.; Quataert, E.; Schekochihin, A. A.; Tatsuno, T.
2011-01-01
A three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k -2.8 as observed in in situ spacecraft measurements of the 'dissipation range' of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic Alfven wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at subion-Larmor radius scales, which provides evidence of the ion entropy cascade in an electromagnetic turbulence simulation.
Predatory and suspension feeding of the copepod Acartia tonsa in turbulent environments
DEFF Research Database (Denmark)
Saiz, E.; Kiørboe, Thomas
1995-01-01
The copepod Acartia tonsa exhibits 2 different feeding modes: When feeding on small phytoplankton cells it sets up a feeding current and acts as a suspension feeder; when feeding on motile prey it acts as an ambush feeder. We examined experimentally the effects of small-scale turbulence on feeding...... with prey perception by disturbing the hydrodynamical signal generated by motile prey. The negative effects were evident only at turbulence intensities exceeding those normally encountered by A. tonsa in its natural habitat. In suspension feeding mode, low intensities of ambient turbulence (epsilon = 10...... shear rate of the copepod's feeding current, and we hypothesize that at these intensities the feeding current is eroded. Again the negative effects were observed only al turbulence intensities higher than those typically experienced by A. tonsa in the sea. The differential response to turbulence...
Pipe Flow and Wall Turbulence Using a Modified Navier-Stokes Equation
International Nuclear Information System (INIS)
Jirkovsky, L.; Muriel, A.
2012-01-01
We use a derived incompressible modified Navier-Stokes equation to model pipe flow and wall turbulence. We reproduce the observed flattened paraboloid velocity profiles of turbulence that cannot be obtained directly using standard incompressible Navier-Stokes equation. The solutions found are in harmony with multi-valued velocity fields as a definition of turbulence. Repeating the procedure for the flow of turbulent fluid between two parallel flat plates we find similar flattened velocity profiles. We extend the analysis to the turbulent flow along a single wall and compare the results with experimental data and the established controversial von Karman logarithmic law of the wall. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Global characteristics of zonal flows due to the effect of finite bandwidth in drift wave turbulence
International Nuclear Information System (INIS)
Uzawa, K.; Li Jiquan; Kishimoto, Y.
2009-01-01
The spectral effect of the zonal flow (ZF) on its generation is investigated based on the Charney-Hasegawa-Mima turbulence model. It is found that the effect of finite ZF bandwidth qualitatively changes the characteristics of ZF instability. A spatially localized (namely, global) nonlinear ZF state with an enhanced, unique growth rate for all spectral components is created under a given turbulent fluctuation. It is identified that such state originates from the successive cross couplings among Fourier components of the ZF and turbulence spectra through the sideband modulation. Furthermore, it is observed that the growth rate of the global ZF is determined not only by the spectral distribution and amplitudes of turbulent pumps as usual, but also statistically by the turbulence structure, namely, their probabilistic initial phase factors. A ten-wave coupling model of the ZF modulation instability involving the essential effect of the ZF spectrum is developed to clarify the basic features of the global nonlinear ZF state.
Dissipative structures in magnetorotational turbulence
Ross, Johnathan; Latter, Henrik N.
2018-03-01
Via the process of accretion, magnetorotational turbulence removes energy from a disk's orbital motion and transforms it into heat. Turbulent heating is far from uniform and is usually concentrated in small regions of intense dissipation, characterised by abrupt magnetic reconnection and higher temperatures. These regions are of interest because they might generate non-thermal emission, in the form of flares and energetic particles, or thermally process solids in protoplanetary disks. Moreover, the nature of the dissipation bears on the fundamental dynamics of the magnetorotational instability (MRI) itself: local simulations indicate that the large-scale properties of the turbulence (e.g. saturation levels, the stress-pressure relationship) depend on the short dissipative scales. In this paper we undertake a numerical study of how the MRI dissipates and the small-scale dissipative structures it employs to do so. We use the Godunov code RAMSES and unstratified compressible shearing boxes. Our simulations reveal that dissipation is concentrated in ribbons of strong magnetic reconnection that are significantly elongated in azimuth, up to a scale height. Dissipative structures are hence meso-scale objects, and potentially provide a route by which large scales and small scales interact. We go on to show how these ribbons evolve over time — forming, merging, breaking apart, and disappearing. Finally, we reveal important couplings between the large-scale density waves generated by the MRI and the small-scale structures, which may illuminate the stress-pressure relationship in MRI turbulence.
Turbulent transport in magnetized plasmas
Horton, Wendell
2012-01-01
This book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th century. It describes theory, experiments and simulations in a unified and up-to-date presentation of the issues of achieving nuclear fusion power.
Evaluation of turbulence mitigation methods
van Eekeren, Adam W. M.; Huebner, Claudia S.; Dijk, Judith; Schutte, Klamer; Schwering, Piet B. W.
2014-05-01
Atmospheric turbulence is a well-known phenomenon that diminishes the recognition range in visual and infrared image sequences. There exist many different methods to compensate for the effects of turbulence. This paper focuses on the performance of two software-based methods to mitigate the effects of low- and medium turbulence conditions. Both methods are capable of processing static and dynamic scenes. The first method consists of local registration, frame selection, blur estimation and deconvolution. The second method consists of local motion compensation, fore- /background segmentation and weighted iterative blind deconvolution. A comparative evaluation using quantitative measures is done on some representative sequences captured during a NATO SET 165 trial in Dayton. The amount of blurring and tilt in the imagery seem to be relevant measures for such an evaluation. It is shown that both methods improve the imagery by reducing the blurring and tilt and therefore enlarge the recognition range. Furthermore, results of a recognition experiment using simulated data are presented that show that turbulence mitigation using the first method improves the recognition range up to 25% for an operational optical system.
5th European Turbulence Conference
1995-01-01
Under the auspices of the Euromech Committee, the Fifth European Turbulence Conference was held in Siena on 5-8 July 1994. Following the previous ETC meeting in Lyon (1986), Berlin (1988), Stockholm (1990) and Delft (1992), the Fifth ETC was aimed at providing a review of the fundamental aspects of turbulence from a theoretical, numerical and experimental point of view. In the magnificent town of Siena, more than 250 scientists from all over the world, spent four days discussing new ideas on turbulence. As a research worker in the field of turbulence, I must say that the works presented at the Conference, on which this book is based, covered almost all areas in this field. I also think that this book provides a major opportunity to have a complete overview of the most recent research works. I am extremely grateful to Prof. C. Cercignani, Dr. M. Loffredo, and Prof. R. Piva who, as members of the local organizing committee, share the success of the Conference. I also want to thank Mrs. Liu' Catena, for her inva...
Tackling turbulent flows in engineering
Dewan, Anupam
2011-01-01
Focusing on the engineering aspects of fluid turbulence, this volume offers solutions to the problem in a number of settings. Emphasizing real-world applications rather than mathematics, it will be a must-read text in both industrial and academic environments.
Topology optimization of turbulent flows
DEFF Research Database (Denmark)
Dilgen, Cetin B.; Dilgen, Sumer B.; Fuhrman, David R.
2018-01-01
The aim of this work is to present a fast and viable approach for taking into account turbulence in topology optimization of complex fluid flow systems, without resorting to any simplifying assumptions in the derivation of discrete adjoints. Topology optimization is an iterative gradient...
Magnetic turbulence and anomalous transport
International Nuclear Information System (INIS)
Garbet, X.; Mourgues, F.; Samain, A.
1990-01-01
The self consistency conditions for magnetic turbulence are reviewed. The main features of magnetic topology involving stochastic flux lines are summarized. Two driving sources are considered: thermal effects which require large scale residual islands and electron diamagnetism which involves fluctuation scales smaller than the ion Larmor radius and a β p threshold of order one. Stability criteria and transport coefficients are given
Correlation lengths of electrostatic turbulence
International Nuclear Information System (INIS)
Guiziou, L.; Garbet, X.
1995-01-01
In this paper, the radial correlation length of an electrostatic drift wave turbulence is analytically determined in various regimes. The analysis relies on the calculation of a range of mode non linear interaction, which is an instantaneous correlation length. The link with the usual correlation length has not been investigated yet. (TEC). 5 refs
Turbulence in the Heliospheric Jets
Drake, J. F.; Swisdak, M.; Opher, M.; Hassam, A.; Ohia, O.
2016-12-01
The conventional picture of the heliosphere is that of a comet-shaped structure with an extended tail produced by the relative motion of the sun through the local interstellar medium (LISM). Recent MHD simulations of the global heliosphere have revealed, however, that the heliosphere drives magnetized jets to the North and South similar to those driven by the Crab Nebula and other astrophysical objects. These simulations reveal that the jets become turbulent with scale lengths as large as 100AU [1,2]. An important question is what drives this large-scale turbulence, what are the implications for mixing of interstellar and heliospheric plasma and does this turbulence drive energetic particles? An analytic model of the heliospheric jets in the simple limit in which the interstellar flow and magnetic field are neglected yields an equilibrium state that can be analyzed to explore potential instabilities [3]. Calculations suggest that because the axial magnetic field within the jets is small, the dominant instability is the sausage mode, driven by the azimuthal solar magnetic field. Other drive mechanisms, including Kelvin Helmholtz, are also being explored. 3D MHD and Hall MHD simulations are being carried out to explore the development of this turbulence, its impact on the mixing of interstellar and heliosheath plasma and the production of energetic particles. [1] Opher et al ApJ Lett. 800, L28, 2015[2] Pogorelov et al ApJ Lett. 812,L6, 2015[3] Drake et al ApJ Lett. 808, L44, 2015
Wind effect in turbulence parametrization
Colombini, M.; Stocchino, A.
2005-09-01
The action of wind blowing over a closed basin ultimately results in a steady shear-induced circulation pattern and in a leeward rising of the free surface—and a corresponding windward lowering—known as wind set-up. If the horizontal dimensions of the basin are large with respect to the average flow depth, the occurrence of local quasi-equilibrium conditions can be expected, i.e. the flow can be assumed to be locally driven only by the wind stress and by the opposing free surface gradient due to set-up. This wind-induced flow configuration shows a strong similarity with turbulent Couette-Poiseuille flow, the one dimensional flow between parallel plates generated by the simultaneous action of a constant pressure gradient and of the shear induced by the relative motion of the plates. A two-equation turbulence closure is then employed to perform a numerical study of turbulent Couette-Poiseuille flows for different values of the ratio of the shear stresses at the two walls. The resulting eddy viscosity vertical distributions are analyzed in order to devise analytical profiles of eddy viscosity that account for the effect of wind. The results of this study, beside allowing for a physical insight on the turbulence process of this class of flows, will allow for a more accurate description of the wind effect to be included in the formulation of quasi-3D and 3D models of lagoon hydrodynamics.
Turbulent jet in confined counterflow
Indian Academy of Sciences (India)
Abstract. The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct ...
