The design of modern gas turbine design : beyond CFD
International Nuclear Information System (INIS)
Kenny, D.P.
1998-01-01
The progress that has been made in recent years of applying computational fluid dynamics (CFD) to the design of advanced turbine engines was discussed. Pratt and Whitney has successfully transitioned the design of the company's advanced turbine engines from a five-year design cycle based on a succession of design-test-redesign cycles to a three-year design cycle based on an analytical design methodology. The development of 3-D viscous CFD and computational structural mechanics (CSM) codes as primary design tools and a multi-disciplinary approach to applications have been major factors in achieving this success. The company also made significant progress in the development of a fully implicit unsteady stage scheme, with marked impact on performance and durability. Improvements also have been made in the life of the hot end components and in aero-acoustics. 9 figs
Design of Shrouded Airborne Wind Turbine & CFD Analysis
Anbreen, Faiqa; Faiqa Anbreen Collaboration
2015-11-01
The focus is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat. The idea of designing an airborne turbine is to take the advantage of different velocity layers in the atmosphere. The blades have been designed using NREL S826 airfoil, which has coefficient of lift CL of 1.4 at angle of attack, 6°. The value selected for CP is 0.8. The rotor diameter is 7.4 m. The balloon (shroud) has converging-diverging nozzle design, to increase the mass flow rate through the rotor. The ratio of inlet area to throat area, Ai/At is 1.31 and exit area to throat area, Ae/At is1.15. The Solidworks model has been analyzed numerically using CFD. The software used is StarCCM +. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) K- ɛ model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine. Stress analysis has been done using Nastran. From the simulations, the torque generated by the turbine is approximately 800N-m and angular velocity is 21 rad/s.
Intercooler flow path for gas turbines: CFD design and experiments
Energy Technology Data Exchange (ETDEWEB)
Agrawal, A.K.; Gollahalli, S.R.; Carter, F.L. [Univ. of Oklahoma, Norman, OK (United States)] [and others
1995-10-01
The Advanced Turbine Systems (ATS) program was created by the U.S. Department of Energy to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for generating electricity. Intercooling or cooling of air between compressor stages is a feature under consideration in advanced cycles for the ATS. Intercooling entails cooling of air between the low pressure (LP) and high pressure (BP) compressor sections of the gas turbine. Lower air temperature entering the HP compressor decreases the air volume flow rate and hence, the compression work. Intercooling also lowers temperature at the HP discharge, thus allowing for more effective use of cooling air in the hot gas flow path. The thermodynamic analyses of gas turbine cycles with modifications such as intercooling, recuperating, and reheating have shown that intercooling is important to achieving high efficiency gas turbines. The gas turbine industry has considerable interest in adopting intercooling to advanced gas turbines of different capacities. This observation is reinforced by the US Navys Intercooled-Recuperative (ICR) gas turbine development program to power the surface ships. In an intercooler system, the air exiting the LP compressor must be decelerated to provide the necessary residence time in the heat exchanger. The cooler air must subsequently be accelerated towards the inlet of the HP compressor. The circumferential flow nonuniformities inevitably introduced by the heat exchanger, if not isolated, could lead to rotating stall in the compressors, and reduce the overall system performance and efficiency. Also, the pressure losses in the intercooler flow path adversely affect the system efficiency and hence, must be minimized. Thus, implementing intercooling requires fluid dynamically efficient flow path with minimum flow nonuniformities and consequent pressure losses.
Unsteady CFD simulation for bucket design optimization of Pelton turbine runner
KUMASHIRO, Takashi; FUKUHARA, Haruki; TANI, Kiyohito
2016-11-01
To investigate flow patterns on the bucket of Pelton turbine runners is one of the important issues to improve the turbine performance. By studying the mechanism of loss generation on the flow around the bucket, it becomes possible to optimize the design of inner and outer bucket shape. For making it into study, computational fluid dynamics (CFD) is quite an effective method. It is normally used to simulate the flow in turbines and to expect the turbine performances in the development for many kind of water turbine including Pelton type. Especially in the bucket development, the numerical investigations are more useful than observations and measurements obtained in the model test to understand the transient flow patterns. In this paper, a numerical study on two different design buckets is introduced. The simplified analysis domain with consideration for reduction of computational load is also introduced. Furthermore the model tests of two buckets are also performed by using the same test equipment. As the results of the model test, a difference of turbine efficiency is clearly confirmed. The trend of calculated efficiencies on both buckets agrees with the experiment. To investigate the causes of that, the difference of unsteady flow patterns between two buckets is discussed based on the results of numerical analysis.
CFD-based design load analysis of 5MW offshore wind turbine
Tran, T. T.; Ryu, G. J.; Kim, Y. H.; Kim, D. H.
2012-11-01
The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM, respectively,). In CFD method, the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language, a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore, the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations, this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.
CFD for wind and tidal offshore turbines
Montlaur, Adeline
2015-01-01
The book encompasses novel CFD techniques to compute offshore wind and tidal applications. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in the field of CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments, amongst other topics.
Design optimization of hydraulic turbine draft tube based on CFD and DOE method
Nam, Mun chol; Dechun, Ba; Xiangji, Yue; Mingri, Jin
2018-03-01
In order to improve performance of the hydraulic turbine draft tube in its design process, the optimization for draft tube is performed based on multi-disciplinary collaborative design optimization platform by combining the computation fluid dynamic (CFD) and the design of experiment (DOE) in this paper. The geometrical design variables are considered as the median section in the draft tube and the cross section in its exit diffuser and objective function is to maximize the pressure recovery factor (Cp). Sample matrixes required for the shape optimization of the draft tube are generated by optimal Latin hypercube (OLH) method of the DOE technique and their performances are evaluated through computational fluid dynamic (CFD) numerical simulation. Subsequently the main effect analysis and the sensitivity analysis of the geometrical parameters of the draft tube are accomplished. Then, the design optimization of the geometrical design variables is determined using the response surface method. The optimization result of the draft tube shows a marked performance improvement over the original.
Assessment of low-order theories for analysis and design of shrouded wind turbines using CFD
International Nuclear Information System (INIS)
Aranake, Aniket C; Lakshminarayan, Vinod K; Duraisamy, Karthik
2014-01-01
The use of a shroud around the rotor of a wind turbine has been known to augment the airflow through the rotor plane and hence result in improved performance. This work uses Computational Fluid Dynamics (CFD) to assess the validity of several simple theories which attempt to extend Betz theory to shrouded turbines. Two CFD models are employed and compared to predictions of previously published models. The first makes use of a fixed pressure-drop actuator disk, while the second incorporates the twist and chord distribution of the turbine blade as well as an airfoil polar using a technique much like the classical blade element momentum (BEM) method. Calculations are performed for a sweep of turbine loadings using the fixed pressure-drop model and a sweep of tip speed ratios using the BEM model for both an open and shrouded turbine. Power is computed using a control volume approach for the fixed pressure-drop model and by integrating tangential forces for the BEM model. Information including mass flow ratio, power coefficient ratio, axial induction, and shroud force is extracted from the solution fields and compared against the predictions of low-order theories. Finally, the blade element model is used to redesign the turbine twist distribution to achieve greater performance across a range of tip speed ratios
Directory of Open Access Journals (Sweden)
Tilahun Nigussie
2017-01-01
Full Text Available This paper addresses the design, modeling, and performance analysis of a Pelton turbine using CFD for one of the selected micro hydro potential sites in Ethiopia to meet the requirements of the energy demands. The site has a net head of 47.5 m and flow rate of 0.14 m3/s. The design process starts with the design of initial dimensions for the runner based on different literatures and directed towards the modeling of bucket using CATIA V5. The performance of the runner has been analyzed in ANSYS CFX (CFD under given loading conditions of the turbine. Consequently, the present study has also the ambition to reduce the size of the runner to have a cost effective runner design. The case study described in this paper provides an example of how the size of turbine can affect the efficiency of the turbine. These were discussed in detail which helps in understanding of the underlying fluid dynamic design problem as an aid for improving the efficiency and lowering the manufacturing cost for future study. The result showed that the model is highly dependent on the size and this was verified and discussed properly using flow visualization of the computed flow field and published result.
CFD simulation of pressure and discharge surge in Francis turbine at off-design conditions
International Nuclear Information System (INIS)
Chirkov, D; Avdyushenko, A; Panov, L; Bannikov, D; Cherny, S; Skorospelov, V; Pylev, I
2012-01-01
A hybrid 1D-3D CFD model is developed for the numerical simulation of pressure and discharge surge in hydraulic power plants. The most essential part – the turbine itself – is simulated directly using 3D unsteady equations of turbulent motion of fluid-vapor mixture, while the rest of the hydraulic system is simulated in frames of 1D hydro-acoustic model. Thus the model accounts for the main factors responsible for excitation and propagation of pressure and discharge waves in hydraulic power plant. Boundary conditions at penstock inlet and draft tube outlet are discussed in detail. Then simulations of dynamic behavior at part load and full load operating points are performed. It is shown that the numerical model is able to capture self-excited oscillations in full load conditions. The influence of penstock length and flow structure behind the runner are investigated. The presented approach seems to be a promising tool for prediction and investigation the dynamic behavior in hydraulic power plants.
CFD analysis of a Darrieus wind turbine
Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.
2017-07-01
The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.
Aerodynamic investigation of winglets on wind turbine blades using CFD
Johansen, Jeppe; Sørensen, Niels N.
2006-01-01
The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of themwere pointing towards the pressure side (upstream) and one was pointing towards the suction side (downstream). Additionally, a rectangular modification of the original blade tip was designed with the same planform area as the blades with winglets...
CFD Analysis On The Performance Of Wind Turbine With Nozzles
Directory of Open Access Journals (Sweden)
Chunkyraj Kh
2015-08-01
Full Text Available In this paper an effort has been made in dealing with fluid characteristic that enters a converging nozzle and analysis of the nozzle is carried out using Computational Fluid Dynamics package ANSYS WORKBENCH 14.5. The paper is the continuation of earlier work Analytical and Experimental performance evaluation of Wind turbine with Nozzles. First the CFD analysis will be carried out on nozzle in-front of wind turbine where streamline velocity at the exit volume flow rate in the nozzle and pressure distribution across the nozzle will be studied. Experiments were conducted on the Wind turbine with nozzles and the corresponding power output at different air speed and different size of nozzles were calculated. Different shapes and dimensions with special contours and profiles of nozzles were studied. It was observed that the special contour nozzles have superior outlet velocity and low pressure at nozzle exit the design has maximum Kinetic energy. These indicators conclude that the contraction designed with the new profile is a good enhancing of the nozzle performance.
Examples of using CFD for wind turbine aerodynamics
Energy Technology Data Exchange (ETDEWEB)
Hansen, M.O.L.; Soerensen, J.N. [Technical Univ. of Denmark, Dept. of Energy Engineering (Denmark); Soerensen, N.N. [Risoe National Lab., Test Station for Wind Turbines (Denmark)
1997-12-31
Overall it is concluded that in order to improve the results from CFD (Computational Fluid Dynamics) for wind turbine aerodynamics characterized by: high angles of attack; thick airfoils; 3-D effects; instationary effects. Extreme care must be put on turbulence and transition models, and fine grids are necessary especially at the suction peak. If these precautions are taken CFD can be used as a tool for obtaining lift and drag coefficients for the BEM (Blade Element Momentum) model. (au)
Directory of Open Access Journals (Sweden)
Edwin Lenin Chica Arrieta
2013-01-01
Full Text Available En este artículo se presenta un procedimiento para el diseño del rodete de una turbina hidráulica tipo hélice de acuerdo con las condiciones específicas del potencial del agua del sitio de operación basado en un análisis teórico y técnico. Para este fin, las principales características del rodete se determinan y datos tales como la cabeza de succión, el caudal nominal, y las fuerzas que se producen son establecidos durante el diseño. Para la verificación del diseño se utilizan herramientas modernas de ingeniería tales como la dinámica de fluidos computacional (CFD para predecir el flujo y el método de elementos finitos (CAE para el chequeo de la integridad estructural. El rodete diseñado puede ser una opción viable para la generación de energía eléctrica en zonas no interconectadas (ZNI del sistema interconectado nacional de electricidad en los países en desarrollo y se puede fabricar localmente.
Aerodynamic optimization of wind turbine rotor using CFD/AD method
Cao, Jiufa; Zhu, Weijun; Wang, Tongguang; Ke, Shitang
2018-05-01
The current work describes a novel technique for wind turbine rotor optimization. The aerodynamic design and optimization of wind turbine rotor can be achieved with different methods, such as the semi-empirical engineering methods and more accurate computational fluid dynamic (CFD) method. The CFD method often provides more detailed aerodynamics features during the design process. However, high computational cost limits the application, especially for rotor optimization purpose. In this paper, a CFD-based actuator disc (AD) model is used to represent turbulent flow over a wind turbine rotor. The rotor is modeled as a permeable disc of equivalent area where the forces from the blades are distributed on the circular disc. The AD model is coupled with a Reynolds Averaged Navier-Stokes (RANS) solver such that the thrust and power are simulated. The design variables are the shape parameters comprising the chord, the twist and the relative thickness of the wind turbine rotor blade. The comparative aerodynamic performance is analyzed between the original and optimized reference wind turbine rotor. The results showed that the optimization framework can be effectively and accurately utilized in enhancing the aerodynamic performance of the wind turbine rotor.
A CFD code comparison of wind turbine wakes
DEFF Research Database (Denmark)
Laan, van der, Paul Maarten; Storey, R. C.; Sørensen, Niels N.
2014-01-01
A comparison is made between the EllipSys3D and SnS CFD codes. Both codes are used to perform Large-Eddy Simulations (LES) of single wind turbine wakes, using the actuator disk method. The comparison shows that both LES models predict similar velocity deficits and stream-wise Reynolds-stresses fo...
Analysis of horizontal axis wind turbine blade using CFD
African Journals Online (AJOL)
obtained from simulation are compared with the experimental work found in ... Wind turbine rotor interacts with the wind and converts its kinetic energy into ... To get additional information on the flow characteristics a CFD analysis was also ... surface it is better to use NREL 3-D values instead of 2-D experimental values.
Aerodynamic investigation of winglets on wind turbine blades using CFD
DEFF Research Database (Denmark)
Johansen, Jeppe; Sørensen, Niels N.
2006-01-01
The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of them were pointing towards the pressure side...
International Nuclear Information System (INIS)
Kerschberger, P; Gehrer, A
2010-01-01
In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.
Kerschberger, P.; Gehrer, A.
2010-08-01
In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.
CFD-Driven Valve Shape Optimization for Performance Improvement of a Micro Cross-Flow Turbine
Directory of Open Access Journals (Sweden)
Endashaw Tesfaye Woldemariam
2018-01-01
Full Text Available Turbines are critical parts in hydropower facilities, and the cross-flow turbine is one of the widely applied turbine designs in small- and micro-hydro facilities. Cross-flow turbines are relatively simple, flexible and less expensive, compared to other conventional hydro-turbines. However, the power generation efficiency of cross-flow turbines is not yet well optimized compared to conventional hydro-turbines. In this article, a Computational Fluid Dynamics (CFD-driven design optimization approach is applied to one of the critical parts of the turbine, the valve. The valve controls the fluid flow, as well as determines the velocity and pressure magnitudes of the fluid jet leaving the nozzle region in the turbine. The Non-Uniform Rational B-Spline (NURBS function is employed to generate construction points for the valve profile curve. Control points from the function that are highly sensitive to the output power are selected as optimization parameters, leading to the generation of construction points. Metamodel-assisted and metaheuristic optimization tools are used in the optimization. Optimized turbine designs from both optimization methods outperformed the original design with regard to performance of the turbine. Moreover, the metamodel-assisted optimization approach reduced the computational cost, compared to its counterpart.
Transient CFD simulation of a Francis turbine startup
International Nuclear Information System (INIS)
Nicolle, J; Morissette, J F; Giroux, A M
2012-01-01
To assess the life expectancy of hydraulic turbines, it is essential to obtain the loading on the blades, especially during transient operations known to be the most damaging. This paper presents a simplified CFD setup to model the startup phase of a Francis turbine while it goes from rest to speed no-load condition. The fluid domain included one distributor sector coupled with one runner passage. The guide vane motion and change in the angular velocity were included in a commercial code with user functions. Comparisons between numerical results and measurements acquired on a full-size turbine showed that most of the flow physics occurring during startup were captured.
Hydraulic design development of Xiluodu Francis turbine
International Nuclear Information System (INIS)
Wang, Y L; Li, G Y; Shi, Q H; Wang, Z N
2012-01-01
Hydraulic optimization design with CFD (Computational Fluid Dynamics) method, hydraulic optimization measures and model test results in the hydraulic development of Xiluodu hydropower station by DFEM (Dongfang Electric Machinery) of DEC (Dongfang Electric Corporation) of China were analyzed in this paper. The hydraulic development conditions of turbine, selection of design parameter, comparison of geometric parameters and optimization measure of turbine flow components were expatiated. And the measures of improving turbine hydraulic performance and the results of model turbine acceptance experiment were discussed in details.
Directory of Open Access Journals (Sweden)
Nak Joon Choi
2014-11-01
Full Text Available This study examined the aerodynamic power output change of wind turbines with inter-turbine spacing variation for a 6 MW wind farm composed of three sets of 2 MW wind turbines using computational fluid dynamics (CFD. The wind farm layout design is becoming increasingly important as the use of wind energy is steadily increasing. Among the many wind farm layout design parameters, the inter-turbine spacing is a key factor in the initial investment cost, annual energy production and maintenance cost. The inter-turbine spacing should be determined to maximize the annual energy production and minimize the wake effect, turbulence effect and fatigue load during the service lifetime of wind turbines. Therefore, some compromise between the aerodynamic power output of wind turbines and the inter-turbine spacing is needed. An actuator disc model with the addition of a momentum source was not used, and instead, a full 3-dimensional model with a tower and nacelle was used for CFD analysis because of its great technical significance. The CFD analysis results, such as the aerodynamic power output, axial direction wind speed change, pressure drop across the rotor of wind turbine, and wind speed deficit due to the wake effect with inter-turbine spacing variation, were studied. The results of this study can be applied effectively to wind farm layout design and evaluation.
Directory of Open Access Journals (Sweden)
Behzad Shahizare
2016-03-01
Full Text Available With soaring energy demands, the desire to explore alternate and renewable energy resources has become the focal point of various active research fronts. Therefore, the scientific community is revisiting the notion to tap wind resources in more rigorous and novel ways. In this study, a two-dimensional computational investigation of the vertical axis wind turbine (VAWT with omni-direction-guide-vane (ODGV is proposed to determine the effects of this guide vane. In addition, the mesh and time step (dt size dependency test, as well as the effect of the different turbulence models on results accuracy are investigated. Eight different shape ratios (R of the omni-direction-guide-vane were also examined in this study. Further, the CFD model is validated by comparing the numerical results with the experimental data. Validation results show a good agreement in terms of shape and trend in CFD simulation. Based on these results, all the shape ratios, except two ratios including 0.3 and 0.4 at TSR of 1.3 to 3, have a positive effect on the power and torque coefficient improvement. Moreover, results show that the best case has a shape ratio of 0.55, which improves the power coefficient by 48% and the torque coefficient up to 58%.
CFD Simulation and Optimization of Very Low Head Axial Flow Turbine Runner
Directory of Open Access Journals (Sweden)
Yohannis Mitiku Tobo
2015-10-01
Full Text Available The main objective of this work is Computational Fluid Dynamics (CFD modelling, simulation and optimization of very low head axial flow turbine runner to be used to drive a centrifugal pump of turbine-driven pump. The ultimate goal of the optimization is to produce a power of 1kW at head less than 1m from flowing river to drive centrifugal pump using mechanical coupling (speed multiplier gear directly. Flow rate, blade numbers, turbine rotational speed, inlet angle are parameters used in CFD modeling, simulation and design optimization of the turbine runner. The computed results show that power developed by a turbine runner increases with increasing flow rate. Pressure inside the turbine runner increases with flow rate but, runner efficiency increases for some flow rate and almost constant thereafter. Efficiency and power developed by a runner drops quickly if turbine speed increases due to higher pressure losses and conversion of pressure energy to kinetic energy inside the runner. Increasing blade number increases power developed but, efficiency does not increase always. Efficiency increases for some blade number and drops down due to the fact that change in direction of the relative flow vector at the runner exit, which decreases the net rotational momentum and increases the axial flow velocity.
Aerodynamic investigation of winglets on wind turbine blades using CFD
Energy Technology Data Exchange (ETDEWEB)
Johansen, Jeppe; Soerensen, Niels N.
2006-02-15
The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of them were pointing towards the pressure side (upstream) and one was pointing towards the suction side (downstream). Additionally, a rectangular modification of the original blade tip was designed with the same planform area as the blades with winglets. Results show that adding a winglet to the existing blade increase the force distribution on the outer approx 14 % of the blade leading to increased produced power of around 0.6% to 1.4% for wind speeds larger than 6 m/s. This has to be compared to the increase in thrust of around 1.0% to 1.6%. Pointing the winglet downstream increases the power production even further. The effect of sweep and cant angles is not accounted for in the present investigation and could improve the winglets even more. (au)
Modernization of vertical Pelton turbines with the help of CFD and model testing
International Nuclear Information System (INIS)
Mack, Reiner; Gola, Bartlomiej; Smertnig, Martin; Wittwer, Bernhard; Meusburger, Peter
2014-01-01
The modernization of water turbines bears a high potential of increasing the already installed hydropower capacity. In many projects the existing waterways allow a substantial increase of the available flow capacity and with it the energy output. But also the upgrading onto a state of the art hydraulic, mechanical and electrical design will increase the available power considerably after the rehabilitation. The two phase nature of the flow in Pelton turbines requires for the hydraulic refurbishment special care in the application of the available design methods. Where the flow in the high pressure section of the turbine is mainly of one phase nature, CFD has been used as a standard tool for many years. Also the jet quality, and with it the exploration of the source of flow disturbances that cause poor free surface quality can be investigated with CFD. The interaction of the jet with the buckets of the runner is also examined by means of CFD. However, its accuracy with respect to hydraulic efficiency is, because of the two phase flow and the transient flow process, in very few cases good enough for a reliable and accurate prediction of absolute numbers. The optimization of hydraulic bucket profiles is therefore always checked with measurements in homologous scaled model turbines. A similar situation exists for the housing flow after the water is discharged from the runner. Here also CFD techniques are available to explore the general mechanisms. However, due to the two phase flow nature, where only a very small space is filled with moving water, the experimental setup in a model turbine is always the final proof for optimizations of housing inserts and modifications. The hydraulic design of a modernization project for a power station equipped with vertical Pelton turbines of two different designs is described in the proposed paper. It will be shown, how CFD is applied to determine the losses in the high pressure section and how these results are combined with the
Modernization of vertical Pelton turbines with the help of CFD and model testing
Mack, Reiner; Gola, Bartlomiej; Smertnig, Martin; Wittwer, Bernhard; Meusburger, Peter
2014-03-01
The modernization of water turbines bears a high potential of increasing the already installed hydropower capacity. In many projects the existing waterways allow a substantial increase of the available flow capacity and with it the energy output. But also the upgrading onto a state of the art hydraulic, mechanical and electrical design will increase the available power considerably after the rehabilitation. The two phase nature of the flow in Pelton turbines requires for the hydraulic refurbishment special care in the application of the available design methods. Where the flow in the high pressure section of the turbine is mainly of one phase nature, CFD has been used as a standard tool for many years. Also the jet quality, and with it the exploration of the source of flow disturbances that cause poor free surface quality can be investigated with CFD. The interaction of the jet with the buckets of the runner is also examined by means of CFD. However, its accuracy with respect to hydraulic efficiency is, because of the two phase flow and the transient flow process, in very few cases good enough for a reliable and accurate prediction of absolute numbers. The optimization of hydraulic bucket profiles is therefore always checked with measurements in homologous scaled model turbines. A similar situation exists for the housing flow after the water is discharged from the runner. Here also CFD techniques are available to explore the general mechanisms. However, due to the two phase flow nature, where only a very small space is filled with moving water, the experimental setup in a model turbine is always the final proof for optimizations of housing inserts and modifications. The hydraulic design of a modernization project for a power station equipped with vertical Pelton turbines of two different designs is described in the proposed paper. It will be shown, how CFD is applied to determine the losses in the high pressure section and how these results are combined with the
Comparing different CFD wind turbine modelling approaches with wind tunnel measurements
International Nuclear Information System (INIS)
Kalvig, Siri; Hjertager, Bjørn; Manger, Eirik
2014-01-01
The performance of a model wind turbine is simulated with three different CFD methods: actuator disk, actuator line and a fully resolved rotor. The simulations are compared with each other and with measurements from a wind tunnel experiment. The actuator disk is the least accurate and most cost-efficient, and the fully resolved rotor is the most accurate and least cost-efficient. The actuator line method is believed to lie in between the two ends of the scale. The fully resolved rotor produces superior wake velocity results compared to the actuator models. On average it also produces better results for the force predictions, although the actuator line method had a slightly better match for the design tip speed. The open source CFD tool box, OpenFOAM, was used for the actuator disk and actuator line calculations, whereas the market leading commercial CFD code, ANSYS/FLUENT, was used for the fully resolved rotor approach
3D CFD Analysis of a Vertical Axis Wind Turbine
Directory of Open Access Journals (Sweden)
Andrea Alaimo
2015-04-01
Full Text Available To analyze the complex and unsteady aerodynamic flow associated with wind turbine functioning, computational fluid dynamics (CFD is an attractive and powerful method. In this work, the influence of different numerical aspects on the accuracy of simulating a rotating wind turbine is studied. In particular, the effects of mesh size and structure, time step and rotational velocity have been taken into account for simulation of different wind turbine geometries. The applicative goal of this study is the comparison of the performance between a straight blade vertical axis wind turbine and a helical blade one. Analyses are carried out through the use of computational fluid dynamic ANSYS® Fluent® software, solving the Reynolds averaged Navier–Stokes (RANS equations. At first, two-dimensional simulations are used in a preliminary setup of the numerical procedure and to compute approximated performance parameters, namely the torque, power, lift and drag coefficients. Then, three-dimensional simulations are carried out with the aim of an accurate determination of the differences in the complex aerodynamic flow associated with the straight and the helical blade turbines. Static and dynamic results are then reported for different values of rotational speed.
Computational Fluid Dynamics (CFD) applications in rocket propulsion analysis and design
Mcconnaughey, P. K.; Garcia, R.; Griffin, L. W.; Ruf, J. H.
1993-01-01
Computational Fluid Dynamics (CFD) has been used in recent applications to affect subcomponent designs in liquid propulsion rocket engines. This paper elucidates three such applications for turbine stage, pump stage, and combustor chamber geometries. Details of these applications include the development of a high turning airfoil for a gas generator (GG) powered, liquid oxygen (LOX) turbopump, single-stage turbine using CFD as an integral part of the design process. CFD application to pump stage design has emphasized analysis of inducers, impellers, and diffuser/volute sections. Improvements in pump stage impeller discharge flow uniformity have been seen through CFD optimization on coarse grid models. In the area of combustor design, recent CFD analysis of a film cooled ablating combustion chamber has been used to quantify the interaction between film cooling rate, chamber wall contraction angle, and geometry and their effects of these quantities on local wall temperature. The results are currently guiding combustion chamber design and coolant flow rate for an upcoming subcomponent test. Critical aspects of successful integration of CFD into the design cycle includes a close-coupling of CFD and design organizations, quick turnaround of parametric analyses once a baseline CFD benchmark has been established, and the use of CFD methodology and approaches that address pertinent design issues. In this latter area, some problem details can be simplified while retaining key physical aspects to maintain analytical integrity.
Pressure pulsation in Kaplan turbines: Prototype-CFD comparison
International Nuclear Information System (INIS)
Rivetti, A; Lucino, C; Liscia, S; Muguerza, D; Avellan, F
2012-01-01
Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.
Pressure pulsation in Kaplan turbines: Prototype-CFD comparison
Rivetti, A.; Lucino1, C.; Liscia, S.; Muguerza, D.; Avellan, F.
2012-11-01
Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.
The Development of Duct for a Horizontal Axis Turbine Using CFD
Ghani, Mohamad Pauzi Abdul; Yaacob, Omar; Aziz, Azliza Abdul
2010-06-01
Malaysia is heavily dependent on the fossil fuels to satisfy its energy demand. Nowadays, renewable energy which has attracted great interest is marine current energy, which extracted by a device called a device called marine current turbine. This energy resource has agreat potential to be exploited on a large scale because of its predictability and intensity. This paper will focus on developing a Horizontal Axis Marine Current Turbine (HAMCT) rotor to extract marine current energy suitable for Malaysian sea conditions. This work incorporates the characteristic of Malaysia's ocean of shallow water and low speed current in developing the turbines. The HAMCT rotor will be developed and simulated using CAD and CFD software for various combination of inlet and oulet duct design. The computer simulation results of the HAMCT being developed will be presented.
Wind Turbine Rotor Simulation via CFD Based Actuator Disc Technique Compared to Detailed Measurement
Directory of Open Access Journals (Sweden)
Esmail Mahmoodi
2015-10-01
Full Text Available In this paper, a generalized Actuator Disc (AD is used to model the wind turbine rotor of the MEXICO experiment, a collaborative European wind turbine project. The AD model as a combination of CFD technique and User Defined Functions codes (UDF, so-called UDF/AD model is used to simulate loads and performance of the rotor in three different wind speed tests. Distributed force on the blade, thrust and power production of the rotor as important designing parameters of wind turbine rotors are focused to model. A developed Blade Element Momentum (BEM theory as a code based numerical technique as well as a full rotor simulation both from the literature are included into the results to compare and discuss. The output of all techniques is compared to detailed measurements for validation, which led us to final conclusions.
CFD Calculations of the Flow Around a Wind Turbine Nacelle
International Nuclear Information System (INIS)
Varela, J.; Bercebal, D.
1999-01-01
The purpose of this work is to identify the influence of a MADE AE30 wind turbine nacelle on the site calibration anemometer placed on the upper back of the nacelle by means of flow simulations around the nacelle using FLUENT, a Commercial Computational Fluid Dynamics code (CFD), which provides modeling capabilities for the simulation of wide range laminar and turbulent fluid flow problems. Different 2D and 3D simulations were accomplished in order to estimate the effects of the complex geometry on the flow behavior. The speed up and braking values of the air flow at the anemometer position are presented for different flow conditions. Finally some conclusions about the accuracy of results are mentioned. (Author) 5 refs
CFD Calculations of the Flow Around a Wind Turbine Nacelle
Energy Technology Data Exchange (ETDEWEB)
Varela, J.; Bercebal, D. [Ciemat, Madrid (Spain)
2000-07-01
The purpose of this work is to identify the influence of a MADE AE30 wind turbine nacelle on the site calibration anemometer placed on the upper back of the nacelle by means of flow simulations around the nacelle using FLUENT, a Commercial Computational Fluid Dynamics code (CFD), which provides modeling capabilities for the simulation of wide range laminar and turbulent fluid flow problems. Different 2D and 3D simulations were accomplished in order to estimate the effects of the complex geometry on the flow behavior. The speed up and braking values of the air flow at the anemometer position are presented for different flow conditions. Finally some conclusions about the accuracy of results are mentioned. (Author) 5 refs.
Unsteady aerodynamics simulation of a full-scale horizontal axis wind turbine using CFD methodology
International Nuclear Information System (INIS)
Cai, Xin; Gu, Rongrong; Pan, Pan; Zhu, Jie
2016-01-01
Highlights: • A full-scale HAWT is simulated under operational conditions of wind shear and yaw. • The CFD method and sliding mesh are adopted to complete the calculation. • Thrust and torque of blades reach the peak and valley at the same time in wind shear. • The wind turbine produces yaw moment during the whole revolution in yaw case. • The torques and thrusts of the three blades present cyclical changes. - Abstract: The aerodynamic performance of wind turbines is significantly influenced by the unsteady flow around the rotor blades. The research on unsteady aerodynamics for Horizontal Axis Wind Turbines (HAWTs) is still poorly understood because of the complex flow physics. In this study, the unsteady aerodynamic configuration of a full-scale HAWT is simulated with consideration of wind shear, tower shadow and yaw motion. The calculated wind turbine which contains tapered tower, rotor overhang and tilted rotor shaft is constructed by making reference of successfully commercial operated wind turbine designed by NEG Micon and Vestas. A validated CFD method is utilized to analyze unsteady aerodynamic characteristics which affect the performance on such a full-scale HAWT. The approach of sliding mesh is used to carefully deal with the interface between static and moving parts in the flow field. The annual average wind velocity and wind profile in the atmospheric border are applied as boundary conditions. Considering the effects of wind shear and tower shadow, the simulation results show that the each blade reaches its maximum and minimum aerodynamic loads almost at the same time during the rotation circle. The blade–tower interaction imposes great impact on the power output performance. The wind turbine produces yaw moment during the whole revolution and the maximum aerodynamic loads appear at the upwind azimuth in the yaw computation case.
A CFD code comparison of wind turbine wakes
International Nuclear Information System (INIS)
Van der Laan, M P; Sørensen, N N; Storey, R C; Cater, J E; Norris, S E
2014-01-01
A comparison is made between the EllipSys3D and SnS CFD codes. Both codes are used to perform Large-Eddy Simulations (LES) of single wind turbine wakes, using the actuator disk method. The comparison shows that both LES models predict similar velocity deficits and stream-wise Reynolds-stresses for four test cases. A grid resolution study, performed in EllipSys3D and SnS, shows that a minimal uniform cell spacing of 1/30 of the rotor diameter is necessary to resolve the wind turbine wake. In addition, the LES-predicted velocity deficits are also compared with Reynolds-Averaged Navier Stokes simulations using EllipSys3D for a test case that is based on field measurements. In these simulations, two eddy viscosity turbulence models are employed: the k-ε model and the k-ε-f p model. Where the k-ε model fails to predict the velocity deficit, the results of the k-ε-f P model show good agreement with both LES models and measurements
International Nuclear Information System (INIS)
Ajedegba, J.O.; Rosen, M.A.; Naterer, G.F.; Tsang, E.
2009-01-01
Wind power can help mitigate climate change. Computational fluid dynamics (CFD) is used here to simulate and analyze the Zephyr vertical axis wind turbine and to assess how it reduces greenhouse gas emissions. Fluid flow through the turbine is simulated to predict its performance. A multiple reference frame model capability of CFD is used to express the turbine power output as a function of the wind free stream velocity and the rotor rotational speed. The results suggest the wind turbine could significantly reduce energy demand and greenhouse gas emissions in urban and rural settings relative to conventional power systems. (author)
International Nuclear Information System (INIS)
Cho, Y J; Zullah, M A; Faizal, M; Lee, Y H; Choi, Y D
2012-01-01
A variety of technologies has been proposed to capture the energy from waves. Some of the more promising designs are undergoing demonstration testing at commercial scales. Due to the complexity of most offshore wave energy devices and their motion response in different sea states, physical tank tests are common practice for WEC design. Full scale tests are also necessary, but are expensive and only considered once the design has been optimized. Computational Fluid Dynamics (CFD) is now recognized as an important complement to traditional physical testing techniques in offshore engineering. Once properly calibrated and validated to the problem, CFD offers a high density of test data and results in a reasonable timescale to assist with design changes and improvements to the device. The purpose of this study is to investigate the performance of a newly developed direct drive hydro turbine (DDT), which will be built in a caisson for extraction of wave energy. Experiments and CFD analysis are conducted to clarify the turbine performance and internal flow characteristics. The results show that commercial CFD code can be applied successfully to the simulation of the wave motion in the water tank. The performance of the turbine for wave energy converter is studied continuously for a ongoing project.
Cho, Y. J.; Zullah, M. A.; Faizal, M.; Choi, Y. D.; Lee, Y. H.
2012-11-01
A variety of technologies has been proposed to capture the energy from waves. Some of the more promising designs are undergoing demonstration testing at commercial scales. Due to the complexity of most offshore wave energy devices and their motion response in different sea states, physical tank tests are common practice for WEC design. Full scale tests are also necessary, but are expensive and only considered once the design has been optimized. Computational Fluid Dynamics (CFD) is now recognized as an important complement to traditional physical testing techniques in offshore engineering. Once properly calibrated and validated to the problem, CFD offers a high density of test data and results in a reasonable timescale to assist with design changes and improvements to the device. The purpose of this study is to investigate the performance of a newly developed direct drive hydro turbine (DDT), which will be built in a caisson for extraction of wave energy. Experiments and CFD analysis are conducted to clarify the turbine performance and internal flow characteristics. The results show that commercial CFD code can be applied successfully to the simulation of the wave motion in the water tank. The performance of the turbine for wave energy converter is studied continuously for a ongoing project.
Blade Profile Optimization of Kaplan Turbine Using CFD Analysis
Directory of Open Access Journals (Sweden)
Aijaz Bashir Janjua
2013-10-01
Full Text Available Utilization of hydro-power as renewable energy source is of prime importance in the world now. Hydropower energy is available in abundant in form of falls, canals rivers, dams etc. It means, there are various types of sites with different parameters like flow rate, heads, etc. Depending upon the sites, water turbines are designed and manufactured to avail hydro-power energy. Low head turbines on runof-river are widely used for the purpose. Low head turbines are classified as reaction turbines. For runof river, depending upon the variety of site data, low head Kaplan turbines are selected, designed and manufactured. For any given site requirement, it becomes very essential to design the turbine runner blades through optimization of the CAD model of blades profile. This paper presents the optimization technique carried out on a complex geometry of blade profile through static and dynamic computational analysis. It is used through change of the blade profile geometry at five different angles in the 3D (Three Dimensional CAD model. Blade complex geometry and design have been developed by using the coordinates point system on the blade in PRO-E /CREO software. Five different blade models are developed for analysis purpose. Based on the flow rate and heads, blade profiles are analyzed using ANSYS software to check and compare the output results for optimization of the blades for improved results which show that by changing blade profile angle and its geometry, different blade sizes and geometry can be optimized using the computational techniques with changes in CAD models.
Blade profile optimization of kaplan turbine using cfd analysis
International Nuclear Information System (INIS)
Janjua, A.B.; Khalil, M.S.
2013-01-01
Utilization of hydro-power as renewable energy source is of prime importance in the world now. Hydropower energy is available in abundant in form of falls, canals rivers, dams etc. It means, there are various types of sites with different parameters like flow rate, heads, etc. Depending upon the sites, water turbines are designed and manufactured to avail hydro-power energy. Low head turbines on runof-river are widely used for the purpose. Low head turbines are classified as reaction turbines. For runof-river, depending upon the variety of site data, low head Kaplan turbines are selected, designed and manufactured. For any given site requirement, it becomes very essential to design the turbine runner blades through optimization of the CAD model of blades profile. This paper presents the optimization technique carried out on a complex geometry of blade profile through static and dynamic computational analysis. It is used through change of the blade profile geometry at five different angles in the 3D (Three Dimensional) CAD model. Blade complex geometry and design have been developed by using the coordinates point system on the blade in PRO-E /CREO software. Five different blade models are developed for analysis purpose. Based on the flow rate and heads, blade profiles are analyzed using ANSYS software to check and compare the output results for optimization of the blades for improved results which show that by changing blade profile angle and its geometry, different blade sizes and geometry can be optimized using the computational techniques with changes in CAD models. (author)
DEFF Research Database (Denmark)
Frandsen, Sten; Hansen, Erik Asp; Ibsen, Lars Bo
2006-01-01
Current offshore wind turbine design methods have matured to a 1st generation state, manifested in the draft of a possible standard, IEC 61400-3 (2005). It is now time to investigate the possibilities of improving existing methods. To do so in an efficient manner a clear identification of the most...... important uncertainty drivers specific for offshore wind turbine design loads is required. Describing the initial efforts in a Danish research project, the paper points to focal points for research and development. These are mainly: soil-structure interaction, improved modelling of wave loads from deep...
Energy Technology Data Exchange (ETDEWEB)
Krausche, S.; Ohlsson, Johan
1998-04-01
The objective of this work was to develop a program dealing with design point calculations of radial turbine machinery, including both compressor and turbine, with as few input data as possible. Some simple stress calculations and turbine metal blade temperatures were also included. This program was then implanted in a German thermodynamics program, Gasturb, a program calculating design and off-design performance of gas turbines. The calculations proceed with a lot of assumptions, necessary to finish the task, concerning pressure losses, velocity distribution, blockage, etc., and have been correlated with empirical data from VAT. Most of these values could have been input data, but to prevent the user of the program from drowning in input values, they are set as default values in the program code. The output data consist of geometry, Mach numbers, predicted component efficiency etc., and a number of graphical plots of geometry and velocity triangles. For the cases examined, the error in predicted efficiency level was within {+-} 1-2% points, and quite satisfactory errors in geometrical and thermodynamic conditions were obtained Examination paper. 18 refs, 36 figs
Prediction of Film Cooling Effectiveness on a Gas Turbine Blade Leading Edge Using ANN and CFD
Dávalos, J. O.; García, J. C.; Urquiza, G.; Huicochea, A.; De Santiago, O.
2018-05-01
In this work, the area-averaged film cooling effectiveness (AAFCE) on a gas turbine blade leading edge was predicted by employing an artificial neural network (ANN) using as input variables: hole diameter, injection angle, blowing ratio, hole and columns pitch. The database used to train the network was built using computational fluid dynamics (CFD) based on a two level full factorial design of experiments. The CFD numerical model was validated with an experimental rig, where a first stage blade of a gas turbine was represented by a cylindrical specimen. The ANN architecture was composed of three layers with four neurons in hidden layer and Levenberg-Marquardt was selected as ANN optimization algorithm. The AAFCE was successfully predicted by the ANN with a regression coefficient R2<0.99 and a root mean square error RMSE=0.0038. The ANN weight coefficients were used to estimate the relative importance of the input parameters. Blowing ratio was the most influential parameter with relative importance of 40.36 % followed by hole diameter. Additionally, by using the ANN model, the relationship between input parameters was analyzed.
Computational fluid dynamics (CFD) analysis of an industrial gas turbine combustion chamber
Energy Technology Data Exchange (ETDEWEB)
Anzai, Thiago Koichi; Fontes, Carlo Eduardo; Ropelato, Karolline [Engineering Simulation and Scientic Software Ltda. (ESSS), Rio de Janeiro, RJ (Brazil)], E-mails: anzai, carlos.fontes, ropelato@esss.com.br; Silva, Luis Fernando Figueira da; Huapaya, Luis Enrique Alva [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: luisfer.luisalva@esp.puc-rio.br
2010-07-01
The accurate determination of pollutant emission from gas turbine combustors is a crucial problem in situations when such equipment is subject to long periods of operation away from the design point. In such operating conditions, the flow field structure may also drastically differ from the design point one, leading to the presence of undesirable hot spots or combustion instabilities, for instance. A priori experiments on all possible operation conditions is economically unfeasible, therefore, models that allow for the prediction of combustion behavior in the full operation range could be used to instruct power plant operators on the best strategies to be adopted. Since the direct numerical simulation of industrial combustors is beyond reach of the foreseeable computational resources, simplified models should be used for such purpose. This works presents the results of the application to an industrial gas turbine combustion chamber of the CFD technique to the prediction of the reactive flow field. This is the first step on the coupling of reactive CFD results with detailed chemical kinetics modeling using chemical reactor networks, toward the goal of accurately predicting pollutant emissions. The CFD model considers the detailed geometrical information of such a combustion chamber and uses actual operating conditions, calibrated via an overall gas turbine thermodynamical simulation, as boundary conditions. This model retains the basic information on combustion staging, which occurs both in diffusion and lean premixed modes. The turbulence has been modeled using the SST-CC model, which is characterized by a well established regime of accurate predictive capability. Combustion and turbulence interaction is accounted for by using the Zimont et al. model, which makes use of on empirical expression for the turbulent combustion velocity for the closure of the progress variable transport equation. A high resolution scheme is used to solve the advection terms of the
Directory of Open Access Journals (Sweden)
Museok Song
2012-09-01
Full Text Available Three types of 100 kW-class tidal stream turbines are proposed and their performance is studied both numerically and experimentally. Following a wind turbine design procedure, a base blade is derived and two additional blades are newly designed focusing more on efficiency and cavitation. For the three designed turbines, a CFD is performed by using FLUENT. The calculations predict that the newly designed turbines perform better than the base turbine and the tip vortex can be reduced with additional efficiency increase by adopting a tip rake. The performance of the turbines is tested in a towing tank with 700 mm models. The scale problem is carefully investigated and the measurements are compared with the CFD results. All the prediction from the CFD is supported by the model experiment with some quantitative discrepancy. The maximum efficiencies are 0.49 (CFD and 0.45 (experiment at TSR 5.17 for the turbine with a tip rake.
A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants
Directory of Open Access Journals (Sweden)
Ehsan Gholamalizadeh
2017-10-01
Full Text Available A solar chimney power plant consists of four main parts, a solar collector, a chimney, an energy storage layer, and a wind turbine. So far, several investigations on the performance of the solar chimney power plant have been conducted. Among them, different approaches have been applied to model the turbine inside the system. In particular, a real wind turbine coupled to the system was simulated using computational fluid dynamics (CFD in three investigations. Gholamalizadeh et al. simulated a wind turbine with the same blade profile as the Manzanares SCPP’s turbine (FX W-151-A blade profile, while a CLARK Y blade profile was modelled by Guo et al. and Ming et al. In this study, simulations of the Manzanares prototype were carried out using the CFD model developed by Gholamalizadeh et al. Then, results obtained by modelling different turbine blade profiles at different turbine rotational speeds were compared. The results showed that a turbine with the CLARK Y blade profile significantly overestimates the value of the pressure drop across the Manzanares prototype turbine as compared to the FX W-151-A blade profile. In addition, modelling of both blade profiles led to very similar trends in changes in turbine efficiency and power output with respect to rotational speed.
Validations of CFD against detailed velocity and pressure measurements in water turbine runner flow
Nilsson, H.; Davidson, L.
2003-03-01
This work compares CFD results with experimental results of the flow in two different kinds of water turbine runners. The runners studied are the GAMM Francis runner and the Hölleforsen Kaplan runner. The GAMM Francis runner was used as a test case in the 1989 GAMM Workshop on 3D Computation of Incompressible Internal Flows where the geometry and detailed best efficiency measurements were made available. In addition to the best efficiency measurements, four off-design operating condition measurements are used for the comparisons in this work. The Hölleforsen Kaplan runner was used at the 1999 Turbine 99 and 2001 Turbine 99 - II workshops on draft tube flow, where detailed measurements made after the runner were used as inlet boundary conditions for the draft tube computations. The measurements are used here to validate computations of the flow in the runner.The computations are made in a single runner blade passage where the inlet boundary conditions are obtained from an extrapolation of detailed measurements (GAMM) or from separate guide vane computations (Hölleforsen). The steady flow in a rotating co-ordinate system is computed. The effects of turbulence are modelled by a low-Reynolds number k- turbulence model, which removes some of the assumptions of the commonly used wall function approach and brings the computations one step further.
CFD-based shape optimization of steam turbine blade cascade in transonic two phase flows
International Nuclear Information System (INIS)
Noori Rahim Abadi, S.M.A.; Ahmadpour, A.; Abadi, S.M.N.R.; Meyer, J.P.
2017-01-01
Highlights: • CFD-based shape optimization of a nozzle and a turbine blade regarding nucleating steam flow is performed. • Nucleation rate and droplet radius are the best suited objective functions for the optimization process. • Maximum 34% reduction in entropy generation rate is reported for turbine cascade. • A maximum 10% reduction in Baumann factor and a maximum 2.1% increase in efficiency is achieved for a turbine cascade. - Abstract: In this study CFD-based shape optimization of a 3D nozzle and a 2D turbine blade cascade is undertaken in the presence of non-equilibrium condensation within the considered flow channels. A two-fluid formulation is used for the simulation of unsteady, turbulent, supersonic and compressible flow of wet steam accounting for relevant phase interaction between nucleated liquid droplets and continuous vapor phase. An in-house CFD code is developed to solve the governing equations of the two phase flow and was validated against available experimental data. Optimization is carried out in respect to various objective functions. It is shown that nucleation rate and maximum droplet radius are the best suited target functions for reducing thermodynamic and aerodynamic losses caused by the spontaneous nucleation. The maximum increase of 2.1% in turbine blade efficiency is achieved through shape optimization process.
Prediction of hydraulic force and momentum on pelton turbine jet deflector based on cfd simulation
International Nuclear Information System (INIS)
Popovski, Boro
2015-01-01
The numerical simulation of three-dimensional turbulent flow through the jet-distributor, free stream jet and deflector of Pelton Turbine is presented in this work. The calculations are performed using the CFD package Ansys CFX (Navie-Stokes equations and the k-omega SST turbulent model). A traditional definition for calculation of hydraulic forces and momentum on the jet deflector and a method for experimental evaluation are described. The steps for flow modelling, mesh (grid) generation, as well as the results obtained from the numerical simulation of the flow and stress deformation calculations of the jet-deflector are presented. This work corresponds with the actual approach of methods development for flow simulation and calculations of Pelton Turbines. The kinematic and dynamic parameters are calculated based on CFD simulations. The results of the calculations represents reliable tool in the procedure of development and construction of Pelton Turbines. (author)
CFD aspects of ADSS target design
International Nuclear Information System (INIS)
Shashi Kumar, G.N.; Mahendra, A.K.; Sanyal, A.; Gouthaman, G.
2004-03-01
The preliminary studies on CFD aspects of Accelerator Driven Sub-critical System (ADSS) target design has been presented in this report. The studies involve the thermal hydraulic analysis of the Liquid Metal Spallation Target (LMST) using Lead Bismuth Eutectic (LBE) as the target material. Apart from acting as Spallation medium LBE is used to remove the heat deposited by High Energy Proton Beam. Window of the target ( one side vacuum and other side LBE) has been reported in literature to be the most critical zone where high temperatures are reached. Numerical Simulations are carried out with Artificial Neural Network coupled Computational Fluid Dynamics (CFD) code, Various studies were carried out after the verification and validation of the initial results. Window being, the main parameter to be optimised, various designs of window were tried, along with change in the window material. The best possible combination has been proposed. The thermal hydraulic studies were carried out to arrive at the acceptable operating conditions for the target. (author)
Application of CFD technique for HYFLEX aerodynamic design
Yamamoto, Yukimitsu; Watanabe, Shigeya; Ishiguro, Mitsuo; Ogasawara, Ko; 山本 行光; 渡辺 重哉; 石黒 満津夫; 小笠原 宏
1994-01-01
An overview of the application of Computational Fluid Dynamics (CFD) technique for the HYFLEX (Hypersonic Flight Experiment) aerodynamic design by using the numerical simulation codes in the supersonic and hypersonic speed ranges is presented. Roles of CFD required to make up for the short term of development and small amount of the wind tunnel test cases, application in the HYFLEX aerodynamic design and their application methods are described. The procedure of CFD code validation by the expe...
