WorldWideScience

Sample records for turbogenerator geothermieanlagen altheim

  1. Altheim geothermal plant. Power generation by means of an ORC turbogenerator; Geothermieanlagen Altheim. Stromerzeugung mittels Organic-Rankine-Cycle Turbogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Pernecker, G [Marktgemeindeamt Altheim (Austria)

    1997-12-01

    The report describes the project of the Austrian market town of Altheim to generate electricity by means of an ORC turbogenerator using low-temperature thermal water. The project is to improve the technical and economic situation of the existing industrial-scale geothermal project. (orig.) [Deutsch] Der Bericht beschreibt das Vorhaben der Marktgemeinde Altheim in Oberoesterreich, Strom mittels eines Organic-Rankine-Cycle-Turbogenerators unter Verwendung niedrig temperierten Thermalwassers zu produzieren. Ziel bzw. der Zweck des Projektes ist es, die technische und wirtschaftliche Situation der bestehenden Grossthermieanlage zu verbessern. (orig.)

  2. Automotive turbogenerator design options

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, C. [ITC, San Diego, CA (United States); McDonald, C. [McDonald Thermal Engineering, La Jolla, CA (United States)

    1998-12-31

    For the small turbogenerator to find reception in the hybrid electric automotive market its major features must be dominated by the following considerations, low cost, high performance, low emissions, compact size and high reliability. Not meeting the first two criteria has been the nemesis of earlier attempts to introduce the small gas turbine for automotive service. With emphasis on the design for low cost and high performance, this paper presents several turbogenerator design flowpath configuration options for the major engine components. The projected evolution from today`s state-of-the-art all metallic engines, to advanced technology ceramic units for service in the early decade of the 21st century, is the major topic of this paper. (author)

  3. SMALL TURBOGENERATOR TECHNOLOGY FOR DISTRIBUTED GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Sy; Moritz, Bob

    2001-09-01

    This report is produced in under Contract DE-FC26-00NT40914, awarded in accordance with U.S. Department of Energy solicitation DE-PS26-00FT40759, ''Development of Technologies and Capabilities for Fossil Energy-Wide Coal, Natural Gas and Oil R&D Programs'', area of interest 7, ''Advanced Turbines and Engines.'' As a result of ten years of collaborative fuel cell systems studies with U.S. fuel cell manufacturers, initiated to evaluate the gas turbine opportunities likely to result from this technology, Rolls-Royce in Indianapolis has established a clear need for the creation of a turbogenerator to a specification that cannot be met by available units. Many of the required qualities are approached, but not fully met, by microturbines, which tend to be too small and low in pressure ratio. Market evaluation suggests a 1 MW fuel cell hybrid, incorporating a turbogenerator of about 250 kW, is a good market entry product (large enough to spread the costs of a relatively complex plant, but small enough to be acceptable to early adopters). The fuel cell stack occupies the position of a combustor in the turbogenerator, but delivers relatively low turbine entry temperature (1600 F [870 C]). If fitted with a conventional combustor and run stand-alone at full uncooled turbine temperature (1800 F [980 C]), the turbogenerator will develop more power. The power can be further enhanced if the turbogenerator is designed to have flow margin in its fuel cell role (by running faster). This margin can be realized by running at full speed and it is found that power can be increased to the 0.7 to 1.0 MW range, depending on initial fuel cell stack flow demand. The fuel cell hybrid applications require increased pressure ratio (at least 6 rather than the 3-4 of microturbines) and very long life for a small machine. The outcome is a turbogenerator that is very attractive for stand-alone operation and has been the subject of unsolicited enthusiasm from

  4. Turbo-generator control with variable valve actuation

    Science.gov (United States)

    Vuk, Carl T [Denver, IA

    2011-02-22

    An internal combustion engine incorporating a turbo-generator and one or more variably activated exhaust valves. The exhaust valves are adapted to variably release exhaust gases from a combustion cylinder during a combustion cycle to an exhaust system. The turbo-generator is adapted to receive exhaust gases from the exhaust system and rotationally harness energy therefrom to produce electrical power. A controller is adapted to command the exhaust valve to variably open in response to a desired output for the turbo-generator.

  5. Diagnostic system based on condition turbogenerator Petri nets

    International Nuclear Information System (INIS)

    Kachur, S.A.; Shakhova, N.V.

    2016-01-01

    A stochastic model of the automated monitoring systems and process control turbine generator based on Petri nets, allowing to detect local changes in the state of the stator windings of turbogenerator, is presented in the paper [ru

  6. An expert system for turbogenerator diagnostics

    International Nuclear Information System (INIS)

    Bessenyei, Z.; Tomcsanyi, T.; Toth, Z.; Laczay, I.

    1992-01-01

    In 1990, an expert system for turbo-generator diagnostics (EST-D) was installed at the 3rd and 4th units of the Paks NPP (Hungary). The expert system is strongly integrated to the ARGUS II vibration monitoring and diagnostics system. The system works on IBM PC AT. The VEIKI's and the NPP's human experts were interviewed to fill up the knowledgebase. The system is able to identify 13 different faults of the parts of a turbogenerator. The knowledgebase consists of ca 200 rules. The rules were built in and the system was verified and validated using a model of the turbines and using the experiences gathered with ARGUS II during the last 3 years. The maintenance personnel is authorized to modify and/or extend the knowledgebase. The input data for evaluation come from measured vibration patterns produced by the ARGUS II system, database of events, and maintenance data input by the maintenance personnel. The expert system is based on the modified GENESYS 2.1 shell (developed by SZAMALK, Hungary). Some limitations from PC application were eliminated, and a new, independent explanation module and man-machine interface were developed. Using this man-machine interface, one of the basic goals of the expert system developments was achieved: the human experts contribution is not necessary for diagnoses. The operator of the diagnostics system is able to produce the reports of diagnoses. Of course the interface allows the human experts to see the diagnoses through. It should be mentioned, at the beginning of 1991, we installed a similar expert system at the 1st 1000 MW WWER type unit of the Kalinin NPP (Soviet Union). In this paper, the operation of the EST-D, the man-machine interface and the operational experiences of the first 4 months work are explained. 2 refs., 14 figs

  7. Electromagnetic behaviour of the shield in turbogenerators with superconducting solenoids

    International Nuclear Information System (INIS)

    Del Vecchio, P.; Veca, G.M.; Sacerdoti, G.

    1975-11-01

    The structure of turbogenerators with superconducting solenoids is analyzed and the investigation of electromagnetic behaviour of the rotating shield is presented. The cases considered are: (a) An hypothetical operation with a single phase with nominal current; (b) Steady-state operation in inverse sequence with 10% of the nominal current; (c) A step variation of the magnetic field intensity in the shield

  8. Some problems raised by the operation of large nuclear turbo-generator sets. Automatic control system for steam turbo-generator units

    International Nuclear Information System (INIS)

    Cecconi, F.

    1976-01-01

    The design of an appropriate automatic system was found to be useful to improve the control of large size turbo-generator units so as to provide easy and efficient control and monitoring. The experience of the manufacturer of these turbo-generator units allowed a system well suited for this function to be designed [fr

  9. On line instrument systems for monitoring steam turbogenerators

    Science.gov (United States)

    Clapis, A.; Giorgetti, G.; Lapini, G. L.; Benanti, A.; Frigeri, C.; Gadda, E.; Mantino, E.

    A computerized real time data acquisition and data processing for the diagnosis of malfunctioning of steam turbogenerator systems is described. Pressure, vibration and temperature measurements are continuously collected from standard or special sensors including startup or stop events. The architecture of the monitoring system is detailed. Examples of the graphics output are presented. It is shown that such a system allows accurate diagnosis and the possibility of creating a data bank to describe the dynamic characteristics of the machine park.

  10. A 220 MVA turbo-generator for the TCV tokamak power supplies

    International Nuclear Information System (INIS)

    Perez, A.; Canay, I.M.; Simond, J.-J.; Morf, J.-J; Pahud, J.-D; Seysen, R.

    1989-01-01

    A new 220 MVA, 120 Hz, 4 pole turbo-generator will be used as a pulsed power source to supply the toroidal and poloidal power supplies of the TCV tokamak, which is being built at the Ecole Polytechnique Federale de Lausanne in Switzerland. The paper describes the particular requirements of the TCV poloidal power supplies and the main electrical and mechanical features of the turbo-generator and its principal auxillaries. (author). 6 figs.; 1 tab

  11. Computerized optimum distribution of loads among the turbogenerators of fossil-fuel electric power plants

    Energy Technology Data Exchange (ETDEWEB)

    Foshko, L S; Zusmanovich, L B; Flos, S L; Pal' chik, V A; Konevskii, B I

    1979-04-01

    The problem of determining the optimum distribution of loads among turbogenerators in a fossil-fuel power plant is considered based on satisfying the following requirements: distribution of electrical and thermal loads to minimize the heat expended on the turbine unit; calculation based on turbogenerator characteristics that most completely describe operating conditions; no constraints on the configuration of turbogenerator performance characteristics; calculation of load distribution based on net characteristics including the internal needs of the turbogenerators; consideration of all operational limitations in turbogenerator working conditions; results should be applicable to any predetermined differential of the load change. A flowchart is given showing the organization of the Optim-76 program complex for solution of this problem. An example is given showing application of the Optim-76 program implemented by a Minsk-32 computer in the case of a heat and electric power station with three turbogenerators. The results show that a dynamic programming method has considerable advantages for this applicaton on third-generation computers.

  12. Development and tests of large nuclear turbo-generator welded rotors

    International Nuclear Information System (INIS)

    Colombie, H.; Thiery, M.; Rotzinger, R.; Pelissou, C.; Tabacco, C.; Fernagut, V.

    2015-01-01

    Turbo-generators require large forgings for the rotor and it is a worldwide practice to manufacture turbo-generator rotor bodies as single piece forgings. Rotors for nuclear applications (4-pole rotors design, 1500/1800 rpm) require forgings of up to 2.0 m diameter and ultra large ingots with weight more than 500 tons. Nowadays only few forge masters can deliver such forgings in the world. Based on the large welding experience Alstom has gained over decades on steam and gas turbines and Alstom's multi piece shrunk turbo-generator rotors, it was suggested to manufacture 4-pole turbo-generator rotors by welding the shaft from aligned cylindrical forgings. Compared to turbine welded rotors, the shaft of a turbo-generator rotor presents differences linked to dimensions/weight, weld depth and electrical application. The manufacture of a 2 disc model allowed to prove through electrical and mechanical analysis the reliability of the concept as well as the reliability of the manufacturing processes through material tests, micro sections, electrical component tests, weld geometry, welding processes (TIG,SAW,...), weld inspection (Ultrasonic testing, radiographic inspection,...) weld heat treatments and machining. Then a full rotor able to replace a single forging rotor was manufactured in order to validate and prove to potential customers the validity of the welded rotor technology. During the first order from EDF of a welded 900 MW spare rotor, the procedure for the Non Destructive Test on a slotted rotor was developed upon EDF request in order to compare future Non Destructive Testing with the finger print of the new rotor. This complete rotor was delivered to EDF in January 2013. This rotor is in operation in a nuclear unit since November 2013. (authors)

  13. Torsional vibration analysis in turbo-generator shaft due to mal-synchronization fault

    Science.gov (United States)

    Bangunde, Abhishek; Kumar, Tarun; Kumar, Rajeev; Jain, S. C.

    2018-03-01

    A rotor of turbo-generator shafting is many times subjected to torsional vibrations during its lifespan. The reasons behind these vibrations are three-Phase fault, two-phase fault, line to ground fault, faulty-mal synchronization etc. Sometimes these vibrations can cause complete failure of turbo-generator shafting system. To calculate moment variation during these faults on the shafting system vibration analysis is done using Finite Elements Methods to calculate mass and stiffness matrix. The electrical disturbance caused during Mal-synchronization is put on generator section, and corresponding second order equations are solved by using “Duhamel Integral”. From the moment variation plots at four sections critically loaded sections are identified.

  14. Validation of DIVA: an expert system for the diagnostic of turbo-generator vibrations

    International Nuclear Information System (INIS)

    Chevalier, R.; Ricard, B.; Tiarri, J.P.; Bonnet, J.C.

    1990-01-01

    The project presented in this paper concerns the development of an expert system dealing with the diagnosis of turbo-generator vibrations. DIVA - Diagnosis of Shaft Line Vibrations - is a joint project which is carried out by ALSTHOM, Electricite de France and Laboratoire de Marcoussis, research centre of CGE. This article first presents the organisation of the system and then the goals and results of the tests already achieved [fr

  15. A modern concept for status oriented vibration monitoring of big turbogenerators

    International Nuclear Information System (INIS)

    Herz, F.; Theodor, P.

    1997-01-01

    The investigation of mechanical vibrations is an excellent method of showing the current condition of a machine. This paper deals with the vibrations monitoring of large turbo-generators. First the general aspects of monitoring, as well as diagnostic strategies and impact on the operation of the installation is discussed. An example of a condition-oriented vibration monitoring is the description of the 'Vibroview' system recently developed and installed in the Leibstadt nuclear power plant. (author) 16 figs., tabs., refs

  16. Determination of Permissible Short-Time Emergency Overloading of Turbo-Generators and Synchronous Compensators

    Directory of Open Access Journals (Sweden)

    V. A. Anischenko

    2011-01-01

    Full Text Available The paper shows that failure to take into account variable ratio of short-time emergency overloading of turbo-generators (synchronous compensators that can lead to underestimation of overloading capacity or impermissible insulation over-heating.A method has been developed for determination of permissible duration of short-time emergency over-loading that takes into account changes of over-loading ratio in case of a failure.

  17. The Effect of Flywheel Unbalance on Gear Noise in the Hydraulic Power Plant Turbo-Generator

    Directory of Open Access Journals (Sweden)

    Tomeh Elias

    2017-01-01

    Full Text Available The Effect of Flywheel Unbalance on Gear Noise in the Hydraulic Power Plant Turbo-Generator. Hydraulic power plants are systems that produce electrical energy with high investment costs. In order to fulfil their goals, investments should create conditions for a safe production of energy in a long lasting and reliable way, and with the required power and quality. These goals are possible to reach by an optional control process linked to a systematic monitoring of the operating machinery state, using the method of vibration diagnostics. Lately, there has been an increase of noise level in the hydraulic power plants.

  18. Research on Development of Turbo-generator with Partial Admission Nozzle for Supercritical CO{sub 2} Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Junhyun; Shin, Hyung-ki; Lee, Gilbong; Baik, Young-Jin [Korea Institute of Energy Research (KIER), Daejeon (Korea, Republic of); Kang, Young-Seok [Korea Aerospace Research Institute (KARI), Daejeon (Korea, Republic of); Kim, Byunghui [InGineers Ltd., Seoul (Korea, Republic of)

    2017-04-15

    A Sub-kWe small-scale experimental test loop was manufactured to investigate characteristics of the supercritical carbon dioxide power cycle. A high-speed turbo-generator was also designed and manufactured. The designed rotational speed of this turbo-generator was 200,000 rpm. Because of the low expansion ratio through the turbine and low mass flowrate, the rotational speed of the turbo-generator was high. Therefore, it was difficult to select the rotating parts and design the turbine wheel, axial force balance and rotor dynamics in the lab-scale experimental test loop. Using only one channel of the nozzle, the partial admission method was adapted to reduce the rotational speed of the rotor. This was the world’s first approach to the supercritical carbon dioxide turbo-generator. A cold-run test using nitrogen gas under an atmospheric condition was conducted to observe the effect of the partial admission nozzle on the rotor dynamics. The vibration level of the rotor was obtained using a gap sensor, and the results showed that the effect of the partial admission nozzle on the rotor dynamics was allowable.

  19. Conceptual Design Study of a Closed Brayton Cycle Turbogenerator for Space Power Thermal-To-Electric Conversion System

    Science.gov (United States)

    Hansen, Jeff L.

    2000-01-01

    A conceptual design study was completed for a 360 kW Helium-Xenon closed Brayton cycle turbogenerator. The selected configuration is comprised of a single-shaft gas turbine engine coupled directly to a high-speed generator. The engine turbomachinery includes a 2.5:1 pressure ratio compression system with an inlet corrected flow of 0.44 kg/sec. The single centrifugal stage impeller discharges into a scroll via a vaned diffuser. The scroll routes the air into the cold side sector of the recuperator. The hot gas exits a nuclear reactor radiator at 1300 K and enters the turbine via a single-vaned scroll. The hot gases are expanded through the turbine and then diffused before entering the hot side sector of the recuperator. The single shaft design is supported by air bearings. The high efficiency shaft mounted permanent magnet generator produces an output of 370 kW at a speed of 60,000 rpm. The total weight of the turbogenerator is estimated to be only 123 kg (less than 5% of the total power plant) and has a volume of approximately 0.11 cubic meters. This turbogenerator is a key element in achieving the 40 to 45% overall power plant thermal efficiency.

  20. Integrated modeling of a turbo-generator: analysis, simulation and compensation; Modelado integrado de un turbogenerador: analisis, simulacion y compensacion

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Rodriguez, Isaura Victoria

    2008-09-15

    Currently, most turbogenerator control systems consist of decentralized control schemes with independent control-loops for the turbine and the generator. These schemes do not take into account the interaction between the power and voltage control loops, which can degrade the turbogenerator response. To improve this situation, and to develop better control schemes, it is necessary to build full-scope mathematical models of the turbine generator set, which are able to emulate the dynamics throughout the operating range, including the interaction effects. In this thesis the mathematical model of a synchronous generator, which includes damping windings and rotor iron magnetic saturation, is developed. The model was modularly programmed using per-unit parameters. This model was coupled to the existing model of a gas turbine to compose the full-scope model of a 32 MVA combustion turbogenerator. The numerical stability of the generator and turbogenerator models demonstrated through steady-state simulation experiments. The dynamic behavior was demonstrated using power and voltage control loops based on digital PID algorithms. Then, the results of previous experiments were used to design a control scheme based on two fuzzy compensators: one for power and another for voltage. The proposed fuzzy scheme significantly reduced the unwanted interaction effects of decentralized conventional control schemes. It was demonstrated the proposed turbogenerator model is valid in a wide operating range and allows designing and evaluating high performance control schemes, which take into account the interaction between the turbine and the generator. Besides, the turbogenerator model is being used at the Electrical Research Institute to integrate a real-time bench test for turbogenerator control systems. [Spanish] Actualmente, la mayoria de los sistemas de control para turbogeneradores contemplan esquemas de control descentralizados con lazos de control independientes para la turbina y el

  1. Impacts of the turbogenerator reactive operation in the nuclear fuel burnup

    International Nuclear Information System (INIS)

    Oliveira, Helio Ricardo V. de; Martinez, Aquilino S.

    2002-01-01

    The parameterization of the losses in a turbogenerator in function of an operation with the electrical system reactive allowed to model in a simple and exact way the equations that define and they quantify the additional of nuclear potency that it should be generated by a reactor, in order to maintain the commitment with the national system operator, that is, the electric active power contracted. starting from this additional of nuclear power it was modeled the additional burn up of the fuel elements, as well as the numbers of effective days to full power wasted. it was promoted a safety analysis and some limitations due to the reactive operation of the electrical system. inside of this context it was made a financial evaluation in which we ask some questions to companies and government organs in order to define what losses are acceptable and also the reason why we don't use other technician resources such as: increase of the electrical mesh, electrical power injection in strategic points, capacitor banks and increase of the number the electrical plants. (author)

  2. Part-Load Performance of aWet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    Directory of Open Access Journals (Sweden)

    Leonardo Pierobon

    2014-12-01

    Full Text Available Over the last years, much attention has been paid to the development of efficient and low-cost power systems for biomass-to-electricity conversion. This paper aims at investigating the design- and part-load performance of an innovative plant based on a wet indirectly fired gas turbine (WIFGT fueled by woodchips and an organic Rankine cycle (ORC turbogenerator. An exergy analysis is performed to identify the sources of inefficiencies, the optimal design variables, and the most suitable working fluid for the organic Rankine process. This step enables to parametrize the part-load model of the plant and to estimate its performance at different power outputs. The novel plant has a nominal power of 250 kW and a thermal efficiency of 43%. The major irreversibilities take place in the burner, recuperator, compressor and in the condenser. Toluene is the optimal working fluid for the organic Rankine engine. The part-load investigation indicates that the plant can operate at high efficiencies over a wide range of power outputs (50%–100%, with a peak thermal efficiency of 45% at around 80% load. While the ORC turbogenerator is responsible for the efficiency drop at low capacities, the off-design performance is governed by the efficiency characteristics of the compressor and turbine serving the gas turbine unit.

  3. Modelling of the turbo-generator groups dynamical behaviour. Application to the ARABELLE turbine of the N4 1400 MW unit

    International Nuclear Information System (INIS)

    Bediou, J.

    1993-01-01

    Simulation of the dynamical behaviour of the EDF turbogenerator groups is based on developments concerning bearing behaviour and shaft line dynamics. A provisional model for the ARABELLE turbine dynamic behaviour is derived. The detailed representation of all the components allows for a fine analysis of the different effects and the evaluation of the stresses transmitted to the structure in anomalistic operating conditions

  4. Perspectives of application of synthetic diamonds in polyurethane compositions for development of new high thermal conductivity system of isolation of powerful turbogenerators

    International Nuclear Information System (INIS)

    Kensits'kij, O.G.; Vigovs'kij, O.V.; Khvalyin, D.Yi.

    2017-01-01

    Reviewed and analyzed components of modern high-voltage insulation of electrical machines. The expediency of increasing of heat-conducting properties of the system of isolation of stator winding of powerful turbogenerators is justified. The main ways of improving heat transfer in the insulation system the stator windings of the turbogenerators are presented and analyzed. Perspectives of application of composite material based on polyurethane with additives of synthetic diamonds for development of new high thermal conductivity system of isolation of powerful electrical machines are analyzed. The technology by which was created the prototype of the insulating material with the application of diamond powder in a polyurethane composition is described. Executed laboratory experimental researches of the electrophysical parameters of the sample developed insulating material. That showed the perspective of this direction of perfection of isolation.

  5. Some problems raised by the operation of large nuclear turbo-generator sets. Solutions proposed for the protection of large size generators

    International Nuclear Information System (INIS)

    Chaumienne, J.-P.

    1976-01-01

    The operating requirements of nuclear power stations call for relays with ever increasing performances. This urges the development of new electronic systems while giving high importance to their reliability. So as to provide for easy application and minitoring of the relays, even when the turbo-generator unit is operating, a new cubicle design is considered which offers maximum safety and flexibility in use [fr

  6. Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier

    International Nuclear Information System (INIS)

    Mrzljak, Vedran; Poljak, Igor; Mrakovčić, Tomislav

    2017-01-01

    Highlights: • Two low-power steam turbines in the LNG carrier propulsion plant were investigated. • Energy and exergy efficiencies of both steam turbines vary between 46% and 62%. • The ambient temperature has a low impact on exergy efficiency of analyzed turbines. • The maximum efficiencies area of both turbines was investigated. • A method for increasing the turbo-generator efficiencies by 1–3% is presented. - Abstract: Nowadays, marine propulsion systems are mainly based on internal combustion diesel engines. Despite this fact, a number of LNG carriers have steam propulsion plants. In such plants, steam turbines are used not only for ship propulsion, but also for electrical power generation and main feed water pump drive. Marine turbo-generators and steam turbine for the main feed water pump drive were investigated on the analyzed LNG carrier with steam propulsion plant. The measurements of various operating parameters were performed and obtained data were used for energy and exergy analysis. All the measurements and calculations were performed during the ship acceleration. The analysis shows that the energy and exergy efficiencies of both analyzed low-power turbines vary between 46% and 62% what is significantly lower in comparison with the high-power steam turbines. The ambient temperature has a low impact on exergy efficiency of analyzed turbines (change in ambient temperature for 10 °C causes less than 1% change in exergy efficiency). The highest exergy efficiencies were achieved at the lowest observed ambient temperature. Also, the highest efficiencies were achieved at 71.5% of maximum developed turbo-generator power while the highest efficiencies of steam turbine for the main feed water pump drive were achieved at maximum turbine developed power. Replacing the existing steam turbine for the main feed water pump drive with an electric motor would increase the turbo-generator energy and exergy efficiencies for at least 1–3% in all analyzed

  7. Analysis of the accuracy of methods for the determination of the synchronous reactances and the characteristics of turbogenerator

    Directory of Open Access Journals (Sweden)

    Kostić Miloje M.

    2017-01-01

    Full Text Available The values of saturated synchronous reactances turbogenerator for d-axis and q axis are different, Xd,sat > Xq,sat and when their unsaturated equal value, Xd,u = Xq,u. The exact calculation these reactances is quite complex and is conducted only using the finite element method (FEM with experimental validation. In order to adapt to practical needs, the most important results are elaborated in the form of family magnetizing curves loaded machines for d and q axis. This enables more accurate calculation of saturated synchronous reactance, and on the basis of the excited current and the power angle, and accurate design of the capability diagram for overexcited regimes and underexcited regimes. Such a method of constructing the two families of curves is complex for practical application, however, uses a simpler procedure. The calculation results with the above simplifications are analyzed in the work so that the calculated values of power are compared with the given (measured values. It turns out that these differences are large, even, in the examples from famous literature, and be critical to use methods that are implemented and in computer programs.

  8. Multiple electronic permanent turbogenerator for turbine engines of the 90th. Final report; MED-Turbogeneratoren fuer Stroemungskraftmaschinen der 90er Jahre. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, G.

    1997-12-01

    Present state of research and technology: Usually generators are coupled over a reduction gear to high-speed gas turbines. Independent of the load requirements the number of revolutions of the gas turbine must remain constant and rigidly coupled to the frequency. In the partial load range the efficiency of the gas turbine sinks substantially. Reason/objective of the investigation: This project is supposed to prove the feasibility and the functionality of a turbogenerator (TG) in Multiple Electronic Permanent Magnet (MED) construction principle, which is directly coupled to the high-speed drive turbine. Further on the preconditions for the construction of prototypes in the size class 20 kW up to 100 kW as well as 100 kW to 1 MW should be created. Method: Preliminary investigation, dimensioning, calculation and construction of a 40 kW and a 400 kW (MED) turbogenerator. Production and commissioning of one operating model each. Production and/or procurement as well as construction of necessary testing facilities. Experimental proof of the target data. Results: 3 operating models including power electroncis and necessary periphery were manufactured, measured and tested at the test stand. The projected data: rated voltage and rated output power could be proven experimentally. Conclusion/application possibilities: The MED turbogenerator represents a compact construction principle (weight and volume advantages). Direct coupling on the shaft of the drive turbine is possible (high efficiency; reduction gear is void; noise minimisation). In connection with a static inverter a constant frequency independently of the number of revolutions of the drive turbine can be achieved. Althogether, compared with conventional technology, one can expect around 3-5% reduced fuel consumption. The TG can be applied both in stationary electrical power units and plants for decentralised cogeneration as well as mobilely for the electric drive of heavy trucks and buses. (orig.) [Deutsch

  9. Case history of a 94 MVA turbo-generator retired after 190.000 hours of service by defects revealed by boresonic in-service inspection

    International Nuclear Information System (INIS)

    Porro, F.; Santoro, M.

    1990-01-01

    The case-history of a turbogenerator manufactured by Ansaldo on 1957 and turned on operation on 1958 then retired after 30 years of operation, with a total of 190.000 hours of service, by defects revealed trough boresonic inspections, will be presented. The rotor was inspected a first time after 130.000 hours of service and was overbored in order to allow further service operations. After other 60.000 hours of service operation the rotor underwent to a new in-service inspection that showed an unacceptable condition. The rotor, retired from service, has been destined to destructive tests in order to verify non-destructive predictions

  10. Stator Vibration Characteristic Identification of Turbogenerator among Single and Composite Faults Composed of Static Air-Gap Eccentricity and Rotor Interturn Short Circuit

    Directory of Open Access Journals (Sweden)

    Yu-Ling He

    2016-01-01

    Full Text Available This paper investigates the radial stator vibration characteristics of turbogenerator under the static air-gap eccentricity (SAGE fault, the rotor interturn short circuit (RISC fault, and the composite faults (CFs composed of SAGE and RISC, respectively. Firstly, the impact of the faulty types on the magnetic flux density (MFD is analyzed, based on which the detailed expressions of the magnetic pull per unit area (MPPUA on the stator under different performing conditions are deduced. Then, numerical FEM simulations based on Ansoft and an experimental study are carried out, taking the SDF-9 type fault simulating generator as the study object. It is shown that SAGE will increase the stator vibration at 2f (f is the electrical frequency which already exists even in normal condition, while RISC and CF will bring in stator vibrations at f, 2f, 3f, and 4f at the same time. The vibration amplitudes under CF are larger than those under RISC. As SAGE increases, the vibration amplitudes of each harmonic component under CF will all be increased, while the development of RISC will decrease the 2nd harmonic vibration but meanwhile increase the 4th harmonic vibration. The achievements of this paper are beneficial for fault identification and condition monitoring of the turbogenerator.

  11. A TURBO-GENERATOR DESIGN SYNTHESIS BASED ON THE NUMERICAL-FIELD CALCULATIONS AT VARYING THE NUMBER OF STATOR SLOTS

    Directory of Open Access Journals (Sweden)

    V. I. Milykh

    2016-12-01

    Full Text Available Purpose. The work is dedicated to the presentation of the principle of construction and implementation of an automated synthesis system of the turbo-generator (TG electromagnetic system in the case of its modernization. This is done on the example of changing the number of the stator core slots. Methodology. The basis of the synthesis is a TG basic construction. Its structure includes the mathematical and physical-geometrical models, as well as the calculation model for the FEMM software environment, providing the numerical calculations of the magnetic fields and electromagnetic parameters of TG. The mathematical model links the changing and basic dimensions and parameters of the electromagnetic system, provided that the TG power parameters are ensured. The physical-geometrical model is the geometric mapping of the electromagnetic system with the specified physical properties of its elements. This model converts the TG electromagnetic system in a calculation model for the FEMM program. Results. Testing of the created synthesis system is carried out on the example of the 340 MW TG. The geometric, electromagnetic and power parameters of its basic construction and its new variants at the different numbers of the stator slots are compared. The harmonic analysis of the temporal function of the stator winding EMF is also made for the variants being compared. Originality. The mathematical model, relating the new and base parameters of TG at the changing of the number of the stator slots is created. A Lua script, providing the numerical-field calculations of the TG electromagnetic parameters in the FEMM software environment is worked out. Construction of the constructive and calculation models, the numerical-field calculations and delivery of results are performed by a computer automatically, that ensures high efficiency of the TG design process. Practical value. The considered version of the TG modernization on the example of changing the number of the

  12. 25 years of experience with closed cycle vapor turbogenerators as primary power source in remote telecommunications projects in Russia and CIS countries

    Energy Technology Data Exchange (ETDEWEB)

    Gropper, J. [ORMAT Industries Ltd., Yavne (Israel)

    2000-07-01

    One of the most severe problems confronting telecommunications projects in extreme arctic environment conditions, with temperatures as low as -60 C, is the supply of continuous, reliable remote power for unattended microwave repeater stations that in many cases cannot be reached by maintenance technicians for months at a time. Another important problem is that the telecommunications equipment must be kept at temperatures between 0 C and +45 C in order to ensure correct electronics operation. The obvious, simple solution of having an electrical heater in the equipment shelter is not practical because of the power required for such a heater. The use of specially designed, arctic type, closed cycle vapor turbogenerators (CCVT) and their associated non-electric heating systems in arctic telecommunication systems has solved both problems: reliable remote power in the range of 400 to 2500 Watts in provided with maintenance requirements reduced to a visit only once in 6 months or more, and required temperature ranges in equipment shelters are maintained, assuring correct operation of the sensitive electronics, without any need of electrical power. During the last 25 years, many major telecommunication projects in Siberia, Alaska and Antarctica have been designed to use and continue to use over 1200 arctic type closed cycle vapor turbogenerators. The CCVTs are designed to operate at nominal power in a range of temperatures from -60 to +45 C and at wind velocity of 120 km/hr, with acceptable gusts of 160 km/hr. They can be fuelled by either arctic kerosene or diesel fuel, or by natural or liquefied gas (LPG) and provide 24 or 48 VDC to the telecommunications equipment. The non-electric heating system associated with the CCVT draws extra heat accumulated in the CCVT's vapor turbogenerator in winter to vaporize a fluid that will transmit 1000 kcal/hr of heat to the equipment shelter or room where telecommunication equipment is located. The heating system is

  13. Parametric sensitivity of two axis models for turbo-generators; Sensibilidad parametrica de modelos de dos ejes para turbogeneradores

    Energy Technology Data Exchange (ETDEWEB)

    Morales Castorena, Armando

    2003-06-15

    The results of parameter sensitivity studies performed on two axis equivalent circuits (TAECs) of synchronous machines are presented in this thesis. The circuits consist of inductive and resistive elements. Their connectivity represents the magnetic and electric coupling inside the machine as well as its energy losses. Two equivalent circuits are needed to represent the machine, one for the direct axis (d) and another for the quadrature axis (q), because it is modeled under the two-axis reaction theory of Park. Parameter values have been identified in advance, using standstill frequency response tests (SSFR). This response was calculated using a finite element model of a turbine generator. The parameter identification is achieved by applying an optimization process based on a hybrid algorithm (stochastic-deterministic). The fitness function is defined as the square of the differences between magnitudes and phase angles of the frequency response functions of the TAECs and of the turbogenerator. This procedure yields the TAECs that better fit the frequency response of the machine. Thus, the circuits identified are considered good models of the machine and they can be applied for digital simulation of dynamic behavior. The identified TAECs are the basis of the parameter sensitivity studies reported here. These studies consist of doing very small variations to parameter values, and to calculate the new value of the fitness function. The ratio between the change of the fitness function to the change in parameter value is called sensitivity of the fitness function, or simply, sensitivity function. Its magnitude indicates which parameter has a greater or lesser influence on the fitness function. If the fitness function is very sensitive to a particular parameter, then the rightness of the identified value of that parameter may be in doubt. With this information it is possible to establish the reliability of the identification process and to exert corrective actions. It is

  14. Impacts of the turbogenerator reactive operation in the nuclear fuel burnup; Impactos da operacao reativa do turbogerador na queima do combustivel nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Helio Ricardo V. de; Martinez, Aquilino S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    The parameterization of the losses in a turbogenerator in function of an operation with the electrical system reactive allowed to model in a simple and exact way the equations that define and they quantify the additional of nuclear potency that it should be generated by a reactor, in order to maintain the commitment with the national system operator, that is, the electric active power contracted. starting from this additional of nuclear power it was modeled the additional burn up of the fuel elements, as well as the numbers of effective days to full power wasted. it was promoted a safety analysis and some limitations due to the reactive operation of the electrical system. inside of this context it was made a financial evaluation in which we ask some questions to companies and government organs in order to define what losses are acceptable and also the reason why we don't use other technician resources such as: increase of the electrical mesh, electrical power injection in strategic points, capacitor banks and increase of the number the electrical plants. (author)

  15. Failure analysis to the weights of balance of a 350 MW turbo-generator; Analisis de falla a los pesos de balanceo de un turbogenerador de 350 MW

    Energy Technology Data Exchange (ETDEWEB)

    Vital Flores, Francisco; Gamero Arroyo, Jose Manuel [LAPEM, Comision Federal de Electricidad (Mexico)

    2007-11-15

    The selection of materials and the quality control in the supply of the components, as well as the involved operative variables in the process of work to which an equipment, device or a system of a power station of electrical generation are subjected, impact in the same in their useful life in a decisive way. In this document it is presented an analysis of a failure occurred in a 350 MW turbo-generator by the loosening of the balance weights, in which it is mentioned the flaws occurred by this cause and a metallographic analysis that indicates the main fault for the happening. [Spanish] La seleccion de material y el control de calidad en los suministros de los componentes, asi como las variables operativas involucradas en el proceso de trabajo al cual es sometido un equipo, dispositivo o un sistema de una central de generacion electrica, impactan en los mismos de manera decisiva en su vida util. En este documento se presenta un analisis de falla ocurrido en un turbogenerador de 350 MW, por el desprendimiento de los pesos de balanceo, el cual se menciona de los desperfectos ocurridos por esta causa y un analisis metalografico que indica la falla principal por lo ocurrido.