Magnetohydrodynamics turbulence: An astronomical perspective
Indian Academy of Sciences (India)
solar-wind turbulence show that there is more power in Alfvén waves that travel away from the. Sun than towards it. .... to ˆz is called the Alfvén wave, and the other orthogonal component is called the Slow. (magnetosonic) ...... advanced in the text suffices for our phenomenological account in this review. [46] A Beresnyak ...
Turbulent jet in confined counterflow
Indian Academy of Sciences (India)
The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct limit of ...
Stochastic acceleration by hydromagnetic turbulence
International Nuclear Information System (INIS)
Kulsrud, R.M.
1979-03-01
A general theory for particle acceleration by weak hydromagnetic turbulence with a given spectrum of waves is described. Various limiting cases, corresponding to Fermi acceleration and magnetic pumping, are discussed and two numerical examples illustrating them are given. An attempt is made to show that the expression for the rate of Fermi acceleration is valid for finite amplitudes
Keenan, Brett D; Ford, Alexander L; Medvedev, Mikhail V
2015-09-01
Plasmas with electromagnetic fields turbulent at sub-Larmor scales are a feature of a wide variety of high-energy-density environments and are essential to the description of many astrophysical and laboratory plasma phenomena. Radiation from particles, whether they are relativistic or nonrelativistic, moving through small-scale magnetic turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation. The radiation, carrying information on the statistical properties of the magnetic turbulence, is also intimately related to the particle diffusive transport. We have investigated, both theoretically and numerically, the transport of nonrelativistic and trans-relativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale magnetic turbulence, and its relation to the spectra of radiation simultaneously produced by these particles. Consequently, the diffusive and radiative properties of plasmas turbulent on sub-Larmor scales may serve as a powerful tool to diagnosis laboratory and astrophysical plasmas.
Effect of carbon black nanoparticles on methane/air explosions: Influence at low initial turbulence
Torrado, David; Glaude, Pierre-Alexandre; Dufaud, Olivier
2017-06-01
Nanoparticles are widely used in industrial applications as additives to modify materials properties such as resistance, surface, rheology or UV-radiation. As a consequence, the quantification and characterization of nanoparticles have become almost compulsory, including the understanding of the risks associated to their use. Since a few years ago, several studies of dust explosion properties involving nano-sized powder have been published. During the production and industrial use of nanoparticles, simultaneous presence of gas / vapor / solvents and dispersed nanoparticles mixtures might be obtained, increasing the risk of a hybrid mixture explosion. The aim of this work is to study the severity of the explosion of carbon black nanoparticles/methane mixtures and understand the influence of adding nanopowders on the behavior of the gas explosions. These results are also useful to understand the influence of soot on the efficiency of the gas combustion. Two grades of carbon black nanoparticles (ranging from 20 to 300 nm average diameter) have been mixed with methane. Tests have been performed on these mixtures in a standard 20 L explosion sphere. Regarding the scale precision, the lowest concentration of carbon black nanoparticles was set at 0.5 g.m-3. Tests were also performed at 2.5 g.m-3, which is still far below 60 g.m-3, the minimum explosive concentration of such powders previously determined in our laboratory. The influence of carbon black particles on the severity of the explosions has been compared to that of pure gas. It appears that the use of carbon black nanoparticles increases the explosion overpressure for lean methane mixtures at low initial turbulences by c. 10%. Similar results were obtained for high initial turbulent systems. Therefore, it seems that carbon black nanoparticles have an impact on the severity of the explosion even for quiescent systems, as opposed to systems involving micro-sized powders that require dispersion at high turbulence
Selection of unstable patterns and control of optical turbulence by Fourier plane filtering
DEFF Research Database (Denmark)
Mamaev, A.V.; Saffman, M.
1998-01-01
We report on selection and stabilization of transverse optical patterns in a feedback mirror experiment. Amplitude filtering in the Fourier plane is used to select otherwise unstable spatial patterns. Optical turbulence observed for nonlinearities far above the pattern formation threshold...
Digital Repository Service at National Institute of Oceanography (India)
Levy, M.; Resplandy, L.; Lengaigne, M.
Observed phytoplankton interannual variability has been commonly related to atmospheric variables and climate indices. Here we showed that such relation is highly hampered by internal variability associated with oceanic mesoscale turbulence...
Turbulence at Hydroelectric Power Plants and its Potential Effects on Fish.
Energy Technology Data Exchange (ETDEWEB)
Cada, Glenn F.; Odeh, Mufeed
2001-01-01
The fundamental influence of fluid dynamics on aquatic organisms is receiving increasing attention among aquatic ecologists. For example, the importance of turbulence to ocean plankton has long been a subject of investigation (Peters and Redondo 1997). More recently, studies have begun to emerge that explicitly consider the effects of shear and turbulence on freshwater invertebrates (Statzner et al. 1988; Hart et al. 1996) and fishes (Pavlov et al. 1994, 1995). Hydraulic shear stress and turbulence are interdependent natural fluid phenomena that are important to fish, and consequently it is important to develop an understanding of how fish sense, react to, and perhaps utilize these phenomena under normal river flows. The appropriate reaction to turbulence may promote movement of migratory fish or prevent displacement of resident fish. It has been suggested that one of the adverse effects of flow regulation by hydroelectric projects is the reduction of normal turbulence, particularly in the headwaters of reservoirs, which can lead to disorientation and slowing of migration (Williams et al. 1996; Coutant et al. 1997; Coutant 1998). On the other hand, greatly elevated levels of shear and turbulence may be injurious to fish; injuries can range from removal of the mucous layer on the body surface to descaling to torn opercula, popped eyes, and decapitation (Neitzel et al. 2000a,b). Damaging levels of fluid stress can occur in a variety of circumstances in both natural and man-made environments. This paper discusses the effects of shear stress and turbulence on fish, with an emphasis on potentially damaging levels in man-made environments. It defines these phenomena, describes studies that have been conducted to understand their effects, and identifies gaps in our knowledge. In particular, this report reviews the available information on the levels of turbulence that can occur within hydroelectric power plants, and the associated biological effects. The final section
THE DENSITY DISTRIBUTION IN TURBULENT BISTABLE FLOWS
International Nuclear Information System (INIS)
Gazol, Adriana; Kim, Jongsoo
2013-01-01
We numerically study the volume density probability distribution function (n-PDF) and the column density probability distribution function (Σ-PDF) resulting from thermally bistable turbulent flows. We analyze three-dimensional hydrodynamic models in periodic boxes of 100 pc by side, where turbulence is driven in the Fourier space at a wavenumber corresponding to 50 pc. At low densities (n ∼ –3 ), the n-PDF is well described by a lognormal distribution for an average local Mach number ranging from ∼0.2 to ∼5.5. As a consequence of the nonlinear development of thermal instability (TI), the logarithmic variance of the distribution of the diffuse gas increases with M faster than in the well-known isothermal case. The average local Mach number for the dense gas (n ∼> 7.1 cm –3 ) goes from ∼1.1 to ∼16.9 and the shape of the high-density zone of the n-PDF changes from a power law at low Mach numbers to a lognormal at high M values. In the latter case, the width of the distribution is smaller than in the isothermal case and grows slower with M. At high column densities, the Σ-PDF is well described by a lognormal for all of the Mach numbers we consider and, due to the presence of TI, the width of the distribution is systematically larger than in the isothermal case but follows a qualitatively similar behavior as M increases. Although a relationship between the width of the distribution and M can be found for each one of the cases mentioned above, these relations are different from those of the isothermal case.
Simulation and modeling of turbulent flows
Gatski, Thomas B; Lumley, John L
1996-01-01
This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.
An introduction to turbulence and its measurement
Bradshaw, P
1971-01-01
An Introduction to Turbulence and Its Measurement is an introductory text on turbulence and its measurement. It combines the physics of turbulence with measurement techniques and covers topics ranging from measurable quantities and their physical significance to the analysis of fluctuating signals, temperature and concentration measurements, and the hot-wire anemometer. Examples of turbulent flows are presented. This book is comprised of eight chapters and begins with an overview of the physics of turbulence, paying particular attention to Newton's second law of motion, the Newtonian viscous f
Using time-frequency and wavelet analysis to assess turbulence/rotor interactions
Energy Technology Data Exchange (ETDEWEB)
Kelley, N.D.; Osgood, R.M.; Bialasiewicz, J.T.; Jakubowski, A.
2000-01-05
Large loading events on wind turbine rotor blades are often associated with transient bursts of coherent turbulent energy in the turbine inflow. These coherent turbulent structures are identified as peaks in the three-dimensional, instantaneous, turbulent shearing stress field. Such organized inflow structures and the accompanying rotor aeroelastic responses typically have time scales of only a few seconds and therefore do not lend themselves for analysis by conventional Fourier spectral techniques. Time-frequency analysis (and wavelet analysis in particular) offers the ability to more closely study the spectral decomposition of short period events such as the interaction of coherent turbulence with a moving rotor blade. In this paper, the authors discuss the initial progress in the application of time-frequency analysis techniques to the decomposition and interpretation of turbulence/rotor interaction. The authors discuss the results of applying both the continuous and discrete wavelet transforms for their application. Several examples are given of the techniques applied to both observed turbulence and turbine responses and those generated using numerical simulations. They found that the presence of coherent turbulent structures, as revealed by the inflow Reynolds stress field, is a major contributor to large load excursions. These bursts of coherent turbulent energy induce a broadband aeroelastic response in the turbine rotor as it passes through them.
Statistics and scaling of turbulence in a spatially developing mixing layer at Reλ = 250
Attili, Antonio
2012-03-21
The turbulent flow originating from the interaction between two parallel streams with different velocities is studied by means of direct numerical simulation. Rather than the more common temporal evolving layer, a spatially evolving configuration, with perturbed laminar inlet conditions is considered. The streamwise evolution and the self-similar state of turbulence statistics are reported and compared to results available in the literature. The characteristics of the transitional region agree with those observed in other simulations and experiments of mixing layers originating from laminar inlets. The present results indicate that the transitional region depends strongly on the inlet flow. Conversely, the self-similar state of turbulent kinetic energy and dissipation agrees quantitatively with those in a temporal mixing layer developing from turbulent initial conditions [M. M. Rogers and R. D. Moser, “Direct simulation of a self-similar turbulent mixing layer,” Phys. Fluids6, 903 (1994)]. The statistical features of turbulence in the self-similar region have been analysed in terms of longitudinal velocity structure functions, and scaling exponents are estimated by applying the extended self-similarity concept. In the small scale range (60 < r/η < 250), the scaling exponents display the universal anomalous scaling observed in homogeneous isotropic turbulence. The hypothesis of isotropy recovery holds in the turbulent mixing layer despite the presence of strong shear and large-scale structures, independently of the means of turbulence generation. At larger scales (r/η > 400), the mean shear and large coherent structures result in a significant deviation from predictions based on homogeneous isotropic turbulence theory. In this second scaling range, the numerical values of the exponents agree quantitatively with those reported for a variety of other flows characterized by strong shear, such as boundary layers, as well as channel and wake flows.