Advanced LP turbine blade design
International Nuclear Information System (INIS)
Jansen, M.; Pfeiffer, R.; Termuehlen, H.
1990-01-01
In the 1960's and early 1970's, the development of steam turbines for the utility industry was mainly influenced by the demand for increasing unit sizes. Nuclear plants in particular, required the design of LP turbines with large annulus areas for substantial mass and volumetric steam flows. Since then the development of more efficient LP turbines became an ongoing challenge. Extensive R and D work was performed in order to build efficient and reliable LP turbines often exposed to severe corrosion, erosion and dynamic excitation conditions. This task led to the introduction of an advanced disk-type rotor design for 1800 rpm LP turbines and the application of a more efficient, reaction-type blading for all steam turbine sections including the first stages of LP turbines. The most recent developments have resulted in an advanced design of large LP turbine blading, typically used in the last three stages of each LP turbine flow section. Development of such blading required detailed knowledge of the three dimensional, largely transonic, flow conditions of saturated steam. Also the precise assessment of blade stressing from dynamic conditions, such as speed and torsional resonance, as well as stochastic and aerodynamic excitation is of extreme importance
DEFF Research Database (Denmark)
Rahimi, Vajiheh; Schepers, J.G.; Shen, Wen Zhong
2018-01-01
as shortcomings, are presented. The investigations are performed for two 10 MW reference wind turbines under axial inflow conditions, namely the turbines designed in the EU AVATAR and INNWIND.EU projects. The results show that the evaluated methods are in good agreement with each other at the mid-span, though......This work presents an investigation on different methods for the calculation of the angle of attack and the underlying induced velocity on wind turbine blades using data obtained from three-dimensional Computational Fluid Dynamics (CFD). Several methods are examined and their advantages, as well...
CFD Wake Modelling with a BEM Wind Turbine Sub-Model
Directory of Open Access Journals (Sweden)
Anders Hallanger
2013-01-01
Full Text Available Modelling of wind farms using computational fluid dynamics (CFD resolving the flow field around each wind turbine's blades on a moving computational grid is still too costly and time consuming in terms of computational capacity and effort. One strategy is to use sub-models for the wind turbines, and sub-grid models for turbulence production and dissipation to model the turbulent viscosity accurately enough to handle interaction of wakes in wind farms. A wind turbine sub-model, based on the Blade Momentum Theory, see Hansen (2008, has been implemented in an in-house CFD code, see Hallanger et al. (2002. The tangential and normal reaction forces from the wind turbine blades are distributed on the control volumes (CVs at the wind turbine rotor location as sources in the conservation equations of momentum. The classical k-epsilon turbulence model of Launder and Spalding (1972 is implemented with sub-grid turbulence (SGT model, see Sha and Launder (1979 and Sand and Salvesen (1994. Steady state CFD simulations were compared with flow and turbulence measurements in the wake of a model scale wind turbine, see Krogstad and Eriksen (2011. The simulated results compared best with experiments when stalling (boundary layer separation on the wind turbine blades did not occur. The SGT model did improve turbulence level in the wake but seems to smear the wake flow structure. It should be noted that the simulations are carried out steady state not including flow oscillations caused by vortex shedding from tower and blades as they were in the experiments. Further improvement of the simulated velocity defect and turbulence level seems to rely on better parameter estimation to the SGT model, improvements to the SGT model, and possibly transient- instead of steady state simulations.
Application of Simple CFD Models in Smoke Ventilation Design
DEFF Research Database (Denmark)
Brohus, Henrik; Nielsen, Peter Vilhelm; la Cour-Harbo, Hans
2004-01-01
The paper examines the possibilities of using simple CFD models in practical smoke ventilation design. The aim is to assess if it is possible with a reasonable accuracy to predict the behaviour of smoke transport in case of a fire. A CFD code mainly applicable for “ordinary” ventilation design...
Requirements for effective use of CFD in aerospace design
Raj, Pradeep
1995-01-01
This paper presents a perspective on the requirements that Computational Fluid Dynamics (CFD) technology must meet for its effective use in aerospace design. General observations are made on current aerospace design practices and deficiencies are noted that must be rectified for the U.S. aerospace industry to maintain its leadership position in the global marketplace. In order to rectify deficiencies, industry is transitioning to an integrated product and process development (IPPD) environment and design processes are undergoing radical changes. The role of CFD in producing data that design teams need to support flight vehicle development is briefly discussed. An overview of the current state of the art in CFD is given to provide an assessment of strengths and weaknesses of the variety of methods currently available, or under development, to produce aerodynamic data. Effectiveness requirements are examined from a customer/supplier view point with design team as customer and CFD practitioner as supplier. Partnership between the design team and CFD team is identified as an essential requirement for effective use of CFD. Rapid turnaround, reliable accuracy, and affordability are offered as three key requirements that CFD community must address if CFD is to play its rightful role in supporting the IPPD design environment needed to produce high quality yet affordable designs.
CFD Analysis of The Hydraulic Turbine Draft Tube to Improve System Efficiency
Directory of Open Access Journals (Sweden)
Chakrabarty Spandan
2016-01-01
Full Text Available Demand of the power is increasing day by day with the development of the science and technology. Development of the renewable energy sector has become essential issue at the present situation due to the limited source of the non-renewable energy. Hydro energy power generation sector is superior over the other renewable sector due to the high efficiency, ability to continuous generation and low generation cost. In India a great amount of the power generation is taken care by the hydro power system but still some more potential have unexplored. The efficiency improvement of the hydro turbine system can be done for the new installation or installed system by the improvement in component level. The system can be installed by the state of the art equipment, like modern inlet guide vane (IGV control system, improved design of the runner, IGV system, draft tube, penstock to reduce the loss, hence improve the efficiency. The energy recovery in the draft tube depends on the design of draft tube. In the present work the optimized design of the draft tube shape through computational fluid dynamics (CFD simulation has been carried out in ANSYS FLUENT platform. The design objective of the draft tube is to reduce the flow loss and improve the energy recovery, hence to improve the efficiency.
A supportive architecture for CFD-based design optimisation
Li, Ni; Su, Zeya; Bi, Zhuming; Tian, Chao; Ren, Zhiming; Gong, Guanghong
2014-03-01
Multi-disciplinary design optimisation (MDO) is one of critical methodologies to the implementation of enterprise systems (ES). MDO requiring the analysis of fluid dynamics raises a special challenge due to its extremely intensive computation. The rapid development of computational fluid dynamic (CFD) technique has caused a rise of its applications in various fields. Especially for the exterior designs of vehicles, CFD has become one of the three main design tools comparable to analytical approaches and wind tunnel experiments. CFD-based design optimisation is an effective way to achieve the desired performance under the given constraints. However, due to the complexity of CFD, integrating with CFD analysis in an intelligent optimisation algorithm is not straightforward. It is a challenge to solve a CFD-based design problem, which is usually with high dimensions, and multiple objectives and constraints. It is desirable to have an integrated architecture for CFD-based design optimisation. However, our review on existing works has found that very few researchers have studied on the assistive tools to facilitate CFD-based design optimisation. In the paper, a multi-layer architecture and a general procedure are proposed to integrate different CFD toolsets with intelligent optimisation algorithms, parallel computing technique and other techniques for efficient computation. In the proposed architecture, the integration is performed either at the code level or data level to fully utilise the capabilities of different assistive tools. Two intelligent algorithms are developed and embedded with parallel computing. These algorithms, together with the supportive architecture, lay a solid foundation for various applications of CFD-based design optimisation. To illustrate the effectiveness of the proposed architecture and algorithms, the case studies on aerodynamic shape design of a hypersonic cruising vehicle are provided, and the result has shown that the proposed architecture
Design of airborne wind turbine and computational fluid dynamics analysis
Anbreen, Faiqa
Wind energy is a promising alternative to the depleting non-renewable sources. The height of the wind turbines becomes a constraint to their efficiency. Airborne wind turbine can reach much higher altitudes and produce higher power due to high wind velocity and energy density. The focus of this thesis is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat with a capacity of 8-10 passengers. The idea of designing an airborne turbine is to take the advantage of higher velocities in the atmosphere. The Solidworks model has been analyzed numerically using Computational Fluid Dynamics (CFD) software StarCCM+. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) with K-epsilon turbulence model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine and the increase in air velocity at the throat. The analysis has been done using two ambient velocities of 12 m/s and 6 m/s. At 12 m/s inlet velocity, the velocity of air at the turbine has been recorded as 16 m/s. The power generated by the turbine is 61 kW. At inlet velocity of 6 m/s, the velocity of air at turbine increased to 10 m/s. The power generated by turbine is 25 kW.
CFD Analysis of a Finite Linear Array of Savonius Wind Turbines
Belkacem, Belabes; Paraschivoiu, Marius
2016-09-01
Vertical axis wind turbines such as Savonius rotors have been shown to be suitable for low wind speeds normally associated with wind resources in all corners of the world. However, the efficiency of the rotor is low. This paper presents results of Computational Fluid Dynamics (CFD) simulations for an array of Savonius rotors that show a significant increase in efficiency. It looks at identifying the effect on the energy yield of a number of turbines placed in a linear array. Results from this investigation suggest that an increase in the energy yield could be achieved which can reach almost two times than the conventional Savonius wind turbine in the case of an array of 11turbines with a distance of 1.4R in between them. The effect of different TSR values and different wind inlet speeds on the farm has been studied for both a synchronous and asynchronous wind farm.
CFD Analysis of a Finite Linear Array of Savonius Wind Turbines
International Nuclear Information System (INIS)
Belkacem, Belabes; Paraschivoiu, Marius
2016-01-01
Vertical axis wind turbines such as Savonius rotors have been shown to be suitable for low wind speeds normally associated with wind resources in all corners of the world. However, the efficiency of the rotor is low. This paper presents results of Computational Fluid Dynamics (CFD) simulations for an array of Savonius rotors that show a significant increase in efficiency. It looks at identifying the effect on the energy yield of a number of turbines placed in a linear array. Results from this investigation suggest that an increase in the energy yield could be achieved which can reach almost two times than the conventional Savonius wind turbine in the case of an array of 11turbines with a distance of 1.4R in between them. The effect of different TSR values and different wind inlet speeds on the farm has been studied for both a synchronous and asynchronous wind farm. (paper)
Performance analysis of a counter-rotating tubular type micro-turbine by experiment and CFD
International Nuclear Information System (INIS)
Lee, N J; Choi, J W; Hwang, Y H; Kim, Y T; Lee, Y H
2012-01-01
Micro hydraulic turbines have a growing interest because of its small and simple structure, as well as a high possibility of using in micro and small hydropower applications. The differential pressure existing in city water pipelines can be used efficiently to generate electricity in a way similar to that of energy being generated through gravitational potential energy in dams. The pressure energy in the city pipelines is often wasted by using pressure reducing valves at the inlet of water cleaning centers. Instead of using the pressure reducing valves, a micro counter-rotating hydraulic turbine can be used to make use of the pressure energy. In the present paper, a counter-rotating tubular type micro-turbine is studied, with the front runner connected to the generator stator and the rear runner connected to the generator rotor. The performance of the turbine is investigated experimentally and numerically. A commercial ANSYS CFD code was used for numerical analysis.
CFD and Experimental Studies on Wind Turbines in Complex Terrain by Improved Actuator Disk Method
Liu, Xin; Yan, Shu; Mu, Yanfei; Chen, Xinming; Shi, Shaoping
2017-05-01
In this paper, an onshore wind farm in mountainous area of southwest China was investigated through numerical and experimental methods. An improved actuator disk method, taking rotor data (i.e. blade geometry information, attack angle, blade pitch angle) into account, was carried out to investigate the flow characteristic of the wind farm, especially the wake developing behind the wind turbines. Comparing to the classic AD method and the situ measurements, the improved AD shows better agreements with the measurements. The turbine power was automatically predicted in CFD by blade element method, which agreed well with the measurement results. The study proved that the steady CFD simulation with improved actuator disk method was able to evaluate wind resource well and give good balance between computing efficiency and accuracy, in contrary to much more expensive computation methods such as actuator-line/actuator-surface transient model, or less accurate methods such as linear velocity reduction wake model.
Development of CFD-based icing model for wind turbines
DEFF Research Database (Denmark)
Pedersen, Marie Cecilie; Martinez, Benjamin; Yin, Chungen
2015-01-01
Operation of wind turbines in cold climate areas is challenged by icing-induced problems, such as loss of production, safety issues and blade fatique. Production losses are especially a big issue in Sweden, and due to difficulties with on-site measurements, simulations are often used to get an un...
Design optimization and analysis of vertical axis wind turbine blade
International Nuclear Information System (INIS)
Jarral, A.; Ali, M.; Sahir, M.H.
2013-01-01
Wind energy is clean and renwable source of energy and is also the world's fastest growing energy resource. Keeping in view power shortages and growing cost of energy, the low cost wind energy has become a primary solution. It is imperative that economies and individuals begin to conserve energy and focus on the production of energy from renewable sources. Present study describes a wind turbine blade designed with enhanced aerodynamic properties. Vertical axis turbine is chosen because of its easy installment, less noisy and having environmental friendly characteristics. Vertical axis wind turbines are thought to be ideal for installations where wind conditions are not consistent. The presented turbine blade is best suitable for roadsides where the rated speed due to vehicles is most /sup -1/ often 8 ms .To get an optimal shape design symmetrical profile NACA0025 has been considered which is then analyzed for stability and aerodynamic characteristics at optimal conditions using analysis tools ANSYS and CFD tools. (author)
Directory of Open Access Journals (Sweden)
Yun Kukchol
2016-01-01
Full Text Available The aim of the paper is to present the CFD analysis of the steam flow in the two-stage turbine with a drum rotor and balancing slots. The balancing slot is a part of every rotor blade and it can be used in the same way as balancing holes on the classical rotor disc. The main attention is focused on the explanation of the experimental knowledge about the impact of the slot covering and uncovering on the efficiency of the individual stages and the entire turbine. The pressure and temperature fields and the mass steam flows through the shaft seals, slots and blade cascades are calculated. The impact of the balancing slots covering or uncovering on the reaction and velocity conditions in the stages is evaluated according to the pressure and temperature fields. We have also concentrated on the analysis of the seal steam flow through the balancing slots. The optimized design of the balancing slots has been suggested.
Wind Turbine design and fabrication to power street lights
Directory of Open Access Journals (Sweden)
Khan Mohammad
2017-01-01
Full Text Available The objective of this work was to design and build a wind turbine which can be used to power small street lights. Considering the typical wind speeds in Abu Dhabi, UAE and ease of construction, the design of the wind turbine was chosen to be Sea Hawk design from vertical axis wind turbine category. A three phase AC generator was used for its availability over the DC motors within the region. A 12V battery was used for storage and a charge controller was used for controlling the charge flow into the battery and for controlling the turbine rotation when the battery is fully charged. The blades used in the turbine were made of foam board according to the NACA 0018 airfoil shape with a chord length of 15cm. The connecting shaft was made of stainless steel. Structural analysis and CFD analysis were performed along with other calculations. Testing was executed to calculate the voltage output from the turbine at different wind speeds. The maximum voltage the turbine produced at 6.4 m/s wind speed was 2.4Vand the rotational speed of the turbine was 60.3 rpm.
Using of CFD software for setting the location of water stream micro turbines
Directory of Open Access Journals (Sweden)
Borsuk Łukasz
2016-01-01
Full Text Available The aim of this work was to estimate the efficiency of CFD software in calculating flow velocity magnitude in natural water streams. These kinds of estimations are essential for setting the locations of water stream micro turbines. These devices can be useful to provide electricity in areas remote from power generating facilities or as backup power supply in case of power grid failure. The analysed water stream has length of 100 m and its average slope was approximately 10%. Water velocity varies in the range from 0.5 m3*s−1 to 5 m3*s−1. Additionally, the influence of ground roughness on the stream velocity was also an important factor. Results proved to be satisfactory. In the analysed stream, velocities were in a range which allows the proposed micro turbine to be effective. Calculation grid created by CFD software did not have many areas which may raise doubts. Also, the influence of changes in the ground roughness factor was noticeable. Preliminary CFD simulations allow to estimate where in the stream the micro turbine will be most efficient. On the other hand, despite these calculations, profitability and return on the investment still can be questionable.
Coupling Numerical Methods and Analytical Models for Ducted Turbines to Evaluate Designs
Directory of Open Access Journals (Sweden)
Bradford Knight
2018-04-01
Full Text Available Hydrokinetic turbines extract energy from currents in oceans, rivers, and streams. Ducts can be used to accelerate the flow across the turbine to improve performance. The objective of this work is to couple an analytical model with a Reynolds averaged Navier–Stokes (RANS computational fluid dynamics (CFD solver to evaluate designs. An analytical model is derived for ducted turbines. A steady-state moving reference frame solver is used to analyze both the freestream and ducted turbine. A sliding mesh solver is examined for the freestream turbine. An efficient duct is introduced to accelerate the flow at the turbine. Since the turbine is optimized for operation in the freestream and not within the duct, there is a decrease in efficiency due to duct-turbine interaction. Despite the decrease in efficiency, the power extracted by the turbine is increased. The analytical model under-predicts the flow rejection from the duct that is predicted by CFD since the CFD predicts separation but the analytical model does not. Once the mass flow rate is corrected, the model can be used as a design tool to evaluate how the turbine-duct pair reduces mass flow efficiency. To better understand this phenomenon, the turbine is also analyzed within a tube with the analytical model and CFD. The analytical model shows that the duct’s mass flow efficiency reduces as a function of loading, showing that the system will be more efficient when lightly loaded. Using the conclusions of the analytical model, a more efficient ducted turbine system is designed. The turbine is pitched more heavily and the twist profile is adapted to the radial throat velocity profile.
A reference Pelton turbine design
International Nuclear Information System (INIS)
Solemslie, B W; Dahlhaug, O G
2012-01-01
The designs of hydraulic turbines are usually close kept corporation secrets. Therefore, the possibility of innovation and co-operation between different academic institutions regarding a specific turbine geometry is difficult. A Ph.D.-project at the Waterpower Laboratory, NTNU, aim to design several model Pelton turbines where all measurements, simulations, the design strategy, design software in addition to the physical model will be available to the public. In the following paper a short description of the methods and the test rig that are to be utilized in the project are described. The design will be based on empirical data and NURBS will be used as the descriptive method for the turbine geometry. In addition CFX and SPH simulations will be included in the design process. Each turbine designed and produced in connection to this project will be based on the experience and knowledge gained from the previous designs. The first design will be based on the philosophy to keep a near constant relative velocity through the bucket.
A reference Pelton turbine design
Solemslie, B. W.; Dahlhaug, O. G.
2012-09-01
The designs of hydraulic turbines are usually close kept corporation secrets. Therefore, the possibility of innovation and co-operation between different academic institutions regarding a specific turbine geometry is difficult. A Ph.D.-project at the Waterpower Laboratory, NTNU, aim to design several model Pelton turbines where all measurements, simulations, the design strategy, design software in addition to the physical model will be available to the public. In the following paper a short description of the methods and the test rig that are to be utilized in the project are described. The design will be based on empirical data and NURBS will be used as the descriptive method for the turbine geometry. In addition CFX and SPH simulations will be included in the design process. Each turbine designed and produced in connection to this project will be based on the experience and knowledge gained from the previous designs. The first design will be based on the philosophy to keep a near constant relative velocity through the bucket.
CFD Modelling of a Pump as Turbine (PAT with Rounded Leading Edge Impellers for Micro Hydro Systems
Directory of Open Access Journals (Sweden)
Ismail Mohd Azlan
2017-01-01
Full Text Available A Pump as Turbine (PAT is one of micro hydro system components that is used to substitute a commercially available turbine due to its wide availability and low acquisition cost. However, PAT have high hydraulic losses due to differences in pump-turbine operation and hydraulic design. The fluid flowing inside the PAT is subjected to hydraulic losses due to the longer flow passage and unmatched fluid flow within the wall boundaries. This paper presents the effect of rounding the impeller leading edges of the pump on turbine performance. A CFD model of a PAT was designed to simulate virtual performance for the analysis. The aim of this study is to observe the internal hydraulic performance resulting from the changes in the performance characteristics. Highest efficiency was recorded at 17.0 l/s, an increase of 0.18%. The simulation results reveal that there is an improvement in hydraulic performance at overflow operation. The velocity vector visualization shows that there is a reduction in wake and consequently less flow separation along impeller flow passages. However, adjusting the sensitive impeller inlet geometry will also alter the velocity inlet vector and consequently change the velocity triangles for the turbo machinery system.
Probabilistic Design of Wind Turbines
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Toft, H.S.
2010-01-01
Probabilistic design of wind turbines requires definition of the structural elements to be included in the probabilistic basis: e.g., blades, tower, foundation; identification of important failure modes; careful stochastic modeling of the uncertain parameters; recommendations for target reliability....... It is described how uncertainties in wind turbine design related to computational models, statistical data from test specimens, results from a few full-scale tests and from prototype wind turbines can be accounted for using the Maximum Likelihood Method and a Bayesian approach. Assessment of the optimal...... reliability level by cost-benefit optimization is illustrated by an offshore wind turbine example. Uncertainty modeling is illustrated by an example where physical, statistical and model uncertainties are estimated....
Validation of CFD/Heat Transfer Software for Turbine Blade Analysis
Kiefer, Walter D.
2004-01-01
I am an intern in the Turbine Branch of the Turbomachinery and Propulsion Systems Division. The division is primarily concerned with experimental and computational methods of calculating heat transfer effects of turbine blades during operation in jet engines and land-based power systems. These include modeling flow in internal cooling passages and film cooling, as well as calculating heat flux and peak temperatures to ensure safe and efficient operation. The branch is research-oriented, emphasizing the development of tools that may be used by gas turbine designers in industry. The branch has been developing a computational fluid dynamics (CFD) and heat transfer code called GlennHT to achieve the computational end of this analysis. The code was originally written in FORTRAN 77 and run on Silicon Graphics machines. However the code has been rewritten and compiled in FORTRAN 90 to take advantage of more modem computer memory systems. In addition the branch has made a switch in system architectures from SGI's to Linux PC's. The newly modified code therefore needs to be tested and validated. This is the primary goal of my internship. To validate the GlennHT code, it must be run using benchmark fluid mechanics and heat transfer test cases, for which there are either analytical solutions or widely accepted experimental data. From the solutions generated by the code, comparisons can be made to the correct solutions to establish the accuracy of the code. To design and create these test cases, there are many steps and programs that must be used. Before a test case can be run, pre-processing steps must be accomplished. These include generating a grid to describe the geometry, using a software package called GridPro. Also various files required by the GlennHT code must be created including a boundary condition file, a file for multi-processor computing, and a file to describe problem and algorithm parameters. A good deal of this internship will be to become familiar with these
CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter
Directory of Open Access Journals (Sweden)
M.H. Mohamed
2015-03-01
Full Text Available Vertical axis wind turbines like the Darrieus turbine appear to be promising for the conditions of low wind speed, but suffer from a low efficiency compared to horizontal axis turbines. A fully detailed numerical analysis is introduced in this work to improve the global performance of this wind turbine. A comparison between ANSYS Workbench and Gambit meshing tools for the numerical modeling is performed to summarize a final numerical sequence for the Darrieus rotor performance. Then, this model sequence is applied for different blade airfoils to obtain the best performance. Unsteady simulations performed for different speed ratios and based on URANS turbulent calculations using sliding mesh approach. Results show that the accuracy of ANSYS Workbench meshing is improved by using SST K-omega model but it is not recommended for other turbulence models. Moreover, this CFD procedure is used in this paper to assess the turbine performance with different airfoil shapes (25 airfoils. The results introduced new shapes for this turbine with higher efficiency than the regular airfoils by 10%. In addition, blade pitch angle has been studied and the results indicated that the zero pitch angle gives best performance.
CFD and Aeroelastic Analysis of the MEXICO Wind Turbine
International Nuclear Information System (INIS)
Carrión, M; Woodgate, M; Steijl, R; Barakos, G; Gómez-Iradi, S; Munduate, X
2014-01-01
This paper presents an aerodynamic and aeroelastic analysis of the MEXICO wind turbine, using the compressible HMB solver of Liverpool. The aeroelasticity of the blade, as well as the effect of a low-Mach scheme were studied for the zero-yaw 15m/s wind case and steady- state computations. The wake developed behind the rotor was also extracted and compared with the experimental data, using the compressible solver and a low-Mach scheme. It was found that the loads were not sensitive to the Mach number effects, although the low-Mach scheme improved the wake predictions. The sensitivity of the results to the blade structural properties was also highlighted
Slotted Blades Savonius Wind Turbine Analysis by CFD
Directory of Open Access Journals (Sweden)
Andrea Alaimo
2013-12-01
Full Text Available In this paper a new bucket configuration for a Savonius wind generator is proposed. Numerical analyses are performed to estimate the performances of the proposed configuration by means of the commercial code COMSOL Multiphysics® with respect to Savonius wind turbine with overlap only. Parametric analyses are performed, for a fixed overlap ratio, by varying the slot position; the results show that for slot positioned near the blade root, the Savonius rotor improves performances at low tip speed ratio, evidencing a better starting torque. This circumstance is confirmed by static analyses performed on the slotted blades in order to investigate the starting characteristic of the proposed Savonius wind generator configuration.
Rotor Design for Diffuser Augmented Wind Turbines
Directory of Open Access Journals (Sweden)
Søren Hjort
2015-09-01
Full Text Available Diffuser augmented wind turbines (DAWTs can increase mass flow through the rotor substantially, but have often failed to fulfill expectations. We address high-performance diffusers, and investigate the design requirements for a DAWT rotor to efficiently convert the available energy to shaft energy. Several factors can induce wake stall scenarios causing significant energy loss. The causality between these stall mechanisms and earlier DAWT failures is discussed. First, a swirled actuator disk CFD code is validated through comparison with results from a far wake swirl corrected blade-element momentum (BEM model, and horizontal-axis wind turbine (HAWT reference results. Then, power efficiency versus thrust is computed with the swirled actuator disk (AD code for low and high values of tip-speed ratios (TSR, for different centerbodies, and for different spanwise rotor thrust loading distributions. Three different configurations are studied: The bare propeller HAWT, the classical DAWT, and the high-performance multi-element DAWT. In total nearly 400 high-resolution AD runs are generated. These results are presented and discussed. It is concluded that dedicated DAWT rotors can successfully convert the available energy to shaft energy, provided the identified design requirements for swirl and axial loading distributions are satisfied.
International Nuclear Information System (INIS)
Zou, Zhengping; Liu, Jingyuan; Zhang, Weihao; Wang, Peng
2016-01-01
Multi-dimensional coupling simulation is an effective approach for evaluating the flow and aero-thermal performance of shrouded turbines, which can balance the simulation accuracy and computing cost effectively. In this paper, 1D leakage models are proposed based on classical jet theories and dynamics equations, which can be used to evaluate most of the main features of shroud leakage flow, including the mass flow rate, radial and circumferential momentum, temperature and the jet width. Then, the 1D models are expanded to 2D distributions on the interface by using a multi-dimensional scaling method. Based on the models and multi-dimensional scaling, a multi-dimensional coupling simulation method for shrouded turbines is developed, in which, some boundary source and sink are set on the interface between the shroud and the main flow passage. To verify the precision, some simulations on the design point and off design points of a 1.5 stage turbine are conducted. It is indicated that the models and methods can give predictions with sufficient accuracy for most of the flow field features and will contribute to pursue deeper understanding and better design methods of shrouded axial turbines, which are the important devices in energy engineering. - Highlights: • Free and wall attached jet theories are used to model the leakage flow in shrouds. • Leakage flow rate is modeled by virtual labyrinth number and residual-energy factor. • A scaling method is applied to 1D model to obtain 2D distributions on interfaces. • A multi-dimensional coupling CFD method for shrouded turbines is proposed. • The proposed coupling method can give accurate predictions with low computing cost.
Wind Turbine Blade Design System - Aerodynamic and Structural Analysis
Dey, Soumitr
2011-12-01
The ever increasing need for energy and the depletion of non-renewable energy resources has led to more advancement in the "Green Energy" field, including wind energy. An improvement in performance of a Wind Turbine will enhance its economic viability, which can be achieved by better aerodynamic designs. In the present study, a design system that has been under development for gas turbine turbomachinery has been modified for designing wind turbine blades. This is a very different approach for wind turbine blade design, but will allow it to benefit from the features inherent in the geometry flexibility and broad design space of the presented system. It starts with key overall design parameters and a low-fidelity model that is used to create the initial geometry parameters. The low-fidelity system includes the axisymmetric solver with loss models, T-Axi (Turbomachinery-AXIsymmetric), MISES blade-to-blade solver and 2D wing analysis code XFLR5. The geometry parameters are used to define sections along the span of the blade and connected to the CAD model of the wind turbine blade through CAPRI (Computational Analysis PRogramming Interface), a CAD neutral API that facilitates the use of parametric geometry definition with CAD. Either the sections or the CAD geometry is then available for CFD and Finite Element Analysis. The GE 1.5sle MW wind turbine and NERL NASA Phase VI wind turbine have been used as test cases. Details of the design system application are described, and the resulting wind turbine geometry and conditions are compared to the published results of the GE and NREL wind turbines. A 2D wing analysis code XFLR5, is used for to compare results from 2D analysis to blade-to-blade analysis and the 3D CFD analysis. This kind of comparison concludes that, from hub to 25% of the span blade to blade effects or the cascade effect has to be considered, from 25% to 75%, the blade acts as a 2d wing and from 75% to the tip 3D and tip effects have to be taken into account
3D CFD Quantification of the Performance of a Multi-Megawatt Wind Turbine
Laursen, J.; Enevoldsen, P.; Hjort, S.
2007-07-01
This paper presents the results of 3D CFD rotor computations of a Siemens SWT-2.3-93 variable speed wind turbine with 45m blades. In the paper CFD is applied to a rotor at stationary wind conditions without wind shear, using the commercial multi-purpose CFD-solvers ANSYS CFX 10.0 and 11.0. When comparing modelled mechanical effects with findings from other models and measurements, good agreement is obtained. Similarly the computed force distributions compare very well, whereas some discrepancies are found when comparing with an in-house BEM model. By applying the reduced axial velocity method the local angle of attack has been derived from the CFD solutions, and from this knowledge and the computed force distributions, local airfoil profile coefficients have been computed and compared to BEM airfoil coefficients. Finally, the transition model of Langtry and Menter is tested on the rotor, and the results are compared with the results from the fully turbulent setup.
3D CFD Quantification of the Performance of a Multi-Megawatt Wind Turbine
International Nuclear Information System (INIS)
Laursen, J; Enevoldsen, P; Hjort, S
2007-01-01
This paper presents the results of 3D CFD rotor computations of a Siemens SWT-2.3-93 variable speed wind turbine with 45m blades. In the paper CFD is applied to a rotor at stationary wind conditions without wind shear, using the commercial multi-purpose CFD-solvers ANSYS CFX 10.0 and 11.0. When comparing modelled mechanical effects with findings from other models and measurements, good agreement is obtained. Similarly the computed force distributions compare very well, whereas some discrepancies are found when comparing with an in-house BEM model. By applying the reduced axial velocity method the local angle of attack has been derived from the CFD solutions, and from this knowledge and the computed force distributions, local airfoil profile coefficients have been computed and compared to BEM airfoil coefficients. Finally, the transition model of Langtry and Menter is tested on the rotor, and the results are compared with the results from the fully turbulent setup
CFD simulation of a 2 bladed multi megawatt wind turbine with flexible rotor connection
Klein, L.; Luhmann, B.; Rösch, K.-N.; Lutz, T.; Cheng, P.-W.; Krämer, E.
2016-09-01
An innovative passive load reduction concept for a two bladed 3.4 MW wind turbine is investigated by a conjoint CFD and MBS - BEM methodology. The concept consists of a flexible hub mount which allows a tumbling motion of the rotor. First, the system is simulated with a MBS tool coupled to a BEM code. Then, the resulting motion of the rotor is extracted from the simulation and applied on the CFD simulation as prescribed motion. The aerodynamic results show a significant load reduction on the support structure. Hub pitching and yawing moment amplitudes are reduced by more than 50% in a vertically sheared inflow. Furthermore, the suitability of the MBS - BEM approach for the simulation of the load reduction system is shown.
CFD simulation on flow induced vibrations in high pressure control and emergency stop turbine valve
International Nuclear Information System (INIS)
Lindqvist, H.
2011-01-01
During the refuelling outage at Unit 2 of Forsmark NPP in 2009, the high pressure turbine valves were replaced. Three month after recommissioning, an oil pipe connected to one of the actuators was broken. Measurements showed high-frequency vibration levels. The pipe break was suspected to be an effect of highly increased vibrations caused by the new valve. In order to establish the origin of the vibrations, investigations by means of CFD-simulations were made. The simulations showed that the increased vibrations most likely stems from the open cavity that the valves centre consists of. (author)
CFD based draft tube hydraulic design optimization
International Nuclear Information System (INIS)
McNabb, J; Murry, N; Mullins, B F; Devals, C; Kyriacou, S A
2014-01-01
The draft tube design of a hydraulic turbine, particularly in low to medium head applications, plays an important role in determining the efficiency and power characteristics of the overall machine, since an important proportion of the available energy, being in kinetic form leaving the runner, needs to be recovered by the draft tube into static head. For large units, these efficiency and power characteristics can equate to large sums of money when considering the anticipated selling price of the energy produced over the machine's life-cycle. This same draft tube design is also a key factor in determining the overall civil costs of the powerhouse, primarily in excavation and concreting, which can amount to similar orders of magnitude as the price of the energy produced. Therefore, there is a need to find the optimum compromise between these two conflicting requirements. In this paper, an elaborate approach is described for dealing with this optimization problem. First, the draft tube's detailed geometry is defined as a function of a comprehensive set of design parameters (about 20 of which a subset is allowed to vary during the optimization process) and are then used in a non-uniform rational B-spline based geometric modeller to fully define the wetted surfaces geometry. Since the performance of the draft tube is largely governed by 3D viscous effects, such as boundary layer separation from the walls and swirling flow characteristics, which in turn governs the portion of the available kinetic energy which will be converted into pressure, a full 3D meshing and Navier-Stokes analysis is performed for each design. What makes this even more challenging is the fact that the inlet velocity distribution to the draft tube is governed by the runner at each of the various operating conditions that are of interest for the exploitation of the powerhouse. In order to determine these inlet conditions, a combined steady-state runner and an initial draft tube analysis
CFD based draft tube hydraulic design optimization
McNabb, J.; Devals, C.; Kyriacou, S. A.; Murry, N.; Mullins, B. F.
2014-03-01
The draft tube design of a hydraulic turbine, particularly in low to medium head applications, plays an important role in determining the efficiency and power characteristics of the overall machine, since an important proportion of the available energy, being in kinetic form leaving the runner, needs to be recovered by the draft tube into static head. For large units, these efficiency and power characteristics can equate to large sums of money when considering the anticipated selling price of the energy produced over the machine's life-cycle. This same draft tube design is also a key factor in determining the overall civil costs of the powerhouse, primarily in excavation and concreting, which can amount to similar orders of magnitude as the price of the energy produced. Therefore, there is a need to find the optimum compromise between these two conflicting requirements. In this paper, an elaborate approach is described for dealing with this optimization problem. First, the draft tube's detailed geometry is defined as a function of a comprehensive set of design parameters (about 20 of which a subset is allowed to vary during the optimization process) and are then used in a non-uniform rational B-spline based geometric modeller to fully define the wetted surfaces geometry. Since the performance of the draft tube is largely governed by 3D viscous effects, such as boundary layer separation from the walls and swirling flow characteristics, which in turn governs the portion of the available kinetic energy which will be converted into pressure, a full 3D meshing and Navier-Stokes analysis is performed for each design. What makes this even more challenging is the fact that the inlet velocity distribution to the draft tube is governed by the runner at each of the various operating conditions that are of interest for the exploitation of the powerhouse. In order to determine these inlet conditions, a combined steady-state runner and an initial draft tube analysis, using a
Analysis of a pico tubular-type hydro turbine performance by runner blade shape using CFD
Park, J. H.; Lee, N. J.; Wata, J. V.; Hwang, Y. C.; Kim, Y. T.; Lee, Y. H.
2012-11-01
There has been a considerable interest recently in the topic of renewable energy. This is primarily due to concerns about environmental impacts of fossil fuels. Moreover, fluctuating and rising oil prices, increase in demand, supply uncertainties and other factors have led to increased calls for alternative energy sources. Small hydropower, among other renewable energy sources, has been evaluated to have adequate development value because it is a clean, renewable and abundant energy resource. In addition, small hydropower has the advantage of low cost development by using rivers, agricultural reservoirs, sewage treatment plants, waterworks and water resources. The main concept of the tubular-type hydro turbine is based on the difference in water pressure levels in pipe lines, where the energy which was initially wasted by using a reducing valve at the pipeline of waterworks, is collected by turbine in the hydro power generator. In this study, in order to acquire the performance data of a pico tubular-type hydro turbine, the output power, head and efficiency characteristics by different runner blade shapes are examined. The pressure and velocity distributions with the variation of guide vane and runner vane angle on turbine performance are investigated by using a commercial CFD code.
Kao, Jui-Hsiang; Tseng, Po-Yuan
2018-01-01
The objective of this paper is to describe the application of CFD (Computational fluid dynamics) technology in the matching of turbine blades and generator to increase the efficiency of a vertical axis wind turbine (VAWT). A VAWT is treated as the study case here. The SST (Shear-Stress Transport) k-ω turbulence model with SIMPLE algorithm method in transient state is applied to solve the T (torque)-N (r/min) curves of the turbine blades at different wind speed. The T-N curves of the generator at different CV (constant voltage) model are measured. Thus, the T-N curves of the turbine blades at different wind speed can be matched by the T-N curves of the generator at different CV model to find the optimal CV model. As the optimal CV mode is selected, the characteristics of the operating points, such as tip speed ratio, revolutions per minute, blade torque, and efficiency, can be identified. The results show that, if the two systems are matched well, the final output power at a high wind speed of 9-10 m/s will be increased by 15%.
Directory of Open Access Journals (Sweden)
Weipeng Yue
2017-01-01
Full Text Available Damp air with high humidity combined with foggy, rainy weather, and icing in winter weather often is found to cause turbine performance degradation, and it is more concerned with offshore wind farm development. To address and understand the high humidity effects on wind turbine performance, our study has been conducted with spread sheet analysis on damp air properties investigation for air density and viscosity; then CFD modeling study using Fluent was carried out on airfoil and blade aerodynamic performance effects due to water vapor partial pressure of mixing flow and water condensation around leading edge and trailing edge of airfoil. It is found that the high humidity effects with water vapor mixing flow and water condensation thin film around airfoil may have insignificant effect directly on airfoil/blade performance; however, the indirect effects such as blade contamination and icing due to the water condensation may have significant effects on turbine performance degradation. Also it is that found the foggy weather with microwater droplet (including rainy weather may cause higher drag that lead to turbine performance degradation. It is found that, at high temperature, the high humidity effect on air density cannot be ignored for annual energy production calculation. The blade contamination and icing phenomenon need to be further investigated in the next study.
Optimal design of marine steam turbine
International Nuclear Information System (INIS)
Liu Chengyang; Yan Changqi; Wang Jianjun
2012-01-01
The marine steam turbine is one of the key equipment in marine power plant, and it tends to using high power steam turbine, which makes the steam turbine to be heavier and larger, it causes difficulties to the design and arrangement of the steam turbine, and the marine maneuverability is seriously influenced. Therefore, it is necessary to apply optimization techniques to the design of the steam turbine in order to achieve the minimum weight or volume by means of finding the optimum combination of design parameters. The math model of the marine steam turbine design calculation was established. The sensitivities of condenser pressure, power ratio of HP turbine with LP turbine, and the ratio of diameter with height at the end stage of LP turbine, which influence the weight of the marine steam turbine, were analyzed. The optimal design of the marine steam turbine, aiming at the weight minimization while satisfying the structure and performance constraints, was carried out with the hybrid particle swarm optimization algorithm. The results show that, steam turbine weight is reduced by 3.13% with the optimization scheme. Finally, the optimization results were analyzed, and the steam turbine optimization design direction was indicated. (authors)
Airfoil family design for large offshore wind turbine blades
International Nuclear Information System (INIS)
Méndez, B; Munduate, X; Miguel, U San
2014-01-01
Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design
Airfoil family design for large offshore wind turbine blades
Méndez, B.; Munduate, X.; San Miguel, U.
2014-06-01
Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design
Cross cutting CFD support to innovative reactor design
International Nuclear Information System (INIS)
Roelofs, Ferry
2009-01-01
Several innovative technologies are under consideration in the world for nuclear energy production. The considered reactor systems apply either gas, sodium, lead, lead-bismuth, supercritical water, or molten salt as coolant. Therefore, methods shall be developed to determine the viability of such systems, but also to support the design of these innovative reactor systems. Computational Fluid Dynamics (CFD) is becoming more and more integrated in the daily practice of thermal-hydraulics researchers and designers. Therefore, it is very important to develop modelling approaches for the application of CFD to the specific requirements for innovative reactors. As many of these innovative reactor designs under consideration are operated using other coolants than water, one has to be careful in adopting methods which are developed for water as a coolant. Cross-cutting CFD challenges, methods and applications are presented for innovative reactors. (author)
Design and performance analysis of gas and liquid radial turbines
Tan, Xu
In the first part of the research, pumps running in reverse as turbines are studied. This work uses experimental data of wide range of pumps representing the centrifugal pumps' configurations in terms of specific speed. Based on specific speed and specific diameter an accurate correlation is developed to predict the performances at best efficiency point of the centrifugal pump in its turbine mode operation. The proposed prediction method yields very good results to date compared to previous such attempts. The present method is compared to nine previous methods found in the literature. The comparison results show that the method proposed in this paper is the most accurate. The proposed method can be further complemented and supplemented by more future tests to increase its accuracy. The proposed method is meaningful because it is based both specific speed and specific diameter. The second part of the research is focused on the design and analysis of the radial gas turbine. The specification of the turbine is obtained from the solar biogas hybrid system. The system is theoretically analyzed and constructed based on the purchased compressor. Theoretical analysis results in a specification of 100lb/min, 900ºC inlet total temperature and 1.575atm inlet total pressure. 1-D and 3-D geometry of the rotor is generated based on Aungier's method. 1-D loss model analysis and 3-D CFD simulations are performed to examine the performances of the rotor. The total-to-total efficiency of the rotor is more than 90%. With the help of CFD analysis, modifications on the preliminary design obtained optimized aerodynamic performances. At last, the theoretical performance analysis on the hybrid system is performed with the designed turbine.
CFD modelling approaches against single wind turbine wake measurements using RANS
International Nuclear Information System (INIS)
Stergiannis, N; Lacor, C; Beeck, J V; Donnelly, R
2016-01-01
Numerical simulations of two wind turbine generators including the exact geometry of their blades and hub are compared against a simplified actuator disk model (ADM). The wake expansion of the upstream rotor is investigated and compared with measurements. Computational Fluid Dynamics (CFD) simulations have been performed using the open-source platform OpenFOAM [1]. The multiple reference frame (MRF) approach was used to model the inner rotating reference frames in a stationary computational mesh and outer reference frame for the full wind turbine rotor simulations. The standard k — ε and k — ω turbulence closure schemes have been used to solve the steady state, three dimensional Reynolds Averaged Navier- Stokes (RANS) equations. Results of near and far wake regions are compared with wind tunnel measurements along three horizontal lines downstream. The ADM under-predicted the velocity deficit at the wake for both turbulence models. Full wind turbine rotor simulations showed good agreement against the experimental data at the near wake, amplifying the differences between the simplified models. (paper)
Directory of Open Access Journals (Sweden)
I. Herráez
2018-01-01
Full Text Available The analysis of wind turbine aerodynamics requires accurate information about the axial and tangential wake induction as well as the local angle of attack along the blades. In this work we present a new method for obtaining them conveniently from the velocity field. We apply the method to the New Mexico particle image velocimetry (PIV data set and to computational fluid dynamics (CFD simulations of the same turbine. This allows the comparison of experimental and numerical results of the mentioned quantities on a rotating wind turbine. The presented results open up new possibilities for the validation of numerical rotor models.
Design of Radial Inflow Turbine for 30 kW Microturbine
Directory of Open Access Journals (Sweden)
Sangsawangmatum Thanate
2017-01-01
Full Text Available Microturbines are small gas turbines that have the capacity range of 25-300 kW. The main components of microturbine are compressor, turbine, combustor and recuperator. This research paper focuses on the design of radial inflow turbine that operates in 30 kW microturbine. In order to operate the 30 kW microturbine with the back work ratio of 0.5, the radial inflow turbine should be designed to produce power at 60 kW. With the help of theory of turbo-machinery and the analytical methods, the design parameters are derived. The design results are constructed in 3D geometry. The 3D fluid-geometry is validated by computational fluid dynamics (CFD simulation. The simulation results show the airflow path, the temperature distribution, the pressure distribution and Mach number. According to the simulation results, there is no flow blockage between vanes and no shock flow occurs in the designed turbine.
Determining the performance of a Diffuser Augmented Wind Turbine using a combined CFD/BEM method
Directory of Open Access Journals (Sweden)
Kesby Joss E.
2017-01-01
Full Text Available Traditionally, the optimisation of a Diffuser Augmented Wind Turbine has focused on maximising power output. However, due to the often less than ideal location of small-scale turbines, cut-in speed and starting time are of equal importance in maximising Annual Energy Production, which is the ultimate goal of any wind turbine design. This paper proposes a method of determining power output, cut-in speed and starting time using a combination of Computational Fluid Dynamics and Blade Element Momentum theory. The proposed method has been validated against published experimental data.
Design of Wind Turbine Vibration Monitoring System
Directory of Open Access Journals (Sweden)
Shoubin Wang
2013-04-01
Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.
Numerical simulations of a horizontal axis water turbine designed for underwater mooring platforms
Directory of Open Access Journals (Sweden)
Wenlong Tian
2016-01-01
Full Text Available In order to extend the operational life of Underwater Moored Platforms (UMPs, a horizontal axis water turbine is designed to supply energy for the UMPs. The turbine, equipped with controllable blades, can be opened to generate power and charge the UMPs in moored state. Three-dimensional Computational Fluid Dynamics (CFD simulations are performed to study the characteristics of power, thrust and the wake of the turbine. Particularly, the effect of the installation position of the turbine is considered. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS equations and the shear stress transport k-ω turbulent model is utilized. The numerical method is validated using existing experimental data. The simulation results show that this turbine has a maximum power coefficient of 0.327 when the turbine is installed near the tail of the UMP. The flow structure near the blade and in the wake are also discussed.
Considering value of information when using CFD in design
Energy Technology Data Exchange (ETDEWEB)
Misra, John Satprim [Iowa State Univ., Ames, IA (United States)
2009-01-01
This thesis presents an approach to find lower resolution CFD models that can accurately lead a designer to a correct decision at a lower computational cost. High-fidelity CFD models often contain too much information and come at a higher computational cost, limiting the designs a designer can test and how much optimization can be performed on the design. Lower model resolution is commonly used to reduce computational time. However there are no clear guidelines on how much model accuracy is required. Instead experience and intuition are used to select an appropriate lower resolution model. This thesis presents an alternative to this ad hoc method by considering the added value of the addition information provided by increasing accurate and more computationally expensive models.
Optimized design for TWR assembly by CFD calculations
International Nuclear Information System (INIS)
Lu Jianchao; Lu Chuan; Yan Mingyu
2013-01-01
High temperature difference in travelling wave reactor bundle was found in the previous work. It could not be used in bundle design. Various analysis focused on helical wrapped wires and assembly housing was carried out by CFD calculation which found that the helical wrapped wires could influence the temperature differences while the effect was not obvious. Adding the strips and fillets on the assembly housing could optimize the thermal characteristics greatly, which can be used in the TWR assembly design. (authors)
A numerical study on an optimum design of a Cross-flow type Power Turbine (CPT)
International Nuclear Information System (INIS)
Ha, Jin Ho; Kim, Chul Ho
2008-01-01
A wind turbine is one of the most popular energy conversion systems to generate electricity from the natural renewable energy source and an axial-flow type wind turbine is commonly used system for the generation electricity in the wind farm nowadays. In this study, a cross-flow type turbine has been studied for the application of wind turbine for electricity generation. The target capacity of the electric power generation of the model wind turbine developing in this project is 12volts-150A/H(about 1.8Kw). The important design parameters of the model turbine impeller are the inlet and exit angle of the turbine blade, number of blade, hub/tip ratio and exit flow angle of the housing. In this study, the radial equilibrium theorem was used to decide the inlet and exit angle of the model impeller blade and CFD technique was incorporated to have performance analysis of the design model power turbine for the optimum design of the geometry of the Cross-flow Power Turbine impeller and Casing. In CFD, Navier-Stokes equation is solved with the SIMPLEC method in a general coordinates system. Realizable k-ε turbulent model with MARS scheme was used for evaluating torque of each blade in the Cross-flow Power Turbine (CPT). From the result, the designed CPT with 24 impeller blades at α=40 .deg. and β=85 .deg. of turbine blade angle was estimated to generate 1.2Nm of the indicated torque and 200watts of the indicated power. On the basis of the rules of similarity, the generating power capacity of the real size CPT that is eight times longer than the model impeller is predicted to have an 1.6kW of the output power (about 12V-130A/H or 24V-65A/H)
CFD application to advanced design for high efficiency spacer grid
Energy Technology Data Exchange (ETDEWEB)
Ikeda, Kazuo, E-mail: kazuo3_ikeda@ndc.mhi.co.jp
2014-11-15
Highlights: • A new LDV was developed to investigate the local velocity in a rod bundle and inside a spacer grid. • The design information that utilizes for high efficiency spacer grid has been obtained. • CFD methodology that predicts flow field in a PWR fuel has been developed. • The high efficiency spacer grid was designed using the CFD methodology. - Abstract: Pressurized water reactor (PWR) fuels have been developed to meet the needs of the market. A spacer grid is a key component to improve thermal hydraulic performance of a PWR fuel assembly. Mixing structures (vanes) of a spacer grid promote coolant mixing and enhance heat removal from fuel rods. A larger mixing vane would improve mixing effect, which would increase the departure from nucleate boiling (DNB) benefit for fuel. However, the increased pressure loss at large mixing vanes would reduce the coolant flow at the mixed fuel core, which would reduce the DNB margin. The solution is to develop a spacer grid whose pressure loss is equal to or less than the current spacer grid and that has higher critical heat flux (CHF) performance. For this reason, a requirement of design tool for predicting the pressure loss and CHF performance of spacer grids has been increased. The author and co-workers have been worked for development of high efficiency spacer grid using Computational Fluid Dynamics (CFD) for nearly 20 years. A new laser Doppler velocimetry (LDV), which is miniaturized with fiber optics embedded in a fuel cladding, was developed to investigate the local velocity profile in a rod bundle and inside a spacer grid. The rod-embedded fiber LDV (rod LDV) can be inserted in an arbitrary grid cell instead of a fuel rod, and has the advantage of not disturbing the flow field since it is the same shape as a fuel rod. The probe volume of the rod LDV is small enough to measure spatial velocity profile in a rod gap and inside a spacer grid. According to benchmark experiments such as flow velocity
CFD application to advanced design for high efficiency spacer grid
International Nuclear Information System (INIS)
Ikeda, Kazuo
2014-01-01
Highlights: • A new LDV was developed to investigate the local velocity in a rod bundle and inside a spacer grid. • The design information that utilizes for high efficiency spacer grid has been obtained. • CFD methodology that predicts flow field in a PWR fuel has been developed. • The high efficiency spacer grid was designed using the CFD methodology. - Abstract: Pressurized water reactor (PWR) fuels have been developed to meet the needs of the market. A spacer grid is a key component to improve thermal hydraulic performance of a PWR fuel assembly. Mixing structures (vanes) of a spacer grid promote coolant mixing and enhance heat removal from fuel rods. A larger mixing vane would improve mixing effect, which would increase the departure from nucleate boiling (DNB) benefit for fuel. However, the increased pressure loss at large mixing vanes would reduce the coolant flow at the mixed fuel core, which would reduce the DNB margin. The solution is to develop a spacer grid whose pressure loss is equal to or less than the current spacer grid and that has higher critical heat flux (CHF) performance. For this reason, a requirement of design tool for predicting the pressure loss and CHF performance of spacer grids has been increased. The author and co-workers have been worked for development of high efficiency spacer grid using Computational Fluid Dynamics (CFD) for nearly 20 years. A new laser Doppler velocimetry (LDV), which is miniaturized with fiber optics embedded in a fuel cladding, was developed to investigate the local velocity profile in a rod bundle and inside a spacer grid. The rod-embedded fiber LDV (rod LDV) can be inserted in an arbitrary grid cell instead of a fuel rod, and has the advantage of not disturbing the flow field since it is the same shape as a fuel rod. The probe volume of the rod LDV is small enough to measure spatial velocity profile in a rod gap and inside a spacer grid. According to benchmark experiments such as flow velocity
Design evolution of large wind turbine generators
Spera, D. A.