  16. ADRE, uso intensivo del ploteo orbital en el diagnóstico de turbogeneradores // ADRE, intensive use of the orbital plot in turbogenerators diagnosis.

    Directory of Open Access Journals (Sweden)

    E. Palomino Marín

    2000-10-01

    themultichanal system ADRE®, employee as system of monitoring off-line. The most excellent results in the investigation, aresustained in the use of the presence of relative movement and seismic transducers under the supervision of theVIBROCONTROL®, through which and with the intervention of the ADRE® system, is possible to identify inadequacies in theon-line monitoring and standing defects are diagnosed in the turbogenerator, including sequels left in this by transitory defects.Key words: seismic transducer, transducer of eddy currents, orbit, phase, keyphasor.

  17. Regenerative Heater Optimization for Steam Turbo-Generation Cycles of Generation IV Nuclear Power Plants with a Comparison of Two Concepts for the Westinghouse International Reactor Innovative and Secure (IRIS)

    International Nuclear Information System (INIS)

    Williams, W.C.

    2002-01-01

    The intent of this study is to discuss some of the many factors involved in the development of the design and layout of a steam turbo-generation unit as part of a modular Generation IV nuclear power plant. Of the many factors involved in the design and layout, this research will cover feed water system layout and optimization issues. The research is arranged in hopes that it can be generalized to any Generation IV system which uses a steam powered turbo-generation unit. The research is done using the ORCENT-II heat balance codes and the Salisbury methodology to be reviewed herein. The Salisbury methodology is used on an original cycle design by Famiani for the Westinghouse IRIS and the effects due to parameter variation are studied. The vital parameters of the Salisbury methodology are the incremental heater surface capital cost (S) in $/ft 2 , the value of incremental power (I) in $/kW, and the overall heat transfer coefficient (U) in Btu/ft 2 -degrees Fahrenheit-hr. Each is varied in order to determine the effects on the cycles overall heat rate, output, as well as, the heater surface areas. The effects of each are shown. Then the methodology is then used to compare the optimized original Famiani design consisting of seven regenerative feedwater heaters with an optimized new cycle concept, INRC8, containing four regenerative heaters. The results are shown. It can be seen that a trade between the complexity of the seven stage regenerative Famiani cycle and the simplicity of the INRC8 cycle can be made. It is desired that this methodology can be used to show the ability to evaluate modularity through the value of size a complexity of the system as well as the performance. It also shows the effectiveness of the Salisbury methodology in the optimization of regenerative cycles for such an evaluation

  18. State of development of superconducting turbogenerators

    International Nuclear Information System (INIS)

    Intichar, L.

    1995-01-01

    Two projects are reported intended to finally establish the necessary knowledge and results for product development, superconducting generators for power plant applications. One project is a German activity, focusing on two generator design models, and the other is a Japanese project. The project progress achieved in Japan is expected to lead within the next three years to successful completion and to a 70 MW generator demonstrating the feasibility of the technology, and its application to considerably higher power ranges. (orig./MM) [de

  19. Corrosion resistance of materials for use in geothermal power plants; Korrosionsbestaendigkeit von Werkstoffen fuer den Einsatz in Geothermieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Baessler, Ralph [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachbereich ' Korrosionsschutz von Technischen Anlagen und Geraeten' ; Sarmiento Klapper, Helmuth [Baker Hughes - Celle Technology Center, Celle (Germany). Bereich ' Drilling and Evaluation' ; Burkert, Andreas [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachbereich ' Korrosion im Bauwesen'

    2012-10-15

    Due to the extreme operation conditions, the material selection for drill technical and process technical installations is decisive for a safe and reliable operation of geothermal power plant. The authors of the contribution under consideration report on the limits in the range of geothermal deep drillings for the exploration of high saline aquifer fluids of Gross Schoenebeck (Federal Republic of Germany). These limits were estimated by means of electrochemical investigations and classical outsourcing experiments within the materials qualifications for two high-alloyed steels.

  20. Feasibility of waste gas turbogenerators on motor ships

    Energy Technology Data Exchange (ETDEWEB)

    Steczek, M

    1979-01-01

    Using the waste gas energy, on any motor ship, electrical energy can be generated by means of a vapour cycle process without fuel costs. In the article, it is shown that engine performance on such a waste gas turbo generator can generate the power needed on board for operating the ship. This technical investigation is followed by a feasibility calculation which shows that such an installation is paid off very quickly with today's fuel costs.

  1. Protection of ground water at shallow geothermal power plants by means of an automatic leakage detection and liquid backwashing; Grundwasserschutz bei flachen Geothermieanlagen durch automatische Leckagenerkennung und Fluessigkeitsrueckspuelung

    Energy Technology Data Exchange (ETDEWEB)

    Wohnlich, Stefan; Scheliga, Roman [Bochum Univ. (Germany). Lehrstuhl fuer Angewandte Geologie; Bonin, Juergen [Umwelt und Technik, Xanten (Germany)

    2011-10-24

    A protective device is examined with which the contamination of groundwater in an accident can be reduced to a minimum. The proposed device (geo-protector) registered a leak in two stages of pressure sensors. If the value falls below the lower minimum pressure, the entire system is flushed with water. The brine can be collected in a separate vessel. Thus, only drinking water escapes from the leak. A further contamination of ground water with brine is avoided. In order to investigate the functionality and reliability of the geo-protectors, a model of a geothermal power plant was created. With this, leakages of varying sizes were simulated at different places of the geothermal probes. All measured leakage scenarios could be registered. The output amount of the brine during the flushing process was at most 5% of the total volume of the system. The output amount could be further minimized by means of a pressure reducer. The outflow quantity of the brine is reduced to a minimum by means of a shallow geothermal system. This significantly may contribute to the protection of groundwater.

  2. Seal of quality for planners of geothermal energy installations, prize for geothermal installations; Guetesiegel fuer Planer von Geothermieanlagen, Geothermiepreis Phase I (2002)

    Energy Technology Data Exchange (ETDEWEB)

    Eugster, W. J. [Polydynamics Engineering Zuerich, Zuerich (Switzerland); Eberhard, M. [Eberhard and Partner AG, Aarau (Switzerland); Koschenz, M. [EMPA, Duebendorf (Switzerland); Morath, M. [Lippuner and Partner AG, Grabs (Switzerland); Rohner, E. [Engeo AG, Arnegg (Switzerland)

    2003-07-01

    This final report for the Swiss Federal Office for Energy describes a project that aimed to improve the awareness of planners and installers involved in geothermal energy projects for the problems encountered when dimensioning both large and small geothermal installations, and to provide the basic knowledge necessary for a correct sizing of such plants. The report's main emphasis is placed on three types of geothermal plant, bore-hole heat exchangers, groundwater use and energy pile installations. The concept of the training programme involved is described, which is to issue certificates and labels for the attainment of three levels of ability. These three levels (Labels A, B and C) cover simple, small plants for heating operation, medium sized plants within a heating capacity range of 30 to approximately 100 kW and large plants for heating and cooling operation with heat capacities greater than 100 kW, respectively. The report also includes details of the time-line aimed for and costs. Also, the idea of an annual prize for geothermal installations is briefly discussed.

  3. Reliability Assessment of a Turbogenerator Coil Retaining Ring Based on Low Cycle Fatigue Data

    Directory of Open Access Journals (Sweden)

    Olmi Giorgio

    2014-03-01

    Full Text Available Pierscienie ustalajace cewek turbogeneratora sa pasowane skurczowo na wirniku wokół cerek by zabezpieczyc je przed działaniem sił odsrodkowych. W typowych warunkach, sa one poddane narazeniom zmeczeniowym o malej liczbie cykli, przy czym kazdy cykl rozpoczyna sie od startu maszyny, a konczy przy jej zatrzymaniu. Przedmiotem artykułu jest wyznaczenie prawdopodobienstwa awarii pierscienia ustalajacego cewki. Rozwazanym uszkodzeniem jest pekniecie pierscienia spowodowane puchnieciem materiału pod wpływem naprezen wywołanych sila odsrodkowa. Ocena niezawodnosci przeprowadzona w tej pracy wykorzystuje dane wejsciowe wpływajace na obciazenie zmeczeniowe przy małej liczbie cykli i ich rozkłady stochastyczne. Dla rozwiazania problemu wyznaczono eksperymentalnie charakterystyki statyczne i krzywe cykli zmeczeniowych stosowanego materiału i zastosowano model statystyczny dla wyliczenia odpowiednich parametrów i ich odchylen standardowych. Na podstawie wyznaczonych rozkładów zmiennych estymuje sie prawdopodobienstwo uszkodzenia w formie dystrybuanty rozkładu. Wykorzystanyalgorytm obliczeniowy o duzej skutecznosci wykorzystuje metode ”zaawansowanej sredniej” (Advanced Mean Value. Uzyskane wyniki daja informacje o odpowiedzi materiału i stanie lokalnych naprezen i odkształcen w najbardziej obciazonych obszarach pierscienia ustalajacego cewki. Prawdopodobienstwo uszkodzenia, wyznaczone na koniec okresu eksploatacji maszyny, wynosi 10-12 i jest porównywalne z wartosciami referencyjnymi dla innych konstrukcji mechanicznych i lotniczych narazonych na zmeczenie.

  4. Nonlinear Disturbance Attenuation Controller for Turbo-Generators in Power Systems via Recursive Design

    NARCIS (Netherlands)

    Cao, M.; Shen, T.L.; Song, Y.H.; Mei, S.W.

    2002-01-01

    The paper proposes a nonlinear robust controller for steam governor control in power systems. Based on dissipation theory, an innovative recursive design method is presented to construct the storage function of single machine infinite bus (SMIB) and multi-machine power systems. Furthermore, the

  5. Passivation controller design for turbo-generators based on generalised Hamiltonian system theory

    NARCIS (Netherlands)

    Cao, M.; Shen, T.L.; Song, Y.H.

    2002-01-01

    A method of pre-feedback to formulate the generalised forced Hamiltonian system model for speed governor control systems is proposed. Furthermore, passivation controllers are designed based on the scheme of Hamiltonian structure for single machne infinite bus and multimachine power systems. In

  6. Shaft torsional oscillation interactions between turbo-generators in parallel in series compensated transmission systems

    Energy Technology Data Exchange (ETDEWEB)

    Mello, F.P. de

    1994-12-31

    Several investigators have raised the possibility of interaction between shaft systems of parallel units, particularly among identical units. The question addressed in this paper is the significance of this interaction between shaft systems of units coupled through the electrical system. A time domain model of two parallels units connected to an infinite bus trough a series compensated transmission is used to evaluate the phenomena. The same model is used to extract pertinent frequency response functions by Fourier processing of pulse response tests from which a frequency response analysis is performed to lend additional insight into the phenomena. (author) 8 refs., 13 figs., 3 tabs.

  7. Influence of ventilation structure on air flow distribution of large turbo-generator

    Science.gov (United States)

    Zhang, Liying; Ding, Shuye; Zhao, Zhijun; Yang, Jingmo

    2018-04-01

    For the 350 MW air - cooled turbo—generator, the rotor body is ventilated by sub -slots and 94 radial ventilation ducts and the end adopts arc segment and the straight section to acquire the wind. The stator is ventilated with five inlets and eight outlet air branches. In order to analyze the cooling effect of different ventilation schemes, a global physical model including the stator, rotor, casing and fan is established, and the assumptions and boundary conditions of the solution domain are given. the finite volume method is used to solve the problem, and the air flow distribution characteristics of each part of the motor under different ventilation schemes are obtained. The results show that the baffle at the end of the rotor can eliminate the eddy current at the end of the rotor, and make the flow distribution of cooling air more uniform and reasonable. The conclusions can provide reference for the design of motor ventilation structure.

  8. Forecasting the vibrational behavior of large turbogenerators on elastic foundations in accordance with probabilistic methods

    International Nuclear Information System (INIS)

    Simon, G.

    1990-01-01

    Using advanced calculation programs, the inherent behavior and response behavior of structures can reliably be predetermined. In contrast, the dynamic forces affecting a system, in particular unbalances, are often unkown. From balancing of individual rotors, only the vibration path amplitudes at the measuring points used are known. However, these may originate from quite different unbalance distributions. Using probabilistic methods, however, values for the vibrational behavior of the overall structure can be derived from this. (orig.) [de

  9. Application of unscented Kalman filter for condition monitoring of an organic Rankine cycle turbogenerator

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Schlanbusch, Rune; Kandepu, Rambabu

    2014-01-01

    for this project. Considering the plant dynamics, it is of paramount importance to monitor the peak temperatures within the once-through boiler serving the bottoming unit to prevent the decomposition of the working fluid. This paper accordingly aims at applying the unscented Kalman filter to estimate...... the temperature distribution inside the primary heat exchanger by engaging a detailed and distributed model of the system and available measurements. Simulation results prove the robustness of the unscented Kalman filter with respect to process noise, measurement disturbances and initial conditions....

  10. Small turbogenerators for post power generation of non-utilized thermal energy; Kleine Turbogeneratoren zur Nachverstromung nicht genutzter Waermen

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Kristian; Redemann, Christian [LEViTEC GmbH, Lahnau (Germany); Priebe, Klaus-Peter [LTi ADATURB GmbH, Unna (Germany)

    2009-07-01

    Nowadays in Germany a huge offer of waste heat is available, which is not used adequately for the generation of effective energy like electricity and coldness. This kind of heat is available through cogeneration units, combined heat and power stations, heat plants and process heat generation, operated by fossil or renewable energies. This unused waste heat achieves several 10.000 MW of thermal output, which accumulate in small installations with an output up to 1,0 MW primary energy insert. (orig.)

  11. Decrease in the damage of powerful turbogenerator stator caused by vibration in the end zones (analysis, hypotheses, experiment

    Directory of Open Access Journals (Sweden)

    Yu.A. Shumilov

    2014-03-01

    Full Text Available The analysis of the turbogenerators’ TВВ-1000-2Y3 failure has shown that the most vulnerable link in the stator is such of their elements as tightening prisms, the teeth of the end packet core, lead-out and connecting buses of the stator winding. The basic reason for the destruction of the elements mentioned is metal fatigue caused by excessive vibration under the influence of variable axial forces of electromagnetic origin. Preventing the destruction of the structural elements may be achieved by vibration monitoring and diagnostics.

  12. Part-Load Performance of a Wet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Nguyen, Tuong-Van; Mazzucco, Andrea

    2014-01-01

    Over the last years, much attention has been paid to the development of efficient and low-cost power systems for biomass-to-electricity conversion. This paper aims at investigating the design- and part-load performance of an innovative plant based on a wet indirectly fired gas turbine (WIFGT......-design performance is governed by the efficiency characteristics of the compressor and turbine serving the gas turbine unit....

  13. A charge regulating system for turbo-generator gas-cooled high-temperature reactor power stations

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1975-01-01

    The invention relates to a regulating system for gas-cooled high-temperature reactors power stations (helium coolant), equipped with several steam-boilers, each of which deriving heat from a corresponding cooling-gas flow circulating in the reactor, so as to feed superheated steam into a main common steam-manifold and re-superheated steam into a re-superheated hot common manifold [fr

  14. Modernization of the Control Systems of High-Frequency, Brush-Free, and Collector Exciters of Turbogenerators

    Energy Technology Data Exchange (ETDEWEB)

    Popov, E. N., E-mail: enpo@ruselmash.ru; Komkov, A. L.; Ivanov, S. L.; Timoshchenko, K. P. [JSC “Scientific and Industrial Enterprise “Rusélprom-Élektromash” (Russian Federation)

    2016-11-15

    Methods of modernizing the regulation systems of electric machinery exciters with high-frequency, brush-free, and collector exciters by means of microprocessor technology are examined. The main problems of modernization are to increase the response speed of a system and to use a system stabilizer to increase the stability of the power system.

  15. Some problems raised by the operation of large nuclear turbo-generator sets. Cooling of shielded conductors. Precautionary steps for their thermal dimensioning

    International Nuclear Information System (INIS)

    Nisol, R.

    1976-01-01

    The role of the shielded conductors as power dissipation feeder from the generator towards the network is recalled. Their natural cooling limits and the possibilities of forced cooling are examined. The known incidence of short-circuit currents upon the components of the generator-network connection is reported [fr

  16. Turbine shovels - research from the viewpoint of a safe work at nominal and increased individual power of turbo-generator sets

    International Nuclear Information System (INIS)

    Kachurkov, Gjorgji

    1995-01-01

    The secure work of the shovel devices is an important condition for a long and safe work. The steam turbine shovels are the most important and expensive elements. The damages of this elements can be very dangerous for the equipment as well as for the people. A long and expensive break of the work could be needed to repair them. All the shovels work in difficult conditions, but the first and the last stages work in the most difficult conditions. The working shovels of the first stages are influenced by a high parameter steam and during the partial bringing up of the steam the shovel load changes several times for every turbine turn from maximum to zero. The working shovels of the last stages are exposed to bending forces caused by the steam flow, as well as to strong centrifugal forces and to erosion effect as a result of a higher humidity and speed. The erosion of the shovel inlet edge can bring both pores and cracks appearance as a result of tension concentrations in the relatively thin edges. (author).7 figs., 1 ill

  17. Fault diagnosis in the steam turbo-generator of a Combined Cycle Power Plant; Diagnostico de fallas en el turbogenerador a vapor de una central de generacion de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Flores Abad, Angel

    2006-12-15

    Due to the physical nature of its components, technological processes are vulnerable to faults. These faults affect the accurate behavior of the system, causing a performance reduction, even great economical losses and in the worst case environmental and human disasters. The opportune detection of the presence of faults helps to take corrective actions and as a consequence to reduce the potential damage that faults cause. To achieve the fault detection task, technological processes have supervisory systems to monitor the process variables and provide an alarm when a variable reached a given threshold. This method has the drawback that a single fault could cause many system alarms, which difficult the fault isolation. In addition it is based on hardware redundancy; it means the use of repeated devices to do the same work. Combined cycle power plants (CCPP) are large scale systems with a high degree of fault susceptibility. Due to strict conditions in which they operate and the great number of elements they contain, including sensors and actuators. Nowadays this kind of power plants tends to dominate the electric generation market by means of fossil fuels, because they are the most efficient, profitable, with flexible operation and with less environmental impact. In the CCPP, the steam turbine (ST) is a fundamental component, since it represents the process gain, in the way that it allows the generation of additional electric energy by taking advantage of the exhaust gases of the gas turbines. In case of the ST fails, the global efficiency of the process is reduced even in a 40%. In this work a model based fault diagnosis system was developed, according to the FDI (Fault Detection and Isolation) methodology of the control theory, with the capability of detecting and isolating faults in the sensors and actuators of the ST of a CCPP. The developed system is based on the analytical redundancy which allows optimizing the hardware redundancy and getting a reduction of the extra space and expenses implied in the use of repeated devices. The design of the system was carried out by using the structural analysis (SA) which is a tool based on graph theory and computer science. The SA allowed the analysis of monitorability, detectability and isolability properties of the process, besides it provides the computation sequence of non monitored (unknown) variables in order to obtain the analytical redundancy relations. To validate the fault diagnosis system, the detection and isolation algorithms were programmed in C language and integrated to the simulator software of a CCPP in LabWindows CVI. In order to provide a way to easily identify the existence of a fault, a graphic interface was developed, where the faulty component, sensor or actuator is indicated. [Spanish] Debido a la naturaleza fisica de sus componentes, todos los procesos tecnologicos son susceptibles de falla. Estas fallas afectan el funcionamiento del sistema, provocando desde una reduccion en su desempeno hasta cuantiosas perdidas economicas y en el peor de los casos desastres ambientales y humanos. La deteccion oportuna de la presencia de las fallas ayuda a tomar acciones correctivas y como consecuencia a reducir el dano potencial que estas ocasionan. Para realizar la tarea de deteccion de fallas, los procesos tecnologicos cuentan con sistemas de monitoreo y alarmas que se activan si algunas de las variables monitoreadas rebasa un umbral establecidos. El metodo presenta el inconveniente de que ante la presencia de una sola falla se pueden activar varias alarmas, lo que dificulta la tarea para localizar al elemento danado. Ademas, se basa en la redundancia fisica, que consiste en el uso de elementos repetidos para realizar una misma tarea. Las centrales de generacion de ciclo combinado (CGCC) son procesos de gran escala con alto grado de susceptibilidad a fallas, a causa de las condiciones estrictas en las que operan y del gran numero de componentes que contienen, incluyendo sensores y actuadores. En la actualidad este tipo de centrales tiende a dominar el mercado de generacion electrica por medio de combustibles fosiles, debido a que son las mas eficientes, rentables, de operacion flexible y con menor impacto ambiental. En la CGCC, la turbina de vapor (TV) es una componente fundamental, ya que representa la ganancia del proceso en el sentido de que permite la generacion de energia electrica adicional al aprovechar los gases de escape de la turbina de gas. En caso de que la TV falle, la eficiencia global del proceso se reduce hasta en un 40%. Por lo anterior, en este trabajo se desarrollo un sistema de diagnostico de fallas basado en modelos, de acuerdo a la metodologia FDI (Fault Detection and Isolation) de la teoria de control, con capacidad para detectar y localizar fallas en los sensores y actuadores del turbogenerador a vapor de una CGCC. El enfoque que se utilizo emplea la redundancia analitica con el objetivo de optimizar la redundancia fisica, de manera que sea posible disminuir el costo y espacio extra que implica el utilizar dispositivos repetidos. El diseno del sistema se llevo a cabo usando el analisis estructural AE) que es una herramienta basada en la teoria de grafos y ciencias de la computacion. El AE permitio realizar: analisis de monitoreabilidad, detectabilidad y aislabilidad del proceso; y proporciono la secuencia de computo de las variables no monitoreadas (desconocidas) para obtener las relaciones de redundancia analitica. Para validar el sistema de diagnostico de fallas de la TV, se programaron los algoritmos de deteccion y localizacion de fallas en LabWindows, CVI y se integraron al simulador de la CGCC. Ademas para facilitar al usuario la visualizacion de la presencia de una falla se desarrollo una interfase grafica que indica el elemento con comportamientos anormales, ya sea sensor o actuador.

  18. Determinación de las Prioridades de Mantenimiento en Turbogeneradores “Elektrosila TBФ-100-3600-T3” a partir del Comportamiento de sus Fallos; Determination of Maintenance Priorities in Turbogenerators “Elektrosila TBФ- 100-3600-T3” Based on their Failure

    Directory of Open Access Journals (Sweden)

    Odalys Martínez Rodríguez

    2012-11-01

    Full Text Available Los generadores de potencia son de gran importancia para la producción de electricidad. Un fallo en un generador ocasiona la interrupción de su servicio, limitaciones o pérdida total de la energía generada, tiene efectos negativos sobre la economía y afecta la calidad de la vida de la sociedad. Ello conduce a la necesidad un control estricto de los generadores y sus sistemas, tal que faciliten la detección temprana de desviaciones en sus parámetros de operación e intervenir apropiadamente para impedir la ocurrencia de una avería. Este trabajo tiene como objetivo presentar los resultados de tres variantes empleadas en la determinación de las prioridades de mantenimiento de los turbogeneradores “ELEKTROSILA TBФ-100-3600-T3”, las variantes estudiadas fueron: el comportamiento histórico de los fallos, el comportamiento histórico de la energía indisponible debido a los fallos y el análisis de criticidad; los resultados, sustentados en seis años de estudio, descartaron la utilización del criterio de energía indisponible.  The power generators are very important for the electricity production. A failure in a generator causes the interruption of service, limitations or the complete loss of the generated energy, has negative effects on theeconomy and it harms quality of life of the society. This leads to the necessity of a strict control of the generators as in their systems, such that facilitates the early detection of any deviation on their operationparameters to intervene appropriately and avoid the occurrence of a failure. This paper has the objective to present the results of three variants used in the determination of the priorities of maintenance of theturbogenerators "ELEKTROSILA TBФ-100-3600-T3", the analyzed variants were: the historical behavior of failures, the historical behavior of the unavailable energy due to failures and the analysis of criticality; theobtained results, supported in six years of study, discard the use unavailable energy criteria.

  19. Mathematical modeling of a fast-breeder-reactor generating unit

    International Nuclear Information System (INIS)

    Kim, V.E.; Golovach, E.A.; Senkin, V.I.

    1984-01-01

    Dynamics equations are given for a reactor, intermediate heat exchanger, steam generator, and turbogenerator. The dynamic characteristics of the generating unit are described when perturbations occur in grid frequency, turbine valves, and feedwater consumption

  20. Analysis of the current status of measuring chains of the in-service diagnosis system at the Dukovany NPP

    International Nuclear Information System (INIS)

    Stulik, P.; Sipek, B.

    2006-02-01

    The following systems were analyzed for the Dukovany NPP: Monitoring of primary circuit and reactor vibrations; Detection of loose parts; Main coolant pump diagnosis; Reactor internals diagnosis; and Turbogenerator status monitoring. Recommendations were derived from the findings. (P.A.)

  1. Quarterly report April 1 - June 30, 1997 [ARPA TRP turboalternator development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-12

    This is a quarterly report of CALSTART's progress with their programs. Their overall objectives remain: (1) efficiently and responsible management of the program and; (2) assist in the commercialization of the technology by doing the following: identifying potential strategic partners; explaining need and value of turbogenerator; reach important audiences for AlliedSignal; showcase technology at key conferences/briefings; raise technology profile via custom Web information; and extend AlliedSignal turbogenerator outreach efforts.

  2. Powerful near-surface geothermal energy with vertical groundwater circulation; Leistungsfaehige oberflaechennahe Geothermie mit vertikaler Grundwasserzirkulation

    Energy Technology Data Exchange (ETDEWEB)

    Viernickel, Michael [Geo-En Energy Technologies GmbH, Berlin (Germany). Bereich Produktentwicklung und Projektierung komplexer Energiesysteme unter Einsatz von Geothermie

    2013-03-15

    The conversion of energy supply based on renewable energies will be electricity based and the efficient provision of heating and cooling can be done by electric heat pumps. In cities, however, where the open areas for geothermal systems are scarce, groundwater-based systems can be a powerful option. The development of a large heat reservoir via a single bore is possible with vertical groundwater circulation systems and is described here. [German] Der Umbau der Energieversorgung auf erneuerbare Energien wird Strom basiert sein und eine effiziente Bereitstellung von Waerme und Kaelte kann durch elektrische Waermepumpen erfolgen. Innerstaedtisch sind die Freiflaechen fuer Geothermieanlagen allerdings knapp, so dass Grundwasser basierte Anlagen eine leistungsfaehige Option darstellen koennen. Die Erschliessung eines grossen Waerme-Reservoirs ueber nur eine Bohrung ist mit vertikalen Grundwasserzirkulationsanlagen moeglich und wird hier beschrieben.

  3. Islay LIMPET project monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Heath, T.

    2002-07-01

    Wavegen was contracted by the DTI as part of its Sustainable Energy Programmes to monitor and report on the final stages of the construction, installation of turbo-generation equipment, commissioning and operation of the LIMPET wave energy system. The report discusses the choice of technology, where the system was installed, power take off, construction of the collector, installation of the turbo-generator, maintenance, operation, management and planning issues. The performance of the system was found to be poorer than expected and the reasons for this were identified. The main conclusions were that the system is sufficiently robust to operate in the marine environment and downtimes are expected to be short.

  4. Study of the self-regulating properties of a WWER reactor

    International Nuclear Information System (INIS)

    Filo, J.; Trnkusz, J.; Polak, V.

    1979-01-01

    The results of a self-regulation experiment carried out on the V-1 reactor in Czechoslovakia in the period of the start-up are presented. The kinetic state of the reactor was modified by varying the position of the automatic control rods, the power of the turbogenerators and by switching off a main pump in the primary circuit, on power levels of 35, 55, 75 and 90%. The important thermal parameters of the reactor, the electric power of the turbogenerators, the neutron flux, the position of the automatic control rod group and the concentration of the boric acid in the coolant have been measured. (R.J.)

  5. Forces and stresses in cryoturbogenerator rotor in presence of short circuit

    International Nuclear Information System (INIS)

    Kovarskii, M.E.; Rubinraut, A.M.; Tsyrlin, A.L.

    1981-01-01

    A method is presented for determining the electrodynamic forces, mechanical stresses, and strains in the shells of a cryogenic-turbogenerator cryostat in the presence of an abrupt short circuit. The physical pattern of occurrence of forces in a cryostat shell is considered for capacitive, inductive, and active armature-current cases. It is shown that in addition to the radial component, there is a tangential component of the electrodynamic forces, with the interaction of the two components governing the strength in the presence of short circuits. Results are reported for mechanical-strength calculations, based on the proposed method, for a 200 kw cryogenic turbogenerator

  6. Applications and real life spectra in the power generation industry

    International Nuclear Information System (INIS)

    Nix, K.J.; Lindley, T.C.

    1988-12-01

    Loading spectra encountered in various structures, machines, and components in the Power Generation Industry are presented from the viewpoint of fatigue analysis and structural integrity assessment. Although particular attention is paid to loading transients in turbo-generators, other items such as pressure vessels, pumped storage, nuclear plant pressure circuitry and wind turbines are also considered. (author)

  7. An optimal reactive power control strategy for a DFIG-based wind farm to damp the sub-synchronous oscillation of a power system

    DEFF Research Database (Denmark)

    Zhao, Bin; Li, Hui; Wang, Mingyu

    2014-01-01

    This study presents the auxiliary damping control with the reactive power loop on the rotor-side converter of doubly-fed induction generator (DFIG)-based wind farms to depress the sub-synchronous resonance oscillations in nearby turbogenerators. These generators are connected to a series capaciti...

  8. Superconducting magnetic systems and electrical machines

    International Nuclear Information System (INIS)

    Glebov, I.A.

    1975-01-01

    The use of superconductors for magnets and electrical machines attracts close attention of designers and scientists. A description is given of an ongoing research program to create superconductive magnetic systems, commutator motors, homopolar machines, topological generators and turbogenerators with superconductive field windings. All the machines are tentative experimental models and serve as a basis for further developments

  9. Power plant generators. Kraftwerks-Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    State of the art, design and types of large turbogenerators (up to 1635 MVA) are described, and their network behaviour is presented with regard to safety problems. It is expected that most progress will be made with iron-free rotors (in the sense of magnetic iron) with superconducting field coils and their thermomechanical problems.

  10. Subsynchronous resonance - identification of the resonance modes in systems with series compensation; Ressonancia subsincrona - identificacao dos modos ressonantes em sistemas dotados de compensacao-serie

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, J J [Brasilia Univ., DF (Brazil). Dept. de Engenharia Eletrica; Camargo, B C.C. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Eletrica

    1988-12-31

    This work shows the phenomenon and mechanism of the subsynchronous resonance, as well as it presents the modelling and simulation of a electromechanics system to verify the adequacy of the use of series capacitor in systems that has turbogenerators 4 refs., 7 figs., 3 tabs.

  11. Solar-energy conversion system provides electrical power and thermal control for life-support systems

    Science.gov (United States)

    Davis, B. K.

    1974-01-01

    System utilizes Freon cycle and includes boiler turbogenerator with heat exchanger, regenerator and thermal-control heat exchangers, low-pressure and boiler-feed pumps, and condenser. Exchanger may be of interest to engineers and scientists investigating new energy sources.

  12. The French electromechanical industry in the nuclear sector

    International Nuclear Information System (INIS)

    Barrau, M. de.

    1981-02-01

    A brief paper recounting the extensive changes brought about in electromechanics further to the implementation of the large French nuclear programme and the experience that its implementation has given to this industry, in particular at ALSTHOM-ATLANTIQUE, the only French manufacturer of high power turbo-generating units rated among the big world manufacturers [fr

  13. Application of design review in the heavy power plant industry

    International Nuclear Information System (INIS)

    Yound, N.

    1977-01-01

    The application of design review technique in a company engaged in the design and manufacture of turbo-generators for power stations, is described. One benefit arising from design review is its use as a means of design verification. (U.K.)

  14. Design and testing of high temperature micro-ORC test stand using Siloxane as working fluid

    Science.gov (United States)

    Turunen-Saaresti, Teemu; Uusitalo, Antti; Honkatukia, Juha

    2017-03-01

    Organic Rankine Cycle is a mature technology for many applications e.g. biomass power plants, waste heat recovery and geothermal power for larger power capacity. Recently more attention is paid on an ORC utilizing high temperature heat with relatively low power. One of the attractive applications of such ORCs would be utilization of waste heat of exhaust gas of combustion engines in stationary and mobile applications. In this paper, a design procedure of the ORC process is described and discussed. The analysis of the major components of the process, namely the evaporator, recuperator, and turbogenerator is done. Also preliminary experimental results of an ORC process utilizing high temperature exhaust gas heat and using siloxane MDM as a working fluid are presented and discussed. The turbine type utilized in the turbogenerator is a radial inflow turbine and the turbogenerator consists of the turbine, the electric motor and the feed pump. Based on the results, it was identified that the studied system is capable to generate electricity from the waste heat of exhaust gases and it is shown that high molecular weight and high critical temperature fluids as the working fluids can be utilized in high-temperature small-scale ORC applications. 5.1 kW of electric power was generated by the turbogenerator.

  15. Nuclear power system

    International Nuclear Information System (INIS)

    Yampolsky, J.S.; Cavallaro, L.; Paulovich, K.F.; Schleicher, R.W.