Turbulence in Accretion Discs. The Global Baroclinic Instability
Klahr, Hubert; Bodenheimer, Peter
The transport of angular momentum away from the central object is a sufficient condition for a protoplanetary disk to accrete matter onto the star and spin it down. Magnetic fields cannot be of importance for this process in a large part of the cold and dusty disk where the planets supposedly form. Our new hypothesis on the angular momentum transport based on radiation hydro simulations is as follows: We present the global baroclinic instability as a source for vigorous turbulence leading to angular momentum transport in Keplerian accretion disks. We show by analytical considerations and three-dimensional radiation hydro simulations that, in particular, protoplanetary disks have a negative radial entropy gradient, which makes them baroclinic. Two-dimensional numerical simulations show that this baroclinic flow is unstable and produces turbulence. These findings are currently tested for numerical effects by performing barotropic simulations which show that imposed turbulence rapidly decays. The turbulence in baroclinic disks draws energy from the background shear, transports angular momentum outward and creates a radially inward bound accretion of matter, thus forming a self consistent process. Gravitational energy is transformed into turbulent kinetic energy, which is then dissipated, as in the classical accretion paradigm. We measure accretion rates in 2D and 3D simulations of dot M= - 10-9 to -10-7 Msolar yr-1 and viscosity parameters of α = 10-4 - 10-2, which fit perfectly together and agree reasonably with observations. The turbulence creates pressure waves, Rossby waves, and vortices in the (r-φ) plane of the disk. We demonstrate in a global simulation that these vortices tend to form out of little background noise and to be long-lasting features, which have already been suggested to lead to the formation of planets.
Suppression of Phase Mixing in Drift-Kinetic Plasma Turbulence
Parker, J. T.; Dellar, P. J.; Schekochihin, A. A.; Highcock, E. G.
2017-12-01
of free energy flow in drift-kinetic turbulence, and, moreover, explain previously observed spectra.
Turbulence and star formation in molecular clouds
International Nuclear Information System (INIS)
Larson, R.B.
1981-01-01
Data for many molecular clouds and condensations show that the internal velocity dispersion of each region is well correlated with its size and mass, and these correlations are approximately of power-law form. The dependence of velocity dispersion on region size is similar to the Kolmogoroff law for subsonic turbulence, suggesting that the observed motions are all part of a common hierarchy of interstellar turbulent motions. The regions studied are mostly gravitationally bound and in approximate virial equilibrium. However, they cannot have formed by simple gravitational collapse, and it appears likely that molecular clouds and their substructures have been created at least partly by processes of supersonic hydrodynamics. The hierarchy of subcondensations may terminate with objects so small that their internal motions are no longer supersonic; this predicts a minimum protostellar mass of the order of a few tenths of a solar mass. Massive 'protostellar' clumps always have supersonic internal motions and will therefore develop complex internal structures, probably leading to the formation of many pre-stellar condensation nuclei that grow by accretion to produce the final stellar mass spectrum. Molecular clouds must be transient structures, and are probably dispersed after not much more than 10 7 yr. (author)
Consequences of entropy bifurcation in non-Maxwellian astrophysical environments
Directory of Open Access Journals (Sweden)
M. P. Leubner
2008-07-01
Full Text Available Non-extensive systems, accounting for long-range interactions and correlations, are fundamentally related to non-Maxwellian distributions where a duality of equilibria appears in two families, the non-extensive thermodynamic equilibria and the kinetic equilibria. Both states emerge out of particular entropy generalization leading to a class of probability distributions, where bifurcation into two stationary states is naturally introduced by finite positive or negative values of the involved entropic index kappa. The limiting Boltzmann-Gibbs-Shannon state (BGS, neglecting any kind of interactions within the system, is subject to infinite entropic index and thus characterized by self-duality. Fundamental consequences of non-extensive entropy bifurcation, manifest in different astrophysical environments, as particular core-halo patterns of solar wind velocity distributions, the probability distributions of the differences of the fluctuations in plasma turbulence as well as the structure of density distributions in stellar gravitational equilibrium are discussed. In all cases a lower entropy core is accompanied by a higher entropy halo state as compared to the standard BGS solution. Data analysis and comparison with high resolution observations significantly support the theoretical requirement of non-extensive entropy generalization when dealing with systems subject to long-range interactions and correlations.
Entrainment by turbulent plumes
Parker, David; Burridge, Henry; Partridge, Jamie; Linden, Paul
2017-11-01
Plumes are of relevance to nature and real consequence to industry. While the Morton, Taylor & Turner (1956) plume model is able to estimate the mean physical flux parameters, the process of entrainment is only parametrised in a time-averaged sense and a deeper understanding is key to understanding how they evolve. Various flow configurations, resulting in different entrainment values, are considered; we perform simultaneous PIV and plume-edge detection on saline plumes in water resulting from a point source, a line source and a line source where a vertical wall is placed immediately adjacent. Of particular interest is the effect the large scale eddies, forming at the edge of the plume and engulfing ambient fluid, have on the entrainment process. By using velocity statistics in a coordinate system based on the instantaneous scalar edge of the plume the significance of this large scale engulfment is quantified. It is found that significant mass is transported outside the plumes, in particular in regions where large scale structures are absent creating regions of relatively high-momentum ambient fluid. This suggests that the large scale processes, whereby ambient fluid is engulfed into the plume, contribute significantly to the entrainment.
Modeling subgrid-scale turbulent fluxes in the "Grey Zone"
De Roode, S. R.; Jonker, H. J.; Siebesma, P.
2017-12-01
The ever increasing computational power nowadays allows both weather and climate models to operate at a horizontal grid resolution that is high enough to resolve some part of the turbulent transport. Some of these models apply a Smagorinsky type TKE closure model including a buoyancy production term to compute the subgrid turbulent fluxes of heat, momentum and moisture. For a stable stratification an analytical solution for the eddy viscosity can be derived. From a comparison with similarity relations from field observations it is concluded that an anistropic grid, as measured by the ratio of the horizontal to the vertical grid mesh sizes (r=Dx/Dz>1), will yield excessive subgrid mixing and an erroneous dependency on the grid resolution. Secondly, in contrast to what is being used in many LES models, field observations suggest that for a stable boundary layer the turbulent Prandtl number is close to unity. The effect of grid anistropy is also investigated for the CONSTRAIN cold air outbreak model intercomparison case. Here opposite results are found. In the presence of convective stratocumulus clouds the Smagorinsky model appears to be well capable of compensating the gradual reduction of the resolved vertical fluxes with coarsening horizontal grid resolution, up to values Dx>3 km, in such a way that the total turbulent fluxes are hardly affected.
Statistical Mechanics of Turbulent Dynamos
Shebalin, John V.
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much
Krol, M.C.; Molemaker, M.J.; Vilu-Guerau, de J.
2000-01-01
Photochemistry is studied in a convective atmospheric boundary layer. The essential reactions that account for the ozone formation and depletion are included in the chemical mechanism which, as a consequence, contains a wide range of timescales. The turbulent reacting flow is modeled with a
Applications of Turbulence Models for Transport of Dissolved Pollutants and Particles
DEFF Research Database (Denmark)
Petersen, Ole
The present report concerns itself with numerical models of turbulent transport and mixing, with emphasis on the description of the mixing processes which occur in recipients and tanks. Consequently a part of the report is dedicated to a discussion of flows where differences in density play a sub...
PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert
2008-10-01
The goals of the International Conference `Turbulent Mixing and Beyond' are to expose the generic problem of Turbulence and Turbulent Mixing in Unsteady Flows to a wide scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the non-canonical turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together scientists from the areas which include, but are not limited to, high energy density physics, plasmas, fluid dynamics, turbulence, combustion, material science, geophysics, astrophysics, optics and telecommunications, applied mathematics, probability and statistics, and to have their attention focused on the long-standing formidable task. The Turbulent Mixing and Turbulence in Unsteady Flows, including multiphase flows, plays a key role in a wide variety of phenomena, ranging from astrophysical to nano-scales, under either high or low energy density conditions. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, properties of materials under high strain rates, strong shocks, explosions, blast waves, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, oceanography, atmospheric flows, unsteady boundary layers, hypersonic and supersonic flows, are a few examples to list. A grip on unsteady turbulent processes is crucial for cutting-edge technology such as laser-micromachining and free-space optical telecommunications, and for industrial applications in aeronautics. Unsteady Turbulent Processes are anisotropic, non-local and multi-scale, and their fundamental scaling, spectral and invariant properties depart from the classical Kolmogorov scenario. The singular aspects and similarity of the
Intermittency in non-homogeneous Wake and Jet Turbulence
Mahjoub, O. B.; Sekula, E.; Redondo, J. M.
2010-05-01
-33. [2] Carrillo, J.A., Redondo, J.M., Sánchez, M.A., and Platonov, A. (2001), Coastal and interfacial mixing laboratory experiments and satellite observation, Physics and chemistry of the Earth 26 (4), 305-311. [3]Mahjoub, O.B., T. Granata and J.M. Redondo (2001), Scaling Laws in Geophysical Flows. Phys. Chem. Earth 26, 281-285 [4] Redondo J.M. and Cantalapiedra I.R. (1993) "Mixing in horizontally heterogeneous flows", Applied Scientific Research, 51, 217-222. [5] Redondo J.M., Sánchez, M.A. & Cantalpiedra, I.R. (1996), Turbulent mechanisms in stratified fluids, Dyn. of Atmospheres and Oceans 24, 107-715. [6]Redondo J. M. (2002), Mixing efficiencies of different kinds of turbulent processes and instabilities: Applications to the environment in turbulent mixing in geophysical flows. Eds. Linden P.F. and Redondo J.M., 131-157. [7]Redondo, J.M. (2004), The topology of Stratified Rotating Flows in Topics in Fluid Mechanics. Prihoda & K.Kozel, CAS, Praga 129-135. Ed.
Dissipation of Molecular Cloud Turbulence by Magnetohydrodynamic Shockwaves
Lehmann, Andrew; Wardle, Mark
2015-08-01
The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the giant molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low velocity shock waves. These shocks cause molecular line cooling of the compressed and heated gas, and so their radiative signatures probe the nature of the turbulence. In MHD fluids the three distinct families of shocks—fast, intermediate and slow—differ in how they compress and heat the molecular gas, and so observational differences between them may also distinguish driving modes of turbulent regions.Here we use a two-fluid model to compare the characteristics of one-dimensional fast and slow MHD shocks. Fast MHD shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all the fluid variables only weakly change in the shock front. In contrast, slow MHD shocks are driven by gas pressure where neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock.We computed observational diagnostics for fast and slow shocks at velocities vs = 2-4 km/s and preshock Hydrogen nuclei densities n(H) = 102-4 cm-3. We followed the abundances of molecules relevant for a simple oxygen chemistry and include cooling by CO, H2 and H2O. Estimates of intensities of CO rotational lines show that high-J lines, above J = 6→5, are more strongly excited in slow MHD shocks. We discuss how these shocks could help interpret recently observed anomalously strong mid- and high-J CO lines emitted by warm gas in the Milky Way and external galaxies, and implications for simulations of MHD turbulence.
Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations.
Carbone, V; Marino, R; Sorriso-Valvo, L; Noullez, A; Bruno, R
2009-08-07
Incompressible and isotropic magnetohydrodynamic turbulence in plasmas can be described by an exact relation for the energy flux through the scales. This Yaglom-like scaling law has been recently observed in the solar wind above the solar poles observed by the Ulysses spacecraft, where the turbulence is in an Alfvénic state. An analogous phenomenological scaling law, suitably modified to take into account compressible fluctuations, is observed more frequently in the same data set. Large-scale density fluctuations, despite their low amplitude, thus play a crucial role in the basic scaling properties of turbulence. The turbulent cascade rate in the compressive case can, moreover, supply the energy dissipation needed to account for the local heating of the nonadiabatic solar wind.
MEASUREMENTS AND COMPUTATIONS OF FUEL DROPLET TRANSPORT IN TURBULENT FLOWS
Energy Technology Data Exchange (ETDEWEB)
Joseph Katz and Omar Knio
2007-01-10
relevant to the experiments, and (3) to explore whether the corresponding predictions can explain the experimentally-observed behavior of the rise and dispersion of oil droplets in isotropic turbulence. A brief summary of results is presented in Section 4.
Turbulent transport in 2D collisionless guide field reconnection
Muñoz, P. A.; Büchner, J.; Kilian, P.
2017-02-01
Transport in hot and dilute, i.e., collisionless, astrophysical and space, plasmas is called "anomalous." This transport is due to the interaction between the particles and the self-generated turbulence by their collective interactions. The anomalous transport has very different and not well known properties compared to the transport due to binary collisions, dominant in colder and denser plasmas. Because of its relevance for astrophysical and space plasmas, we explore the excitation of turbulence in current sheets prone to component- or guide-field reconnection, a process not well understood yet. This configuration is typical for stellar coronae, and it is created in the laboratory for which a 2.5D geometry applies. In our analysis, in addition to the immediate vicinity of the X-line, we also include regions outside and near the separatrices. We analyze the anomalous transport properties by using 2.5D Particle-in-Cell code simulations. We split off the mean slow variation (in contrast to the fast turbulent fluctuations) of the macroscopic observables and determine the main transport terms of the generalized Ohm's law. We verify our findings by comparing with the independently determined slowing-down rate of the macroscopic currents (due to a net momentum transfer from particles to waves) and with the transport terms obtained by the first order correlations of the turbulent fluctuations. We find that the turbulence is most intense in the "low density" separatrix region of guide-field reconnection. It is excited by streaming instabilities, is mainly electrostatic and "patchy" in space, and so is the associated anomalous transport. Parts of the energy exchange between turbulence and particles are reversible and quasi-periodic. The remaining irreversible anomalous resistivity can be parametrized by an effective collision rate ranging from the local ion-cyclotron to the lower-hybrid frequency. The contributions to the parallel and the perpendicular (to the magnetic
Schroth, Christoph
2017-01-01
Maritime piracy decreased significantly around 2012, but recently made the news again. What are the wider consequences of piracy and what is being done on an international level to protect this important transportation sector?
International Nuclear Information System (INIS)
Nixon, W.; Cooper, P.J.; Underwood, B.Y.; Peckover, R.S.
1985-01-01
The essential elements of an analysis of the radiological consequences of accidental atmospheric releases from nuclear plant are identified and the modelling approaches currently used briefly outlined. For the model description attention is focused on the techniques used within the context of a probabilistic risk assessment. This is followed by a brief outline of current research and development work in the field, allowing an indication of the nature of the next generation of consequence assessment methods. (author)
Directory of Open Access Journals (Sweden)
Ben Magolan
2017-09-01
Full Text Available Direct Numerical Simulation (DNS serves as an irreplaceable tool to probe the complexities of multiphase flow and identify turbulent mechanisms that elude conventional experimental measurement techniques. The insights unlocked via its careful analysis can be used to guide the formulation and development of turbulence models used in multiphase computational fluid dynamics simulations of nuclear reactor applications. Here, we perform statistical analyses of DNS bubbly flow data generated by Bolotnov (Reτ = 400 and Lu–Tryggvason (Reτ = 150, examining single-point statistics of mean and turbulent liquid properties, turbulent kinetic energy budgets, and two-point correlations in space and time. Deformability of the bubble interface is shown to have a dramatic impact on the liquid turbulent stresses and energy budgets. A reduction in temporal and spatial correlations for the streamwise turbulent stress (uu is also observed at wall-normal distances of y+ = 15, y/δ = 0.5, and y/δ = 1.0. These observations motivate the need for adaptation of length and time scales for bubble-induced turbulence models and serve as guidelines for future analyses of DNS bubbly flow data.
Control of wave-driven turbulence and surface heating on the mixing of microplastic marine debris
Kukulka, T.; Lavender Law, K. L.; Proskurowski, G. K.
2016-02-01
Buoyant microplastic marine debris (MPMD) is a pollutant in the ocean surface boundary layer (OSBL) that is submerged by turbulent transport processes. Langmuir circulation (LC) is a turbulent process driven by wind and surface waves that enhances mixing in the OSBL. Sea surface cooling also contributes to OSBL turbulence by driving convection. On the other hand, sea surface heating stratifies and stabilizes the water column to reduce turbulent motion. We analyze observed MPMD surface concentrations in the Atlantic and Pacific Oceans to reveal a significant increase in MPMD concentrations during surface heating and a decrease during surface cooling. Turbulence resolving large eddy simulations of the OSBL for an idealized diurnal heating cycle suggest that turbulent downward fluxes of buoyant tracers are enhanced at night, facilitating deep submergence of plastics, and suppressed in heating conditions, resulting in surface trapped MPMD. Simulations agree with observations if enhanced mixing due to LC is included. Our results demonstrate the controlling influence of surface heat fluxes and LC on turbulent transport in the OSBL and on vertical distributions of buoyant marine particles.
Low-Mach-number turbulence in interstellar gas revealed by radio polarization gradients.
Gaensler, B M; Haverkorn, M; Burkhart, B; Newton-McGee, K J; Ekers, R D; Lazarian, A; McClure-Griffiths, N M; Robishaw, T; Dickey, J M; Green, A J
2011-10-05
The interstellar medium of the Milky Way is multiphase, magnetized and turbulent. Turbulence in the interstellar medium produces a global cascade of random gas motions, spanning scales ranging from 100 parsecs to 1,000 kilometres (ref. 4). Fundamental parameters of interstellar turbulence such as the sonic Mach number (the speed of sound) have been difficult to determine, because observations have lacked the sensitivity and resolution to image the small-scale structure associated with turbulent motion. Observations of linear polarization and Faraday rotation in radio emission from the Milky Way have identified unusual polarized structures that often have no counterparts in the total radiation intensity or at other wavelengths, and whose physical significance has been unclear. Here we report that the gradient of the Stokes vector (Q, U), where Q and U are parameters describing the polarization state of radiation, provides an image of magnetized turbulence in diffuse, ionized gas, manifested as a complex filamentary web of discontinuities in gas density and magnetic field. Through comparison with simulations, we demonstrate that turbulence in the warm, ionized medium has a relatively low sonic Mach number, M(s) ≲ 2. The development of statistical tools for the analysis of polarization gradients will allow accurate determinations of the Mach number, Reynolds number and magnetic field strength in interstellar turbulence over a wide range of conditions.
Mahalingam, Arun; Gawandalkar, Udhav Ulhas; Kini, Girish; Buradi, Abdulrajak; Araki, Tadashi; Ikeda, Nobutaka; Nicolaides, Andrew; Laird, John R; Saba, Luca; Suri, Jasjit S
2016-06-01
Local hemodynamics plays an important role in atherogenesis and the progression of coronary atherosclerosis disease (CAD). The primary biological effect due to blood turbulence is the change in wall shear stress (WSS) on the endothelial cell membrane, while the local oscillatory nature of the blood flow affects the physiological changes in the coronary artery. In coronary arteries, the blood flow Reynolds number ranges from few tens to several hundreds and hence it is generally assumed to be laminar while calculating the WSS calculations. However, the pulsatile blood flow through coronary arteries under stenotic condition could result in transition from laminar to turbulent flow condition. In the present work, the onset of turbulent transition during pulsatile flow through coronary arteries for varying degree of stenosis (i.e., 0%, 30%, 50% and 70%) is quantitatively analyzed by calculating the turbulent parameters distal to the stenosis. Also, the effect of turbulence transition on hemodynamic parameters such as WSS and oscillatory shear index (OSI) for varying degree of stenosis is quantified. The validated transitional shear stress transport (SST) k-ω model used in the present investigation is the best suited Reynolds averaged Navier-Stokes turbulence model to capture the turbulent transition. The arterial wall is assumed to be rigid and the dynamic curvature effect due to myocardial contraction on the blood flow has been neglected. Our observations shows that for stenosis 50% and above, the WSSavg, WSSmax and OSI calculated using turbulence model deviates from laminar by more than 10% and the flow disturbances seems to significantly increase only after 70% stenosis. Our model shows reliability and completely validated. Blood flow through stenosed coronary arteries seems to be turbulent in nature for area stenosis above 70% and the transition to turbulent flow begins from 50% stenosis.
Directory of Open Access Journals (Sweden)
I. A. Barghouthi
2007-11-01
Full Text Available The energization of ions, due to interaction with electromagnetic turbulence (i.e. wave-particle interactions, has an important influence on H+ and O+ ions outflows in the polar region. The effects of altitude and velocity dependent wave-particle interaction on H+ and O+ ions outflows in the auroral region were investigated by using Monte Carlo method. The Monte Carlo simulation included the effects of altitude and velocity dependent wave-particle interaction, gravity, polarization electrostatic field, and divergence of auroral geomagnetic field within the simulation tube (1.2–10 earth radii, RE. As the ions are heated due to wave-particle interactions (i.e. ion interactions with electromagnetic turbulence and move to higher altitudes, the ion gyroradius ρi may become comparable to the electromagnetic turbulence wavelength λ⊥ and consequently (k⊥ρi becomes larger than unity. This turns the heating rate to be negligible and the motion of the ions is described by using Liouville theorem. The main conclusions are as follows: (1 the formation of H+ and O+ conics at lower altitudes and for all values of λ⊥; (2 O+ toroids appear at 3.72 RE, 2.76 RE and 2 RE, for λ⊥=100, 10, and 1 km, respectively; however, H+ toroids appear at 6.6 RE, 4.4 RE and 3 RE, for λ⊥=100, 10, and 1 km, respectively; and H+ and O+ ion toroids did not appear for the case λ⊥ goes to infinity, i.e. when the effect of velocity dependent wave-particle interaction was not included; (3 As λ⊥ decreases, H+ and O+ ion drift velocity decreases, H+ and O+ ion density increases, H+ and O+ ion perpendicular temperature and H+ and O+ ion parallel temperature decrease; (4 Finally, including the effect of finite electromagnetic turbulence wavelength, i.e. the effect of velocity dependent diffusion coefficient and consequently, the velocity dependent wave-particle interactions produce realistic H+ and O+ ion temperatures and H+ and O+ toroids, and this is, qualitatively
John Leask Lumley: Whither Turbulence?