1979-01-01
During the past five years, the goals of economy and reliability have led to a significant evolution in the basic design--both external and internal--of large wind turbine systems. To show the scope and nature of recent changes in wind turbine designs, development of three types are described: (1) system configuration developments; (2) computer code developments; and (3) blade technology developments.
Designing high power targets with computational fluid dynamics (CFD)
International Nuclear Information System (INIS)
Covrig, S. D.
2013-01-01
High power liquid hydrogen (LH2) targets, up to 850 W, have been widely used at Jefferson Lab for the 6 GeV physics program. The typical luminosity loss of a 20 cm long LH2 target was 20% for a beam current of 100 μA rastered on a square of side 2 mm on the target. The 35 cm long, 2500 W LH2 target for the Qweak experiment had a luminosity loss of 0.8% at 180 μA beam rastered on a square of side 4 mm at the target. The Qweak target was the highest power liquid hydrogen target in the world and with the lowest noise figure. The Qweak target was the first one designed with CFD at Jefferson Lab. A CFD facility is being established at Jefferson Lab to design, build and test a new generation of low noise high power targets
Designing high power targets with computational fluid dynamics (CFD)
Energy Technology Data Exchange (ETDEWEB)
Covrig, S. D. [Thomas Jefferson National Laboratory, Newport News, VA 23606 (United States)
2013-11-07
High power liquid hydrogen (LH2) targets, up to 850 W, have been widely used at Jefferson Lab for the 6 GeV physics program. The typical luminosity loss of a 20 cm long LH2 target was 20% for a beam current of 100 μA rastered on a square of side 2 mm on the target. The 35 cm long, 2500 W LH2 target for the Qweak experiment had a luminosity loss of 0.8% at 180 μA beam rastered on a square of side 4 mm at the target. The Qweak target was the highest power liquid hydrogen target in the world and with the lowest noise figure. The Qweak target was the first one designed with CFD at Jefferson Lab. A CFD facility is being established at Jefferson Lab to design, build and test a new generation of low noise high power targets.
Design Mining Interacting Wind Turbines.
Preen, Richard J; Bull, Larry
2016-01-01
An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assumptions were made. This paper extends that work by exploring alternative surrogate modelling and evolutionary techniques. The accuracy of various modelling algorithms used to estimate the fitness of evaluated individuals from the initial experiments is compared. The effect of temporally windowing surrogate model training samples is explored. A surrogate-assisted approach based on an enhanced local search is introduced; and alternative coevolution collaboration schemes are examined.
Directory of Open Access Journals (Sweden)
A. M. El-jummah
2017-04-01
Full Text Available Internal wall heat transfer relevant to impingement/effusion cooling techniques was investigated using conjugate heat transfer (CHT computational fluid dynamics (CFD with ANSYS Fluent and ICEM commercial software. This work concentrates on the development of CHT CFD design procedures that are applicable to combustor wall and turbine blade heat transfer optimisation in gas turbine (GT. It specifically modelled and compares two configuration which are specifically relevant to the impingement and effusion holes density n (m-2 and is the ratio of the hole pitch X2. The configurations investigated are equal and unequal impingement and effusion holes density n (m-2, respectively, whereby in each case the variation in the number of cooling holes were carried out. The ratio of impingement and effusion number of holes/m2 (or hole density n, investigated were impingement/effusion: 4306/4306 and 1076/4306, respectively. The geometries were for impingement wall, hole pitch X to diameter D, X/D ratio of ~ 11 but different number of holes N for both n geometries, at a constant offset effusion wall, hole X/D of 4.7 of the same N for both the two configurations. The model geometries have a constant impingement gap of 8 mm with both impingement and effusion walls at 6.35 mm thick Nimonic - 75 material and were computed for varied air mass flux G from 0.1 - 0.94 kg/sm2. Symmetrical applications were employed in modelling each of the geometry, whereby for the impingement hole, only quarter of one hole was modelled, while for the effusion side the holes were either quarter or half modelled. The two n geometries were computed with k - ɛ turbulence model using standard wall functions, which also applies to all G. The predicted locally surface X2 (or hole square area average heat transfer coefficient (HTC h values compared with with previously published experimental data showed good agreement. The reduced internal gap flow recirculation with reduced heat transfer to
Probabilistic Design of Wind Turbines
DEFF Research Database (Denmark)
Toft, Henrik Stensgaard
During the last decades, wind turbines have been continuously developed with the aim of maximizing the life cycle benefits (production of electricity) minus the costs of planning, materials, installation, operation & maintenance as well as possible failure. In order to continue this development...... turbines and the central topics considered are statistical load extrapolation of extreme loads during operation and reliability assessment of wind turbine blades. Wind turbines differ from most civil engineering structures by having a control system which highly influences the loading. In the literature......, methods for estimating the extreme load-effects on a wind turbine during operation, where the control system is active, have been proposed. But these methods and thereby the estimated loads are often subjected to a significant uncertainty which influences the reliability of the wind turbine...
Design of rotor blade for vertical axis wind turbine using double aerofoil
Energy Technology Data Exchange (ETDEWEB)
Chougule, P.D.; Ratkovich, N.; Kirkegaard, P.H.; Nielsen, Soeren R.K. [Aalborg Univ.. Dept. of Civil Engineering, Aalborg (Denmark)
2012-07-01
Nowadays, small vertical axis wind turbines are receiving more attention compared to horizontal wind turbines due to their suitability in urban use,because they generate less noise, have bird free turbines and lower cost. There are few vertical axis wind turbines design with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology in practice for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double aerofoil elements mainly used in aeroplane wing design. In this current work, two aerofoils are used to design a rotor blade for a vertical axis wind turbine to improve the power efficiency on the rotor. Double aerofoil blade design consists of a main aerofoil and a slat aerofoil. The parameters related to position and orientation of the slat aerofoil with respect to the main aerofoil defines the high lift. Orientation of slat aerofoil is a parameter of investigation in this paper. Computational fluid dynamics (CFD) have been used to obtain the aerodynamic characteristics of double aerofoil. The CFD simulations were carried out using Star CCM+ v7.04 (CD-adapco, UK) software. Aerofoils used in this work are selected from standard aerofoil shapes. (Author)
HORIZONTAL AXIS MARINE CURRENT TURBINE DESIGN FOR WIND-ELECTRIC HYBRID SAILING BOAT
Directory of Open Access Journals (Sweden)
Serkan Ekinci
2017-01-01
Full Text Available In recent decades, the number of theoretical studies and applications on electric power production from renewable sources such as wind, solar, sea and tidal flows, has been increasing rapidly. Marine Current Turbines (MCTs, among the power turbines, produce power from alternating flows and are a means of power production even at lower flow rates in oceans and seas. In this study, while maintaining functional requirements, an initial and detailed design (mechanic and hydrodynamic, of an MCT fixed on a sailing boat and at sail which extracts power from the flow around the boat, is undertaken. In the design stages, for analysis and optimization of the marine turbine blade design, the Momentum Blade Element Method is utilized. The Horizontal Axis Marine Turbine (HAMT, determined by the initial and mechanical design, is illustrated with its components included. Computational fluid dynamics (CFD analyses, covering turbine pod geometry at required flow rates and turbine speeds are performed. These analyses are performed very close to real conditions, considering sailing with and without the turbine running (on and off states. The alternator is determined from the results, and the final design which meets the design requirements, is obtained. As a result, a user friendly and innovative turbine design for sail boats, offering more power and efficiency, which is longer lasting compared to solar and wind technologies, that also makes use of renewable sources, such as wind and/or solar, and in addition stores and uses accumulated energy when needed, is proposed.
Wind turbine technology principles and design
Adaramola, Muyiwa
2014-01-01
IntroductionPart I: AerodynamicsWind Turbine Blade Design; Peter J. Schubel and Richard J. CrossleyA Shrouded Wind Turbine Generating High Output Power with Wind-Lens Technology; Yuji Ohya and Takashi KarasudaniEcomoulding of Composite Wind Turbine Blades Using Green Manufacturing RTM Process; Brahim AttafAerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution; Travis J. Carrigan, Brian H. Dennis, Zhen X. Han, and Bo P. WangPart II: Generators and Gear Systems
Design analysis of vertical wind turbine with airfoil variation
Maulana, Muhammad Ilham; Qaedy, T. Masykur Al; Nawawi, Muhammad
2016-03-01
With an ever increasing electrical energy crisis occurring in the Banda Aceh City, it will be important to investigate alternative methods of generating power in ways different than fossil fuels. In fact, one of the biggest sources of energy in Aceh is wind energy. It can be harnessed not only by big corporations but also by individuals using Vertical Axis Wind Turbines (VAWT). This paper presents a three-dimensional CFD analysis of the influence of airfoil design on performance of a Darrieus-type vertical-axis wind turbine (VAWT). The main objective of this paper is to develop an airfoil design for NACA 63-series vertical axis wind turbine, for average wind velocity 2,5 m/s. To utilize both lift and drag force, some of designs of airfoil are analyzed using a commercial computational fluid dynamics solver such us Fluent. Simulation is performed for this airfoil at different angles of attach rearranging from -12°, -8°, -4°, 0°, 4°, 8°, and 12°. The analysis showed that the significant enhancement in value of lift coefficient for airfoil NACA 63-series is occurred for NACA 63-412.
Wind conditions for wind turbine design
Energy Technology Data Exchange (ETDEWEB)
Maribo Pedersen, B.
1999-04-01
Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)
A parametric design of compact exhaust manifold junction in heavy duty diesel engine using CFD
Naeimi Hessamedin; Domiry Ganji Davood; Gorji Mofid; Javadirad Ghasem; Keshavarz Mojtaba
2011-01-01
Nowadays, computational fluid dynamics codes (CFD) are prevalently used to simulate the gas dynamics in many fluid piping systems such as steam and gas turbines, inlet and exhaust in internal combustion engines. In this paper, a CFD software is used to obtain the total energy losses in adiabatic compressible flow at compact exhaust manifold junction. A steady state onedimensional adiabatic compressible flow with friction model has been applied to subtract the straight pipe friction loss...
Rezaeiha, Abdolrahim; Montazeri, H.; Blocken, B.
2018-01-01
The accuracy of CFD simulations of vertical axis wind turbines (VAWTs) is known to be significantly associated with the computational parameters, such as azimuthal increment, domain size and number of turbine revolutions before reaching a statistically steady state condition (convergence). A
Integrating Multibody Simulation and CFD: toward Complex Multidisciplinary Design Optimization
Pieri, Stefano; Poloni, Carlo; Mühlmeier, Martin
This paper describes the use of integrated multidisciplinary analysis and optimization of a race car model on a predefined circuit. The objective is the definition of the most efficient geometric configuration that can guarantee the lowest lap time. In order to carry out this study it has been necessary to interface the design optimization software modeFRONTIER with the following softwares: CATIA v5, a three dimensional CAD software, used for the definition of the parametric geometry; A.D.A.M.S./Motorsport, a multi-body dynamic simulation software; IcemCFD, a mesh generator, for the automatic generation of the CFD grid; CFX, a Navier-Stokes code, for the fluid-dynamic forces prediction. The process integration gives the possibility to compute, for each geometrical configuration, a set of aerodynamic coefficients that are then used in the multiboby simulation for the computation of the lap time. Finally an automatic optimization procedure is started and the lap-time minimized. The whole process is executed on a Linux cluster running CFD simulations in parallel.
Optimization Design and Performance Analysis of a Pit Turbine with Ultralow Head
Directory of Open Access Journals (Sweden)
Chunxia Yang
2014-04-01
Full Text Available A developed pit turbine with ultralow head was optimization designed under the design head of about 2 meters to achieve the goal of improving the turbine unit's efficiency. At the same time, the turbine's synthetic characteristic curve was drawn to predict the turbine's overall performance. Navier-Stokes equations and SIMPLEC algorithm were used for pit turbine's whole flow passage numerical simulation of the 3D, steady, incompressible, turbulent flow field. Through the CFD numerical simulation, the influence to ultralow head turbine's performance was analyzed by runner blade's different setting angles and guide vane's different axes. Considering the hydraulic performance of various methods, the best blade's setting angle and guide vane's axis were chosen. The results show that, the turbine unit has the best performance on efficiency, hydraulic loss, and so forth, with the blade's setting angle 23° and the angle 72° between the guide vane and the centerline of unit, meeting the power station's design requirements. The development pit turbine with ultralow head shows the highest efficiency of 87.6% under condition of design head of 2.1 meters and design discharge of 10 m3/s. The energy performance of pit turbine with ultralow head was researched by the model test of GD-WS-35 turbine. The model turbine's characteristic curve was drawn. The model turbine's high efficiency area is wide and the efficiency changes mildly. The numerical simulation results are essentially consistent with the model test results, while the former one is slightly higher than the latter one. The error range is ±3%.
Elrod, David; Christensen, Eric; Brown, Andrew
2011-01-01
The temporal frequency content of the dynamic pressure predicted by a 360 degree computational fluid dynamics (CFD) analysis of a turbine flow field provides indicators of forcing function excitation frequencies (e.g., multiples of blade pass frequency) for turbine components. For the Pratt and Whitney Rocketdyne J-2X engine turbopumps, Campbell diagrams generated using these forcing function frequencies and the results of NASTRAN modal analyses show a number of components with modes in the engine operating range. As a consequence, forced response and static analyses are required for the prediction of combined stress, high cycle fatigue safety factors (HCFSF). Cyclically symmetric structural models have been used to analyze turbine vane and blade rows, not only in modal analyses, but also in forced response and static analyses. Due to the tortuous flow pattern in the turbine, dynamic pressure loading is not cyclically symmetric. Furthermore, CFD analyses predict dynamic pressure waves caused by adjacent and non-adjacent blade/vane rows upstream and downstream of the row analyzed. A MATLAB script has been written to calculate displacements due to the complex cyclically asymmetric dynamic pressure components predicted by CFD analysis, for all grids in a blade/vane row, at a chosen turbopump running speed. The MATLAB displacements are then read into NASTRAN, and dynamic stresses are calculated, including an adjustment for possible mistuning. In a cyclically symmetric NASTRAN static analysis, static stresses due to centrifugal, thermal, and pressure loading at the mode running speed are calculated. MATLAB is used to generate the HCFSF at each grid in the blade/vane row. When compared to an approach assuming cyclic symmetry in the dynamic flow field, the current approach provides better assurance that the worst case safety factor has been identified. An extended example for a J-2X turbopump component is provided.
Design Load Basis for Offshore Wind turbines
DEFF Research Database (Denmark)
Natarajan, Anand; Hansen, Morten Hartvig; Wang, Shaofeng
2016-01-01
DTU Wind Energy is not designing and manufacturing wind turbines and does therefore not need a Design Load Basis (DLB) that is accepted by a certification body. However, to assess the load consequences of innovative features and devices added to existing offshore turbine concepts or new offshore...... turbine concept developed in our research, it is useful to have a full DLB that follows the current design standard and is representative of a general DLB used by the industry. It will set a standard for the offshore wind turbine design load evaluations performed at DTU Wind Energy, which is aligned...... with the challenges faced by the industry and therefore ensures that our research continues to have a strong foundation in this interaction. Furthermore, the use of a full DLB that follows the current standard can improve and increase the feedback from the research at DTU Wind Energy to the international...
A discussion on turbine design for safe operation
International Nuclear Information System (INIS)
Brekke, H
2012-01-01
The paper gives a brief description of the hydraulic design of Francis and Pelton runners. The dynamic behaviour at part load has been a major problem for low head and medium head Francis turbines. The main reason for this has been inter blade separation and unstable swirl flow in the draft tube. A description is given on the hydraulic design of X-BLADE runners to obtain stable operation on the whole range of operation by reducing the cross flow. A classical theoretical analysis is also given on the dynamic hydraulic load on Pelton buckets. Several CFD analyses of this non stationary flow have been presented during the last decade, but the velocity distribution in the jets have not been correct. Experimental research work is presented on the complexity of this problem.
A discussion on turbine design for safe operation
Brekke, H.
2012-11-01
The paper gives a brief description of the hydraulic design of Francis and Pelton runners. The dynamic behaviour at part load has been a major problem for low head and medium head Francis turbines. The main reason for this has been inter blade separation and unstable swirl flow in the draft tube. A description is given on the hydraulic design of X-BLADE runners to obtain stable operation on the whole range of operation by reducing the cross flow. A classical theoretical analysis is also given on the dynamic hydraulic load on Pelton buckets. Several CFD analyses of this non stationary flow have been presented during the last decade, but the velocity distribution in the jets have not been correct. Experimental research work is presented on the complexity of this problem.
Analysis and design of a vertical axis wind turbine
Goyena Iriso, Joseba
2011-01-01
The main objective of this project is to design a new vertical axis wind turbine, specifically one Giromill wind turbine. The project development requires performing a previous study of the vertical axis wind turbines currently development. This study has to be performed before starting to design the wind turbine. Other very important aim is the development of a new vertical axis wind turbine. The after analyses that will result in the final design of the wind turbine will b...
Controller Design Automation for Aeroservoelastic Design Optimization of Wind Turbines
Ashuri, T.; Van Bussel, G.J.W.; Zaayer, M.B.; Van Kuik, G.A.M.
2010-01-01
The purpose of this paper is to integrate the controller design of wind turbines with structure and aerodynamic analysis and use the final product in the design optimization process (DOP) of wind turbines. To do that, the controller design is automated and integrated with an aeroelastic simulation
Scaling studies and conceptual experiment designs for NGNP CFD assessment
Energy Technology Data Exchange (ETDEWEB)
D. M. McEligot; G. E. McCreery
2004-11-01
The objective of this report is to document scaling studies and conceptual designs for flow and heat transfer experiments intended to assess CFD codes and their turbulence models proposed for application to prismatic NGNP concepts. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. Two aspects of the complex flow in an NGNP are being addressed: (1) flow and thermal mixing in the lower plenum ("hot streaking" issue) and (2) turbulence and resulting temperature distributions in reactor cooling channels ("hot channel" issue). Current prismatic NGNP concepts are being examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses have been applied to determine key non-dimensional parameters and their magnitudes over this operating range. For normal operation, the flow in the coolant channels can be considered to be dominant turbulent forced convection with slight transverse property variation. In a pressurized cooldown (LOFA) simulation, the flow quickly becomes laminar with some possible buoyancy influences. The flow in the lower plenum can locally be considered to be a situation of multiple hot jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentumdominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other. Two types of heat transfer experiments are being considered. One addresses the "hot channel" problem, if necessary
Arpino, F.; Cortellessa, G.; Dell'Isola, M.; Scungio, M.; Focanti, V.; Profili, M.; Rotondi, M.
2017-11-01
The increasing price of fossil derivatives, global warming and energy market instabilities, have led to an increasing interest in renewable energy sources such as wind energy. Amongst the different typologies of wind generators, small scale Vertical Axis Wind Turbines (VAWT) present the greatest potential for off grid power generation at low wind speeds. In the present work, Computational Fluid Dynamic (CFD) simulations were performed in order to investigate the performance of an innovative configuration of straight-blades Darrieus-style vertical axis micro wind turbine, specifically developed for small scale energy conversion at low wind speeds. The micro turbine under investigation is composed of three pairs of airfoils, consisting of a main and auxiliary blades with different chord lengths. The simulations were made using the open source finite volume based CFD toolbox OpenFOAM, considering different turbulence models and adopting a moving mesh approach for the turbine rotor. The simulated data were reported in terms of dimensionless power coefficients for dynamic performance analysis. The results from the simulations were compared to the data obtained from experiments on a scaled model of the same VAWT configuration, conducted in a closed circuit open chamber wind tunnel facility available at the Laboratory of Industrial Measurements (LaMI) of the University of Cassino and Lazio Meridionale (UNICLAM). From the proposed analysis, it was observed that the most suitable model for the simulation of the performances of the micro turbine under investigation is the one-equation Spalart-Allmaras, even if under the conditions analysed in the present work and for TSR values higher than 1.1, some discrepancies between numerical and experimental data can be observed.
Modern Control Design for Flexible Wind Turbines
Energy Technology Data Exchange (ETDEWEB)
Wright, A. D.
2004-07-01
Control can improve energy capture and reduce dynamic loads in wind turbines. In the 1970s and 1980s, wind turbines used classical control designs to regulate power and speed. The methods used, however, were not always successful. Modern turbines are larger, mounted on taller towers, and more dynamically active than their predecessors. Control systems to regulate turbine power and maintain stable, closed-loop behavior in the presence of turbulent wind inflow will be critical for these designs. This report applies modern state-space control design methods to a two-bladed teetering hub upwind machine at the National Wind Technology Center (NWTC), which is managed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado. The design objective is to regulate turbine speed and enhance damping in several low-damped flexible modes of the turbine. Starting with simple control algorithms based on linear models, complexity is added incrementally until the desired performance is firmly established.
Mert, Burak; Aytac, Zeynep; Tascioglu, Yigit; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team
2014-11-01
This study deals with the design of a power regulation mechanism for a Hydroelectric Power Plant (HEPP) model turbine test system which is designed to test Francis type hydroturbines up to 2 MW power with varying head and flow(discharge) values. Unlike the tailor made regulation mechanisms of full-sized, functional HEPPs; the design for the test system must be easily adapted to various turbines that are to be tested. In order to achieve this adaptability, a dynamic simulation model is constructed in MATLAB/Simulink SimMechanics. This model acquires geometric data and hydraulic loading data of the regulation system from Autodesk Inventor CAD models and Computational Fluid Dynamics (CFD) analysis respectively. The dynamic model is explained and case studies of two different HEPPs are performed for validation. CFD aided design of the turbine guide vanes, which is used as input for the dynamic model, is also presented. This research is financially supported by Turkish Ministry of Development.
Directory of Open Access Journals (Sweden)
Zoltan-Iosif Korka
2016-10-01
Full Text Available CFD (Computational Fluid Dynamic is today a standard procedure for analyzing and simulating the flow through several hydraulic machines. In this process, the fluid flow domain is divided into small volumes where the governing equations are converted into algebraic ones, which are numerically solved. Computational results strongly depend on the applied mathematical model and on the numerical methods used for converting the governing equations into the algebraic ones. The goal of the paper is to evaluate, by numerical simulation, the hydraulic loads (forces and torques on the runner blades of an existent Kaplan turbine and to compare them with the experimental results obtained from model test.
Design of the LRP airfoil series using 2D CFD
DEFF Research Database (Denmark)
Zahle, Frederik; Bak, Christian; Sørensen, Niels N.
2014-01-01
This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D...... Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils....
Design of the LRP airfoil series using 2D CFD
International Nuclear Information System (INIS)
Zahle, Frederik; Bak, Christian; Sørensen, Niels N; Vronsky, Tomas; Gaudern, Nicholas
2014-01-01
This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils
New Urban Vertical Axis Wind Turbine Design
Directory of Open Access Journals (Sweden)
Alexandru-Mihai CISMILIANU
2015-12-01
Full Text Available This paper develops a different approach for enhancing the performance of Vertical Axis Wind Turbines for the use in the urban or rural environment and remote isolated residential areas. Recently the vertical axis wind turbines (VAWT have become more attractive due to the major advantages of this type of turbines in comparison to the horizontal axis wind turbines. We aim to enhance the overall performance of the VAWT by adding a second set of blades (3 x 2=6 blades following the rules of biplane airplanes. The model has been made to operate at a maximum power in the range of the TSR between 2 to 2.5. The performances of the VAWT were investigated numerically and experimentally and justify the new proposed design.
Design and optimization of tidal turbine airfoil
Energy Technology Data Exchange (ETDEWEB)
Grasso, F. [ECN Wind Energy, Petten (Netherlands)
2011-07-15
In order to increase the ratio of energy capture to the loading and thereby to reduce cost of energy, the use of specially tailored airfoils is needed. This work is focused on the design of an airfoil for marine application. Firstly, the requirements for this class of airfoils are illustrated and discussed with reference to the requirements for wind turbine airfoils. Then, the design approach is presented. This is a numerical optimization scheme in which a gradient based algorithm is used, coupled with RFOIL solver and a composite Bezier geometrical parameterization. A particularly sensitive point is the choice and implementation of constraints; in order to formalize in the most complete and effective way the design requirements, the effects of activating specific constraints are discussed. Particularly importance is given to the cavitation phenomenon. Finally, a numerical example regarding the design of a high efficiency, tidal turbine airfoil is illustrated and the results are compared with existing turbine airfoils.
Design of 500kW grate fired test facility using CFD
DEFF Research Database (Denmark)
Rosendahl, Lasse Aistrup; Kær, Søren Knudsen; Jørgensen, K.
2005-01-01
A 500kW vibrating grate fired test facility for solid biomass fuels has been designed using numerical models including CFD. The CFD modelling has focussed on the nozzle layout and flowpatterns in the lower part of the furnace, and the results have established confidence in the chosen design...
Design and optimization of tidal turbine airfoil
Energy Technology Data Exchange (ETDEWEB)
Grasso, F. [ECN Wind Energy, Petten (Netherlands)
2012-03-15
To increase the ratio of energy capture to the loading and, thereby, to reduce cost of energy, the use of specially tailored airfoils is needed. This work is focused on the design of an airfoil for marine application. Firstly, the requirements for this class of airfoils are illustrated and discussed with reference to the requirements for wind turbine airfoils. Then, the design approach is presented. This is a numerical optimization scheme in which a gradient-based algorithm is used, coupled with the RFOIL solver and a composite Bezier geometrical parameterization. A particularly sensitive point is the choice and implementation of constraints .A section of the present work is dedicated to address this point; particular importance is given to the cavitation phenomenon. Finally, a numerical example regarding the design of a high-efficiency hydrofoil is illustrated, and the results are compared with existing turbine airfoils, considering also the effect on turbine performance due to different airfoils.
Optimized Design of Spacer in Electrodialyzer Using CFD Simulation Method
Jia, Yuxiang; Yan, Chunsheng; Chen, Lijun; Hu, Yangdong
2018-06-01
In this study, the effects of length-width ratio and diversion trench of the spacer on the fluid flow behavior in an electrodialyzer have been investigated through CFD simulation method. The relevant information, including the pressure drop, velocity vector distribution and shear stress distribution, demonstrates the importance of optimized design of the spacer in an electrodialysis process. The results show width of the diversion trench has a great effect on the fluid flow compared with length. Increase of the diversion trench width could strength the fluid flow, but also increase the pressure drop. Secondly, the dead zone of the fluid flow decreases with increase of length-width ratio of the spacer, but the pressure drop increases with the increase of length-width ratio of the spacer. So the appropriate length-width ratio of the space should be moderate.
Investigation of piezoelectric flaps for load alleviation using CFD; Wind turbines
Energy Technology Data Exchange (ETDEWEB)
Heinz, J.C.
2010-03-15
Cost efficient wind power generation demands for large wind turbines with a long lifetime. These demands place high interests on sophisticated load control techniques such as deformable trailing edge flaps. In this work a previously tested prototype airfoil was investigated by using the 2D incompressible RANS solver EllipSys2D. The prototype was built with a Risoe-B1-18 airfoil where piezoelectric actuators THUNDER TH-6R were attached at the trailing edge to realize a movable flap. The results of the simulation were compared to measurements of the previous wind tunnel test and comprehensive steady state computations were conducted to gain information about the general airfoil properties. The model was subsequently used to investigate aero-servo-elastic effects on the 2D airfoil section exposed to a fluctuating inflow. It is explained how a fluctuating inflow was simulated with EllipSys2D and how the CFD solver was coupled with a 3 DOF structural model and with two different control algorithms. Control 1 used the measured AOA in front of the LE as input, Control 2 used the pressure difference between suction and pressure side as input. The model showed a substantial load reduction potential for the present prototype airfoil. For a wind step from 10 m/s to 10.5 m/s the standard deviation of the structural deflection normal to the rotor plane could be reduced with up to 98 % (Control 1) and 96 % (Control 2). A 4 s turbulent inflow with TI=2.2 % could be reduced with up to 81 % (Control 1) and 82 % (Control 2). For a 12 s inflow with TI=2.4 % the standard deviation could be reduced with up to 68 % (Control 1) and 67 % (Control 2). The influence of possible time lags inside the control loop on the reduction potential of the prototype was also investigated. For a 12 s inflow with a tripled turbulence intensity of TI=7.7 % the prototype airfoil could still reach a reduction of up to 54 %. For an extended flap range of -6 to +6 degrees the reduction could be returned to 66
An Integrated Lumped Parameter-CFD approach for off-design ejector performance evaluation
International Nuclear Information System (INIS)
Besagni, Giorgio; Mereu, Riccardo; Chiesa, Paolo; Inzoli, Fabio
2015-01-01
Highlights: • We validate a CFD approach for a convergent nozzle ejector using global and local measurement. • We evaluate seven RANS turbulence models for convergent nozzle ejector. • We introduce a lumped parameter model for on-design and off-design ejector performance evaluation. • We analyze the relationship between local flow behavior and lumped parameters of the model. • We discuss how to improve predicting capabilities of the model by variable parameters calibrated on CFD simulations. - Abstract: This paper presents an Integrated Lumped Parameter Model-Computational Fluid-Dynamics approach for off-design ejector performance evaluation. The purpose of this approach is to evaluate the entrainment ratio, for a fixed geometry, in both on-design and off-design operating conditions. The proposed model is based on a Lumped Parameter Model (LPM) with variable ejector component efficiencies provided by CFD simulations. The CFD results are used for developing maps for ejector component efficiencies in a broad range of operating conditions. The ejector component efficiency maps couple the CFD and the LPM techniques for building an Integrated LPM-CFD approach. The proposed approach is demonstrated for a convergent nozzle ejector and the paper is structured in four parts. At first, the CFD approach is validated by global and local data and seven Reynolds Averaged Navier Stokes (RANS) turbulence models are compared: the k–ω SST showed good performance and was selected for the rest of the analysis. At second, a Lumped Parameter Model (LPM) for subsonic ejector is developed and the ejector component efficiencies have been defined. At third, the CFD approach is used to investigate the flow field, to analyze its influence on ejector component efficiencies and to propose efficiency correlations and maps linking ejector component efficiencies and local flow quantities. In the last part, the efficiency maps are embedded into the lumped parameter model, thus creating
Innovative multi rotor wind turbine designs
Energy Technology Data Exchange (ETDEWEB)
Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)
2012-07-01
Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)
Development and optimization design of pit turbine with super low-head
International Nuclear Information System (INIS)
Yang, C X; Li, X X; Huang, F J; Zheng, Y; QZhou, D
2012-01-01
Tubular turbines have many advantages such as large flow, high-speed, high efficiency, wide and high efficiency area, compact structure, simple layout, etc. With those advantages, tubular turbine is becoming one of the most economic and suitable types of turbines to develop low head hydraulic resources. According to the general situation of the hydropower station in the north of Jiangsu, a super low head pit turbine which head is set as about 2m is developed by the research to utilize the low head hydraulic resource.The CFD technology was used to calculate the flow field. The computing zone was meshed with unstructured gird. The whole flow passage of shaft type tubular turbine was calculated by 3-d steady turbulent numerical simulation. The detail of flowthrough the whole flowpassage was attained and the influence to the turbine's performance was analyzed by the low head runner blade's various diameters, airfoils and setting angles. The best turbine runner was obtained by considering all the methods. Meeting the station's requirements, the results show that the runner exhibits the highest performance in the efficiency, hydraulic loss and static pressure sides with 1.75m diameter, optimized airfoil and 23 degree setting angle. The developed super low head pit turbine shows highest efficiency under the design condition of 2.1m water head and 10m 3 /s flow rate. GD-WS-35 turbine model test was carried out tostudy the performance of the turbine. On the basis ofmodel transformation principle,the numerical simulationresultof GD-WS-175turbine was compared with the model results. It's showed that the model test result is basically consistent with numerical simulationresult. The producing error in the numerical computation is not easy to control. The efficiency's error range is ±3%.
Surrogate Assisted Design Optimization of an Air Turbine
Directory of Open Access Journals (Sweden)
Rameez Badhurshah
2014-01-01
Full Text Available Surrogates are cheaper to evaluate and assist in designing systems with lesser time. On the other hand, the surrogates are problem dependent and they need evaluation for each problem to find a suitable surrogate. The Kriging variants such as ordinary, universal, and blind along with commonly used response surface approximation (RSA model were used in the present problem, to optimize the performance of an air impulse turbine used for ocean wave energy harvesting by CFD analysis. A three-level full factorial design was employed to find sample points in the design space for two design variables. A Reynolds-averaged Navier Stokes solver was used to evaluate the objective function responses, and these responses along with the design variables were used to construct the Kriging variants and RSA functions. A hybrid genetic algorithm was used to find the optimal point in the design space. It was found that the best optimal design was produced by the universal Kriging while the blind Kriging produced the worst. The present approach is suggested for renewable energy application.
Blade number impact on pressure and performance of archimedes screw turbine using CFD
Maulana, Muhammad Ilham; Syuhada, Ahmad; Nawawi, Muhammad
2018-02-01
Many rivers in Indonesia can be used as source of mini/micro hydro power plant using low head turbine. The most suitable type of turbine used in fluid flow with low head is the Archimedes screw turbine. The Archimedes screw hydro turbine is a relative newcomer to the small-scale hydropower that can work efficiently on heads as low as 10 meter. In this study, the performance of Archimedes water turbines that has different blade numbers that are thoroughly evaluated to obtain proper blade configuration. For this purpose, numerical simulations are used to predict the pressure changes that occur along the turbine. The simulation results show that turbines with an amount of two blades have more sloping pressure distribution so that it has better stability.
Application of aeroacoustic models to design of wind turbine rotors
Energy Technology Data Exchange (ETDEWEB)
Fuglsang, P.; Madsen, H.A. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)
1997-12-31
A design method is presented for wind turbine rotors. The design process is split into overall design of the rotor and detailed design of the blade tip. A numerical optimization tool is used together with a semi-empirical noise prediction code for overall rotor design. The noise prediction code is validated with measurements and good agreement is obtained both on the total noise emission and on the sensitivity to wind speed, tip pitch angle and tip speed. A design study for minimum noise emission for a 300 kW rotor shows that the total sound power level can be reduced by 3 dB(A) without loss in energy production and the energy production can be increased by 2% without increase in the total noise. Detailed CFD calculations are subsequently done to resolve the blade tip flow. The characteristics of the general flow and the tip vortex are found, and the relevant parameters for the aeroacoustic models are derived for a sharp rectangular tip. (au) 16 refs.
HTGR gas turbine power plant preliminary design
International Nuclear Information System (INIS)
Koutz, S.L.; Krase, J.M.; Meyer, L.
1973-01-01
The preliminary reference design of the HTGR gas turbine power plant is presented. Economic and practical problems and incentives related to the development and introduction of this type of power plant are evaluated. The plant features and major components are described, and a discussion of its performance, economics, development, safety, control, and maintenance is presented. 4 references
Mixed-flow vertical tubular hydraulic turbine. Determination of proper design duty point
Energy Technology Data Exchange (ETDEWEB)
Sirok, B. [Ljubljana Univ. (Slovenia). Faculty of Mechanical Engineering; Bergant, A. [Litostroj Power, d.o.o., Ljubljana (Slovenia); Hoefler, E.
2011-12-15
A new vertical single-regulated mixed-flow turbine with conical guide apparatus and without spiral casing is presented in this paper. Runner blades are fixed to the hub and runner band and resemble to the Francis type runner of extremely high specific speed. Due to lack of information and guidelines for the design of a new turbine, a theoretical model was developed in order to determinate the design duty point, i.e. to determine the optimum narrow operation range of the turbine. It is not necessary to know the kinematic conditions at the runner inlet, but only general information on the geometry of turbine flow-passage, meridional contour of the runner and blading, the number of blades and the turbine speed of rotation. The model is based on the integral tangential lift coefficient, which is the average value over the entire runner blading. The results are calculated for the lift coefficient 0.5 and 0.6, for the flow coefficient range from 0.2 to 0.36, for the number of the blades between 5 and 13, and are finally presented in the Cordier diagram (specific speed vs. specific diameter). Calculated results of the turbine optimum operation in Cordier diagram correspond very well to the adequate area of Kaplan turbines with medium and low specific speed and extends into the area of Francis turbines with high specific speed. Presented model clearly highlights the parameters that affect specific load of the runner blade row and therefore the optimum turbine operation (discharge - turbine head). The presented method is not limited to a specific reaction type of the hydraulic turbine. The method can therefore be applied to a wide range from mixed-flow (radial-axial) turbines to the axial turbines. Applicability of the method may be considered as a tool in the first stage of the turbine design i.e. when designing the meridional geometry and selecting the number of blades according to calculated operating point. Geometric and energy parameters are generally defined to an
Rezaeiha, A.; Kalkman, I.; Blocken, B.
2017-01-01
Accurate prediction of the performance of a vertical-axis wind turbine (VAWT) using Computational Fluid Dynamics (CFD) simulation requires a domain size that is large enough to minimize the effects of blockage and uncertainties in the boundary conditions on the results. It also requires the
Final turbine and test facility design report Alden/NREC fish friendly turbine
Energy Technology Data Exchange (ETDEWEB)
Cook, Thomas C. [Alden Research Lab., Holden, MA (United States); Cain, Stuart A. [Alden Research Lab., Holden, MA (United States); Fetfatsidis, Paul [Alden Research Lab., Holden, MA (United States); Hecker, George E. [Alden Research Lab., Holden, MA (United States); Stacy, Philip S. [Alden Research Lab., Holden, MA (United States)
2000-09-01
The final report provides an overview of the Alden/NREC Fish Friendly turbine design phase, turbine test plan, preliminary test results, costs, schedule, and a hypothetical application at a real world project.
Computational Fluid Dynamics (CFD) investigation onto passenger car disk brake design
International Nuclear Information System (INIS)
Munisamy, Kannan M; Moorthy, Shangkari K Kanasan
2013-01-01
The aim of this study is to investigate the flow and heat transfer in ventilated disc brakes using Computational Fluid Dynamics (CFD). NACA Series blade is designed for ventilated disc brake and the cooling characteristic is compared to the baseline design. The ventilated disc brakes are simulated using commercial CFD software FLUENT TM using simulation configuration that was obtained from experiment data. The NACA Series blade design shows improvements in Nusselt number compared to baseline design.
Computational Fluid Dynamics (CFD) investigation onto passenger car disk brake design
Munisamy, Kannan M.; Kanasan Moorthy, Shangkari K.
2013-06-01
The aim of this study is to investigate the flow and heat transfer in ventilated disc brakes using Computational Fluid Dynamics (CFD). NACA Series blade is designed for ventilated disc brake and the cooling characteristic is compared to the baseline design. The ventilated disc brakes are simulated using commercial CFD software FLUENTTM using simulation configuration that was obtained from experiment data. The NACA Series blade design shows improvements in Nusselt number compared to baseline design.
Genetic Algorithms in Wind Turbine Airfoil Design
Energy Technology Data Exchange (ETDEWEB)
Grasso, F. [ECN Wind Energy, Petten (Netherlands); Bizzarrini, N.; Coiro, D.P. [Department of Aerospace Engineering, University of Napoli ' Federico II' , Napoli (Italy)
2011-03-15
One key element in the aerodynamic design of wind turbines is the use of specially tailored airfoils to increase the ratio of energy capture to the loading and thereby to reduce cost of energy. This work is focused on the design of a wind turbine airfoil by using numerical optimization. Firstly, the optimization approach is presented; a genetic algorithm is used, coupled with RFOIL solver and a composite Bezier geometrical parameterization. A particularly sensitive point is the choice and implementation of constraints; in order to formalize in the most complete and effective way the design requirements, the effects of activating specific constraints are discussed. A numerical example regarding the design of a high efficiency airfoil for the outer part of a blade by using genetic algorithms is illustrated and the results are compared with existing wind turbine airfoils. Finally a new hybrid design strategy is illustrated and discussed, in which the genetic algorithms are used at the beginning of the design process to explore a wide domain. Then, the gradient based algorithms are used in order to improve the first stage optimum.
Design and analysis of an axial bypass compressor blade in a supercritical CO2 gas turbine
International Nuclear Information System (INIS)
Ishizuka, Takao; Muto, Yasushi; Aritomi, Masanori; Tsuzuki, Nobuyoshi; Kikura, Hiroshige
2010-01-01
A supercritical carbon dioxide gas turbine can generate power at a high cycle thermal efficiency, even at modest temperatures of 500-550degC. Consequently, a more reliable and economically advantageous power generation system is achieved by coupling with a Na-cooled fast reactor. This paper mainly describes the bypass compressor (a key component) design and thermal hydraulic analysis using CFD (with FLUENT code). Fluid conditions of the bypass compressor are determined by the cycle calculation of this system. Aerodynamic design was conducted using the loss model described by Cohen et al., which enables the use of several stages while providing total adiabatic efficiency of 21 and 87%, respectively. Blade shapes were prepared based on flow angles and chord length obtained for the aerodynamic design. In the CFD analysis, the calculated value of the mass flow rate for each stage was adjusted to that of the design. The value of the design outlet pressure was reached at stage No. 16, which is fewer stages than that for design, No. 21. The difference between these stage numbers is attributed to the three-dimensional effect in design. If these effects are eliminated, then the design calculation yields an almost identical number of stages. Therefore, it was concluded that the existing design method is applicable to the supercritical CO 2 bypass compressor. Furthermore, CFD analysis appears to be an effective aerodynamic design tool, but these conclusions should be verified experimentally. (author)
Advances in wind turbine blade design and materials
DEFF Research Database (Denmark)
Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades......, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance...
International Nuclear Information System (INIS)
Ikeda, K.; Hoshi, M.
2001-01-01
Mitsubishi applied the Computational Fluid Dynamics (CFD) evaluation method for designing of the new lower pressure loss and higher DNB performance grid spacer. Reduction of pressure loss of the grid has been estimated by CFD. Also, CFD has been developed as a design tool to predict the coolant mixing ability of vane structures, that is to compare the relative peak spot temperatures around fuel rods at the same heat flux condition. These evaluations have been reflected to the new grid spacer design. The prototype grid was manufactured and some flow tests were performed to examine the thermal hydraulic performance, which were predicted by CFD. The experimental data of pressure loss was in good agreement with CFD prediction. The CFD prediction of flow behaviors at downstream of the mixing vanes was verified by detail cross-flow measurements at rod gaps by the rod LDV system. It is concluded that the applicability of the CFD evaluation method for the thermal hydraulic design of the grid is confirmed. (authors)
Preliminary CFD Analysis for HVAC System Design of a Containment Building
Energy Technology Data Exchange (ETDEWEB)
Son, Sung Man; Choi, Choengryul [ELSOLTEC, Yongin (Korea, Republic of); Choo, Jae Ho; Hong, Moonpyo; Kim, Hyungseok [KEPCO Engineering and Construction, Gimcheon (Korea, Republic of)
2016-10-15
HVAC (Heating, Ventilation, Air Conditioning) system has been mainly designed based on overall heat balance and averaging concepts, which is simple and useful for designing overall system. However, such a method has the disadvantage that cannot predict the local flow and temperature distributions in a containment building. In this study, a CFD (Computational Fluid Dynamics) preliminary analysis is carried out to obtain detailed flow and temperature distributions in a containment building and to ensure that such information can be obtained via CFD analysis. This approach can be useful for hydrogen analysis in an accident related to hydrogen released into a containment building. In this study, CFD preliminary analysis has been performed to obtain the detailed information of the reactor containment building by using the CFD analysis techniques and to ensure that such information can be obtained via CFD analysis. We confirmed that CFD analysis can offer enough detailed information about flow patterns and temperature field and that CFD technique is a useful tool for HVAC design of nuclear power plants.
Offshore Wind Turbine Foundation Design
DEFF Research Database (Denmark)
Passon, Patrik
and approaches.In design practice, the modelling of the structure as well as of the environment is often based on simplifications. For the environmental conditions, this is e.g. due to the fact that the combined, directional wind and wave climate consists of an impractically large amount of combinations of met...... the involvement of specialists with different technical backgrounds and on the other hand considerations of the whole OWT system and the mutual influences of the subsystems. For example, accurate design loads are essential for cost-efficient and safe foundation designs. However, such accurate loads can only...... be established under proper consideration of the dynamics of the whole system requiring adequate models of the individual subsystems and environment. This is due to the fact that OWTs introduce complex interactions between individual subsystems and the environment. Hence, a thorough understanding of the overall...
Knowledge-based system for detailed blade design of turbines
Goel, Sanjay; Lamson, Scott
1994-03-01
A design optimization methodology that couples optimization techniques to CFD analysis for design of airfoils is presented. This technique optimizes 2D airfoil sections of a blade by minimizing the deviation of the actual Mach number distribution on the blade surface from a smooth fit of the distribution. The airfoil is not reverse engineered by specification of a precise distribution of the desired Mach number plot, only general desired characteristics of the distribution are specified for the design. Since the Mach number distribution is very complex, and cannot be conveniently represented by a single polynomial, it is partitioned into segments, each of which is characterized by a different order polynomial. The sum of the deviation of all the segments is minimized during optimization. To make intelligent changes to the airfoil geometry, it needs to be associated with features observed in the Mach number distribution. Associating the geometry parameters with independent features of the distribution is a fairly complex task. Also, for different optimization techniques to work efficiently the airfoil geometry needs to be parameterized into independent parameters, with enough degrees of freedom for adequate geometry manipulation. A high-pressure, low reaction steam turbine blade section was optimized using this methodology. The Mach number distribution was partitioned into pressure and suction surfaces and the suction surface distribution was further subdivided into leading edge, mid section and trailing edge sections. Two different airfoil representation schemes were used for defining the design variables of the optimization problem. The optimization was performed by using a combination of heuristic search and numerical optimization. The optimization results for the two schemes are discussed in the paper. The results are also compared to a manual design improvement study conducted independently by an experienced airfoil designer. The turbine blade optimization
International Nuclear Information System (INIS)
Chen, C C; Choi, Y D; Yoon, H Y
2013-01-01
Most tidal current turbine design are focused on middle and large scale for deep sea, less attention was paid in low water level channel, such as the region around the islands, coastal seas and rivers. This study aims to develop a horizontal axis tidal current turbine rotor blade which is applicable to low water level island region in southwest of Korea. The blade design is made by using BEMT(blade element momentum theory). The section airfoil profile of NACA63-415 is used, which shows good performance of lift coefficient and drag coefficient. Power coefficient, pressure and velocity distributions are investigated according to TSR by CFD analysis
Experiences with the hydraulic design of the high specific speed Francis turbine
International Nuclear Information System (INIS)
Obrovsky, J; Zouhar, J
2014-01-01
The high specific speed Francis turbine is still suitable alternative for refurbishment of older hydro power plants with lower heads and worse cavitation conditions. In the paper the design process of such kind of turbine together with the results comparison of homological model tests performed in hydraulic laboratory of ČKD Blansko Engineering is introduced. The turbine runner was designed using the optimization algorithm and considering the high specific speed hydraulic profile. It means that hydraulic profiles of the spiral case, the distributor and the draft tube were used from a Kaplan turbine. The optimization was done as the automatic cycle and was based on a simplex optimization method as well as on a genetic algorithm. The number of blades is shown as the parameter which changes the resulting specific speed of the turbine between n s =425 to 455 together with the cavitation characteristics. Minimizing of cavitation on the blade surface as well as on the inlet edge of the runner blade was taken into account during the design process. The results of CFD analyses as well as the model tests are mentioned in the paper
Experiences with the hydraulic design of the high specific speed Francis turbine
Obrovsky, J.; Zouhar, J.
2014-03-01
The high specific speed Francis turbine is still suitable alternative for refurbishment of older hydro power plants with lower heads and worse cavitation conditions. In the paper the design process of such kind of turbine together with the results comparison of homological model tests performed in hydraulic laboratory of ČKD Blansko Engineering is introduced. The turbine runner was designed using the optimization algorithm and considering the high specific speed hydraulic profile. It means that hydraulic profiles of the spiral case, the distributor and the draft tube were used from a Kaplan turbine. The optimization was done as the automatic cycle and was based on a simplex optimization method as well as on a genetic algorithm. The number of blades is shown as the parameter which changes the resulting specific speed of the turbine between ns=425 to 455 together with the cavitation characteristics. Minimizing of cavitation on the blade surface as well as on the inlet edge of the runner blade was taken into account during the design process. The results of CFD analyses as well as the model tests are mentioned in the paper.