    1989-01-01

    This patent describes an inherently safe modular nuclear power system for producing electrical power at acceptable efficiency levels using working fluids at relatively low temperatures and pressures. The system comprising: a reactor module for heating a first fluid; a heat exchanger module for transferring heat from the first fluid to a second fluid; a first piping system effecting flow of the first fluid in a first fluid circuit successively through the reactor module and the heat exchanger module; a power conversion module comprising a turbogenerator driven by the second fluid, and means for cooling the second fluid upon emergence thereof from the turbogenerator; a second piping system comprising means for effecting flow of the second fluid in a second fluid circuit successively through the heat exchanger module and the power conversion module; and a plurality of pits for receiving the modules

  16. Measurements of vertical displacement of power station buildings using an automatic stationary hydrostatic measuring system; Anwendung des automatisierten stationaeren hydrostatischen Messsystems fuer die Aufnahme der Vertikalverschiebungen an den Objekten der Kern- und Waermekraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, J [Forschungsinstitut fuer Geodaesie, Topographie und Kartographie, Zdiby (Czechoslovakia)

    1997-12-31

    The contribution describes hydrostatic stationary measuring systems for measurements of height variations of a turbine unit. The measuring system developed at the research institute and the algorithms for calibration, measurement and evaluation are presented. Measurements were made on a 500 MW turbogenerator unit at different states of operation. (orig.) [Deutsch] Der Beitrag enthaelt eine kurze Uebersicht ueber die hydrostatischen stationaeren Messsysteme fuer das Gebiet der Messung der Hoehenaenderung eines Grossturbinentisches. Es wird das automatische stationaere hydrostatische Messsystem, das im Forschungsinstitut entwickelt wurde, der Algorithmus der Kalibrierung, der Messung und der Auswertung der Messergebnisse vorgestellt. Es wird das Messergebnis der Vertikalverschiebungen der Konstruktion des Turbogenerators mit der Leistung 500 Megawatt bei seinem verschiedenen Betriebszustand angefuehrt. (orig.)

  17. Distributed generation technologies : small turbines/fuel cells

    International Nuclear Information System (INIS)

    Skowronski, M.

    1998-01-01

    Allied Signal Power Systems Inc. is a company with 76,580 employees and $ 14 billion in sales in 1996. The company's various divisions are major players in aerospace equipment systems, commercial avionics, electronic systems, engines, automotive brake systems, safety restraint systems, turbochargers, premium car care products, chemicals plastics and advanced materials. This paper describes a developed a turbogenerator designed for use in electric power generation. The new engine is inherently simple with high reliability. Its advantages over a conventional engine include: (1) one moving part, (2) no oil system, (3) multi-fuel capability, (4) no gears or gearboxes, (5) no separate starter motor, (6) ultra low emissions, and (7) lower operating costs. Although there are relatively high costs associated with its aerospace design, consumers, the environment and the electrical system/grid could all benefit from the turbogenerator. Installation and variable costs and target markets were discussed. 3 tabs., 12 figs

  18. Monitoring large rotating machines at EDF

    International Nuclear Information System (INIS)

    Chevalier, R.; Bourgeois, P.; Le Reverend, D.

    1992-09-01

    At Electricite de France (EDF), since 1978, the operating instruments which ensure the DETECTION function, have been completed on turbogenerators by a specialized ''off-line'' vibration monitoring system, which allows a posteriori DIAGNOSIS analysis. However because of a need of a real time and more elaborated DETECTION function, the concept of the Monitoring and Diagnosis Aid Station (Poste de Surveillance et d'Aide au Diagnostic: PSAD) has been developed. It federates the processing of monitoring, organized into several functions, and includes the monitoring of turbogenerators (TGS) and reactor coolant pumps (RCP). The purpose of this paper is to present, on the one hand, the monitoring functions of TGS and RCP and on the other, the first experimental results on the behaviour of three RCP, obtained through a SAMT (Surveillance Automatisee des Machines Tournantes - Automatic monitoring of rotating machines) prototype. (authors). 2 figs., 4 tabs., 4 refs

  19. Power stations

    International Nuclear Information System (INIS)

    Cawte, H.; Philpott, E.F.

    1980-01-01

    The object is to provide a method of operating a dual purpose power station so that the steam supply system is operated at a high load factor. The available steam not required for electricity generation is used to provide process heat and the new feature is that the process plant capacity is determined to make the most economic use of the steam supply system, and not to match the passout capacity of the turbine of the turbogenerator. The product of the process plant should, therefore, be capable of being stored. A dual-purpose power station with a nuclear-powered steam source, turbogenerating means connected to the steam source and steam-powered process plant susceptible to wide variation in its rate of operation is described. (U.K.)

  20. The modernization potential of gas turbines in the coal-fired power industry thermal and economic effectiveness

    CERN Document Server

    Bartnik, Ryszard

    2013-01-01

    The opportunity of repowering the existing condensing power stations by means of  gas turbogenerators offers an important opportunity to considerably improvement of their energy efficiency. The Modernization Potential of Gas turbines in the Coal-Fired Power Industry presents the methodology, calculation procedures and tools used to support enterprise planning for adapting power stations to dual-fuel gas-steam combined-cycle technologies. Both the conceptual and practical aspects of the conversion of existing coal-fired power plants is covered. Discussions of the feasibility, advantages and disadvantages and possible methods are supported by chapters presenting equations of energy efficiency for the conditions of repowering a power unit by installing a gas turbogenerator in a parallel system and the results of technical calculations involving the selection heating structures of heat recovery steam generators. A methodology for analyzing thermodynamic and economic effectiveness for the selection of a structure...

  1. Measurements of vertical displacement of power station buildings using an automatic stationary hydrostatic measuring system; Anwendung des automatisierten stationaeren hydrostatischen Messsystems fuer die Aufnahme der Vertikalverschiebungen an den Objekten der Kern- und Waermekraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, J. [Forschungsinstitut fuer Geodaesie, Topographie und Kartographie, Zdiby (Czechoslovakia)

    1996-12-31

    The contribution describes hydrostatic stationary measuring systems for measurements of height variations of a turbine unit. The measuring system developed at the research institute and the algorithms for calibration, measurement and evaluation are presented. Measurements were made on a 500 MW turbogenerator unit at different states of operation. (orig.) [Deutsch] Der Beitrag enthaelt eine kurze Uebersicht ueber die hydrostatischen stationaeren Messsysteme fuer das Gebiet der Messung der Hoehenaenderung eines Grossturbinentisches. Es wird das automatische stationaere hydrostatische Messsystem, das im Forschungsinstitut entwickelt wurde, der Algorithmus der Kalibrierung, der Messung und der Auswertung der Messergebnisse vorgestellt. Es wird das Messergebnis der Vertikalverschiebungen der Konstruktion des Turbogenerators mit der Leistung 500 Megawatt bei seinem verschiedenen Betriebszustand angefuehrt. (orig.)

  2. Analysis of fluid-structure interaction and structural respones of Chernobyl-4 reactor

    International Nuclear Information System (INIS)

    Wang, C.Y.; Pizzica, P.A.; Gvildys, J.; Spencer, B.W.

    1989-01-01

    The accident at Chernobyl-4 occurred during the running of a test to determine the turbogenerator's ability to provide in-house emergency power after shutting off its steam supply. The accident was the result of a large, destructive power excursion. This paper presents an analysis of the energetic events associated with the fuel failures, fuel-coolant thermal interactions, and the fluid-structure interaction

  3. Certain aspects of determining reserves of static stability of electricity systems in a minimum mode

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, S; Popovic, D

    1982-01-01

    Results are described from analyzing static stability of the minimum modes for needs of planning electricity systems of Serbia (Socialist Federated Republic of Yugoslovia) up to 1985 with regard for development of the power transmission line network 400 kV, and introduction of turbogenerators of high output. Studies were made of the institute ''Nikola Tesla'' using computers for a digital computer using a mathematical model of multiple-machine electricity systems.

  4. Problems of WWER-440 dynamic changes

    International Nuclear Information System (INIS)

    Rydzi, S.

    1986-01-01

    The data processing capability of the DYNAMIKA program is presented and demonstrated for the calculation of coolant parameters and heat transfer variables of the WWER reactor in accident and transient modes of operation. An experimental outage is described of the TG 11 turbogenerator at the V-1 Jaslovske Bohunice nuclear power plant. The measured values were compared with values calculated using the DYNAMIKA program. The graphic representation makes it evident that the mathematical model comes very close to reality. (J.B.)

  5. Mechanical problems in turbomachines, steam and gas turbines. Turbine generator installation on its foundation

    International Nuclear Information System (INIS)

    Gueraud, R.

    1975-01-01

    The relationship between stiffness and sizes of the foundation arises much trouble to the designer because of the conflicting solution they require. The dynamic behavior studies of the foundations show the interest of the low fundamental frequency foundation. However, classical solutions, valuable for 3000rev/mn running speed machineries, are not suitable for large 1500 rev/mn running speed turbo-generator of nuclear power plants. A new design chosen by Electricite de France is dealt with [fr

  6. A method, device and application for the dynamic balancing of a rotating component

    International Nuclear Information System (INIS)

    Voinis, P.

    1995-01-01

    The dynamic balancing method is based on the detection of the vibrations generated by an unbalance; two satellites are then displaced in order to create a counter-unbalance and their position is measured. Their position is then adjusted so as the unbalance and counter-unbalance phases and intensities differences are inferior to predetermined reference values in order to balance dynamically the rotating component. Application to superpower turbogenerator shafting systems. 4 fig

  7. Process for superheating the steam generated by a light water nuclear reactor

    International Nuclear Information System (INIS)

    Vakil, H.B.; Brown, D.H.

    1976-01-01

    A process is submitted for superheating the pressurised steam generated in a light water nuclear reactor in which the steam is brought to 340 0 C at least. This superheated steam is used to operate a turbo-generator unit. The characteristic of the process is that an exothermal chemical reaction is used to generate the heat utilised during the superheating stage. The chemical reaction is a mechanisation, oxidation-reduction or hydrogenation reaction [fr

  8. Reliability estimation of semi-Markov systems: a case study

    International Nuclear Information System (INIS)

    Ouhbi, Brahim; Limnios, Nikolaos

    1997-01-01

    In this article, we are concerned with the estimation of the reliability and the availability of a turbo-generator rotor using a set of data observed in a real engineering situation provided by Electricite De France (EDF). The rotor is modeled by a semi-Markov process, which is used to estimate the rotor's reliability and availability. To do this, we present a method for estimating the semi-Markov kernel from a censored data

  9. Concepts for space nuclear multi-mode reactors

    International Nuclear Information System (INIS)

    Myrabo, L.; Botts, T.E.; Powell, J.R.

    1983-01-01

    A number of nuclear multi-mode reactor power plants are conceptualized for use with solid core, fixed particle bed and rotating particle bed reactors. Multi-mode systems generate high peak electrical power in the open cycle mode, with MHD generator or turbogenerator converters and cryogenically stored coolants. Low level stationkeeping power and auxiliary reactor cooling (i.e., for the removal of reactor afterheat) are provided in a closed cycle mode. Depending on reactor design, heat transfer to the low power converters can be accomplished by heat pipes, liquid metal coolants or high pressure gas coolants. Candidate low power conversion cycles include Brayton turbogenerator, Rankine turbogenerator, thermoelectric and thermionic approaches. A methodology is suggested for estimating the system mass of multi-mode nuclear power plants as a function of peak electric power level and required mission run time. The masses of closed cycle nuclear and open cycle chemical power systems are briefly examined to identify the regime of superiority for nuclear multi-mode systems. Key research and technology issues for such power plants are also identified

  10. Thermoeconomic analysis of a fuel cell hybrid power system from the fuel cell experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Tomas [Endesa Generacion, Ribera del Loira, 60, 28042 Madrid (Spain)]. E-mail: talvarez@endesa.es; Valero, Antonio [Fundacion CIRCE, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain); Montes, Jose M. [ETSIMM-Universidad Politecnica de.Madrid, Rios Rosas, 21, 28003 Madrid (Spain)

    2006-08-15

    An innovative configuration of fuel cell technology is proposed based on a hybrid fuel cell system that integrates a turbogenerator to overcome the intrinsic limitations of fuel cells in conventional operation. An analysis is done of the application of molten carbonate fuel cell technology at the Guadalix Fuel Cell Test Facility, for the assessment of the performance of the fuel cell prototype to be integrated in the Hybrid Fuel Cell System. This is completed with a thermoeconomic analysis of the 100 kW cogeneration fuel cell power plant which was subsequently built. The operational results and design limitations are evaluated, together with the operational limits and thermodynamic inefficiencies (exergy destruction and losses) of the 100 kW fuel cell. This leads to the design of a hybrid system in order to demonstrate the possibilities and benefits of the new hybrid configuration. The results are quantified through a thermoeconomic analysis in order to get the most cost-effective plant configuration. One promising configuration is the MCFC topper where the fuel cell in the power plant behaves as a combustor for the turbogenerator. The latter behaves as the balance of plant for the fuel cell. The combined efficiency increased to 57% and NOx emissions are essentially eliminated. The synergy of the fuel cell/turbine hybrids lies mainly in the use of the rejected thermal energy and residual fuel from the fuel cell to drive the turbogenerator in a 500 kW hybrid system.

  11. Systematic analysis of geothermal plants. Influence of temperatures in consumer systems on the specific cost of the distributed heat; Systemanalytische Erfassung von Nutzungsanlagen hydrogeothermaler Ressourcen. Einfluss der Temperaturen in den Abnehmersystemen auf den Waermegestehungspreis

    Energy Technology Data Exchange (ETDEWEB)

    Schallenberg, K [GeoForschungsZentrum Potsdam (Germany)

    1997-12-01

    On the basis of a general investigation of the impact of geological situation, thermal water loop and consumer structure on the economy of heating systems, different geothermal plants are analysed in detail. In the study, for example, variations of the temperature conditions in district heating systems were considered while the geologic conditions are maintained. It is shown that the specific costs calculated for the distributed heat are sensitive to the amount of heat extracted from the Earth`s interior. Therefore, it was necessary to make assumptions for the duration curve of the consumer system. An exponential duration curve was verified by comparison with data from an existing district heating system. The calculated specific heat costs for different network layouts are transformed finally into an equivalent investment potential. The results clearly indicate the possibilities for an optimization of the system when investments into the heating network would be made. (orig.) [Deutsch] Hydrogeothermale Nutzungsanlagen wurden auf Basis der Einflussgroessen Geologie, Thermalwasserkreis und Abnehmerstruktur systemanalytisch erfasst. Daraus ergibt sich die Grundlage zum Vergleich verschiedener Anlagen. Nachhaltige Einfluesse auf die Wirtschaftlichkeit von Geothermieanlagen ergeben sich aus der Betriebsweise der Abnehmerstruktur. Die dargestellten Untersuchungen zielen deshalb zunaechst auf die Variation der Temperaturparameter des Netzes und deren Einfluss auf die Waermegestehungskosten ab. Bei diesem Ansatz wurden zunaechst die geologischen Eingangsgroessen konstant gehalten. Grundlage der statischen Kostenrechnung in Anlehnung an VDI 2067 ist eine Kostenzusammenstellung der Einzelkomponenten einer geothermischen Heizzentrale. Um den geothermischen Beitrag zur Waermeversorgung moeglichst genau zu beschreiben, ist die Kenntnis von geordneten Jahresganglinien der Abnehmersysteme erforderlich. Zur mathematischen Beschreibung diente eine Exponentialfunktion, deren

  12. Small recuperated ceramic microturbine demonstrator concept

    International Nuclear Information System (INIS)

    McDonald, Colin F.; Rodgers, Colin

    2008-01-01

    It has been about a decade since microturbines first entered service in the distributed generation market, and the efficiencies of these turbogenerators rated in the 30-100 kW power range have remained essentially on the order of 30%. In this time frame the cost of fuel (natural gas and oil) has increased substantially, and efforts are now underway to increase the efficiency of microturbines to 40% or higher. Various near-term means of achieving this are underway by utilizing established gas turbine technology, but now based on more complex thermodynamic cycles. A longer-term approach of improving efficiency is proposed in this paper based on the retention of the basic recuperated Brayton cycle, but now operating at significantly higher levels of turbine inlet temperature. However, in small low pressure ratio recuperated microturbines embodying radial flow turbomachinery this necessitates the use of ceramic components, including the turbine, recuperator and combustor. A development approach is proposed to design, fabricate and test a 7.5 kW ceramic microturbine demonstrator concept, which for the first time would involve the coupling of a ceramic radial flow turbine, a ceramic combustor, and a compact ceramic fixed-boundary high effectiveness recuperator. In a period of some three years, the major objectives of the proposed small ceramic microturbine R and D effort would be to establish a technology base involving thermal and stress analysis, design methodology, ceramic component fabrication techniques, and component development, these culminating in the assembly and testing to demonstrate engine structural integrity, and to verify performance. This would provide a benchmark for more confidently advancing to increased size ceramic-based turbogenerators with the potential for efficiencies of over 40%. In addition, the power size of the tested prototype could possibly emerge as a viable product, namely as a natural gas-fired turbogenerator with the capability of

  13. Process and device for extracting a probe carrier from the lower chamber of a vertical tubular heat exchanger

    International Nuclear Information System (INIS)

    Adamoski, Andrev.

    1980-01-01

    It is necessary to check the water tubes of vertical heat exchangers used in nuclear power stations, for it is essential that the water making up the primary fluid and contaminated by nuclear reactors should not enter the secondary fluid used for actuating a turbo-generator. This checking is performed by passing a Foucault current probe through each tube. A crack or hole in the tube or even just a reduction in the thickness of the tube produces a change in the output current of the probe [fr

  14. Chapter 17. Electric schema and its changes

    International Nuclear Information System (INIS)

    Feik, K.; Kmosena, J.

    2010-01-01

    In this chapter an electric schema and its changes of the A1 nuclear power plant in Jaslovske Bohunice (the Slovak Republic) are described. Three turbogenerators with power 50 MW were installed in the A1 NPP. Basic description of electrical equipment installed according authentic project and authentic conception of accidental cooling are presented in detail. New conception and equipment of accidental and super-accidental after-cooling of the A1 NPP as well as final solution of electrical part with new functions of accidental and super-accidental after-cooling are presented. Shortcomings of electrical equipment, which originated and were eliminated during construction and operation, are also described.

  15. MHD power plants - a reality of the 80's

    International Nuclear Information System (INIS)

    Pishchikov, S.

    1981-01-01

    A 300 MW MHD generator and a conventional turbogenerator of the same capacity will be used for the first MHD power block assembly projected in the USSR. The power plant's own consumption will not exceed 12% and the availability will be approximately 50%. Compared with a conventional power generating unit of a capacity of 500 MW the projected unit will provide fuel savings of at least 23%. The project is based on almost seven years long experience with the U-25 experimental MHD facility. Similar to the U-25, the MHD power plant projected will be fired with natural gas. (B.S.)

  16. MHD power plants - a reality of the 80's

    Energy Technology Data Exchange (ETDEWEB)

    Pishchikov, S

    1981-02-01

    A 300 MW MHD generator and a conventional turbogenerator of the same capacity will be used for the first MHD power block assembly projected in the USSR. The power plant's own consumption will not exceed 12% and the availability will be approximately 50%. Compared with a conventional power generating unit of a capacity of 500 MW the projected unit will provide fuel savings of at least 23%. The project is based on almost seven years long experience with the U-25 experimental MHD facility. Similar to the U-25, the MHD power plant projected will be fired with natural gas.

  17. Designing a nuclear power plant with 1000 MW WWER-type units

    Energy Technology Data Exchange (ETDEWEB)

    Berkovich, V; Kaloshin, J; Tatarnikov, V; Shenderovich, A

    1977-06-01

    A brief description is presented of a WWER-1000 nuclear power plant also considering its environmental impact and the problem of core poisoning. The following indicators are graphically shown in relation to the reactor output: turbogenerator unit outputs, efficiency, specific capital costs and own costs of electric power generated by the Voronezh nuclear power plant. Also listed are the specific consumption of metal and concrete, specific equipment weight and the specific volume of the buildings of the main generating unit as well as the cross section thereof.

  18. Designing a nuclear power plant with 1000 MW WWER-type units

    International Nuclear Information System (INIS)

    Berkovich, V.; Kaloshin, J.; Tatarnikov, V.; Shenderovich, A.

    1977-01-01

    A brief description is presented of a WWER-1000 nuclear power plant also considering its environmental impact and the problem of core poisoning. The following indicators are graphically shown in relation to the reactor output: turbogenerator unit outputs, efficiency, specific capital costs and own costs of electric power generated by the Voronezh nuclear power plant. Also listed are the specific consumption of metal and concrete, specific equipment weight and the specific volume of the buildings of the main generating unit as well as the cross section thereof. (J.B.)

  19. Computer and engineering calculations of Brazilian Tokamak-II

    International Nuclear Information System (INIS)

    Wang, S.; Chen, Y.; Sa, W.P. de; Nascimento, I.C.; Tuszel, A.G.; Galvao, R.M.O.; Machida, M.

    1990-01-01

    Analytical and computer calculations carried out by researches of Physics Institute - University of Sao Paulo (IFUSP), for defining the engineering project and constructing the TBR-II tokamak are presented. The hydrodynamics behavioue and determined parameters for magnetic confinement of the plasma were analysed. The computer code was developed using magnetohydrodynamics (MHD) equations which involve plasma interactions, magnetic field and electrical current circulating in more than 20 coils distributed around toroidal vase of the plasma. The electromagnetic, thermal and mechanical couplings are also presented. The TBR-II will be feed by two turbo-generators with 15 MW each one. (M.C.K.) [pt

  20. Cogeneration plant Mitte. Environmental-friendly energy geneation in the heart of Berlin; Heizkraftwerk Mitte. Umweltschonende Energieerzeugung im Herzen von Berlin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In the past, Vattenfall Europe Generation set a good example by operating the 800/900 MW generating units from 1991 to 2000. The introduction of supercritical steam parameters made net efficiency factors of more than 40% possible, even for lignite-fired power plants. To be exact, levels of about 42% could be reached. The article presents examples for the heat cycle layout and offers solutions to problems of the turbo-generating set, the main-steam pipelines and the steam boiler. The next generation of coal-fired power plants will then reach efficiency factors of more than 50%, thanks to steam temperatures of about 700 C. (GL)

  1. Aerodynamic instabilities in governing valves of steam turbines

    International Nuclear Information System (INIS)

    Richard, J.M.; Pluviose, M.

    1991-01-01

    The capacity of a.c. turbogenerators in a Pressurized Water Reactor (PWR) is regulated by means of governing valves located at the inlet of the high-pressure turbine. The conditions created in these valves (due to the throttling of the steam) involve the generation of a jet structure, possibly supersonic. Aerodynamic instabilities could potentially excite the mechanical structure. These aerodynamic phenomena are studied in this paper by means of a two-dimensional numerical model. Viscous effects are taken into account with heuristic criteria on separation and reattachment. Detailed experimental analysis of the flow behaviour is compared with the numerical prediction of stability limits. (Author)

  2. Analysis of the accident in the second power-generating unit of the Chernobyl nuclear power plant caused by inadequate makeup of the reactor cooling loop

    International Nuclear Information System (INIS)

    Vasil'chenko, V.N.; Kramerov, A.Ya.; Mikhailov, D.A.

    1995-01-01

    The accident in the second power-generating unit of the Chernobyl nuclear power plant on October 11, 1991 was the result of unauthorized connection of the TG-4 turbogenerator, which was shut down for repairs, into the grid (in the off-design asynchronous engine mode), and this resulted in a serious fire in the machine room and subsequent failure of systems which are important for safety and which ensure the design mode of reactor cooling: These were primarily failures of the feed and emergency feed pumps and failure of the BRU-B control valve, which regulates steam release during cooling

  3. Optimal design of compact organic Rankine cycle units for domestic solar applications

    DEFF Research Database (Denmark)

    Barbazza, Luca; Pierobon, Leonardo; Mirandola, Alberto

    2014-01-01

    criteria, i.e., compactness, high performance and safe operation, are targeted by adopting a multi-objective optimization approach modeled with the genetic algorithm. Design-point thermodynamic variables, e.g., evaporating pressure, the working fluid, minimum allowable temperature differences......Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design...

  4. NPP construction cost in Canada

    International Nuclear Information System (INIS)

    Gorshkov, A.L.

    1988-01-01

    The structure of capital costs during NPP construction in Canada is considered. Capital costs comprise direct costs (cost of the ground and ground rights, infrastructure, reactor equipment, turbogenerators, electrotechnical equipment, auxiliary equipment), indirect costs (construction equipment and services, engineering works and management services, insurance payments, freight, training, operating expenditures), capital per cents for the period of construction and cost of heavy water storages. It proceeds from the analysis of the construction cost structure for a NPP with the CANDU reactor of unit power of 515, 740 and 880 MW, that direct costs make up on the average 62%

  5. The nuclear industry in France

    International Nuclear Information System (INIS)

    Degot, D.

    1981-02-01

    The French nuclear industry is organized around the following main participants: - The E.D.F., owners, industrial architects and operators of the power stations, - The C.E.A. for research and development, with its subsidiary the COGEMA, who deal with all problems involving the fuel cycle, - The Industry with FRAMATOME in charge of the manufacture of nuclear boilers, and ALSTHOM-ATLANTIQUE in charge of turbo-generator units. This paper deals with the activities covered by FRAMATOME and its industrial environment. The standardization of PWR power stations built by French industry and the possibilities of exporting PWR power stations are given a brief mention [fr

  6. Technology for industrial waste heat recovery by organic Rankine cycle systems

    Science.gov (United States)

    Cain, W. G.; Drake, R. L.; Prisco, C. J.

    1984-10-01

    The recovery of industrial waste heat and the conversion thereof to useful electric power by use of Rankine cycle systems is studied. Four different aspects of ORC technology were studied: possible destructive chemical reaction between an aluminum turbine wheel and R-113 working fluid under wheel-to-rotor rub conditions; possible chemical reaction between stainless steel or carbon steel and any of five different ORC working fluids under rotor-stator rub conditions; effects on electric generator properties of extended exposure to an environment of saturated R-113 vapor/fluid; and operational proof tests under laboratory conditions of two 1070 kW, ORC, R-113 hermetic turbogenerator power module systems.

  7. Mathematical Modeling of Oscillating Water Columns Wave-Structure Interaction in Ocean Energy Plants

    Directory of Open Access Journals (Sweden)

    Aitor J. Garrido

    2015-01-01

    Full Text Available Oscillating Water Column (OWC-based power take-off systems are one of the potential solutions to the current energy problems arising from the use of nuclear fission and the consumption of fossil fuels. This kind of energy converter turns wave energy into electric power by means of three different stages: firstly wave energy is transformed into pneumatic energy in the OWC chamber, and then a turbine turns it into mechanical energy and finally the turbogenerator module attached to the turbine creates electric power from the rotational mechanical energy. To date, capture chambers have been the least studied part. In this context, this paper presents an analytical model describing the dynamic behavior of the capture chamber, encompassing the wave motion and its interaction with the OWC structure and turbogenerator module. The model is tested for the case of the Mutriku wave power plant by means of experimental results. For this purpose, representative case studies are selected from wave and pressure drop input-output data. The results show an excellent matching rate between the values predicted by the model and the experimental measured data with a small bounded error in all cases, so that the validity of the proposed model is proven.

  8. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Wooley, R.; Ruth, M.; Sheehan, J.; Ibsen, K.; Majdeski, H.; Galvez, A.

    1999-07-20

    The National Renewable Energy Laboratory (NREL) has undertaken a complete review and update of the process design and economic model for the biomass-to-ethanol enzymatic based process. The process design includes the core technologies being researched by the U.S. Department of Energy (DOE): prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production. In addition, all ancillary areas--feed handling, product recovery and purification, wastewater treatment lignin burner and boiler--turbogenerator, and utilities--are included. NREL engaged Delta-T Corporation to assist in the process design evaluation, equipment costing, and overall plant integration. The process design and costing for the lignin burner and boiler turbogenerator has been reviewed by Reaction Engineering Inc. and the wastewater treatment by Merrick and Company. An overview of both reviews is included here. The purpose of this update was to ensure that the process design and equipment costs were reasonable and consistent with good engineering practice for plants of this type using available technical data. This work has resulted in an economic model that can be used to predict the cost of producing ethanol from cellulosic biomass using this technology if a plant were to be built in the next few years. The model was also extended using technology improvements that are expected to be developed based on the current DOE research plan. Future process designs and cost estimates are given for the years 2005, 2010, and 2015.

  9. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed

    Science.gov (United States)

    Papathakis, Kurt V.; Kloesel, Kurt J.; Lin, Yohan; Clarke, Sean; Ediger, Jacob J.; Ginn, Starr

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC) (Edwards, California) is developing a Hybrid-Electric Integrated Systems Testbed (HEIST) Testbed as part of the HEIST Project, to study power management and transition complexities, modular architectures, and flight control laws for turbo-electric distributed propulsion technologies using representative hardware and piloted simulations. Capabilities are being developed to assess the flight readiness of hybrid electric and distributed electric vehicle architectures. Additionally, NASA will leverage experience gained and assets developed from HEIST to assist in flight-test proposal development, flight-test vehicle design, and evaluation of hybrid electric and distributed electric concept vehicles for flight safety. The HEIST test equipment will include three trailers supporting a distributed electric propulsion wing, a battery system and turbogenerator, dynamometers, and supporting power and communication infrastructure, all connected to the AFRC Core simulation. Plans call for 18 high performance electric motors that will be powered by batteries and the turbogenerator, and commanded by a piloted simulation. Flight control algorithms will be developed on the turbo-electric distributed propulsion system.

  10. ORC-mall scale power plant

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Electromechanics

    1998-12-31

    In the conversion of low temperature heat into electricity, the greatest efficiency is obtained by using a Rankine cycle. The Organic Rankine cycle (ORC) is a Rankine cycle where an organic fluid is used instead of water as the working fluid. In the conventional ORC-solution, an axial turbine drives a standard generator through a high-speed gearbox. The system includes a separate feed pump, vacuum pump, lubrication system and requires several saft seals. The seals of the turbine have a limited working life in particular due to the high speed required. Thus, the entire present conventional ORC-plant is rather complicated and requires maintenance. To avoid these problems, a project was initiated at the Lappeenranta University of Technology to develop a high-speed, process fluid lubricated turbogenerator-feed pump as the prime mover of the ORC. The project has been continued in co-operation with the Helsinki University of Technology under the NEMO 2 program, the main goal being to build a demonstration power plant and to commercialise the project. The goals of the project were: (1) to model the ORC process, turbogenerator, and inverter, (2) to simulate the power plant in different normal and abnormal states, (3) to assess the advantages and disadvantages of various control systems, (4) to study network disturbances such as voltage and current harmonics and to research ways of reducing these disturbances, (5) to optimise heat exchanging surfaces and process parameters, and (6) to participate in the design of the demonstration power plant

  11. Analysis of energy performance in two systems of cogeneration used in plants of sugar cane; Analise de desempenho energetico em dois sistemas de cogeracao empregados em usinas de cana de acucar

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Felipe A.A.; Rosa, Rodrigo A. [Cogeracao Sistemas de Energia Ltda., Recife, PE (Brazil)

    2004-07-01

    One of the options to overcome the current volatility in Brazil's power consumption outlook relates to the employment of other sources for power generation, namely solar energy, wind power or the use of biomass, namely the power generation through the cane bagasse. One should realize, however, that the economic accomplishment for launching a generation system should depend on the level of effectiveness of all processes and/or equipment comprising the system thereof. As far as the sugar-alcohol industry is concerned, the larger the system effectiveness is, the bigger the surplus of bagasse becomes and, hence, the better the chance of achieving financial earnings. Two generation systems shall be evaluated, aiming to thermo-dynamically identify the differences between the use of small equipment-driven turbines (like choppers, shredders and mills) and multi-stage turbo-generators, in order to replace the electric-powered drive units. Therefore, one shall follow thermodynamic-based criteria, namely the steam specific consumption, the equipment availability and effectiveness, thus allowing a comparison for each engine. Such survey shows that the effectiveness reaches nearly 68% for the turbo-generators and 43% for the small turbines. Under the economic perspective, one can find a saving of 89.500 tonnes per crop of bagasse, standing for an additional turnover of US$ 895.000,00 annually. (author)

  12. Problems in diagnosing and forecasting power equipment reliability

    Energy Technology Data Exchange (ETDEWEB)

    Popkov, V I; Demirchyan, K S

    1979-11-01

    This general survey deals with approaches to the resolution of such problems as the gathering, analysis and systematization of data on component defects in power equipment and setting up feedback with the manufacturing plants and planning organizations to improve equipment reliability. Such efforts on the part of designers, manufacturers and operating and repair organizations in analyzing faults in 300 MW turbogenerators during 1974-1977 reduced the specific fault rate by 20 to 25% and the downtime per failure by 35 to 40%. Since power equipment should operate for several hundreds of thousands of hours (20 to 30 years) and the majority of power components have guaranteed service lives of no more than 10/sup 5/ hours, an extremely difficult problem is the determination of the reliability of equipment past the 10/sup 5/ point. The present trend in the USSR Unified Power System towards increasing the number of shutdowns and startups, which in the case of turbogenerators of up 1200 MW power can reach 7500 to 10,000 cycles is noted. Other areas briefly treated are: MHD generator reliability and economy; nuclear power plant reliability and safety; the reliability of high-power high-voltage thyristor converters; the difficulties involved in scale modeling of power system reliability and the high cost of the requisite full-scale studies; the poor understanding of long term corrosion and erosion processes. The review concludes with arguments in favor of greater computerization of all aspects of power system management.

  13. Preliminary risk assessments of the small HTGR

    International Nuclear Information System (INIS)

    Everline, C.J.; Bellis, E.A.

    1985-05-01

    Preliminary investment and safety risk assessments were performed for a preconceptual design of a four-module 250-MW(t) side-by-side steel-vessel pebble bed HTGR plant. Broad event spectra were analyzed involving component damage resulting in unscheduled plant outages and fission product releases resulting in offsite doses. The preliminary assessment indicates at this stage of the design that two categories of events govern the investment risk envelope: primary coolant leaks which release some circulating and plate-out activity that contaminates the confinement and turbogenerator damage which involves extensive turbine blade failure. Primary coolant leaks are important contributors because associated cleanup and decontamination requirements result in longer outages that arise from other events with comparable frequencies. Turbogenerator damage is the salient low-frequency investment risk accident due to the relatively long outages being experienced in the industry. Thermal transients are unimportant investment risk contributors because pressurized core heatups cause little damage, and depressurized core heatups occur at negligible frequencies relative to the forced outage goal. These preliminary results demonstrate investment and safety risk goal compliance at this stage in the design process. Studies are continuing in order to provide valuable insights into risk-significant events to assure a balanced approach to meeting user and regulatory requirements

  14. Guidelines and checklist for the energetic optimization of municipal waste incinerator plants; Anleitung mit Checkliste zur Energieoptimierung von Kehrichtverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Egli, S.

    2005-07-01

    In municipal waste treatment plants energy is produced by burning the waste in a boiler. The hot flue gases from the boiler are cooled when they transfer their heat energy to steam passing through nearby pipes. This heated steam, in turn, not only transfers its energy to a turbogenerator to produce electricity, but is also used for district heating (hot water and/or steam). The electricity from the turbogenerator is used for the plant's own needs and surplus power is sold to the public grid. The overall energy efficiency of individual plants vary from under 20% for pure generation of electricity to over 70% for combined heat and power generation and year-round utilisation of heat. A rough evaluation of the existing statistical data of Swiss waste treatment plants shows that both the generation of electricity and implementation of district heating have a considerable potential for optimisation. The generation of electricity has a considerable optimisation potential realisable by not only lowering the plant's own electricity consumption, but also by increasing the efficiency of the electricity generation itself. This report offers a summary of solutions for overall optimisation and provides a catalogue of measures including checklists for the individual plant areas, allowing improvement measures to be systematically determined. The checklists are thus an aid allowing fast estimation of the optimisation potential. (author)

  15. Composite type nuclear power system

    International Nuclear Information System (INIS)

    Nakamoto, Koichiro.