Leibovich, Sidney; Warhaft, Zellman
2018-01-01
John Lumley's contributions to the theory, modeling, and experiments on turbulent flows played a seminal role in the advancement of our understanding of this subject in the second half of the twentieth century. We discuss John's career and his personal style, including his love and deep knowledge of vintage wine and vintage cars. His intellectual contributions range from abstract theory to applied engineering. Here we discuss some of his major advances, focusing on second-order modeling, proper orthogonal decomposition, path-breaking experiments, research on geophysical turbulence, and important contributions to the understanding of drag reduction. John Lumley was also an influential teacher whose books and films have molded generations of students. These and other aspects of his professional career are described.
Model for Simulation Atmospheric Turbulence
DEFF Research Database (Denmark)
Lundtang Petersen, Erik
1976-01-01
A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance...... eigenfunctions and estimates of the distributions of the corresponding expansion coefficients. The simulation method utilizes the eigenfunction expansion procedure to produce preliminary time histories of the three velocity components simultaneously. As a final step, a spectral shaping procedure is then applied....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....
Transition and turbulence (hydrodynamic visualizations)
Werle, Henri
The very extensive Reynolds number domain (10 to the 4th power less than or equal to Re sub L greater than or equal to 10 to the 6th power) of the TH2 water tunnel at Chatillon, allowed for laminar-turbulent transition phenomena to be studied systematically by visualizations and with methods previously developed in the TH1 water tunnel. These tests concern a wide variety of models including, Flate plate type models (smooth or grooved, with curved afterbody or right base), cylindrical pod type models (smooth or grooved, with curved afterbody or plane base), and models of different shapes (recall). The purpose of these tests is to provide a visualization of these transition and turbulence phenomena in order to better understand the phenomena.
Electromotive force in strongly compressible magnetohydrodynamic turbulence
Yokoi, N.
2017-12-01
Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow
Turbulent diffusion of small particles
Energy Technology Data Exchange (ETDEWEB)
Margolin, L.G.
1977-11-01
The diffusion of small, spherical, rigid particles suspended in an incompressible turbulent fluid, but not interacting with each other, was studied. As a stochastic process, the turbulent fluid velocity field is assumed to be homogeneous, isotropic and stationary. Assuming the Stokes regime, a particle of equation of motion is used which includes only the effects of Stokes drag and a virtual mass force and an exact solution is found for the particle velocity correlation function, for all times and initial conditions, in terms of a fluid velocity correlation function measured along the motion of the particle. This shows that for times larger than a certain time scale, the particle velocity correlation becomes stationary. The effect of small shears in the fluid velocity was considered, under the additional restrictions of a certain high frequency regime for the turbulence. The shears convected past the particle much faster than the growth of the boundary layer. New force terms due to the presence of such shears are calculated and incorporated into the equation of motion. A perturbation solution to this equation is constructed, and the resultant particle velocity correlation function and diffusion coefficient are calculated. To lowest order, the particle diffusivity is found to be unaltered by the presence of small mean flow shears. The last model treated is one in which particles traverse a turbulent fluid with a large mean velocity. Among other restrictions, linearized form drag is assumed. The diffusion coefficient for such particles was calculated, and found to be much smaller than the passive scalar diffusion coefficient. This agrees within 5 percent with the experimental results of Snyder and Lumley.
Turbulent diffusion of small particles
International Nuclear Information System (INIS)
Margolin, L.G.
1977-11-01
The diffusion of small, spherical, rigid particles suspended in an incompressible turbulent fluid, but not interacting with each other, was studied. As a stochastic process, the turbulent fluid velocity field is assumed to be homogeneous, isotropic and stationary. Assuming the Stokes regime, a particle of equation of motion is used which includes only the effects of Stokes drag and a virtual mass force and an exact solution is found for the particle velocity correlation function, for all times and initial conditions, in terms of a fluid velocity correlation function measured along the motion of the particle. This shows that for times larger than a certain time scale, the particle velocity correlation becomes stationary. The effect of small shears in the fluid velocity was considered, under the additional restrictions of a certain high frequency regime for the turbulence. The shears convected past the particle much faster than the growth of the boundary layer. New force terms due to the presence of such shears are calculated and incorporated into the equation of motion. A perturbation solution to this equation is constructed, and the resultant particle velocity correlation function and diffusion coefficient are calculated. To lowest order, the particle diffusivity is found to be unaltered by the presence of small mean flow shears. The last model treated is one in which particles traverse a turbulent fluid with a large mean velocity. Among other restrictions, linearized form drag is assumed. The diffusion coefficient for such particles was calculated, and found to be much smaller than the passive scalar diffusion coefficient. This agrees within 5 percent with the experimental results of Snyder and Lumley
Conditional Eddies in Plasma Turbulence
DEFF Research Database (Denmark)
Johnsen, H.; Pécseli, H.L.; Trulsen, J.
1987-01-01
Low‐frequency electrostatic turbulence generated by the ion–ion beam instability was investigated experimentally in a double‐plasma device. Real time signals were recorded and examined by a conditional statistical analysis. Conditionally averaged potential distributions reveal the formation...... and propagation of structures with a relatively long lifetime. Various methods for making a conditional analysis are discussed and compared. The results are discussed with reference to ion phase space vortices and clump formation in collisionless plasmas....
Numerical experiments modelling turbulent flows
Trefilík, Jiří; Kozel, Karel; Příhoda, Jaromír
2014-03-01
The work aims at investigation of the possibilities of modelling transonic flows mainly in external aerodynamics. New results are presented and compared with reference data and previously achieved results. For the turbulent flow simulations two modifications of the basic k - ω model are employed: SST and TNT. The numerical solution was achieved by using the MacCormack scheme on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability.
Numerical experiments modelling turbulent flows
Directory of Open Access Journals (Sweden)
Trefilík Jiří
2014-03-01
Full Text Available The work aims at investigation of the possibilities of modelling transonic flows mainly in external aerodynamics. New results are presented and compared with reference data and previously achieved results. For the turbulent flow simulations two modifications of the basic k – ω model are employed: SST and TNT. The numerical solution was achieved by using the MacCormack scheme on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability.
Compressible turbulence in one dimension
Fleischer, Jason Wolf
1999-11-01
The Burgers' model of compressible fluid dynamics in one dimension is extended to include the effects of pressure back-reaction. The new system consists of two coupled equations: Burgers' equation with a pressure gradient (essentially the 1-D Navier-Stokes equation) and an advection-diffusion equation for the pressure field. It presents a minimal model of both adiabatic gas dynamics and compressible magnetohydrodynamics. From the magnetic perspective, it is the simplest possible system which allows for Alfvenization, i.e. energy transfer between the fluid and the magnetic field. For the special case of equal fluid viscosity and (magnetic) diffusivity, the system is completely integrable, reducing to two decoupled Burgers' equations in the characteristic variables v +/- vsound ( v +/- vAlfven). For arbitrary diffusivities, renormalized perturbation theory is used to calculate the effective transport coefficients for forced Burgerlence. It is shown that energy equi- dissipation, not equipartition, is fundamental to the turbulent state. Both energy and dissipation are localized to shock-like structures, in which wave steepening is inhibited by small-scale forcing and by pressure back-reaction. The spectral forms predicted by theory are confirmed by numerical simulations. It is shown that the velocity structures lead to an asymmetric velocity PDF, as in Burgers' turbulence. Pressure fluctuations, however, are symmetrically distributed. A Fokker-Planck calculation of these distributions is compared and contrasted with a path integral approach. The latter instanton solution suggests that the system maintains its characteristic directions in steady-state turbulence, supporting the results from perturbation theory. Implications for the spectra of turbulence and self-organization phenomena in compressible fluids and plasmas are also discussed.
Reduced Models for Gyrokinetic Turbulence
Besse, Nicolas; Bertrand, Pierre; Morel, Pierre; Gravier, Etienne
2009-09-01
Turbulent transport is a key issue for controlled thermonuclear fusion based on magnetic confinement. The thermal confinement of a magnetized fusion plasma is essentially determined by the turbulent heat conduction across the equilibrium magnetic field. It has long been acknowledged, that the prediction of turbulent transport requires to solve Vlasov-type gyrokinetic equations. Although the kinetic description is more accurate than fluid models (Magnetohydrodynamics (MHD), gyro-fluid), because among other things it takes into account nonlinear resonant wave-particle interaction, kinetic modeling has the drawback of a huge demand on computer resources. A unifying approach consists in considering water-bag-like weak solutions of kinetic collisionless equations, which allow to reduce the full kinetic Vlasov equation into a set of hydrodynamic equations, while keeping its kinetic behaviour. As a result this exact reduction induces a multi-fluid numerical resolution cost. Therefore, finding water-bag-like weak solutions of the gyrokinetic equations leads to the birth of the gyro-water-bag model. This model is suitable for studying linear and nonlinear low-frequency micro-instabilities and the associated anomalous transport in magnetically confined plasmas. Here we present the derivation of nonlinear gyro-water-bag models and their numerical approximations by backward Runge-Kutta semi-Lagrangian methods and forward Runge-Kutta discontinuous Galerkin schemes.
A comparative study of turbulence models for dissolved air flotation flow analysis
Energy Technology Data Exchange (ETDEWEB)
Park, Min A; Lee, Kyun Ho; Chung, Jae Dong [School of Mechanical and Aerospace Engineering, Sejong University, Seoul (Korea, Republic of); Seo, Seung Ho [Tops Engineering Co, Ltd., Gwangmyeong (Korea, Republic of)
2015-07-15
The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard κ-ε model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models.
A comparative study of turbulence models for dissolved air flotation flow analysis
International Nuclear Information System (INIS)
Park, Min A; Lee, Kyun Ho; Chung, Jae Dong; Seo, Seung Ho
2015-01-01
The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard κ-ε model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models
International Nuclear Information System (INIS)
Crabol, B.