Grid integration impacts on wind turbine design and development
DEFF Research Database (Denmark)
Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar
2009-01-01
This paper presents an overall perspective on contemporary issues like wind power plants and grid integration. The purpose is to present and discuss the impacts of emerging new grid connection requirements on modern wind turbines. The grid integration issue has caused several new challenges......, the grid integration aspect has also an effect on wind turbines' role in the power system, on wind turbine technologies' survival on the market, as well as on the wind turbines' loads. Over the last years, it became obviously, that there it is an increasing need for design and research of wind turbines...... to the wind turbine design and development. The survival of different wind turbine concepts and controls is strongly conditioned by their ability to comply with stringent grid connection requirements, imposed by utility companies. Beside its impact on the mechanical design and control of wind turbines...
CFD analysis for spacer grid mixing vane design
International Nuclear Information System (INIS)
Park, Sung-Kew; Kim, Kang-Hoon; Park, Eung-Jun; Jung, Yil-Sup; Suh, Jung-Min; Jeong, Ji-Hun
2008-01-01
A computational fluid dynamics (CFD) analysis for a rod bundle with the larger scale model (6x6 array model) has been performed to develop the base shape of mixing vane in accordance with the hydraulic and thermal performance. Explanatory parameters are span pressure drop and span average heat transfer coefficient. The concern related to hot spot is also considered as a subsidiary criterion. Of the several candidates, the final candidate was determined by using the CFD analysis code, STAR-CD. And then, the optimization for it was performed using the response surface method (RSM) that the proper tolerance was considered under the two acceptance criteria such as lower span pressure drop while maintaining the span average heat transfer coefficient with respect to the current shape. The optimized mixing vane shape was verified by the CFD analysis including the effects of allowable tolerance. (author)
Design and test of a 10kW ORC supersonic turbine generator
Seume, J. R.; Peters, M.; Kunte, H.
2017-03-01
Manufactures are searching for possibilities to increase the efficiency of combustion engines by using the remaining energy of the exhaust gas. One possibility to recover some of this thermal energy is an organic Rankine cycle (ORC). For such an ORC running with ethanol, the aerothermodynamic design and test of a supersonic axial, single stage impulse turbine generator unit is described. The blade design as well as the regulation by variable partial admission is shown. Additionally the mechanical design of the directly coupled turbine generator unit including the aerodynamic sealing and the test facility is presented. Finally the results of CFD-based computations are compared to the experimental measurements. The comparison shows a remarkably good agreement between the numerical computations and the test data.
Hajaali, Arthur
2017-04-01
This project has for ambition to analyse and further the general understanding on cross-flows interactions and behaviours at the mouth of a mini/small tidal hydropower plant and a river. Although, the study of these interactions could benefit and find applications in multiple hydraulic problems, this project concentrates its focus on the influence of the transposed turbulences generated by the cross-flow into the diffuser. These eddies affect the overall performance and efficiency of the bulb-turbines by minimizing the pressure recovery. In the past, these turbulences were accounted with the implementation of the Bordas-Carnot losses coefficient for the design of tidal project using bulb-turbines. The bulb turbine technology has been the interest and subject of many scientific papers but most of them concentrate and narrow their focus on the design of the rotor, blades and combiner. This project wants to focus the design of the diffuser by performing an analysis on the development of eddies and the turbulences using computational fluid dynamic (CFD) models. The Severn estuary is endowed with one of the highest tidal range around the hemisphere. The first part of the research requires to select case studies sites such as Briton-Ferry to virtually design mini-tidal plant in 0-Dimentional (D), 2D and 3D modelling to study development and behaviour of turbulences within the diffuser. The far-field model represents the marine environment prior and after the structure where bulb turbines are located. The near-field modelling has allowed researcher to study at much higher resolution and precision the design of a single turbine feeding model with predetermined and fix boundary condition. For this reason, a near-field model is required to study in depth the behaviour and evolution of the turbulence with the diffuser. One of the main challenge and advancement of this research is to find a methodology and system to link the far-field and near-field modelling to produce an
Fathonah, N. N.; Nurtono, T.; Kusdianto; Winardi, S.
2018-03-01
Single phase turbulent flow in a vessel agitated by side entering inclined blade turbine has simulated using CFD. The aim of this work is to identify the hydrodynamic characteristics of a model vessel, which geometrical configuration is adopted at industrial scale. The laboratory scale model vessel is a flat bottomed cylindrical tank agitated by side entering 4-blade inclined blade turbine with impeller rotational speed N=100-400 rpm. The effect of the impeller diameter on fluid flow pattern has been investigated. The fluid flow patterns in a vessel is essentially characterized by the phenomena of macro-instabilities, i.e. the flow patterns change with large scale in space and low frequency. The intensity of fluid flow in the tank increase with the increase of impeller rotational speed from 100, 200, 300, and 400 rpm. It was accompanied by shifting the position of the core of circulation flow away from impeller discharge stream and approached the front of the tank wall. The intensity of fluid flow in the vessel increase with the increase of the impeller diameter from d=3 cm to d=4 cm.
Design of a novel and efficient lantern wind turbine
Ibrahim, M. D.; Wong, L. K.; Anyi, M.; Yunos, Y. S.; Rahman, M. R. A.; Mohta, M. Z.
2017-04-01
Wind turbine generates renewable energy when the forces acted on the turbine blades cause the rotation of the generator to produce clean electricity. This paper proposed a novel lantern wind turbine design compared to a conventional design model. Comparison is done based on simulation on coarse and fine meshing with all the results converged. Results showed that the pressure difference on the surface of novel design lantern wind turbine is much higher compared to the conventional wind turbine. Prototype is already manufactured and experimental result would be discussed in a separate future publication
Energy Technology Data Exchange (ETDEWEB)
Okumura, K [Daihatsu Motor Co. Ltd., Osaka (Japan)
1997-10-01
The automobile industry have made effort to shorten the development period. Recently CFD (Computational Fluid Dynamics) on initial design stage becomes use for improvement of development efficiency. Although the practical guidepost (computed examples) for air conditioning duct and defroster are a little reported. This report presents how to optimize and standardize the calculational methods, calculational grid, boundary conditions for air conditioning duct and defroster nozzle in the practical use. Also we tried the discontinuous interface grid and the solution adaptive method. 2 refs., 17 figs.
Operation Design of Wind Turbines in Strong Wind Conditions
DEFF Research Database (Denmark)
Shen, Wen Zhong; Montes, Melissa Barroso; Odgaard, Peter Fogh
2012-01-01
and variable speed pitch regulated wind turbines. The variable speed design is more suitable for wind turbines to run at very high wind speeds which can help the turbine braking system to stop the turbine at the new "cut-out" wind speed. Reference power, rotational speed and pitch angle have been designed...... optimally. In order to reduce the possible increased loading, fatigue due to the wind gusts, control strategies have been considered for both constant sped and variable speed pitch regulated wind turbines. The control study shows that the designed controllers can reduce the standard deviations efficiently......In order to reduce the impact on the electrical grid from the shutdown of MW wind turbines at wind speeds higher than the cut-out wind speed of 25 m/s, we propose in this paper to run the turbines at high wind speeds up to 40 m/s. Two different operation designs are made for both constant speed...
Concurrent Aeroservoelastic Design and Optimization of Wind Turbines
DEFF Research Database (Denmark)
Tibaldi, Carlo
This work develops and investigates methods to integrate controllers in the wind turbine design process and to perform wind turbine optimization. These techniques can exploit the synergy between wind turbine components and generate new design solutions. Two frameworks to perform wind turbine...... optimization design are presented. These tools handle workflows to model a wind turbine and to evaluate loads and performances under specific conditions. Three approaches to evaluate loads are proposed and integrated in the optimization codes. The first method is based on time domain simulations, the second...... simulations, allows the selection of any controller parameter. The methods to evaluate loads and the pole-placement technique are then employed to carry out wind turbine optimization design from an aeroservoelastic prospective. Several analysis of the NREL 5 MW Reference Wind Turbine and the DTU 10 MW...
Using CFD as Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center
Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Rocker, Marvin; Canabal, Francisco; Robles, Bryan; Garcia, Robert; Chenoweth, James
2003-01-01
The choice of tools used for injector design is in a transitional phase between exclusive reliance on the empirically based correlations and extensive use of computational fluid dynamics (CFD). The Next Generation Launch Technology (NGLT) Program goals emphasizing lower costs and increased reliability have produced a need to enable CFD as an injector design tool in a shorter time frame. This is the primary objective of the Staged Combustor Injector Technology Task currently under way at Marshall Space Flight Center (MSFC). The documentation of this effort begins with a very brief status of current injector design tools. MSFC's vision for use of CFD as a tool for combustion devices design is stated and discussed with emphasis on the injector. The concept of the Simulation Readiness Level (SRL), comprised of solution fidelity, robustness and accuracy, is introduced and discussed. This quantitative measurement is used to establish the gap between the current state of demonstrated capability and that necessary for regular use in the design process. MSFC's view of the validation process is presented and issues associated with obtaining the necessary data are noted and discussed. Three current experimental efforts aimed at generating validation data are presented. The importance of uncertainty analysis to understand the data quality is also demonstrated. First, a brief status of current injector design tools is provided as context for the current effort. Next, the MSFC vision for using CFD as an injector design tool is stated. A generic CFD-based injector design methodology is also outlined and briefly discussed. Three areas where MSFC is using injector CFD analyses for program support will be discussed. These include the Integrated Powerhead Development (IPD) engine which uses hydrogen and oxygen propellants in a full flow staged combustion (FFSC) cycle and the TR-107 and the RS84 engine both of which use RP-1 and oxygen in an ORSC cycle. Finally, an attempt is made to
CFD ANALYSIS OF THE AIR FLOW AROUND THE BLADES OF THE VERTICAL AXIS WIND TURBINE
Directory of Open Access Journals (Sweden)
Muhammed Musab Gavgali
2017-06-01
Full Text Available The paper presents the results of calculations of flow around the vertical axis wind turbine. Three-dimensional calculations were performed using ANSYS Fluent. They were made at steady-state conditions for a wind speed of 3 m/s for 4 angular settings of the three-bladed rotor. The purpose of the calculations was to determine the values of the aerodynamic forces acting on the individual blades and to present the pressure contours on the surface of turbine rotor blades. The calculations were made for 4 rotor angular settings.
A reference pelton turbine - design and efficiency measurements
Solemslie, Bjørn Winther; Dahlhaug, Ole Gunnar
2014-01-01
The Pelton turbine has been subject to a varying degree of research interest since the debut of the technology over a century ago. Despite its age there are gaps in the knowledge concerning the flow mechanisms effecting the flow through the turbine. A Pelton turbine has been designed at the Waterpower Laboratory at NTNU. This has been done in connection to a Ph.D. project focusing on the flow in Pelton turbine buckets. The design of the turbine has been conducted using in-house knowledge in a...
International Nuclear Information System (INIS)
Kim, Seong Gu; Lee, Youho; Ahn, Yoonhan; Lee, Jeong Ik
2016-01-01
Highlights: • CFD analyses were performed to find performance of PCHE for supercritical CO 2 power cycle. • CFD results were obtained beyond the limits of existing correlations. • Designs of different PCHEs with different correlations were compared. • A new CFD-aided correlation covering a wider Reynolds number range was proposed. - Abstract: While most conventional PCHE designs for working fluid of supercritical CO 2 require an extension of valid Reynolds number limits of experimentally obtained correlations, Computational Fluid Dynamics (CFD) code ANSYS CFX was used to explore validity of existing correlations beyond their tested Reynolds number ranges. For heat transfer coefficient correlations, an appropriate piece-wising with Ishizuka’s and Hesselgreaves’s correlation is found to enable an extension of Reynolds numbers. For friction factors, no single existing correlation is found to capture different temperature and angular dependencies for a wide Reynolds number range. Based on the comparison of CFD results with the experimentally obtained correlations, a new CFD-aided correlation covering an extended range of Reynolds number 2000–58,000 for Nusselt number and friction factor is proposed to facilitate PCHE designs for the supercritical CO 2 Brayton cycle application.
Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD
DEFF Research Database (Denmark)
Yang, Hua; Shen, Wen Zhong; Xu, Haoran
2014-01-01
Blade element momentum (BEM) theory with airfoil data is a widely used technique for prediction of wind turbine aerodynamic performance, but the reliability of the airfoil data is an important factor for the prediction accuracy of aerodynamic loads and power. The airfoil characteristics used in BEM...
CFD and Chemical Reactor Network approaches to model an inter-turbine burner
Perpignan, A.A.V.; Talboom, M.G.; Gangoli Rao, A.
2017-01-01
The Flameless Combustion (FC) regime is promising to the attainment of lower emissions in gas turbine engines. The well-distributed reactions, with low peak temperatures present in the regime result in lower emissions and acoustic oscillations. However, the
Practical application of a commercial CFD package in a design/build environment
Energy Technology Data Exchange (ETDEWEB)
Berkoe, J; Krag, P; Rayner, C; Imrie, W [Bechtel Corp., San Francisco, CA (United States)
1996-08-01
Some examples of how computational fluid dynamics (CFD) has been used to solve problems in the design of metallurgical plants, were presented. CFD has been used to optimize equipment for several unit operations at Bechtel Mining and Metals, and also in developing technologies to improve environmental conditions in several facilities. Some examples included mixing in a copper refining furnace, flow in copper solvent extraction settlers, the ventilation of electrowinning tank houses, and the capture of fugitive emissions from Peirce-Smith converters. Cost effective use of CFD on such projects requires substantial investment in high-end computing equipment, versatile commercial CFD software and advanced data visualization, however, in the hands of a sophisticated analyst the results are well worth the expense. 21 refs., 2 tabs., 7 figs.
A parametric design of compact exhaust manifold junction in heavy duty diesel engine using CFD
Directory of Open Access Journals (Sweden)
Naeimi Hessamedin
2011-01-01
Full Text Available Nowadays, computational fluid dynamics codes (CFD are prevalently used to simulate the gas dynamics in many fluid piping systems such as steam and gas turbines, inlet and exhaust in internal combustion engines. In this paper, a CFD software is used to obtain the total energy losses in adiabatic compressible flow at compact exhaust manifold junction. A steady state onedimensional adiabatic compressible flow with friction model has been applied to subtract the straight pipe friction losses from the total energy losses. The total pressure loss coefficient has been related to the extrapolated Mach number in the common branch and to the mass flow rate ratio between branches at different flow configurations, in both combining and dividing flows. The study indicate that the numerical results were generally in good agreement with those of experimental data from the literature and will be applied as a boundary condition in one-dimensional global simulation models of fluid systems in which these components are present.
International Nuclear Information System (INIS)
Mössinger, Peter; Jester-Zürker, Roland; Jung, Alexander
2017-01-01
With increasing requirements for hydropower plant operation due to intermittent renewable energy sources like wind and solar, numerical simulations of transient operations in hydraulic turbo machines become more important. As a continuation of the work performed for the first workshop which covered three steady operating conditions, in the present paper load changes and a shutdown procedure are investigated. The findings of previous studies are used to create a 360° model and compare measurements with simulation results for the operating points part load, high load and best efficiency. A mesh motion procedure is introduced, allowing to represent moving guide vanes for load changes from best efficiency to part load and high load. Additionally an automated re-mesh procedure is added for turbine shutdown to ensure reliable mesh quality during guide vane closing. All three transient operations are compared to PIV velocity measurements in the draft tube and pressure signals in the vaneless space. Simulation results of axial velocity distributions for all three steady operation points, during both load changes and for the shutdown correlated well with the measurement. An offset at vaneless space pressure is found to be a result of guide vane corrections for the simulation to ensure similar velocity fields. Short-time Fourier transformation indicating increasing amplitudes and frequencies at speed-no load conditions. Further studies will discuss the already measured start-up procedure and investigate the necessity to consider the hydraulic system dynamics upstream of the turbine by means of a 1D3D coupling between the 3D flow field and a 1D system model. (paper)
Mössinger, Peter; Jester-Zürker, Roland; Jung, Alexander
2017-01-01
With increasing requirements for hydropower plant operation due to intermittent renewable energy sources like wind and solar, numerical simulations of transient operations in hydraulic turbo machines become more important. As a continuation of the work performed for the first workshop which covered three steady operating conditions, in the present paper load changes and a shutdown procedure are investigated. The findings of previous studies are used to create a 360° model and compare measurements with simulation results for the operating points part load, high load and best efficiency. A mesh motion procedure is introduced, allowing to represent moving guide vanes for load changes from best efficiency to part load and high load. Additionally an automated re-mesh procedure is added for turbine shutdown to ensure reliable mesh quality during guide vane closing. All three transient operations are compared to PIV velocity measurements in the draft tube and pressure signals in the vaneless space. Simulation results of axial velocity distributions for all three steady operation points, during both load changes and for the shutdown correlated well with the measurement. An offset at vaneless space pressure is found to be a result of guide vane corrections for the simulation to ensure similar velocity fields. Short-time Fourier transformation indicating increasing amplitudes and frequencies at speed-no load conditions. Further studies will discuss the already measured start-up procedure and investigate the necessity to consider the hydraulic system dynamics upstream of the turbine by means of a 1D3D coupling between the 3D flow field and a 1D system model.
Zhang, Zhengji
2016-01-01
This book concerns the theoretical foundations of hydromechanics of Pelton turbines from the engineering viewpoint. For reference purposes, all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations. It is thus suitable for the development and design engineers as well as those working in the field of turbo machinery. Many laws described in the book can also be directly used to simplify aspects of computational fluid dynamics (CFD) or to develop new computational methods. The well-executed examples help better understand the related flow mechanics.
Energy Technology Data Exchange (ETDEWEB)
Chen, Y. Lisa; Wen, Jin [Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA 19104 (United States)
2010-04-15
Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is mostly by intuition and experience rather than by systematic design. To develop a sensor system design methodology, the proper selection of an indoor airflow model is needed. Various indoor airflow models exist in the literature, from complex computational fluid dynamics (CFD) to simpler approaches such as multizone and zonal models. Airflow models provide the contaminant concentration data, to which an optimization method can be applied to design sensor systems. The authors utilized a subzonal modeling approach when using a multizone model and were the first to utilize a zonal model for systematic sensor system design. The objective of the study was to examine whether or not data from a simpler airflow model could be used to design sensor systems capable of performing just as well as those designed using data from more complex CFD models. Three test environments, a small office, a large hall, and an office suite were examined. Results showed that when a unique sensor system design was not needed, sensor systems designed using data from simpler airflow models could perform just as well as those designed using CFD data. Further, only for the small office did the common engineering sensor system design practice of placing a sensor at the exhaust result in sensor system performance that was equivalent to one designed using CFD data. (author)
International Nuclear Information System (INIS)
Breton, S-P; Nilsson, K; Ivanell, S; Olivares-Espinosa, H; Masson, C; Dufresne, L
2014-01-01
The effect of a downstream turbine on the production of a turbine located upstream of the latter is studied in this work. This is done through the use of two CFD simulation codes, namely OpenFOAM and EllipSys3D, which solve the Navier-Stokes equations in their incompressible form using a finite volume approach. In both EllipSys3D and OpenFoam, the LES (Large Eddy Simulation) technique is used for modelling turbulence. The wind turbine rotors are modelled as actuator disks whose loading is determined through the use of tabulated airfoil data by applying the blade-element method. A generator torque controller is used in both simulation methods to ensure that the simulated turbines adapt, in terms of rotational velocity, to the inflow conditions they are submited to. Results from both simulation codes, although they differ slightly, show that the downstream turbine affects the upstream one when the spacing between the turbines is small. This is also suggested to be the case looking at measurements performed at the Lillgrund offshore wind farm, whose turbines are located unusually close to each other. However, for distances used in today's typical wind farms, this effect is shown by our calculations not to be significant
Design and construction of an impulse turbine
Hernández, E.
2013-11-01
Impulse turbine has been constructed to be used in the program of Hydraulic Machines, Faculty of Mechanical Engineering at the Universidad Pontificia Bolivariana, sede Bucaramanga. For construction of the impulse turbine (Pelton) detailed plans were drawn up taking into account the design and implementation of the fundamental equations of hydraulic turbomachinery. From the experimental data found maximum mechanical efficiency of 0.6 ± 0.03 for a water flow of 2.1 l/s. The maximum overall efficiency was 0.23 ± 0.02 for a water flow of 0.83 l/s. The design parameter used was a power of 1 kW, as flow regulator built a needle type regulator, which performed well, the model of the bucket or vane is built on a machine type CNC (Computer Numerical Control). For the construction of the impeller and blades was used aluminium because of chemical and physical characteristics and the casing was manufactured in acrylic.
Design and construction of an impulse turbine
International Nuclear Information System (INIS)
Hernández, E
2013-01-01
Impulse turbine has been constructed to be used in the program of Hydraulic Machines, Faculty of Mechanical Engineering at the Universidad Pontificia Bolivariana, sede Bucaramanga. For construction of the impulse turbine (Pelton) detailed plans were drawn up taking into account the design and implementation of the fundamental equations of hydraulic turbomachinery. From the experimental data found maximum mechanical efficiency of 0.6 ± 0.03 for a water flow of 2.1 l/s. The maximum overall efficiency was 0.23 ± 0.02 for a water flow of 0.83 l/s. The design parameter used was a power of 1 kW, as flow regulator built a needle type regulator, which performed well, the model of the bucket or vane is built on a machine type CNC (Computer Numerical Control). For the construction of the impeller and blades was used aluminium because of chemical and physical characteristics and the casing was manufactured in acrylic
Disk brake design for cooling improvement using Computational Fluid Dynamics (CFD)
International Nuclear Information System (INIS)
Munisamy, Kannan M; Shafik, Ramel
2013-01-01
The car disk brake design is improved with two different blade designs compared to the baseline blade design. The two designs were simulated in Computational fluid dynamics (CFD) to obtain heat transfer properties such as Nusselt number and Heat transfer coefficient. The heat transfer property is compared against the baseline design. The improved shape has the highest heat transfer performance. The curved design is inferior to baseline design in heat transfer performance.
Disk brake design for cooling improvement using Computational Fluid Dynamics (CFD)
Munisamy, Kannan M.; Shafik, Ramel
2013-06-01
The car disk brake design is improved with two different blade designs compared to the baseline blade design. The two designs were simulated in Computational fluid dynamics (CFD) to obtain heat transfer properties such as Nusselt number and Heat transfer coefficient. The heat transfer property is compared against the baseline design. The improved shape has the highest heat transfer performance. The curved design is inferior to baseline design in heat transfer performance.
A Summary of Environmentally Friendly Turbine Design Concepts
Energy Technology Data Exchange (ETDEWEB)
Odeh, Mufeed [United States Geological Survey - BRD, Turners Falls, MA (United States)
1999-07-01
The Advanced Hydropower Turbine System Program (AHTS) was created in 1994 by the U.S. Department of Energy, Electric Power Research Institute, and the Hydropower Research Foundation. The Program’s main goal is to develop “environmentally friendly” hydropower turbines. The Program’s first accomplishment was the development of conceptual designs of new environmentally friendly turbines. In order to do so, two contractors were competitively selected. The ARL/NREC team of engineers and biologists provided a conceptual design for a new turbine runner*. The new runner has the potential to generate hydroelectricity at close to 90% efficiency. The Voith team produced new fish-friendly design criteria for Kaplan and Francis turbines that can be incorporated in units during rehabilitation projects or in new hydroelectric facilities**. These include the use of advanced plant operation, minimum gap runners, placement of wicket gates behind stay vanes, among others. The Voith team will also provide design criteria on aerating Francis turbines to increase dissolved oxygen content. Detailed reviews of the available literature on fish mortality studies, causation of injuries to fish, and available biological design criteria that would assist in the design of fish-friendly turbines were performed. This review identified a need for more biological studies in order to develop performance criteria to assist turbine manufacturers in designing a more fish-friendly turbine.
Assessment of ACR moderator circulation design using CFD
International Nuclear Information System (INIS)
Bunama, R.; Carlucci, L.N.; Waddington, G.M.
2004-01-01
Assessment of the thermalhydraulic performance of the moderator circulation system for the Advanced CANDU Reactor (ACR) was carried out using the specialized Computational Fluid Dynamics (CFD) code MODTURC C LAS V2.9 IST. The assessment included modeling the moderator circulation inside the calandria vessel under nominal and isothermal flow conditions. The modeling results show that the moderator flow through the core is relatively uniform and mostly upward. The moderator temperature distribution is nearly stratified and increases monotonically from the bottom to the top of the calandria vessel. (author)
Directory of Open Access Journals (Sweden)
Emma Frosina
2017-01-01
Full Text Available Small and micro hydropower systems represent an attractive solution for generating electricity at low cost and with low environmental impact. The pump-as-turbine (PAT approach has promise in this application due to its low purchase and maintenance costs. In this paper, a new method to predict the inverse characteristic of industrial centrifugal pumps is presented. This method is based on results of simulations performed with commercial three-dimensional Computational Fluid Dynamics (CFD software. Model results have been first validated in pumping mode using data supplied by pump manufacturers. Then, the results have been compared to experimental data for a pump running in reverse. Experimentation has been performed on a dedicated test bench installed in the Department of Civil Construction and Environmental Engineering of the University of Naples Federico II. Three different pumps, with different specific speeds, have been analyzed. Using the model results, the inverse characteristic and the best efficiency point have been evaluated. Finally, results have been compared to prediction methods available in the literature.
Elrod, David; Christensen, Eric; Brown, Andrew
2011-01-01
At NASA/MSFC, Structural Dynamics personnel continue to perform advanced analysis for the turbomachinery in the J2X Rocket Engine, which is under consideration for the new Space Launch System. One of the most challenging analyses in the program is predicting turbine blade structural capability. Resonance was predicted by modal analysis, so comprehensive forced response analyses using high fidelity cyclic symmetric finite element models were initiated as required. Analysis methodologies up to this point have assumed the flow field could be fully described by a sector, so the loading on every blade would be identical as it travelled through it. However, in the J2X the CFD flow field varied over the 360 deg of a revolution because of the flow speeds and tortuous axial path. MSFC therefore developed a complex procedure using Nastran Dmap's and Matlab scripts to apply this circumferentially varying loading onto the cyclically symmetric structural models to produce accurate dynamic stresses for every blade on the disk. This procedure is coupled with static, spin, and thermal loading to produce high cycle fatigue safety factors resulting in much more accurate analytical assessments of the blades.
Melcher, Kevin J.
1997-01-01
The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended
On the performance of a high head Francis turbine at design and off-design conditions
International Nuclear Information System (INIS)
Aakti, B; Amstutz, O; Casartelli, E; Romanelli, G; Mangani, L
2015-01-01
In the present paper, fully 360 degrees transient and steady-state simulations of a Francis turbine were performed at three operating conditions, namely at part load (PL), best efficiency point (BEP), and high load (HL), using different numerical approaches for the pressure-velocity coupling. The simulation domain includes the spiral casing with stay and guide vanes, the runner and the draft tube. The main target of the investigations is the numerical prediction of the overall performance of the high head Francis turbine model as well as local and integral quantities of the complete machine in different operating conditions. All results were compared with experimental data published by the workshop organization. All CFD simulations were performed at model scale with a new in-house, 3D, unstructured, object-oriented finite volume code within the framework of the open source OpenFOAM library. The novel fully coupled pressure-based solver is designed to solve the incompressible RANS- Equations and is capable of handling multiple references of frame (MRF). The obtained results show that the overall performance is well captured by the simulations. Regarding the local flow distributions within the inlet section of the draft-tube, the axial velocity is better estimated than the circumferential component
Structural Reliability Aspects in Design of Wind Turbines
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard
2007-01-01
Reliability assessment, optimal design and optimal operation and maintenance of wind turbines are an area of significant interest for the fast growing wind turbine industry for sustainable production of energy. Offshore wind turbines in wind farms give special problems due to wake effects inside...... the farm. Reliability analysis and optimization of wind turbines require that the special conditions for wind turbine operation are taken into account. Control of the blades implies load reductions for large wind speeds and parking for high wind speeds. In this paper basic structural failure modes for wind...... turbines are described. Further, aspects are presented related to reliability-based optimization of wind turbines, assessment of optimal reliability level and operation and maintenance....
Optimization design of blade shapes for wind turbines
DEFF Research Database (Denmark)
Chen, Jin; Wang, Xudong; Shen, Wen Zhong
2010-01-01
For the optimization design of wind turbines, the new normal and tangential induced factors of wind turbines are given considering the tip loss of the normal and tangential forces based on the blade element momentum theory and traditional aerodynamic model. The cost model of the wind turbines...... and the optimization design model are developed. In the optimization model, the objective is the minimum cost of energy and the design variables are the chord length, twist angle and the relative thickness. Finally, the optimization is carried out for a 2 MW blade by using this optimization design model....... The performance of blades is validated through the comparison and analysis of the results. The reduced cost shows that the optimization model is good enough for the design of wind turbines. The results give a proof for the design and research on the blades of large scale wind turbines and also establish...
Kamhawi, Hilmi N.
2012-01-01
This report documents the work performed from March 2010 to March 2012. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML) as a framework and supporting the configuration design and parametric CFD grid generation. This report will focus on describing the work in the area of parametric CFD grid generation using novel concepts for defining the interaction between the mesh topology and the geometry in such a way as to separate the mesh topology from the geometric topology while maintaining the link between the mesh topology and the actual geometry.
A Novel Parametric Modeling Method and Optimal Design for Savonius Wind Turbines
Directory of Open Access Journals (Sweden)
Baoshou Zhang
2017-03-01
Full Text Available Under the inspiration of polar coordinates, a novel parametric modeling and optimization method for Savonius wind turbines was proposed to obtain the highest power output, in which a quadratic polynomial curve was bent to describe a blade. Only two design parameters are needed for the shape-complicated blade. Therefore, this novel method reduces sampling scale. A series of transient simulations was run to get the optimal performance coefficient (power coefficient C p for different modified turbines based on computational fluid dynamics (CFD method. Then, a global response surface model and a more precise local response surface model were created according to Kriging Method. These models defined the relationship between optimization objective Cp and design parameters. Particle swarm optimization (PSO algorithm was applied to find the optimal design based on these response surface models. Finally, the optimal Savonius blade shaped like a “hook” was obtained. Cm (torque coefficient, Cp and flow structure were compared for the optimal design and the classical design. The results demonstrate that the optimal Savonius turbine has excellent comprehensive performance. The power coefficient Cp is significantly increased from 0.247 to 0.262 (6% higher. The weight of the optimal blade is reduced by 17.9%.
Energy Technology Data Exchange (ETDEWEB)
Petersson, Rickard
1995-11-01
This thesis presents calculation schemes and theories for preliminary design of the fan, high pressure compressor and turbine of a gas turbine. The calculations are presented step by step, making it easier to implement in other applications. The calculation schemes have been implemented as a subroutine in a thermodynamic program. The combination of the thermodynamic cycle calculation and the design calculation turned out to give quite relevant results, when predicting the geometry and performance of an existing aero engine. The program developed is able to handle several different gas turbines, including those in which the flow is split (i.e. turbofan engines). The design process is limited to the fan, compressor and turbine of the gas turbine, the rest of the components have not been considered. Output from the program are main geometry, presented both numerically and as a scale plot, component efficiencies, stresses in critical points and a simple prediction of turbine blade temperatures. 11 refs, 21 figs, 1 tab
Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy
2015-10-15
The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii
International Nuclear Information System (INIS)
Kaniecki, M; Krzemianowski, Z
2010-01-01
The paper contains the short description of the design process of the axial flow turbines for Small Hydro. The crucial elements of the process are: ARDES programme for 1D inverse problem (containing the statistic information of the well performed hydraulic units, applying the lifting aerofoil theory); determination of universal hill diagram and optimization of the runner blades geometry by utilization of the 3D CFD codes. As the result of design process with utilization of both design steps, the generated runner blades geometry (1D inverse problem) and some computational results of 3D CFD solver have been presented. As the conclusion some crucial remarks of the designed process have been brought forward.
Small-Scale vertical axis wind turbine design
Castillo Tudela, Javier
2011-01-01
The thesis focuses on the design of a small vertical axis wind turbine rotor with solid wood as a construction material. The aerodynamic analysis is performed implementing a momentum based model on a mathematical computer program. A three bladed wind turbine is proposed as candidate for further prototype testing after evaluating the effect of several parameters in turbine efficiency, torque and acceleration. The results obtained indicate that wood is a suitable material for rotor cons...
Integrated analysis of wind turbines - The impact of power systems on wind turbine design
DEFF Research Database (Denmark)
Barahona Garzón, Braulio
Megawatt-size wind turbines nowadays operate in very complex environmental conditions, and increasingly demanding power system requirements. Pursuing a cost-effective and reliable wind turbine design is a multidisciplinary task. However nowadays, wind turbine design and research areas...... conditions that stem from disturbances in the power system. An integrated simulation environment, wind turbine models, and power system models are developed in order to take an integral perspective that considers the most important aeroelastic, structural, electrical, and control dynamics. Applications...... of the integrated simulation environment are presented. The analysis of an asynchronous machine, and numerical simulations of a fixedspeed wind turbine in the integrated simulation environment, demonstrate the effects on structural loads of including the generator rotor fluxes dynamics in aeroelastic studies. Power...
Botha, J. D. M.; Shahroki, A.; Rice, H.
2017-12-01
This paper presents an enhanced method for predicting aerodynamically generated broadband noise produced by a Vertical Axis Wind Turbine (VAWT). The method improves on existing work for VAWT noise prediction and incorporates recently developed airfoil noise prediction models. Inflow-turbulence and airfoil self-noise mechanisms are both considered. Airfoil noise predictions are dependent on aerodynamic input data and time dependent Computational Fluid Dynamics (CFD) calculations are carried out to solve for the aerodynamic solution. Analytical flow methods are also benchmarked against the CFD informed noise prediction results to quantify errors in the former approach. Comparisons to experimental noise measurements for an existing turbine are encouraging. A parameter study is performed and shows the sensitivity of overall noise levels to changes in inflow velocity and inflow turbulence. Noise sources are characterised and the location and mechanism of the primary sources is determined, inflow-turbulence noise is seen to be the dominant source. The use of CFD calculations is seen to improve the accuracy of noise predictions when compared to the analytic flow solution as well as showing that, for inflow-turbulence noise sources, blade generated turbulence dominates the atmospheric inflow turbulence.
Chen, Shu-Cheng S.
2017-01-01
A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.
Guy cable design and damping for vertical axis wind turbines
Carne, T. G.
1981-01-01
Guy cables are frequently used to support vertical axis wind turbines since guying the turbine reduces some of the structural requirements on the tower. The guys must be designed to provide both the required strength and the required stiffness at the top of the turbine. The axial load which the guys apply to the tower, bearings, and foundations is an undesirable consequence of using guys to support the turbine. Limiting the axial load so that it does not significantly affect the cost of the turbine is an important objective of the cable design. The lateral vibrations of the cables is another feature of the cable design which needs to be considered. These aspects of the cable design are discussed, and a technique for damping cable vibrations was mathematically analyzed and demonstrated with experimental data.
AFB/open cycle gas turbine conceptual design study
Dickinson, T. W.; Tashjian, R.
1983-09-01
Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.
DEFF Research Database (Denmark)
Andersen, T. O.; Hansen, M. R.; Sørensen, H. L.
2003-01-01
This paper describes experimental and Computational Fluid Dynamics (CFD) analyses of the flow and flow force characteristics in hydraulic seat valves. The flow force compensation method were investigated based on balancing the axial fluid momentum by designing a rim on the rear edge of the poppet...
Design and development of nautilus whorl-wind turbine
R, Pramod; Kumar, G. B. Veeresh; Harsha, P. Sai Sri; Kumar, K. A. Udaya
2017-07-01
Our life is directly related to energy and its consumption, and the issues of energy research are extremely important and highly sensitive. Scientists and researchers attempt to accelerate solutions for wind energy generation, design parameters under the influence of novel policies adopted for energy management and the concerns for global warming and climate change. The objective of this study is to design a small wind turbine that is optimized for the constraints that come with residential use. The study is aimed at designing a wind turbine for tapping the low speed wind in urban locations. The design process includes the selection of the wind turbine type and the determination of the blade airfoil, finding the maximum drag model and manufacturing of the turbine economically. In this study, the Nautilus turbine is modeled, simulated and the characteristic curves are plotted. The cutting in wind speed for the turbine is around 1m/s. The turbine rotates in a range of 20 rpm to 500 rpm at wind speeds 1m/s to 10m/s On a below average day at noon where the wind speed are usually low the turbine recorded an rpm of 120 (average value) at 4m/s wind speeds. This study focuses on a computational fluid dynamics analysis of compressible radially outward flow.
Design and Optimization of a Turbine Intake Structure
Directory of Open Access Journals (Sweden)
P. Fošumpaur
2005-01-01
Full Text Available The appropriate design of the turbine intake structure of a hydropower plant is based on assumptions about its suitable function, and the design will increase the total efficiency of operation. This paper deals with optimal design of the turbine structure of run-of-river hydropower plants. The study focuses mainly on optimization of the hydropower plant location with respect to the original river banks, and on the optimal design of a separating pier between the weir and the power plant. The optimal design of the turbine intake was determined with the use of 2-D mathematical modelling. A case study is performed for the optimal design of a turbine intake structure on the Nemen river in Belarus.
CFD validation of a supercritical water flow for SCWR design heat and mass fluxes
International Nuclear Information System (INIS)
Roelofs, F.; Lycklama a Nijeholt, J.A.; Komen, E.M.J.; Lowenberg, M.; Starflinger, J.
2007-01-01
The applicability of Computational Fluid Dynamics (CFD) for water under supercritical conditions in supercritical water reactors (SCWR) has still to be verified. In the recent past, CFD validation analyses were performed by various institutes for supercritical water in vertical tubes based on the well known experimental data from Yamagata. However, validation using data from experiments with working conditions closer to the actual operational conditions of such reactors is needed. From a literature survey the experiments performed by Herkenrath are selected to perform validation analyses at higher heat fluxes and a higher mass flux. The accuracy of CFD using RANS (Reynolds Average Navier-Stokes) turbulence modelling for supercritical fluids under conditions close to the operational conditions of a supercritical water reactor is determined. It is concluded that the wall temperature can be predicted by RANS CFD, using the RNG k-ε turbulence model, with accuracy in the range of 5% for heat fluxes up to 1100 kW/m 2 and for a bulk enthalpy up to 2200 kJ/kg. For a bulk enthalpy exceeding 2200 kJ/kg, a significant lower accuracy of the CFD predictions (about 3%) is found for the simulations of the experiments of Yamagata in comparison with the simulations of the experiments of Herkenrath. For these experiments, the accuracy is about 18 per cent. This might be a result of the fact that the CFD analyses do not simulate the flattening of the temperature profile at about 2200 kJ/kg which is found in the experiments of Herkenrath. However, the obtained accuracies ranging from 3% to 18% are still deemed to be acceptable for many design purposes. (authors)
Design of large steam turbines for PWR power stations
International Nuclear Information System (INIS)
Hobson, G.; Muscroft, J.
1983-01-01
The thermodynamic cycle requirements for use with pressurized water reactors are reviewed and the manner in which thermal efficiency is maximised is outlined. The special nature of the wet steam cycle associated with turbines for this type of reactor is discussed. Machine and cycle parameters are optimised to achieve high thermal efficiency, particular attention being given to arrangements for water separation and steam reheating and to provisions for feedwater heating. Principles and details of mechanical design are considered for a range of both full-speed turbines running at 3000 rpm on 50 Hz systems and half-speed turbines running at 1800 rpm on 60 Hz systems. The importance of service experience with nuclear wet steam turbines and its relevance to the design of modern turbines for pressurized water reactor applications is discussed. (author)
Design of large steam turbines for PWR power stations
International Nuclear Information System (INIS)
Hobson, G.
1984-01-01
The authors review the thermodynamic cycle requirements for use with pressurized-water reactors, outline the way thermal efficiency is maximized, and discuss the special nature of the wet-steam cycle associated with turbines for this type of reactor. Machine and cycle parameters are optimized to achieve high thermal efficiency, particular attention being given to arrangements for water separation and steam reheating and to provisions for feedwater heating. Principles and details of mechanical design are considered for a range both of full-speed turbines running at 3000 rev/min on 50 Hz systems and of half-speed turbines running at 1800 rev/min on 60 Hz systems. The importance of service experience with nuclear wet-stream turbines, and its relevance to the design of modern turbines for PWR applications, is discussed. (author)
Design of a Hydro-Turbine Blade for Acoustic and Performance Validation Studies
Johnson, E.; Barone, M.
2011-12-01
To meet the growing, global energy demands governments and industry have recently begun to focus on marine hydrokinetic (MHK) devices as an additional form of power generation. Water turbines have become a popular design choice since they are able to leverage experience from the decades-old wind industry in the hope of decreasing time-to-market. However, the difference in environments poses challenges that need to be addressed. In particular, little research has addressed the acoustic effects of common aerofoils in a marine setting. This has both a potential impact on marine life and may cause early fatigue by exciting new structural modes. An initial blade design is presented, which has been used to begin characterization of any structural and acoustic issues that may arise from a direct one-to-one swap of wind technologies into MHK devices. The blade was optimized for performance using blade-element momentum theory while requiring that it not exceed the allowable stress under a specified extreme operating design condition. This limited the maximum power generated, while ensuring a realizable blade. A stress analysis within ANSYS was performed to validate the structural integrity of the design. Additionally, predictions of the radiated noise from the MHK rotor will be made using boundary element modeling based on flow results from ANSYS CFX, a computational fluid dynamics (CFD) code. The FEA and CFD results demonstrate good comparison to the expected design. Determining a range for the anticipated noise produced from a MHK turbine provides a look at the environmental impact these devices will have. Future efforts will focus on the design constraints noise generation places on MHK devices.
Using CFD as a Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center
Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Canabal, Francisco; Rocker, marvin; Robles, Bryan; Garcia, Robert; Chenoweth, James
2005-01-01
New programs are forcing American propulsion system designers into unfamiliar territory. For instance, industry s answer to the cost and reliability goals set out by the Next Generation Launch Technology Program are engine concepts based on the Oxygen- Rich Staged Combustion Cycle. Historical injector design tools are not well suited for this new task. The empirical correlations do not apply directly to the injector concepts associated with the ORSC cycle. These legacy tools focus primarily on performance with environment evaluation a secondary objective. Additionally, the environmental capability of these tools is usually one-dimensional while the actual environments are at least two- and often three-dimensional. CFD has the potential to calculate performance and multi-dimensional environments but its use in the injector design process has been retarded by long solution turnaround times and insufficient demonstrated accuracy. This paper has documented the parallel paths of program support and technology development currently employed at Marshall Space Flight Center in an effort to move CFD to the forefront of injector design. MSFC has established a long-term goal for use of CFD for combustion devices design. The work on injector design is the heart of that vision and the Combustion Devices CFD Simulation Capability Roadmap that focuses the vision. The SRL concept, combining solution fidelity, robustness and accuracy, has been established as a quantitative gauge of current and desired capability. Three examples of current injector analysis for program support have been presented and discussed. These examples are used to establish the current capability at MSFC for these problems. Shortcomings identified from this experience are being used as inputs to the Roadmap process. The SRL evaluation identified lack of demonstrated solution accuracy as a major issue. Accordingly, the MSFC view of code validation and current MSFC-funded validation efforts were discussed in
Goloshumova, V. N.; Kortenko, V. V.; Pokhoriler, V. L.; Kultyshev, A. Yu.; Ivanovskii, A. A.
2008-08-01
We describe the experience ZAO Ural Turbine Works specialists gained from mastering the series of CAD/CAE/CAM/PDM technologies, which are modern software tools of computer-aided engineering. We also present the results obtained from mathematical simulation of the process through which high-and intermediate-pressure rotors are heated for revealing the most thermally stressed zones, as well as the results from mathematical simulation of a new design of turbine cylinder shells for improving the maneuverability of these turbines.
Energy Technology Data Exchange (ETDEWEB)
Rosado Tamariz, Erick
2007-06-15
In the analysis of fluid behavior through hydraulic turbines, two basic methodologies for flow analysis and optimization processes in turbines are used, which are: a) modeled of flow through the entire turbine (joint), or modeled one of each component separately, obtaining satisfactory results by both methodologies. The analysis of computational fluids dynamics (CFD) to geometries improved by means of finite volume method (FVM) with their corresponding initials and boundary conditions is made, to solve a system differential equations of second order that correspond to the flow around the dominion of runner blades; considering nonviscous flow and the implementation of the two equations models for the solution of the equations that govern the turbulent flow. Also, used parameterization techniques based in a parametric geometry an objective function and the diminution of cavitation. This work presents the optimization of a runner from a Francis hydro turbine for a 75 MW considering three different load conditions (75%, 85% and 100%) through CFD as a part of the hydraulic analysis for modernization of the actual condition of a power generation unit. Francis runner optimization is made, through a previous analysis of CFD by means of the FVM, considering the viscous effects of the fluid and the model of turbulence developed by Sparlart and Allmaras; modeling the wicket and runner separately. Later the generation of a parametric model of the runner is made and the simulation for the generation of data base is formed. Finally an objective function is considered to develop the optimal geometry of the runner blades. The results are presented in a graphic form in such a way, that it shows the distributions of pressure and speed around the blades runner, the geometrical and performance (efficiency and power) comparison between original and optimized model. [Spanish] En el analisis del comportamiento del fluido a traves de turbinas hidraulicas, se emplean dos metodologias
Preliminary Two-Phase Terry Turbine Nozzle Models for RCIC Off-Design Operation Conditions
Energy Technology Data Exchange (ETDEWEB)
Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2017-06-12
This report presents the effort to extend the single-phase analytical Terry turbine model to cover two-phase off-design conditions. The work includes: (1) adding well-established two-phase choking models – the Isentropic Homogenous Equilibrium Model (IHEM) and Moody’s model, and (2) theoretical development and implementation of a two-phase nozzle expansion model. The two choking models provide bounding cases for the two-phase choking mass flow rate. The new two-phase Terry turbine model uses the choking models to calculate the mass flow rate, the critical pressure at the nozzle throat, and steam quality. In the divergent stage, we only consider the vapor phase with a similar model for the single-phase case by assuming that the liquid phase would slip along the wall with a much slower speed and will not contribute the impulse on the rotor. We also modify the stagnation conditions according to two-phase choking conditions at the throat and the cross-section areas for steam flow at the nozzle throat and at the nozzle exit. The new two-phase Terry turbine model was benchmarked with the same steam nozzle test as for the single-phase model. Better agreement with the experimental data is observed than from the single-phase model. We also repeated the Terry turbine nozzle benchmark work against the Sandia CFD simulation results with the two-phase model for the pure steam inlet nozzle case. The RCIC start-up tests were simulated and compared with the single-phase model. Similar results are obtained. Finally, we designed a new RCIC system test case to simulate the self-regulated Terry turbine behavior observed in Fukushima accidents. In this test, a period inlet condition for the steam quality varying from 1 to 0 is applied. For the high quality inlet period, the RCIC system behaves just like the normal operation condition with a high pump injection flow rate and a nominal steam release rate through the turbine, with the net addition of water to the primary system; for
Turbine design and application volumes 1, 2, and 3
Glassman, Arthur J. (Editor)
1994-01-01
NASA has an interest in turbines related primarily to aeronautics and space applications. Airbreathing turbine engines provide jet and turboshaft propulsion, as well as auxiliary power for aircraft. Propellant-driven turbines provide rocket propulsion and auxiliary power for spacecraft. Closed-cycle turbine engines using inert gases, organic fluids, and metal fluids have been studied for providing long-duration electric power for spacecraft. Other applications of interest for turbine engines include land-vehicle (cars, trucks, buses, trains, etc.) propulsion power and ground-based electrical power. In view of the turbine-system interest and efforts at Lewis Research Center, a course entitled 'Turbine Design and Application' was presented during 1968-69 as part of the In-house Graduate Study Program. The course was somewhat revised and again presented in 1972-73. Various aspects of turbine technology were covered including thermodynamic and fluid-dynamic concepts, fundamental turbine concepts, velocity diagrams, losses, blade aerodynamic design, blade cooling, mechanical design, operation, and performance. The notes written and used for the course have been revised and edited for publication. Such a publication can serve as a foundation for an introductory turbine course, a means for self-study, or a reference for selected topics. Any consistent set of units will satisfy the equations presented. Two commonly used consistent sets of units and constant values are given after the symbol definitions. These are the SI units and the U.S. customary units. A single set of equations covers both sets of units by including all constants required for the U.S. customary units and defining as unity those not required for the SI units. Three volumes are compiled into one.
Conceptual design and costs of large wind turbines
International Nuclear Information System (INIS)
Hau, E.; Harrison, R.; Cockerill, T.T.; Snel, H.
1996-01-01
The development of large wind turbines, with capacities in excess of 1 MW is reviewed. Despite statistical evidence to the contrary, there are some reasons to be optimistic that further development will render large machines economic for commercial uses. The direction in which such development should proceed is unclear, however. A cost model, founded on the principles of conceptual design, with the objective of evaluating large wind turbine design options is described. Use of the model allows conclusions to be drawn regarding the potential for development of certain large wind turbine configurations. (author)
SMART Wind Turbine Rotor: Design and Field Test
Energy Technology Data Exchange (ETDEWEB)
Berg, Jonathan C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Resor, Brian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); White, Jonathan R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-01-29
This report documents the design, fabrication, and testing of the SMART Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers.
Large Wind Turbine Design Characteristics and R and D Requirements
Lieblein, S. (Editor)
1979-01-01
Detailed technical presentations on large wind turbine research and development activities sponsored by public and private organizations are presented. Both horizontal and vertical axis machines are considered with emphasis on their structural design.
A new vertical axis wind turbine design for urban areas
Frunzulica, Florin; Cismilianu, Alexandru; Boros, Alexandru; Dumitrache, Alexandru; Suatean, Bogdan
2016-06-01
In this paper we aim at developing the model of a Vertical Axis Wind Turbine (VAWT) with the short-term goal of physically realising this turbine to operate at a maximmum power of 5 kW. The turbine is designed for household users in the urban or rural areas and remote or isolated residential areas (hardly accsessible). The proposed model has a biplane configuration on each arm of the VAWT (3 × 2 = 6 blades), allowing for increased performance of the turbine at TSR between 2 and 2.5 (urban area operation) compared to the classic vertical axis turbines. Results that validate the proposed configuration as well as passive control methods to increase the performance of the classic VAWTs are presented.
International Nuclear Information System (INIS)
Lee, Sumi; Song, Doosam
2010-01-01
Drastic urbanization and manhattanization are causing various problems in wind environment. This study suggests a CFD simulation method to evaluate wind environment in the early design stage of high-rise buildings. The CFD simulation of this study is not a traditional in-depth simulation, but a method to immediately evaluate wind environment for each design alternative and provide guidelines for design modification. Thus, the CFD simulation of this study to evaluate wind environments uses BIM-based CFD tools to utilize building models in the design stage. This study examined previous criteria to evaluate wind environment for pedestrians around buildings and selected evaluation criteria applicable to the CFD simulation method of this study. Furthermore, proper mesh generation method and CPU time were reviewed to find a meaningful CFD simulation result for determining optimal design alternative from the perspective of wind environment in the design stage. In addition, this study is to suggest a wind environment evaluation method through a BIM-based CFD simulation.