    1993-01-01

    The present invention realizes a high thermal efficiency by heating steams at the exit of a steam generator of a nuclear power plant to high temperature by a thermal super-heating boiler. That is, a thermal superheating boiler is disposed between the steam generator and a turbogenerator to heat steams from the steam generator and supply them to the turbogenerator. In this case, it may be possible that feedwater superheating boiler pipelines to the steam generator are caused to pass through the thermal superheating boiler so that they also have a performance of heating feedwater. If the system of the present invention is used, it is possible to conduct base load operation by nuclear power and a load following operation by controlling the thermal superheating boiler. Further, a hydrogen producing performance is applied to the thermal superheating boiler to produce hydrogen when electric power load is lowered. An internally sustaining type operation method can be conducted of burning hydrogen by the superheating boiler upon increased electric power load. As a result, a power generation system which has an excellent economical property and can easily cope with the load following operation can be attained. (I.S.)

  16. An Optimal Reactive Power Control Strategy for a DFIG-Based Wind Farm to Damp the Sub-Synchronous Oscillation of a Power System

    Directory of Open Access Journals (Sweden)

    Bin Zhao

    2014-05-01

    Full Text Available This study presents the auxiliary damping control with the reactive power loop on the rotor-side converter of doubly-fed induction generator (DFIG-based wind farms to depress the sub-synchronous resonance oscillations in nearby turbogenerators. These generators are connected to a series capacitive compensation transmission system. First, the damping effect of the reactive power control of the DFIG-based wind farms was theoretically analyzed, and a transfer function between turbogenerator speed and the output reactive power of the wind farms was introduced to derive the analytical expression of the damping coefficient. The phase range to obtain positive damping was determined. Second, the PID phase compensation parameters of the auxiliary damping controller were optimized by a genetic algorithm to obtain the optimum damping in the entire subsynchronous frequency band. Finally, the validity and effectiveness of the proposed auxiliary damping control were demonstrated on a modified version of the IEEE first benchmark model by time domain simulation analysis with the use of DigSILENT/PowerFactory. Theoretical analysis and simulation results show that this derived damping factor expression and the condition of the positive damping can effectively analyze their impact on the system sub-synchronous oscillations, the proposed wind farms reactive power additional damping control strategy can provide the optimal damping effect over the whole sub-synchronous frequency band, and the control effect is better than the active power additional damping control strategy based on the power system stabilizator.

  17. Station power supply by residual steam of Fugen

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Y.; Kato, H.; Hattori, S. (Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan))

    1981-09-01

    In the advanced thermal reactor ''Fugen'', when the sudden decrease of load more than 40% occurs due to the failure of power system, the turbine regulating valve is rapidly shut, and the reactor is brought to scrum. However, the operation of turbo-generators is continued with the residual steam in the reactor, and the power for inside the station is supplied for 30 sec by the limiting timer, then the power-generating plant is automatically stopped. The reasons why such design was adopted are to reduce manual operation at the time of emergency, to continue water supply for cooling the reactor and to maintain the water level in the steam drum, and to reduce steam release from the safety valve and the turbine bypass valve. The output-load unbalance relay prevents the everspeed of the turbo-generator when load decreased suddenly, but when the failure of power system is such that recovers automatically in course of time, it does not work. The calculation for estimating the dynamic characteristics at the time of the sole operation within the station is carried out by the analysis code FATRAC. The input conditions for the calculation and the results are reported. Also the dynamic characteristics were actually tested to confirm the set value of the limiting timer and the safe working of turbine and generator trips. The estimated and tested results were almost in agreement.

  18. General review of diagnostic systems in EDF PWR units

    International Nuclear Information System (INIS)

    Chevalier, R.; Brasseur, S.; Ricard, B.

    1998-01-01

    Since the beginning of the French nuclear program, Electricite de France (EDF) has looked for ways to improve the availability and safety of its nuclear units. Therefore, monitoring systems on turbogenerators, reactor coolant pumps, primary circuits and core internal structures were designed by the Research and Development Division and implemented with technologies available during the 1970's. However, mainly because of difficulties for data interpretation by plant personnel, EDF subsequently decided to design and develop different tools to help plant operators to process a diagnosis: - a new generation of the Monitoring and Diagnostic System called PSAD, - expert systems for diagnosis on reactor coolant pumps (RCP) 'DIAPO' and turbogenerator units (TG) 'DIVA', - diagnostic guides written for most equipment pending the installation of new monitoring and diagnosis systems. The first version of PSAD, installed in five units, performs on-line monitoring of the turbogenerator shaft line, steam inlet valves, the reactor coolant pumps and the generator stator. The second version not yet implemented, will include Loose Part Detection (LPD) and Core Internal Structure Monitoring (CISM). The level of diagnosis achieved by PSAD depends on the component monitored. The TG and RCP monitoring functions of PSAD compute high level diagnosis descriptors such as natural frequencies and long term trends but do not elaborate a diagnosis automatically. However, a diagnostic assistance window is available on-line, whenever a warning message is displayed, whether for immediate or later action. The window presents a diagnostic approach whose purpose is to find the causes of the symptoms observed. This diagnosis approach is automated in the DIVA and DIAPO expert systems. Numerous potential faults can be identified for both systems thanks to a hierarchy of abnormal situations. The user interactively answers questions when information is needed to progress in the diagnosis. The resulting

  19. High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology

    Science.gov (United States)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITs of 950 and 1200 K are presented. Power plant performance data were obtained for TITs ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo-generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  20. Operational performance of generator condition monitors

    International Nuclear Information System (INIS)

    Braun, J.M.; Brown, G.

    1990-01-01

    This paper reports on the generator condition monitor (GCM) developed in an attempt to detect overheating inside large turbine generators. As part of a broader study on rotating machinery diagnostics, generator condition monitors were evaluated under field conditions in a 550 MW turbogenerator. Small 100 W resistors coated with insulating paints and varnishes were mounted inside the generator to simulate insulation overheating. The GCM responded very rapidly to an overheating event, typically within two minutes, even for hot spots as small s 10 cm 2 . Similarly the aerosols produced on overheating were found extremely short lived, decaying within two to three minutes after overheating was discontinued. Use of heated ion chambers was found to desensitize the GCM regardless of the nature of the overheated insulation and in some cases would altogether prevent the GCM from reaching the 50% pre-set alarm level commonly used on GCMs

  1. Analysis and treatment of diametral tolerance of exciter shaft of the 650 MW nuclear power plant

    International Nuclear Information System (INIS)

    Liu Qiang

    2010-01-01

    The generator and exciter has three support connection in Qinshan II, i.e. there are two bearings for the generator rotor and one for the exciter. This structure results in difficulty to meet the standard when checking the exciter bearing's diametral tolerance. In the fifth outage of unit 2 turbo-generator in Qinshan II, the diametral tolerance failed to meet the standard. There were several reasons, such as the alignment of generator and exciter coupling, the angular moment of generator and exciter coupling bolt, the end surface condition of generator and exciter coupling, the fitting dimension of the coupling bolt hole and the sleeve in it. After analysis and screening of all factors, it was confirmed that the radical reason was the abnormal condition of the generator coupling end surface, and the problem was solved by machining the end surface. (author)

  2. Active magnetic bearing for use in compressors and other turbomachinery

    International Nuclear Information System (INIS)

    Hennau, J.N.

    1989-01-01

    Active magnetic bearings and dry gas seals are now in operation on quite a number of compressors, turbines and generators, proving than an oil-free system is actually working and that furthermore, it has merits in energy savings, rotor dynamic monitoring and improved reliability. The technology of active magnetic bearing has been developed mainly in France after the Second World War for space application, but soon there appeared the large possibilities in industrial applications starting with the vacuum industry (turbomolecular pump), followed by the machine tool industry (high power and high speed milling and grinding spindles) and the large turbomachinery field (centrifugal compressors, blowers, steam and gas turbines, turbogenerators). Merits of the active magnetic bearing vary from one application to another, but they all derive from the fact that we have no contact between the rotor and the stator and that the electronic control of the bearings can cope with the rotor dynamics and provide useful information on the operating conditions

  3. Heat transport and surface heat transfer with helium in rotating channels

    International Nuclear Information System (INIS)

    Schnapper, C.

    1978-06-01

    Heat transport and surface heat transfer with helium in rotating radially arranged channels were experimentally studied with regard to cooling of large turbogenerators with superconducting windings. Measurements with thermosiphon and thermosiphon loops of different channel diameters were performed, and results are presented. The thermodynamic state of the helium in a rotating thermosiphon and the mass flow rate in a thermosiphon loop is characterized by formulas. Heat transport by directed convection in thermosiphon loops is found to be more efficient 12 cm internal convection in thermosiphons. Steady state is reached sooner in thermosiphon loops than in thermosiphons, when heat load suddenly changes. In a very large centrifugal field single-phase heat transfer with natural and forced convection is described by similar formulas which are also applicable 10 thermosiphons in gravitation field or to heat transfer to non-rotating helium. (orig.) [de

  4. Hybrid Electric Transit Bus

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    A government, industry, and university cooperative is developing an advanced hybrid electric city transit bus. Goals of this effort include doubling the fuel economy compared to current buses and reducing emissions to one-tenth of current EPA standards. Unique aspects of the vehicle's power system include the use of ultra-capacitors as an energy storage system, and a planned natural gas fueled turbogenerator developed from a small jet engine. Power from both the generator and energy storage system is provided to a variable speed electric motor attached to the rear axle. At over 15000 kg gross weight, this is the largest vehicle of its kind ever built using ultra-capacitor energy storage. This paper describes the overall power system architecture, the evolution of the control strategy, and its performance over industry standard drive cycles.

  5. Diagnosis of faults in EDF power plants: from monitoring to diagnosis

    International Nuclear Information System (INIS)

    Joussellin, A.

    1994-06-01

    Electricite de France is constantly is search of means to improve safety and availability in its nuclear power plants. To this end, EDF has designed new monitoring systems for the major components of its units: for turbogenerator and inlet valves monitoring, for reactor coolant pumps monitoring, for internal structures monitoring and for loose parts detection. New techniques for signal acquisition and processing for diagnosis are used and all these monitoring systems are designed with the same general concept on monitoring. Simultaneously, a workstation for monitoring and aid in diagnosis (PSAD) is under development. It will integrate every monitoring system and will constitute an indispensable tool for plant personnel, enabling them to diagnose the condition of plant equipment, and providing them with high efficiency and user-friendly tools. The PSAD will have a flexible architecture, guaranteeing optimum distribution of computing power to make it available where it is needed. (author). 5 figs., 4 refs

  6. Efficient turbine control. Advantages through controlling internal turbine power in place of turbo generator output; Effektive Turbinenregelung. Vorteile durch die Regelung der inneren Turbinenleistung anstelle der Turbogeneratorleistung

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.

    1999-07-01

    Hitherto, the electrical output of turbo generators has generally been controlled by means of power output controllers. Load changes caused, for example, by changeovers to isolated unit operation where the load requirements are unknown at first, often resulted in `wrong way control` effects that sometimes even caused entire turbine generator sets to fail. Controlling the internal turbine power makes it possible to avoid such consequences. (orig.) [Deutsch] Die elektrische Leistung eines Turbogenerators wurde bislang durch Leistungsregler geregelt. Im Falle einer Lastaenderung, wie sie beispielsweise beim Uebergang in den Betrieb auf ein Teilnetz (Insel-) mit vorher unbekannter Last vorkommt, trat ein Falschregeleffekt auf. Auf diesen wurden bereits Turbosatzausfaelle zurueckgefuehrt. Wird anstelle der elektrischen Leistung allerdings die innere Turbinenleistung geregelt, so tritt der Falschregeleffekt nicht ein. (orig.)

  7. Reduction in the specific consumption of heat by the thermal circuit, achieved by rationalization of the steam turbine condensation at nuclear power plants of the WWER-440 type

    International Nuclear Information System (INIS)

    Kubacek, A.

    1992-01-01

    Specific consumption of heat needed for the production of a net electricity unit is a criterion for assessing the efficiency of conversion of thermal energy into mechanical energy in the steam turbine. Based on theoretical calculations and analyses, a way of evaluating the specific heat consumption is demonstrated for the thermal circuit of the steam-engine equipment with one turbogenerator. The dependence of the specific heat consumption on the steam condensation temperature and on the amount of cooling water flowing through the condenser is calculated, as is the dependence of the limiting pressure on the relative loss of vacuum of the condenser and on the cooling water temperature. Such dependences can be used to upgrade the thermal circuit condensation regime. (M.D.). 2 figs., 12 refs

  8. Reviews of large superconducting machines: Metallurgy, fabrication, and applications

    International Nuclear Information System (INIS)

    Bogner, G.

    1981-01-01

    This paper reviews large superconducting machines presently in place or in experiment. The ''Cello'' particle detector magnet for the positron-electron colliding beam facility PETRA at DESY in Hamburg is shown, and the Fermi Lab, and the Brookhaven ISABELLE also described. Electrodynamic levitation systems are specified, as researched and developed in Germany and Japan. Of superconducting coils for magnetic separation, a high gradient magnetic separator with superconducting magnet and steel wool, and a Jones type high gradient magnetic separator are schematicized. Turbogenerators with superconductor field winding are studied. Superconducting high power cables include the flexible coaxial cable core consisting of a perforated polyethylene tube and test cables at Siemens and at Brookhaven. Magnet systems for fusion reactors include tokamaks and tandem mirrors, and the toroidal coil experiment at Oak Ridge National Laboratory is described, among others. Superconducting magnets for MHD plants, and superconducting magnet energy storage (SME storage) are also discussed

  9. Hybrid vehicle turbine engine technology support (HVTE-TS) project. 1995--1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report presents a summary of technical work accomplished on the Hybrid Vehicle Turbine Engine--Technology Support (HVTE-TS) Project during calendar years 1995 and 1996. Work was performed under an initial National Aeronautics and Space Administration (NASA) contract DEN3-336. As of September 1996 the contract administration was transferred to the US Department of Energy (DoE) Chicago Operations Office, and renumbered as DE-AC02-96EE50553. The purpose of the HVTE-TS program is to develop gas turbine engine technology in support of DoE and automotive industry programs exploring the use of gas turbine generator sets in hybrid-electric automotive propulsion systems. The program focus is directed to the development of four key technologies to be applied to advanced turbogenerators for hybrid vehicles: Structural ceramic materials and processes; Low emissions combustion systems; Regenerators and seals systems; and Insulation systems and processes. 60 figs., 9 tabs.

  10. Short-time action electric generators to power physical devices

    International Nuclear Information System (INIS)

    Glebov, I.A.; Kasharskij, Eh.G.; Rutberg, F.G.; Khutoretskij, G.M.

    1982-01-01

    Requirements to be met by power-supply sources of the native electrophysical facilities have been analyzed and trends in designing foreign electric machine units of short-time action have been considered. Specifications of a generator, manufactured in the form of synchronous bipolar turbogenerator with an all-forged rotor with indirect air cooling of the rotor and stator windings are presented. Front parts of the stator winding are additionally fixed using glass-textolite rings, brackets and gaskets. A flywheel, manufactured in the form of all-forged steel cylinder is joined directly with the generator rotor by means of a half-coupling. An acceleration asynchronous engine with a phase rotor of 4 MW nominal capacity is located on the opposite side of the flywheel. The generator peak power is 242 MVxA; power factor = 0.9; energy transferred to the load 5per 1 pulse =00 MJ; the flywheel weight 81 t

  11. Waste heat recovery technologies for offshore platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Benato, Alberto; Scolari, E.

    2014-01-01

    This article aims at finding the most suitable waste heat recovery technology for existing and future offshore facilities. The technologies considered in this work are the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle. A multi-objective optimization approach is employed...... to attain optimal designs for each bottoming unit by selecting specific functions tailored to the oil and gas sector, i.e. yearly CO2 emissions, weight and economic revenue. The test case is the gas turbine-based power system serving an offshore platform in the North Sea. Results indicate that the organic...... and of the primary heat exchanger, organic Rankine cycle turbogenerators appear thus to be the preferred solution to abate CO2 emissions and pollutants on oil and gas facilities. As a practical consequence, this paper provides guidelines for the design of high-efficiency, cost-competitive and low-weight power...

  12. Model Predictive Control of Offshore Power Stations With Waste Heat Recovery

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Chan, Richard; Li, Xiangan

    2016-01-01

    The implementation of waste heat recovery units on oil and gas offshore platforms demands advances in both design methods and control systems. Model-based control algorithms can play an important role in the operation of offshore power stations. A novel regulator based on a linear model predictive...... control (MPC) coupled with a steady-state performance optimizer has been developed in the SIMULINK language and is documented in the paper. The test case is the regulation of a power system serving an oil and gas platform in the Norwegian Sea. One of the three gas turbines is combined with an organic...... Rankine cycle (ORC) turbogenerator to increase the energy conversion efficiency. Results show a potential reduction of frequency drop up to 40%for a step in the load set-point of 4 MW, compared to proportional–integral control systems. Fuel savings in the range of 2–3% are also expected by optimizing on...

  13. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B

    DEFF Research Database (Denmark)

    La Seta, Angelo; Meroni, Andrea; Andreasen, Jesper Graa

    2016-01-01

    Organic Rankine cycle (ORC) power systems have recently emerged as promising solutions for waste heat recovery in low- and medium-size power plants. Their performance and economic feasibility strongly depend on the expander. The design process and efficiency estimation are particularly challenging...... due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly...... is the preliminary design of an organic Rankine cycle turbogenerator to increase the overall energy efficiency of an offshore platform. For an increase in expander pressure ratio from 10 to 35, the results indicate up to 10% point reduction in expander performance. This corresponds to a relative reduction in net...

  14. Electrical Equipment of Electrical Stations and Substations,

    Science.gov (United States)

    1979-10-25

    flocronthoro ’roka "rNUSPONUS reuepa’rop Tpexzaamor TOKA 6C. so, iso ynpomxeuuoe 63aeg (O#cms1poHM reHepaTop C ObiBeleHnbumH WeCTblo KoimaUU itA3...currents during short circuit on the terminals/grippers: the turbogenerators 12): .I1’ 1.5; the hydraulic generators 0a:I. ,-0 (.PA >3) ISO ---01...330TATl 111-31500/110 BC- 17,5 (10,5) 6800 5600 7600 123 397 Bll - 10,5 (17) C11 - 6.3 (6) TJATI 11-000/I10 - 8583 5275 7700 129 474 TLI, 11’--I.U500/I 1o

  15. The taking into consideration of reliability in the design of steam turbines

    International Nuclear Information System (INIS)

    Brazzini, Robert; Chaboseau, J.; Mathey, J.

    1976-01-01

    Improvement of the quality of steam turbines is the object of continuous effort undertaken a long time ago. The turbines used in nuclear power stations, do not constitute a technical novation as compared to those which equip the 'conventional' type of power station. The specific conditions of the nuclear have nevertheless revealed anxieties which were not so acute in the case of conventional applications (intrinsic safety versus runaway risks, the operating surveillance of safety components, protection against corrosion by wet steam) and which reliability studies have been led to take into account. An example is given of the work carried out in this sense by describing the reliability studies devoted to the protection system of turbogenerator sets against overspeeds [fr

  16. Variable speed control in wells turbine-based oscillating water column devices: optimum rotational speed

    Science.gov (United States)

    Lekube, J.; Garrido, A. J.; Garrido, I.

    2018-03-01

    The effects of climate change and global warming reveal the need to find alternative sources of clean energy. In this sense, wave energy power plants, and in particular Oscillating Water Column (OWC) devices, offer a huge potential of energy harnessing. Nevertheless, the conversion systems have not reached a commercially mature stage yet so as to compete with conventional power plants. At this point, the use of new control methods over the existing technology arises as a doable way to improve the efficiency of the system. Due to the non-uniform response that the turbine shows to the rotational speed variation, the speed control of the turbo-generator may offer a feasible solution for efficiency improvement during the energy conversion. In this context, a novel speed control approach for OWC systems is presented in this paper, demonstrating its goodness and affording promising results when particularized to the Mutriku’s wave power plant.

  17. Recent experiences with independent power projects

    International Nuclear Information System (INIS)

    Kline, R.H.; Fitzowitch, J.R.; Dalla-Longa, L.

    1999-01-01

    New opportunities are making it possible to develop independent power projects involving partnerships with the electric power industry, and the petroleum and natural gas industry . This paper described those opportunities, the impediments and the risks involved. Mercury Electric Corp. has been involved in power projects at remote gas field and oil field sites where they use of a turbogenerator which runs on flare gas to generate electricity. TransCanada Power's involvement in independent power projects includes the supply and transport of gas and their ability to provide gas fired combined cycle technology. They are involved in a project at Hermiston, Oregon and also in a cogeneration project in Medicine Hat, Alberta. The CanCarb City of Medicine Hat project makes use of waste heat at an industrial facility. 11 figs

  18. Superconducting transformers, rectifiers, and switches. (Review paper)

    International Nuclear Information System (INIS)

    Ignatov, V.E.; Koval'kov, G.A.; Moskvitin, A.I.

    Cryogenic rectifiers using power cryotrons have been fabricated by many foreign firms since 1960. Present-day flux pumps require a low voltage power supply (several tens of millivolts) and a high current (kiloamperes). Increasing the power supply voltage will quadratically increase the flux pump losses and, given the limitations of existing materials, are not economically profitable. Present-day, cryotron-type flux pumps can best be used in power systems as a power supply for superconducting magnets, solenoids, storage devices, and superconducting exciting coils for turbogenerators. To increase the voltage of the next generation of transformers for superconducting dc power transmission, a research program must be set up to improve the cryotrons and to develop systems based on a different principle of operation, for example, semiconductor devices based on the principle of the volume effect in the intermediate environment

  19. Modernization and power uprate of the Laguna Verde Nuclear Power Plant (Mexico)

    International Nuclear Information System (INIS)

    Ruiz, L.; Merino, A.; Garcia-Serrano, J. L.

    2012-01-01

    The objective of this project is to perform the modifications on the thermal cycle of the plant required by an Extended Power Uprate, to achieve a safe and reliable operation of the plant at 120% of its original thermal power. The scope includes the design, engineering, training, supply of equipment, dismantling, installation, testing and commissioning. The duration of the project is 4,5 years (2007-2011), and all the modifications have been implemented in four outages, two per unit. The main modification carried out are the change of the condenser, moisture separator and main steam reheaters, the feedwater haters, the turbogenerator and its auxiliaries, transformers, isolated phase bus and main circuit breaker, etc. In this paper, the results obtained after all the modifications will be introduced. In addition, the most representative experience will be presented, as well as the lessons learned during the Project execution. (Author)

  20. Modernization and power uprate of the Laguna Verde Nuclear Power Plant (Mexico); Modernizacion y aumento de potencia de la Central Nuclear Laguna Verde (Mexico)

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, L.; Merino, A.; Garcia-Serrano, J. L.

    2012-11-01

    The objective of this project is to perform the modifications on the thermal cycle of the plant required by an Extended Power Update, to achieve a safe and reliable operation of the plant at 120% of its original thermal power. The scope includes the design, engineering, training, supply of equipment, dismantling, installation, testing and commissioning. The duration of the project is 4,5 years (2007-2011), and all the modifications have been implemented in four outages, two per unit. The main modification carried out are the change of the condenser, moisture separator and main steam reheaters, the feedwater haters, the turbogenerator and its auxiliaries, transformers, isolated phase bus and main circuit breaker, etc. In this paper, the results obtained after all the modifications will be introduced. In addition, the most representative experience will be presented, as well as the lessons learned during the Project execution. (Author)

  1. Modernization and power increase nuclear power plant Laguna Verde (Mexico)

    International Nuclear Information System (INIS)

    Garcia-Serrano, J. L.; Merino, A.; Ruiz Gutierrez, L.

    2011-01-01

    The objective of this project is to perform the modifications on the thermal cycle of the plant required by an Extended Power Uprate, to achieve a safe and reliable operation of the plant at 120% of its original thermal power. The scope includes the design, engineering training, supply of equipment, dismantling, installation, testing and commissioning. The duration of the project is 4 years (82007-2010), and all the modifications have been implemented in four outages, two per unit. The main modification carried out are the change of the condenser, moisture separator and main steam reheaters, the feedwater haters, the turbogenerator and its auxiliaries, transformers, isolated phase bus and main circuit breaker, etc. (Author)

  2. Modernization and power increase nuclear power plant Laguna Verde (Mexico); Modernizacion y aumento de potencia de la central nuclear Laguna Verde (Mexico)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, J. L.; Merino, A.; Ruiz Gutierrez, L.

    2011-07-01

    The objective of this project is to perform the modifications on the thermal cycle of the plant required by an Extended Power Uprate, to achieve a safe and reliable operation of the plant at 120% of its original thermal power. The scope includes the design, engineering training, supply of equipment, dismantling, installation, testing and commissioning. The duration of the project is 4 years (82007-2010), and all the modifications have been implemented in four outages, two per unit. The main modification carried out are the change of the condenser, moisture separator and main steam reheaters, the feedwater haters, the turbogenerator and its auxiliaries, transformers, isolated phase bus and main circuit breaker, etc. (Author)

  3. Recommendations of the Reaktorsicherheitskommission, adopted at the 226th meeting on October 21, 1987

    International Nuclear Information System (INIS)

    1988-01-01

    Internal emergency protection covers all measures that use in a flexible manner the existing operating and safety systems in the plant, for controlling or limiting design-exceeding incidents, and the consequences of such incidents. The following additional measures are planned or already installed: - Depressurization of the containment through a filter system. - Filtering of control room supply air. - Discharge time of the batteries of the emergency power system to be between 2 and 3 hours. - Use of the turbo-generator driven feed system of the BWR design type 69, in case of assumed, simultaneous failure of the auxiliary electrical system and of the diesel emergency sets. - Inerting of the containment of BWR of the 69 design type. (orig./HP) [de

  4. A comparative study of finite element methodologies for the prediction of torsional response of bladed rotors

    International Nuclear Information System (INIS)

    Scheepers, R.; Heyns, P. S.

    2016-01-01

    The prevention of torsional vibration-induced fatigue damage to turbo-generators requires determining natural frequencies by either field testing or mathematical modelling. Torsional excitation methods, measurement techniques and mathematical modelling are active fields of research. However, these aspects are mostly considered in isolation and often without experimental verification. The objective of this work is to compare one dimensional (1D), full three dimensional (3D) and 3D cyclic symmetric (3DCS) Finite element (FE) methodologies for torsional vibration response. Results are compared to experimental results for a small-scale test rotor. It is concluded that 3D approaches are feasible given the current computing technology and require less simplification with potentially increased accuracy. Accuracy of 1D models may be reduced due to simplifications but faster solution times are obtained. For high levels of accuracy model updating using field test results is recommended

  5. Lewis pressurized, fluidized-bed combustion program. Data and calculated results

    Science.gov (United States)

    Rollbuhler, R. J.

    1982-03-01

    A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.

  6. The industrial problems raised by the building of the new nuclear power plant system

    International Nuclear Information System (INIS)

    Gangloff, P.; Hillairet, J.

    1975-01-01

    The decision made by France to build within 10 years a number of nuclear power plants of an importance unequalled in Europe and in the world has created for the industry involved in this gigantic enterprise problems of growth and adaptation of considerable magnitude. In a first part, the general analysis of needs reveals the breadth of the phenomenon the industry is facing with respect to its capacity of production. This original study, the first synthesis of this kind, could be the starting point of overall industrial planning at the national level. The second part, dealing more particularly with turbogenerator units, shows in its true perspective the magnitude of the material and how the equipment has developed. It recalls how the industrial problem has been approached in order to meet the need for expansion of one of the most important French electromechanical manufacturing plants [fr

  7. Heysham 2

    International Nuclear Information System (INIS)

    1985-01-01

    Heysham 2 power station, which is being built near Morecombe on the north west coast of England by the Central Electricity Generating Board (CEGB) will be the fifth nuclear power station of the British designed Advanced gas cooled reactor type (AGR). When fully operational in the late 1980s the station's two 660 megawatt turbo-generators will be capable of supplying the electricity to a large industrial city. This brochure, which has been designed by Public Relations for the CEGB, explains briefly the siting, planning history, contract responsibilities and construction. A brief account of the AGR design is given followed by a description of some of the main components. The text is illustrated with colour photographs and diagrams. The technical details are listed. (U.K.)

  8. Diagnosis of faults in EDF power plants: From monitoring to diagnosis

    International Nuclear Information System (INIS)

    Joussellin, A.; Chevalier, R.

    1994-01-01

    Electricite de France is constantly in search of means to improve safety and availability in its nuclear power plants. To this end, EDF has designed new monitoring systems for the major components of its units: for turbogenerator and inlet valves monitoring, for reactor coolant pumps monitoring, for internal structures monitoring and for loose parts detection. New techniques for signal acquisition and processing for diagnosis are used and all these monitoring systems are designed with the same general concept on monitoring. Simultaneously, a workstation for monitoring and aid in diagnosis (PSAD) is under development. It will integrate every monitoring system and will constitute an indispensable tool for plant personnel, enabling them to diagnose the condition of plant equipment, and providing them with high efficiency and user-friendly tools. The PSAD will have a flexible architecture, guaranteeing optimum distribution of computing power to make it available where it is needed

  9. Monitoring and aid to diagnosis of French PWRs

    International Nuclear Information System (INIS)

    Jousellin, A.; Trenty, A.; Benas, J.C.; Renault, Y.; Busquet, J.L.; Mouhamed, B.

    1996-01-01

    In order to improvise safety and availability in its nuclear power plants, EDF has designed a new generation of monitoring systems integrated into a workstation for monitoring and aid to diagnosis (PSAD). These systems perform on-line monitoring of the main power plant components and PSAD stations provide homogeneous aid to diagnosis which enable plant personnel to pinpoint the mechanical behavior of plant equipments. The objective of PSAD is to provide them with high-efficiency and user-friendly tools which can considerably free them from routine tasks. The first version of the prototype is working on a French plant at Tricastin. This version includes the software host structure and two monitoring functions: the reactor coolant pumps and the turbo-generator monitoring functions. Internal Structures Monitoring (ISM) and Loose Parts Detection function (LPD) are under development and should be integrated into PSAD prototype in 1996. (authors)

  10. Important conventional island design features: generators

    International Nuclear Information System (INIS)

    Fritsch, Th.

    1985-01-01

    To-day, maximum reactor capacity is setting a provisional limit to the MW race. The latest nuclear generators in manufacturing are rated 1530 MW - 1710 MVA and are doubtless the most powerful ones in the world. The target to be aimed at in designing large turbogenerators may be defined by the following points: 1) meeting the rated load conditions without overpassing maximum admissible temperatures in any part of the machine; 2) keeping losses as small as possible; 3) keeping overall size small enough to allow rail transportation from the works to the site; 4) choosing well experienced solutions in order to set a highly reliable machine with maximum maintenance. In this report the main features of nuclear generators in the 1000-2000 MVA range are described. (Auth.)

  11. Ultrasonic meters in the feedwater flow to recover thermal power in the reactor of nuclear power plant of Laguna Verde U1 and U2

    International Nuclear Information System (INIS)

    Tijerina S, F.

    2008-01-01

    The engineers in nuclear power plants BWRs and PWRs based on the development of the ultrasonic technology for the measurement of the mass, volumetric flow, density and temperature in fluids, have applied this technology in two primary targets approved by the NRC: the use for the recovery of thermal power in the reactor and/or to be able to realize an increase of thermal power licensed in a 2% (MUR) by 1OCFR50 Appendix K. The present article mentions the current problem in the measurement of the feedwater flow with Venturi meters, which affects that the thermal balance of reactor BWRs or PWRs this underestimated. One in broad strokes describes the application of the ultrasonic technology for the ultrasonic measurement in the flow of the feedwater system of the reactor and power to recover thermal power of the reactor. One is to the methodology developed in CFE for a calibration of the temperature transmitters of RTD's and the methodology for a calibration of the venturi flow transmitters using ultrasonic measurement. Are show the measurements in the feedwater of reactor of the temperature with RTD's and ultrasonic measurement, as well as the flow with the venturi and the ultrasonic measurement operating the reactor to the 100% of nominal thermal power, before and after the calibration of the temperature transmitters and flow. Finally, is a plan to be able to realize a recovery of thermal power of the reactor, showing as carrying out their estimations. As a result of the application of ultrasonic technology in the feedwater of reactor BWR-5 in Laguna Verde, in the Unit 1 cycle 13 it was recover an equivalent energy to a thermal power of 25 MWt in the reactor and an exit electrical power of 6 M We in the turbogenerator. Also in the Unit 2 cycle 10 it was recover an equivalent energy to a thermal power of 40 MWt in the reactor and an exit electrical power of 16 M We in the turbogenerator. (Author)

  12. Monitoring of large rotating machines at EDF

    International Nuclear Information System (INIS)

    Chevalier, R.; Oswald, G.P.; Morel, J.

    1993-09-01

    The purpose of equipment surveillance is the prevention of major risks, the early detection of abnormal conditions and post-incident analysis to correct faults observed. At EDF, overall vibration monitoring in the control room was supplemented by a special vibration monitoring system. However, in order to satisfy more elaborate, real time detection requirements and benefit from the new possibilities offered by computer-based systems, EDF has developed the PSAD concept (Surveillance and Diagnosis-aid Station) which groups surveillance processing, organized on surveillance functions including turbogenerator and reactor coolant pump surveillance. The purpose of the present paper is to describe the turbogenerator and reactor coolant pump surveillance functions and present the first examples of reactor coolant pump behaviour feedback using a PSAD mockup (Automated Surveillance of Rotating Machines). In the first place, surveillance implies determining exactly what has to be monitored. This entails considering incidents liable to affect machine behaviour and, of course, specifying both the vibration quantities and those defining the operating condition of the machine considered which are necessary to be able to interpret the vibrations. Data processing requirements concern detection of faults and diagnosis aids. Faults detection must be automatic, but not the diagnosis function. Data can be processed to evidence one or several faults, using the most appropriate data display system. Interpretation is then entrusted to experts. To satisfy the above requirements, the PSAD system integrates two new concepts: distributed surveillance, involving depth distribution (different layers of software organized for increasingly sophisticated and gradually narrowing data processing) and space distribution (the work is performed in the most appropriate place, whether this be the plant, with automatic real time processing, or elsewhere if the complexity of the diagnosis so requires

  13. Transmutor demo unit and thermal into electrical energy transformation problems

    International Nuclear Information System (INIS)

    Matal, O.; Fiedler, J.