1980-01-01
Using TAYLOR's calculation, which takes account of the low-pass filter effect of the transfer time on the value for the standard deviation of particle dispersion, we have introduced a high-pass filter which translate the effect of the time of observation, by definition finite, onto the true atmospheric scale. It is then possible to identify those conditions under which the relations governing variation of the standard deviations of pollution distribution are dependent upon: the distance of transfer alone, the time of transfer alone. Thence, making certain simplifying assumptions, practical quantitive relationships are deduced for the variation of the horizontal standard deviation of pollution dispersion as a function of wind speed and time of transfer
Turbulent response in a stochastic regime
International Nuclear Information System (INIS)
Molvig, K.; Freidberg, J.P.; Potok, R.; Hirshman, S.P.; Whitson, J.C.; Tajima, T.
1981-06-01
The theory for the non-linear, turbulent response in a system with intrinsic stochasticity is considered. It is argued that perturbative Eulerian theories, such as the Direct Interaction Approximation (DIA), are inherently unsuited to describe such a system. The exponentiation property that characterizes stochasticity appears in the Lagrangian picture and cannot even be defined in the Eulerian representation. An approximation for stochastic systems - the Normal Stochastic Approximation - is developed and states that the perturbed orbit functions (Lagrangian fluctuations) behave as normally distributed random variables. This is independent of the Eulerian statistics and, in fact, we treat the Eulerian fluctuations as fixed. A simple model problem (appropriate for the electron response in the drift wave) is subjected to a series of computer experiments. To within numerical noise the results are in agreement with the Normal Stochastic Approximation. The predictions of the DIA for this mode show substantial qualitative and quantitative departures from the observations
Fluctuations of a passive scalar in a turbulent mixing layer
Attili, Antonio
2013-09-19
The turbulent flow originating downstream of the Kelvin-Helmholtz instability in a mixing layer has great relevance in many applications, ranging from atmospheric physics to combustion in technical devices. The mixing of a substance by the turbulent velocity field is usually involved. In this paper, a detailed statistical analysis of fluctuations of a passive scalar in the fully developed region of a turbulent mixing layer from a direct numerical simulation is presented. Passive scalar spectra show inertial ranges characterized by scaling exponents −4/3 and −3/2 in the streamwise and spanwise directions, in agreement with a recent theoretical analysis of passive scalar scaling in shear flows [Celani et al., J. Fluid Mech. 523, 99 (2005)]. Scaling exponents of high-order structure functions in the streamwise direction show saturation of intermittency with an asymptotic exponent ζ∞=0.4 at large orders. Saturation of intermittency is confirmed by the self-similarity of the tails of the probability density functions of the scalar increments at different scales r with the scaling factor r−ζ∞ and by the analysis of the cumulative probability of large fluctuations. Conversely, intermittency saturation is not observed for the spanwise increments and the relative scaling exponents agree with recent results for homogeneous isotropic turbulence with mean scalar gradient. Probability density functions of the scalar increments in the three directions are compared to assess anisotropy.
Decay of Solar Wind Turbulence behind Interplanetary Shocks
International Nuclear Information System (INIS)
Pitňa, Alexander; Šafránková, Jana; Němeček, Zdeněk; Franci, Luca
2017-01-01
We investigate the decay of magnetic and kinetic energies behind IP shocks with motivation to find a relaxation time when downstream turbulence reaches a usual solar wind value. We start with a case study that introduces computation techniques and quantifies a contribution of kinetic fluctuations to the general energy balance. This part of the study is based on high-time (31 ms) resolution plasma data provided by the Spektr-R spacecraft. On the other hand, a statistical part is based on 92 s Wind plasma and magnetic data and its results confirm theoretically established decay laws for kinetic and magnetic energies. We observe the power-law behavior of the energy decay profiles and we estimated the power-law exponents of both kinetic and magnetic energy decay rates as −1.2. We found that the decay of MHD turbulence does not start immediately after the IP shock ramp and we suggest that the proper decay of turbulence begins when a contribution of the kinetic processes becomes negligible. We support this suggestion with a detailed analysis of the decay of turbulence at the kinetic scale.
Decay of Solar Wind Turbulence behind Interplanetary Shocks
Energy Technology Data Exchange (ETDEWEB)
Pitňa, Alexander; Šafránková, Jana; Němeček, Zdeněk [Charles University, Faculty of Mathematics and Physics, V Holesovickach 2, Prague, CZ-18000 (Czech Republic); Franci, Luca, E-mail: offelius@gmail.com [Dipartimento di Fisica e Astronomia, Universita degli Studi di Firenze, I-50125 Firenze (Italy)
2017-07-20
We investigate the decay of magnetic and kinetic energies behind IP shocks with motivation to find a relaxation time when downstream turbulence reaches a usual solar wind value. We start with a case study that introduces computation techniques and quantifies a contribution of kinetic fluctuations to the general energy balance. This part of the study is based on high-time (31 ms) resolution plasma data provided by the Spektr-R spacecraft. On the other hand, a statistical part is based on 92 s Wind plasma and magnetic data and its results confirm theoretically established decay laws for kinetic and magnetic energies. We observe the power-law behavior of the energy decay profiles and we estimated the power-law exponents of both kinetic and magnetic energy decay rates as −1.2. We found that the decay of MHD turbulence does not start immediately after the IP shock ramp and we suggest that the proper decay of turbulence begins when a contribution of the kinetic processes becomes negligible. We support this suggestion with a detailed analysis of the decay of turbulence at the kinetic scale.
The Interaction of Coronal Mass Ejections with Alfvenic Turbulence
Manchester, W.; van der Holst, B.
2017-12-01
We provide a first attempt to understand the interaction between Alfven wave turbulence, kinetic instabilities and temperature anisotropies in the environment of a fast coronal mass ejection (CME). The impact of a fast CME on the solar corona causes turbulent energy, thermal energy and dissipative heating to increase by orders of magnitude, and produces conditions suitable for a host of kinetic instabilities. We study these CME-induced effects with the recently developed Alfven Wave Solar Model, with which we are able to self-consistently simulate the turbulent energy transport and dissipation as well as isotropic electron heating and anisotropic proton heating. Furthermore, the model also offers the capability to address the effects of firehose, mirror mode, and cyclotron kinetic instabilities on proton energy partitioning, all in a global-scale numerical simulation. We find turbulent energy greatly enhanced in the CME sheath, strong wave reflection at the shock, which leads to wave dissipation rates increasing by more than a factor of 100. In contrast, wave energy is greatly diminished by adiabatic expansion in the flux rope. Finally, we find proton temperature anisotropies are limited by kinetic instabilities to a level consistent with solar wind observations.
VARIABILITY IN ACTIVE GALACTIC NUCLEI FROM PROPAGATING TURBULENT RELATIVISTIC JETS
Energy Technology Data Exchange (ETDEWEB)
Pollack, Maxwell; Pauls, David; Wiita, Paul J., E-mail: wiitap@tcnj.edu [Department of Physics, The College of New Jersey P.O. Box 7718, Ewing, NJ 08628-0718 (United States)
2016-03-20
We use the Athena hydrodynamics code to model propagating two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei for various input jet velocities and jet-to-ambient matter density ratios. Using results from these simulations we estimate the changing synchrotron emission by summing the fluxes from a vertical strip of zones behind the reconfinement shock, which is nearly stationary, and from which a substantial portion of the flux variability should arise. We explore a wide range of timescales by considering two light curves from each simulation; one uses a relativistic turbulence code with bulk velocities taken from our simulations as input, while the other uses the bulk velocity data to compute fluctuations caused by variations in the Doppler boosting due to changes in the direction and the speed of the flow through all zones in the strip. We then calculate power spectral densities (PSDs) from the light curves for both turbulent and bulk velocity origins for variability. The range of the power-law slopes of the PSDs for the turbulence induced variations is −1.8 to −2.3, while for the bulk velocity produced variations this range is −2.1 to −2.9; these are in agreement with most observations. When superimposed, these power spectra span a very large range in frequency (about five decades), with the turbulent fluctuations yielding most of the shorter timescale variations and the bulk flow changes dominating the longer periods.
Turbulent spots and scalar flashes in pipe transition
Adrian, Ronald; Wu, Xiaohua; Moin, Parviz
2017-11-01
Recent study (Wu et al., PNAS, 1509451112, 2015) demonstrated the feasibility and accuracy of direct computation of the Osborne Reynolds' pipe transition experiment without the unphysical axially periodic boundary condition. Here we use this approach to address three questions: (1) What are the dynamics of turbulent spot generation in pipe transition? (2) How is the succession of scalar flashes, as observed and sketched by Osborne Reynolds, created? (3) What happens to the succession of flashes further downstream? In this study, the inlet disturbance is of radial-mode type imposed through a narrow, three-degree numerical wedge; and the simulation Reynolds number is 6500. Numerical dye is introduced at the inlet plane locally very close to the pipe axis, similar to the needle injection by O. Reynolds. Inception of infant turbulent spots occurs when normal, forward inclined hairpin packets form near the walls from the debris of the inlet perturbations. However, the young and mature turbulent spots consist almost exclusively of reverse, backward leaning hairpin vortices. Scalar flashes appear successively downstream and persist well into the fully-developed turbulent region. Their creation mechanism is addressed. RJA gratefully acknowledges support of the National Science Foundation with NSF Award CBET-0933848.
Turbulence in Three Dimensional Simulations of Magnetopause Reconnection
Drake, J. F.; Price, L.; Swisdak, M.; Burch, J. L.; Cassak, P.; Dahlin, J. T.; Ergun, R.