International Nuclear Information System (INIS)
Zhang, X X; Cheng, Y G; Xia, L S; Yang, J D
2014-01-01
The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q 11 and M 11 in different moving directions of the dynamic trajectories give different n 11 . The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q 11 and M 11 in different moving directions of the dynamic trajectories
Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.
2014-03-01
The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.
Design and development of gas turbine high temperature reactor 300
International Nuclear Information System (INIS)
Kunitomi, Kazuhiko; Katanishi, Shoji; Takada, Shoji; Yan, Xing; Takizuka, Takakazu
2003-01-01
JAERI (Japan Atomic Energy Research Institute) has been designing a Japan's original gas turbine high temperature reactor, GTHTR300 (Gas Turbine High Temperature Reactor 300). The greatly simplified design based on salient features of the HTGR (High Temperature Gas-cooled reactor) with a closed helium gas turbine enables the GTHTR300 a high efficient and economically competitive reactor to be deployed in early 2010s. Also, the GTHTR300 fully taking advantage of various experiences accumulated in design, construction and operation of the HTTR (High Temperature Engineering Test Reactor) and fossil gas turbine systems reduces technological development concerning a reactor system and electric generation system. Original features of this system are core design with two-year refueling interval, conventional steel material usage for a reactor pressure vessel, innovative plant flow scheme and horizontally installed gas turbine unit. Due to these salient features, the capital cost of the GTHTR300 is less than a target cost of 200 thousands Yen/kWe, and the electric generation cost is close to a target cost of 4 Yen/kWh. This paper describes the original design features focusing on reactor core design, fuel design, in-core structure design and reactor pressure vessel design except PCU design. Also, R and D for developing the power conversion unit is briefly described. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)
Hui Li; Dian-Gui Huang
2017-01-01
Centrifugal turbine which has less land occupation, simple structure, and high aerodynamic efficiency is suitable to be used as small to medium size steam turbines or waste heat recovery plant. In this paper, one-dimensional design of a multistage centrifugal steam turbine was performed by using in-house one-dimensional aerodynamic design program. In addition, three-dimensional numerical simulation was also performed in order to analyze design and off-design aerodynamic performance of the pro...
The system design and performance test of hybrid vertical axis wind turbine
Dwiyantoro, Bambang Arip; Suphandani, Vivien
2017-04-01
Vertical axis wind turbine is a tool that is being developed to generate energy from wind. One cause is still little use of wind energy is the design of wind turbines that are less precise. Therefore in this study will be developed the system design of hybrid vertical axis wind turbine and tested performance with experimental methods. The design of hybrid turbine based on a straight bladed Darrieus turbine along with a double step Savonius turbine. The method used to design wind turbines is by studying literature, analyzing the critical parts of a wind turbine and the structure of the optimal design. Wind turbine prototype of the optimal design characteristic tests in the wind tunnel experimentally by varying the speed of the wind. From the experimental results show that the greater the wind speed, the greater the wind turbine rotation and torque is raised. The hybrid vertical axis wind turbine has much better self-starting and better conversion efficiency.
GPU-accelerated CFD Simulations for Turbomachinery Design Optimization
Aissa, M.H.
2017-01-01
Design optimization relies heavily on time-consuming simulations, especially when using gradient-free optimization methods. These methods require a large number of simulations in order to get a remarkable improvement over reference designs, which are nowadays based on the accumulated engineering
Thermal Comfort-CFD maps for Architectural Interior Design
DEFF Research Database (Denmark)
Naboni, Emanuele; Lee, Daniel Sang-Hoon; Fabbri, Kristian
2017-01-01
opportunities of movable interior partitions (operated by the users) could be estimated, providing a new layer of information to the designer. The applicability of the thermal maps within an architectural design process is discussed adopting standard energy simulation comfort outputs as a reference......Within the context of nearly Zero-Energy Buildings, it is debated that the energy-centred notion of design, proposed by regulatory frames, needs to be combined with a further focus toward users’ comfort and delight. Accordingly, the underlying theory of the research is that designers should take...... responsibility for understanding the heat flows through the building parts and its spaces. A design, which is sensible to the micro-thermal conditions coexisting in a space, allows the inhabitants to control the building to their needs and desires: for instance, maximising the benefits of heat gain from the sun...
A reference pelton turbine - design and efficiency measurements
International Nuclear Information System (INIS)
Solemslie, Bjørn W; Dahlhaug, Ole G
2014-01-01
The Pelton turbine has been subject to a varying degree of research interest since the debut of the technology over a century ago. Despite its age there are gaps in the knowledge concerning the flow mechanisms effecting the flow through the turbine. A Pelton turbine has been designed at the Waterpower Laboratory at NTNU. This has been done in connection to a Ph.D. project focusing on the flow in Pelton turbine buckets. The design of the turbine has been conducted using in-house knowledge in addition to some comments from a turbine producer. To describe the geometry multiple Bezier curves were used and the design strategy aimed to give a smooth and continuous gradient along the main flow directions in the bucket. The turbine has been designed for the operational conditions of the Pelton test rig installed at the Waterpower Laboratory which is a horizontal single jet test rig with a jet diameter(d s ) of 35 mm. The diameter(D) of the runner was set to 513 mm and the width(W) of a bucket 114 mm, leading to a D/W ratio of 4.5. Manufacturing of the turbine has been carried out in aluminium and the turbine has undergone efficiency testing and visual inspection during operation at a head of 70 m. The turbine did not performed as expected and the maximum efficiency was found to be 77.75%. The low efficiency is mainly caused by a large amount of water leaving the bucket through the lip and hence transferring close to zero of its energy to the shaft. The reason for the large lip loss is discussed and two possible causes are found; the jet is located too close to the lip, and the inner surface of the bucket does not lead the water away from the lip. The turbine geometry and all data from both measurements and simulations will be available upon request in an effort to increase the amount of available data concerning Pelton turbines
A reference pelton turbine - design and efficiency measurements
Solemslie, Bjørn W.; Dahlhaug, Ole G.
2014-03-01
The Pelton turbine has been subject to a varying degree of research interest since the debut of the technology over a century ago. Despite its age there are gaps in the knowledge concerning the flow mechanisms effecting the flow through the turbine. A Pelton turbine has been designed at the Waterpower Laboratory at NTNU. This has been done in connection to a Ph.D. project focusing on the flow in Pelton turbine buckets. The design of the turbine has been conducted using in-house knowledge in addition to some comments from a turbine producer. To describe the geometry multiple Bezier curves were used and the design strategy aimed to give a smooth and continuous gradient along the main flow directions in the bucket. The turbine has been designed for the operational conditions of the Pelton test rig installed at the Waterpower Laboratory which is a horizontal single jet test rig with a jet diameter(ds) of 35 mm. The diameter(D) of the runner was set to 513 mm and the width(W) of a bucket 114 mm, leading to a D/W ratio of 4.5. Manufacturing of the turbine has been carried out in aluminium and the turbine has undergone efficiency testing and visual inspection during operation at a head of 70 m. The turbine did not performed as expected and the maximum efficiency was found to be 77.75%. The low efficiency is mainly caused by a large amount of water leaving the bucket through the lip and hence transferring close to zero of its energy to the shaft. The reason for the large lip loss is discussed and two possible causes are found; the jet is located too close to the lip, and the inner surface of the bucket does not lead the water away from the lip. The turbine geometry and all data from both measurements and simulations will be available upon request in an effort to increase the amount of available data concerning Pelton turbines.
Development of environmentally advanced hydropower turbine system design concepts
International Nuclear Information System (INIS)
Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr.
1997-08-01
A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower''s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable
Development of environmentally advanced hydropower turbine system design concepts
Energy Technology Data Exchange (ETDEWEB)
Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others
1997-08-01
A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.
A CFD-based aerodynamic design procedure for hypersonic wind-tunnel nozzles
Korte, John J.
1993-01-01
A new procedure which unifies the best of current classical design practices, computational fluid dynamics (CFD), and optimization procedures is demonstrated for designing the aerodynamic lines of hypersonic wind-tunnel nozzles. The new procedure can be used to design hypersonic wind tunnel nozzles with thick boundary layers where the classical design procedure has been shown to break down. An efficient CFD code, which solves the parabolized Navier-Stokes (PNS) equations using an explicit upwind algorithm, is coupled to a least-squares (LS) optimization procedure. A LS problem is formulated to minimize the difference between the computed flow field and the objective function, consisting of the centerline Mach number distribution and the exit Mach number and flow angle profiles. The aerodynamic lines of the nozzle are defined using a cubic spline, the slopes of which are optimized with the design procedure. The advantages of the new procedure are that it allows full use of powerful CFD codes in the design process, solves an optimization problem to determine the new contour, can be used to design new nozzles or improve sections of existing nozzles, and automatically compensates the nozzle contour for viscous effects as part of the unified design procedure. The new procedure is demonstrated by designing two Mach 15, a Mach 12, and a Mach 18 helium nozzles. The flexibility of the procedure is demonstrated by designing the two Mach 15 nozzles using different constraints, the first nozzle for a fixed length and exit diameter and the second nozzle for a fixed length and throat diameter. The computed flow field for the Mach 15 least squares parabolized Navier-Stokes (LS/PNS) designed nozzle is compared with the classically designed nozzle and demonstrates a significant improvement in the flow expansion process and uniform core region.
Location and sizing of a plant stack: Design study using CFD
International Nuclear Information System (INIS)
Petrangeli, Gianni
2011-01-01
Highlights: → The paper is a test of applicability of CFD Codes to a nuclear plant stack. → Six cases are studied and comparison is made with common methods. → A comparison with field test data is made. → The study shows that CFD Codes are adequate even in presence of complicated building arrangements. - Abstract: The effect of the presence of a stack on the ground level concentration of emissions near the plant is to significantly decrease the concentrations (in practical cases of interest, by a factor of 5-10), while the presence of nearby plant buildings is to partly eliminate this beneficial effect due to the effect of the building wake. The author of this paper believes that the practical methods currently used for the evaluation of ground concentrations in these cases deserve some improvement. One line of development here suggested is the use of Computer Fluid Dynamics (CFD) codes. The author believes that presently available Code Packages in this field are sufficiently accurate. A number of case studies are presented in this paper, with the aim of encouraging the use of these rather simple methods of study. Moreover, a comparison of calculation results with a field test results confirms also the quantitative reliability of the calculation method here proposed. The main conclusions of this exercise could be the following: -The use of CFD Computer Codes seems suitable for atmospheric dispersion calculations of interest to the nuclear plant designer and safety analyst; in particular, for design studies aimed at the definition of nuclear plant and stack arrangements, the result of this exercise seem to indicate that the methods here used are completely suitable for the comparison of various solutions. -The use of CFD codes may avoid wrong decisions, like the elimination of a stack in the design of a nuclear plant; excessive and detrimental over-conservatism can also be avoided. -When adequate guidance is provided, as this paper attempts to do (), the CFD
Design and CFD Simulation of the Drift Eliminators in Comparison with PIV Results
Directory of Open Access Journals (Sweden)
Stodůlka Jiří
2015-01-01
Full Text Available Drift eliminators are the essential part of all modern cooling towers preventing significant losses of liquid water escaping to the enviroment. These eliminators need to be effective in terms of water capture but on the other hand causing only minimal pressure loss as well. A new type of such eliminator was designed and numerically simulated using CFD tools. Results of the simulation are compared with PIV visulisation on the prototype model.
Site-specific design optimization of wind turbines
DEFF Research Database (Denmark)
Fuglsang, P.; Bak, C.; Schepers, J.G.
2002-01-01
This article reports results from a European project, where site characteristics were incorporated into the design process of wind turbines, to enable site-specific design. Two wind turbines of different concept were investigated at six different sites comprising normal flat terrain, offshore...... and complex terrain wind farms. Design tools based on numerical optimization and aeroelastic calculations were combined with a cost model to allow optimization for minimum cost of energy. Different scenarios were optimized ranging from modifications of selected individual components to the complete design...... of a new wind turbine. Both annual energy yield and design-determining loads depended on site characteristics, and this represented a potential for site-specific design. The maximum variation in annual energy yield was 37% and the maximum variation in blade root fatigue loads was 62%. Optimized site...
Design of wind turbines. What does the public like?
International Nuclear Information System (INIS)
Geuzendam, C.; Uitzinger, J.
1997-01-01
Fifteen wind turbine designs are assessed by the public. The study was carried out by means of a face-to-face survey among 76 occupants of the municipalities Schagen (western part of the Netherlands) and Zutphen (eastern part of the Netherlands). Use has been made of illustrations of the 15 different wind turbine types and four different types of landscapes. The illustrations are included in this report
CFD as a Design Tool for a Concentric Heat Exchanger
Oosterhuis, Joris; Bühler, Simon; wilcox, D; van der Meer, Theodorus H.
2012-01-01
A concentric gas-to-gas heat exchanger is designed for application as a recuperator in the domestic boiler industry. The recuperator recovers heat from the exhaust gases of a combustion process to preheat the ingoing gaseous fuel mixture resulting in increased fuel efficiency. This applied study
3D CFD fluid flow and thermal analyses of a new design of plate heat exchanger
Directory of Open Access Journals (Sweden)
Pianko-Oprych Paulina
2017-03-01
Full Text Available The paper presents a Computational Fluid Dynamics (CFD numerical study for a new design of a plate heat exchanger with two different flow patterns. The impact of geometric characteristics of the two studied geometries of exchanger plates on the intensification process of heat transfer was considered. The velocity, temperature and pressure distributions along the heat exchanger were examined. The CFD results were validated against experimental data and a good agreement was achieved. The results revealed that geometrical arrangement of the plates strongly influence the fluid flow. An increase in the Reynolds number led to lowering the friction factor value and increasing the pressure drop. The configuration II of the plate heat exchanger resulted in lower outlet hot fluid temperature in comparison with the configuration I, which means improvement of heat transfer.
Research on Fairing design and CFD Analysis of Submarine Pipeline Inspection ARV
Directory of Open Access Journals (Sweden)
Jin Xiaojian
2017-01-01
Full Text Available Along with the fast development of the ocean exploitation, the cost-effective requirement of autonomous & remotely operated vehicle (ARV, which can perform more complicated missions such as the oil exploitation and the inspection of the submarine pipeline is more urgent. The submarine pipeline inspection ARV can help us better understand, protect and efficiently utilize them for human welfare. Fairing design of a new detection ARV are introduced in this paper. In order to select an appropriate thruster that will achieve the required speed of the ARV, the ANSYS-CFX tools are used to predicted the drag force. The CFD results reveal the distribution of velocity and pressure values of the ARV. In order to verify the CFD modeling process, a towed body was developed and analyzed, compared against the corresponding physical test data.
RTOD- RADIAL TURBINE OFF-DESIGN PERFORMANCE ANALYSIS
Glassman, A. J.
1994-01-01
The RTOD program was developed to accurately predict radial turbine off-design performance. The radial turbine has been used extensively in automotive turbochargers and aircraft auxiliary power units. It is now being given serious consideration for primary powerplant applications. In applications where the turbine will operate over a wide range of power settings, accurate off-design performance prediction is essential for a successful design. RTOD predictions have already illustrated a potential improvement in off-design performance offered by rotor back-sweep for high-work-factor radial turbines. RTOD can be used to analyze other potential performance enhancing design features. RTOD predicts the performance of a radial turbine (with or without rotor blade sweep) as a function of pressure ratio, speed, and stator setting. The program models the flow with the following: 1) stator viscous and trailing edge losses; 2) a vaneless space loss between the stator and the rotor; and 3) rotor incidence, viscous, trailing-edge, clearance, and disk friction losses. The stator and rotor viscous losses each represent the combined effects of profile, endwall, and secondary flow losses. The stator inlet and exit and the rotor inlet flows are modeled by a mean-line analysis, but a sector analysis is used at the rotor exit. The leakage flow through the clearance gap in a pivoting stator is also considered. User input includes gas properties, turbine geometry, and the stator and rotor viscous losses at a reference performance point. RTOD output includes predicted turbine performance over a specified operating range and any user selected flow parameters. The RTOD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 100K of 8 bit bytes. The RTOD program was developed in 1983.
Wind turbine design : with emphasis on Darrieus concept
Energy Technology Data Exchange (ETDEWEB)
Paraschivoiu, I. [Ecole Polytechnique, Montreal, PQ (Canada)
2002-07-01
This book described software applications designed to model the aerodynamic performance of the Darrieus vertical-axis wind turbine. The book also provided a comprehensive review of current vertical-axis wind turbine (VAWT) technology, and discussed recent advances in understanding the physics of flow associated with the Darrieus type of turbine. The principal theories and aerodynamic models for calculating the performance of the turbines were presented, as well as results from experimental data derived from prototypes as well as laboratory measurements. The book was divided into 10 chapters: (1) wind definition and characteristics; (2) a review of the Madaras rotor concept along with an introduction to vortex modelling; (3) an introduction to the geometry of the Darrieus rotor; (4) a single streamtube model; (5) dynamic-stall phenomenon and numerical simulations; (6) double actuator risk theory; (7) details of water channel experiments; (8) modelling of turbine components; (9) wind turbine design parameters; and (10) issues related to socio-economic and environmental impacts. refs., tabs., figs.
Usage of Numerical Optimization in Wind Turbine Airfoil Design
Energy Technology Data Exchange (ETDEWEB)
Grasso, F. [ECN Wind Energy, Petten (Netherlands)
2011-01-15
One important key element in the aerodynamic design of wind turbines is the use of specially tailored airfoils to increase the ratio of energy capture to the loading and thereby to reduce the cost of energy. This work is focused on the design of a wind turbine airfoil by using numerical optimization. First, the requirements for this class of airfoils are illustrated and discussed in order to have an exhaustive outline of the complexity of the problem. Then the optimization approach is presented; a gradient-based algorithm is used, coupled with RFOIL solver and a composite Bezier geometrical parameterization. A particularly sensitive point is the choice and implementation of constraints; to formalize the design requirements in the most complete and effective way, the effects of activating specific constraints are discussed. Finally, a numerical example regarding the design of a high-efficiency airfoil for the outer part of a blade is illustrated, and the results are compared with existing wind turbine airfoils.
Aseismic design of turbine houses of nuclear power plants
International Nuclear Information System (INIS)
Danisch, R.; Labes, M.
1975-01-01
The turbine house does not belong to the safety-related parts of equipment of a nuclear power plant. A special protection against earthquakes is not demanded by the authorities as long as it is proven that safety-related parts of equipment will not be restricted in their function by a collaps of the turbine house. The degree of an aseismic design is largely up to the customer, who has to weigh the risk of costs and availability against the additional costs, that are necessary for the earthquake calculation and for constructive hardening. In comparison to the high-tuned turbine foundations as they are in use in the USA today, low-tuned turbine foundations as a result of helical-spring-support, which are constructed by the KWU exclusively, pose special problems with the aseismic design. This is discussed in the present report. The spring-supported mass constitutes about a quarter of the building-mass. For mechanical reasons the spring elements are chosen in such a way, that the turbine foundation has a natural frequency of approximately 3 Hz. Thus it remains within the same frequency range as the turbine house and within that very range which is particularly amplificated by an earthquake. It is therefore likely that resonance effects as well as oscillation annulment effects may occur. The standardized calculation methods for conventional buildings without safety function such as DIN 4149 (Germany) or SIA 162 (Switzerland) do not cover the oscillation conduct of such a complicate structure. One receives informations about possible relative displacements between the building and the turbine foundation (hammering-effect) and about the stresses on the turbine and other components only by dynamic calculation methods such as the time-history or the response-spectrum method
Design of an aeroelastically tailored 10 MW wind turbine rotor
DEFF Research Database (Denmark)
Zahle, Frederik; Tibaldi, Carlo; Pavese, Christian
2016-01-01
This work presents an integrated multidisciplinary wind turbine optimization framework utilizing state-of-the-art aeroelastic and structural tools, capable of simultaneous design of the outer geometry and internal structure of the blade. The framework is utilized to design a 10 MW rotor constrained...... not to exceed the design loads of an existing reference wind turbine. The results show that through combined geometric tailoring of the internal structure and aerodynamic shape of the blade it is possible to achieve significant passive load alleviation that allows for a 9% longer blade with an increase in AEP...
CFD analysis of PAR performance as function of inlet design
Energy Technology Data Exchange (ETDEWEB)
Park, Kweonha, E-mail: khpark@kmou.ac.kr [Division of Mechanical and Energy systems Engineering, Korea Maritime University, Dongsam-dong, Yeongdo-gu, Busan 606-791 (Korea, Republic of); Khor, Chong Lee, E-mail: itachi_829@hotmail.com [Department of Mechanical Engineering, Korea Maritime University (Korea, Republic of)
2016-01-15
Highlights: • The new concept of PAR (passive autocatalytic recombiner) was proposed and analyzed. • Guidance wall was added at the bottom of PAR to enhance the flow rate through the catalyst. • The new concept of PAR was proved to have a better hydrogen removal performance. - Abstract: Passive autocatalytic recombiner (PAR) is very useful hydrogen mitigation measurement. It is widely implemented in the current and advanced light water reactors (ALWRs). The design of the PARs should be optimized for the specific use under severe accident scenarios. Several techniques and innovations have been fused into the PAR, as an effort to increase its efficiency of hydrogen mitigation. This study proposes different concepts of PAR, which applied some changes to the honeycomb catalyst PAR made by the Korea Nuclear Technology (KNT) Inc. Two slices of plate are added to the bottom of PAR model, which intended to act as a reflection wall and promote the gas flow into PAR. Hydrogen volume fraction was given 4 vol. % which tested by KNT to investigate the performance of PAR in different direction gas flow conditions to see maximum hydrogen recombination rate. The new concept of PAR was proved to have a better hydrogen removal performance compared to the original honeycomb catalyst PAR.
CFD analysis of PAR performance as function of inlet design
International Nuclear Information System (INIS)
Park, Kweonha; Khor, Chong Lee
2016-01-01
Highlights: • The new concept of PAR (passive autocatalytic recombiner) was proposed and analyzed. • Guidance wall was added at the bottom of PAR to enhance the flow rate through the catalyst. • The new concept of PAR was proved to have a better hydrogen removal performance. - Abstract: Passive autocatalytic recombiner (PAR) is very useful hydrogen mitigation measurement. It is widely implemented in the current and advanced light water reactors (ALWRs). The design of the PARs should be optimized for the specific use under severe accident scenarios. Several techniques and innovations have been fused into the PAR, as an effort to increase its efficiency of hydrogen mitigation. This study proposes different concepts of PAR, which applied some changes to the honeycomb catalyst PAR made by the Korea Nuclear Technology (KNT) Inc. Two slices of plate are added to the bottom of PAR model, which intended to act as a reflection wall and promote the gas flow into PAR. Hydrogen volume fraction was given 4 vol. % which tested by KNT to investigate the performance of PAR in different direction gas flow conditions to see maximum hydrogen recombination rate. The new concept of PAR was proved to have a better hydrogen removal performance compared to the original honeycomb catalyst PAR.
Helium gas turbine conceptual design by genetic/gradient optimization
International Nuclear Information System (INIS)
Yang, Long; Yu, Suyuan
2003-01-01
Helium gas turbine is the key component of the power conversion system for direct cycle High Temperature Gas-cooled Reactors (HTGR), of which an optimal design is essential for high efficiency. Gas turbine design currently is a multidisciplinary process in which the relationships between constraints, objective functions and variables are very noisy. Due to the ever-increasing complexity of the process, it has becomes very hard for the engineering designer to foresee the consequences of changing certain parts. With classic design procedures which depend on adaptation to baseline design, this problem is usually averted by choosing a large number of design variables based on the engineer's judgment or experience in advance, then reaching a solution through iterative computation and modification. This, in fact, leads to a reduction of the degree of freedom of the design problem, and therefore to a suboptimal design. Furthermore, helium is very different in thermal properties from normal gases; it is uncertain whether the operation experiences of a normal gas turbine could be used in the conceptual design of a helium gas turbine. Therefore, it is difficult to produce an optimal design with the general method of adaptation to baseline. Since their appearance in the 1970s, Genetic algorithms (GAs) have been broadly used in many research fields due to their robustness. GAs have also been used recently in the design and optimization of turbo-machines. Researchers at the General Electronic Company (GE) developed an optimization software called Engineous, and used GAs in the basic design and optimization of turbines. The ITOP study group from Xi'an Transportation University also did some work on optimization of transonic turbine blades. However, since GAs do not have a rigorous theory base, many problems in utilities have arisen, such as premature convergence and uncertainty; the GA doesn't know how to locate the optimal design, and doesn't even know if the optimal solution
DESIGN OF BACKWARD SWEPT TURBINE WHEEL FOR CRYOGENIC TURBOEXPANDER
Directory of Open Access Journals (Sweden)
BALAJI K. CHOUDHURY
2014-08-01
Full Text Available With support from the Department of Atomic Energy, our institute has initiated a programme on development and study of a low capacity (20 liters/hr. turboexpander based Nitrogen liquefier. Hence a process design was carried out and a turboexpander was designed to meet the requirement of the liquefier. The turboexpander is used for lowering the temperature of the process gas (Nitrogen by the isenthalpic expansion. The efficiency of the turboexpander mainly depends on the specific speed and specific diameter of the turbine wheel. The paper explains a general methodology for the design of any type of turbine wheel (radial, backward swept and forward swept for any pressure ratio with different process gases. The design of turbine wheel includes the determination of dimensions, blade profile and velocity triangles at inlet and outlet of the turbine wheel. Generally radial turbine wheels are used but in this case to achieve the high efficiency at desired speed, backward curved blades are used to maintain the Mach number of the process gas at the nozzle exit, close to unity. If the velocity of fluid exceeds the speed of sound, the flow gets choked leading to the creation of shock waves and flow at the exit of the nozzle will be non-isentropic.
The design of wind turbine for electrical power generation in Malaysian wind characteristics
International Nuclear Information System (INIS)
Abas Ab Wahab; Chong Wen Thong
2000-01-01
The paper describes the study of a wind turbine for electrical power generation in Malaysia wind characteristics. In this research, the wind turbine is designs based on the local wind characteristics and tries to avoid the problems faced in the past (turbine design, access, manpower and technical). The new wind turbine rotor design for a medium speed wind speed turbine utilises the concept of open-close type of horizontal axis (up-wind) wind turbine is intended to widen the optimum performance range for electrical generation in Malaysia wind characteristics. The wind turbine has been designed to cut-in at a lower speed, and to provide the rotation speed that high enough to run a generator. The analysis and design of new low speed wind turbine blades and open-close turbine rotor and prediction of turbine performance are being detailed in this paper. (Author)
Directory of Open Access Journals (Sweden)
Andi Trimulyono
2013-01-01
Full Text Available Sebagai negara dengan wilayah lautan yang cukup besar membuat Indonesia memiliki potensi untuk mengembangkan energi alternatif yang meliputi antara lain energi panas laut, energi arus akibat pasang surut, energi gelombang laut dan energi arus laut. Selain ramah lingkungan, energi yang dibangkitkan dari arus laut membutuhkan alat konversi yang kecil, tidak bising, memiliki densitas yang tinggi dibandingkan angin. Menurut sistem pembangkitan energi laut yang ada terbagi menjadi dua yaitu sistem turbin dan non turbin (Khan et al,2008.Turbin Darrieus adalah salah satu tipe turbin penggerak vertikal axis sedangkan bilah yang digunakan adalah NACA simetris(0012 dan 0018. Turbin tipe ini memiliki permasalahan tersendiri dalam start awal/self starting( Brian,2008, dibandingkan Turbin Kobold yang menggunakan bilah tipe HLIFT yang dikembangkan untuk penggunaan dalam air(Coiro et al,2005 memiliki kinerja yang lebih baik. Modifikasi dengan cara memberi flap pada tralling edgenya memiliki pengaruh yang singnifikan terhadap torsi statik berkisar 35% kenaikan yang terjadi dibandingkan dengan tanpa flap (Tabassum,1987. Untuk mendapatkan performansi tersebut maka penelitian ini bermaksud memodifikasi bilah HLIFT dan NACA dengan cara memvariasi ketebalan,kelengkungan camber serta panjang bilah diharapkan hasil dari memodifikasi bilah ini dapat menghasilkan varian baru dari untuk turbin arus tipe vertical axis. Penelitian ini bermaksud mengetahui performansi modifikasi bilah HLIFT maupun NACA berdasarkan variasi ketebalan,camber dan panjang bilah tersebut dengan menggunakan metode numerik yaitu Computational Fluid Dynamics( CFD . Hasil simulasi numerik menunjukkan performansi terbaik untuk satu foil HLIFT ditunjukkan pada modifikasi kelengkungan camber ke empat nilai CL,CD serta rasio CL/CD dan untuk NACA 0018 ditunjukkan oleh tunggal ditunjukkan pada modifikasi penambahan panjang chord ketiga yaitu panjang chord + 15%. Setelah modifikasi Torsi poros
Design Optimization of Piles for Offshore Wind Turbine Jacket Foundations
DEFF Research Database (Denmark)
Sandal, Kasper; Zania, Varvara
Numerical methods can optimize the pile design. The aim of this study is to automatically design optimal piles for offshore wind turbine jacket foundations (Figure 1). Pile mass is minimized with constraints on axial and lateral capacity. Results indicate that accurate knowledge about soil...
Probabilistic Fatigue Design of Composite Material for Wind Turbine Blades
DEFF Research Database (Denmark)
Toft, Henrik Stensgaard; Sørensen, John Dalsgaard
2011-01-01
In the present paper a probabilistic design approach to fatigue design of wind turbine blades is presented. The physical uncertainty on the fatigue strength for composite material is estimated using public available fatigue tests. Further, the model uncertainty on Miner rule for damage accumulation...
Reliability-based design of wind turbine blades
DEFF Research Database (Denmark)
Toft, Henrik Stensgaard; Sørensen, John Dalsgaard
2011-01-01
Reliability-based design of wind turbine blades requires identification of the important failure modes/limit states along with stochastic models for the uncertainties and methods for estimating the reliability. In the present paper it is described how reliability-based design can be applied to wi...
Design and development of direct drive generators for wind turbines
International Nuclear Information System (INIS)
Nagrial, M.; Hellany, A.
2011-01-01
This paper discusses various options for wind generators in modern wind turbines without any gearbox. Various power converter configurations are also discussed. The design of modern and efficient variable speed generators is also proposed. The design of a novel permanent magnet generator is also given. (author)
Design of a New Foundation for Offshore Wind Turbines
DEFF Research Database (Denmark)
Ibsen, Lars Bo; Brincker, Rune
2004-01-01
was installed at the test field in Frederikshavn in late 2003, with a 3 MW wind turbine in normal operation. The R&D work is continued the complete the bucket concept and having the design standards for the construction and installation methodologies recognised. The design saves about half of the steel weight...... as compared to a traditional pile foundation, it is much easier to install and it can easily be removed when the wind turbine is taken down. However, the new design is suffering from uncertainties in the accumulated fatigue in the both the steel structure and the surrounding earth material. Therefore an on......The gravitation platform and the monopile have in the previous major offshore wind turbine projects been dominating. A four-year research and development project has proven the bucket foundation to be feasible in suitable soil condition in water depth from near shore to app. 40 meters. A prototype...
Farisco, Federica
2016-01-01
Thermo-acoustic instabilities in high power density gas turbine engines need to be understood to avoid unexpected shutdown events. This dissertation is focused on the combustor-turbine interaction for acoustic waves. The first part of the study is based on the acoustic reflection coefficient
Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade
Energy Technology Data Exchange (ETDEWEB)
Bir, G. S.; Lawson, M. J.; Li, Y.
2011-10-01
This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.
Brittle Materials Design, High Temperature Gas Turbine
1977-08-01
Radiation Pyrometer Mounting in the Hot Spin Rig 47 Showing Tempeiature Measurement Locations on a Test Rotor Figure 3.23 Stainless Steel Insulator...analysis in hot pressed Si3N4 (3,4,6). • Acoustic emission was applied for the detection of crack propagation and the onset of catastrophic failure in...scanning with acoustic emission (4). • X-ray radiography was applied for the detection of internal defects in turbine ceramic components (2,3.4,5)1
Axial Turbine Aerodynamic Design of Small Heavy-Duty Gas Turbines
International Nuclear Information System (INIS)
Kim, Joung Seok; Lee, Wu Sang; Ryu, Je Wook
2013-01-01
This study describes the aerodynamic design procedure for the axial turbines of a small heavy-duty gas turbine engine being developed by Docosan Heavy Industries. The design procedure mainly consists of three parts: namely, flow path design, airfoil design, and 3a performance calculation. To design the optimized flow path, through flow calculations as well as the loss estimation are widely used to evaluate the effect of geometric variables, for example, shape of meridional plane, mean radius, blades axial gap, and had angle. During the airfoil design procedure, the optimum number of blades is calculated by empirical correlations based on the in/outlet flow angles, and then 2a airfoil planar sections are designed carefully, followed by 2a B2 NS calculations. The designed planar sections are stacked along the span wise direction, leading to a 3a surfaced airfoil shape. To consider the 3a effect on turbine performance, 3a multistage Euler calculation, single row, and multistage NS calculations are performed
ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report
Energy Technology Data Exchange (ETDEWEB)
Albrecht H. Mayer
2000-07-15
Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.
ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT; FINAL
International Nuclear Information System (INIS)
Albrecht H. Mayer
2000-01-01
Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions
Baseline Design of a Hurricane-Resilient Wind Turbine (Poster)
Energy Technology Data Exchange (ETDEWEB)
Damiani, R.; Robertson, A.; Schreck, S.; Maples, B.; Anderson, M.; Finucane, Z.; Raina, A.
2014-10-01
Under U.S. Department of Energy-sponsored research FOA 415, the National Renewable Energy Laboratory led a team of research groups to produce a complete design of a large wind turbine system to be deployable in the western Gulf of Mexico region. As such, the turbine and its support structure would be subjected to hurricane-loading conditions. Among the goals of this research was the exploration of advanced and innovative configurations that would help decrease the levelized cost of energy (LCOE) of the design, and the expansion of the basic IEC design load cases (DLCs) to include hurricane environmental conditions. The wind turbine chosen was a three-bladed, downwind, direct-drive, 10-MW rated machine. The rotor blade was optimized based on an IEC load suite analysis. The drivetrain and nacelle components were scaled up from a smaller sized turbine using industry best practices. The tubular steel tower was sized using ultimate load values derived from the rotor optimization analysis. The substructure is an innovative battered and raked jacket structure. The innovative turbine has also been modeled within an aero-servo-hydro-elastic tool, and future papers will discuss results of the dynamic response analysis for select DLCs. Although multiple design iterations could not be performed because of limited resources in this study, and are left to future research, the obtained data will offer a good indication of the expected LCOE for large offshore wind turbines to be deployed in subtropical U.S. waters, and the impact design innovations can have on this value.
Vinci, Samuel, J.
2012-01-01
This report is the third part of a three-part final report of research performed under an NRA cooperative Agreement contract. The first part was published as NASA/CR-2012-217415. The second part was published as NASA/CR-2012-217416. The study of the very high lift low-pressure turbine airfoil L1A in the presence of unsteady wakes was performed computationally and compared against experimental results. The experiments were conducted in a low speed wind tunnel under high (4.9%) and then low (0.6%) freestream turbulence intensity for Reynolds number equal to 25,000 and 50,000. The experimental and computational data have shown that in cases without wakes, the boundary layer separated without reattachment. The CFD was done with LES and URANS utilizing the finite-volume code ANSYS Fluent (ANSYS, Inc.) under the same freestream turbulence and Reynolds number conditions as the experiment but only at a rod to blade spacing of 1. With wakes, separation was largely suppressed, particularly if the wake passing frequency was sufficiently high. This was validated in the 3D CFD efforts by comparing the experimental results for the pressure coefficients and velocity profiles, which were reasonable for all cases examined. The 2D CFD efforts failed to capture the three dimensionality effects of the wake and thus were less consistent with the experimental data. The effect of the freestream turbulence intensity levels also showed a little more consistency with the experimental data at higher intensities when compared with the low intensity cases. Additional cases with higher wake passing frequencies which were not run experimentally were simulated. The results showed that an initial 25% increase from the experimental wake passing greatly reduced the size of the separation bubble, nearly completely suppressing it.
Gas turbine exhaust system silencing design
International Nuclear Information System (INIS)
Ozgur, D.
1991-01-01
Gas turbines are the preferred prime mover in many applications because of their high efficiency, fuel flexibility, and low environmental impact. A typical mid-size machine might have a power rating of 80 MW, a flow of about 1000 kg/hr, and an exhaust temperature of over 500C. The most powerful single source of noise is generally the exhaust, which may generate over a kilowatt of acoustic energy. This paper reports that there are two important ways in which exhaust systems can radiate noise. The first is through the discharge of the exhaust duct, with the exhaust gas. Because of the large quantity of hot gas, the duct exit is always oriented vertically; it may be fairly high in the air in order to promote dispersion of the exhaust plume. This source is almost always attenuated by means of a silencer located somewhere in the ductwork. The second source of noise is often called breakout; it is the radiation of exhaust noise through the walls of the ducting. Breakout is most important for those sections of the exhaust duct which lie upstream of the silencer, where sound levels inside the ducting are highest. Both exhaust duct exit noise and breakout noise can be calculated from the sound power level of the gas turbine exhaust and the sound transmission loss (TL) of the silencer and ducting
Energy Technology Data Exchange (ETDEWEB)
Fantozzi, Francesco; Laranci, Paolo; D' Alessandro, Bruno [University of Perugia (DII/UNIPG) (Italy). Dept. of Industrial Engineering], Emails: fanto@unipg.it, paolo.laranci@unipg.it, dalessandro@bio-net.it
2009-07-01
Micro gas turbines (MGT) can be profitably used for the production of distributed energy (DE), with the possibility to use gaseous fuels with low BTU derived from biomass or waste through the pyrolysis or gasification processes. These synthesis gases (SG) show significant differences with respect to natural gas (NG), in terms of composition, calorific value, content of hydrogen, tar and particulate matter content; such differences can be turn into problems of ignition, instability burning, difficulties in controlling the emissions and fouling. CFD analysis of the combustion process is an essential tool for identifying the main critical arising in using these gases, in order to modify existing geometries and to develop new generation of combustor for use with low BTU gases. This paper describes the activities of experimental and numerical analysis carried out to study the combustion process occurring inside an existing annular Rich-Quench-Lean (RQL) Combustion Chamber (CC) of a 80 kW MGT. In the paper some results of a CFD study of the combustion process performed with an original developed chemical models are reported in terms of temperature and velocity distributions inside the CC and in terms of compositions of turbine inlet gas and of its thermodynamic parameters (mass flow, temperature, pressure). An evaluation of pollutant emissions of CO, CO{sub 2} and NOx and a comparison with the available experimental data relating to the case of combustion of NG is also provided in the paper. Moreover, the carried out investigation concerns the case of operation with a SG fuel derived from biomass in an Integrated Pyrolysis Regenerated Plant (IPRP). (author)
Wet steam turbines for nuclear generating stations -design and operating experience
International Nuclear Information System (INIS)
Usher, J.
1977-01-01
Lecture to the Institution of Nuclear Engineers, 11 Jan. 1977. The object of this lecture was to give an account of some design features of large wet steam turbines and to show by describing some recent operational experience how their design concepts were fulfilled. Headings are as follows: effects of wet steam cycle on turbine layout and operation (H.P. turbine, L.P. turbine); turbine control and operation; water separators; and steam reheaters. (U.K.)
Simulation of gas turbines operating in off-design condition
Energy Technology Data Exchange (ETDEWEB)
Walter, Arnaldo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: walter@fem.unicamp.br
2000-07-01
In many countries thermal power plants based on gas turbines have been the main option for new investment into the electric system due to their relatively high efficiency and low capital cost. Cogeneration systems based on gas turbines have also been an important option for the electric industry. Feasibility studies of power plants based on gas turbine should consider the effect of atmospheric conditions and part-load operation on the machine performance. Doing this, an off-design procedure is required. A G T off-design simulation procedure is described in this paper. Ruston R M was used to validate the simulation procedure that, general sense, presents deviations lower than 2.5% in comparison to manufacturer's data. (author)
Selection of References in Wind Turbine Model Predictive Control Design
DEFF Research Database (Denmark)
Odgaard, Peter Fogh; Hovgaard, Tobias
2015-01-01
a model predictive controller for a wind turbine. One of the important aspects for a tracking control problem is how to setup the optimal reference tracking problem, as it might be relevant to track, e.g., the three concurrent references: optimal pitch angle, optimal rotational speed, and optimal power......Lowering the cost of energy is one of the major focus areas in the wind turbine industry. Recent research has indicated that wind turbine controllers based on model predictive control methods can be useful in obtaining this objective. A number of design considerations have to be made when designing....... The importance if the individual references differ depending in particular on the wind speed. In this paper we investigate the performance of a reference tracking model predictive controller with two different setups of the used optimal reference signals. The controllers are evaluated using an industrial high...
International Nuclear Information System (INIS)
Asgari, Behrad; Amani, Ehsan
2017-01-01
Highlights: •An Eulerian-Lagrangian model for the fuel spray injection is evaluated. •The drop breakup, spray-vortex interaction, and wall-wetting play the key roles. •The injection location and direction are the most important parameters. •The best design candidates are proposed using multi-objective optimizations. •A large central perpendicular injection with high co-rotating swirls is optimal. -- Abstract: The main goal of this research is to investigate the effects of fuel injection strategy on the performance of the premixing chamber of modern Dry-Low-Emission (DLE) Gas-Turbine (GT) combustors. Here, an Eulerian-Lagrangian model for multi-phase multi-component flows is evaluated and used to investigate the effects of different fuel spray design parameters, including the injection location, direction, mass-flow-rate partitioning, and flow Swirl number, on the performance of the premixing chamber. The analysis is enriched by multi-objective optimizations accounting for several goals, including the evaporation efficiency, mixture stratification, entropy generation, and flow recirculation. It is observed that the droplet breakup, spray-vortex interactions, and wall-wetting have significant influences on the performance objectives while the droplet residence time effect is minor. Among the design parameters, the injection location and direction have a profound impact on the droplet breakup which predominately controls the evaporation efficiency. In addition, the interactions between the spray and the two swirling vertices inside the chamber strongly affect the mixture stratification (uniformity), e.g. the location and direction of the injection should not be chosen such that a large proportion of fuel droplets are trapped in the shear layer between the two vortices (otherwise the evaporation efficiency drops significantly) or trapped in the strong outer swirling vortex (if large mixture non-uniformity should be avoided). Finally, the best designs meeting
Implicit geometric representations for optimal design of gas turbine blades
International Nuclear Information System (INIS)
Mansour, T.; Ghaly, W.
2004-01-01
Shape optimization requires a proper geometric representation of the blade profile; the parameters of such a representation are usually taken as design variables in the optimization process. This implies that the model must possess three specific features: flexibility, efficiency, and accuracy. For the specific task of aerodynamic optimization for turbine blades, it is critical to have flexibility in both the global and local design spaces in order to obtain a successful optimization. This work is concerned with the development of two geometric representations of turbine blade profiles that are appropriate for aerodynamic optimization: the Modified Rapid Axial Turbine Design (MRATD) model where the blade is represented by five low-order curves that satisfy eleven designer parameters; this model is suitable for a global search of the design space. The second model is NURBS parameterization of the blade profile that can be used for a local refinement. The two models are presented and are assessed for flexibility and accuracy when representing several typical turbine blade profiles. The models will be further discussed in terms of curve smoothness and blade shape representation with a multi-NURBS curve versus one curve and its effect on the flow field, in particular the pressure distribution along the blade surfaces, will be elaborated. (author)
Preliminary Design Optimization For A Supersonic Turbine For Rocket Propulsion
Papila, Nilay; Shyy, Wei; Griffin, Lisa; Huber, Frank; Tran, Ken; McConnaughey, Helen (Technical Monitor)
2000-01-01
In this study, we present a method for optimizing, at the preliminary design level, a supersonic turbine for rocket propulsion system application. Single-, two- and three-stage turbines are considered with the number of design variables increasing from 6 to 11 then to 15, in accordance with the number of stages. Due to its global nature and flexibility in handling different types of information, the response surface methodology (RSM) is applied in the present study. A major goal of the present Optimization effort is to balance the desire of maximizing aerodynamic performance and minimizing weight. To ascertain required predictive capability of the RSM, a two-level domain refinement approach has been adopted. The accuracy of the predicted optimal design points based on this strategy is shown to he satisfactory. Our investigation indicates that the efficiency rises quickly from single stage to 2 stages but that the increase is much less pronounced with 3 stages. A 1-stage turbine performs poorly under the engine balance boundary condition. A portion of fluid kinetic energy is lost at the turbine discharge of the 1-stage design due to high stage pressure ratio and high-energy content, mostly hydrogen, of the working fluid. Regarding the optimization technique, issues related to the design of experiments (DOE) has also been investigated. It is demonstrated that the criteria for selecting the data base exhibit significant impact on the efficiency and effectiveness of the construction of the response surface.
Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer
Energy Technology Data Exchange (ETDEWEB)
Fleeter, S.; Lawless, P.B. [Purdue Univ., West Lafayette, IN (United States)
1995-10-01
The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.
Computational fluid dynamics (CFD) in the design of a water-jet-drive system
Garcia, Roberto
1994-01-01
NASA/Marshall Space Flight Center (MSFC) has an ongoing effort to transfer to industry the technologies developed at MSFC for rocket propulsion systems. The Technology Utilization (TU) Office at MSFC promotes these efforts and accepts requests for assistance from industry. One such solicitation involves a request from North American Marine Jet, Inc. (NAMJ) for assistance in the design of a water-jet-drive system to fill a gap in NAMJ's product line. NAMJ provided MSFC with a baseline axial flow impeller design as well as the relevant working parameters (rpm, flow rate, etc.). This baseline design was analyzed using CFD, and significant deficiencies identified. Four additional analyses were performed involving MSFC changes to the geometric and operational parameters of the baseline case. Subsequently, the impeller was redesigned by NAMJ and analyzed by MSFC. This new configuration performs significantly better than the baseline design. Similar cooperative activities are planned for the design of the jet-drive inlet.
Design of large Francis turbine using optimal methods
Flores, E.; Bornard, L.; Tomas, L.; Liu, J.; Couston, M.
2012-11-01
Among a high number of Francis turbine references all over the world, covering the whole market range of heads, Alstom has especially been involved in the development and equipment of the largest power plants in the world : Three Gorges (China -32×767 MW - 61 to 113 m), Itaipu (Brazil- 20x750 MW - 98.7m to 127m) and Xiangjiaba (China - 8x812 MW - 82.5m to 113.6m - in erection). Many new projects are under study to equip new power plants with Francis turbines in order to answer an increasing demand of renewable energy. In this context, Alstom Hydro is carrying out many developments to answer those needs, especially for jumbo units such the planned 1GW type units in China. The turbine design for such units requires specific care by using the state of the art in computation methods and the latest technologies in model testing as well as the maximum feedback from operation of Jumbo plants already in operation. We present in this paper how a large Francis turbine can be designed using specific design methods, including the global and local optimization methods. The design of the spiral case, the tandem cascade profiles, the runner and the draft tube are designed with optimization loops involving a blade design tool, an automatic meshing software and a Navier-Stokes solver, piloted by a genetic algorithm. These automated optimization methods, presented in different papers over the last decade, are nowadays widely used, thanks to the growing computation capacity of the HPC clusters: the intensive use of such optimization methods at the turbine design stage allows to reach very high level of performances, while the hydraulic flow characteristics are carefully studied over the whole water passage to avoid any unexpected hydraulic phenomena.
Design of large Francis turbine using optimal methods
International Nuclear Information System (INIS)
Flores, E; Bornard, L; Tomas, L; Couston, M; Liu, J
2012-01-01
Among a high number of Francis turbine references all over the world, covering the whole market range of heads, Alstom has especially been involved in the development and equipment of the largest power plants in the world : Three Gorges (China −32×767 MW - 61 to 113 m), Itaipu (Brazil- 20x750 MW - 98.7m to 127m) and Xiangjiaba (China - 8x812 MW - 82.5m to 113.6m - in erection). Many new projects are under study to equip new power plants with Francis turbines in order to answer an increasing demand of renewable energy. In this context, Alstom Hydro is carrying out many developments to answer those needs, especially for jumbo units such the planned 1GW type units in China. The turbine design for such units requires specific care by using the state of the art in computation methods and the latest technologies in model testing as well as the maximum feedback from operation of Jumbo plants already in operation. We present in this paper how a large Francis turbine can be designed using specific design methods, including the global and local optimization methods. The design of the spiral case, the tandem cascade profiles, the runner and the draft tube are designed with optimization loops involving a blade design tool, an automatic meshing software and a Navier-Stokes solver, piloted by a genetic algorithm. These automated optimization methods, presented in different papers over the last decade, are nowadays widely used, thanks to the growing computation capacity of the HPC clusters: the intensive use of such optimization methods at the turbine design stage allows to reach very high level of performances, while the hydraulic flow characteristics are carefully studied over the whole water passage to avoid any unexpected hydraulic phenomena.
Design considerations: gas turbines for electric power generation
International Nuclear Information System (INIS)
Moon, D.M.
1979-01-01
The gas turbine represents one of the most sophisticated designs from the standpoint of time dependent deformation behavior. The large size of the equipment, which limits the amount of full scale testing, together with the demanding performance requirements and high level of reliability desired places a high degree of emphasis on the high temperature deformation design process. As an example of the various design considerations used in this equipment, a brief overview of the turbine will be given, highlighting the materials, stress, temperatures, and load history experienced by the major components. Particular attention will then be focused on the vane segment design considerations. This component is not only structurally complicated, but experiences steep temperature gradients imposed by internal cooling and large temperature transients during cyclic duty operation which have to be addressed in the design procedure. Based on this discussion the limitations of the current design procedures will be highlighted and the areas requiring additional research inputs will be discussed
Directory of Open Access Journals (Sweden)
Hui Li
2017-01-01
Full Text Available Centrifugal turbine which has less land occupation, simple structure, and high aerodynamic efficiency is suitable to be used as small to medium size steam turbines or waste heat recovery plant. In this paper, one-dimensional design of a multistage centrifugal steam turbine was performed by using in-house one-dimensional aerodynamic design program. In addition, three-dimensional numerical simulation was also performed in order to analyze design and off-design aerodynamic performance of the proposed centrifugal steam turbine. The results exhibit reasonable flow field and smooth streamline; the aerodynamic performance of the designed turbine meets our initial expectations. These results indicate that the one-dimensional aerodynamic design program is reliable and effective. The off-design aerodynamic performance of centrifugal steam turbine was analyzed, and the results show that the mass flow increases with the decrease of the pressure ratio at a constant speed, until the critical mass flow is reached. The efficiency curve with the pressure ratio has an optimum efficiency point. And the pressure ratio of the optimum efficiency agrees well with that of the one-dimensional design. The shaft power decreases as the pressure ratio increases at a constant speed. Overall, the centrifugal turbine has a wide range and good off-design aerodynamic performance.