    1999-01-01

    In the three circuits layout of the transmutor the heat is transferred from the primary through the secondary circuits by a favourable heat carrier into the tertiary circuit where the thermal into electrical energy transformation in turbo-generator comes into force. Properties as well as parameters of the heat carrier in the secondary circuit affect basically both the conceptual layout of the tertiary circuit and consequently investments costs for its realization and the effectiveness of the transformation of thermal into electrical energy. For several heat carriers considered for the transmutor secondary circuit particular tertiary circuit concepts for the demonstration transmutor unit of approx. 15 W thermal power rate are analyzed, layout features and possibilities of turbogenerator selection are commented and investment costs as well as effectiveness of thermal into electrical energy transformation are estimated. Some of the results are as follows: (i) Heat carrier properties influence thermodynamics of the TDU water/steam cycle substantially. One of the dominant parameters is the melting (freezing) temperature of the heat carrier. (ii) Heat carrier properties influence investment costs of components of the TDU tertiary circuit substantially. Dominantly influenced are costs of the steam generator, steam turbine and high pressure regeneration system. (iii) If the heat carrier has to be a molten salt than a salt with a low melting temperature is recommended to be selected, for example KHF2. (iv) Eutectic alloy Pb-Bi as the heat carrier serves changes to design the TDU with efficient thermodynamics, with acceptable low investment costs of the tertiary as well as secondary circuit components and with an acceptable level of the nuclear safety

  14. USING OF OBJECT-ORIENTED DESIGN PRINCIPLES IN ELECTRIC MACHINES DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    N.N. Zablodskii

    2016-03-01

    Full Text Available Purpose. To develop the theoretical basis of electrical machines object-oriented design, mathematical models and software to improve their design synthesis, analysis and optimization. Methodology. We have applied object-oriented design theory in electric machines optimal design and mathematical modelling of electromagnetic transients and electromagnetic field distribution. We have correlated the simulated results with the experimental data obtained by means of the double-stator screw dryer with an external solid rotor, brushless turbo-generator exciter and induction motor with squirrel cage rotor. Results. We have developed object-oriented design methodology, transient mathematical modelling and electromagnetic field equations templates for cylindrical electrical machines, improved and remade Cartesian product and genetic optimization algorithms. This allows to develop electrical machines classifications models, included not only structure development but also parallel synthesis of mathematical models and design software, to improve electric machines efficiency and technical performance. Originality. For the first time, we have applied a new way of design and modelling of electrical machines, which is based on the basic concepts of the object-oriented analysis. For the first time is suggested to use a single class template for structural and system organization of electrical machines, invariant to their specific variety. Practical value. We have manufactured screw dryer for coil dust drying and mixing based on the performed object-oriented theory. We have developed object-oriented software for design and optimization of induction motor with squirrel cage rotor of AIR series and brushless turbo-generator exciter. The experimental studies have confirmed the adequacy of the developed object-oriented design methodology.

  15. Development of sputter ion pump based SG leak detection system for Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Babu, B.; Sureshkumar, K.V.; Srinivasan, G.

    2013-01-01

    Highlights: ► Development and commissioning of SG leak detection system for FBTR. ► Development of Robust method of using sputter ion pump based system. ► Modifications for improving reliability and availability. ► On line injection of hydrogen in sodium during reactor operation. ► Triplication of the SG leak detection system. - Abstract: The Fast Breeder Test Reactor (FBTR) is a 40 MWt, loop type sodium cooled fast reactor built at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam as a fore-runner to the second stage of Indian nuclear power programme. The reactor design is based on the French reactor Rapsodie with several modifications which include the provision of a steam-water circuit and turbo-generator. FBTR uses sodium as the coolant in the main heat transport medium to transfer heat from the reactor core to the feed water in the tertiary loop for producing superheated steam, which drives the turbo-generator. Sodium and water flow in shell and tube side respectively, separated by thin-walls of the ferritic steel tubes of the once-through steam generator (SG). Material defects in these tubes can lead to leakage of water into sodium, resulting in sodium water reactions leading to undesirable consequences. Early detection of water or steam leaks into sodium in the steam generator units of liquid metal fast breeder reactors (LMFBR) is an important requirement from safety and economic considerations. The SG leak in FBTR is detected by Sputter Ion Pump (SIP) based Steam Generator Leak Detection (SGLD) system and Thermal Conductivity Detector (TCD) based Hydrogen in Argon Detection (HAD) system. Many modifications were carried out in the SGLD system for the reactor operation to improve the reliability and availability. This paper details the development and the acquired experience of SIP based SGLD system instrumentation for real time hydrogen detection in sodium for FBTR.

  16. ''PSAD'' on-line monitoring and aid to diagnosis workstation: a monitoring tool for EDF power plants

    International Nuclear Information System (INIS)

    Morel, J.; Mazalerat, J.M.; Monnier, B.; Cordier, R.

    1993-01-01

    Like other electricity utilities, Electricite de France seeks to enhance the safety and availability of its nuclear power plants. To this end, for over ten years EDF has been installing on each plant unit two monitoring systems of its own design, one to monitor the primary cooling system, and the other, the turbogenerator set. Since the beginning of this project, widespread progress has been made in techniques of signal acquisition and processing, and in diagnosis using artificial intelligence methods. EDF has decided to call on these advanced techniques in developing its new-generation monitoring equipment, and to integrate them in its development of a workstation for on-line monitoring and diagnosis-support (PSAD: Poste de Surveillance et d'Aide au Diagnostic). PSAD will be a tool for on-line monitoring of the main components in nuclear power plants (initially the main coolant pumps and turbogenerator sets, and soon thereafter, monitoring of internal structures, detection of loose parts in the primary cooling system, etc.). PSAD will provide plant personnel with indispensable support in their diagnosis of the condition of plant equipment. It will integrate user-friendly, high-performance systems that also free the operator from many day-to-day tasks. PSAD will have a flexible architecture, for optimum distribution of the computing power where it is most needed, thereby improving the quality of the data. This paper presents the project objectives and describes work currently under way to implement EDF's diagnosis-support strategy for the years to come. (authors). 5 figs., 6 refs

  17. ASCERTAINMENT OF ELECTRIC-SUPPLY SCHEMES RELIABILITY FOR THE ATOMIC POWER PLANT AUXILIARIES

    Directory of Open Access Journals (Sweden)

    A. L. Starzhinskij

    2015-01-01

    Full Text Available The paper completes ascertainment of electrical-supply scheme reliability for the auxiliaries of a nuclear power plant. Thereat the author considers the system behavior during the block normal operation, carrying out current maintenance, and capital repairs in combination with initiating events. The initiating events for reactors include complete blackout, i.e. the loss of outside power supply (normal and reserve; emergency switching one of the working turbogenerators; momentary dumping the normal rating to the level of auxiliaries with seating the cutout valve of one turbo-generator. The combination of any initiating event with the repairing mode in case of one of the system elements failure should not lead to blackout occurrence of more than one system of the reliable power supply. This requirement rests content with the help of the reliable power supply system self-dependence (electrical and functional and the emergency power-supply operational autonomy (diesel generator and accumulator batteries.The reliability indicators of the power supply system for the nuclear power plant auxiliaries are the conditional probabilities of conjoined blackout of one, two, and three sections of the reliable power supply conditional upon an initiating event emerging and the blackout of one, two, and three reliable power-supply sections under the normal operational mode. Furthermore, they also are the blackout periodicity of one and conjointly two, three, and four sections of normal operation under the block normal operational mode. It is established that the blackout of one bus section of normal operation and one section of reliable power-supply system of the auxiliaries that does not lead to complete blackout of the plant auxiliaries may occur once in three years. The probability of simultaneous power failure of two or three normal-operation sections and of two reliable power-supply sections during the power plant service life is unlikely.

  18. Development of a PI fuzzy-neural control of two freedom degrees, applied to the velocity control of a turbo-gas unit; Desarrollo de un control PI neurodifuso no lineal de dos grados de libertad, aplicado al control de velocidad de una unidad turbogas

    Energy Technology Data Exchange (ETDEWEB)

    Castelo C, Luis; Garduno R, Raul [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Marmol M, Enrique Q [Cento Nacional de Investigacion y Desarrollo Tecnologico (Cenidet), Cuernavaca, Morelos (Mexico)

    2005-07-01

    The Instituto de Investigaciones Electricas has developed and implemented control systems in power stations with turbo gas unit (TGU) and of combined cycle power plants in which it has been detected several necessities and opportunities of technological development. One of most important is the improvement of the strategies of velocity control, power and temperature of the TGU, in order to obtain a safer and profitable operation. Since these units demand a strict and greater number of control requirements, because they are characterized by operating at temperatures, pressures and velocities higher than those of another type of units. An alternative to improve the control strategies of the TGU is the use of other control structures and the use of control techniques with diffuse logic, which can surpass the disadvantages of the conventional control. Due to the former, the reliability requirements of the TGU to get on line without fault, when required, have remarkably increased. The frequent accomplishment of starts, synchronization, load takings and shut-downs in a successful way and in automatic form, strongly depend on the capacities of the control system. During the starting, the main task of the control system consists of accelerating to the turbo-generator from the turn-shaft velocity to the nominal velocity according to a predefined acceleration pattern. The velocity control generates the control actions to accelerate the turbo-generator in a safe way that avoids the occurrence of instabilities of the working fluid, vibration discharges and resonances, high temperatures and combustion instabilities, and in addition, in the minimum of time, with fuel saving and preserving the useful life of the turbo-generator. [Spanish] El Instituto de Investigaciones Electricas ha desarrollado e implantado sistemas de control en centrales con unidad turbo gas (UTG) y centrales de ciclo combinado en las que se ha detectado varias necesidades y oportunidades de desarrollo

  19. Análisis de la redundancia en la generación de vapor con parámetros inferiores en un monobloque de 64 MW // Analysis of redundancy in the steam generation with inferior parameters in an unit of 64 MW.

    Directory of Open Access Journals (Sweden)

    A. Paneque Matos

    2000-10-01

    Full Text Available La necesidad del país de mantener la generación eléctrica a fin de evitar los cortes de servicio planificados e imprevistos,debido a la difícil situación económica actual, obliga a buscar soluciones que al menos sirvan de paliativo temporal a estadesagradable situación. En una central termoeléctrica ubicada en el perímetro de la ciudad, se presentó la situación de queproducto de un accidente, un bloque quedó sin turbogenerador, estando su generador de vapor en magníficas condicionesde explotación; y que otro bloque presentaba muchas salidas forzosas fuera de servicio producto de una insuficientereparación de su generador de vapor. La carencia de fondos para acometer una efectiva reparación, hizo pensar en elanálisis de la posibilidad de utilizar la caldera de una unidad para alimentar el turbogenerador de la otra. En el presentetrabajo se muestran los cálculos correspondientes para determinar aproximadamente el comportamiento de la turbina en lasnuevas condiciones impuestas, se realizó un análisis de fiabilidad del sistema propuesto y se utilizó la simulación comoherramienta para modelar el proceso.Palabras claves: centrales termoeléctricas, fiabilidad, eficiencia, turbina de gas, caldera._______________________________________________________________________Abstract:The necessity of Cuba to maintain the electric generation in order to avoid the interruption of service in planned oraccidental way, due to the difficult current economic situation, forces to solutions that at least serve for temporary palliativeto this unpleasant situation. In a thermoelectric power station located in the perimeter of the city, a situation was presenteddue to an accident, a block with fail in the turbogenerator and the steam generator in good conditions of exploitation; andthat another block, the No.7, presented many mandatory out of service product of an insufficient repair of its generator.This situation lead to analyze the possibility of

  20. Análisis de ruido en áreas de la central termoeléctrica Habana. // Noise analysis in the Habana thermoelectrial power station areas.

    Directory of Open Access Journals (Sweden)

    L. Felipe Sexto

    2002-09-01

    Full Text Available El trabajo aborda los aspectos más significativos que se derivan de las mediciones de ruido efectuadas en áreas de laCentral Termoeléctrica Habana, en enero del 2000, realizando una caracterización del paisaje sonoro inherente a la sala demáquinas dónde se encuentran en explotación tres grupos de turbogeneradores de 100 MW cada uno. También se ofrecenlos resultados en otras zonas importantes de la planta. Se exponen las emisiones características de algunos equipos bajocondiciones de campo directo y reverberante. Además, se valoran algunos riesgos que afectan al personal expuesto y semencionan acciones necesarias para contrarrestar los efectos de la contaminación sonora. Entre los parámetros empleadospara la evaluación del ruido se hallan el nivel sonoro con ponderación AF, el nivel sonoro continuo equivalente, los valoresmáximo y mínimo, el análisis de frecuencias, el tiempo de exposición y el índice NR (noise rating curves. También, setratan criterios y recomendaciones dadas por ISO, EPA y NIOSH.Palabras claves: Ruido, contaminación, salud, turbogenerador, medición de ruido.___________________________________________________________________AbstractThe work approaches the most significant aspects that are derived from the conducted noise measurements in areas of theThermoelectrial Power station Habana, and a characterization of the inherent sonorous landscape in the engine room wherethree groups of turbogenerators of 100 MW each are in operation. Also the results in other important zones of the plant areoffered. The transmissions characteristic of some equipment under conditions of direct and reverberante field are exposed.In addition, some risks that affect the exposed personnel and actions necessary to resist the effects of the sonorouscontamination are mentioned. Between the parameters used for the noise evaluation are the sonorous level withponderación AF, the equivalent continuous sonorous level, the maximum and

  1. Ultrasonic meters in the feedwater flow to recover thermal power in the reactor of nuclear power plant of Laguna Verde U1 and U2; Medidores ultrasonicos en el flujo de agua de alimentacion para recuperar potencia termica en el reactor de la Central Nuclear Laguna Verde U1 and U2

    Energy Technology Data Exchange (ETDEWEB)

    Tijerina S, F. [CFE, Central Laguna Verde, Km. 42.5 Carretera Cardel-Nautla, Veracruz (Mexico)]. e-mail: francisco.tijerina@cfe.gob.mx

    2008-07-01

    The engineers in nuclear power plants BWRs and PWRs based on the development of the ultrasonic technology for the measurement of the mass, volumetric flow, density and temperature in fluids, have applied this technology in two primary targets approved by the NRC: the use for the recovery of thermal power in the reactor and/or to be able to realize an increase of thermal power licensed in a 2% (MUR) by 1OCFR50 Appendix K. The present article mentions the current problem in the measurement of the feedwater flow with Venturi meters, which affects that the thermal balance of reactor BWRs or PWRs this underestimated. One in broad strokes describes the application of the ultrasonic technology for the ultrasonic measurement in the flow of the feedwater system of the reactor and power to recover thermal power of the reactor. One is to the methodology developed in CFE for a calibration of the temperature transmitters of RTD's and the methodology for a calibration of the venturi flow transmitters using ultrasonic measurement. Are show the measurements in the feedwater of reactor of the temperature with RTD's and ultrasonic measurement, as well as the flow with the venturi and the ultrasonic measurement operating the reactor to the 100% of nominal thermal power, before and after the calibration of the temperature transmitters and flow. Finally, is a plan to be able to realize a recovery of thermal power of the reactor, showing as carrying out their estimations. As a result of the application of ultrasonic technology in the feedwater of reactor BWR-5 in Laguna Verde, in the Unit 1 cycle 13 it was recover an equivalent energy to a thermal power of 25 MWt in the reactor and an exit electrical power of 6 M We in the turbogenerator. Also in the Unit 2 cycle 10 it was recover an equivalent energy to a thermal power of 40 MWt in the reactor and an exit electrical power of 16 M We in the turbogenerator. (Author)

  2. Research, development and technological innovation of wind turbine control systems; Investigacion, desarrollo e innovacion tecnologica de sistemas de control de aerogeneradores

    Energy Technology Data Exchange (ETDEWEB)

    Garduno Ramirez, Raul; Rodriguez Martinez, Arnulfo Antelmo; Sanchez Parra, Marino; Martinez Morales, Miguel Angel; Hernandez Cuellar, Maria Aurora; Alcaide Godinez, Indira Xochiquetzal; Re Lopez, Victor Genaro; Hernandez Gonzalez, Roberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2012-07-01

    Control systems constitute the brain and the nervous system of modern machines, such as wind turbine generators (TGE by its acronym in Spanish). TGEs can work efficiently, safely and almost autonomously, thanks to the control systems with which they are equipped. Conversely, any malfunctioning of the control system may cause failure or damage of a component, a subsystem or even destruction of the TGE itself. This paper introduces some basic facts about generation of electric power from wind energy in the world and Mexico, wind turbogenerators and their most relevant technologies, TGE control systems, and R and TD+I about TGE control systems performed at the Instituto de Investigaciones Electricas. [Spanish] Los sistemas de control constituyen el cerebro y el sistema nervioso de las maquinas modernas, como aerogeneradores (AG). Los AG pueden trabajar eficiente, segura y casi autonomamente, gracias a los sistemas de control con los que estan equipados. De manera inversa, cualquier mal funcionamiento del sistema de control puede provocar falla o dano de un componente, subsistema o incluso la destruccion del propio AG. Este documento introduce algunos hechos basicos en torno a la generacion de energia electrica a partir de energia eolica en el mundo y Mexico, los aerogeneradores y sus tecnologias mas importantes, sistemas de control de AG e I+DT alrededor de los sistemas de control de AG realizados en el Instituto de Investigaciones Electricas.

  3. Liquid-Hydrogen-Cooled 450-hp Electric Motor Test Stand Being Developed

    Science.gov (United States)

    Kascak, Albert F.; Trudell, Jeffrey J.; Brown, Gerald V.

    2005-01-01

    With growing concerns about global warming, there is a need to develop pollution-free aircraft. One approach is to use hydrogen-fueled aircraft that use fuel cells or turbogenerators to produce electric power to drive the electric motors that turn the aircraft s propulsive fans. Hydrogen fuel would be carried as a liquid, stored at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are too heavy for aircraft propulsion. We need to develop high-power, lightweight electric motors (highpower- density motors). One approach is to increase the conductivity of the wires by cooling them with liquid hydrogen (LH2). This would allow superconducting rotors with an ironless core. In addition, the motor could use very pure aluminum or copper, substances that have low resistances at cryogenic temperatures. A preliminary design of a 450-hp LH2-cooled electric motor was completed and is being manufactured by a contractor. This motor will be tested at the NASA Glenn Research Center and will be used to test different superconducting materials such as magnesium diboride (MgB2). The motor will be able to operate at speeds of up to 6000 rpm.

  4. Two-year experience of the Loviisa-1 nuclear power plant operation in Finland

    International Nuclear Information System (INIS)

    Palmgren, A.; Simola, P.; Skyutta, P.; Malkov, Yu.V.; Mal'tsev, B.K.; Shasharin, G.A.

    1979-01-01

    The description of experience of creation and operation of the Loviisa-1 nuclear power plant in Finland is presented. The main stages of power block development were the following: functional tests of systems and equipment, hydraulic tests of the reactor and primary circuit, inspection of equipment, hot testing, testing of protective envelope, second inspection, reactor assembling and fuel loading, physical and power start-up of the reactor, testing of the plant as a whole. Tests of the APP operation on load were particularly extensive. These tests were carried out on the 5, 15, 30, 50, 75 and 92 % thermal power levels of the reactor and covered: physical reactor tests, electric and dynamic tests of the power unit, tests with failures in equipment operation, chemical tests, studies of shielding effectiveness, thermal and guarantee tests. The positive experience of the Loviisa-1 nuclear power plant operation, reactor reliability, fuel element tightness, high efficiency (33.9 %) and satisfactory operation of turbo-generator confirm the success of the Loviisa-1 NPP project

  5. A four-year investigation of Brayton cycle systems for future french space power applications

    International Nuclear Information System (INIS)

    Tilliette, Z.P.; Proust, E.; Carre, F.

    1988-01-01

    Within the framework of a joint program initiated in 1983 by the two French Government Agencies C.N.E.S. (Centre National d'Etudes Spatiales) and C.E.A. (Commissariat a l'Energie Atomique), in order to study space nuclear power systems for future ARIANE 5 applications, extensive investigations have dealt with the Brayton cycle which has been selected as the energy conversion system. Several aspects can be mentioned in this field: the matching of the power system to the available radiator dimensions up to 200 kWe, the direct or indirect waste heat transfer to the radiator, the use of a recuperator, the recent work on moderate (25 kWe) power levels, the simulation studies related to various operating conditions and the general system optimization. A limited experimental program is starting on some crucial technology areas including a first contract to the industry concerning the turbogenerator. Particular attention is being paid to the significance of the adoption of a Brayton cycle for space applications involving a nuclear heat source which can be either a liquid metal-cooled or a gas-cooled reactor. As far as a gas-cooled reactor, direct cycle system is concerned, the relevance to the reactor technology and the concept for moderator thermal conditioning, is particularly addressed

  6. Analysis of the force exercised in pipes by accumulation of water in the head stock of turbine bypass; Analisis de la fuerza ejercida en tuberias por acumulamiento de agua en el cabezal de baipas de turbina

    Energy Technology Data Exchange (ETDEWEB)

    Cecenas F, M.; Ovando C, R.; Campos G, R. M., E-mail: mcf@iie.org.mx [Instituto de Investigaciones Electricas, Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)

    2011-11-15

    The head stock and valves of turbine bypass allow canalize the main vapor coming from the reactor toward the condenser, without carrying out work in the turbo-generator. In this work is assumed that is accumulates condensed in the head stock during a time period in which the bypass system does not operate. For operation maneuvers, the opening of the bypass is demanded, for what the accumulated water is suddenly dragged by the vapor to high pressure coming from the reactor toward the condenser, which operates to inferior pressures to the atmospheric. The generated flow produces a mechanical effort in the lines and its supports. By means of the RELAP5 code the bypass system is modeled, the discharge transitory to the condenser is simulated and the speeds of the mixture water/vapor are calculated. Processing the exit of RELAP5 the mechanical effort that is subjected the pipe is calculated, and the study is complemented with a sensibility analysis to the quantity of stored water in the volume of the bypass head stock. (Author)

  7. Future with fusion power

    International Nuclear Information System (INIS)

    Hirschfeld, F.

    1977-01-01

    This article reviews several current approaches to the development of nuclear fusion power sources by the year 2000. First mentioned is the only project to develop a nonpolluting, radiation-free source by using only natural and nonradioactive isotopes (nuclei of deuterium, helium 3 and boron) as ''advanced'' fuels. This system will also be capable of direct conversion of the released energy into electricity. Next described is the PACER concept, in which thermonuclear burning of deuterium occurs in fusion explosion taking place underground (e.g., in a salt dome). The released energy is absorbed in high-pressure steam which is then piped to a surface heat exchanger to provide steam for a turbogenerator. After filtration, the steam is returned. The PACER system also produces fissionable fuel. The balance of the article reviews three ''magnetic fusion'' approaches. Tokamak, mirror and theta pinch systems utilize magnetic fields to confine a plasma for either pulsed or steady-state operation. The tokamak and theta pinch are toroidal in shape, while the mirror can be thought of as a magnetic field configuration of roughly tubular shape that confines the plasma by means of higher fields at the ends than at its center. The tokamak approach accounts for about 65 percent of the magnetic fusion research and development, while theta pinches and mirrors represent about 15 percent each. Refs

  8. Diagnostic suite neuro-fuzzy in an advanced alarm monitoring and predictive diagnostic system for rotating machinery

    International Nuclear Information System (INIS)

    Geruzzi, P.

    1999-01-01

    The 'Foxboro SCADA', former 'Automation Systems Division' of Nuovo Pignone, at the end of eighty years, has been involved in the development of a flexible and powerful Diagnostic System for Rotating Machinery designed and manufactured in other divisions of the Company. This system amalgamates, in a single computer, all the functionality nowadays necessary to correctly manage locally and remotely the Evolutionary Maintenance of rotating machines as well as the relevant plants. It's specially designed to plan preventive and emergency maintenance procedures and to help the maintenance staff/service in preventing the occurrence of failures or severe damage to complete turbo-machinery plant including turbine, compressor and other machines. The system is designed to supervise and to analyze the operating state of one or more turbo- machinery units such as turbo-compressors, turbo-generators and turbo-pumps giving an effective support to plan preventive and breakdown maintenance monitoring the performances of each turbo-group's element and analyzing a large number of thermodynamic and mechanical parameters related to high pressure turbines, low pressure turbines, combustion chambers, axial compressors and load (compressors, generators, and pumps). A brief presentation of the system is provided (author) (ml)

  9. Comparison of technical and economical factors of 1000-MW steam turbines at 3000 and 1500 r.p.m. for nuclear power plants

    International Nuclear Information System (INIS)

    Markov, N.M.; Safonov, L.P.

    1980-01-01

    The problem of unification of the low-pressure cilinders (LPC) for turbo-generator units of nuclear power plants with power of 1000 MW on base of the WWER and RBMK type reactors is discussed. The results of the comparison of the K-1000-60/1500 and K-1000-60/3000 turbines in the thermal efficiency of flow passages and arrangements masses and dimensions, static and dynamic strength manoeurrability and reliability are given. To cerry out the correct comparison methods adoped as branch standards thermal calculations, calculation of low-potential part and thermal arrangements, calculations of temperature fields and of low cycle fatigue calculation of the erosion failure accumulation of blades calculation of the blades for the last steps have been used. A conclusion is made that in the nearest future it is necessary to produce the K-1000-60/1500 and K-1000-60/3000 turbines simultaneously. The low-speed lurbines with three LPC are preferable for the nuclear power plants with average annual temperatures of water up to 20 deg C and the high-speed turbines and the K-1000-60/1500 units with two LPC are expedient for nuclear power plants with temperatures higher than 20 deg C. Introduction of the turboplants with reduced number of LPC in the nuclear power engineering provides the increase of reliability, maintenance fitness and the decrease of building costs and transport expenses

  10. Investigation of the Bilibin reactor operation in the regime of automatic power and frequency control in isolated power system

    International Nuclear Information System (INIS)

    Sankovskij, G.A.; Molochkov, V.I.; Dolgov, V.V.; Soldatov, G.E.; Minashin, M.E.

    1981-01-01

    The results of experimental investigations of the power unit operation of the Bilibin nuclear power and heating plant (BNPHP) in the regime of automatic power and frequency control in an isolated power system are presented. The BNPHP comprises four similar power units. Each unit includes a steam generating setup - the channel water-graphite reactor with tubular fuel elements with natural circulation of boiling water at all the power levels as well as a turbosetup with two heat selectors and a turbogenerator. The turbine operates on dry saturated steam (with intermediate separation) which is brought from the drum-separator of the reactor natural circulation circuit. The BNPHP operates according to the controller schedule since the start-up of the first power unit. The BNPHP unit power varifies within the 50-100% range 3-4 times per day (by the number of maxima in the schedule of the power system loadings). Two design flowsheets of the unit power control and dynamic characteristics of the system for both vatiants are considered. It is concluded that both investigated automatic control systems are seviceable and deviations of the reactor parameters within the transients are not dangerous for heat release from the core. The plant is better shielded from external mainly short-term perturbations coming from the power system when the system operates in accordance with the first variant of the flowsheet [ru

  11. Development of 50 MVA superconducting generator

    International Nuclear Information System (INIS)

    Ueda, Kiyotaka; Maki, Naoki; Takahashi, Noriyoshi; Ogata, Hisanao; Sanematsu, Toshihiro.

    1984-01-01

    Superconducting synchronous generators are expected to be the large capacity turbogenerators of next generation, but they have the structural features considerably different from conventional generators, such as low temperature multiple cylinder rotors and air gap armature winding. For the purpose of grasping the performance of superconducting generators and establishing the fundamental technology for their practical use, Hitachi Ltd. manufactured a 50 MVA superconducting generator. As the results of test, the precooling operation was smoothly finished for about 40 hours, and the superconducting rotor rotated stably at 3000 rpm. The steady and transient electrical characteristics were able to be grasped. It is intended to reflect these results to the development of a practical generator of 500 MVA class expected as the next step. When the superconducting exciting winding cooled by liquid helium is used, the reduction of weight, the improvement of efficiency and the improvement of the stability of power system can be expected. The structural features and the function of superconducting generators, the present state of the development in the world, the outline of the 50 MVA generator, the test results and the problems and the prospect hereafter are reported. The superconducting winding was made of NbTiZr alloy multicore wires. (Kako, I.)

  12. Segmentation of turbo generator and reactor coolant pump vibratory patterns: a syntactic pattern recognition approach

    International Nuclear Information System (INIS)

    Tira, Z.

    1993-02-01

    This study was undertaken in the context of turbogenerator and reactor coolant pump vibration surveillance. Vibration meters are used to monitor equipment condition. An anomaly will modify the signal mean. At the present time, the expert system DIVA, developed to automate diagnosis, requests the operator to identify the nature of the pattern change thus indicated. In order to minimize operator intervention, we have to automate on the one hand classification and on the other hand, detection and segmentation of the patterns. The purpose of this study is to develop a new automatic system for the segmentation and classification of signals. The segmentation is based on syntactic pattern recognition. For the classification, a decision tree is used. The signals to process are the rms values of the vibrations measured on rotating machines. These signals are randomly sampled. All processing is automatic and no a priori statistical knowledge on the signals is required. The segmentation performances are assessed by tests on vibratory signals. (author). 31 figs

  13. Experiences in the instrumentation of power generators with the on-line analysis of generators AnGel system, for the internal insulation condition diagnosis; Experiencias en la instrumentacion de generadores de potencia con el sistema de analisis de generadores en linea AnGeL, para el diagnostico del estado del aislamiento interno

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo C, Jaime; Ramirez N, Jose T. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2009-07-01

    The instrumentation of power generators with monitoring systems on-line, allows the personnel responsible for its operation to determine the stator and rotor windings insulation condition, as well as to emit an opportune diagnosis of possible anomalies, to implant programs of predictive maintenance, to reduce costs and to increase its reliability. The experiences of the last five years in the commissioning of the AnGel System; the problematic to which these equipment is subjected to, is described within the intrinsic atmosphere of the area where they are installed in the turbo-generators and hydro-generators, and finally, the experiences in the commissioning of the monitoring systems are revised and analyzed. [Spanish] La instrumentacion de los generadores de potencia con sistemas de monitoreo en linea, permite al personal responsable de su operacion determinar el estado del aislamiento de los devanados del estator y rotor, asi como emitir un diagnostico oportuno de posibles anomalias, implantar programas de mantenimiento predictivo, reducir costos e incrementar su confiabilidad. Se presentan las experiencias de los ultimos cinco anos en la puesta en operacion del Sistema AnGeL; se describe la problematica a la que son sometidos estos equipos dentro del ambiente intrinseco del area donde se instalan en los turbogeneradores e hidrogeneradores, y por ultimo, se analizan y discuten las experiencias en la puesta en servicio de los sistemas de monitoreo.

  14. NASA Glenn Research Center Program in High Power Density Motors for Aeropropulsion

    Science.gov (United States)

    Brown, Gerald V.; Kascak, Albert F.; Ebihara, Ben; Johnson, Dexter; Choi, Benjamin; Siebert, Mark; Buccieri, Carl

    2005-01-01

    Electric drive of transport-sized aircraft propulsors, with electric power generated by fuel cells or turbo-generators, will require electric motors with much higher power density than conventional room-temperature machines. Cryogenic cooling of the motor windings by the liquid hydrogen fuel offers a possible solution, enabling motors with higher power density than turbine engines. Some context on weights of various systems, which is required to assess the problem, is presented. This context includes a survey of turbine engine weights over a considerable size range, a correlation of gear box weights and some examples of conventional and advanced electric motor weights. The NASA Glenn Research Center program for high power density motors is outlined and some technical results to date are presented. These results include current densities of 5,000 A per square centimeter current density achieved in cryogenic coils, finite element predictions compared to measurements of torque production in a switched reluctance motor, and initial tests of a cryogenic switched reluctance motor.

  15. Fuqing nuclear power of nuclear steam turbine generating unit No.1 at the implementation and feedback

    International Nuclear Information System (INIS)

    Cao Yuhua; Xiao Bo; He Liu; Huang Min

    2014-01-01

    The article introduces the Fuqing nuclear power of nuclear steam turbine generating unit no.l purpose, range of experience, experiment preparation, implementation, feedback and response. Turn of nuclear steam turbo-generator set flush, using the main reactor coolant pump and regulator of the heat generated by the electric heating element and the total heat capacity in secondary circuit of reactor coolant system (steam generator secondary side) of saturated steam turbine rushed to 1500 RPM, Fuqing nuclear power of nuclear steam turbine generating unit no.1 implementation of the performance of the inspection of steam turbine and its auxiliary system, through the test problems found in the clean up in time, the nuclear steam sweep turn smooth realization has accumulated experience. At the same time, Fuqing nuclear power of nuclear steam turbine generating unit no.1 at turn is half speed steam turbine generator non-nuclear turn at the first, with its smooth realization of other nuclear power steam turbine generator set in the field of non-nuclear turn play a reference role. (authors)

  16. Siemens's spectrum of deliveries and services for nuclear power plants

    International Nuclear Information System (INIS)

    2011-01-01

    In 2001, Siemens and Framatome merged their nuclear activities in the present Areva NP joint venture. Siemens has since focused on the construction and further development of conventional power plants and on the so-called conventional island (CI), the non-nuclear part of a nuclear power plant, i.e. the steam turbine, generator, and plant I and C systems, and also on service for the conventional part of nuclear power plants. Its role as a minority shareholder in Areva NP constrained Siemens. For this reason, the company in January 2009 decided to terminate its interest in Areva NP effective January 30, 2012. By January 2012 at the latest, Siemens will transfer to the majority shareholder Areva, holding 66 percent of the shares, its interest in the joint venture. For the time being, the joint venture still entails certain limitations to Siemens's activities in the nuclear field. Its delivery of the conventional island for the Olkiluoto 3 (OL3) nuclear power plant in Finland confirms the company's know-how in power plant construction. When commissioned, its 1,720 MW power will make OL3 the world's largest nuclear generating unit. The turbo-generator of the CI comprises a double-flow HP turbine and a 6-flow LP turbine. The driven 4-pole generator with a power of up to 2,200 MVA consists of a water-cooled stator and a hydrogen-cooled rotor. (orig.)

  17. Ten year report on the operation of the Latina nuclear power station 1964-1973

    International Nuclear Information System (INIS)

    1976-07-01

    The final report on the operation of the Latina nuclear power station, required under the terms of the contract of participation between ENEL and EURATOM is presented. It covers the first ten years of commercial operation (1 January 1964-31 December 1973) of this power station. Latina uses a British Magnox-type gas-graphite natural uranium reactor with a design thermal capacity of 724 MW. The rated electrical output of the three main turbogenerators was originally 210 MW (3x70), but was reduced to 160 MW in 1971. Construction began in November 1958 and was completed when the reactor first reached criticality in December 1962, the station being connected to the Italian electricity network for the first time in May 1963. The gross rated output of 210 MWe was reached in December 1963 and commercial operation began on 1 January 1964, by which date, however, the power station had already fed 295.5 million kWh into the network

  18. Advanced gas cooled reactors - Designing for safety

    International Nuclear Information System (INIS)

    Keen, Barry A.