2017-12-01
We present two- and three-dimensional particle-in-cell simulations of the 16 October 2015 MMS magnetopause reconnection event. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. This turbulence is electromagnetic in nature, is characterized by a wavevector k given by kρ e ˜(m_e/m_i)0.25 with ρ e the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ± 10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulation controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √ {ρ eρ_i } than the ρ e or de scalings seen in 2D reconnection simulations, where de is the electron inertial length. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. The crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. We compare and contrast these results to a three-dimensional simulation of the 8 December 2015 MMS magnetopause reconnection event in which the reconnecting and out-of-plane guide fields are comparable. LHDI is still present in this event, although its appearance is modified by the presence of the guide
In situ laser sensing of mixed layer turbulence
Dalgleish, Fraser; Hou, Weilin; Vuorenkoski, Anni; Nootz, Gero; Ouyang, Bing
2013-06-01
This paper will discuss and compare some recent oceanic test results from the Bahamas Optical Turbulence Exercise (BOTEX) cruise, where vertical profiling was conducted with both time-resolved laser backscatter measurements being acquired via a subsurface light detection and ranging (lidar) profiling instrument, and laser beam forward deflection measurements were acquired from a matrix of continuous wave (cw) laser beams (i.e. structured lighting) being imaged in the forward direction with a high speed camera over a one-way path, with both transmitter and camera firmly fixed on a rigid frame. From the latter, it was observed that when within a natural turbulent layer, the laser beams were being deflected from their still water location at the image plane, which was 8.8 meters distance from the laser dot matrix transmitter. As well as suggesting that the turbulent structures being encountered were predominately larger than the beam diameter, the magnitude of the deflection has been confirmed to correlate with the temperature dissipation rate. The profiling lidar measurements which were conducted in similar conditions, also used a narrow collimated laser beam in order to resolve small-scale spatial structure, but with the added attribute that sub-nanosecond short pulse temporal profile could potentially resolve small-scale vertical structure. In the clear waters of the Tongue of the Ocean in the Bahamas, it was hypothesized that the backscatter anomalies due to the effect of refractive index discontinuities (i.e. mixed layer turbulence) would be observable. The processed lidar data presented herein indicates that higher backscatter levels were observed in the regions of the water column which corresponded to higher turbulent mixing which occurs at the first and second themoclines. At the same test stations that the laser beam matrix and lidar measurements were conducted, turbulence measurements were made with two non-optical instruments, the Vertical Microstructure
Energy Transfer in Rotating Turbulence
Cambon, Claude; Mansour, Nagi N.; Godeferd, Fabien S.; Rai, Man Mohan (Technical Monitor)
1995-01-01
The influence or rotation on the spectral energy transfer of homogeneous turbulence is investigated in this paper. Given the fact that linear dynamics, e.g. the inertial waves regime tackled in an RDT (Rapid Distortion Theory) fashion, cannot Affect st homogeneous isotropic turbulent flow, the study of nonlinear dynamics is of prime importance in the case of rotating flows. Previous theoretical (including both weakly nonlinear and EDQNM theories), experimental and DNS (Direct Numerical Simulation) results are gathered here and compared in order to give a self-consistent picture of the nonlinear effects of rotation on tile turbulence. The inhibition of the energy cascade, which is linked to a reduction of the dissipation rate, is shown to be related to a damping due to rotation of the energy transfer. A model for this effect is quantified by a model equation for the derivative-skewness factor, which only involves a micro-Rossby number Ro(sup omega) = omega'/(2(OMEGA))-ratio of rms vorticity and background vorticity as the relevant rotation parameter, in accordance with DNS and EDQNM results fit addition, anisotropy is shown also to develop through nonlinear interactions modified by rotation, in an intermediate range of Rossby numbers (Ro(omega) = (omega)' and Ro(omega)w greater than 1), which is characterized by a marco-Rossby number Ro(sup L) less than 1 and Ro(omega) greater than 1 which is characterized by a macro-Rossby number based on an integral lengthscale L and the micro-Rossby number previously defined. This anisotropy is mainly an angular drain of spectral energy which tends to concentrate energy in tile wave-plane normal to the rotation axis, which is exactly both the slow and the two-dimensional manifold. In Addition, a polarization of the energy distribution in this slow 2D manifold enhances horizontal (normal to the rotation axis) velocity components, and underlies the anisotropic structure of the integral lengthscales. Finally is demonstrated the
International Nuclear Information System (INIS)
Frazier, K.
1982-01-01
The quest for a new understanding of the sun and its surprising irregularities, variations, and effects is described. Attention is given to the sun's impact on life on earth, the weather and geomagnetic storms, sunspots, solar oscillations, the missing neutrinos in the sun, the 'shrinking sun', the 'dance' of the orbits, and the search for the 'climate connection'. It is noted that the 1980s promise to be the decade of the sun: not only because solar power may be a crucial ingredient in efforts to solve the energy crisis, but also because there will be brilliant auroras over North America, because sunspot activity will be the second highest since the 17th century, and because an unmanned spacecraft (i.e., the solar polar mission) will leave the plane of the solar system and observe the sun from above and below
Mathematical and physical theory of turbulence
Cannon, John
2006-01-01
Although the current dynamical system approach offers several important insights into the turbulence problem, issues still remain that present challenges to conventional methodologies and concepts. These challenges call for the advancement and application of new physical concepts, mathematical modeling, and analysis techniques. Bringing together experts from physics, applied mathematics, and engineering, Mathematical and Physical Theory of Turbulence discusses recent progress and some of the major unresolved issues in two- and three-dimensional turbulence as well as scalar compressible turbulence. Containing introductory overviews as well as more specialized sections, this book examines a variety of turbulence-related topics. The authors concentrate on theory, experiments, computational, and mathematical aspects of Navier-Stokes turbulence; geophysical flows; modeling; laboratory experiments; and compressible/magnetohydrodynamic effects. The topics discussed in these areas include finite-time singularities a...
Sudden viscous dissipation in compressing plasma turbulence
Davidovits, Seth; Fisch, Nathaniel
2015-11-01
Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.
Imposing resolved turbulence in CFD simulations
DEFF Research Database (Denmark)
Gilling, L.; Sørensen, Niels N.
2011-01-01
In large‐eddy simulations, the inflow velocity field should contain resolved turbulence. This paper describes and analyzes two methods for imposing resolved turbulence in the interior of the domain in Computational Fluid Dynamics simulations. The intended application of the methods is to impose...... resolved turbulence immediately upstream of the region or structure of interest. Comparing to the alternative of imposing the turbulence at the inlet, there is a large potential to reduce the computational cost of the simulation by reducing the total number of cells. The reduction comes from a lower demand...... of modifying the source terms. None of the two methods can impose synthetic turbulence with good results, but it is shown that by running the turbulence field through a short precursor simulation, very good results are obtained. Copyright © 2011 John Wiley & Sons, Ltd....
Aperture averaging in strong oceanic turbulence
Gökçe, Muhsin Caner; Baykal, Yahya
2018-04-01
Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.
Near-wall turbulence model and its application to fully developed turbulent channel and pipe flows
Kim, S.-W.
1990-01-01
A near-wall turbulence model and its incorporation into a multiple-timescale turbulence model are presented. The near-wall turbulence model is obtained from a k-equation turbulence model and a near-wall analysis. In the method, the equations for the conservation of mass, momentum, and turbulent kinetic energy are integrated up to the wall, and the energy transfer and the dissipation rates inside the near-wall layer are obtained from algebraic equations. Fully developed turbulent channel and pipe flows are solved using a finite element method. The computational results compare favorably with experimental data. It is also shown that the turbulence model can resolve the overshoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.
National Aeronautics and Space Administration — Shock Wave / Turbulent Boundary Layer Flows at High Mach Numbers. This web page provides data from experiments that may be useful for the validation of turbulence...
ACCRETION-DRIVEN TURBULENCE AND THE TRANSITION TO GLOBAL INSTABILITY IN YOUNG GALAXY DISKS
International Nuclear Information System (INIS)
Elmegreen, Bruce G.; Burkert, Andreas
2010-01-01
A simple model of gas accretion in young galaxy disks suggests that fast turbulent motions can be driven by accretion energy for a time t acc ∼ 2(ε 0.5 GM 2 /ξV 3 ) 0.5 where ε is the fraction of the accretion energy going into disk turbulence, M and V are the galaxy mass and rotation speed, and ξ is the accretion rate. After t acc , accretion is replaced by disk instabilities as a source of turbulence driving, and shortly after that, energetic feedback by young stars should become important. The star formation rate equilibrates at the accretion rate after 1 to 2 t acc , depending on the star formation efficiency per dynamical time. The fast turbulence that is observed in high-redshift starburst disks is not likely to be driven by accretion because the initial t acc phase is over by the time the starburst is present. However, the high turbulent speeds that must have been present earlier, when the observed massive clumps first formed, could have been driven by accretion energy. The combined observations of a high relative velocity dispersion in the gas of z ∼ 2 clumpy galaxies and a gas mass comparable to the stellar mass suggest that either the star formation efficiency is fairly high, perhaps 10x higher than in local galaxies, or the observed turbulence is powered by young stars.
International Nuclear Information System (INIS)
Steinbrecher, Gyoergy; Weyssow, B.
2004-01-01
The extreme heavy tail and the power-law decay of the turbulent flux correlation observed in hot magnetically confined plasmas are modeled by a system of coupled Langevin equations describing a continuous time linear randomly amplified stochastic process where the amplification factor is driven by a superposition of colored noises which, in a suitable limit, generate a fractional Brownian motion. An exact analytical formula for the power-law tail exponent β is derived. The extremely small value of the heavy tail exponent and the power-law distribution of laminar times also found experimentally are obtained, in a robust manner, for a wide range of input values, as a consequence of the (asymptotic) self-similarity property of the noise spectrum. As a by-product, a new representation of the persistent fractional Brownian motion is obtained
The essence of turbulence as a physical phenomenon with emphasis on issues of paradigmatic nature
Tsinober, Arkady
2014-01-01
This book critically reexamines what turbulence really is, from a fundamental point of view and based on observations from nature, laboratories, and direct numerical simulations. It includes critical assessments and a comparative analysis of the key developments, their evolution and failures, along with key misconceptions and outdated paradigms. The main emphasis is on conceptual and problematic aspects, physical phenomena, observations, misconceptions and unresolved issues rather than on conventional formalistic aspects, models, etc. Apart from the obvious fundamental importance of turbulent flows, this emphasis stems from the basic premise that without corresponding progress in fundamental aspects there is little chance for progress in applications such as drag reduction, mixing, control and modeling of turbulence. More generally, there is also a desperate need to grasp the physical fundamentals of the technological processes in which turbulence plays a central role.
Experimental examination of vorticity stripping from a wing-tip vortex in free-stream turbulence
Ghimire, Hari C.; Bailey, Sean C. C.
2018-03-01
Time-resolved stereoscopic particle image velocimetry measurements were conducted of a wing-tip vortex decaying in free-stream turbulence. The objective of the research was to experimentally investigate the mechanism causing the increased rate of decay of the vortex in the presence of turbulence. It was observed that the circulation of the vortex core experienced periods of rapid loss and recovery when immersed in free-stream turbulence. These events were not observed when the vortex was in a laminar free stream. A connection was made between these events and distortion of the vortex, coinciding with stripping of core fluid from the vortex core. Specifically, vortex stripping events were connected to asymmetry in the vortex core, and this asymmetry was associated with instances of rapid circulation loss. The increased rate of decay of the vortex in turbulence coincided with the formation of secondary vortical structures which wrapped azimuthally around the primary vortex.
Sonic boom propagation through atmospheric turbulence
Yamashita, Hiroshi; Obayashi, Shigeru; 山下, 博; 大林, 茂
2009-01-01
The effect of the homogeneous atmospheric turbulence on the sonic boom propagation has been investigated. The turbulence field is represented by a finite sum of discrete Fourier modes based on the von Karman and Pao energy spectrum. The sonic boom signature is calculated by the modified Waveform Parameter Method, considering the turbulent velocities. The results show that in 59 % of the cases, the intensity of the sonic boom had decreased, and in other 41 % of the cases had increased the soni...