Design and numerical study of turbines operating with MDM as working fluid
Klonowicz, Piotr; Surwiło, Jan; Witanowski, Łukasz; Suchocki, Tomasz K.; Kozanecki, Zbigniew; Lampart, Piotr
2015-12-01
Design processes and numerical simulations have been presented for a few cases of turbines designated to work in ORC systems. The chosen working fluid isMDM. The considered design configurations include single stage centripetal reaction and centrifugal impulse turbines as well as multistage axial turbines. The power outputs vary from about 75 kW to 1 MW. The flow in single stage turbines is supersonic and requires special design of blades. The internal efficiencies of these configurations exceed 80% which is considered high for these type of machines. The efficiency of axial turbines exceed 90%. Possible turbine optimization directions have been also outlined in the work.
Thermoplastic Composite Wind Turbine Blades : An Integrated Design Approach
Joncas, S.
2010-01-01
This thesis proposes a new structural design concept for future large wind turbine blades based on fully recyclable thermoplastic composites (TPC). With respect to material properties, cost and processing, reactively processed anionic polyamide-6 (APA-6) has been identified as the most promising
Aeroelastic multidisciplinary design optimization of a swept wind turbine blade
DEFF Research Database (Denmark)
Pavese, Christian; Tibaldi, Carlo; Zahle, Frederik
2017-01-01
Mitigating loads on a wind turbine rotor can reduce the cost of energy. Sweeping blades produces a structural coupling between flapwise bending and torsion, which can be used for load alleviation purposes. A multidisciplinary design optimization (MDO) problem is formulated including the blade sweep...
Modeling of uncertainties for wind turbine blade design
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Toft, Henrik Stensgaard
2014-01-01
Wind turbine blades are designed by a combination of tests and numerical calculations using finite element models of the blade. The blades are typically composite structures with laminates of glass-fiber and/or carbon-fibers glued together by a matrix material. This paper presents a framework...
Optimal Excitation Controller Design for Wind Turbine Generator
Directory of Open Access Journals (Sweden)
A. K. Boglou
2011-01-01
Full Text Available An optimal excitation controller design based on multirate-output controllers (MROCs having a multirate sampling mechanismwith different sampling period in each measured output of the system is presented. The proposed H∞ -control techniqueis applied to the discrete linear open-loop system model which represents a wind turbine generator supplying an infinite busthrough a transmission line.
Design of wind turbine airfoils based on maximum power coefficient
DEFF Research Database (Denmark)
Cheng, Jiangtao; Chen, Jin; Cheng, Jiangtao
2010-01-01
Based on the blade element momentum (BEM) theory, the power coefficient of a wind turbine can be expressed in function of local tip speed ratio and lift-drag ratio. By taking the power coefficient in a predefined range of angle of attack as the final design objective and combining with an airfoil...
Powering the Future: A Wind Turbine Design Challenge
Pries, Caitlin Hicks; Hughes, Julie
2011-01-01
Nothing brings out the best in eighth-grade physical science students quite like an engineering challenge. The wind turbine design challenge described in this article has proved to be a favorite among students with its focus on teamwork and creativity and its (almost) sneaky reinforcement of numerous physics concepts. For this activity, pairs of…
Computational fluid dynamics (CFD) simulation of a newly designed passive particle sampler.
Sajjadi, H; Tavakoli, B; Ahmadi, G; Dhaniyala, S; Harner, T; Holsen, T M
2016-07-01
In this work a series of computational fluid dynamics (CFD) simulations were performed to predict the deposition of particles on a newly designed passive dry deposition (Pas-DD) sampler. The sampler uses a parallel plate design and a conventional polyurethane foam (PUF) disk as the deposition surface. The deposition of particles with sizes between 0.5 and 10 μm was investigated for two different geometries of the Pas-DD sampler for different wind speeds and various angles of attack. To evaluate the mean flow field, the k-ɛ turbulence model was used and turbulent fluctuating velocities were generated using the discrete random walk (DRW) model. The CFD software ANSYS-FLUENT was used for performing the numerical simulations. It was found that the deposition velocity increased with particle size or wind speed. The modeled deposition velocities were in general agreement with the experimental measurements and they increased when flow entered the sampler with a non-zero angle of attack. The particle-size dependent deposition velocity was also dependent on the geometry of the leading edge of the sampler; deposition velocities were more dependent on particle size and wind speeds for the sampler without the bend in the leading edge of the deposition plate, compared to a flat plate design. Foam roughness was also found to have a small impact on particle deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimization and Reliability Problems in Structural Design of Wind Turbines
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard
2007-01-01
are discussed. Limit state equations are presented for fatigue limit states and for ultimate limit states with extreme wind load, and illustrated by bending failure. Illustrative examples are presented, and as a part of the results optimal reliability levels are obtained which corresponds to an annual...... reliability index equal to 3. An example with fatigue failure indicates that the reliability level is almost the same for single wind turbines and for wind turbines in wind farms if the wake effects are modeled equivalently in the design equation and the limit state equation....
Conceptual design of helium gas turbine for MHTGR-GT
International Nuclear Information System (INIS)
Matsuo, E.; Tsutsumi, M.; Ogata, K.; Nomura, S.
1996-01-01
Conceptual designs of the direct-cycle helium gas turbine for a practical unit (450 MWt) and an experimental unit (1200kWt) of MHTGR were conducted and the results as shown below were obtained. The power conversion vessel for this practical unit can further be downsized to an outside diameter of 7.4m and a height of 22m as compared with the conventional design examples. Comparison of the conceptual designs of helium gas turbines using single-shaft type employing the axial-flow compressor and twin-shaft type employing the centrifugal compressor shows that the former provides advantages in terms of structure and control designs whereas the latter offers a higher efficiency. In order to determine which of them should be selected, a further study to investigate various aspects of safety features and startup characteristics will be needed. Either of the two types can provide a cycle efficiency of 46 to 48%. The third mode natural frequencies of the twin-shart type's low-pressure rotational shaft and the single shaft type are below the designed rotational speed, but their vibrational controls are made available using the magnetic bearing system. Elevation of the natural frequency for the twin-shaft type would be possible by altering the arrangements of its shafting configuration. As compared with the earlier conceptual designs, the overall systems configuration can be made simpler and more compact; five stages of turbines for the single-shaft type and seven stages of turbines for the twin-shaft type employing one shaft for the low-pressure compressor and the power turbine and; 26 stages of compressors for the axial-flow type with the single shaft system and five stages of compressors for the centrifugal type with the twin-shaft system. 9 refs, 12 figs, 4 tabs
Norton, Tomás; Sun, Da-Wen; Grant, Jim; Fallon, Richard; Dodd, Vincent
2007-09-01
The application of computational fluid dynamics (CFD) in the agricultural industry is becoming ever more important. Over the years, the versatility, accuracy and user-friendliness offered by CFD has led to its increased take-up by the agricultural engineering community. Now CFD is regularly employed to solve environmental problems of greenhouses and animal production facilities. However, due to a combination of increased computer efficacy and advanced numerical techniques, the realism of these simulations has only been enhanced in recent years. This study provides a state-of-the-art review of CFD, its current applications in the design of ventilation systems for agricultural production systems, and the outstanding challenging issues that confront CFD modellers. The current status of greenhouse CFD modelling was found to be at a higher standard than that of animal housing, owing to the incorporation of user-defined routines that simulate crop biological responses as a function of local environmental conditions. Nevertheless, the most recent animal housing simulations have addressed this issue and in turn have become more physically realistic.
CFD computations of wind turbine blade loads during standstill operation KNOW-BLADE, Task 3.1 report
DEFF Research Database (Denmark)
Sørensen, Niels N.; Johansen, Jeppe; Conway, S.
2004-01-01
Two rotors blades are computed during standstill conditions, using two different Navier-Stokes solvers EDGE and EllipSys3D. Both steady and transient linear k-? RANS turbulence models are applied, along with steady non-linear RANS and transient DESsimulations. The STORK 5.0 WPX blade is computed...... be explained by the difference in the applied turbulence models and the fact that the results from one of the solvers are presented as instantaneous valuesinstead of averaged values. The comparison of steady and transient RANS results show that the gain of using time true computations are very limited...... a three different tip pitch angles, 0, 26 and 50 degrees tip pitch angle, while the NREL Phase-VI blade is computed at 90 degrees tip pitch angle. Generally the CFD codes reproduce the measured trends quitewell and the two involved CFD codes give very similar results. The discrepancies observed can...
Oller Aramayo, S. A.; Nallim, L. G.; Oller, S.
2013-12-01
This paper shows an integrated structural design optimization of a composite rotor-hydrofoil of a water current turbine by means the finite elements method (FEM), using a Serial/Parallel mixing theory (Rastellini et al. Comput. Struct. 86:879-896, 2008, Martinez et al., 2007, Martinez and Oller Arch. Comput. Methods. 16(4):357-397, 2009, Martinez et al. Compos. Part B Eng. 42(2011):134-144, 2010) coupled with a fluid-dynamic formulation and multi-objective optimization algorithm (Gen and Cheng 1997, Lee et al. Compos. Struct. 99:181-192, 2013, Lee et al. Compos. Struct. 94(3):1087-1096, 2012). The composite hydrofoil of the turbine rotor has been design using a reinforced laminate composites, taking into account the optimization of the carbon fiber orientation to obtain the maximum strength and lower rotational-inertia. Also, these results have been compared with a steel hydrofoil remarking the different performance on both structures. The mechanical and geometrical parameters involved in the design of this fiber-reinforced composite material are the fiber orientation, number of layers, stacking sequence and laminate thickness. Water pressure in the rotor of the turbine is obtained from a coupled fluid-dynamic simulation (CFD), whose detail can be found in the reference Oller et al. (2012). The main purpose of this paper is to achieve a very low inertia rotor minimizing the start-stop effect, because it is applied in axial water flow turbine currently in design by the authors, in which is important to take the maximum advantage of the kinetic energy. The FEM simulation codes are engineered by CIMNE (International Center for Numerical Method in Engineering, Barcelona, Spain), COMPack for the solids problem application, KRATOS for fluid dynamic application and RMOP for the structural optimization. To validate the procedure here presented, many turbine rotors made of composite materials are analyzed and three of them are compared with the steel one.
Integration of rocket turbine design and analysis through computer graphics
Hsu, Wayne; Boynton, Jim
1988-01-01
An interactive approach with engineering computer graphics is used to integrate the design and analysis processes of a rocket engine turbine into a progressive and iterative design procedure. The processes are interconnected through pre- and postprocessors. The graphics are used to generate the blade profiles, their stacking, finite element generation, and analysis presentation through color graphics. Steps of the design process discussed include pitch-line design, axisymmetric hub-to-tip meridional design, and quasi-three-dimensional analysis. The viscous two- and three-dimensional analysis codes are executed after acceptable designs are achieved and estimates of initial losses are confirmed.
Optimization of Design of Steam Turbine Exhaust Conduits
Directory of Open Access Journals (Sweden)
A. S. Goldin
2014-01-01
Full Text Available Improving effectiveness turbine was and remains a key issue for today. In order to improve the efficiency of the turbine is necessary to reduce losses in the steam turbine exhaust conduit.This paper presents the design optimization exhaust conduit steam turbine K-27-2.9 produced by JSC «KTW» at the design stage. The aims of optimizing the design were: decreasing hydraulic resistance of the conduit, reduction of non-uniformity of the flow at the outlet of the conduit, equalizing steam flow ahead of the condenser tube bundle.The conduit models were made and flows in it were simulated in environment of the Solid Works and its application COSMOS Flo Works.As the initial conduit model was selected exhaust conduit of turbine PT-25/34-3.4 produced by JSC «KTW». Was obtained by the calculated velocity field at the outlet of the conduit. The analysis of the calculation results revealed the necessity of changes to the initial design of the conduit. The changes were accompanied by calculating currents flow in the conduit, and assessed the impact of design changes on the nature of the course. Further transformation of the construction of the conduit was held on the results of these calculations. Construction changes are not touched by the outer geometry of the conduit, and were introduced to meet technological.According to calculation results, conclusions were drawn and selected three versions of the conduit.Given are the research results for the initial conduit model and modified design versions. In order to evaluate the flow degree of irregularity the momentum factor (Bussinesku factor for outlet crosssection of the selected conduit design version. Analysis of the research results made it possible to determine optimum design of the exhaust conduit.Introducing the suggested alterations in the conduit design will result in improvement of heat exchange in the condenser, an increase in reliability of the tube bundle operation, a decrease in noise and
Summary of tower designs for large horizontal axis wind turbines
Frederick, G. R.; Savino, J. M.
1986-01-01
Towers for large horizontal axis wind turbines, machines with a rotor axis height above 30 meters and rated at more than 500 kW, have varied in configuration, materials of construction, type of construction, height, and stiffness. For example, the U.S. large HAWTs have utilized steel truss type towers and free-standing steel cylindrical towers. In Europe, the trend has been to use only free-standing and guyed cylindrical towers, but both steel and reinforced concrete have been used as materials of construction. These variations in materials of construction and type of construction reflect different engineering approaches to the design of cost effective towers for large HAWTs. Tower designs are the NASA/DOE Mod-5B presently being fabricated. Design goals and requirements that influence tower configuration, height and materials are discussed. In particular, experiences with United States large wind turbine towers are elucidated. Finally, current trends in tower designs for large HAWTs are highlighted.
Simulation platform to model, optimize and design wind turbines
Energy Technology Data Exchange (ETDEWEB)
Iov, F.; Hansen, A.D.; Soerensen, P.; Blaabjerg, F.
2004-03-01
This report is a general overview of the results obtained in the project 'Electrical Design and Control. Simulation Platform to Model, Optimize and Design Wind Turbines'. The motivation for this research project is the ever-increasing wind energy penetration into the power network. Therefore, the project has the main goal to create a model database in different simulation tools for a system optimization of the wind turbine systems. Using this model database a simultaneous optimization of the aerodynamic, mechanical, electrical and control systems over the whole range of wind speeds and grid characteristics can be achieved. The report is structured in six chapters. First, the background of this project and the main goals as well as the structure of the simulation platform is given. The main topologies for wind turbines, which have been taken into account during the project, are briefly presented. Then, the considered simulation tools namely: HAWC, DIgSILENT, Saber and Matlab/Simulink have been used in this simulation platform are described. The focus here is on the modelling and simulation time scale aspects. The abilities of these tools are complementary and they can together cover all the modelling aspects of the wind turbines e.g. mechanical loads, power quality, switching, control and grid faults. However, other simulation packages e.g PSCAD/EMTDC can easily be added in the simulation platform. New models and new control algorithms for wind turbine systems have been developed and tested in these tools. All these models are collected in dedicated libraries in Matlab/Simulink as well as in Saber. Some simulation results from the considered tools are presented for MW wind turbines. These simulation results focuses on fixed-speed and variable speed/pitch wind turbines. A good agreement with the real behaviour of these systems is obtained for each simulation tool. These models can easily be extended to model different kinds of wind turbines or large wind
Optimization of hydraulic turbine diffuser
Directory of Open Access Journals (Sweden)
Moravec Prokop
2016-01-01
Full Text Available Hydraulic turbine diffuser recovers pressure energy from residual kinetic energy on turbine runner outlet. Efficiency of this process is especially important for high specific speed turbines, where almost 50% of available head is utilized within diffuser. Magnitude of the coefficient of pressure recovery can be significantly influenced by designing its proper shape. Present paper focuses on mathematical shape optimization method coupled with CFD. First method is based on direct search Nelder-Mead algorithm, while the second method employs adjoint solver and morphing. Results obtained with both methods are discussed and their advantages/disadvantages summarized.
The TALL-3D facility design and commissioning tests for validation of coupled STH and CFD codes
Energy Technology Data Exchange (ETDEWEB)
Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Jeltsov, Marti, E-mail: marti@safety.sci.kth.se; Kööp, Kaspar, E-mail: kaspar@safety.sci.kth.se; Karbojian, Aram, E-mail: karbojan@kth.se; Villanueva, Walter, E-mail: walter@safety.sci.kth.se; Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se
2015-08-15
Highlights: • Design of a heavy liquid thermal-hydraulic loop for CFD/STH code validation. • Description of the loop instrumentation and assessment of measurement error. • Experimental data from forced to natural circulation transient. - Abstract: Application of coupled CFD (Computational Fluid Dynamics) and STH (System Thermal Hydraulics) codes is a prerequisite for computationally affordable and sufficiently accurate prediction of thermal-hydraulics of complex systems. Coupled STH and CFD codes require validation for understanding and quantification of the sources of uncertainties in the code prediction. TALL-3D is a liquid Lead Bismuth Eutectic (LBE) loop developed according to the requirements for the experimental data for validation of coupled STH and CFD codes. The goals of the facility design are to provide (i) mutual feedback between natural circulation in the loop and complex 3D mixing and stratification phenomena in the pool-type test section, (ii) a possibility to validate standalone STH and CFD codes for each subsection of the facility, and (iii) sufficient number of experimental data to separate the process of input model calibration and code validation. Description of the facility design and its main components, approach to estimation of experimental uncertainty and calibration of model input parameters that are not directly measured in the experiment are discussed in the paper. First experimental data from the forced to natural circulation transient is also provided in the paper.
Design improvements to the ESI-80 wind turbine
Energy Technology Data Exchange (ETDEWEB)
Rogers, T.; Kleeman, A.; Manwell, J.; McGowan, J. [Univ. of Massachusetts, Amherst, MA (United States)
1996-12-31
This paper describes two investigations related to improvements to an ESI-80 wind turbine. One of them involved modeling the tip flaps during braking. The other was a study of the turbine behavior with various delta-3 angles. These topics are of interest since the turbine is a two-bladed, teetered, free-yaw machine with tip flaps and an adjustable delta-3 angle. Tip flaps are used for slowing the turbine during shutdown and as an emergency system to insure that the rotor does not go into an overspeed condition in the event of failure of other parts of the system. Upon deployment, the tip flaps are exposed to a number of varying forces including aerodynamic, damper, spring, centripetal, and gravitational forces and forces at the hinged connection to the blades. For maximum braking the angle of tip flap deployment needs to be as large as possible without striking the blades in overspeed conditions and when covered with ice. To investigate tip flap design tradeoffs, a dynamic model of the tip flaps on the modified ESI-80 turbine was developed. Results include a determination of the effect of the addition of weight to the flap, overspeed conditions, and changes in damping coefficient. Changes in the delta-3 angle can be used to couple pitching and flapping motions, affecting both teeter and yaw behavior. These effects have been investigated using a modified version of YawDyn. The effects of changes in the delta-3 angle on the teeter and yaw behavior of the modified ESI-80 wind turbine were investigated. Results show that increased teeter excursions in steady high winds can be reduced by increasing the delta-3 angle. Increasing the delta-3 angle may also increase yaw motion in low wind speeds. Results suggest that the optimum delta-3 angle for improved performance may be substantially greater than the presently used angle of zero degrees. 8 refs., 16 figs.
Design Concepts for Cooled Ceramic Composite Turbine Vane
Boyle, Robert J.; Parikh, Ankur H.; Nagpal, VInod K.
2015-01-01
The objective of this work was to develop design concepts for a cooled ceramic vane to be used in the first stage of the High Pressure Turbine(HPT). To insure that the design concepts were relevant to the gas turbine industry needs, Honeywell International Inc. was subcontracted to provide technical guidance for this work. The work performed under this contract can be divided into three broad categories. The first was an analysis of the cycle benefits arising from the higher temperature capability of Ceramic Matrix Composite(CMC) compared with conventional metallic vane materials. The second category was a series of structural analyses for variations in the internal configuration of first stage vane for the High Pressure Turbine(HPT) of a CF6 class commercial airline engine. The third category was analysis for a radial cooled turbine vanes for use in turboshaft engine applications. The size, shape and internal configuration of the turboshaft engine vanes were selected to investigate a cooling concept appropriate to small CMC vanes.
Effects of increasing tip velocity on wind turbine rotor design.
Energy Technology Data Exchange (ETDEWEB)
Resor, Brian Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Richards, Phillip William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-05-01
A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.
Directory of Open Access Journals (Sweden)
Yasuyuki Nishi
2016-01-01
Full Text Available We proposed a portable and ultra-small axial flow hydraulic turbine that can generate electric power comparatively easily using the low head of open channels such as existing pipe conduits or small rivers. In addition, we proposed a simple design method for axial flow runners in combination with the conventional one-dimensional design method and the design method of axial flow velocity uniformization, with the support of three-dimensional flow analysis. Applying our design method to the runner of an ultra-small axial flow hydraulic turbine, the performance and internal flow of the designed runner were investigated using CFD analysis and experiment (performance test and PIV measurement. As a result, the runners designed with our design method were significantly improved in turbine efficiency compared to the original runner. Specifically, in the experiment, a new design of the runner achieved a turbine efficiency of 0.768. This reason was that the axial component of absolute velocity of the new design of the runner was relatively uniform at the runner outlet in comparison with that of the original runner, and as a result, the negative rotational flow was improved. Thus, the validity of our design method has been verified.
Design of a wind turbine rotor for maximum aerodynamic efficiency
DEFF Research Database (Denmark)
Johansen, Jeppe; Aagaard Madsen, Helge; Gaunaa, Mac
2009-01-01
The design of a three-bladed wind turbine rotor is described, where the main focus has been highest possible mechanical power coefficient, CP, at a single operational condition. Structural, as well as off-design, issues are not considered, leading to a purely theoretical design for investigating...... maximum aerodynamic efficiency. The rotor is designed assuming constant induction for most of the blade span, but near the tip region, a constant load is assumed instead. The rotor design is obtained using an actuator disc model, and is subsequently verified using both a free-wake lifting line method...
On the use of a CFD software for reactor design support
International Nuclear Information System (INIS)
Garcia, J.C.; Rauschert, A.; Coleff, Agustin
2009-01-01
Different analysis performed with CFD software for reactor design support are shown. The CFD software used was FLUENT version 6.3.26. The first analysis corresponds to an MTR-type reactor. The MTR-type reactor core is constituted by plate fuel elements. The cooling water passes through channels formed by fuel plates with gap between 2 and 4 mm. The flow between two plates uniformly heated was modeled. The results obtained with FLUENT were compared with experimental data, for a transition Reynolds number. The subchannel with nonuniform power in the plates was modeled with those turbulence models which were closer to experimental results. The second analysis corresponds to an integrated PWR type reactor. The downcomer was modeled in order to visualize the streamlines and velocity distribution. Since the complete model of the downcomer would involve a large number of cells, thereby increasing the computation time, one twelfth of the same is modeled due to the symmetry of the problem. The third analysis also corresponds to an integrated PWR type reactor. The transition into the downcomer at the loss of the cold source was modeled. Since the complete model of the downcomer would involve a large number of cells, thereby increasing the computation time, one twenty fourth of the same is modeled due to the symmetry of the problem. A variable flow and temperature in the downcomer inlet were used as boundary condition. With this calculation, we can visualize the time distribution of velocities and temperatures in one of the symmetry planes. (author)
A coupled systems code-CFD MHD solver for fusion blanket design
Energy Technology Data Exchange (ETDEWEB)
Wolfendale, Michael J., E-mail: m.wolfendale11@imperial.ac.uk; Bluck, Michael J.
2015-10-15
Highlights: • A coupled systems code-CFD MHD solver for fusion blanket applications is proposed. • Development of a thermal hydraulic systems code with MHD capabilities is detailed. • A code coupling methodology based on the use of TCP socket communications is detailed. • Validation cases are briefly discussed for the systems code and coupled solver. - Abstract: The network of flow channels in a fusion blanket can be modelled using a 1D thermal hydraulic systems code. For more complex components such as junctions and manifolds, the simplifications employed in such codes can become invalid, requiring more detailed analyses. For magnetic confinement reactor blanket designs using a conducting fluid as coolant/breeder, the difficulties in flow modelling are particularly severe due to MHD effects. Blanket analysis is an ideal candidate for the application of a code coupling methodology, with a thermal hydraulic systems code modelling portions of the blanket amenable to 1D analysis, and CFD providing detail where necessary. A systems code, MHD-SYS, has been developed and validated against existing analyses. The code shows good agreement in the prediction of MHD pressure loss and the temperature profile in the fluid and wall regions of the blanket breeding zone. MHD-SYS has been coupled to an MHD solver developed in OpenFOAM and the coupled solver validated for test geometries in preparation for modelling blanket systems.
Design and fabrication of a composite wind turbine blade
Brown, R. A.; Haley, R. G.
1980-01-01
The design considerations are described which led to the combination of materials used for the MOD-I wind turbine generator rotor and to the fabrication processes which were required to accomplish it. It is noted that the design problem was to create a rotor for a 2500 kW wind turbine generator. The rotor was to consist of two blades, each with a length of 97.5 feet and a weight of less than 21,000 pounds. The spanwise frequency is 1.17-1.45 Hz, and the chordwise frequency 2.80-2.98 Hz. The design life of the blade is 30 years, or 4.35 x 10 to the 8th cycles. The structures of the spars and trailing edges are described, and the adhesive bonding system is discussed.
DEFF Research Database (Denmark)
Galinos, Christos; Larsen, Torben J.; Aagaard Madsen, Helge
2016-01-01
The paper studies the applicability of the IEC 61400-1 ed.3, 2005 International Standard of wind turbine minimum design requirements in the case of an onshore Darrieus VAWT and compares the results of basic Design Load Cases (DLCs) with those of a 3-bladed HAWT. The study is based on aeroelastic...... computations using the HAWC2 aero-servo-elastic code A 2-bladed 5 MW VAWT rotor is used based on a modified version of the DeepWind rotor For the HAWT simulations the NREL 3-bladed 5 MW reference wind turbine model is utilized Various DLCs are examined including normal power production, emergency shut down...... and parked situations, from cut-in to cut-out and extreme wind conditions. The ultimate and 1 Hz equivalent fatigue loads of the blade root and turbine base bottom are extracted and compared in order to give an insight of the load levels between the two concepts. According to the analysis the IEC 61400-1 ed...
Hydraulic optimization of 'S' characteristics of the pump-turbine for Xianju pumped storage plant
International Nuclear Information System (INIS)
Liu, W C; Zheng, J S; Cheng, J; Shi, Q H
2012-01-01
The pump-turbine with a rated power capacity of 375MW each at Xianju pumped storage plant is the most powerful one under construction in China. In order to avoid the instability near no-load conditions, the hydraulic design of the pump-turbine has been optimized to improving the 'S' characteristic in the development of the model pump-turbine. This paper presents the cause of 'S' characteristic of a pump-turbine by CFD simulation of the internal flow. Based on the CFD analysis, the hydraulic design optimization of the pump-turbine was carried out to eliminate the 'S' characteristics of the machine at Xianju pumped storage plant and a big step for removing the 'S' characteristic of a pump-turbine has been obtained. The model test results demonstrate that the pump-turbine designed for Xianju pumped storage plant can smoothly operate near no-load conditions without an addition of misaligned guide vanes.
Optimization design of spar cap layup for wind turbine blade
Institute of Scientific and Technical Information of China (English)
2012-01-01
Based on the aerodynamic shape and structural form of the blade are fixed,a mathematical model of optimization design for wind turbine blade is established.The model is pursued with respect to minimum the blade mass to reduce the cost of wind turbine production.The material layup numbers of the spar cap are chosen as the design variables;while the demands of strength,stiffness and stability of the blade are employed as the constraint conditions.The optimization design for a 1.5 MW wind turbine blade is carried out by combing above objective and constraint conditions at the action of ultimate flapwise loads with the finite element software ANSYS.Compared with the original design,the optimization design result achieves a reduction of 7.2% of the blade mass,the stress and strain distribution of the blade is more reasonable,and there is no occurrence of resonance,therefore its effectiveness is verified.
A Parametric Geometry Computational Fluid Dynamics (CFD) Study Utilizing Design of Experiments (DOE)
Rhew, Ray D.; Parker, Peter A.
2007-01-01
Design of Experiments (DOE) was applied to the LAS geometric parameter study to efficiently identify and rank primary contributors to integrated drag over the vehicles ascent trajectory in an order of magnitude fewer CFD configurations thereby reducing computational resources and solution time. SME s were able to gain a better understanding on the underlying flowphysics of different geometric parameter configurations through the identification of interaction effects. An interaction effect, which describes how the effect of one factor changes with respect to the levels of other factors, is often the key to product optimization. A DOE approach emphasizes a sequential approach to learning through successive experimentation to continuously build on previous knowledge. These studies represent a starting point for expanded experimental activities that will eventually cover the entire design space of the vehicle and flight trajectory.
Slater, John W.; Saunders, John D.
2010-01-01
Methods of computational fluid dynamics were applied to simulate the aerodynamics within the turbine flowpath of a turbine-based combined-cycle propulsion system during inlet mode transition at Mach 4. Inlet mode transition involved the rotation of a splitter cowl to close the turbine flowpath to allow the full operation of a parallel dual-mode ramjet/scramjet flowpath. Steady-state simulations were performed at splitter cowl positions of 0deg, -2deg, -4deg, and -5.7deg, at which the turbine flowpath was closed half way. The simulations satisfied one objective of providing a greater understanding of the flow during inlet mode transition. Comparisons of the simulation results with wind-tunnel test data addressed another objective of assessing the applicability of the simulation methods for simulating inlet mode transition. The simulations showed that inlet mode transition could occur in a stable manner and that accurate modeling of the interactions among the shock waves, boundary layers, and porous bleed regions was critical for evaluating the inlet static and total pressures, bleed flow rates, and bleed plenum pressures. The simulations compared well with some of the wind-tunnel data, but uncertainties in both the windtunnel data and simulations prevented a formal evaluation of the accuracy of the simulation methods.
Fatigue impact on Mod-1 wind turbine design
Stahle, C. V., Jr.
1978-01-01
Fatigue is a key consideration in the design of a long-life Wind Turbine Generator (WTG) system. This paper discusses the fatigue aspects of the large Mod-1 horizontal-axis WTG design starting with the characterization of the environment and proceeding through the design. Major sources of fatigue loading are discussed and methods of limiting fatigue loading are described. NASTRAN finite element models are used to determine dynamic loading and internal cyclic stresses. Recent developments in determining the allowable fatigue stress consistent with present construction codes are discussed relative to their application to WTG structural design.
On a method for simulation-based wind turbine blade design
Jongsma, S.H.
2014-01-01
Wind turbines are an important means for the production of renewable energy. Wind conditions vary from one site to another and the design of a horizontal axis wind turbine depends on these local wind conditions. One of the important aspects of the design of a wind turbine concerns the aerodynamic
A numerical model for the design of a mixed flow cryogenic turbine ...
African Journals Online (AJOL)
Present day cryogenic gas turbines are in more popular as they meet the growing need for low pressure cycles. This calls for improved methods of turbine wheel design. The present study is aimed at the design of the turbine wheel of mixed flow impellers with radial entry and axial discharge. In this paper, a computer code ...
International Nuclear Information System (INIS)
Barbarelli, Silvio; Amelio, Mario; Castiglione, Teresa; Florio, Gaetano; Scornaienchi, Nino M.; Cutrupi, Antonino; Lo Zupone, Giacomo
2014-01-01
Highlights: • A design a new self-balancing turbine collecting energy from tidal currents has been presented. • The equilibrium in the sea is guaranteed by a central deflector inserted in the blades disc. • The sizing procedure of the turbine needs the knowledge of lift and drag coefficients of the deflector. • A CDF analysis has been carried out for estimating these parameters. • The feasibility of a first pilot plant in the Calabrian site of Punta Pezzo (Italy) has been evaluated. - Abstract: For several years the Department of Mechanical, Energy and Management Engineering (DIMEG), in collaboration with SintEnergy Srl, has been performing researches for the exploitation of tidal currents. An innovative turbine has been developed, anchored to the coast, which does not require the supporting structures on the seabed and should reduces installation costs and environmental impact. This machine, in its latest version, proposes the use of two concentric and contra-rotating rotors, in order to require a small, or non-existent, stabilizing torque. In the present work the machine equilibrium conditions have been defined and, by a CFD analysis, the lift and drag coefficients of the central deflector have been calculated, together with a final machine design procedure. As a case study, applying the above procedure for a machine installed on the Messina strait, the energy output and the payback period have been estimated
Calculation and design of steel bearing structure for wind turbine
Directory of Open Access Journals (Sweden)
Bešević Miroslav
2014-01-01
Full Text Available Wind represents directed movement of the air and is caused by differences in atmospheric pressure which are caused by uneven heating of air masses. Global and local winds can be distinguished. Global winds have high altitude, while local winds occur in the ground layer of the atmosphere. Given that the global wings have high altitude they cannot be used as propellant for wind generators, but they should be known for their effects on the winds in the lower atmosphere. Modern wind turbines are made with a horizontal axle that has a system for the swiveling axis in the horizontal plane for tracking wind direction changes. They can have different number of blades, but for larger forces three blades are commonly used because they provide the greatest efficiency. Rotor diameter of these turbines depends on the strength and it ranges from 30 m for the power of 300 kW to 115 m for the power of 5 MW. Wind turbines are mounted on vertical steel tower which can be high even more than 100 m. Depending on the diameter of the turbine rotor, column is usually built as steel conical and less often as a steel-frame. This study includes analysis and design of steel tower for wind generator made by manufacturer Vestas, type V112 3MW HH 119 (power 3.2 MW for the construction of wind farm 'Kovačica'.
Design of advanced airfoil for stall-regulated wind turbines
Directory of Open Access Journals (Sweden)
F. Grasso
2017-07-01
Full Text Available Nowadays, all the modern megawatt-class wind turbines make use of pitch control to optimise the rotor performance and control the turbine. However, for kilowatt-range machines, stall-regulated solutions are still attractive and largely used for their simplicity and robustness. In the design phase, the aerodynamics plays a crucial role, especially concerning the selection/design of the necessary airfoils. This is because the airfoil performance is supposed to guarantee high wind turbine performance but also the necessary machine control capabilities. In the present work, the design of a new airfoil dedicated to stall machines is discussed. The design strategy makes use of a numerical optimisation scheme, where a gradient-based algorithm is coupled with the RFOIL code and an original Bezier-curves-based parameterisation to describe the airfoil shape. The performances of the new airfoil are compared in free- and fixed-transition conditions. In addition, the performance of the rotor is analysed, comparing the impact of the new geometry with alternative candidates. The results show that the new airfoil offers better performance and control than existing candidates do.
Design and Numerical Simulation of Radial Inflow Turbine Volute
Shah, Samip P.; Channiwala, S. A.; Kulshreshtha, D. B.; Chaudhari, Gaurang
2014-12-01
The volute of a radial inflow turbine has to be designed to ensure that the desired rotor inlet conditions like absolute Mach number, flow angle etc. are attained. For the reasonable performance of vaneless volute turbine care has to be taken for reduction in losses at an appropriate flow angle at the rotor inlet, in the direction of volute, whose function is to convert gas energy into kinetic energy and direct the flow towards the rotor inlet at an appropriate flow angle with reduced losses. In literature it was found that the incompressible approaches failed to provide free vortex and uniform flow at rotor inlet for compressible flow regimes. So, this paper describes a non-dimensional design procedure for a vaneless turbine volute for compressible flow regime and investigates design parameters, such as the distribution of area ratio and radius ratio as a function of azimuth angle. The nondimensional design is converted in dimensional form for three different volute cross sections. A commercial computational fluid dynamics code is used to develop numerical models of three different volute cross sections. From the numerical models, losses generation in the different volutes are identified and compared. The maximum pressure loss coefficient for Trapezoidal cross section is 0.1075, for Bezier-trapezoidal cross section is 0.0677 and for circular cross section is 0.0438 near tongue region, which suggested that the circular cross section will give a better efficiency than other types of volute cross sections.
CFD computations of wind turbine blade loads during standstill operation KNOW-BLADE, Task 3.1 report
Energy Technology Data Exchange (ETDEWEB)
Soerensen, N.N.; Johansen, J.; Conway, S.
2004-06-01
Two rotors blades are computed during standstill conditions, using two different Navier-Stokes solvers EDGE and EllipSys3D. Both steady and transient linear {kappa} - {omega} RANS turbulence models are applied, along with steady non-linear RANS and transient DES simulations. The STORK 5.0 WPX blade is computed a three different tip pitch angles, 0, 26 and 50 degrees tip pitch angle, while the NREL Phase-VI blade is computed at 90 degrees tip pitch angle. Generally the CFD codes reproduce the measured trends quite well and the two involved CFD codes give very similar results. The discrepancies observed can be explained by the difference in the applied turbulence models and the fact that the results from one of the solvers are presented as instantaneous values instead of averaged values. The comparison of steady and transient RANS results show that the gain of using time true computations are very limited for this case, with respect to mean quantities. The same can be said for the RANS/DES comparison performed for the NREL rotor, even though the DES computation shows improved agreement at the tip and root sections. Finally, it is shown that the DES methodology provides a much more physical representation of the heavily stalled part of the flow over blades at high angles of attack. (au)
Fossum, Peter Kalsaas
2012-01-01
Aeroelastic design and fatigue analysis of large utility-scale wind turbine blades are performed. The applied fatigue model is based on established methods and is incorporated in an iterative numerical design tool for realistic wind turbine blades. All aerodynamic and structural design properties are available in literature. The software tool FAST is used for advanced aero-servo-elastic load calculations and stress-histories are calculated with elementary beam theory.According to wind energy ...
Partial Safety Factors for Fatigue Design of Wind Turbine Blades
DEFF Research Database (Denmark)
Toft, Henrik Stensgaard; Sørensen, John Dalsgaard
2010-01-01
In the present paper calibration of partial safety factors for fatigue design of wind turbine blades is considered. The stochastic models for the physical uncertainties on the material properties are based on constant amplitude fatigue tests and the uncertainty on Miners rule for linear damage...... accumulation is determined from variable amplitude fatigue tests with the Wisper and Wisperx spectra. The statistical uncertainty for the assessment of the fatigue loads is also investigated. The partial safety factors are calibrated for design load case 1.2 in IEC 61400-1. The fatigue loads are determined...... from rainflow-counting of simulated time series for a 5MW reference wind turbine [1]. A possible influence of a complex stress state in the blade is not taken into account and only longitudinal stresses are considered....
Computational method for the design of wind turbine blades
Energy Technology Data Exchange (ETDEWEB)
Vitale, A.J. [Instituto Argentino de Oceanografia, Camino La Carrindanga Km. 7.5, CC 804, B8000FWB Bahia Blanca (Argentina); Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Rossi, A.P. [Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina)
2008-07-15
Zeus Disenador was developed to design low-power, horizontal-axis wind turbine blades, by means of an iterative algorithm. With this software, it is possible to obtain the optimum blade shape for a wind turbine to satisfy energy requirements of an electric system with optimum rotor efficiency. The number of blades, the airfoil curves and the average wind velocity can be specified by the user. The user can also request particular edge conditions for the width of the blades and for the pitch angle. Results are provided in different windows. Two- and three-dimensional graphics show the aspect of the resultant blade. Numerical results are displayed for blade length, blade surface, pitch angle variation along the blade span, rotor angular speed, rotor efficiency and rotor output power. Software verifications were made by comparing rotor power and rotor efficiency for different designs. Results were similar to those provided by commercial wind generator manufacturers. (author)
Using partial safety factors in wind turbine design and testing
Energy Technology Data Exchange (ETDEWEB)
Musial, W.D. [National Renewable Energy Lab., Golden, CO (United States)
1997-12-31
This paper describes the relationship between wind turbine design and testing in terms of the certification process. An overview of the current status of international certification is given along with a description of limit-state design basics. Wind turbine rotor blades are used to illustrate the principles discussed. These concepts are related to both International Electrotechnical Commission and Germanischer Lloyd design standards, and are covered using schematic representations of statistical load and material strength distributions. Wherever possible, interpretations of the partial safety factors are given with descriptions of their intended meaning. Under some circumstances, the authors` interpretations may be subjective. Next, the test-load factors are described in concept and then related to the design factors. Using technical arguments, it is shown that some of the design factors for both load and materials must be used in the test loading, but some should not be used. In addition, some test factors not used in the design may be necessary for an accurate test of the design. The results show that if the design assumptions do not clearly state the effects and uncertainties that are covered by the design`s partial safety factors, outside parties such as test labs or certification agencies could impose their own meaning on these factors.
International Nuclear Information System (INIS)
Chong, W.T.; Fazlizan, A.; Poh, S.C.; Pan, K.C.; Hew, W.P.; Hsiao, F.B.
2013-01-01
Graphical abstract: Solar energy, renewable energy, urban wind energy, environment, augmented wind turbine. Highlights: ► A system for on-site wind–solar hybrid power generation and rain water collection. ► The omni-direction-guide-vane (ODGV) overcomes the weak wind and turbulence conditions in urban areas. ► The ODGV improves the wind turbine performance by speeding-up and guiding the wind. ► The ODGV is designed to blend into the building architecture with safety enhancement. ► The wind tunnel test and CFD simulation results are presented. - Abstract: A novel omni-direction-guide-vane (ODGV) that surrounds a vertical axis wind turbine (VAWT) is designed to improve the wind turbine performance. Wind tunnel testing was performed to evaluate the performance of a 5-bladed (Wortmann FX63-137 airfoil) H-rotor wind turbine, with and without the integration of the ODGV. The test was conducted using a scaled model turbine which was constructed to simulate the VAWT enclosed by the ODGV placed on a building. The VAWT shows an improvement on its self-starting behavior where the cut-in speed was reduced with the integration of the ODGV. Since the VAWT is able to self-start at a lower wind speed, the working hour of the wind turbine would increase. At a wind speed of 6 m/s and under free-running condition (only rotor inertia and bearing friction were applied), the ODGV helps to increase the rotor rotational speed by 182%. With extra load application at the same wind speed (6 m/s), the wind turbine power output was increased by 3.48 times at its peak torque with the aid of the ODGV. The working concept of the ODGV is to minimize the negative torque zone of a lift-type VAWT and to reduce turbulence and rotational speed fluctuation. It was verified by re-simulating the torque coefficient data of a single bladed (NACA 0015 airfoil) VAWT published by the Sandia National Laboratories. From the simulation results, with the presence of the ODGV, it was shown that the
Innovative Design of Vertical Axis Wind Turbine
DEFF Research Database (Denmark)
Chougule, Prasad
2013-01-01
, it is well known that the VAWT is advantages over a HAWT in terms of a cost and the simplicity (Paraschivoiu 2002). In this PhD project a simple blade design is incorporated by using the two-element airofoil technology for a three straight-bladed VAWT. The design considerations of a two airfoil are given......, and its aerodynamic characteristics are obtained by an experimental method. A new design is called D2퐴 − 푉퐴푊푇 and a test ring is made to validate the numerical results. A double multiple stream tube method (DMSTM) and blade element method (BEM) are used to determine the numerical performance of a proposed...
Multidisciplinary design optimization of film-cooled gas turbine blades
Shashishekara S. Talya; J. N. Rajadas; A. Chattopadhyay
1999-01-01
Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with ...
Theoretical design study of the MSFC wind-wheel turbine
Frost, W.; Kessel, P. A.
1982-01-01
A wind wheel turbine (WWT) is studied. Evaluation of the probable performance, possible practical applications, and economic viability as compared to other conventional wind energy systems is discussed. The WWT apparatus is essentially a bladed wheel which is directly exposed to the wind on the upper half and exposed to wind through multiple ducting on the lower half. The multiple ducts consist of a forward duct (front concentrator) and two side ducts (side concentrators). The forced rotation of the wheel is then converted to power through appropriate subsystems. Test results on two simple models, a paper model and a stainless steel model, are reported. Measured values of power coefficients over wind speeds ranging from 4 to 16 m/s are given. An analytical model of a four bladed wheel is also developed. Overall design features of the wind turbine are evaluated and discussed. Turbine sizing is specified for a 5 and 25 kW machine. Suggested improvements to the original design to increase performance and performance predictions for an improved WWT design are given.
A 34-meter VAWT (Vertical Axis Wind Turbine) point design
Ashwill, T. D.; Berg, D. E.; Dodd, H. M.; Rumsey, M. A.; Sutherland, H. J.; Veers, P. S.
The Wind Energy Division at Sandia National Laboratories recently completed a point design based on the 34-m Vertical Axis Wind Turbine (VAWT) Test Bed. The 34-m Test Bed research machine incorporates several innovations that improve Darrieus technology, including increased energy production, over previous machines. The point design differs minimally from the Test Bed; but by removing research-related items, its estimated cost is substantially reduced. The point design is a first step towards a Test-Bed-based commercial machine that would be competitive with conventional sources of power in the mid-1990s.
Compressor and Turbine Multidisciplinary Design for Highly Efficient Micro-gas Turbine
Barsi, Dario; Perrone, Andrea; Qu, Yonglei; Ratto, Luca; Ricci, Gianluca; Sergeev, Vitaliy; Zunino, Pietro
2018-06-01
Multidisciplinary design optimization (MDO) is widely employed to enhance turbomachinery components efficiency. The aim of this work is to describe a complete tool for the aero-mechanical design of a radial inflow turbine and a centrifugal compressor. The high rotational speed of such machines and the high exhaust gas temperature (only for the turbine) expose blades to really high stresses and therefore the aerodynamics design has to be coupled with the mechanical one through an integrated procedure. The described approach employs a fully 3D Reynolds Averaged Navier-Stokes (RANS) solver for the aerodynamics and an open source Finite Element Analysis (FEA) solver for the mechanical integrity assessment. Due to the high computational cost of both these two solvers, a meta model, such as an artificial neural network (ANN), is used to speed up the optimization design process. The interaction between two codes, the mesh generation and the post processing of the results are achieved via in-house developed scripting modules. The obtained results are widely presented and discussed.
AlOnazi, Amani A.
2014-01-01
has been designed and implemented to solve the sparse linear algebraic kernel that derives from two CFD solver: icoFoam, which is an incompressible flow solver, and laplacianFoam, which solves the Poisson equation, for e.g., thermal dif- fusion. A load
International Nuclear Information System (INIS)
Shi, Q
2010-01-01
This paper presents the hydraulic design of Three Gorges Right Bank Powerhouse turbine for improvement of hydraulic stability. The technical challenges faced in the hydraulic design of the turbine are given. The method of hydraulic design for improving the hydraulic stability and particularly for eliminating the upper part load pressure pulsations is clarified. The final hydraulic design results of Three Gorges Right Bank Powerhouse turbine based on modern hydraulic design techniques are presented.
Energy Technology Data Exchange (ETDEWEB)
Shi, Q, E-mail: qhshi@dfem.com.c [Dong Fang Electrical Machinery Co., Ltd., DEC 188, Huanghe West Road, Deyang, 618000 (China)
2010-08-15
This paper presents the hydraulic design of Three Gorges Right Bank Powerhouse turbine for improvement of hydraulic stability. The technical challenges faced in the hydraulic design of the turbine are given. The method of hydraulic design for improving the hydraulic stability and particularly for eliminating the upper part load pressure pulsations is clarified. The final hydraulic design results of Three Gorges Right Bank Powerhouse turbine based on modern hydraulic design techniques are presented.
Parametric study of turbine NGV blade lean and vortex design
Directory of Open Access Journals (Sweden)
Zhang Shaowen
2016-02-01
Full Text Available The effects of blade lean and vortex design on the aerodynamics of a turbine entry nozzle guide vane (NGV are considered using computational fluid dynamics. The aim of the work is to address some of the uncertainties which have arisen from previous studies where conflicting results have been reported for the effect on the NGV. The configuration was initially based on the energy efficient engine turbine which also served as the validation case for the computational method. A total of 17 NGV configurations were evaluated to study the effects of lean and vortex design on row efficiency and secondary kinetic energy. The distribution of mass flow ratio is introduced as an additional factor in the assessment of blade lean effects. The results show that in the turbine entry NGV, the secondary flow strength is not a dominant factor that determines NGV losses and therefore the changes of loading distribution due to blade lean and the associated loss mechanisms should be regarded as a key factor. Radial mass flow redistribution under different NGV lean and twist is demonstrated as an addition key factor influencing row efficiency.
Combined preliminary–detailed design of wind turbines
Directory of Open Access Journals (Sweden)
P. Bortolotti
2016-05-01
Full Text Available This paper is concerned with the holistic optimization of wind turbines. A multi-disciplinary optimization procedure is presented that marries the overall sizing of the machine in terms of rotor diameter and tower height (often termed “preliminary design” with the detailed sizing of its aerodynamic and structural components. The proposed combined preliminary–detailed approach sizes the overall machine while taking into full account the subtle and complicated couplings that arise due to the mutual effects of aerodynamic and structural choices. Since controls play a central role in dictating performance and loads, control laws are also updated accordingly during optimization. As part of the approach, rotor and tower are sized simultaneously, even in this case capturing the mutual effects of one component over the other due to the tip clearance constraint. The procedure, here driven by detailed models of the cost of energy, results in a complete aero-structural design of the machine, including its associated control laws. The proposed methods are tested on the redesign of two wind turbines, a 2.2 MW onshore machine and a large 10 MW offshore one. In both cases, the optimization leads to significant changes with respect to the initial baseline configurations, with noticeable reductions in the cost of energy. The novel procedures are also exercised on the design of low-induction rotors for both considered wind turbines, showing that they are typically not competitive with conventional high-efficiency rotors.
Conceptual design of a commercial supercritical CO2 gas turbine for the fast reactor power plant
International Nuclear Information System (INIS)
Muto, Y.; Ishizuka, T.; Aritomi, M.
2010-01-01
This paper describes the design results of turbine and compressors of a supercritical CO 2 gas turbine connected to the commercial sodium cooled fast reactor. Power output of the gas turbine-generator system is 750 MWe. The system consists of turbine, main compressor and bypass compressor. Turbine is axial flow type. Both axial flow and centrifugal compressors were designed. Aerodynamic, blade strength and rotor dynamics calculations were conducted. Achievable adiabatic efficiencies and cross-sectional structures are given. For this design conditions, the axial flow compressor is superior to the centrifugal compressor due to the large mass flow rate. (authors)
Integrated airfoil and blade design method for large wind turbines
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær
2014-01-01
This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed...... with the objectives of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on a previous in-house designed airfoil family which was optimized at a Reynolds number...... of 3 million. A novel shape perturbation function is introduced to optimize the geometry based on the existing airfoils which simplifies the design procedure. The viscous/inviscid interactive code XFOIL is used as the aerodynamic tool for airfoil optimization at a Reynolds number of 16 million...