    1990-01-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme

  19. Maximizing economic and environmental performance of existing coal-fired assets

    Energy Technology Data Exchange (ETDEWEB)

    Bartley, Pat; Foucher, Jean-Claude; Hestermann, Rolf; Hilton, Bob; Keegan, Bill; Stephen, Don

    2007-07-01

    In recent years, Plant Owners and innovative suppliers such as ALSTOM have come to realize that existing coal-fired assets have in many cases hidden capacity. This largely results from the conservative nature of their original design, but also from the possibility of integrating the latest advances in technology without the need to buy complete power plant components. ALSTOM's Optimized Plant Retrofit (OPR) process is a proven method to identify the full potential of existing equipment, taking a systemic and holistic approach to achieve full optimisation. OPRs are supported by ALSTOM's comprehensive portfolio of available technologies and a proven capability to integrate retrofit opportunities encompassing innovative solutions for a variety of plant components such as coal mills, boiler, air pollution control equipment, turbogenerator, feedheating and condensing plant. By teaming utility representatives with ALSTOM's technical experts we can collectively identify solutions for enhancing both heat rate and net output, to maximise the value of existing assets. This often gives a return on investment significantly better than greenfield construction for supply margin improvement. This paper introduces the OPR concept in detail and presents case studies and insights into future developments, in particular retrofitting existing assets in an emissions constrained environment. (auth)

  20. Health effects of Chernobyl: newer perspectives

    International Nuclear Information System (INIS)

    Desai, Usha

    1996-01-01

    On the 26th of April 1986, the 4th unit of the Chernobyl Nuclear Power Plant in the former Soviet Union exploded, following a scheduled but not-well-planned testing of a turbo-generator prior to a shutdown of the reactor. This led to a release of large amounts of radioactive material into the atmosphere, resulting in a cloud not only over in the Soviet Union, but due to prevailing meteorological condition, over the Eastern Europe as well. Over the past ten years, a large number of agencies in the areas of human health and hygiene, agriculture and veterinary sciences in addition to those involved in radiation protection and radiation safety have studied the impact of the accident. These studies were also extended to evaluate and mitigate the consequences. The accident has been a warning, and has provided lessons in mitigating the consequences of any industrial accident. Newer perspectives have emerged in the area of early diagnosis and treatment of the acute effects of radiation. Research in the areas of genetics, molecular biology and radiation biology will contribute to better medical care in future. (author). 3 tabs

  1. Role of pressuriser in enhancing pressure control system capability in primary system of 500 MWe PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Walia, M P.S.; Misri, Vijay; Bapat, C N; Sharma, V K [Nuclear Power Corporation, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    The primary heat transport system of a pressurized heavy water reactor (PHWR) extracts and transports the heat produced in the fuel (located inside coolant channel assemblies) to the steam generators where steam is generated to run the turbo-generator. The heat transport medium (primary coolant) is heavy water which is kept in a pressurized liquid state with the help of a pressure control system. Feed and bleed circuits with associated equipment of PHT main system have traditionally constituted the pressure control system. However, for large size reactors of 500 MWe capacity, a surge tank known as pressurizer was incorporated due to the presence of relatively large inventory in PHT main circuit. The pressurizer acts as a cushion for pressure variations resulting from various transients. This significantly reduces the onerous demand on feed and bleed system, thereby reducing reactor outages on system pressure excursions. The paper describes in detail the pressure control system of 500 MWe PHWR involving pressuriser and feed and bleed system including their functions and instrumentation. The results of mathematical modelling/analysis undertaken to establish the response adequacy of pressure control system, to postulated plant transients vis-a-vis the role of pressurizer are presented. (author). 10 figs.

  2. FY 1989 report on the results of the development of the entrained bed coal gasification power plant. Part 3. Fabrication/installation of pilot plant (Fabrication/installation drawings and fabrication/installation pictures - 1/2); 1989 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 3. Pilot plant seisaku suetsuke hen (Seisaku suetsukezu oyobi seisaku suetsuke shashin) (1/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, the fabrication, installation work, etc. were conducted of a 200t/d entrained bed coal gasification pilot plant, and drawings of fabrication/installation in the FY 1989 were summarized. In fabrication/installation drawings, drawings of the following were included: layout of the total system and the yard, gasifier facilities (assembly drawing of the pressure part of gasifier, drawing of machinery arrangement of gasifier facilities, system diagram of raw coal receiving device, system diagram of pulverized coal feed equipment, system diagram of char feed equipment, etc.), gas refining facilities - dry desulfurizer (assembly drawing of desulfurizing agent carrying filter, assembly drawing of regeneration tower filter, structural drawing of SO{sub 2} reduction tower filter, assembly drawing of start-up heater, etc.), gas refining facilities - dry dust removal system (assembly drawing of No.1 dust separation filter, installation drawing of elevator, etc.), gas turbine facilities (cross section of gas turbine, front view of gas turbine, structural cross section of gas turbogenerator, etc.), actual-pressure/actual-size combustor test equipment (structural drawing of test stand, structural drawing of exhaust temperature reduction device, assembly/sectioned drawing of low-pressure air compressor, etc.) (NEDO)

  3. Integral design small nuclear power plant UNITHERM

    International Nuclear Information System (INIS)

    Adamovich, L. A.; Grechko, G. I.; Ulasevich, V. K.; Shishkin, V. A.

    1995-01-01

    The need to erect expensive energy transmission lines to these places demands to use independent local energy sources. Therefore, a reasonable alternative to the plants fired fossil fuel, mostly hydrocarbon fuel, may come from the nuclear power plants (NPP) of relatively small capacity which are nonattended, shipped to the site by large-assembled modules and completely withdrawable from the site during decommissioning. Application of NPPs for power and heat supply may prove to be cost-efficient and rather positive from social and ecological point of view. UNITHERM NPP belongs to such energy sources and may be used for heat and power supply. Heat can be provided both as hot water and superheated steam. The consumers are able to specify heat/energy supply ratio. NPP design provides for independent energy supply to the consumers and the possibility to disconnect each of them without disruption of operation of the others. Thermal hydraulic diagram of UNITHERM NPP provides for the use of three interconnected, process circuits. The consumers of thermal energy (turbogenerator unit and boilers of the central heating unit) are arranged in the last circuit

  4. Advanced gas cooled reactors - Designing for safety

    Energy Technology Data Exchange (ETDEWEB)

    Keen, Barry A [Engineering Development Unit, NNC Limited, Booths Hall, Knutsford, Cheshire (United Kingdom)

    1990-07-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme.

  5. Conceptual design of a nucleo electric simulator with PBMR reactor based in Reduced order models; Diseno conceptual de un simulador de nucleo electrica con reactor PBMR basado en modelos de orden reducido

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J.B. [UNAM, DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: jms0620@yahoo.com

    2005-07-01

    This project has as purpose to know to depth the operation of a PBMR nucleo electric type (Pebble Bed Modular Reactor), which has a reactor of moderate graphite spheres and fuel of uranium dioxide cooled with Helium and Brayton thermodynamic cycle. The simulator seeks to describe the dynamics of the one process of energy generation in the nuclear fuel, the process of transport toward the coolant one and the conversion to mechanical energy in the turbo-generators as well as in the heat exchangers indispensable for the process. The dynamics of reload of the fuel elements it is not modeled in detail but their effects are represented in the parameters of the pattern. They are modeled also the turbo-compressors of the primary circuit of the work fluid. The control of the power of the nuclear reactor is modeled by means of reactivity functions specified in the simulation platform. The proposed mathematical models will be settled in the platform of simulation of Simulink-Mat Lab. The proposed control panels for this simulator can be designed and to implement using the box of tools of Simulink that facilitates this process. The work presents the mathematical models more important used for their future implementation in Simulink. (Author)

  6. Intelligent neural network diagnostic system

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2010-01-01

    Recently, artificial neural network (ANN) has made a significant mark in the domain of diagnostic applications. Neural networks are used to implement complex non-linear mappings (functions) using simple elementary units interrelated through connections with adaptive weights. The performance of the ANN is mainly depending on their topology structure and weights. Some systems have been developed using genetic algorithm (GA) to optimize the topology of the ANN. But, they suffer from some limitations. They are : (1) The computation time requires for training the ANN several time reaching for the average weight required, (2) Slowness of GA for optimization process and (3) Fitness noise appeared in the optimization of ANN. This research suggests new issues to overcome these limitations for finding optimal neural network architectures to learn particular problems. This proposed methodology is used to develop a diagnostic neural network system. It has been applied for a 600 MW turbo-generator as a case of real complex systems. The proposed system has proved its significant performance compared to two common methods used in the diagnostic applications.

  7. PSAD, a prototype for monitoring and aid to diagnosis of French PWRs

    International Nuclear Information System (INIS)

    Jousselin, A.; Bourgeois, P.; Busquet, J.L.; Monnier, B.; Mouhamed, B.

    1996-01-01

    In order to improve safety and availability in its nuclear power plants, EDF has designed a new generation of monitoring systems integrated into a workstation for monitoring and aid to diagnosis (PSAD). These systems perform on-line monitoring of the main power plant components and PSAD stations provide homogenous aids ro diagnosis which enable plant personnel to diagnose the mechanical behavior of plant equipments. The objective of PSAD is to provide them with high-efficiency and user-friendly tools which can considerably free them from routine tasks. PSAD has a flexible architecture, guaranteeing optimum distribution of computing power to make it available where it is needed, thus enhancing the quality of the information. Its architecture includes diagnosis support software based on artificial intelligence technology which can dialogue with real-time or deferred-time processing software and a relational database. The first version of the prototype is working on a french plant at Tricastin. This version includes the software for the host structure and two monitoring functions: the reactor coolant pumps and the turbo-generator monitoring functions. Internal Structures Monitoring function (ISM) and Loose Parts Detection function (LPD) are under development and should be integrated into PSAD prototype in 1996. (author). 5 refs., 6 figs

  8. PSAD, a prototype for monitoring and aid to diagnosis of French PWRs; PSAD, un systeme prototype pour la surveillance et l`aide au diagnostic des centrales REP Francaises

    Energy Technology Data Exchange (ETDEWEB)

    Jousselin, A.; Bourgeois, P. [Electricite de France (EDF), 78 - Chatou (France); Busquet, J.L.; Monnier, B. [Electricite de France (EDF), 75 - Paris (France); Mouhamed, B. [SEMA Group France, 37 - Meylan (France)

    1996-03-01

    In order to improve safety and availability in its nuclear power plants, EDF has designed a new generation of monitoring systems integrated into a workstation for monitoring and aid to diagnosis (PSAD). These systems perform on-line monitoring of the main power plant components and PSAD stations provide homogenous aids ro diagnosis which enable plant personnel to diagnose the mechanical behavior of plant equipments. The objective of PSAD is to provide them with high-efficiency and user-friendly tools which can considerably free them from routine tasks. PSAD has a flexible architecture, guaranteeing optimum distribution of computing power to make it available where it is needed, thus enhancing the quality of the information. Its architecture includes diagnosis support software based on artificial intelligence technology which can dialogue with real-time or deferred-time processing software and a relational database. The first version of the prototype is working on a french plant at Tricastin. This version includes the software for the host structure and two monitoring functions: the reactor coolant pumps and the turbo-generator monitoring functions. Internal Structures Monitoring function (ISM) and Loose Parts Detection function (LPD) are under development and should be integrated into PSAD prototype in 1996. (author). 5 refs., 6 figs.

  9. Human error as the root cause of severe accidents at nuclear reactors

    International Nuclear Information System (INIS)

    Kovács Zoltán; Rýdzi, Stanislav

    2017-01-01

    A root cause is a factor inducing an undesirable event. It is feasible for root causes to be eliminated through technological process improvements. Human error was the root cause of all severe accidents at nuclear power plants. The TMI accident was caused by a series of human errors. The Chernobyl disaster occurred after a badly performed test of the turbogenerator at a reactor with design deficiencies, and in addition, the operators ignored the safety principles and disabled the safety systems. At Fukushima the tsunami risk was underestimated and the project failed to consider the specific issues of the site. The paper describes the severe accidents and points out the human errors that caused them. Also, provisions that might have eliminated those severe accidents are suggested. The fact that each severe accident occurred on a different type of reactor is relevant – no severe accident ever occurred twice at the same reactor type. The lessons learnt from the severe accidents and the safety measures implemented on reactor units all over the world seem to be effective. (orig.)

  10. Industrial trigeneration using ammonia-water absorption refrigeration systems (AAR)

    International Nuclear Information System (INIS)

    Colonna, Piero; Gabrielli, Sandro

    2003-01-01

    In many industrial processes there is a simultaneous need for electric power and refrigeration at low temperatures. Examples are in the food and chemical industries. Nowadays the increase in fuel prices and the ecological implications are giving an impulse to energy technologies that better exploit the primary energy source and integrated production of utilities should be considered when designing a new production plant. The number of so-called trigeneration systems installations (electric generator and absorption refrigeration plant) is increasing. If low temperature refrigeration is needed (from 0 to -40 deg. C), ammonia-water absorption refrigeration plants can be coupled to internal combustion engines or turbogenerators. A thermodynamic system study of trigeneration configurations using a commercial software integrated with specifically designed modules is presented. The study analyzes and compares heat recovery from the primary mover at different temperature levels. In the last section a simplified economic assessment that takes into account disparate prices in European countries compares conventional electric energy supply from the grid and optimized trigeneration plants in one test case (10 MW electric power, 7000 h/year)

  11. The Swiss contribution to American nuclear technology and industry

    International Nuclear Information System (INIS)

    Lueling, H.C.

    1981-01-01

    After a brief review of the industrial position in Switzerland (40 years of industrial peace, extensive development of nuclear energy to an installed capacity of 2000MW, supplying 33% of the national energy requirement) the article considers the following institutions that contribute substantially to the nuclear situation: the Federal Institute for Reactor Research (EIR), Brown Boveri and Cie AG, Gebrueder Sulzer AG, Georg Fischer AG. It lists the spheres of cooperation between the EIR and organisations in the USA. The industrial contributions include: Large welded turbo-generator rotors (up to 1300MW, 2640mm dia.) from BBC; single-tube forced-circulation steam generators, site welded pressure vessels (152mm wall thickness), spherical containment vessels envelopes (52mm dia.) from Gebr. Sulzer; very large (227 000HP, 5.4m dia.) Pelton wheels of cavitation-resistant stainless steel, high-pressure pumps for nuclear plants from G. Fischer. In conclusion it discusses the prospects for the high-temperature helium reactor in combination with the closed-circuit gas turbine. (C.J.O.G.)

  12. Analysis of the force exercised in pipes by accumulation of water in the head stock of turbine bypass

    International Nuclear Information System (INIS)

    Cecenas F, M.; Ovando C, R.; Campos G, R. M.

    2011-11-01

    The head stock and valves of turbine bypass allow canalize the main vapor coming from the reactor toward the condenser, without carrying out work in the turbo-generator. In this work is assumed that is accumulates condensed in the head stock during a time period in which the bypass system does not operate. For operation maneuvers, the opening of the bypass is demanded, for what the accumulated water is suddenly dragged by the vapor to high pressure coming from the reactor toward the condenser, which operates to inferior pressures to the atmospheric. The generated flow produces a mechanical effort in the lines and its supports. By means of the RELAP5 code the bypass system is modeled, the discharge transitory to the condenser is simulated and the speeds of the mixture water/vapor are calculated. Processing the exit of RELAP5 the mechanical effort that is subjected the pipe is calculated, and the study is complemented with a sensibility analysis to the quantity of stored water in the volume of the bypass head stock. (Author)

  13. Conceptual design of a nucleo electric simulator with PBMR reactor based in Reduced order models

    International Nuclear Information System (INIS)

    Valle H, J.; Morales S, J.B.

    2005-01-01

    This project has as purpose to know to depth the operation of a PBMR nucleo electric type (Pebble Bed Modular Reactor), which has a reactor of moderate graphite spheres and fuel of uranium dioxide cooled with Helium and Brayton thermodynamic cycle. The simulator seeks to describe the dynamics of the one process of energy generation in the nuclear fuel, the process of transport toward the coolant one and the conversion to mechanical energy in the turbo-generators as well as in the heat exchangers indispensable for the process. The dynamics of reload of the fuel elements it is not modeled in detail but their effects are represented in the parameters of the pattern. They are modeled also the turbo-compressors of the primary circuit of the work fluid. The control of the power of the nuclear reactor is modeled by means of reactivity functions specified in the simulation platform. The proposed mathematical models will be settled in the platform of simulation of Simulink-Mat Lab. The proposed control panels for this simulator can be designed and to implement using the box of tools of Simulink that facilitates this process. The work presents the mathematical models more important used for their future implementation in Simulink. (Author)

  14. Analysis of the first stage in the reactor accident development at the Chernobyl NPP fourth unit

    International Nuclear Information System (INIS)

    Adamov, E.O.; Vasilevskij, V.P.; Ionov, A.I.

    1988-01-01

    Results of analyzing possible development of the first stage of the accident at the Chernobyl NPP fourth unit from the moment of pressing the Az-5 push button are presented. Calculations were conducted using the TRIADA three-dimensional dynamic program both for conditions without pump switching off and with their switching off. Distribution of neutron field over the core volume was determined according to actual readings of in-core detectors immediately before turbogenerator switching off. It is shown that sufficient reconstruction of neutron field begins immediately after pressing the Az-5 push button. Prohibitive decrease of operative reactivity margin which was admitted by personnel in the accident resulted in the growth of neutron power in reactor lower part within 1.5 s, predominating over power decrease in the upper part. Thus, the average integral power grows achieving the maximum during 7.5 s, after which its sharp decrease begins. Conditions with switching off of 4 circulating pumps lead to intesive growth of power and reactor runaway, initiated in the lower part of the core, which safety rods have not managed to reach. Fuel element temperature at that exceeds fuel melting point in the most power-intensive regions. This causes extremely intensive process of steam generation and overheating, pressure growth in the circuit, short-time decrease of the rate of operating pumps, destruction of fuel channels and the whole reactor. Primary measures assuring RBMK ractor safety were formulated on the basis of conducted investigation

  15. Full base isolation for earthquake protection by helical springs and viscodampers

    International Nuclear Information System (INIS)

    Hueffmann, G.K.

    1985-01-01

    GERB, a company specializing in vibration isolation has developed a new system for the three dimensional earthquake protection of whole structures, based on helical springs with definite linear flexibility of similar order in all three dimensions and velocity proportional viscodampers, also highly effective in all degrees of freedom. This system has already been successfully used for the installation of big diesel- and turbo-generators in seismic zones for quite a long time, where earthquake protection has been combined with conventional vibration control concepts. Tests on the shaking table of the Earthquake Research Institute at Skopje/Yugoslavia with a model of a 5-story-steel-frame-building comparing a fixed base and spring viscodamper supported installation have shown high stress relief in the structure at limited amplitudes. This system will give not only more protection for buildings and the people inside, but the extra cost equals the savings in the structure. Some unique advantages of this system are: no creep, deterioration or fatigue with time, easy inspection, simple replacement of elements if necessary and also simple modification of the system for example in case of load changes, static uncoupling from the subfoundation (independence of settlements) and low influence of travelling wave effects. (orig.)

  16. New cost saving technologies: microturbines - a new way to generate power

    International Nuclear Information System (INIS)

    Kline, R.

    1999-01-01

    The use of microturbines for power distribution was discussed and illustrated by a series of overhead viewgraphs which accompanied this presentation. The paper presented an explanation of how microturbines work and how they can be used for onsite distributed generation. Microturbines were described as being portable and compact gas turbines of less than 100 kW, with high speed single shaft design. One of their main advantages are their capability for remote monitoring and operation. Results of microturbine testing at Suncor's Joffre Plant were presented. Some of the advantages of using Mercury Electric's IPP and TurboGenerator Distributor were also discussed. The operating modes for the unit include: (1) peak shaving for larger load customers, (2) cogeneration for base load applications, (3) emergency/standby/UPS applications, and (4) portable generation for temporary power. The unit can be used in commercial and industrial buildings and is also ideal for remote locations. The environmental benefits associated with the unit is that it can be used for cogeneration power and can utilize waste gas flares which have been associated with harmful emissions to the atmosphere. 7 figs

  17. Preventive maintenance technology for nuclear power stations

    International Nuclear Information System (INIS)

    Miyazawa, Tatsuo

    1992-01-01

    With the increase of the number of nuclear power plants in operation and the number of years of operation, the improvement of reliability and the continuation of safe operation have become more important, and the expectation for preventive maintenance technology has also heightened. The maintenance of Japanese nuclear power plants is based on the time schedule maintenance mainly by the regular inspection carried out every year, but the monitoring of the conditions of various machinery and equipment in operation has been performed widely. In this report, the present state of checkup and inspection technologies and the monitoring and diagnostic technologies for operational condition, which are the key technologies of preventive maintenance, are described. As the checkup and inspection technologies, ultrasonic flow detection technology, phased array technology, Amplituden und Laufzeit Orts Kurven method and X-ray CT, and as the monitoring and diagnostic technologies for operational condition, the diagnosis support system for BWR plants 'PLADIS', those for rotary machines, those for turbogenerators, those for solenoid valves, the mechanization of patrol works and the systematizing technology are reported. (K.I.)

  18. Presenting a model of repair and preventing maintenance of Bushehr nuclear power plants analyzing the data of similar nuclear power plants

    International Nuclear Information System (INIS)

    Parikhan, Hammidreza

    1997-01-01

    Due to the increase application of nuclear energy for producing electricity, special attention must be paid to their maintenance activities in general and preventive maintenance in particular. It has been shown that a well established preventive maintenance programme will enhance the reliability and availability of nuclear power plants. A model of preventive maintenance for Buhehr nuclear power plant which is due to be completed by 2001 is developed. The prescribed model is based on past experiences of VVER nuclear power plants around the world. The utilized data is provided by International Atomic Energy Agency (IAEA) in Vienna, Austria. The data and past experiences reveal such important information as availability, energy loss, types of failures, duration of failure, etc. A strategy for designing a database is established. These data are then analyzed by statistical methods such as Pareto analysis, t-test, K-S test, analysis of variance, etc. The results of our analysis reveal important information in regard to establishment of a well-defined preventive maintenance programme in Buhshehr nuclear power plant. The results show that certain equipment such turbo-generator and control-rods play an important role in the maintenance of a VVER nuclear power plant. Other findings are discussed in great detail

  19. Torsional Vibration of a Shafting System under Electrical Disturbances

    Directory of Open Access Journals (Sweden)

    Ling Xiang

    2012-01-01

    Full Text Available Torsional vibration responses of a nonlinear shafting system are studied by a modified Riccati torsional transfer matrix combining with the Newmark-β method. Firstly, the system is modeled as a chain consisting of an elastic spring with concentrated mass points, from which a multi-segment lumped mass model is established. Secondly, accumulated errors are eliminated from the eigenfrequencies and responses of the system's torsional vibration by this newly developed procedure. The incremental transfer matrix method, combining the modified Riccati torsional transfer matrix with Newmark-β method, is further applied to solve the dynamical equations for the torsional vibration of the nonlinear shafting system. Lastly, the shafting system of a turbine-generator is employed as an illustrating example, and simulation analysis has been performed on the transient responses of the shaft's torsional vibrations during typical power network disturbances, such as three-phase short circuit, two-phase short circuit and asynchronous juxtaposition. The results validate the present method and are instructive for the design of a turbo-generator shaft.

  20. Automotive Thermoelectric Generator impact on the efficiency of a drive system with a combustion engine

    Directory of Open Access Journals (Sweden)

    Ziolkowski Andrzej

    2017-01-01

    Full Text Available Increasing the combustion engine drive systems efficiency is currently being achieved by structural changes in internal combustion engines and its equipment, which are geared towards limiting mechanical, thermal and outlet losses. For this reason, downsizing. In addition to these changes, all manner of exhaust gas energy recovery systems are being investigated and implemented, including turbocompound, turbogenerators and thermoelectric generators. The article presents the author’s idea of a thermoelectric generator system of automotive applications ATEG (Automotive Thermoelectric Generator and the study of the recovery of exhaust gas energy stream. The ATEG consists of a heat exchanger, thermoelectric modules and a cooling system. In this solution, 24 commercial thermoelectric modules based on Bi2Te3 (bismuth telluride were used. Measurements were made at two engine test sites on which SI and CI engines were installed. The exhaust gas parameters (temperature and mass flow rate, fuel consumption and operating parameters of the ATEG – the intensity and the voltage generated by the thermoelectric modules and the temperature on the walls of the heat exchanger – were all measured in the experiments. Based on the obtained results, the exhaust gas energy flow and the power of the ATEG were determined as well as its effect on the diesel engine drive system efficiency.

  1. Indigenous procurement of nuclear components at Tarapur (Paper No. 013)

    International Nuclear Information System (INIS)

    Verma, D.K.; Moss, V.J.

    1987-02-01

    The Tarapur Atomic Power Station (TAPS) was the first nuclear power station in developing countries and the first twin BWR units in the world. The Station has two units of boiling water reactor of very early design; along with its turbo-generator and supporting systems; constructed by M/s. I.G.E. on turnkey basis. Based on vendor recommendations initial operating spares for 5 years of operation were purchased from original equipment manufacturers. This does not call for the participation of the ultimate user; in the design, development, manufacture and quality control and user's participation remained confined to assemble the acceptable component(s) procured from original source in the assembly. As early as 1972, Plant initiated indigenising the nuclear components by gradually increasing the contribution of indigenous industry with due participation of the departmental agencies. Procurement of nuclear components requires development of engineering to an extent; where interphase communication between TAPS and counterpart indigenous industry is practicable to motivate them. Feedback from operation and maintenance practices is also utilised effectively. For some of the components initial sample were developed at TAPS and subsequently bulk fabrication was taken by industry. This paper describes manufacture, quality control during the process of manufacture and procurement of indigenous nuclear components relevant to Tarapur Atomic Power Station. (author)

  2. Cost-effective and reliable design of a solar thermal power plant

    International Nuclear Information System (INIS)

    Aliabadi, A.A.; Wallace, J.S.

    2009-01-01

    A design study was conducted to evaluate the cost-effectiveness of solar thermal power generation in a 50 kWe power plant that could be used in a remote location. The system combines a solar collector-thermal storage system utilizing a heat transfer fluid and a simple Rankine cycle power generator utilizing R123 refrigerant. Evacuated tube solar collectors heat mineral oil and supply it to a thermal storage tank. A mineral oil to refrigerant heat exchanger generates superheated refrigerant vapor, which drives a radial turbogenerator. Supplemental natural gas firing maintains a constant thermal storage temperature irregardless of solar conditions enabling the system to produce a constant 50 kWe output. A simulation was carried out to predict the performance of the system in the hottest summer day and the coldest winter day for southern California solar conditions. A rigorous economic analysis was conducted. The system offers advantages over advanced solar thermal power plants by implementing simple fixed evacuated tube collectors, which are less prone to damage in harsh desert environment. Also, backed up by fossil fuel power generation, it is possible to obtain continued operation even during low insolation sky conditions and at night, a feature that stand-alone PV systems do not offer. (author)

  3. Paluel: the production of James Bay on the Cliffs of the Pays de Caux

    International Nuclear Information System (INIS)

    Fridman, G.

    1983-01-01

    The main characteristics concerning the confinement enclosure, the reactor vessel, the fuel used, the primary pumps, the steam generator and the first 1300 MW turbogenerator are reviewed; some comparisons with the 900 MW reactors are made. The design of the cooling system constitutes one of the original features of the installations. A glimpse of the work site, the largest in the world at the present time, is given. Concurrently, the EDF is preparing the infrastructures for training the operational personnel of the new 1300 MW unit. The Paluel site is one of the first where the procedure called''large site'' has been applied in order to build in good time the equipment making it possible to provide the site workers and their families with living conditions as close as possible to those of the remainder of the population. To conclude the question of the investment is tackled. By the end of 1985, the 5200 MW of Paluel (4 units of 1300 MW) will be generating from 30 to 35 billion kWh, as much as James bay [fr

  4. PCDD/PCDF reduction by the co-combustion process.

    Science.gov (United States)

    Lee, Vinci K C; Cheung, Wai-Hung; McKay, Gordon

    2008-01-01

    A novel process, termed the co-combustion process, has been developed and designed to utilise the thermal treatment of municipal solid waste (MSW) in cement clinker production and reduce PCDD/PCDF emissions. To test the conceptual design; detailed engineering design of the process and equipment was performed and a pilot plant was constructed to treat up to 40 tonnes MSW per day. The novel process features included several units external to the main traditional cement rotary kiln: an external calcinations unit in which the hot gas calcined the limestone thus making significant energy savings for this chemical reaction; the lime generated was used in a second chamber to act as a giant acid gas scrubber to remove SOx and particularly HCl (a source of chloride); an external rotary kiln and secondary combustion unit capable of producing a hot gas at 1200 degrees C; a gas cooler to simulate a boiler turbogenerator set for electricity generation; the incorporation of some of the bottom ash, calcined lime and dust collector solids into the cement clinker. A PCDD/PCDF inventory has been completed for the entire process and measured PCDD/PCDF emissions were 0.001 ng I-TEQ/Nm(3) on average which is 1% of the best practical means [Hong Kong Environmental Protection Department, 2001. A guidance note on the best practicable means for incinerators (municipal waste incineration), BPM12/1] MSW incineration emission limit values.

  5. Electricity from waste heat

    Science.gov (United States)

    Larjola, Jaakko; Lindgren, Olli; Vakkilainen, Esa

    In industry and in ships, large amounts of waste heat with quite a high release temperature are produced: examples are combustion gases and the exhaust gases of ceramic kilns. Very often they cannot be used for heating purposes because of long transport distances or because there is no local district heating network. Thus, a practical solution would be to convert this waste heat into electric power. This conversion may be carried out using an ORC-plant (Organic Rankine Cycle). There are probably some twenty ORC-plants in commercial use in the world. They are, however, usually based on conventional power plant technology, and are rather expensive, complicated and may have significant maintenance expenses. In order to obviate these problems, a project was started at Lappeenranta University of Technology at the beginning of 1981 to develop a high-speed, hermetic turbogenerator as the prime mover of the ORC. With this new technology the whole ORC-plant is quite simple, with only one moving part in the power system. It is expected to require very little maintenance, and the calculations made give for it significantly lower specific price than for the conventional technology ORC-plant. Two complete prototypes of the new technology ORC-plant have been built, one to the laboratory, other to industrial use. The nominal output of both is 100 kW electricity. Calculated amortization times for the new ORC-plant range from 2.1 to 6.

  6. The first stage of licensing of PBMR in South Africa and safety issues

    International Nuclear Information System (INIS)

    Clapisson, G.A.; Mysen, A.

    2002-01-01

    The National Nuclear Regulator (NNR) has received a nuclear installation licence application from Eskom (the South African electricity utility). The Application is made in accordance with the National Nuclear Regulator Act for a nuclear installation licence for the demonstration module of a 110 MWe Class Pebble Bed Modular Reactor (PBMR) electricity generating power station. It is proposed to locate the installation on Eskom property within the owner-controlled boundary of Koeberg Nuclear Power Station situated in the Western Cape, subject to inter alia a favourable Environmental Impact Assessment (EIA) record of decision, which is currently being undertaken under the requirements of another legislation the Environment Conservation Act. The PBMR is a graphite moderated helium cooled reactor using a direct gas cycle to convert the heat, generated by nuclear fission in the reactor and transferred to the coolant gas, into electrical energy by means of a helium turbo-generator. By design, provision has been made to accommodate the storage of spent fuel in the buildings for the 40-year design life of the plant and thereafter for a further period if so required. Radioactive material and waste will be managed and disposed of in accordance with Regulatory and Government legal requirements. (authors)

  7. PSAD-a monitoring and aid to diagnosis system participating in saving on maintenance and operation costs and for plant life extension

    International Nuclear Information System (INIS)

    Brasseur, S.; Morel, J.; Joussellin, A.

    1997-01-01

    Monitoring nuclear plants components enable to save on operation and maintenance costs by reducing incidents gravity and casual plant stoppages thank to early detection and fast diagnosis. Improving the knowledge of the behaviour of the plant will also allow to optimize maintenance and to increase plant life. In order to improve monitoring and diagnosis capabilities in nuclear power plants. Electricite de France (EDF) is extending the existing data processing chains towards automatic aided interpretation and diagnosis. Therefore, EDF has designed an integrated monitoring and diagnosis assistance system: PSAD-Poste de Surveillance et d'Aide au Diagnostic, including several monitoring functions of the main components. It integrates on-line monitoring, off-line diagnosis and knowledge based systems. PSAD stations provide homogeneous aids to diagnosis which enable plant personnel to pinpoint the mechanical behaviour of plant equipment. The objective of PSAD is to provide them with high-efficiency and user-friendly tools which can considerabily free them from routine tasks. The first version of the prototype is working on a French Plant. This version includes the software host structure and two monitoring functions: the Reactor Coolant Pumps and the Turbo-generator Monitoring functions. Internal Structures Monitoring function and Loose Parts Detection are still under development and should be integrated into PSAD prototype in 1998

  8. Three-dimensional studies of the 700 MWe steam generator design

    International Nuclear Information System (INIS)

    John, B.; Pietralik, J.

    2006-01-01

    The next stage in the Indian nuclear power programme envisions building 700 MWe Indian Pressurized Heavy Water Reactor (IPHWR) units. This involves up-rating of all the plant equipment including the reactor, steam generators (SGs), turbo-generator, major pumps, etc. The SG used in the current generation of 540 MWe IPHWRs, is a mushroom type, inverted U-tube, natural-circulation SG. The 700 MWe SG is of the same type and has the same tube bundle design and the same heat transfer area. The tube diameter, tube pitch, and outer diameter of the SG sections are the same as for the 540 MWe SG. The geometry of the feedwater header, the flow restrictor in the downcomer and the flow distribution plate are different in the two designs. The changes were required due to a 26% increase in steam flow rate while maintaining the same circulation ratio. This paper describes the design of the 700 MWe SG and a thermalhydraulic analysis using a one-dimensional, in-house code and a three-dimensional code called THIRST developed by AECL. The codes were validated against the 540 MWe SG data. The analysis was made for the 700 MWe SG for two versions: with and without integral preheater. The results of the THIRST runs were used for a flow-induced vibration analysis. The results of the flow-induced vibration analysis show that the vibrations are not excessive. (author)

  9. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Aden, A.; Ruth, M.; Ibsen, K.; Jechura, J.; Neeves, K.; Sheehan, J.; Wallace, B.; Montague, L.; Slayton, A.; Lukas, J.

    2002-06-01

    This report is an update of NREL's ongoing process design and economic analyses of processes related to developing ethanol from lignocellulosic feedstocks. The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL. We envision updating this process design report at regular intervals; the purpose being to ensure that the process design incorporates all new data from NREL research, DOE funded research and other sources, and that the equipment costs are reasonable and consistent with good engineering practice for plants of this type. For the non-research areas this means using equipment and process approaches as they are currently used in industrial applications. For the last report, published in 1999, NREL performed a complete review and update of the process design and economic model for the biomass-to-ethanol process utilizing co-current dilute acid prehydrolysis with simultaneous saccharification (enzymatic) and co-fermentation. The process design included the core technologies being researched by the DOE: prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production. In addition, all ancillary areas--feed handling, product recovery and purification, wastewater treatment (WWT), lignin combustor and boiler-turbogenerator, and utilities--were included. NREL engaged Delta-T Corporation (Delta-T) to assist in the process design evaluation, the process equipment costing, and overall plant integration. The process design

  10. Dynamic Analysis of Coolant Channel and Its Internals of Indian 540 MWe PHWR Reactor

    Directory of Open Access Journals (Sweden)

    A. Rama Rao

    2008-04-01

    Full Text Available The horizontal coolant channel is one of the important parts of primary heat transport system in PHWR type of reactors. There are in all 392 channels in the core of Indian 540 MWe reactor. Each channel houses 13 natural uranium fuel bundles and shielding and sealing plugs one each on either side of the channel. The heavy water coolant flows through the coolant channel and carries the nuclear heat to outside the core for steam generation and power production in the turbo-generator. India has commissioned one 540 MWe PHWR reactor in September 2005 and another similar unit will be going into operation very shortly. For a complete dynamic study of the channel and its internals under the influence of high coolant flow, experimental and modeling studies have been carried out. A good correlation has been achieved between the results of experimental and analytical models. The operating life of a typical coolant channel typically ranges from 10 to 15 full-power years. Towards the end of its operating life, its health monitoring becomes an important activity. Vibration diagnosis plays an important role as a tool for life management of coolant. Through the study of dynamic characteristics of the coolant channel under simulated loading condition, an attempt has been made to develop a diagnostics to monitor the health of the coolant channel over its operating life. A study has been also carried out to characterize the fuel vibration under different flow condition.