Penetration of superfluid turbulence through porous filters
International Nuclear Information System (INIS)
Foreman, L.R.; Snyder, H.A.
1979-01-01
The equilibrium concentration of superfluid turbulence on two sides of small-pore filters is studied as a function of pore size. The filter forms a common wall between two second-sound resonance cavities. The attenuation of standing waves of second sound is used to detect the turbulence which is created in the superfluid with a rotating paddle. We find that superfluid turbulence does not pass through filters of 7.5 nm diameter, but penetrates filters with 50-nm pores
A numerical study of tokamak edge turbulence
International Nuclear Information System (INIS)
Hu Shuanghui; Huang Lin; Qiu Xiaoming
1993-01-01
The tokamak edge turbulence which contains resistivity and impurity gradients and impurity radiation driven sources is studied numerically. The effect of ohmic dissipation on the evolution and saturation of this turbulence is investigated. The ohmic effect drops the saturation levels of fluctuations efficiently in high density tokamaks (such as Alcator), indicating that the ohmic effect plays an important role in the evolution of tokamak edge turbulence in high density devices
Numerical test of weak turbulence theory
Payne, G. L.; Nicholson, D. R.; Shen, Mei-Mei
1989-01-01
The analytic theory of weak Langmuir turbulence is well known, but very little has previously been done to compare its predictions with numerical solutions of the basic dynamical evolution equations. In this paper, numerical solutions of the statistical weak turbulence theory are compared with numerical solutions of the Zakharov model of Langmuir turbulence, and good agreement in certain regimes of very weak field strength is found.
Energy Technology Data Exchange (ETDEWEB)
Galvan-Martinez, Ricardo; Genesca-Llongueras, Juan [Departamento Ingenieria Metalurgica, Facultad Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Mendoza-Flores, Juan; Duran-Romero, Ruben [Corrosion, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico)
2004-07-01
A corrosion process can be influenced by the relative movement between the corroding environment and the metal. This relative movement could increase the heat transfer and the mass transfer of reactants towards and from the surface of the corroding metal, with a consequent increase in the corrosion rate. Also, if solid particles are present, removal of protective films, erosion and wear can occur on the metallic surface. Many industrial processes involve the movement of corrosive liquids in close contact to metallic structures. Therefore, the influence of flow on the corrosion processes is an important issue to be considered in the design and operation of industrial equipment. This influence is complex and many variables are involved. Several observations of flow-accelerated corrosion problems have been documented, particularly in the oil and gas industries, where the combined effect of flow and dissolved gases, such as hydrogen sulphide (H{sub 2}S) and carbon dioxide (CO{sub 2}), is important. Turbulent flow conditions are commonly found in industrial processes. However, few corrosion studies in controlled turbulent flow conditions are available. With the increasing necessity to describe the corrosion of metals in turbulent flow conditions some laboratory hydrodynamic systems have been used with different degrees of success. The use of the rotating cylinder electrode (RCE), as a laboratory hydrodynamic test system, has gained popularity in corrosion studies. This popularity is due to its characteristics, such as, its operation mainly at turbulent flow conditions; its well understood mass transfer properties and its easiness of construction and operation. The aim of the present work is to explore the effect that turbulent flow conditions have on the electrochemical kinetics of steel samples immersed in aqueous environments containing H{sub 2}S. In order to control the turbulent flow conditions in the laboratory, a rotating cylinder electrode (RCE) was used. In
Sadeghi, Hamed; Lavoie, Philippe; Pollard, Andrew
2018-03-01
The effect of finite hot-wire spatial resolution on turbulence statistics and velocity spectra in a round turbulent free jet is investigated. To quantify spatial resolution effects, measurements were taken using a nano-scale thermal anemometry probe (NSTAP) and compared to results from conventional hot-wires with sensing lengths of l=0.5 and 1 mm. The NSTAP has a sensing length significantly smaller than the Kolmogorov length scale η for the present experimental conditions, whereas the sensing lengths for the conventional probes are larger than η. The spatial resolution is found to have a significant impact on the dissipation both on and off the jet centreline with the NSTAP results exceeding those obtained from the conventional probes. The resolution effects along the jet centreline are adequately predicted using a Wyngaard-type spectral technique (Wyngaard in J Sci Instr 1(2):1105-1108,1968), but additional attenuation on the measured turbulence quantities are observed off the centreline. The magnitude of this attenuation is a function of both the ratio of wire length to Kolmogorov length scale and the magnitude of the shear. The effect of spatial resolution is noted to have an impact on the power-law decay parameters for the turbulent kinetic energy that is computed. The effect of spatial filtering on the streamwise dissipation energy spectra is also considered. Empirical functions are proposed to estimate the effect of finite resolution, which take into account the mean shear.
Anisotropy of turbulence in wind turbine wakes
Energy Technology Data Exchange (ETDEWEB)
Gomez-Elvira, Rafael [Comision Nacional de Energia (Spain); Crespo, Antonio; Migoya, Emilio; Manuel, Fernando [Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior de Ingenieros Industriales, Universidad Politecnica de Madrid, Jose Gutierrez Abascal, 2. 28006 Madrid (Spain); Hernandez, Julio [Departamento de Mecanica, ETSII, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria, 28040 Madrid (Spain)
2005-10-01
This work is mainly dedicated to the study of non-isotropic characteristics of turbulence in wind turbine wakes, specifically the shear layer of the near wake. A calculation method based on an explicit algebraic model for the components of the turbulent stress tensor is proposed, and the results are found to be in acceptable agreement with experimental results. Analytical expressions for the estimation of an upper limit of the global turbulence kinetic energy, k, and the individual contributions of each diagonal term in the turbulent stress tensor are proposed. Their predictions are compared with experimental results.
Characteristics of airflow turbulence behind HEPA filter
International Nuclear Information System (INIS)
Fujii, S.; Yuasa, K.; Arai, Y.; Watanabe, T.; Suwa, Y.
1994-01-01
The characteristics of airflow turbulence in unidirectional cleanroom are described in this paper. First, the airflow turbulence distribution is measured in a cleanbooth with a hot-wire anemometer. Through the analysis of turbulence intensity, the shape of pleated HEPA filter is found out to be an important factor of eddy generation in airflow, Secondly, turbulence distribution behind HEPA filter is measured in detail. It concludes that the shear stress, caused by the airflow difference between pleated concave and convex part of HEPA filter, makes eddy generation in airflow behind HEPA filter
Approximate Model for Turbulent Stagnation Point Flow.
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.
Predator-prey encounters in turbulent waters
DEFF Research Database (Denmark)
Mann, J.; Ott, Søren; Pécseli, H.L.
2002-01-01
With reference to studies of predator-prey encounters in turbulent waters, we demonstrate the feasibility of an experimental method for investigations of particle fluxes to an absorbing surface in turbulent flows. A laboratory experiment is carried out, where an approximately homogeneous and isot......With reference to studies of predator-prey encounters in turbulent waters, we demonstrate the feasibility of an experimental method for investigations of particle fluxes to an absorbing surface in turbulent flows. A laboratory experiment is carried out, where an approximately homogeneous...
Turbulent Reacting Flows at High Speed
National Research Council Canada - National Science Library
Brown, Garry
2001-01-01
.... To accomplish this goal, expertise in chemical kinetics, experimental fluid mechanics and combustion, and computational fluid mechanics were brought together to make a systematic attack on turbulent...
Visible imaging of edge turbulence in NSTX
International Nuclear Information System (INIS)
S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden
2000-01-01
Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence
A field study of turbulent flows in shallow gravel-bed rivers
Franca, Mário Jorge Rodrigues Pereira da; Lemmin, Ulrich
2007-01-01
The study of turbulent flows has always been a challenge for scientists. Turbulent flows are common in nature and have an important role in several geophysical processes related to a variety of phenomena such as river morphology, landscape modeling, atmospheric dynamics and ocean currents. At present, new measurement and observation techniques suitable for fieldwork can be combined with laboratory and theoretical work in order to advance in the understanding of river processes. In this Ph.D. ...
TURBULENCE IN THE SOLAR WIND MEASURED WITH COMET TAIL TEST PARTICLES
Energy Technology Data Exchange (ETDEWEB)
DeForest, C. E.; Howard, T. A. [Southwest Research Institute, 1050 Walnut Street Suite 300, Boulder, CO 80302 (United States); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Laboratory, Newark, DE 19711 (United States); Rice, D. R. [Northwestern University, 633 Clark St., Evanston, IL 60208 (United States)
2015-10-20
By analyzing the motions of test particles observed remotely in the tail of Comet Encke, we demonstrate that the solar wind undergoes turbulent processing enroute from the Sun to the Earth and that the kinetic energy entrained in the large-scale turbulence is sufficient to explain the well-known anomalous heating of the solar wind. Using the heliospheric imaging (HI-1) camera on board NASA's STEREO-A spacecraft, we have observed an ensemble of compact features in the comet tail as they became entrained in the solar wind near 0.4 AU. We find that the features are useful as test particles, via mean-motion analysis and a forward model of pickup dynamics. Using population analysis of the ensemble's relative motion, we find a regime of random-walk diffusion in the solar wind, followed, on larger scales, by a surprising regime of semiconfinement that we attribute to turbulent eddies in the solar wind. The entrained kinetic energy of the turbulent motions represents a sufficient energy reservoir to heat the solar wind to observed temperatures at 1 AU. We determine the Lagrangian-frame diffusion coefficient in the diffusive regime, derive upper limits for the small scale coherence length of solar wind turbulence, compare our results to existing Eulerian-frame measurements, and compare the turbulent velocity with the size of the observed eddies extrapolated to 1 AU. We conclude that the slow solar wind is fully mixed by turbulence on scales corresponding to a 1–2 hr crossing time at Earth; and that solar wind variability on timescales shorter than 1–2 hr is therefore dominated by turbulent processing rather than by direct solar effects.
PIV and PTV measurements in hydro-sciences with focus on turbulent open-channel flows
Nezu, Iehisa; Sanjou, Michio
2011-01-01
PIV is one of the most popular measurement techniques in hydraulic engineering as well as in fluid sciences. It has been applied to study various turbulent phenomena in laboratory experiments related to natural rivers, e.g., bursting phenomena near the bed, mixing layers observed at confluences, wake turbulence around dikes and piers, and so on. In these studies, PIV plays important roles in revealing the space-time structure of velocity fluctuations and coherent vortices. This review article...
Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry
Energy Technology Data Exchange (ETDEWEB)
Hong G. Im; Arnaud Trouve; Christopher J. Rutland; Jacqueline H. Chen
2009-02-02
The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.
Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry
Energy Technology Data Exchange (ETDEWEB)
Im, Hong G [University of Michigan; Trouve, Arnaud [University of Maryland; Rutland, Christopher J [University of Wisconsin; Chen, Jacqueline H [Sandia National Laboratories
2012-08-13
The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.