Energy Technology Data Exchange (ETDEWEB)
Soerensen, J.N.; Shen, W.Z.; Zhu, W.J.; Borbye, J.; Okulov, V.L.; Mikkelsen, R. (DTU Mekanik, Kgs. Lyngby (Denmark)); Gaunaa, M.; Rethore, P.-E.; Soerensen, N.N. (Danmarks Tekniske Univ. Risoe DTU, Afd. for Vindenergi, Roskilde (Denmark))
2011-03-15
The aim of the project was to suggest and analyse new shapes of wing tips for wind turbines to optimize their performance. Several simple wing tips and their flow topology were analysed, and the impact of different design variables was determined in order to establish which design has the best effect for the performance. For the numerical flow calculations, primarily the Navier-Stokes code EllipSys was used. As a supplement to the viscous Navier-Stokes calculations, in-viscous calculations were made using a lifting-line theory. This is a simple technique to determine the load distribution along the wing tip in those cases where viscous effects can be neglected. A large part of the project has focused on improving accuracy of the lifting-line method. Besides forming the basis for improved tip configurations, the calculations were also used to improve the so-called tip correction. Based on the numerical results from CFD calculations an improved tip correction was developed. (ln)
Elektrisk Design og Styring. Simulation Platform to Model, Optimize and Design Wind Turbines
DEFF Research Database (Denmark)
Iov, Florin; Hansen, A. D.; Soerensen, P.
This report is a general overview of the results obtained in the project ?Electrical Design and Control. Simulation Platform to Model, Optimize and Design Wind Turbines?. The report is structured in six chapters. First, the background of this project and the main goals as well as the structure...... of the simulation platform is given. The main topologies for wind turbines, which have been taken into account during the project, are briefly presented. Then, the considered simulation tools namely: HAWC, DIgSILENT, Saber and Matlab/Simulink have been used in this simulation platform are described. The focus here...... is on the modelling and simulation time scale aspects. The abilities of these tools are complementary and they can together cover all the modelling aspects of the wind turbines e.g. mechanical loads, power quality, switching, control and grid faults. New models and new control algorithms for wind turbine systems have...
Coupled CFD - system-code simulation of a gas cooled reactor
International Nuclear Information System (INIS)
Yan, Yizhou; Rizwan-uddin
2011-01-01
A generic coupled CFD - system-code thermal hydraulic simulation approach was developed based on FLUENT and RELAP-3D, and applied to LWRs. The flexibility of the coupling methodology enables its application to advanced nuclear energy systems. Gas Turbine - Modular Helium Reactor (GT-MHR) is a Gen IV reactor design which can benefit from this innovative coupled simulation approach. Mixing in the lower plenum of the GT-MHR is investigated here using the CFD - system-code coupled simulation tool. Results of coupled simulations are presented and discussed. The potential of the coupled CFD - system-code approach for next generation of nuclear power plants is demonstrated. (author)
Control design and optimization for the DOT500 hydraulic wind turbine
Mulders, S.P.; Jager, Stéphane; Diepeveen, N.F.B.; van Wingerden, J.W.
2017-01-01
The drivetrain of most wind turbines currently being deployed commercially consists of a rotor-gearboxgenerator configuration in the nacelle. This abstract introduces the control system design and optimization for a wind turbine with a hydraulic drivetrain, based on the Delft Offshore Turbine (DOT)
Matha, Denis; Sandner, Frank; Molins i Borrell, Climent; Campos Hortigüela, Alexis; Cheng, Po Wen
2015-01-01
The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provide...
Integrated airfoil and blade design method for large wind turbines
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong
2013-01-01
This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and tip speed ratio, the optimal airfoils are designed based on the local speed ratios. To achieve high power performance at low cost, the airfoils are designed...... with an objective of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on the previous in-house airfoil family which were optimized at a Reynolds number of 3...... million. A novel shape perturbation function is introduced to optimize the geometry on the existing airfoils and thus simplify the design procedure. The viscos/inviscid code Xfoil is used as the aerodynamic tool for airfoil optimization where the Reynolds number is set at 16 million with a free...
Directory of Open Access Journals (Sweden)
Khaled Yassin
2015-08-01
Full Text Available This work aims to optimize the aerodynamic parameters (airfoil chord lengths and twist angles smoothed using Bezier curves of the NREL 5MW wind turbine and a wind turbine designed for site-specific wind conditions to increase the wind turbine's annual energy production (AEP under this site conditions. This optimization process is carried out using a Genetic Algorithm (GA developed in MATLAB and coupled with NREL's FAST Modularization Framework. The results shows that after optimizing the NREL 5MW wind turbine design, the AEP was improved by 5.9% of the baseline design AEP while a site-specific designed wind turbine using Schmitz equations shows 1.2% improvement in AEP. These results shows that optimization of wind turbine blade aerodynamic parameters for site-specific wind conditions leads to improvement in AEP and hence decreasing cost of energy generated by wind turbines.
Low-order aeroelastic models of wind turbines for controller design
DEFF Research Database (Denmark)
Sønderby, Ivan Bergquist
Wind turbine controllers are used to optimize the performance of wind turbines such as to reduce power variations and fatigue and extreme loads on wind turbine components. Accurate tuning and design of modern controllers must be done using low-order models that accurately captures the aeroelastic...... response of the wind turbine. The purpose of this thesis is to investigate the necessary model complexity required in aeroelastic models used for controller design and to analyze and propose methods to design low-order aeroelastic wind turbine models that are suited for model-based control design....... The thesis contains a characterization of the dynamics that influence the open-loop aeroelastic frequency response of a modern wind turbine, based on a high-order aeroelastic wind turbine model. One main finding is that the transfer function from collective pitch to generator speed is affected by two low...
Energy Technology Data Exchange (ETDEWEB)
Kim, Bum Suk; Kim, Mann Eung [Korean Register of Shipping, Daejeon (Korea, Republic of); Lee, Young Ho [Korea Maritime Univ., Busan (Korea, Republic of)
2008-07-15
Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(K- {epsilon}) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model.
International Nuclear Information System (INIS)
Kim, Bum Suk; Kim, Mann Eung; Lee, Young Ho
2008-01-01
Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(K- ε) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model
Zerkle, Ronald D.; Prakash, Chander
1995-01-01
This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.
Reactor design, cold-model experiment and CFD modeling for chemical looping combustion
Energy Technology Data Exchange (ETDEWEB)
Zhang, Shaohua; Ma, Jinchen; Hu, Xintao; Zhao, Haibo; Wang, Baowen; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion
2013-07-01
Chemical looping combustion (CLC) is an efficient, clean and cheap technology for CO{sub 2} capture, and an interconnected fluidized bed is more appropriate solution for CLC. This paper aims to design a reactor system for CLC, carry out cold-model experiment of the system, and model fuel reactor using commercial CFD software. As for the CLC system, the air reactor (AR) is designed as a fast fluidized bed while the fuel reactor (FR) is a bubbling bed; a cyclone is used for solid separation of the AR exit flow. The AR and FR are separated by two U-type loop seals to remain gas sealed. Considered the chemical kinetics of oxygen carrier, fluid dynamics, pressure balance and mass balance of the system simultaneously, some key design parameters of a CH{sub 4}-fueled and Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3}-based CLC reactor (thermal power of 50 kWth) are determined, including key geometric parameters (reactor cross-sectional area and reactor height) and operation parameters (bed material quantity, solid circulation rate, apparent gas velocity of each reactor). A cold-model bench having same geometric parameters with its prototype is built up to study the effects of various operation conditions (including gas velocity in the reactors and loop seals, and bed material height, etc.) on the solids circulation rate, gas leakage, and pressure balance. It is witnessed the cold-model system is able to meet special requirements for CLC system such as gas sealing between AR and FR, the circulation rate and particles residence time. Furthermore, the thermal FR reactor with oxygen carrier of Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3} and fuel of CH{sub 4} is simulated by commercial CFD solver FLUENT. It is found that for the design case the combustion efficiency of CH{sub 4} reaches 88.2%. A few part of methane is unburned due to fast, large bubbles rising through the reactor.
Advanced multi-megawatt wind turbine design for utility application
Pijawka, W. C.
1984-08-01
A NASA/DOE program to develop a utility class multimegawatt wind turbine, the MOD-5A, is described. The MOD-5A features a 400 foot diameter rotor which is teetered and positioned upwind of the tower; a 7.3 megawatt power rating with a variable speed electric generating system; and a redundant rotor support and torque transmission structure. The rotor blades were fabricated from an epoxy-bonded wood laminate material which was a successful outgrowth of the MOD-OA airfoil design. Preliminary data from operational tests carried out at the NASA Plumbrook test facility are presented.
5MW Direct Drive Wind Turbine Generator Design
DEFF Research Database (Denmark)
Zaidi, Arsalan; Senn, Lucile; Ortega, Iratxe
2012-01-01
A 5MW direct drive offshore wind turbine generator was studied and simulated using Vector Fields OPERA. This software allows calculation of the flux density, force, torque, and eddy currents in the machine at different rotor positions. Based on the data obtained from the model, initial assumptions...... for the suitable machine are listed and the modelling process presented. The model of the generator was improved by changing design parameters, e.g the position of the magnets or fitting additional I-Cores, and analyse the effect of it....
Design of Buoys for Mounting Wind Turbines at Exposed Sites
Erdoğan, Beytullah; Çelıkkol, Barbaros; Swift, Robinson
2018-04-01
In this study, two designs for a buoy capable of supporting a 10 kW wind turbine and its tower were developed to operate at the University of New Hampshire's Center of Ocean Renewable Energy testing site located off the Isles of Shoals, New Hampshire. The buoys are to be moored by a catenary chain system. To evaluate wave response, two Froude-scaled models were constructed, tested, and compared at the Ocean Engineering wave tank at the University of New Hampshire. These buoys have been implemented and compared with wave tank measurements of the spar displacement at a reference elevation 2.44 m above the mean water level.
Database on wind characteristics - Analyses of wind turbine design loads
DEFF Research Database (Denmark)
Larsen, Gunner Chr.; Hansen, K.S.
2004-01-01
the design load cases with relevance for to wind turbine structures. The present report constitutes thesecond part of the Annex XVII reporting. Both fatigue and extreme load aspects are dealt with, however, with the main emphasis on the latter. The work has been supported by The Ministry of Environment...... and Energy, Danish Energy Agency, The NetherlandsAgency for Energy and the Environment (NOVEM), The Norwegian Water Resources and Energy Administration (NVE), The Swedish National Energy Administration (STEM) and The Government of the United States of America....
Design Preliminaries for Direct Drive under Water Wind Turbine Generator
DEFF Research Database (Denmark)
Leban, Krisztina Monika; Ritchie, Ewen; Argeseanu, Alin
2012-01-01
This paper focuses on the preliminary design process of a 20 MW electric generator. The application calls for an offshore, vertical axis, direct drive wind turbine. Arguments for selecting the type of electric machine for the application are presented and discussed. Comparison criteria for deciding...... on a type of machine are listed. Additional constraints emerging from the direct drive, vertical axis concepts are considered. General rules and a preliminary algorithm are discussed for the machine selected to be most suitable for the imposed conditions....
Advanced multi-megawatt wind turbine design for utility application
Pijawka, W. C.
1984-01-01
A NASA/DOE program to develop a utility class multimegawatt wind turbine, the MOD-5A, is described. The MOD-5A features a 400 foot diameter rotor which is teetered and positioned upwind of the tower; a 7.3 megawatt power rating with a variable speed electric generating system; and a redundant rotor support and torque transmission structure. The rotor blades were fabricated from an epoxy-bonded wood laminate material which was a successful outgrowth of the MOD-OA airfoil design. Preliminary data from operational tests carried out at the NASA Plumbrook test facility are presented.
Inherent uncertainties in meteorological parameters for wind turbine design
Doran, J. C.
1982-01-01
Major difficulties associated with meteorological measurments such as the inability to duplicate the experimental conditions from one day to the next are discussed. This lack of consistency is compounded by the stochastic nature of many of the meteorological variables of interest. Moreover, simple relationships derived in one location may be significantly altered by topographical or synoptic differences encountered at another. The effect of such factors is a degree of inherent uncertainty if an attempt is made to describe the atmosphere in terms of universal laws. Some of these uncertainties and their causes are examined, examples are presented and some implications for wind turbine design are suggested.
Design of a wind turbine pitch angle controller for power system stabilisation
DEFF Research Database (Denmark)
Jauch, Clemens; Islam, S.M.; Sørensen, Poul Ejnar
2007-01-01
The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design......, the transfer function of the wind turbine is derived from the wind turbine's step response. The performance of this controller is tested by simulation, where the wind turbine model with its pitch angle controller is connected to a power system model. The power system model employed here is a realistic model...... of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller...
Study of Flow Patterns in Radial and Back Swept Turbine Rotor under Design and Off-Design Conditions
Samip Shah; Salim Channiwala; Digvijay Kulshreshtha; Gaurang Chaudhari
2016-01-01
Paper details the numerical investigation of flow patterns in a conventional radial turbine compared with a back swept design for same application. The blade geometry of a designed turbine from a 25kW micro gas turbine was used as a baseline. A back swept blade was subsequently designed for the rotor, which departed from the conventional radial inlet blade angle to incorporate up to 25° inlet blade angle. A comparative numerical analysis between the two geometries is presented. While opera...
SMART wind turbine rotor. Design and field test
Energy Technology Data Exchange (ETDEWEB)
Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall
2014-01-01
The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.
Aerodynamics and Optimal Design of Biplane Wind Turbine Blades
Chiu, Phillip
In order to improve energy capture and reduce the cost of wind energy, in the past few decades wind turbines have grown significantly larger. As their blades get longer, the design of the inboard region (near the blade root) becomes a trade-off between competing structural and aerodynamic requirements. State-of-the-art blades require thick airfoils near the root to efficiently support large loads inboard, but those thick airfoils have inherently poor aerodynamic performance. New designs are required to circumvent this design compromise. One such design is the "biplane blade", in which the thick airfoils in the inboard region are replaced with thinner airfoils in a biplane configuration. This design was shown previously to have significantly increased structural performance over conventional blades. In addition, the biplane airfoils can provide increased lift and aerodynamic efficiency compared to thick monoplane inboard airfoils, indicating a potential for increased power extraction. This work investigates the fundamental aerodynamic aspects, aerodynamic design and performance, and optimal structural design of the biplane blade. First, the two-dimensional aerodynamics of biplanes with relatively thick airfoils are investigated, showing unique phenomena which arise as a result of airfoil thickness. Next, the aerodynamic design of the full biplane blade is considered. Two biplane blades are designed for optimal aerodynamic loading, and their aerodynamic performance quantified. Considering blades with practical chord distributions and including the drag of the mid-blade joint, it is shown that biplane blades have comparable power output to conventional monoplane designs. The results of this analysis also show that the biplane blades can be designed with significantly less chord than conventional designs, a characteristic which enables larger blade designs. The aerodynamic loads on the biplane blades are shown to be increased in gust conditions and decreased under
Database on wind characteristics - Analyses of wind turbine design loads
Energy Technology Data Exchange (ETDEWEB)
Larsen, G.C.; Hansen, K.S.
2004-06-01
The main objective of IEA R and D Wind Annex XVII - Database on Wind Characteristics - has been to provide wind energy planners, designers and researchers, as well as the international wind engineering community in general, with a source of actual wind field data (time series and resource data) observed in a wide range of different wind climates and terrain types. Connected to an extension of the initial Annex period, the scope for the continuation was widened to include also support to the international wind turbine standardisation efforts.. The project partners are Sweden, Norway, U.S.A., The Netherlands and Denmark, with Denmark as the Operating Agent. The reporting of the continuation of Annex XVII falls in two separate parts. Part one accounts in details for the available data in the established database bank, and part two describes various data analyses performed with the overall purpose of improving the design load cases with relevance for to wind turbine structures. The present report constitutes the second part of the Annex XVII reporting. Both fatigue and extreme load aspects are dealt with, however, with the main emphasis on the latter. The work has been supported by The Ministry of Environment and Energy, Danish Energy Agency, The Netherlands Agency for Energy and the Environment (NOVEM), The Norwegian Water Resources and Energy Administration (NVE), The Swedish National Energy Administration (STEM) and The Government of the United States of America. (au)
Modal Parameter Identification of New Design of Vertical Axis Wind Turbine
DEFF Research Database (Denmark)
Chougule, Prasad; Nielsen, Søren R.K.
2013-01-01
Vertical axis wind turbines have lower power efficiency than the horizontal axis wind turbines. However vertical axis wind turbines are proven to be economical and noise free on smaller scale. A new design of three bladed vertical axis wind turbine by using two airfoils in construction of each...... blade has been proposed to improve power efficiency. The purpose of two airfoils in blade design of vertical axis wind turbine is to create high lift which in turns gives higher power output. In such case the structural parameter identification is important to understand the system behavior due to its...... first kind of design before experimental analysis. Therefore a study is carried out to determine the natural frequency to avoid unstable state of the system due to rotational frequency of rotor. The present paper outlines a conceptual design of vertical axis wind turbine and a modal analysis by using...
Design Of Rotor Blade For Vertical Axis Wind Turbine Using Double Aerofoil
DEFF Research Database (Denmark)
Chougule, Prasad; Ratkovich, Nicolas Rios; Kirkegaard, Poul Henning
Nowadays, small vertical axis wind turbines are receiving more attention compared to horizontal wind turbines due to their suitability in urban use because they generate less noise, have bird free turbines and lower cost. There is few vertical axis wind turbines design with good power curve....... However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology in practice for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double aerofoil elements mainly used in aeroplane wing design....... In this current work two aerofoils are used to design a rotor blade for a vertical axis wind turbine to improve the power efficiency on the rotor. Double aerofoil blade design consists of a main aerofoil and a slat aerofoil. The parameters related to position and orientation of the slat aerofoil with respect...
Yang, Min; Yu, Dawei; Liu, Mengmeng; Zheng, Libing; Zheng, Xiang; Wei, Yuansong; Wang, Fang; Fan, Yaobo
2017-03-01
Membrane fouling is an important issue for membrane bioreactor (MBR) operation. This paper aims at the investigation and the controlling of reversible membrane fouling due to cake layer formation and foulants deposition by optimizing MBR hydrodynamics through the combination of computational fluid dynamics (CFD) and design of experiment (DOE). The model was validated by comparing simulations with measurements of liquid velocity and dissolved oxygen (DO) concentration in a lab-scale submerged MBR. The results demonstrated that the sludge concentration is the most influencing for responses including shear stress, particle deposition propensity (PDP), sludge viscosity and strain rate. A medium sludge concentration of 8820mgL -1 is optimal for the reduction of reversible fouling in this submerged MBR. The bubble diameter is more decisive than air flowrate for membrane shear stress due to its role in sludge viscosity. The optimal bubble diameter was at around 4.8mm for both of shear stress and PDP. Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Bernardin, J.D.; Hopkins, S.; Gregory, W.S.; Martin, R.A.
1997-01-01
The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory is being renovated for long-term storage of canisters designed to hold heat-generating nuclear materials, such as powders, ingots, and other components. The continual heat generation within the canisters necessitates a reliable cooling scheme of sufficient magnitude which maintains the stored material temperatures within acceptable limits. The primary goal of this study was to develop both an experimental facility and a computational fluid dynamics (CFD) model of a subsection of the NMSF which could be used to observe general performance trends of a proposed passive cooling scheme and serve as a design tool for canister holding fixtures. Comparisons of numerical temperature and velocity predictions with empirical data indicate that the CFD model provides an accurate representation of the NMSF experimental facility. Minor modifications in the model geometry and boundary conditions are needed to enhance its accuracy, however, the various fluid and thermal models correctly capture the basic physics
Specific features of steam turbine design at LMZ
International Nuclear Information System (INIS)
Pichugin, I.I.; Tsvetkov, A.M.; Simkin, M.S.
1993-01-01
General structural layouts of the condensation steam turbines produced by the Leningrad metalworks (LM) are considered. Currently LM produced 50 types and modifications of steam turbines with the capacity from 30 up to 1200 MW. Problems of turbine efficiency and ways of the flow section improvement are discussed
Development of biological criteria for the design of advanced hydropower turbines
Energy Technology Data Exchange (ETDEWEB)
Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Coutant, Charles C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitney, Richard R. [Leavenworth, WA (United States)
1997-03-01
A review of the literature related to turbine-passage injury mechanisms suggests the following biological criteria should be considered in the design of new turbines: (1) pressure; (2) cavitation; (3) shear and turbulence; and (4) mechanical injury. Based on the study’s review of fish behavior in relation to hydropower facilities, it provides a number of recommendations to guide both turbine design and additional research.
RELIABILITY BASED DESIGN OF FIXED FOUNDATION WIND TURBINES
Energy Technology Data Exchange (ETDEWEB)
Nichols, R.
2013-10-14
Recent analysis of offshore wind turbine foundations using both applicable API and IEC standards show that the total load demand from wind and waves is greatest in wave driven storms. Further, analysis of overturning moment loads (OTM) reveal that impact forces exerted by breaking waves are the largest contributor to OTM in big storms at wind speeds above the operating range of 25 m/s. Currently, no codes or standards for offshore wind power generators have been adopted by the Bureau of Ocean Energy Management Regulation and Enforcement (BOEMRE) for use on the Outer Continental Shelf (OCS). Current design methods based on allowable stress design (ASD) incorporate the uncertainty in the variation of loads transferred to the foundation and geotechnical capacity of the soil and rock to support the loads is incorporated into a factor of safety. Sources of uncertainty include spatial and temporal variation of engineering properties, reliability of property measurements applicability and sufficiency of sampling and testing methods, modeling errors, and variability of estimated load predictions. In ASD these sources of variability are generally given qualitative rather than quantitative consideration. The IEC 61400‐3 design standard for offshore wind turbines is based on ASD methods. Load and resistance factor design (LRFD) methods are being increasingly used in the design of structures. Uncertainties such as those listed above can be included quantitatively into the LRFD process. In LRFD load factors and resistance factors are statistically based. This type of analysis recognizes that there is always some probability of failure and enables the probability of failure to be quantified. This paper presents an integrated approach consisting of field observations and numerical simulation to establish the distribution of loads from breaking waves to support the LRFD of fixed offshore foundations.
National Aeronautics and Space Administration — CFD-based design-oriented (DO) steady/unsteady aerodynamic analysis tools for Aeroelastic / Aeroservoelastic (AE/ASE) evaluation lag significantly behind other...
Design and numerical investigation of Savonius wind turbine with discharge flow directing capability
DEFF Research Database (Denmark)
Tahani, Mojtaba; Rabbani, Ali; Kasaeian, Alibakhsh
2017-01-01
Recently, Savonius vertical axis wind turbines due to their capabilities and positive properties have gained a significant attention. The objective of this study is to design and model a Savonius-style vertical axis wind turbine with direct discharge flow capability in order to ventilate buildings...... to improve the discharge flow rate. Results indicate that the twist on Savonius wind rotor reduces the negative torque and improves its performance. According to the results, a twisted Savonius wind turbine with conical shaft is associated with 18% increase in power coefficient and 31% increase in discharge...... flowrate compared to simple Savonius wind turbine. Also, wind turbine with variable cut plane has a 12% decrease in power coefficient and 5% increase in discharge flow rate compared to simple Savonius wind turbine. Therefore, it can be inferred that twisted wind turbine with conical shaft indicated...
Computer Aided Design of Kaplan Turbine Piston with\tSolidWorks
Directory of Open Access Journals (Sweden)
Camelia Jianu
2010-10-01
Full Text Available The paper presents the steps for 3D computer aided design (CAD of Kaplan turbine piston made in SolidWorks.The present paper is a tutorial for a Kaplan turbine piston 3D geometry, which is dedicaded to the Parts Sketch and Parts Features design and Drawing Geometry and Drawing Annotation.
Computer Aided Design of Kaplan Turbine Piston with SolidWorks
Camelia Jianu
2010-01-01
The paper presents the steps for 3D computer aided design (CAD) of Kaplan turbine piston made in SolidWorks.The present paper is a tutorial for a Kaplan turbine piston 3D geometry, which is dedicaded to the Parts Sketch and Parts Features design and Drawing Geometry and Drawing Annotation.
Design optimization of offshore wind farms with multiple types of wind turbines
DEFF Research Database (Denmark)
Feng, Ju; Shen, Wen Zhong
2017-01-01
Most studies on offshore wind farm design assume a uniform wind farm, which consists of an identical type of wind turbines. In order to further reduce the cost of energy, we investigate the design of non-uniform offshore wind farms, i.e., wind farms with multiple types of wind turbines and hub-he...
Design and verification of the Risø-B1 airfoil family for wind turbines
DEFF Research Database (Denmark)
Fuglsang, P.; Bak, C.; Gaunaa, M.
2004-01-01
This paper presents the design and experimental verification of the Risø-B1 airfoil family for MW-size wind turbines with variable speed and pitch control. Seven airfoils were designed with thickness-to-chord ratios between 15% and 53% to cover the entire span of a wind turbine blade. The airfoils...
Potentials for site-specific design of MW sized wind turbines
DEFF Research Database (Denmark)
Thomsen, K.; Fuglsang, P.; Schepers, G.
2001-01-01
The potential for site specific design of MW sized wind turbines is quantified by comparing design loads for wind turbines installed at a range of different sites. The sites comprise on-shore normal flat terrain stand-alone conditions and wind farm conditions together with offshore and mountainous...
The Design of High Efficiency Crossflow Hydro Turbines: A Review and Extension
Directory of Open Access Journals (Sweden)
Ram Adhikari
2018-01-01
Full Text Available Efficiency is a critical consideration in the design of hydro turbines. The crossflow turbine is the cheapest and easiest hydro turbine to manufacture and so is commonly used in remote power systems for developing countries. A longstanding problem for practical crossflow turbines is their lower maximum efficiency compared to their more advanced counterparts, such as Pelton and Francis turbines. This paper reviews the experimental and computational studies relevant to the design of high efficiency crossflow turbines. We concentrate on the studies that have contributed to designs with efficiencies in the range of 88–90%. Many recent studies have been conducted on turbines of low maximum efficiency, which we believe is due to misunderstanding of design principles for achieving high efficiencies. We synthesize the key results of experimental and computational fluid dynamics studies to highlight the key fundamental design principles for achieving efficiencies of about 90%, as well as future research and development areas to further improve the maximum efficiency. The main finding of this review is that the total conversion of head into kinetic energy in the nozzle and the matching of nozzle and runner designs are the two main design requirements for the design of high efficiency turbines.
Overview of Current Turbine Aerodynamic Analysis and Testing at MSFC
Griffin, Lisa W.; Hudson, Susan T.; Zoladz, Thomas F.
1999-01-01
An overview of the current turbine aerodynamic analysis and testing activities at NASA/Marshall Space Flight Center (MSFC) is presented. The presentation is divided into three areas. The first area is the three-dimensional (3D), unsteady Computational Fluid Dynamics (CFD) analysis of the Fastrac turbine. Results from a coupled nozzle, blade, and exit guide vane analysis and from an uncoupled nozzle and coupled blade and exit guide vane will be presented. Unsteady pressure distributions, frequencies, and exit profiles from each analysis will be compared and contrasted. The second area is the testing and analysis of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) turbine with instrumented first stage blades. The SSME HPFTP turbine was tested in air at the MSFC Turbine Test Equipment (TTE). Pressure transducers were mounted on the first stage blades. Unsteady, 3D CFD analysis was performed for this geometry and flow conditions. A sampling of the results will be shown. The third area is a status of the Turbine Performance Optimization task. The objective of this task is to improve the efficiency of a turbine for potential use on a next generation launch vehicle. This task includes global optimization for the preliminary design, detailed optimization for blade shapes and spacing, and application of advanced CFD analysis. The final design will be tested in the MSFC TTE.
An Improved FFR Design with a Ventilation Fan: CFD Simulation and Validation.
Zhang, Xiaotie; Li, Hui; Shen, Shengnan; Rao, Yu; Chen, Feng
2016-01-01
This article presents an improved Filtering Facepiece Respirator (FFR) designed to increase the comfort of wearers during low-moderate work. The improved FFR aims to lower the deadspace temperature and CO2 level by an active ventilation fan. The reversing modeling is used to build the 3D geometric model of this FFR; the Computational Fluid Dynamics (CFD) simulation is then introduced to investigate the flow field. Based on the simulation result, the ventilation fan of the improved FFR can fit the flow field well when placed in the proper blowing orientation; streamlines from this fan show a cup-shape distribution and are perfectly matched to the shape of the FFR and human face when the fan blowing inward. In the deadspace of the improved FFR, the CO2 volume fraction is controlled by the optimized flow field. In addition, an experimental prototype of the improved FFR has been tested to validate the simulation. A wireless temperature sensor is used to detect the temperature variation inside the prototype FFR, deadspace temperature is lowered by 2 K compared to the normal FFR without a fan. An infrared camera (IRC) method is used to elucidate the temperature distribution on the prototype FFR's outside surface and the wearer's face, surface temperature is lowered notably. Both inside and outside temperature results from the simulation are in agreement with experimental results. Therefore, adding an inward-blowing fan on the outer surface of an N95 FFR is a feasible approach to reducing the deadspace CO2 concentration and improve temperature comfort.
Reliability-Based Design of Wind Turbine Foundations
DEFF Research Database (Denmark)
Firouzianbandpey, Sarah
reliable, affordable, clean and renewable energy. Wind turbines have gained popularity among other renewable energy generators by having both technically and economically efficient features and by offering competitive production prices compared to other renewable energy sources. Therefore, it is a key...... shorter spatial correlation lengths in the vertical direction as a result of the depositional process. The normalized cone resistance is a better estimator of spatial trends compared to the normalized friction ratio. In geotechnical engineering analysis and design, practitioners ideally would like to know...... the soil properties at many locations, but achieving this goal can be unrealistic and expensive. Therefore, developing ways to determine these parameters using statistical approaches is of great interest. This research employs a random field model to deal with uncertainty in soil properties due to spatial...
Development of impact design methods for ceramic gas turbine components
Song, J.; Cuccio, J.; Kington, H.
1990-01-01
Impact damage prediction methods are being developed to aid in the design of ceramic gas turbine engine components with improved impact resistance. Two impact damage modes were characterized: local, near the impact site, and structural, usually fast fracture away from the impact site. Local damage to Si3N4 impacted by Si3N4 spherical projectiles consists of ring and/or radial cracks around the impact point. In a mechanistic model being developed, impact damage is characterized as microcrack nucleation and propagation. The extent of damage is measured as volume fraction of microcracks. Model capability is demonstrated by simulating late impact tests. Structural failure is caused by tensile stress during impact exceeding material strength. The EPIC3 code was successfully used to predict blade structural failures in different size particle impacts on radial and axial blades.
The design and stability determination of wind turbine tower
International Nuclear Information System (INIS)
Abas Abd Wahab; Khairul Barriyah
2001-01-01
In wind turbine tower design, two load categories (static and wind load) were considered. The static load for this structure is the tower self-weight, which can be calculated from its density and area of the material, whereas the wind load was calculated based on CP3: Chapter V: Part 2: 1972, using the maximum wind speed of 30 m/s. The stability of this tower under the action of these two loads has been determined using RISA-3D program. The program were subjected to two joint types, i.e pinned and fixed joints. The tower using fixed joint members has established the necessary tower stability. The simulation, calculation and results are being discussed in detail in this paper. (Author)
Cosentino, Gary B.
2007-01-01
Several examples from the past decade of success stories involving the design and flight test of three true X-planes will be described: in particular, X-plane design techniques that relied heavily upon computational fluid dynamics (CFD). Three specific examples chosen from the author s personal experience are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and, most recently, the X-48B Blended Wing Body Demonstrator Aircraft. An overview will be presented of the uses of CFD analysis, comparisons and contrasts with wind tunnel testing, and information derived from the CFD analysis that directly related to successful flight test. Some lessons learned on the proper application, and misapplication, of CFD are illustrated. Finally, some highlights of the flight-test results of the three example X-planes will be presented. This overview paper will discuss some of the author s experience with taking an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further refined CFD analysis, and, finally, flight. An overview of the key roles in which CFD plays well during this process, and some other roles in which it does not, are discussed. How wind tunnel testing complements, calibrates, and verifies CFD analysis is also covered. Lessons learned on where CFD results can be misleading are also given. Strengths and weaknesses of the various types of flow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed. The paper concludes with the three specific examples, including some flight test video footage of the X-36, the X-45A, and the X-48B.
Biological assessment of the advanced turbine design at Wanapum Dam, 2005
Energy Technology Data Exchange (ETDEWEB)
Dauble, D. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Z. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rakowski, C. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Duncan, J. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2007-08-01
Three studies were conducted to evaluate the biological performance of an advanced design turbine installed at Unit 8 of Wanapum Dam on the Columbia River in 2005 versus a conventional Kaplan turbine, Unit 9. The studies included an evaluation of blade-strike using deterministic and probabilistic models, integrated analysis of the response of the Sensor Fish to sever hydraulic events within the turbine system, and a novel dye technique to measure injury to juvenile salmonids in the field.
Design and cold-air test of single-stage uncooled turbine with high work output
Moffitt, T. P.; Szanca, E. M.; Whitney, W. J.; Behning, F. P.
1980-01-01
A solid version of a 50.8 cm single stage core turbine designed for high temperature was tested in cold air over a range of speed and pressure ratio. Design equivalent specific work was 76.84 J/g at an engine turbine tip speed of 579.1 m/sec. At design speed and pressure ratio, the total efficiency of the turbine was 88.6 percent, which is 0.6 point lower than the design value of 89.2 percent. The corresponding mass flow was 4.0 percent greater than design.
International Nuclear Information System (INIS)
Jung, Uk Hee; Kim, Joon Hyung; Kim, Sung; Kim, Jin Hyuk; Choi, Young Seok
2016-01-01
Fans are representative turbo-machinery widely used for ventilation throughout the industrial world. Recently, as the importance of energy saving has been magnified with the fans, the demand for the fans with high efficiency and performance has been increasing. The representative method for enhancing the performance includes design optimization; in practice, fan performance can be improved by changing the shape parameters such as those of meridional plane, impeller, and diffuser. Before optimizing the efficient design, a process of screening to select important design parameters is essential. The present study aimed to analyze the effects of mixed-flow fans' shape parameters on fan performance (static pressure and fan static efficiency) and derive optimum models based on the results. In this study, the shape parameters considered in the impeller domain are as follows: tip clearance, number of blades, beta angle of Leading edge (LE) in the blade, and beta angle of Trailing edge (TE) in the blade. The shape parameters considered in the diffuser domain are as follows: meridional length of the Guide vane (GV), number of GV, beta angle of LE in the GV and beta angle of TE in the GV. The effects of individual shape parameters were analyzed using the CFD (Computational fluid dynamic) and DOE (Design of experiments) methods. The reliability of CFD was verified through the comparison between preliminary fan model's experiment results and CFD results, and screening processes were implemented through 24-1 fractional factorial design. From the analysis of DOE results, it could be seen that the tip clearance and the number of blades in the impeller domain greatly affected the fan performance, and the beta angle of TE at the GV in the diffuser domain greatly affected the fan performance. Finally, the optimum models with improved fan performance were created using linear regression equations derived from 24-1 fractional factorial design.
Design and aero-acoustic analysis of a counter-rotating wind turbine
Agrawal, Vineesh V.
Wind turbines have become an integral part of the energy business because they are one of the most economical and reliable sources of renewable energy. Conventional wind turbines are capable of capturing less than half of the energy present in the wind. Hence, to make the wind turbines more efficient, it is important to increase their performance. A horizontal axis wind turbine with multiple rotors is one concept that can achieve a higher power conversion rate. Also, a concern for wind energy is the noise generated by wind turbines. Hence, an investigation into the acoustic behavior of a multi-rotor horizontal axis wind turbine is required. In response to the need of a wind turbine design with higher power coefficient, a unique design of a counter-rotating horizontal axis wind turbine (CR-HAWT) is proposed. The Blade Element Momentum (BEM) theory is used to aerodynamically design the blades of the two rotors. Modifications are made to the BEM theory to accommodate the interaction of the two rotors. The tower effect on the noise generation of the downwind rotor is investigated. Predictions are made for the total noise generated by the wind turbine at its design operating conditions. A total power coefficient of 65.2% is predicted for the proposed CR-HAWT design. A low tip speed ratio is chosen to minimize the noise generation. The aeroacoustic analysis of the CR-HAWT shows that the noise generated at its design operating conditions is within an acceptable range. Thus, the CR-HAWT is predicted to be a quiet wind turbine with a high power coefficient, making it highly desirable for small wind turbine applications.
Microreactors and CFD as Tools for Biocatalysis Reactor Design: A case study
DEFF Research Database (Denmark)
Bodla, Vijaya Krishna; Seerup, R.; Krühne, Ulrich
2013-01-01
Microreactors have been used for acquiring process data while consuming significantly lower amounts of expensive reagents. In this article, the combination of microreactor technology and computational fluid dynamics (CFD) is shown to contribute significantly towards understanding the diffusional ...... with similar dimensions to the ones tested here can be used as a screening tool for screening biocatalyst and process alternatives....
Grid fault and design-basis for wind turbines. Final report
Energy Technology Data Exchange (ETDEWEB)
Hansen, A.D.; Cutululis, N.A.; Markou, H.; Soerensen, Poul; Iov, F.
2010-01-15
This is the final report of a Danish research project 'Grid fault and design-basis for wind turbines'. The objective of this project has been to assess and analyze the consequences of the new grid connection requirements for the fatigue and ultimate structural loads of wind turbines. The fulfillment of the grid connection requirements poses challenges for the design of both the electrical system and the mechanical structure of wind turbines. The development of wind turbine models and novel control strategies to fulfill the TSO's requirements are of vital importance in this design. Dynamic models and different fault ride-through control strategies have been developed and assessed in this project for three different wind turbine concepts (active stall wind turbine, variable speed doublyfed induction generator wind turbine, variable speed multipole permanent magnet wind turbine). A computer approach for the quantification of the wind turbines structural loads caused by the fault ride-through grid requirement, has been proposed and exemplified for the case of an active stall wind turbine. This approach relies on the combination of knowledge from complimentary simulation tools, which have expertise in different specialized design areas for wind turbines. In order to quantify the impact of the grid faults and grid requirements fulfillment on wind turbines structural loads and thus on their lifetime, a rainflow and a statistical analysis for fatigue and ultimate structural loads, respectively, have been performed and compared for two cases, i.e. one when the turbine is immediately disconnected from the grid when a grid fault occurs and one when the turbine is equipped with a fault ride-through controller and therefore it is able to remain connected to the grid during the grid fault. Different storm control strategies, that enable variable speed wind turbines to produce power at wind speeds higher than 25m/s and up to 50m/s without substantially increasing
Design and Experimental Validation of Hydraulic Yaw System for Multi MW Wind Turbine
DEFF Research Database (Denmark)
Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole
2013-01-01
market. A hydraulic yaw system is such a new technology, and so a mathematical model of the full scale system and test rig system is derived and compared to measurements from the system. This is done in order to have a validated model, which wind turbine manufacturers may use for test in their simulation......To comply with the increasing demands for life time and reliability of wind turbines as these grow in size, new measures needs to be taken in the design of wind turbines and components hereof. One critical point is the initial testing of the components and systems before they are implemented...... in an actual turbine. Full scale hardware testing is both extremely expensive and time consuming, and so the wind turbine industry moves more towards simulations when testing. In order to meet these demands it is necessary with valid models of systems in order to introduce new technologies to the wind turbine...
International Nuclear Information System (INIS)
Smith, K.
2001-01-01
Through the National Renewable Energy Laboratory (NREL), the United States Department of Energy (DOE) implemented the Wind Partnership for Advanced Component Technologies (WindPACT) program. This program will explore advanced technologies that may reduce the cost of energy (COE) from wind turbines. The initial step in the WindPACT program is a series of preliminary scaling studies intended to determine the optimum sizes for future turbines, help define sizing limits for certain critical technologies, and explore the potential for advanced technologies to contribute to reduced COE as turbine scales increase. This report documents the results of Technical Area 2-Turbine Rotor and Blade Logistics. For this report, we investigated the transportation, assembly, and crane logistics and costs associated with installation of a range of multi-megawatt-scale wind turbines. We focused on using currently available equipment, assembly techniques, and transportation system capabilities and limitations to hypothetically transport and install 50 wind turbines at a facility in south-central South Dakota
Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint
Energy Technology Data Exchange (ETDEWEB)
Turchi, C. S.; Ma, Z.; Erbes, M.
2011-03-01
A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.
Design and Analysis of Jacket Substructures for Offshore Wind Turbines
Directory of Open Access Journals (Sweden)
I-Wen Chen
2016-04-01
Full Text Available This study focused on investigating various existing types of offshore jacket substructures along with a proposed twisted-tripod jacket type (modified jacket (MJ-structures. The architectures of the three-leg structure, as well as the patented twisted jacket structure motivated the design of the proposed MJ-structures. The dimensions of the structures were designed iteratively using static stress analysis to ensure that all structures had a similar level of load-carrying capability. The numerical global buckling analyses were performed for all structures after the validation by the scaled-down experiments. The local buckling strength of all compressive members was analyzed using the NORSOK standard. The results showed that the proposed MJ-structures possess excellent structural behavior and few structural nodes and components competitive with the patented twisted jacket structures, while still maintaining the advantages of low material usage similar to the three-leg jacket structures. This study provides alternatives for the initial selection and design of offshore wind turbine substructures for green energy applications.
Investigation of the organic Rankine cycle (ORC) system and the radial-inflow turbine design
International Nuclear Information System (INIS)
Li, Yan; Ren, Xiao-dong
2016-01-01
Highlights: • The thermodynamic analysis of an ORC system is introduced. • A radial turbine design method has been proposed based on the real gas model. • A radial turbine with R123 is designed and numerically analyzed. - Abstract: Energy and environment issue set utilizing low-grade heat noticed. Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology to recover waste heat. As a critical component of ORC system, the turbine selection has an enormous influence on the system performance. This paper carries out a study on the thermodynamic analysis of ORC system and the aerodynamic design of an organic radial turbine. The system performance is evaluated with various working fluids. The aerodynamic design of the organic radial-inflow turbine is focused due to the high molecule weight and the low sound speed of the organic working fluid. An aerodynamic and profile design system is developed. A radial-inflow turbine with R123 as the working fluid is designed and the numerical analysis is conducted. The simulation results indicate that the shock wave caused by the high expansion ratio in the nozzle is well controlled. Compared with the one-dimensional design results, the performance of the radial-inflow turbine in this paper reaches the design requirements.
DEFF Research Database (Denmark)
NJOMO WANDJI, Wilfried
: decrease of conservatism level, improvement of design procedures, and development of innovative structural systems that suit well for large wind turbines. The increasing size of the structure introduces new problems that were not present for small structures. These problems include: (i) the preparation...... substructures. In addition to being aggressive, conditions for offshore environments and the associated models are highly uncertain. Appropriate statistical methodologies should be used in order to design robust structures, which are structures whose engineering performance is not significantly affected....... These research areas are differentially implemented through tasks on various wind turbine structures (shaft, jacket, semi-floater, monopile, and grouted joint). In particular the following research questions are answered: How are extreme and fatigue loads on a given structure influenced by the design of other...
Energy Technology Data Exchange (ETDEWEB)
Hernandez R, Alejandro; Lopez H, Juan Arturo R; Mazur Czerwiec, Zdizslaw; Cordero G, Jesus [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)
2006-07-01
This technical article presents an analysis including the three-dimensional modeling of the flow channel in the nozzle and the movable blade in order to discover the velocity distribution, temperatures and pressures of the main hot gas flow produced in the inter-stage 1. The aim is to establish key evaluation criteria leading to an opportune repair and therefore smaller operation expenses. Thus, the application of a commercial software of CFD is described to model the channel of the first stage in the gas turbine Frame 7, the geometric architecture is shown in the web of the gas turbine, as well as the border conditions used in the results assessment. [Spanish] Este articulo tecnico presenta un analisis que incluye la modelacion tridimensional del canal de flujo en la tobera y el alabe movil para conocer las distribuciones de las velocidades, temperaturas y presiones del flujo principal de gases calientes que se desarrollan en la inter-etapa 1. El fin es establecer criterios clave de evaluacion que conduzcan a una oportuna reparacion y por ende menores gastos de operacion. Asi, se describe la aplicacion de un software comercial de CFD para modelar el canal de flujo de la primera etapa de una turbina de gas Frame 7, se muestra la arquitectura geometrica y el mallado de la turbina de gas, asi como las condiciones de frontera usadas y la validacion de resultados.
Directory of Open Access Journals (Sweden)
Kyung Chun Kim
2014-11-01
Full Text Available A new type of horizontal axis wind turbine adopting the Archimedes spiral blade is introduced for urban-use. Based on the angular momentum conservation law, the design formula for the blade was derived using a variety of shape factors. The aerodynamic characteristics and performance of the designed Archimedes wind turbine were examined using computational fluid dynamics (CFD simulations. The CFD simulations showed that the new type of wind turbine produced a power coefficient (Cp of approximately 0.25, which is relatively high compared to other types of urban-usage wind turbines. To validate the CFD results, experimental studies were carried out using a scaled-down model. The instantaneous velocity fields were measured using the two-dimensional particle image velocimetry (PIV method in the near field of the blade. The PIV measurements revealed the presence of dominant vortical structures downstream the hub and near the blade tip. The interaction between the wake flow at the rotor downstream and the induced velocity due to the tip vortices were strongly affected by the wind speed and resulting rotational speed of the blade. The mean velocity profiles were compared with those predicted by the steady state and unsteady state CFD simulations. The unsteady CFD simulation agreed better with those of the PIV experiments than the steady state CFD simulations.
Grid fault and design-basis for wind turbines - Final report
DEFF Research Database (Denmark)
Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Markou, Helen
, have been performed and compared for two cases, i.e. one when the turbine is immediately disconnected from the grid when a grid fault occurs and one when the turbine is equipped with a fault ride-through controller and therefore it is able to remain connected to the grid during the grid fault......This is the final report of a Danish research project “Grid fault and design-basis for wind turbines”. The objective of this project has been to assess and analyze the consequences of the new grid connection requirements for the fatigue and ultimate structural loads of wind turbines....... The fulfillment of the grid connection requirements poses challenges for the design of both the electrical system and the mechanical structure of wind turbines. The development of wind turbine models and novel control strategies to fulfill the TSO’s requirements are of vital importance in this design. Dynamic...
LQG Controller Design for Pitch Regulated Variable Speed Wind Turbine
DEFF Research Database (Denmark)
Imran, Raja Muhammed; Hussain, Dil Muhammad Akbar; Chen, Zhe
2014-01-01
Variable speed wind turbine is a complex and nonlinear system, a sophisticated control is required to meet the challenges posed by these systems. This paper is presenting a pitch regulation strategy based on LQG (Linear Quadratic Gaussian) to regulate turbine at its rated power and to reject...
Mod-5A wind turbine generator program design report. Volume 4: Drawings and specifications, book 5
1984-01-01
The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. This volume contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. Detail drawings of several assemblies and subassemblies are given. This is the fifth book of volume 4.
1984-01-01
The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. Volume 3, book 1 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. Each subsystem - the rotor, drivetrain, nacelle, tower and foundation is described in detail.
Design, development and operating experience with wet steam turbines
International Nuclear Information System (INIS)
Bolter, J.R.
1989-01-01
The paper first describes the special characteristics of wet steam units. It then goes on to discuss the principal features of the units manufactured by the author's company, the considerations on which the designs were based, and the development work carried out to validate them. Some of the design features such as the separator/reheater units and the arrangements for water extraction in the high pressure turbine are unconventional. An important characteristic of all nuclear plant is the combination of high capital cost and low fuel cost, and the consequent emphasis placed on high availability. The paper describes some service problems experienced with wet steam plant and how these were overcome with minimum loss of generation. The paper also describes a number of the developments for future wet steam plant which have evolved from these experiences, and from research and development programmes aimed at increasing the efficiency and reliability of both conventional and wet steam units. Blading, rotor construction and separator/reheater units are considered. (author)
International Nuclear Information System (INIS)
Yan, J P; Seidel, U; Koutnik, J
2012-01-01
The hydrodynamics of a reduced-scaled model of a radial pump-turbine is investigated under off-design operating conditions, involving runaway and 'S-shape' turbine brake curve at low positive discharge. It is a low specific speed pump-turbine machine of Francis type with 9 impeller blades and 20 stay vanes as well as 20 guide vanes. The computational domain includes the entire water passage from the spiral casing inlet to the draft tube outlet. Completely structured hexahedral meshes generated by the commercial software ANSYS-ICEM are employed. The unsteady incompressible simulations are performed using the commercial code ANSYS-CFX13. For turbulence modeling the standard k-ε model is applied. The numerical results at different operating points are compared to the experimental results. The predicted pressure amplitude is in good agreement with the experimental data and the amplitude of normal force on impeller is in reasonable range. The detailed analysis reveals the onset of the flow instabilities when the machine is brought from a regular operating condition to runaway and turbine break mode. Furthermore, the rotating stall phenomena are well captured at runaway condition as well as low discharge operating condition with one stall cell rotating inside and around the impeller with about 70% of its frequency. Moreover, the rotating stall is found to be the effect of rotating flow separations developed in several consecutive impeller channels which lead to their blockage. The reliable simulation of S-curve characteristics in pump-turbines is a basic requirement for design and optimization at off-design operating conditions.
Optimization of organic Rankine cycle power systems considering multistage axial turbine design
DEFF Research Database (Denmark)
Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo
2018-01-01
Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...
Optimization of organic Rankine cycle power systems considering multistage axial turbine design
DEFF Research Database (Denmark)
Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo
2017-01-01
Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...
Design and construction of a simple blade pitch measurement system for small wind turbines
Energy Technology Data Exchange (ETDEWEB)
Whale, Jonathan [Research Institute of Sustainable Energy, Murdoch University, Perth, WA 6150 (Australia)
2009-02-15
For small wind turbines to be reliable they must have in place good mechanisms to protect themselves against very high winds or sudden removal of load. One common protection method in small wind turbines is that of blade feathering. It is important that the blade feathering mechanism of a small wind turbine is tested before the turbine is installed in the field. This paper presents a simple system for monitoring the blade feathering of a turbine with an overall component cost that small wind turbine manufacturers can afford. The Blade Pitch Measurement System (BPMS) has been designed and constructed by the Research Institute of Sustainable Energy (RISE) and aids small wind turbine manufacturers in testing and optimising the settings of the blade feathering mechanisms on their machines. The results show that the BPMS was successful in recording the behaviour of the blade feathering mechanism in field trials with a 20 kW and a 30 kW wind turbine. The BPMS displays significant potential as an effective, inexpensive system for small wind turbine manufacturers to ensure the reliability of their pitch regulating over-speed protection mechanisms. (author)
Energy Technology Data Exchange (ETDEWEB)
Wosnik, Martin [Univ. of New Hampshire, Durham, NH (United States). Center for Ocean Renewable Energy; Bachant, Pete [Univ. of New Hampshire, Durham, NH (United States). Center for Ocean Renewable Energy; Neary, Vincent Sinclair [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murphy, Andrew W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-09-01
CACTUS, developed by Sandia National Laboratories, is an open-source code for the design and analysis of wind and hydrokinetic turbines. While it has undergone extensive validation for both vertical axis and horizontal axis wind turbines, and it has been demonstrated to accurately predict the performance of horizontal (axial-flow) hydrokinetic turbines, its ability to predict the performance of crossflow hydrokinetic turbines has yet to be tested. The present study addresses this problem by comparing the predicted performance curves derived from CACTUS simulations of the U.S. Department of Energy’s 1:6 scale reference model crossflow turbine to those derived by experimental measurements in a tow tank using the same model turbine at the University of New Hampshire. It shows that CACTUS cannot accurately predict the performance of this crossflow turbine, raising concerns on its application to crossflow hydrokinetic turbines generally. The lack of quality data on NACA 0021 foil aerodynamic (hydrodynamic) characteristics over the wide range of angles of attack (AoA) and Reynolds numbers is identified as the main cause for poor model prediction. A comparison of several different NACA 0021 foil data sources, derived using both physical and numerical modeling experiments, indicates significant discrepancies at the high AoA experienced by foils on crossflow turbines. Users of CACTUS for crossflow hydrokinetic turbines are, therefore, advised to limit its application to higher tip speed ratios (lower AoA), and to carefully verify the reliability and accuracy of their foil data. Accurate empirical data on the aerodynamic characteristics of the foil is the greatest limitation to predicting performance for crossflow turbines with semi-empirical models like CACTUS. Future improvements of CACTUS for crossflow turbine performance prediction will require the development of accurate foil aerodynamic characteristic data sets within the appropriate ranges of Reynolds numbers and AoA.