  11. Experimental modal analysis of the steam inlet pipe to the Chooz B1 high pressure turbine

    International Nuclear Information System (INIS)

    Guihot, O.; Anne, J.P.; Chartain, G.; Le Pironnec, D.

    1993-05-01

    This report presents the results of the modal analysis carried out on one of the steam inlet pipe of the high pressure turbine of the Chooz B1 power plant. This experimental analysis is made within the frame of the research and development project ''dynamical, acoustical and aerodynamical behaviour of the turbogenerator N4''. This research program provides amongst others, numerical studies with the software CIRCUS and ASTER, in order to verify the dynamical behaviour of the designed inlet pipe. The numerical models will be updated from results of the experimental modal analysis to improve the numerical representation of this pipe. All the identified modes in the frequency band [5.2000] Hz are presented in the report. The modal characteristics of the main modes are detailed. Further analysis have been made, in order ease the updating of the numerical models. They consisted in an analysis of the evolution of the dynamical behaviour due to a change of the boundary conditions of the inlet valve frame on one hand and resulting from the presence of an additional mass on the pipe, at the level of the middle flange, on the other hand. The analysis made in low frequency range shows that the pipe is thoroughly embedded in the frame of the high pressure turbine. On the other hand, the boundary conditions on the inlet valve frame are more difficult to determine, because the dynamical behaviour of the valve frame and the upper pipe can not be uncoupled from the considered pipe. The main shell modes of ranks 2, 3 and 4 have been very accurately identified. The most relevant modes to update the numerical models are given. (authors). 48 figs., 18 tabs., 4 refs

  12. Information systems for civil engineering; Sistemas de informacion para ingenieria civil

    Energy Technology Data Exchange (ETDEWEB)

    De Buen R, Pablo R; Alvarado G, Alonso; Alaniz Q, Felipe de J; Guerrero F, Vicente A. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2004-07-01

    Since its beginnings, in the Gerencia de Ingenieria Civil (GIC) of the Instituto de Investigaciones Electricas (IIE) the interest has existed to take advantage of and to promote the advantages that the appropriate use of the computerizing systems in the different tasks of civil engineering in the power sector represent. Either as a part of its infrastructure or at the request of their clients, at the GIC have been developed calculation systems for the analysis and design of special structures such as turbo-generators foundations, poles for transmission and distribution and transmission towers, in addition the information systems for the consultation and the analysis of diverse information, such as the related to the Manuals of Civil Works of the Comision Federal de Electricidad (CFE) or the relative to the existing instruments in the large dams of our country. In this article are briefly described some of the computer systems developed by the GIC in recent years. [Spanish] Desde sus inicios, en la Gerencia de Ingenieria Civil (GIC) del Instituto de Investigaciones Electricas (IIE) ha existido el interes por aprovechar y promover las ventajas que representa el uso adecuado de los sistemas de computo en las diferentes tareas de ingenieria civil en el sector energetico. Ya sea como parte de su infraestructura o a solicitud de sus clientes, en la GIC se han desarrollado sistemas de calculo para el analisis y diseno de estructuras especiales como lo son las cimentaciones de turbogeneradores, los postes para transmision y distribucion y las torres de transmision, ademas de sistemas de informacion para la consulta y el analisis de informacion diversa, como es la relacionada con los manuales de obras civiles de la Comision Federal de Electricidad (CFE) o a la relativa a los instrumentos existentes en las grandes presas de nuestro pais. En este articulo se describen brevemente algunos de los sistemas de computo desarrollos por la GIC en anos recientes.

  13. Absorption refrigeration cycle applied to offshore platforms; Refrigeracao por absorcao aplicada a plataformas de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Maximino Joaquim Pina [KROMAV Engenharia, Rio de Janeiro, RJ (Brazil); Pinto, Luiz Antonio Vaz; Belchior, Carlos Rodrigues Pereira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE)

    2004-07-01

    To produce cold from the heat seems a task unlikely or even impossible. However, absorption systems produce cooling from heat sources and it exist since the century XIX. In industrial places is very important to improve the energy use, even more in places where the activities involve great costs and incomes. Traditionally the alternatives conflict in the aspects of initial and operational costs. This paper describes the absorption systems operation and its main advantages and disadvantages, when compared to the traditional systems with compressor. The known fact that a vapor compressor system presents larger efficiency is not enough to validate it for all of the applications. In this sense, the initial and operational analysis of the costs of the absorption systems becomes interesting. In spite of, double effect absorption systems are demonstrating the evolution of the absorption cycle in order to obtain better performance. Turbo-generators and Turbo-compressors of the offshore platforms are thermal machines that reject great amount of heat in the exhaust gases. This heat is used for heating of water used in the Process Plant. The processes of separation of the mixture water-oil-gas from the well, for instance, use that heat. Even after the passage of the water in the Plant of Process, the residual heat is still enough for the use in absorption systems. A simulation is done using real data of an offshore platform. Two possible alternatives are compared under technical and economical aspects. Sensibility analysis is also performed in order to verify possible impacts of variations of electric power cost. (author)

  14. Complementary Power Control for Doubly Fed Induction Generator-Based Tidal Stream Turbine Generation Plants

    Directory of Open Access Journals (Sweden)

    Khaoula Ghefiri

    2017-06-01

    Full Text Available The latest forecasts on the upcoming effects of climate change are leading to a change in the worldwide power production model, with governments promoting clean and renewable energies, as is the case of tidal energy. Nevertheless, it is still necessary to improve the efficiency and lower the costs of the involved processes in order to achieve a Levelized Cost of Energy (LCoE that allows these devices to be commercially competitive. In this context, this paper presents a novel complementary control strategy aimed to maximize the output power of a Tidal Stream Turbine (TST composed of a hydrodynamic turbine, a Doubly-Fed Induction Generator (DFIG and a back-to-back power converter. In particular, a global control scheme that supervises the switching between the two operation modes is developed and implemented. When the tidal speed is low enough, the plant operates in variable speed mode, where the system is regulated so that the turbo-generator module works in maximum power extraction mode for each given tidal velocity. For this purpose, the proposed back-to-back converter makes use of the field-oriented control in both the rotor side and grid side converters, so that a maximum power point tracking-based rotational speed control is applied in the Rotor Side Converter (RSC to obtain the maximum power output. Analogously, when the system operates in power limitation mode, a pitch angle control is used to limit the power captured in the case of high tidal speeds. Both control schemes are then coordinated within a novel complementary control strategy. The results show an excellent performance of the system, affording maximum power extraction regardless of the tidal stream input.

  15. Borosonic inspection and remaining useful operational life estimation of steam turbine rotors; Inspeccion borosonica y estimacion de vida remanente de rotores de turbinas de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Carnero P, Jose A; Dorantes G, Oscar; Munoz Q, Rodolfo; Serrano R, Luis E. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2004-07-01

    The turbo-generators used in the electric power generation frequently go through transitory operations (start ups, shut downs or power changes). Such actions cause that certain critical components of the turbines, such as rotors and casings, are put under cycles of repetitive stresses, which consume its useful life. The frequency whereupon these transitory thermal cycles happen result in the presence of high thermo-mechanical stresses that produce fatigue (damage) in the rotor material. With time, at the increase of the material fatigue, fissures form that can inclusively lead to severe, catastrophic faults. The borosonic inspection consists in introducing and positioning an automatic probe in the central drill of the rotor, this allows the non-destructive inspection with longitudinal ultrasonic beam, ultrasonic cross-sectional and ultrasonic superficial. This way, it is possible to detect and locate geometric discontinuities (superficial and volumetric), in at least 100 mm of depth from the drill surface in its entire periphery and throughout the rotor length. [Spanish] Los turbogeneradores empleados en la generacion de energia electrica con frecuencia realizan operaciones transitorias (arranques, paros o cambios de potencia). Acciones tales, provocan que ciertos componentes criticos de las turbinas, como los rotores y carcasas, sean sometidos a ciclos de esfuerzos repetitivos, lo que consume su vida util. La frecuencia con que ocurren estos ciclos termicos transitorios da como resultado la presencia de altos esfuerzos termomecanicos que producen una fatiga (dano) en el material del rotor. Con el tiempo, al incrementarse la fatiga del material, se forman fisuras que pueden conducir a fallas severas, catastroficas inclusive. La inspeccion borosonica consiste en introducir y posicionar una sonda automatica en el barreno central del rotor, ello permite la inspeccion no destructiva con haz ultrasonico longitudinal, haz ultrasonico transversal y haz ultrasonico

  16. Evaluation of a process for the removal of gases contained in geothermal steam through condensation and re-evaporation; Evaluacion de un proceso de remocion de gases contenidos en el vapor geotermico, por medio de la condensacion y de revaporacion

    Energy Technology Data Exchange (ETDEWEB)

    Angulo C, Raul; Lam Rea, Luis; Garmino, Hector; Jimenez, Humberto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    The Cerro Prieto I Geothermal Field, developed and operated by the Comision Federal de Electricidad (CFE), has currently an installed electric power generation capacity of 180 MW and is at a very advanced stage in the development of Cerro Prieto II and III, which will allow to raise the generation capacity to 620 MW. During the exploitation of a geothermal field, in producing steam with the purpose of generating electricity, brines and waste gases are obtained. The hydrogen sulfide exhaust to the environment implies pollution problems, for this reason processes have been developed for the oxidation of these gases downstream the turbogenerator either in the flow of separated gases in the steam condensation or in the condensate produced. The Instituto de Investigaciones Electricas (IIE) has collaborated with CFE in the evaluation of the environmental impact of this gas and in the development of the processes for its abatement. [Espanol] El campo geotermico de Cerro Prieto I, desarrollado y operado por la Comision Federal de Electricidad (CFE), actualmente tiene una capacidad instalada de generacion de energia electrica de 180 MW, y se encuentra en etapa muy avanzada, el desarrollo de Cerro Prieto II y III, lo que permitira incrementar la capacidad de generacion a 620 MW. Durante la explotacion de un campo geotermico, al producir vapor con el proposito de generar electricidad, se obtienen salmueras y gases de desecho. La descarga de acido sulfhidrico a la atmosfera implica problemas de contaminacion, por esta razon se han desarrollado procesos para la oxidacion de este gas aguas abajo de la turbina generadora, ya sea en la corriente de gases que se separan en la condensacion del vapor o en el condensado producido. El Instituto de Investigaciones Electricas (IIE) ha colaborado con la CFE en la evaluacion del impacto ambiental de este gas y en el desarrollo de sus procesos de abatimiento.

  17. Turbo-machine deployment of HTR-10 GT

    International Nuclear Information System (INIS)

    Zhu Shutang; Wang Jie; Zhang Zhengming; Yu Suyuan

    2005-01-01

    As a testing project of gas turbine modular High Temperature Gas-cooled Reactor (HTGR), HTR-10GT has been studied and developed by Institute of Nuclear and New Energy Technology (INET) of Tsinghua University after the success of HTR-10 with steam turbine cycle. The main purposes of this project are to demonstrate the gas turbine modular HTGR, to optimize the deployment of Power Conversion Unit (PCU) and to verify the techniques of turbo-machine, operating modes and controlling measures. HTR-10GT is concentrated on the PCU design and the turbo-machine deployment. Possible turbo-machine deployments have been investigated and two of them are introduced in this paper. The preliminary design for the turbo-machine of HTR-10GT is single-shaft of vertical layout, arranged by the side of the reactor and the turbo-compressor rotary speed was selected to be 250 s -1 (15000 r/min) by considering the efficiency of turbo-compressor blade systems, the strength conditions and the mass and size characteristics of the turbo-compressor. The rotor system will be supported by electromagnetic bearings (EMBs) to curb the possible pollutions of the primary loop. Of all the components in this design, the high speed turbo-generator seems to be a world-wide technical nut. As an alternative design, a gearbox complex is used to reduce the rotary speed from the turbo-compressor 250 s -1 to 50 s -1 so that the ordinary generator can be used. (authors)

  18. Information on the Chernobyl NPP accident and its consequencies prepared for IAEA

    Energy Technology Data Exchange (ETDEWEB)

    1986-11-01

    The information on the accident at the 4th power unit of the Chernobyl NPP and its consequences prepared for IAEA on the basis of the conclusions made by the Government commission constituted for investigating the accident causes and implementing the necessary emergency and reconstruction measures is given. The accident with reactor core disruption and partial destruction of the building Lappened on 26.04.86 at 1 hour and 23 minutes. The accident occurred before reactor shut-down for planned repairs during the testing of one of turbogenerators. The design features of the RBMK-1000 reactor plant, its main physical characteristics and parameters of the NPP safety system are considered. The chronology of the accident development and the results of analysis carried out using a mathematical model are given. The causes of the accident are analyzed. The measures for preventing the accident development and lessening its consequences as well as those for the environment radioactive contamination control and sanitary provisions are described in detail. The conclusion is made that the original cause of the accident is highly improbable combination of disorder and errors in operational conditions made by the personnel of the power unit. It is emphasized that development of the world nuclear engineering, besides advantages in the field of power supply and natural resources conservation, incurs also damages of international character. Among these are transboundary radioactivity transport, in particular, during serious radiation accidents and the danger of international terrorism and specific radiation hazard of nuclear objects under war conditions. All this defines the key necessity of deep international cooperation in the field of nuclear power engineering and its safeguarding.

  19. South Ukraine NPP: Safety improvements through Plant Computer upgrade

    International Nuclear Information System (INIS)

    Brenman, O.; Chernyshov, M. A.; Denning, R. S.; Kolesov, S. A.; Balakan, H. H.; Bilyk, B. I.; Kuznetsov, V. I.; Trosman, G.

    2006-01-01

    This paper summarizes some results of the Plant Computer upgrade at the Units 2 and 3 of South Ukraine Nuclear Power Plant (NPP). A Plant Computer, which is also called the Computer Information System (CIS), is one of the key safety-related systems at VVER-1000 nuclear plants. The main function of the CIS is information support for the plant operators during normal and emergency operational modes. Before this upgrade, South Ukraine NPP operated out-of-date and obsolete systems. This upgrade project wax founded by the U.S. DOE in the framework of the International Nuclear Safety Program (INSP). The most efficient way to improve the quality and reliability of information provided to the plant operator is to upgrade the Human-System Interface (HSI), which is the Upper Level (UL) CIS. The upgrade of the CIS data-acquisition system (DAS), which is the Lower Level (LL) CIS, would have less effect on the unit safety. Generally speaking, the lifetime of the LL CIS is much higher than one of the UL CIS. Unlike Plant Computers at the Western-designed plants, the functionality of the WER-1000 CISs includes a control function (Centralized Protection Testing) and a number of the plant equipment monitoring functions, for example, Protection and Interlock Monitoring and Turbo-Generator Temperature Monitoring. The new system is consistent with a historical migration of the format by which information is presented to the operator away from the traditional graphic displays, for example, Piping and Instrument Diagrams (P and ID's), toward Integral Data displays. The cognitive approach to information presentation is currently limited by some licensing issues, but is adapted to a greater degree with each new system. The paper provides some lessons learned on the management of the international team. (authors)

  20. Multi-physics modeling in electrical engineering. Application to a magneto-thermo-mechanical model

    International Nuclear Information System (INIS)

    Journeaux, Antoine

    2013-01-01

    The modeling of multi-physics problems in electrical engineering is presented, with an application to the numerical computation of vibrations within the end windings of large turbo-generators. This study is divided into four parts: the impositions of current density, the computation of local forces, the transfer of data between disconnected meshes, and the computation of multi-physics problems using weak coupling, Firstly, the representation of current density within numerical models is presented. The process is decomposed into two stages: the construction of the initial current density, and the determination of a divergence-free field. The representation of complex geometries makes the use of analytical methods impossible. A method based on an electrokinetic problem is used and a fully geometrical method are tested. The geometrical method produces results closer to the real current density than the electrokinetic problem. Methods to compute forces are numerous, and this study focuses on the virtual work principle and the Laplace force considering the recommendations of the literature. Laplace force is highly accurate but is applicable only if the permeability is uniform. The virtual work principle is finally preferred as it appears as the most general way to compute local forces. Mesh-to-mesh data transfer methods are developed to compute multi-physics models using multiples meshes adapted to the subproblems and multiple computational software. The interpolation method, a locally conservative projection, and an orthogonal projection are compared. Interpolation method is said to be fast but highly diffusive, and the orthogonal projections are highly accurate. The locally conservative method produces results similar to the orthogonal projection but avoid the assembly of linear systems. The numerical computation of multi-physical problems using multiple meshes and projections is then presented. However for a given class of problems, there is not an unique coupling

  1. Evaluation of a process for the removal of gases contained in geothermal steam through condensation and re-evaporation; Evaluacion de un proceso de remocion de gases contenidos en el vapor geotermico, por medio de la condensacion y de revaporacion

    Energy Technology Data Exchange (ETDEWEB)

    Angulo C, Raul; Lam Rea, Luis; Garmino, Hector; Jimenez, Humberto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1985-12-31

    The Cerro Prieto I Geothermal Field, developed and operated by the Comision Federal de Electricidad (CFE), has currently an installed electric power generation capacity of 180 MW and is at a very advanced stage in the development of Cerro Prieto II and III, which will allow to raise the generation capacity to 620 MW. During the exploitation of a geothermal field, in producing steam with the purpose of generating electricity, brines and waste gases are obtained. The hydrogen sulfide exhaust to the environment implies pollution problems, for this reason processes have been developed for the oxidation of these gases downstream the turbogenerator either in the flow of separated gases in the steam condensation or in the condensate produced. The Instituto de Investigaciones Electricas (IIE) has collaborated with CFE in the evaluation of the environmental impact of this gas and in the development of the processes for its abatement. [Espanol] El campo geotermico de Cerro Prieto I, desarrollado y operado por la Comision Federal de Electricidad (CFE), actualmente tiene una capacidad instalada de generacion de energia electrica de 180 MW, y se encuentra en etapa muy avanzada, el desarrollo de Cerro Prieto II y III, lo que permitira incrementar la capacidad de generacion a 620 MW. Durante la explotacion de un campo geotermico, al producir vapor con el proposito de generar electricidad, se obtienen salmueras y gases de desecho. La descarga de acido sulfhidrico a la atmosfera implica problemas de contaminacion, por esta razon se han desarrollado procesos para la oxidacion de este gas aguas abajo de la turbina generadora, ya sea en la corriente de gases que se separan en la condensacion del vapor o en el condensado producido. El Instituto de Investigaciones Electricas (IIE) ha colaborado con la CFE en la evaluacion del impacto ambiental de este gas y en el desarrollo de sus procesos de abatimiento.

  2. Optimal design of compact organic Rankine cycle units for domestic solar applications

    Directory of Open Access Journals (Sweden)

    Barbazza Luca

    2014-01-01

    Full Text Available Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design criteria, i. e., compactness, high performance and safe operation, are targeted by adopting a multi-objective optimization approach modeled with the genetic algorithm. Design-point thermodynamic variables, e. g., evaporating pressure, the working fluid, minimum allowable temperature differences, and the equipment geometry, are the decision variables. Flat plate heat exchangers with herringbone corrugations are selected as heat transfer equipment for the preheater, the evaporator and the condenser. The results unveil the hyperbolic trend binding the net power output to the heat exchanger compactness. Findings also suggest that the evaporator and condenser minimum allowable temperature differences have the largest impact on the system volume and on the cycle performances. Among the fluids considered, the results indicate that R1234yf and R1234ze are the best working fluid candidates. Using flat plate solar collectors (hot water temperature equal to 75 °C, R1234yf is the optimal solution. The heat exchanger volume ranges between 6.0 and 23.0 dm3, whereas the thermal efficiency is around 4.5%. R1234ze is the best working fluid employing parabolic solar collectors (hot water temperature equal to 120 °C. In such case the thermal efficiency is around 6.9%, and the heat exchanger volume varies from 6.0 to 18.0 dm3.

  3. Three-dimensional eddy current solution of a polyphase machine test model (abstract)

    Science.gov (United States)

    Pahner, Uwe; Belmans, Ronnie; Ostovic, Vlado

    1994-05-01

    This abstract describes a three-dimensional (3D) finite element solution of a test model that has been reported in the literature. The model is a basis for calculating the current redistribution effects in the end windings of turbogenerators. The aim of the study is to see whether the analytical results of the test model can be found using a general purpose finite element package, thus indicating that the finite element model is accurate enough to treat real end winding problems. The real end winding problems cannot be solved analytically, as the geometry is far too complicated. The model consists of a polyphase coil set, containing 44 individual coils. This set generates a two pole mmf distribution on a cylindrical surface. The rotating field causes eddy currents to flow in the inner massive and conducting rotor. In the analytical solution a perfect sinusoidal mmf distribution is put forward. The finite element model contains 85824 tetrahedra and 16451 nodes. A complex single scalar potential representation is used in the nonconducting parts. The computation time required was 3 h and 42 min. The flux plots show that the field distribution is acceptable. Furthermore, the induced currents are calculated and compared with the values found from the analytical solution. The distribution of the eddy currents is very close to the distribution of the analytical solution. The most important results are the losses, both local and global. The value of the overall losses is less than 2% away from those of the analytical solution. Also the local distribution of the losses is at any given point less than 7% away from the analytical solution. The deviations of the results are acceptable and are partially due to the fact that the sinusoidal mmf distribution was not modeled perfectly in the finite element method.

  4. Load shedding and emergency load sequencing system at Sizewell B power station

    International Nuclear Information System (INIS)

    Bowcock, S.; Miller, D.

    1992-01-01

    Sizewell B Nuclear Power Station has a main electrical system that connects together the main turbo-generators, generating at 23.5kV, the 400kV grid and the auxiliary equipment required to operate the station. A separate essential electrical system fed from the main electrical system, supplies all the auxiliaries required to shut-down the nuclear reactor and maintain it in a safe shut-down condition. For safety reasons four similar independent essential electrical systems are provided, each headed by a 3.3kV switchboard and a stand-by 8MW diesel generator. Feeds from the 3.3kV switchboards in turn supply the essential 3.3kV drives and transformer fed 415V essential switchboards. The function of the Load Shedding and Emergency Load Sequencing (LSELS) System is to monitor the condition of the 3.3kV incoming supply from the main electrical system to each essential 3.3kV switchboard and initiate its replacement, with the supply from the associated diesel generator, if it is outside set parameters. In order to achieve this transfer the essential electrical system load must be reduced to a level which the diesel can accommodate as a standing load and then allow the sequenced reconnection of required loads so as not to overload the diesel. The LSELS equipment is categorised as Safety Category 1E and has a significant importance to the safe operation of the power station. Therefore the design of the system must be highly reliable and the purpose of this paper is to detail the design approach used to ensure that a high system reliability is achieved. (Author)

  5. Effects of friction and high torque on fatigue crack propagation in mode III

    International Nuclear Information System (INIS)

    Nayeb-Hashemi, H.; McClintock, F.A.; Ritchie, R.O.

    1982-01-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (R /SUB B/ 88, 590 MN/m 2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) /SUB III/ can be related to the alternating stress intensity factor ΔK /SUB III/ for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (about 10 -6 to 10 -2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) /SUB III/ and ΔK /SUB III/ is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity GAMMA /SUB III/, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces A micro-mechanical model for the main radial Mode III growth is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔGAMMA /SUB III/) if local Mode II growth rates are proportional to the displacements. Such predictions are shown to be in agreement with measured growth rates in AISI 4140 steel from 10 -6 to 10 -2 mm per cycle

  6. Technological tendencies for the development and implementation of fault tolerant active controls in combined cycle power plants; Tendencias tecnologicas para el desarrollo e implantacion de controles activos tolerantes a fallas en centrales de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez P, Marino; Verde R, Cristina [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2006-07-01

    This document proposes a methodology that reunites support tools for the operator of a Combined Cycle Generating Power Station allowing him to identify and to classify gas turbine faults, it also reunites some tools for the generation of action advices in the decision making on the operation maneuvers necessary to counteract the effects caused by faults. We are talking about a system implemented in a power station with the reconfiguration of processes and fault arrangement capacities. For this purpose, the line of exhibition delimits first the existing knowledge on automatic control and operations supervision systems in a CCPP and immediately emphasizes the cracks of the system to let pass to the fault tolerant active control system that will detect faults of the gas and steam turbo-generators of a Combined Cycle Generating Power Plant. [Spanish] El presente documento propone una metodologia que reuna herramientas de ayuda al operador de una Central Generadora de Electricidad de Ciclo Combinado para permitirle la identificacion y clasificacion de fallas en las turbinas de gas, asi como herramientas para la generacion de consejos de accion en la toma de decisiones sobre las maniobras de operacion necesarias para contrarrestar los efectos provocados por fallas. Se trata principalmente de un sistema implantado en una central con las capacidades de re-configuracion de procesos y acomodo de fallas. Para esto, la linea de exposicion delimita primero el conocimiento existente sobre sistemas automaticos de control y supervision de operacion en una CGCC y resalta enseguida las grietas del sistema para darle paso al sistema de control activo tolerante a fallas que detectara fallas de los turbogeneradores de gas y vapor de una Central Generadora de Electricidad de Ciclo Combinado.

  7. Nondestructive examination of solid steam turbine rotors in new condition and after a long period of operation

    International Nuclear Information System (INIS)

    Mayer, K.H.; Heinrich, D.; Prestel, W.

    1990-01-01

    By abandoning the axial center bore the drawbacks of the rotor with a center bore, i.e. double stressing in the boundary region of the bore and exposure of defects at the surface of the bore; an adverse condition from the fracture mechanics aspect were eliminated, thereby resulting in a higher safety potential for the unbored rotor against brittle failure. This increase in safety is readily quantified by the linear-elastic fracture mechanics laws adopted since around 1970 for the evaluation of crack and brittle. For an LP rotor with a fracture toughness of FATT 50 with plus 25 degree C the critical crack size for brittle failure is plotted as a function of the tangential stress and the rotor temperature - at the left for the rotor without a center bore and at the right for the rotor with a center bore. For the present case of a highly-stressed LP rotor with a cold-start temperature of 40 degree C the critical crack size for the rotor without a center bore is 83 mm whereas for the rotor with a center bore it is only 13.6 mm. The higher safety potential of rotors without a center bore is also readily confirmed by an analysis of publications on turbogenerator rotors which have burst to 71. Of the 23 cases of brittle failures on record since 1910, there has so far only been one incident where a rotor without a center bore has been destroyed by brittle failure. This particular rotor - at a cold start temperature of 15 degree C - had an eccentrically oriented defect, about 60 mm in size, which in the new state of the rotor had clearly been underestimated in its size by ultrasonic examination. The extraordinary size of the defect was established to be due to adverse geometry of the 200 t ingot and an inadequate capacity of the forging press

  8. Rotation speed measurement for turbine governor: torsion filtering by using Kalman filter

    International Nuclear Information System (INIS)

    Houry, M.P.; Bourles, H.

    1995-11-01

    The rotation speed of a turbogenerator is disturbed by its shaft torsion. Obtaining a filtered measure of this sped a problem of a great practical importance for turbine governor. A good filtering of this speed must meet two requirements: it must cut frequencies of the shaft torsion oscillation and it must not reduce or delay the signal in the pass-band. i.e. at lower frequencies. At Electricite de France, the speed measure is used to set in motion the fast valving system as quickly as possible, after a short circuit close to the unit (to contribute to the stability) or after an islanding (to quickly reach a balance with the house load). It is difficult to satisfy these two requirements by using conventional filtering methods. The standard solution consists in a first order filter: at Electricite de France, its time constant is equal to 80 ms; We have decided to improve this filtering by designing a new filter which cuts the frequencies of the shaft torsion oscillation without reducing the bandwidth of the speed measure. If one uses conventional methods to obtain a band-stop filter (for instance a Butterworth, a Chebyshev or an elliptic band-stop filter),it is easy to obtain the desired magnitude but not a phase near zero in the whole pass-band. Therefore, we have chosen to design the filter by using Kalman's theory. The measurement noise is modeled as a colored one, generated by a very lightly damped system driven by a white noise. The resulting Kalman filter is an effective band-stop filter, whose phase nicely remains near zero in the whole pass-band. (authors). 13 refs., 12 figs

  9. Mitigation of caustic stress corrosion cracking of steam generator tube materials by blowdown -a case study

    International Nuclear Information System (INIS)

    Dutta, Anu; Patwegar, I.A.; Chaki, S.K.; Venkat Raj, V.

    2000-01-01

    The vertical U-tube steam generators are among the most important equipment in nuclear power plants as they form the vital link between the reactor and the turbogenerator. Over ∼ 35 years of operating experience of water cooled reactor has demonstrated that steam generator tubes are susceptible to various forms of degradation. This degradation leads to failure and outages of the power plant. A majority of these failures have been attributed to concentrated alkali attacks in the low flow areas such as crevices in the tube to tube sheet joints, baffle plate location and the areas of sludge deposits. Free hydroxides can be produced by improper maintenance of phosphate chemical control in the secondary side of the steam generators and also by the thermal decomposition of impurities present in the condenser cooling water which may leak into the feed water through the condenser tubes. The free hydroxides concentrate in the low flow areas. This buildup of free hydroxide in combination with residual stress leads to caustic stress corrosion cracking. In order to mitigate caustic stress corrosion cracking of Inconel 600 tubes, the trend is to avoid phosphate dosing. Instead All Volatile Treatment (AVT) for secondary water is used backed by full flow condensate polishing. Sodium hydroxide concentration is now being considered as the basis for steam generator blowdown. A methodology has been established for determining the blowdown requirement in order to mitigate caustic stress corrosion cracking in the secondary side of the vertical U-tube natural circulation steam generator. A case study has been carried out for zero solid treatment (AVT coupled with full flow condensate polishing plant) water chemistry. Only continuous blowdown schemes have been studied based on maximum caustic concentration permissible in the secondary side of the steam generator. The methodology established can also be used for deciding concentration of any other impurities

  10. Analysis of the malfunctioning and failure of a 15 MW hydraulic turbine; Analisis de malfuncionamiento y de falla de una turbina hidraulica de 15 MW

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Illescas, R.; Perez Rodriguez, N. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-11-15

    A case history is presented of the rehabilitation process of three hydraulic turbines with a capacity of 15 MW each one. Such units are used for electric power generation, mainly to supply part of the center zone of the Mexican Republic. The turbo-generator units had been practically destroyed by catastrophic floods and only part of the equipment was recovered and reconditioned for its operation. One of the three turbines presented serious functioning problems preventing its reliable operation that was evidenced by excessive mechanical vibrations and heating in the bearing zone. This paper presents the diagnosis of the possible causes of failure and the corrective measures taken. Serious rotor misalignment problems were observed respect to its bearings and the turbine scroll. Additionally, during the inspection of the turbine runner and of the bearing it was observed that important friction have existed, which incremented the vibrations. It is shown that such rubbings are not the cause of the problem but only a manifestation of the same. Finally some of the conclusions and their solution are presented. [Spanish] Se presenta un caso historico del proceso de rehabilitacion de tres turbinas hidraulicas con capacidad de 15 MW cada una. Dichas unidades son empleadas en la generacion electrica, principalmente para abastecer parte de la zona centro de la republica mexicana. Las unidades turbogeneradores habian sido practicamente destruidas por inundaciones catastroficas y solo parte del equipo fue rescatado y rehabilitado para su operacion. Una de las tres turbinas presento graves problemas de funcionamiento, impidiendo su operacion confiable, lo cual se manifestaba mediante vibraciones mecanicas excesivas y calentamiento en zona de chumaceras. En este articulo se presenta el diagnostico de las posibles causas de falla y las acciones correctivas tomandas. Se observan problemas fuertes de desalineamiento del rotor respecto a sus chumaceras y al caracol de la turbina

  11. Rotation speed measurement for turbine governor: torsion filtering by using Kalman filter

    International Nuclear Information System (INIS)

    Houry, M.P.; Bourles, H.

    1996-01-01

    The rotation speed of a turbogenerator is disturbed by its shaft torsion. Obtaining a filtered measure of this speed is a problem of a great practical importance for turbine governor. A good filtering of this speed must meet two requirements: it must cut frequencies of the shaft torsion oscillation and it must not reduce or delay the signal in the pass-band, i.e. at lower frequencies. At Electricite de France, the speed measure is used to set in motion the fast valving system as quickly as possible, after a short circuit close to the unit or rather an islanding. It is difficult to satisfy these two requirements by using conventional filtering methods. The standard solution consists in a first order filter: at Electricite de France, its time constant is equal to 80 ms. We have decided to improve this filtering by designing a new filter which cuts the frequencies of the shaft torsion oscillation without reducing the bandwidth to the speed measure. If one uses conventional methods to obtain a band stop filter, it is easy to obtain the desired magnitude but not a phase near zero in the whole pass-band. Therefore, we have chosen to design the filter by using Kalman'a theory. The measurement noise is modeled as a colored one, generated by a very lightly damped system driven by a while noise. The resulting Kalman filter is an effective band stop filter, whose phase nicely remains near zero in the whole pass-band. The digital simulations we made and the tests we carried out with the Electricite de France Micro Network laboratory show the advantages of the rotation speed filter we designed using Kalman's theory. With the proposed filter, the speed measure filtering is better in terms of reduction and phase shift. the result is that there are less untimely solicitations of the fast valving system. Consequently, this device improves the power systems stability by minimizing the risks of deep perturbations due to a temporary lack of generation and the risks of under-speed loss

  12. Validation of coupled neutronic / thermal-hydraulic codes for VVER reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mittag, S.; Grundmann, U.; Kliem, S.; Kozmenkov, Y.; Rindelhardt, U.; Rohde, U.; Weiss, F.-P.; Langenbuch, S.; Krzykacz-Hausmann, B.; Schmidt, K.-D.; Vanttola, T.; Haemaelaeinen, A.; Kaloinen, E.; Kereszturi, A.; Hegyi, G.; Panka, I.; Hadek, J.; Strmensky, C.; Darilek, P.; Petkov, P.; Stefanova, S.; Kuchin, A.; Khalimonchuk, V.; Hlbocky, P.; Sico, D.; Danilin, S.; Ionov, V.; Nikonov, S.; Powney, D.

    2004-08-01

    In recent years, the simulation methods for the safety analysis of nuclear power plants have been continuously improved to perform realistic calculations. Therefore in VALCO work package 2 (WP 2), the usual application of coupled neutron-kinetic / thermal-hydraulic codes to VVER has been supplemented by systematic uncertainty and sensitivity analyses. A comprehensive uncertainty analysis has been carried out. The GRS uncertainty and sensitivity method based on the statistical code package SUSA was applied to the two transients studied earlier in SRR-1/95: A load drop of one turbo-generator in Loviisa-1 (VVER-440), and a switch-off of one feed water pump in Balakovo-4 (VVER-1000). The main steps of these analyses and the results obtained by applying different coupled code systems (SMABRE - HEXTRAN, ATHLET - DYN3D, ATHLET - KIKO3D, ATHLET - BIPR-8) are described in this report. The application of this method is only based on variations of input parameter values. No internal code adjustments are needed. An essential result of the analysis using the GRS SUSA methodology is the identification of the input parameters, such as the secondary-circuit pressure, the control-assembly position (as a function of time), and the control-assembly efficiency, that most sensitively affect safety-relevant output parameters, like reactor power, coolant heat-up, and primary pressure. Uncertainty bands for these output parameters have been derived. The variation of potentially uncertain input parameter values as a consequence of uncertain knowledge can activate system actions causing quite different transient evolutions. This gives indications about possible plant conditions that might be reached from the initiating event assuming only small disturbances. In this way, the uncertainty and sensitivity analysis reveals the spectrum of possible transient evolutions. Deviations of SRR-1/95 coupled code calculations from measurements also led to the objective to separate neutron kinetics from

  13. Analysis of the fault and malfunctioning of a 15 MW hydraulic turbine; Analisis de la falla y malfuncionamiento de una turbina hidraulica de 15 MW

    Energy Technology Data Exchange (ETDEWEB)

    Garcia I, Rafael; Perez R, Norberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-07-01

    An historical case of the rehabilitation process of three hydraulic turbines with capacity of 15 MW each is presented. These units are used for the electrical generation, mainly to supply part of the central zone of the Mexican Republic. The turbo-generator units had been practically destroyed by catastrophic floods and only part of the equipment was rescued and rehabilitated for its operation. One of the three turbines presented serious operational problems, preventing its reliable operation evidenced by the excessive mechanical vibrations and heating of the bearing zone. This article presents the diagnosis of the possible causes of fault and the remedial actions taken. Strong misalignment problems of the runner with respect to its bearings and to the scroll case of the turbine are observed. In addition, during the inspection of the turbine runner and of the bearings it is observed that important frictions have existed, which increased the vibrations. It is shown that these frictions are not the cause of the problem but only one manifestation of the same. Finally some conclusions of the problem and their solution are presented. [Spanish] Se presenta un caso historico del proceso de rehabilitacion de tres turbinas hidraulicas con capacidad de 15 MW cada una. Dichas unidades son empleadas en la generacion electrica, principalmente para abastecer parte de la zona centro de la Republica Mexicana. Las unidades turbogeneradores habian sido practicamente destruidas por inundaciones catastroficas y solo parte del equipo fue rescatado y rehabilitado para su operacion. Una de las tres turbinas presento graves problemas de funcionamiento, impidiendo su operacion confiable, lo cual se manifestaba mediante vibraciones mecanicas excesivas y calentamiento en zona de chumaceras. En este articulo se presenta el diagnostico de las posibles causas de falla y las acciones correctivas tomadas. Se observan problemas fuertes de desalineamiento del rotor respecto a sus chumaceras y al

  14. AN ANTHOLOGY OF THE DISTINGUISHED ACHIEVEMENTS IN SCIENCE AND TECHNIQUE. PART 44: TRADITIONAL POWER ENGINEERING. NUCLEAR POWER STATIONS: RETROSPECTIVE VIEW, STATE AND PROSPECTS OF THEIR DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. I. Baranov

    2018-06-01

    Full Text Available Purpose. Preparation of brief scientific and technical review about a retrospective view, modern state, achievements, problems, tendencies and prospects of development of world nuclear energy. Methodology. Known scientific methods of collection, analysis and analytical treatment of the opened scientific and technical information, present in scientific monographs, journals and internet-reports, world level in area of nuclear energy. Results. A brief analytical scientific and technical review is resulted about a retrospective view, modern state, basic achievements, existent problems, tendencies and prospects of development of nuclear energy in the industrially developed countries of the world. Considerable progress is marked in development and creation of technical base of modern nuclear energy, including the nuclear power stations (NPP such their basic devices as nuclear reactors, steam generators, steam turbines and turbogenerators. The basic charts of construction of NPP producing in the world now about 11 % are described annual production electric power. It is indicated that in Ukraine a production of electricity volume at NPP makes more than 50 %, and in France − more than 70 % in annual power balance of country. Nuclear-physical bases of work of nuclear reactor are resulted on thermal-neutron, widely in-use at NPP. The design of most safe water-waters of nuclear power-reactor of type of WWER-1000 is described by thermal power 1000 MW, applied presently at NPP of Ukraine. Basic classification of nuclear reactors is presented. Technical information is resulted about largest NPP of the world. Master data are indicated about a nuclear fuel and radio-active offcuts of nuclear reactors of NPP. Basic measures and facilities are described for the increase of safety of nuclear reactors and NPP. Advantages and lacks of NPP are marked by comparison to the thermal power plants. Nuclear energy of Ukraine is considered and basic technical descriptions

  15. STAR-H2: a battery-type lead-cooled fast reactor for hydrogen manufacture in a sustainable hierarchical hub-spoke energy infrastructure

    International Nuclear Information System (INIS)

    Wade, D.C.; Doctor, R. D.; Peddicord, K.L.

    2003-01-01

    The Secure Transportable Autonomous Reactor for Hydrogen production STAR-H2 is designed to fit into a sustainable global, mid-21st century hierarchical hub-spoke nuclear energy supply architecture based on nuclear fuel, hydrogen, and electricity energy carriers and having favorable energy security, ecological and nonproliferation features. It will produce hydrogen, oxygen and potable water to service cities and their surrounding regions under an assumed electrical generation network based on fuel cells and microturbines and an assumed transportation sector using hydrogen fueled vehicles. STAR-H2 is a long refueling interval (Battery) turnkey heat supply reactor intended for production of hydrogen by thermochemical water cracking. The reactor is a Pb-cooled, mixed U-TRU-Nitride-fueled, fast spectrum reactor delivering 400 MW th of heat at 800degC core outlet temperature. The primary coolant circulates by natural circulation; the 400 MW th heat rating is set by dual requirements for natural circulation; the 400 MW th heat rating is set by dual requirements for natural circulation and for rail shippability of the vessel. An intermediate low pressure He loop carries the heat to a Ca-Br thermochemical water cracking cycle for the manufacture of H 2 (and O 2 ). The water cracking cycle rejects heat at 550degC and that heat is used in a supercritical CO 2 Brayton cycle turbogenerator to provide hotel load electricity. A thermal desalinisation plant receives discharge heat at 125degC from the Brayton cycle and the brine provides for ultimate heat rejection from the cascaded thermodynamic cycles. The modified UT-3 cycle used in STAR-H2, called the Ca-Br cycle, operates at atmospheric pressure and 750-725degC, uses solid/gas separation steps and achieves about 44% efficiency. Unlike UT-3, it employs a single-stage HBr-dissociation step based on a plasma chemistry technique operating near ambient conditions. The STAR-H2 power plant will operate on a 20 year refueling interval

  16. Experience gained during commissioning and trial operation of Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    GaL, P.; Adamica, T.; Marosik, V.; Rehak, A.

    2000-01-01

    In this paper authors describe the experience gained during commissioning and trial operation of Mochovce NPP (EMO). The first year of EMO operation from the point of view of safety and reliability was successful. Evidently we were challenged with certain problems characteristic to this stage of operation which resulted in automatic reactor shutdown. There were 11 automatic shutdowns in 1998 by action of the quick emergency protection AO-1 and two manual shutdowns by the AO-1 key. In 1999, there were 6 automatic shutdowns by action of the quick emergency protection AO-1. Three of them was connected to the falsely activated binary signal of MCP switch of, in two cases the reason came out from the turbo-generator (TG) cooling water system. Very positive trend in the operation of both units shows the fact that during all commissioning period of the second unit there were only three automatic reactor shutdowns by the signal AO-1. All these actions were done in frame of commissioning tests. All causes which activated the automatic unit shutdowns were found out and rectified, the overall tuning of the cooling water system is on the process now. The solution of this problem is possible only power commissioning, and in the stage of the trial operation had no direct impacts on the nuclear, radiation, or technical safety respectively. In 1998 two events according to the INES scale after second unit commissioning because of two unit links of the cooling water system. The operational events during the commissioning tests, start-up tests, physical commissioning, were ranked the category 1 ('Action of SIS U040 p po <8,34 MPa at the system 2 and 3' and 'Breaching the L and C'). In 1999 only events occurred that were ranked in the category safety insignificant events and lower (category 0, or off the scale respectively). In the frame of the safety culture principles adopted, such as critical attitude, exact and careful approach, and communication, these problems were given the

  17. Effects of friction and high torque on fatigue crack propagation in Mode III

    Science.gov (United States)

    Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.

    1982-12-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are

  18. Experiencias en el diagnóstico del aislamiento de los generadores de potencia; Experiences in the diagnosis of the insulation of power generators

    Directory of Open Access Journals (Sweden)

    Santiago Alfredo Dorrbercker Drake

    2014-04-01

    Full Text Available El aislamiento de los generadores eléctricos de gran potencia (Turbogeneradores e Hidrogeneradores es el componente que más influye en su confiabilidad operacional, por lo cual es vital conocer su estado para aplicar las acciones correctivas requeridas. Para alcanzar tal fin, existen múltiples ensayos, controles y criterios relativos a inspecciones sensoriales, muchos de ellos concebidos hace más de medio siglo y que aún subsisten en variantes modernizadas, mientras que otros, más modernos, han sido generalizados y perfeccionados constantemente. Las técnicas y métodos para la aplicación de los ensayos, controles e inspecciones también han evolucionado. En este trabajo se resumen algunas experiencias en la aplicación de los ensayos más actuales relativos a la evaluación de la contaminación, la detección de deficiencias en la protección anticorona, la presencia de descargas parciales internas y la evaluación del envejecimiento del aislamiento, que son aplicados en las áreas de influencia de los autores.  The insulation of power generators (Turbogenerator and Hydrogenerators is the component that influences more in its operational reliability, thus is vital to know its state to apply corrective actions. In order to reach such aim, multiple tests, sensorial controls and criteria regarding inspection have been developed, many of conceived them for more than half century and that still subsists in modernized variants, whereas others, more modern, have been generalized and perfected constantly. The techniques and methods for the application of the tests, controls and inspection also have evolved. This work reviews some experiences in the application of recent improvements to insulation tests about the evaluation of contamination, detection problems in the anticorona slot protection, internal partial discharges and the evaluation of the aging, that are applied in the areas of influence of the authors.

  19. Experiencias en el diagnostico del aislamiento de los generadores de potencia Experiences in the diagnosis of the insulation of power generators

    Directory of Open Access Journals (Sweden)

    Julio Alberto Molé Menéndez

    2012-02-01

    Full Text Available El aislamiento de los generadores eléctricos de gran potencia (Turbogeneradores e Hidrogeneradores es el componente que más influye en su confiabilidad operacional, por lo cual es vital conocer su estado para aplicar las acciones correctivas requeridas. Para alcanzar tal fin, existen múltiples ensayos, controles y criterios relativos a inspecciones sensoriales, muchos de ellos concebidos hace más de medio siglo y que aún subsisten en variantes modernizadas, mientras que otros, más modernos, han sido generalizados y perfeccionados constantemente. Las técnicas y métodos para la aplicación de los ensayos, controles e inspecciones también han evolucionado. En este trabajo se resumen algunas experiencias en la aplicación de los ensayos más actuales relativos a la evaluación de la contaminación, la detección de deficiencias en la protección anticorona, la presencia de descargas parciales internas y la evaluación del envejecimiento del aislamiento, que son aplicados en las áreas de influencia de los autores.The insulation of power generators (Turbogenerator and Hydrogenerators is the component that influences more in its operational reliability, thus is vital to know its state to apply corrective actions. In order to reach such aim, multiple tests, sensorial controls and criteria regarding inspection have been developed, many of conceived them for more than half century and that still subsists in modernized variants, whereas others, more modern, have been generalized and perfected constantly. The techniques and methods for the application of the tests, controls and inspection also have evolved. This work reviews some experiences in the application of recent improvements to insulation tests about the evaluation of contamination, detection problems in the anticorona slot protection, internal partial discharges and the evaluation of the aging, that are applied in the areas of influence of the authors.

  20. Concentrated Windings in Compact Permanent Magnet Synchronous Generators: Managing Efficiency

    Directory of Open Access Journals (Sweden)

    Olivier Barré

    2016-01-01

    Full Text Available In electric power generation, customers want generators with high efficiency. Nowadays, modern turbo-generators have efficiencies greater than 98%. Although this amount should not be obtained for all kind of machines, efficiency will remain one of the main parameters for customer choice. Efficiency is also linked to the life of the machine: the higher the efficiency is, the longer the machine’s lifetime. During the past decade, new forms of energy production have appeared and generators have been developed to fit well into this market. For example, wind generators evolved towards permanent magnet generators having high polarity and running at low speed. Nevertheless, their structure is not fixed. An industrial company has built a prototype of such a generator which uses fractional-slot concentrated-windings (FSCW. This kind of winding is not the structure used by default in such electrical machines. Another field of interest is in autonomous generators which can be used on boats. Even if everyone has in mind large merchant ships, we must not forget smaller ships, such as fishing boats and short-range cruise ships, which spend the most of their time near the coast. This kind of ship does nothave large areas for installing the electric generation or the electric propulsion. It is the reason why, in this article, we focus on the efficiency of machines using fractional-slot concentrated-windings. In many publications which compare performances between distributed and concentrated windings, the result is almost the same. The efficiency of FSCW is not as high as the efficiency associated to the machines which are using distributed windings. Design methods have to be redrawn to integrate, as soon as possible, the loss mitigation in order to provide the best efficiency in power conversion. The following discussion, step by step, introduces the loss mitigation in every part of a machine using FSCW. To close the discussion, a design is produced and it

  1. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B: Application on a Case Study

    Directory of Open Access Journals (Sweden)

    Angelo La Seta

    2016-05-01

    Full Text Available Organic Rankine cycle (ORC power systems have recently emerged as promising solutions for waste heat recovery in low- and medium-size power plants. Their performance and economic feasibility strongly depend on the expander. The design process and efficiency estimation are particularly challenging due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly-loaded stages in supersonic flow regimes. Part A of this two-part paper has presented the implementation and validation of the simulation tool TURAX, which provides the optimal preliminary design of single-stage axial-flow turbines. The authors have also presented a sensitivity analysis on the decision variables affecting the turbine design. Part B of this two-part paper presents the first application of a design method where the thermodynamic cycle optimization is combined with calculations of the maximum expander performance using the mean-line design tool described in part A. The high computational cost of the turbine optimization is tackled by building a model which gives the optimal preliminary design of an axial-flow turbine as a function of the cycle conditions. This allows for estimating the optimal expander performance for each operating condition of interest. The test case is the preliminary design of an organic Rankine cycle turbogenerator to increase the overall energy efficiency of an offshore platform. For an increase in expander pressure ratio from 10 to 35, the results indicate up to 10% point reduction in expander performance. This corresponds to a relative reduction in net power output of 8.3% compared to the case when the turbine efficiency is assumed to be 80%. This work also demonstrates that this approach can support the plant designer

  2. Cernavoda NPP Unit 2 and Romanian nuclear industry

    International Nuclear Information System (INIS)

    Mocanu Horia

    2001-01-01

    On 18 May 2001, in the presence of Mr. Adrian Nastase, the Prime-Minister of Romania, the presidents of AECL, ANSALDO and Director General of SN Nuclearelectrica, the commercial and management contract for completing the Cernavoda NPP Unit 2 was signed. This document stipulates the goal and the partners' commitments, leadership organization, the SN Nuclearelectrica's control of the Budget, costs for the technical assistance (around 180 specialists from abroad), as well as the costs of equipment supplied from Canada and Italy. Services and equipment supplied by Canada and Italy amounts up to around USD 300 millions. Efforts are currently undertaken to obtain a loan of USD 300 millions from EURATOM, beginning from 2003. An auction process, implying around 10 companies, is underway and by the completion of the process, in February 2002, the practical delivery of equipment will start. The so-far invested capital amounts around USD 650 millions while the capital funds remaining to be invested amounts up to about USD 689 millions. From the latter figure, around USD 100 millions represent the costs for heavy water and the initial nuclear fuel charging. The personnel dynamics is presented as well as problems relating with recruitment and salary policy. Romanian nuclear industry is engaged for supply of a series of important components. General Turbo SA, supplied already components of some tens USD millions for the turbogenerator complex. PETROTUB company from Roman, Romania supplied already one thousand tones of non-nuclear carbon steel tubing valued at about USD 300 millions. ARIO, Bistrita, Romania, has signed contracts valued at about USD 400,000 for non-nuclear reinforcing materials. Other companies like AVERSA SA and Ventilatorul SA supplied reliable equipment for Unit 1 and will continue to do the same for Unit 2. Contracts of over one million USD are carried on with VULCAN for carbon steel fittings and with TITAN Nuclear Equipment for components of the fueling

  3. Vandellos 1 NPP. Dismantling at the level 1

    International Nuclear Information System (INIS)

    Pla, E.; Perez Pallares, J.

    1998-01-01

    Because of the fire in a main turbogenerator in October 1989, the Spanish Ministry of Industry ordered the definitive shutdown of Vandellos 1 NPP. The tasks allowed to the owner in the Ministerial Order were: the reactor defueling, the operation radwaste conditioning. The size of the reactor core needed to prepare an adequate defueling plan in order to prevent the potential reactivity oscillations and ensure the refrigeration of the nuclear fuel remaining in the core. The operation radwastes were divided in four types, according to the conditioning method: the low level solid radwaste, the irradiated metallic materials, the resins and zeolites used for decontaminating the liquid effluents, the radwaste stored in three graphite silos. The low level solid radwastes were stored during operation in drums of 220 litres. Recently they were compacted at a pressure of 40 tones before to be shipped to en ENRESA disposal. The irradiated metallic materials are, essentially, some parts of the refuelling machine. For deactivating the liquid effluents, Vandellos 1 used both organic resins and zeolites. The presence of zeolites helps the cementation, but its rough surface makes difficult to flow in the pipes of the cementation plant. 35 m 3 of this mixture have been conditioned into 670 drums of 220 liters. Vandellos 1 has three silos designed to store the graphite sleeves (reactor fuel support). In the silo number 1 some other radwastes were stored, as low level solid radwastes and two fuel elements. An international request for tenders was made in order to undertake the extraction and conditioning all these radwastes. The project was awarded to the Spanish/French Consortium EQUIPOS NUCLEARES-FRAMATOME. The achievement of the graphite silos project needed to design specific devices for separating irradiated wires from graphite, and searching and extracting two fuel elements jumbled up with the graphite sleeves. The spent fuel ponds have been emptied and its internals confined

  4. Assessment and planning of the electrical systems in Mexican refineries by 2014

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Flores, Luis Ivan; Rodriguez Martinez, Jose Hugo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Dario Taboada; Guillermo; Pano Jimenez, Javier [PEMEX, (Mexico)

    2012-07-01

    Nowadays the refining sector in Mexico needs to increase the quantity and quality of produced fuels by installing new process plants for gasoline and ultra-low sulphur diesel. These plants require the provision of electricity and steam, among other services to function properly, which can be supplied by the power plants currently installed in each refinery through an expansion of their generation capacity. These power plants need to increase its production of electricity and steam at levels above their installed capacity, which involves the addition of new power generating equipment (gas or steam turbo-generators) as well as the raise of the electrical loads. Currently, the Mexican Petroleum Company (PEMEX) is planning to restructure their electrical and steam systems in order to optimally supply the required services for the production of high quality fuels. In this paper the present status of the original electrical power systems of the refineries is assessed and the electrical integration of new process plants in the typical schemes is analyzed. Also this paper shows the conceptual schemes proposed to restructure the electrical power system for two refineries and the strategic planning focused on implement the modifications required for the integration of new process plants that will demand about 20 MW for each refinery by 2014. The results of the analysis allowed to identify the current conditions of the electrical power systems in the oil refining industry or National Refining Industry (NRI), and thereby to offer technical solutions that could be useful to engineers facing similar projects. [Spanish] Hoy en dia, el sector de refinacion en Mexico necesita aumentar la cantidad y calidad de los combustibles producidos, mediante la instalacion de nuevas plantas de proceso para la gasolina y el diesel ultra bajo en azufre. Estas plantas requieren el suministro de electricidad y vapor de agua, entre otros servicios, para que funcione correctamente, los cuales pueden

  5. Planta de incineración de residuos en Ginebra – Suiza

    Directory of Open Access Journals (Sweden)

    Pingeon, .

    1972-12-01

    Full Text Available Although the elimination of refuse by means of incineration, as opposed to conversion into fertilizer, is in the long run a bad policy, it was chosen in this case for economic reasons and the agricultural conditions of this area. Nevertheless, it will be possible to add the necessary means for fertilizer conversion whenever future agricultural developments dictate their usefulness. After a series of very complete comparative studies as to the best means of transport, highway or waterway, it was decided to build a canals connecting the plant with a lake. By means of an inclined wharf the unloading of trash from barges is easily accomplished. The plant is divided into three zones: 1 The principal building, which houses trash and slag bins, the loading chutes of the incinerator ovens, and, at right angles, the unloading bay for the barges. 2 The incinerator itself, which includes electromechanical fixtures, two ovens, two electrofilters, a turbo-generator, the control center, and the slag evacuation chain. 3 Administrative offices, which contain workshops, warehouse, lunchroom, staff entrance and dressing rooms, lecture rooms, rest rooms, infirmary, laboratory and business offices. The construction is of reinforced concrete, aimed at creating a unified, exciting architectural appearance outstanding for its sharp contrasts of volumes.Aunque el sistema de eliminar los residuos por medio de la incineración, en lugar de transformarlos en abono, constituya a largo plazo una mala política, ha sido el elegido en este caso por razones de rentabilidad y por las condiciones económico-agrícolas actuales del territorio. Sin embargo, se ha previsto la posibilidad de que, en el futuro, pueda completarse con elementos de transformación en abono, siempre que la evolución de la economía agrícola demuestre su utilidad. Después de una serie muy completa de estudios comparativos entre el transporte por carretera y el fluvial, se decidieron por este último

  6. Validity aspects in Chernobyl at twenty years of the accident

    International Nuclear Information System (INIS)

    Arredondo, C.

    2006-01-01

    For April 25, 1986 the annual stop of the unit 4 of the nuclear power plant of Chernobyl was programmed, in order to carry out maintenance tasks. This unit was equipped with a reactor of 1000 MW, type RBMK, developed in the former Soviet Union, this type of reactors uses graphite like moderator, the core is refrigerated with common water in boil, and the fuel is uranium enriched to 2%. Also it had been programmed to carry out, before stopping the operation of the power station, a test with one of the two turbogenerators, which would not affect to the reactor. However, the intrinsic characteristics of the design of the reactor and the fact that the operators disconnected intentionally several systems of security that had stopped the reactor automatically, caused a decontrolled increase of the power (a factor 1000 in 4 seconds), with the consequent fusion of the fuel and the generation of a shock wave, produced by the fast evaporation of the refrigeration water and caused by the interaction of the fuel fused with the same one. It broke the core in pieces and destroy the structure of the reactor building that was not resistant to the pressure. When being exposed to the air, the graphite of the moderator entered in combustion, while the radioactive material was dispersed in the environment. The radionuclides liberation was prolong during 10 days, and only it was stopped by means of the one poured from helicopters, of some 5000 tons of absorbent materials on the destroyed reactor, as long as tunnels were dug to carry out the cooling of the core with liquid nitrogen. Later on, the whole building of the damaged reactor was contained inside a concrete building. The immediate consequence of the accident was the death of 31 people, between operators of the nuclear power station and firemen. One of people died as consequence of the explosion and 30 died by cause of the irradiation, with dose of the order of 16 Gy. The liberated radioactive material was the entirety of the

  7. Validity aspects in Chernobyl at twenty years of the accident; Aspectos vigentes en Chernobyl a veinte anos del accidente

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo, C [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2006-07-01

    For April 25, 1986 the annual stop of the unit 4 of the nuclear power plant of Chernobyl was programmed, in order to carry out maintenance tasks. This unit was equipped with a reactor of 1000 MW, type RBMK, developed in the former Soviet Union, this type of reactors uses graphite like moderator, the core is refrigerated with common water in boil, and the fuel is uranium enriched to 2%. Also it had been programmed to carry out, before stopping the operation of the power station, a test with one of the two turbogenerators, which would not affect to the reactor. However, the intrinsic characteristics of the design of the reactor and the fact that the operators disconnected intentionally several systems of security that had stopped the reactor automatically, caused a decontrolled increase of the power (a factor 1000 in 4 seconds), with the consequent fusion of the fuel and the generation of a shock wave, produced by the fast evaporation of the refrigeration water and caused by the interaction of the fuel fused with the same one. It broke the core in pieces and destroy the structure of the reactor building that was not resistant to the pressure. When being exposed to the air, the graphite of the moderator entered in combustion, while the radioactive material was dispersed in the environment. The radionuclides liberation was prolong during 10 days, and only it was stopped by means of the one poured from helicopters, of some 5000 tons of absorbent materials on the destroyed reactor, as long as tunnels were dug to carry out the cooling of the core with liquid nitrogen. Later on, the whole building of the damaged reactor was contained inside a concrete building. The immediate consequence of the accident was the death of 31 people, between operators of the nuclear power station and firemen. One of people died as consequence of the explosion and 30 died by cause of the irradiation, with dose of the order of 16 Gy. The liberated radioactive material was the entirety of the

  8. Application de la methode de la reponse frequentielle a l'arret "SSFR", sur une machine synchrone a poles saillants de grande puissance

    Science.gov (United States)

    Belqorchi, Abdelghafour

    Forty years after Watson and Manchur conducted the Stand-Still Frequency Response (SSFR) test on a large turbogenerator, the applicability of this technic on a powerful salient pole synchronous generator has yet to be confirmed. The scientific literature on the subject is rare and very few have attempted to compare SSFR parameter results with those deduced by classical tests. The validity of SSFR on large salient pole machines has still to be proven. The present work aims in participating to fill this knowledge gap. It can be used to build a database of measurements highly needed to draw the validity of the technic. Also, the author hopes to demonstrate the potential of SSFR model to represent the machine, not only in cases of weak disturbances but also strong ones such as instantaneous three-phase short-circuit faults. The difficulties raised by previous searchers are: The lack of accuracy in very low frequency measurements; The difficulty in rotor positioning, according to d and q axes, in case of salient pole machines; The measurement current level influence on magnetizing inductances, in axes-d and; The rotation impact on damper circuits for some rotors design. Aware of the above difficulties, the author conducted an SSFR test on a large salient pole machine (285 MVA). The generator under test has laminated non isolated rotor and an integral slot number. The damper windings in adjacent poles are connected together, via the polar core and the rotor rim. Finally, the damping circuit is unaffected by rotation. To improve the measurement accuracy, in very low frequencies, the most precise frequency response analyser available on the market was used. Besides, the frequency responses of the signals conditioning modules (i.e., isolation, amplification...) were accounted for to correct the four measured SSFR transfer functions. Immunization against noise and use of instrumentation in their optimum range, were other technics rigorously applied. Magnetizing inductances

  9. Advanced Surveillance, Diagnostic and Prognostic Techniques in Monitoring Structures, Systems and Components in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-15

    during LTO. It should be pointed out here that LTO has different meanings in different countries. For example, in the United States of America, LTO refers to operation beyond the original 40 year licence period. That is, a nuclear plant in the USA can add 20 years to its licensed length of operation, extending the plant life to 60, 80, or more years in 20 year increments. In other countries such as Japan, LTO refers to operations beyond 30 years; while advanced gas cooled reactors (AGRs) in the United Kingdom may extend their licensed life by five years at a time beyond the original 30 years of licensed length. One may divide the SSCs of a nuclear plant into two general classes: those that are active components, such as pumps, motors, turbogenerators, valves, compressors, sensors and actuators, and those that are passive components, such as the reactor vessel, piping, reactor internals, containment structure, cables and the like. For active components (e.g. rotating machinery), there are plenty of SDP techniques, with the exception of prognostics, that are proven and routinely used. The advances in this area have occurred in the ability to see the degradation more quickly and more clearly through the use of high resolution data and improved data processing and visualization techniques. The same is not true for passive components. For passive components, periodic in-service inspections (ISIs) are implemented in accordance with ageing management plans, using non-destructive examination (NDE) techniques, such as eddy current testing and ultrasonic wave measurements. These measurements are defined in numerous codes and standards that have been available and used for years, not only in the nuclear industry but also in aerospace and other fields. While effective, the NDE techniques do not normally provide in situ, continuous on-line, or remote testing capabilities.

  10. Advanced Surveillance, Diagnostic and Prognostic Techniques in Monitoring Structures, Systems and Components in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2013-01-01

    during LTO. It should be pointed out here that LTO has different meanings in different countries. For example, in the United States of America, LTO refers to operation beyond the original 40 year licence period. That is, a nuclear plant in the USA can add 20 years to its licensed length of operation, extending the plant life to 60, 80, or more years in 20 year increments. In other countries such as Japan, LTO refers to operations beyond 30 years; while advanced gas cooled reactors (AGRs) in the United Kingdom may extend their licensed life by five years at a time beyond the original 30 years of licensed length. One may divide the SSCs of a nuclear plant into two general classes: those that are active components, such as pumps, motors, turbogenerators, valves, compressors, sensors and actuators, and those that are passive components, such as the reactor vessel, piping, reactor internals, containment structure, cables and the like. For active components (e.g. rotating machinery), there are plenty of SDP techniques, with the exception of prognostics, that are proven and routinely used. The advances in this area have occurred in the ability to see the degradation more quickly and more clearly through the use of high resolution data and improved data processing and visualization techniques. The same is not true for passive components. For passive components, periodic in-service inspections (ISIs) are implemented in accordance with ageing management plans, using non-destructive examination (NDE) techniques, such as eddy current testing and ultrasonic wave measurements. These measurements are defined in numerous codes and standards that have been available and used for years, not only in the nuclear industry but also in aerospace and other fields. While effective, the NDE techniques do not normally provide in situ, continuous on-line, or remote testing capabilities

  11. G2 and G3 reactors design; Description des reacteurs G2 et G3

    Energy Technology Data Exchange (ETDEWEB)

    Herreng,; Ertaud,; Pasquet, [Societe Alsacienne de Constructions Mecaniques (France)

    1958-07-01

    'FRANCE ATOME' Manufacturers Party has been entrusted with the G2 and G3 reactors engineering by the french A.E.C., for the first-five-year french project. Although these reactors are essentially plutonium generators, everyone has been linked with a power station which is supposed to supply with 40 MW, 'Electricite de France' has taken the liability upon itself. The reactor core includes most of G1 reactor parts (central gap excluded): horizontal channels, graphite parallelepipedic bricks stacking, steel thermal shield. The cooling is provided with CO{sub 2} under a 15 atmospheres pressure. This pressure is kept steady in a press-stressed concrete packing-case which is a cylinder horizontally shaped. Steel strips tightened encircle the concrete cylinder; itself protected by sole-plates. The cylinder bottom has brought about unusual problems which have been solved by the choice of an hemispheric shape. Packing-case tightness is provided by a 30 mm iron-plate connected with the inner wall of concrete. One of the reactor's special characteristics is the possibility of loading and unloading while operating. On loading side, barrel locks, each weighting 50 tons, allow new cans, at a pressure of 15 atmospheres, to pass. The cans process almost in a steady way through the channel, and finally drop down through bent spouts, then through spiral toboggans into a new lock. The cooling CO{sub 2} flow is provided with 3 turbo-bellows, these are actuated by average pressure-steam, obtained from exchangers. Every reactor supplies 4 exchangers which have been very difficult to build and to set up. The secondary cycle is standard and contains 3 stages (pressure 10,3: 2 and 0,5 kg/cm{sup 2}). Steam can be condensed in the event of a group turbo-generator stopping, with no modifion for the normal operating conditions of the reactor. Auxiliary circuits have to assure the continuous purifying of cooling CO{sub 2}, its storage and drain. 49 boron carbide rods are used to control the

  12. Operating Experience with Indian Point Nuclear Electric Generating Station; Experience d'exploitation de la centrale nucleaire d'Indian point; Opyt ehkspluatatsii Indian-pojntskoj yadernoj ehlektrostantsii; Experiencia adquirida con la explotacion de la central nucleoelectrica de Indian point

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, W. C.; Freyberg, R. H. [Consolidated Edison Company of New York, Inc., New York, NY (United States)

    1963-10-15

    'yu 275 tys. kvt. Toplivom v reaktore sluzhit smes' polnost'yu obogashchennoj okisi U{sup 235} i okisi Th{sup 232}. Stantsiya raspolozhena na reke Gudzon, primerno v 24 milyakh severnee N'yu-Jorka. V svyazi s takoj blizost'yu ot N'yu-Jorka v proekte stantsii byli predusmotreny dopolnitel'nye predokhranitel'nye ustrojstva dlya predotvrashcheniya otkloneniya reaktivnosti i radiatsionnykh ehffektov takogo otkloneniya. Stroitel'stvo zakoncheno v mae 1962 goda. Zagruzka topliva osushchestvlena v iyune, a 2 avgusta 1962 goda reaktor vpervye dostig kritichnosti. V techenie avgusta privodilis' ispytaniya ka maloj moshchnosti do 5 mgvt pri temperature okrukhaitsej sredy i povyshennoj temperature. 16 sentyabrya 1962 goda turbogenerator byl vpervye fazirovan s sistemoj Konsolidejtid Ehdison. Ispytanie reaktora na moshchnostyakh do 50% provodilos' do noyabrya i preryvalos' chastymi avtomaticheskimiostanovkami, bol'shaya chast' kotorykh byla vyzvana nepoladkami v neyadernoj chasti stantsii. Nepoladki v sisteme upravleniya privodov reguliruyushchikh sterzhnej byli samymi ser'eznymi pomekhami so storony yadernoj chasti stantsii dlya raboty s avtomaticheskim vvedeniem reguliruyushchikh sterzhnej i prichinoj zaderzhek s puskom reaktora posle avtomaticheskikh ostanovok. 14 noyabrya 1962 goda stantsiya byla ostanovlena dlya planovoj zameny truboprovodov v neyadernoj chasti stantsii i modifikatsij i dopolneniya sistemy provodov reguliruyushchikh sterzhnej. Poslednee vklyuchalo ustanovku sistemy ochistki sukhogo azota dlya kozhukhov privodov reguliruyushchikh sterzhnej, prednaznachennykh dlya svedeniya k minimumu ehffektov vody, prosachivayushchejsya cherez uplotneniya v kozhukhi reguliruyushchikh sterzhnej. Okazalos', chto ehto yavlyaetsya osnovnoj prichinoj nepravil'nykh pokazanij sistemy upravleniya reaktorom. Blok byl vnov' pushchen 1 yanvarya 1963 goda. Ispytanie reaktora na moshchnostyakh do 100% v usloviyakh stabil'noj nagruzki bylo zakoncheno 27 yanvarya 1963 goda. Rezul