Design of wind turbines for non-standard air density
DEFF Research Database (Denmark)
Soraperra, Giusepe
2005-01-01
-standard density is intrinsically different, it is impossible to reach the standard rated power at the standard rated speed. Three scenarios are possible (i) to keep the standard rated speed of the turbine by changing the size of the electric generator; (ii) to change the rated speed of the turbine by adopting...... a different pitch angel setting; (iii) adoption of extendeders to the blades can also help in restraining the standard rated power at the standard rated speed for p less than pst. The power curves for the three turbine configurations, each in three different air density conformations, have been calculated...
Microprocessor Control Design for a Low-Head Crossflow Turbine.
1985-03-01
Controllers For a Typical 10 KW Hydroturbine ............ 1-5 I-1 Ely’s Crossflow Turbine . ........ 11-2 11-2 Basic Turbine * * 0 * 0 11-5 11-3 Turbine...the systems. For example, a 25 kilowatt hydroturbine built and installed by Bell Hydroelectric would cost approximately $20,000 in 1978 (6:49). The...O Manual Controller S2 E- Microprocessor Controller 1 2 3 4 5 6 7 8 YEARS Fig. 1-2 Comparative Costs of Controllers For a Typical 10 KW Hydroturbine
Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)
Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef
2004-01-01
To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.
Aero-Thermo-Structural Design Optimization of Internally Cooled Turbine Blades
Dulikravich, G. S.; Martin, T. J.; Dennis, B. H.; Lee, E.; Han, Z.-X.
1999-01-01
A set of robust and computationally affordable inverse shape design and automatic constrained optimization tools have been developed for the improved performance of internally cooled gas turbine blades. The design methods are applicable to the aerodynamics, heat transfer, and thermoelasticity aspects of the turbine blade. Maximum use of the existing proven disciplinary analysis codes is possible with this design approach. Preliminary computational results demonstrate possibilities to design blades with minimized total pressure loss and maximized aerodynamic loading. At the same time, these blades are capable of sustaining significantly higher inlet hot gas temperatures while requiring remarkably lower coolant mass flow rates. These results suggest that it is possible to design internally cooled turbine blades that will cost less to manufacture, will have longer life span, and will perform as good, if not better than, film cooled turbine blades.
Chen, Shu-cheng, S.
2009-01-01
For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.
Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.
2018-01-01
Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection
Design of h-Darrieus vertical axis wind turbine
Parra, Teresa; Vega, Carmen; Gallegos, A.; Uzarraga, N. C.; Castro, F.
2015-05-01
Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT) H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.
Design of h-Darrieus vertical axis wind turbine
Directory of Open Access Journals (Sweden)
Parra Teresa
2015-01-01
Full Text Available Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.
Multidisciplinary design optimization of film-cooled gas turbine blades
Directory of Open Access Journals (Sweden)
Talya Shashishekara S.
1999-01-01
Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.
Initial design of a stall-controlled wind turbine rotor
Energy Technology Data Exchange (ETDEWEB)
Nygaard, T.A. [Inst. for Energiteknikk, Kjeller (Norway)
1997-08-01
A model intended for initial design of stall-controlled wind turbine rotors is described. The user specifies relative radial position of an arbitrary number of airfoil sections, referring to a data file containing lift-and drag curves. The data file is on the same format as used in the commercial blade-element code BLADES-/2/, where lift- and drag coefficients are interpolated from tables as function of Reynolds number, relative thickness and angle of attack. The user can set constraints on a selection of the following: Maximum power; Maximum thrust in operation; Maximum root bending moment in operation; Extreme root bending moment, parked rotor; Tip speed; Upper and lower bounds on optimisation variables. The optimisation variables can be selected from: Blade radius; Rotational speed; Chord and twist at an arbitrary number of radial positions. The user can chose linear chord distribution and a hyperbola-like twist distribution to ensure smooth planform and twist, or cubic spline interpolation for one or both. The aerodynamic model is based on classical strip theory with Prandtl tip loss correction, supplemented by empirical data for high induction factors. (EG)
Design of low noise airfoil with high aerodynamic performance for use on small wind turbines
Institute of Scientific and Technical Information of China (English)
Taehyung; KIM; Seungmin; LEE; Hogeon; KIM; Soogab; LEE
2010-01-01
Wind power is one of the most reliable renewable energy sources and internationally installed capacity is increasing radically every year.Although wind power has been favored by the public in general,the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased.Low noise wind turbine design is becoming more and more important as noise is spreading more adverse effect of wind turbine to public.This paper demonstrates the design of 10 kW class wind turbines,each of three blades,a rotor diameter 6.4 m,a rated rotating speed 200 r/min and a rated wind speed 10 m/s.The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade is trailing edge noise from the outer 25% of the blade.Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at 1.02×106 with a lift performance,which is resistant to surface contamination and turbulence intensity.The objectives in the design process are to reduce noise emission,while sustaining high aerodynamic efficiency.Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al.and Lowson associated with typical wind turbine operation conditions.During the airfoil redesign process,the aerodynamic performance is analyzed to reduce the wind turbine power loss.The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis.Therefore,the new optimized airfoil showing 2.9 dB reductions of total sound pressure level(SPL) and higher aerodynamic performance are achieved.
Efficient Turbulence Modeling for CFD Wake Simulations
DEFF Research Database (Denmark)
van der Laan, Paul
Wind turbine wakes can cause 10-20% annual energy losses in wind farms, and wake turbulence can decrease the lifetime of wind turbine blades. One way of estimating these effects is the use of computational fluid dynamics (CFD) to simulate wind turbines wakes in the atmospheric boundary layer. Since...... this flow is in the high Reynolds number regime, it is mainly dictated by turbulence. As a result, the turbulence modeling in CFD dominates the wake characteristics, especially in Reynolds-averaged Navier-Stokes (RANS). The present work is dedicated to study and develop RANS-based turbulence models...... verified with a grid dependency study. With respect to the standard k-ε EVM, the k-ε- fp EVM compares better with measurements of the velocity deficit, especially in the near wake, which translates to improved power deficits of the first wind turbines in a row. When the CFD metholody is applied to a large...
Eshati, Samir; Abu, Abdullahi; Laskaridis, Panagiotis; Haslam, Anthony
2011-01-01
A physics–based model is used to investigate the relationship between operating conditions and design parameters on the creep life of a stationary gas turbine high pressure turbine (HPT) blade. A performance model is used to size the blade and to determine its stresses. The eﬀects of radial temperature distortion, turbine inlet temperature, ambient temperature and compressor degradation on creep life are then examined. The results show variations in creep life and failure locat...
C. F. Braun. Standard turbine island design, safety analysis report
International Nuclear Information System (INIS)
1974-01-01
A standard turbine island used with a BWR is described. It consists of the turbine-generator; steam system; condensate storage, cleanup, and transfer systems; control and instrumentation; water treatment plant; make-up demineralizer; potable and waste water systems; and a compressed air system. The turbine-generator is a tandem-compound nuclear-type turbine with one double-flow high-pressure section and a six-flow low-pressure section in three double-flow low-pressure casings. The turbine is direct connected to an 1800 rpm synchronous a-c generator. A combined moisture separator and two-stage reheater is provided. The main steam system delivers the steam generated in a BWR to the main turbine stop valves. The condensate system maintains proper water inventory. Protective features prevent loss of the system due to electrical failure of a component and isolates faults to ensure continuity of a power supply from alternate sources. (U.S.)
Directory of Open Access Journals (Sweden)
John White
2016-02-01
Full Text Available The chief objective of this study is the proposal design and CFD simulation of a new compacted copper wire woven fin heat exchanger and silica gel adsorbent bed used as part of an adsorption refrigeration system. This type of heat exchanger design has a large surface area because of the wire woven fin design. It is estimated that this will help improve the coefficient of performance (COP of the adsorption phase and increase the heat transfer in this system arrangement. To study the heat transfer between the fins and porous adsorbent reactor bed, two experiments were carried out and matched to computational fluid dynamics (CFD results.
Inverse design-momentum, a method for the preliminary design of horizontal axis wind turbines
International Nuclear Information System (INIS)
Battisti, L; Soraperra, G; Fedrizzi, R; Zanne, L
2007-01-01
Wind turbine rotor prediction methods based on generalized momentum theory BEM routinely used in industry and vortex wake methods demand the use of airfoil tabulated data and geometrical specifications such as the blade spanwise chord distribution. They belong to the category of 'direct design' methods. When, on the other hand, the geometry is deduced from some design objective, we refer to 'inverse design' methods. This paper presents a method for the preliminary design of wind turbine rotors based on an inverse design approach. For this purpose, a generalized theory was developed without using classical tools such as BEM. Instead, it uses a simplified meridional flow analysis of axial turbomachines and is based on the assumption that knowing the vortex distribution and appropriate boundary conditions is tantamount to knowing the velocity distribution. The simple conservation properties of the vortex components consistently cope with the forces and specific work exchange expressions through the rotor. The method allows for rotor arbitrarily radial load distribution and includes the wake rotation and expansion. Radial pressure gradient is considered in the wake. The capability of the model is demonstrated first by a comparison with the classical actuator disk theory in investigating the consistency of the flow field, then the model is used to predict the blade planform of a commercial wind turbine. Based on these validations, the authors postulate the use of a different vortex distribution (i.e. not-uniform loading) for blade design and discuss the effect of such choices on blade chord and twist, force distribution and power coefficient. In addition to the method's straightforward application to the pre-design phase, the model clearly shows the link between blade geometry and performance allowing quick preliminary evaluation of non uniform loading on blade structural characteristics
Design and field operation of 1175 MW steam turbine for Ohi Nuclear Power Station
International Nuclear Information System (INIS)
Hirota, Yoshio; Nakagami, Yasuo; Fujii, Hisashi; Shibanai, Hirooki.
1980-01-01
Two 1175 MW steam turbine and generator units have been successfully in commercial operation since March 1979 and December 1979 respectively at Ohi Nuclear Power Station of the Kansai Electric Power Company. Those units, the largest in their respective outputs in Japan, have also such remarkable design features as two-stage reheat, nozzle governing turbine, water cooled generator stator and turbine-driven feedwater pumps. This paper covers design features and some topics of various pre-operational tests of the above-mentioned units. (author)
Design and field operation of 1175 MW steam turbine for Ohi Nuclear Power Station
International Nuclear Information System (INIS)
Hirota, Y.; Nakagami, Y.; Fujii, H.; Shibanai, H.
1980-01-01
Two 1,175 MW steam turbine and generator units have been successfully in commercial operation since March 1979 and December 1979 respectively at Ohi Nuclear Power Station of the Kansai Electric Power Company. Those units, the largest in their respective outputs in Japan, have also such remarkable design features as two-stage reheat, nozzle governing turbine, water cooled generator stator and turbine-driven feedwater pumps. This paper covers design features and some topics of various pre-operational tests of the above-mentioned units. (author)
AlOnazi, Amani A.
2014-02-01
The progress of high performance computing platforms is dramatic, and most of the simulations carried out on these platforms result in improvements on one level, yet expose shortcomings of current CFD packages. Therefore, hardware-aware design and optimizations are crucial towards exploiting modern computing resources. This thesis proposes optimizations aimed at accelerating numerical simulations, which are illus- trated in OpenFOAM solvers. A hybrid MPI and GPGPU parallel conjugate gradient linear solver has been designed and implemented to solve the sparse linear algebraic kernel that derives from two CFD solver: icoFoam, which is an incompressible flow solver, and laplacianFoam, which solves the Poisson equation, for e.g., thermal dif- fusion. A load-balancing step is applied using heterogeneous decomposition, which decomposes the computations taking into account the performance of each comput- ing device and seeking to minimize communication. In addition, we implemented the recently developed pipeline conjugate gradient as an algorithmic improvement, and parallelized it using MPI, GPGPU, and a hybrid technique. While many questions of ultimately attainable per node performance and multi-node scaling remain, the ex- perimental results show that the hybrid implementation of both solvers significantly outperforms state-of-the-art implementations of a widely used open source package.
Directory of Open Access Journals (Sweden)
Dhagat Animesh
2018-01-01
Full Text Available Augmentation of thermal performance of solar air heater has been the focus of many researchers over the last decades and the use of turbulator or artificial roughness to provide increased fluid mixing in order to achieve augmented heat transfer has been a widely accepted technique. This work aims to evaluate the effect of a novel turbulator design on the effective thermal performance of solar air heater using the methodology of computational fluid dynamics (CFD. A two dimensional CFD analysis is carried out to evaluate the thermal characteristics of solar air heater at various flow Reynolds number conditions for different geometric parameters of the proposed turbulator design. The pitch of the turbulator is varied as 10mm, 20mm, 30mm, 40mm and 50mm for a fixed turbulator height of 2 mm. The Reynolds number is varied from 6,000 to 27,000. The analysis shows that the lower values of pitch produces higher improvement in heat transfer. The maximum increase in Nusselt number is found to be about 2.98 times as compared to the base model for the flow Reynolds number of about 6000. The highest increase in the friction factor is found to be about 3.05 times relative to the base model. The maximum thermal enhancement factor is found to be about 1.99 for the pitch value of 10 mm at a flow Reynolds number of about 6000.
DEFF Research Database (Denmark)
Chougle, Prasad Devendra
. Mainly, there is the horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT). HAWTs are more popular than VAWTs due to failure of VAWT commercialization during the late of 1980s on a large scale. However, in recent research work it has been documented that VAWTs are more economical......, and the wind tunnel testing of double-element airfoil is performed. It is found that the aerodynamic characteristics of the airfoil increased considerably by delaying the angle of stall. These two facts are very suitable for vertical axis wind turbine since they operate in a larger range of angle of attack......, ±40_, compared to the horizontal axis wind turbines which operate in the range of attack, ±15_. A new design of vertical axis wind turbine is then proposed, and aerodynamic performance is evaluated based on double multiple stream tube methods. The performance parameters are almost doubled compared...
HydroPak: concept design and analysis of a packaged cross-flow turbine
Energy Technology Data Exchange (ETDEWEB)
NONE
2004-07-01
This report summarises the findings of a project to complete the conceptual design and economic optimization of a modular standardised crossflow hydro-turbine. Details are given of the work to date, the comparison of HydroPak cost with conventional micro- and mini-hydro power costs, and the economic advantages of taking the ''packaged'' and ''standardised approaches'' to the design process. The market for mini-hydro turbines is discussed.
HydroPak: concept design and analysis of a packaged cross-flow turbine
International Nuclear Information System (INIS)
2004-01-01
This report summarises the findings of a project to complete the conceptual design and economic optimization of a modular standardised crossflow hydro-turbine. Details are given of the work to date, the comparison of HydroPak cost with conventional micro- and mini-hydro power costs, and the economic advantages of taking the ''packaged'' and ''standardised approaches'' to the design process. The market for mini-hydro turbines is discussed
Wind Turbine Design Guideline DG03: Yaw and Pitch Rolling Bearing Life
Energy Technology Data Exchange (ETDEWEB)
Harris, T.; Rumbarger, J. H.; Butterfield, C. P.
2009-12-01
This report describes the design criteria, calculation methods, and applicable standards recommended for use in performance and life analyses of ball and roller (rolling) bearings for yaw and pitch motion support in wind turbine applications. The formulae presented here for rolling bearing analytical methods and bearing-life ratings are consistent with methods in current use by wind turbine designers and rolling-bearing manufacturers.
Virtual tool for simulation and wind turbine design
International Nuclear Information System (INIS)
Monteiro Farias, Gustavo; Barros Galhardo, Marcos André; Tavares Pinho, João
2015-01-01
This paper presents an educational tool to simulate wind turbines in a virtual environment. This tool can be used for research applications as well as to evaluate the operation conditions of a wind turbine by reproducing its behaviour. The first step is to apply the Blade Element Theory in order to obtain the induction factors when the tip- speed ratio and the airfoil characteristics are configured. With these values as starting point, the geometric shape of the wind blade is created and visualized. In order to evaluate the performance of the turbine, an integration method is applied, and then the power coefficient curve is plotted versus the tip-speed ratio. The power coefficient curve reaches the maximum value at the rated operation, which is essential to the transient behaviour of the wind turbine. The transient model described in this work shows the influence of all efforts acting on the rotor, which disturb the rotation. The inertial mass of the components and the air density are set up during the simulation.Using the virtual instrumentation applied to the transient model together with a 3D computer animation, the variables of the program can be controlled and visualized in graphics, and the animation of the wind turbine shows when it accelerates or decelerates the shaft rotation due to the variation of the wind speed. The tool provides the power supplied by the wind rotor to the electric generator, which can be evaluated at the end of the simulation. (full text)
Design of a 4 1/2 stage turbine with a stage loading factor of 4.66 and high specific work output
Webster, P. F.
1976-01-01
The aerodynamic design of a highly loaded multistage fan drive turbine is discussed. Turbine flowpath and airfoil sections are presented along with respective pressure and velocity distributions. Vibrational modes are identified in the expected turbine operating range.
Model tests of wind turbine with a vertical axis of rotation type Lenz 2
Zwierzchowski, Jaroslaw; Laski, Pawel Andrzej; Blasiak, Slawomir; Takosoglu, Jakub Emanuel; Pietrala, Dawid Sebastian; Bracha, Gabriel Filip; Nowakowski, Lukasz
A building design of vertical axis wind turbines (VAWT) was presented in the article. The construction and operating principle of a wind turbine were described therein. Two VAWT turbine models were compared, i.a. Darrieus and Lenz2, taking their strengths and weaknesses into consideration. 3D solid models of turbine components were presented with the use of SolidWorks software. Using CFD methods, the air flow on two aerodynamic fins, symmetrical and asymmetrical, at different angles of attack were tested. On the basis of flow simulation conducted in FlowSimulation, an asymmetrical fin was chosen as the one showing greater load bearing capacities. Due to the uncertainty of trouble-free operation of Darrieus turbine on construction elements creating the basis thereof, a 3D model of Lenz2 turbine was constructed, which is more reliable and makes turbine self-start possible. On the basis of the research, components were designed and technical docu mentation was compiled.
Energy Technology Data Exchange (ETDEWEB)
Gulliver, John S. [Univ. of Minnesota, Minneapolis, MN (United States)
2015-03-01
Conventional hydropower turbine aeration test-bed for computational routines and software tools for improving environmental mitigation technologies for conventional hydropower systems. In achieving this goal, we have partnered with Alstom, a global leader in energy technology development and United States power generation, with additional funding from the Initiative for Renewable Energy and the Environment (IREE) and the College of Science and Engineering (CSE) at the UMN
Optimization design of airfoil profiles based on the noise of wind turbines
DEFF Research Database (Denmark)
Cheng, Jiangtao; Chen, Jin; Cheng, Jiangtao
2012-01-01
Based on design theory of airfoil profiles and airfoil self-noise prediction model, a new method with the target of the airfoil average efficiency-noise ratio of design ranges for angle of attack had been developed for designing wind turbine airfoils. The airfoil design method was optimized for a...
Mod-1 wind turbine generator analysis and design report, volume 1
1979-01-01
The activities leading to the completion of detail design of the MOD-1 wind turbine generator are described. Emphasis is placed on the description of the design as it finally evolved. However, the steps through which the design progressed are also traced in order to understand the major design decisions.
Design of a wind turbine pitch angle controller for power system stabilisation
Energy Technology Data Exchange (ETDEWEB)
Jauch, Clemens; Soerensen, Poul [Risoe National Laboratory, Wind Energy Department, P.O. Box 49, DK-4000 Roskilde (Denmark); Islam, Syed M. [Department of Electrical and Computer Engineering, Curtin University of Technology, GPO Box U1987, Perth, WA 6845 (Australia); Bak Jensen, Birgitte [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East (Denmark)
2007-11-15
The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design, the transfer function of the wind turbine is derived from the wind turbine's step response. The performance of this controller is tested by simulation, where the wind turbine model with its pitch angle controller is connected to a power system model. The power system model employed here is a realistic model of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller can effectively contribute to power system stabilisation. (author)
Hydraulic turbines and auxiliary equipment
Energy Technology Data Exchange (ETDEWEB)
Luo Gaorong [Organization of the United Nations, Beijing (China). International Centre of Small Hydroelectric Power Plants
1995-07-01
This document presents a general overview on hydraulic turbines and auxiliary equipment, emphasizing the turbine classification, in accordance with the different types of turbines, standard turbine series in China, turbine selection based on the basic data required for the preliminary design, general hill model curves, chart of turbine series and the arrangement of application for hydraulic turbines, hydraulic turbine testing, and speed regulating device.
Energy Technology Data Exchange (ETDEWEB)
Krukovsky, P G [Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine, Kiev (Ukraine)
1998-12-31
The description of method and software FRIEND which provide a possibility of solution of inverse and inverse design problems on the basis of existing (base) CFD-software for solution of direct problems (in particular, heat-transfer and fluid-flow problems using software PHOENICS) are presented. FRIEND is an independent additional module that widens the operational capacities of the base software unified with this module. This unifying does not require any change or addition to the base software. Interfacing of FRIEND and the base software takes place through input and output files of the base software. A brief description of the computational technique applied for the inverse problem solution, same detailed information on the interfacing of FRIEND and CFD-software and solution results for testing inverse and inverse design problems, obtained using the tandem CFD-software PHOENICS and FRIEND, are presented. (author) 9 refs.
Energy Technology Data Exchange (ETDEWEB)
Krukovsky, P.G. [Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine, Kiev (Ukraine)
1997-12-31
The description of method and software FRIEND which provide a possibility of solution of inverse and inverse design problems on the basis of existing (base) CFD-software for solution of direct problems (in particular, heat-transfer and fluid-flow problems using software PHOENICS) are presented. FRIEND is an independent additional module that widens the operational capacities of the base software unified with this module. This unifying does not require any change or addition to the base software. Interfacing of FRIEND and the base software takes place through input and output files of the base software. A brief description of the computational technique applied for the inverse problem solution, same detailed information on the interfacing of FRIEND and CFD-software and solution results for testing inverse and inverse design problems, obtained using the tandem CFD-software PHOENICS and FRIEND, are presented. (author) 9 refs.
DEFF Research Database (Denmark)
Mikkelsen, Torben Krogh; Astrup, Poul; van Dooren, Marijn Floris
as the “Lidar Cyclops syndrome” with reference to the one-eyed Cyclops in old Greek mythology. However, by feeding a single lidar’s line-of-sight (LOS) rotor plane scanned wind speeds to a fast CFD solver, it has been possible to determine the entire 3D velocity vectors at each measurement point consistent...
Fuzzy regulator design for wind turbine yaw control.
Theodoropoulos, Stefanos; Kandris, Dionisis; Samarakou, Maria; Koulouras, Grigorios
2014-01-01
This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness.
Fuzzy Regulator Design for Wind Turbine Yaw Control
Directory of Open Access Journals (Sweden)
Stefanos Theodoropoulos
2014-01-01
Full Text Available This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness.
A Global Approach for the Design of a Rim- Driven Marine Turbine Generator for Sail Boat
DROUEN, Laurent; CHARPENTIER, Jean-Frederic; SEMAIL, Eric; CLENET, Stéphane; SEMAIL, Eric
2012-01-01
International audience; Development of new ways to provide clean onboard electric energy is a key feature for the sailing boat industry and sail race teams. This is why marine turbines (MT), are considered to provide onboard energy. These turbines can be used to harness kinetic energy of the water flow related to the ship motion. In this paper we propose to study an unconventional design of such a turbine where the electrical generator is located in the periphery of the blades and where the m...
Probabilistic Calibration of Fatigue Design Factors for Offshore Wind Turbine Support Structures
DEFF Research Database (Denmark)
Ramirez, José Rangel; Sørensen, John Dalsgaard
2010-01-01
for the considered offshore wind turbines in such a way that the specific uncertainties for the fatigue life are accounted in a rational manner. Similar approaches have been used for offshore oil & gas sub-structures, but the required reliability level for offshore wind turbines is generally lower and the fatigue......This paper describes a reliability-based approach to determine fatigue design factors (FDF) for offshore wind turbine support structures made of steel. The FDF values are calibrated to a specific reliability level and linked to a specific inspection and maintenance (I&M) strategy used...
Reliability Based Design of Fluid Power Pitch Systems for Wind Turbines
DEFF Research Database (Denmark)
Liniger, Jesper; N. Soltani, Mohsen; Pedersen, Henrik Clemmensen
2017-01-01
Priority Number. The Failure Mode and Effect Criticality Analysis is based on past research concerning failure analysis of wind turbine drive trains. Guidelines are given to select the severity, occurrence and detection score that make up the risk priority number. The usability of the method is shown...... in a case study of a fluid power pitch system applied to wind turbines. The results show a good agreement to recent field failure data for offshore turbines where the dominating failure modes are related to valves, accumulators and leakage. The results are further used for making design improvements...
Safety considerations in the design and operation of large wind turbines
Reilly, D. H.
1979-01-01
The engineering and safety techniques used to assure the reliable and safe operation of large wind turbine generators utilizing the Mod 2 Wind Turbine System Program as an example is described. The techniques involve a careful definition of the wind turbine's natural and operating environments, use of proven structural design criteria and analysis techniques, an evaluation of potential failure modes and hazards, and use of a fail safe and redundant component engineering philosophy. The role of an effective quality assurance program, tailored to specific hardware criticality, and the checkout and validation program developed to assure system integrity are described.
Directory of Open Access Journals (Sweden)
Dowon Han
2018-06-01
Full Text Available A 100-W helical-blade vertical-axis wind turbine was designed, manufactured, and tested in a wind tunnel. A relatively low tip-speed ratio of 1.1 was targeted for usage in an urban environment at a rated wind speed of 9 m/s and a rotational speed of 170 rpm. The basic dimensions were determined through a momentum-based design method according to the IEC 61400-2 protocol. The power output was estimated by a mathematical model that takes into account the aerodynamic performance of the NACA0018 blade shape. The lift and drag of the blade with respect to the angle of attack during rotation were calculated using 2D computational fluid dynamics (CFD simulation to take into account stall region. The average power output calculated by the model was 108.34 W, which satisfies the target output of 100 W. The manufactured wind turbine was tested in a large closed-circuit wind tunnel, and the power outputs were measured for given wind speeds. At the design condition, the measured power output was 114.7 W, which is 5.9% higher than that of the mathematical model. This result validates the proposed design method and power estimation by the mathematical model.
Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint
Energy Technology Data Exchange (ETDEWEB)
Turchi, C. S.; Ma, Z.
2011-08-01
Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.
Structural design of the Sandia 34-M Vertical Axis Wind Turbine
Berg, D. E.
Sandia National Laboratories, as the lead DOE laboratory for Vertical Axis Wind Turbine (VAWT) development, is currently designing a 34-meter diameter Darrieus-type VAWT. This turbine will be a research test bed which provides a focus for advancing technology and validating design and fabrication techniques in a size range suitable for utility use. Structural data from this machine will allow structural modeling to be refined and verified for a turbine on which the gravity effects and stochastic wind loading are significant. Performance data from it will allow aerodynamic modeling to be refined and verified. The design effort incorporates Sandia's state-of-the-art analysis tools in the design of a complete machine. The analytic tools used in this design are discussed and the conceptual design procedure is described.
Application of bamboo laminates in large-scale wind turbine blade design?
Institute of Scientific and Technical Information of China (English)
Long WANG; Hui LI; Tongguang WANG
2016-01-01
From the viewpoint of material and structure in the design of bamboo blades of large-scale wind turbine, a series of mechanical property tests of bamboo laminates as the major enhancement materials for blades are presented. The basic mechanical characteristics needed in the design of bamboo blades are brie?y introduced. Based on these data, the aerodynamic-structural integrated design of a 1.5 MW wind turbine bamboo blade relying on a conventional platform of upwind, variable speed, variable pitch, and doubly-fed generator is carried out. The process of the structural layer design of bamboo blades is documented in detail. The structural strength and fatigue life of the designed wind turbine blades are certified. The technical issues raised from the design are discussed. Key problems and direction of the future study are also summarized.
Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review
Directory of Open Access Journals (Sweden)
Shafiqur Rehman
2018-02-01
Full Text Available Among renewable sources of energy, wind is the most widely used resource due to its commercial acceptance, low cost and ease of operation and maintenance, relatively much less time for its realization from concept till operation, creation of new jobs, and least adverse effect on the environment. The fast technological development in the wind industry and availability of multi megawatt sized horizontal axis wind turbines has further led the promotion of wind power utilization globally. It is a well-known fact that the wind speed increases with height and hence the energy output. However, one cannot go above a certain height due to structural and other issues. Hence other attempts need to be made to increase the efficiency of the wind turbines, maintaining the hub heights to acceptable and controllable limits. The efficiency of the wind turbines or the energy output can be increased by reducing the cut-in-speed and/or the rated-speed by modifying and redesigning the blades. The problem is tackled by identifying the optimization parameters such as annual energy yield, power coefficient, energy cost, blade mass, and blade design constraints such as physical, geometric, and aerodynamic. The present paper provides an overview of the commonly used models, techniques, tools and experimental approaches applied to increase the efficiency of the wind turbines. In the present review work, particular emphasis is made on approaches used to design wind turbine blades both experimental and numerical, methodologies used to study the performance of wind turbines both experimentally and analytically, active and passive techniques used to enhance the power output from wind turbines, reduction in cut-in-speed for improved wind turbine performance, and lastly the research and development work related to new and efficient materials for the wind turbines.
Transient Analysis and Design Improvement of a Gas Turbine Rotor Based on Thermal-Mechanical Method
Directory of Open Access Journals (Sweden)
Yang Liu
2018-01-01
Full Text Available The rotor is the core component of a gas turbine, and more than 80% of the failures in gas turbines occur in the rotor system, especially during the start-up period. Therefore, the safety assessment of the rotor during the start-up period is essential for the design of the gas turbine. In this paper, the transient equivalent stress of a gas turbine rotor under the cold start-up condition is investigated and the novel tie rod structure is introduced to reduce the equivalent stress. Firstly, a three-dimensional finite element model of the gas turbine rotor is built, and nonlinear contact behaviors such as friction are taken into account. Secondly, the convective heat transfer coefficients of the gas turbine rotor under the cold start-up condition are calculated using thermal dynamic theory. The transient analysis of the gas turbine rotor is conducted considering the thermal load, the centrifugal load, and the pretightening force. The temperature and stress distributions of the rotor under the cold start-up condition are shown in detail. In particular, the generation mechanism of maximum equivalent stress for tie rods and the change tendency of the pretightening force are illustrated in detail. The tie rod holes of the rear shaft and the turbine tie rod are the dangerous locations during the start-up period. Finally, a novel tie rod is proposed to reduce the maximum equivalent stress at the dangerous location. The maximum equivalent stress at this location is decreased by 15%. This paper provides some reference for the design of the gas turbine rotor.
CFD Analysis for Optimum Thermal Design of Carbon Nanotube Based Micro-Channel Heatsink
Directory of Open Access Journals (Sweden)
M. Mahbub
2011-10-01
Full Text Available Carbon nanotube (CNT is considered as an ideal material for thermal management in electronic packaging because of its extraordinary high thermal conductivity. Fabricated onto a silicon substrate to form micro-channels, the CNT based cooling fins show high heat dissipation efficiency. A series of 2D and 3D CFD simulations have been carried out for CNT based micro-channel cooling architectures based on one and two dimensional fin array in this paper using COMSOL 4.0a software. Micro-channels are generally regarded as an effective method for the heat transfer in electronic products. The influence of various fluids, micro-fin structures, fluid velocity and heating powers on cooling effects have been simulated and compared in this study. Steady-state thermal stress analyses for the forced convection heat transfer are also performed to determine maximum allowable stress and deflections for the different types of cooling assembly.
Korte, John J.; Kumar, Ajay; Singh, D. J.; White, J. A.
1992-01-01
A design program is developed which incorporates a modern approach to the design of supersonic/hypersonic wind-tunnel nozzles. The approach is obtained by the coupling of computational fluid dynamics (CFD) with design optimization. The program can be used to design a 2D or axisymmetric, supersonic or hypersonic, wind-tunnel nozzles that can be modeled with a calorically perfect gas. The nozzle design is obtained by solving a nonlinear least-squares optimization problem (LSOP). The LSOP is solved using an iterative procedure which requires intermediate flowfield solutions. The nozzle flowfield is simulated by solving the Navier-Stokes equations for the subsonic and transonic flow regions and the parabolized Navier-Stokes equations for the supersonic flow regions. The advantages of this method are that the design is based on the solution of the viscous equations eliminating the need to make separate corrections to a design contour, and the flexibility of applying the procedure to different types of nozzle design problems.
Control design for two-bladed wind turbines
Van Solingen, E.
2015-01-01
In the past decades wind energy has evolved into a mature source of sustainable energy such that onshore wind turbines have become cost competitive with other fossil-based energy sources. Onshore wind energy, however, faces social resistance and a lack of available locations. Offshore wind energy,
Design and performance of the drag-disc turbine transducer
International Nuclear Information System (INIS)
Averill, R.H.; Goodrich, L.D.; Ford, R.E.
1979-01-01
Mass flow rates at the Loss-of-Fluid Test (LOFT) facility, EG and G Idaho, Inc., at the Idaho National Engineering Laboratory, are measured with the drag-disc turbine transducer (DTT). Operational description of the DTT and the developmental effort are discussed. Performance data and experiences with this transducer have been evaluated and are presented in this paper
Biomimetic Wind Turbine Design with Lift Enhancing Periodic Stall
Stamhuis, Eize Jan
2017-01-01
A wind turbine includes a rotor; a blade; and a periodic stall system. The periodic stall system selectively moves at least part of the blade in an oscillating motion whereby an angle of incidence continuously varies to invoke periodic stall. The periodic stall system can move the entire blade or
HORIZONTAL AXIS MARINE CURRENT TURBINE DESIGN FOR WIND-ELECTRIC HYBRID SAILING BOAT
Ekinci, Serkan; Alvar, Mustafa
2017-01-01
In recent decades, the number of theoretical studies and applications on electric power production from renewable sources such as wind, solar, sea and tidal flows, has been increasing rapidly. Marine Current Turbines (MCTs), among the power turbines, produce power from alternating flows and are a means of power production even at lower flow rates in oceans and seas. In this study, while maintaining functional requirements, an initial and detailed design (mechanic and hydrodynamic), of an M...
Selection of a turbine cooling system applying multi-disciplinary design considerations.
Glezer, B
2001-05-01
The presented paper describes a multi-disciplinary cooling selection approach applied to major gas turbine engine hot section components, including turbine nozzles, blades, discs, combustors and support structures, which maintain blade tip clearances. The paper demonstrates benefits of close interaction between participating disciplines starting from early phases of the hot section development. The approach targets advancements in engine performance and cost by optimizing the design process, often requiring compromises within individual disciplines.
Design and development of gas turbine high temperature reactor 300 (GTHTR300)
International Nuclear Information System (INIS)
Kunitomi, Kazuhiko; Katanishi, Shoji; Takada, Shoji; Takizuka, Takakazu; Yan, Xing; Kosugiyama, Shinichi
2003-01-01
JAERI (Japan Atomic Energy Research Institute) started design and development of the high temperature gas cooled reactor with a gas turbine electric generation system, GTHTR300, in April 2001. Design originalities of the GTHTR300 are a horizontally mounted highly efficient gas turbine system and an ultimately simplified safety system such as no containment building and no active emergency core cooling. These design originalities are proposed based on design and operational experiences in conventional gas turbine systems and Japan's first high temperature gas cooled reactor (HTTR: High Temperature Engineering Test Reactor) so that many R and Ds are not required for the development. Except these original design features, devised core design, fuel design and plant design are adopted to meet design requirements and attain a target cost. This paper describes the unique design features focusing on the safety design, reactor core design and gas turbine system design together with a preliminary result of the safety evaluation carried out for a typical severe event. This study is entrusted from Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)
Energy Technology Data Exchange (ETDEWEB)
Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent
2016-01-04
We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.
Overview of hypersonic CFD code calibration studies
Miller, Charles G.
1987-01-01
The topics are presented in viewgraph form and include the following: definitions of computational fluid dynamics (CFD) code validation; climate in hypersonics and LaRC when first 'designed' CFD code calibration studied was initiated; methodology from the experimentalist's perspective; hypersonic facilities; measurement techniques; and CFD code calibration studies.
Energy Technology Data Exchange (ETDEWEB)
Dagher, Habib [Univ. of Maine, Orono, ME (United States); Viselli, Anthony [Univ. of Maine, Orono, ME (United States); Goupee, Andrew [Univ. of Maine, Orono, ME (United States); Kimball, Richard [Maine Maritime Academy, Castine, ME (United States); Allen, Christopher [Univ. of Maine, Orono, ME (United States)
2017-08-15
Volume II of the Final Report for the DeepCwind Consortium National Research Program funded by US Department of Energy Award Number: DE-EE0003278.001 summarizes the design, construction, deployment, testing, numerical model validation, retrieval, and post-deployment inspection of the VolturnUS 1:8-scale floating wind turbine prototype deployed off Castine, Maine on June 2nd, 2013. The 1:8 scale VolturnUS design served as a de-risking exercise for a commercial multi-MW VolturnUS design. The American Bureau of Shipping Guide for Building and Classing Floating Offshore Wind Turbine Installations was used to design the prototype. The same analysis methods, design methods, construction techniques, deployment methods, mooring, and anchoring planned for full-scale were used. A commercial 20kW grid-connected turbine was used and was the first offshore wind turbine in the US.
Mikhailov, V. E.; Khomenok, L. A.; Kovalev, I. A.
2018-01-01
The article provides an overview of the developments by OAO NPO TsKTI aimed at improvement of components and assemblies of new-generation turbine plants for ultra-supercritical steam parameters to be installed at the power-generating facilities in service. The list of the assemblies under development includes cylinder shells, the cylinder's flow paths and rotors, seals, bearings, and rotor cooling systems. The authors consider variants of the shafting-cylinder configurations for which advanced high-pressure and intermediate-pressure cylinders with reactive blading and low-pressure cylinders of conventional design and with counter-current steam flows are proposed and high-pressure rotors, which can increase the economic efficiency and reduce the overall turbine plant dimensions. Materials intended for the equipment components that operate at high temperatures and a steam cooling technique that allows the use of cheaper steel grades owing to the reduction in the metal's working temperature are proposed. A new promising material for the bearing surfaces is described that enables the operation at higher unit pressures. The material was tested on a full-scale test bench at OAO NPO TsKTI and a turbine in operation. Ways of controlling the erosion of the blades in the moisture-steam turbine compartments by the steam heating of the hollow guide blades are considered. To ensure the dynamic stability of the shafting, shroud and diaphragm seals that prevent the development of the destabilizing circulatory forces of the steam flow were devised and trialed. Advanced instrumentation and software are proposed to monitor the condition of the blading and thermal stresses under transient conditions, to diagnose the vibration processes, and to archive the obtained data. Attention is paid to the normalization of the electromagnetic state of the plant in order to prevent the electrolytic erosion of the plant components. The instrumentation intended for monitoring the relevant electric
Machine learning paradigms in design optimization: Applications in turbine aerodynamic design
Goel, Sanjay
Mechanisms of incorporating machine learning paradigms in design optimization have been investigated in the current research. The primary focus of the work is on machine learning algorithms which use computational models that are analogous to the hypothesized principles of natural or biological learning. Examples from structural and aerodynamic optimization have been used to demonstrate the potential of the proposed schemes. The first strategy examined in the current work seeks to improve the convergence of optimization problems by pruning the search space of weak variables. Such variables are identified by learning from a database of existing designs using neural networks. By using clustering techniques, different sets of weak variables are identified in different regions of the design space. Parameter sensitivity information obtained in the process of identifying weak variables provides accurate heuristics for formulating design rules. The impact of this methodology on obtaining converged designs has been investigated for a turbine design problem. Optimization results from a three-stage power turbine and an aircraft engine turbine are presented in this thesis. The second scheme is an evolutionary design optimization technique which gets progressively 'smarter' during the optimization process by learning from computed domain knowledge. This technique employs adaptive learning mechanisms (classifiers) which recognize the influence of the design variables on the problem solution and then generalize them to dynamically create or change design rules during optimization. This technique, when applied to a constrained optimization problem, shows progressive improvement in convergence of search, as successive generations of rules evolve by learning from the environment. To investigate this methodology, a truss optimization problem is solved with an objective of minimizing the truss weight subject to stress constraints in the truss members. A distinct convergent trend is
Wind turbine airfoil design method with low noise and experimental analysis
DEFF Research Database (Denmark)
Wang, Quan; Chen, Jin; Cheng, Jiangtao
2015-01-01
In order to study the noise characteristic of wind turbine airfoils, the airfoil optimal design mathematic model was built based on airfoil functional integrated theory and noise calculated model. The new optimized objective function of maximizing lift/drag to noise was developed on the design......, though there is a certain difference between the theory results and experiment data. Compared with NACA-64-618 airfoil, the CQU-DTU-B18 airfoil exhibits lower noise, which validates the feasibility of this design method. It is a guide to design wind turbine airfoil with lower noise and to reduce airfoil...
Design of large reheat steam turbines for U.K. and overseas markets
International Nuclear Information System (INIS)
Mitchell, J.M.
1979-01-01
Two prototype designs of large reheat steam turbines are described, together with the technical, economic and plant design aspects that have influenced their main features. Relevant service experience is outlined and details are given of the solutions adopted to overcome the relatively few problems that were encountered. The evolution of these designs to form the current range of adaptable, pre-engineered modular designs is presented and the main features of current machines are described. A brief account is given of likely future developments in large steam turbines. (author)
Design of monopiles for multi-megawatt wind turbines at 50 m water depth
DEFF Research Database (Denmark)
Njomo Wandji, Wilfried; Natarajan, Anand; Dimitrov, Nikolay Krasimirov
2015-01-01
The design of a monopile substructure for wind turbines of 10 MW capacity installed at 50 m water depth is presented. The design process starts with the design of a monopile at a moderate water depth of 26 m and is then up scaled to a 50 m water depth. The baseline geometry is then modified...
International Nuclear Information System (INIS)
Ridluan, Artit; Tokuhiro, Akira
2008-01-01
Time-invariant and time-variant numerical simulations of flow through a staggered tube bundle array, idealizing the lower plenum (LP) subsystem configuration of a very high temperature reactor (VHTR), were performed. In Part 1, the CFD prediction of fully periodic isothermal tube-bundle flow using steady Reynolds-averaged Navier-Stokes (SRANS) equations with common turbulence models was investigated at a Reynolds number (Re) of 1.8x10 4 , based on the tube diameter and inlet velocity. Three first-order turbulence models, standard k-ε turbulence, renormalized group (RNG) k-ε, and shear stress transport (SST) k-ω models, and a second-order turbulence model, Reynolds stress model (RSM), were considered. A comparison of CFD simulations and experiment results was made at five locations along (x,y) coordinates. The SRANS simulation showed that no universal model predicted the turbulent Reynolds stresses, and generally, the results were marginal to poor. This is because these models cannot accurately model the periodic, spatiotemporal nature of the complex wake flow structure. (author)
International Nuclear Information System (INIS)
Ridluan, Artit; Tokuhiro, Akira
2008-01-01
In Part II, we described the unsteady flow simulation and proposed a modification of a traditional turbulence flow model. Computational fluid dynamics (CFD) simulations of an isothermal, fully periodic flow across a tube bundle using unsteady Reynolds averaged Navier-Stokes (URANS) equations, with turbulence models such as the Reynolds stress model (RSM) were investigated at a Reynolds number of 1.8x10 4 , based on the tube diameter and inlet velocity. As noted in Part I, CFD simulation and experimental results were compared at five positions along (x,y) coordinates. The steady RANS simulation showed that four diverse turbulence models were efficient for predicting the Reynolds stresses, and generally, SRANS results were marginal to poor, using a consistent evaluation terminology. In the URANS simulation, we modeled the turbulent flow field in a manner similar to the approach used for large eddy simulation (LES). The time-dependent URANS results showed that the simulation reproduces the dynamic stability as characterized by transverse oscillatory flow structures in the near-wake region. In particular, the inclusion of terms accounting for the time scales associated with the production range and dissipation rate of turbulence generates unsteady statistics of the mean and fluctuation flow. In spite of this, the model implemented produces better agreement with a benchmark data set and is thus recommended. (author)
Furnes, Kjartan
2013-01-01
The flow in Pelton turbines is subsonic, turbulent, multiphase (water, air, and water vapor from cavitation), has high speeds, sharp gradients, free surface and dynamic boundary conditions. A static grid is unsuitable for modeling this mainly due to the turbine wheel and the liquid having a non-stationary relative motion.In recent times, significant progress in CFD simulation has been made, which also is relevant for Pelton turbines.Nevertheless, it is still common to perform costly model tes...
Design of an efficient space constrained diffuser for supercritical CO2 turbines
Keep, Joshua A.; Head, Adam J.; Jahn, Ingo H.
2017-03-01
Radial inflow turbines are an arguably relevant architecture for energy extraction from ORC and supercritical CO 2 power cycles. At small scale, design constraints can prescribe high exit velocities for such turbines, which lead to high kinetic energy in the turbine exhaust stream. The inclusion of a suitable diffuser in a radial turbine system allows some exhaust kinetic energy to be recovered as static pressure, thereby ensuring efficient operation of the overall turbine system. In supercritical CO 2 Brayton cycles, the high turbine inlet pressure can lead to a sealing challenge if the rotor is supported from the rotor rear side, due to the seal operating at rotor inlet pressure. An alternative to this is a cantilevered layout with the rotor exit facing the bearing system. While such a layout is attractive for the sealing system, it limits the axial space claim of any diffuser. Previous studies into conical diffuser geometries for supercritical CO 2 have shown that in order to achieve optimal static pressure recovery, longer geometries of a shallower cone angle are necessitated when compared to air. A diffuser with a combined annular-radial arrangement is investigated as a means to package the aforementioned geometric characteristics into a limited space claim for a 100kW radial inflow turbine. Simulation results show that a diffuser of this design can attain static pressure rise coefficients greater than 0.88. This confirms that annular-radial diffusers are a viable design solution for supercritical CO2 radial inflow turbines, thus enabling an alternative cantilevered rotor layout.
Design of Single Stage Axial Turbine with Constant Nozzle Angle Blading for Small Turbojet
Putra Adnan, F.; Hartono, Firman
2018-04-01
In this paper, an aerodynamic design of a single stage gas generator axial turbine for small turbojet engine is explained. As per design requirement, the turbine should be able to deliver power output of 155 kW at 0.8139 kg/s gas mass flow, inlet total temperature of 1200 K and inlet total pressure of 335330 Pa. The design phase consist of several steps, i.e.: determination of velocity triangles in 2D plane, 2D blading design and 3D flow analysis at design point using Computational Fluid Dynamics method. In the determination of velocity triangles, two conditions are applied: zero inlet swirl (i.e. the gas flow enter the turbine at axial direction) and constant nozzle angle design (i.e. the inlet and outlet angle of the nozzle blade are constant from root to tip). The 2D approach in cascade plane is used to specify airfoil type at root, mean and tip of the blade based on inlet and outlet flow conditions. The 3D approach is done by simulating the turbine in full configuration to evaluate the overall performance of the turbine. The observed parameters including axial gap, stagger angle, and tip clearance affect its output power. Based on analysis results, axial gap and stagger angle are positively correlated with output power up to a certain point at which the power decreases. Tip clearance, however, gives inversely correlation with output power.
Unsteady Flow in a Supersonic Turbine with Variable Specific Heats
Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)
2001-01-01
Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier
Effects of setting angle and chord length on performance of four blades bionic wind turbine
Yang, Z. X.; Li, G. S.; Song, L.; Bai, Y. F.
2017-11-01
With the energy crisis and the increasing environmental pollution, more and more efforts have been made about wind power development. In this paper, a four blades bionic wind turbine was proposed, and the outline of wind turbine was constructed by the fitted curve. This paper attempted to research the effects of setting angle and chord length on performance of four blades bionic wind turbine by computational fluid dynamics (CFD) simulation. The results showed that the setting angle and chord length of the bionic wind turbine has some significant effects on the efficiency of the wind turbine, and within the range of wind speed from 7 m/s to 15 m/s, the wind turbine achieved maximum efficiency when the setting angle is 31 degree and the chord length is 125 mm. The conclusion will work as a guideline for the improvement of wind turbine design
2010-04-01
Aerothermodynamic Design, Review on Ground Testing and CFD (RTO-EN-AVT-186) Executive Summary The Lecture Series focus on the presentation of...impulsions ITAM et les tubes à choc DLR HEG. Les sondes à réponse rapide et les techniques de mesures instables ont été présentées ainsi que les outils de
Energy Technology Data Exchange (ETDEWEB)
Poore, R.; Lettenmaier, T.
2003-08-01
This report presents the Phase I results of the National Renewable Energy Laboratory's (NREL's) WindPACT (Wind Partnership for Advanced Component Technologies) Advanced Wind Turbine Drive Train Designs Study. Global Energy Concepts, LLC performed this work under a subcontract with NREL. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy (COE) from wind turbines to be reduced. Other parts of the WindPACT project have examined blade and logistics scaling, balance-of-station costs, and rotor design. This study was designed to investigate innovative drive train designs.
1984-01-01
The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.
The choice of design speed for PWR turbines for 50 Hz generating systems
International Nuclear Information System (INIS)
Harris, F.R.; Kalderon, D.
1983-01-01
Turbines for use with water-cooled reactors, by virtue of their large output, coupled to their larger steam flow per unit output than for fossil-fuelled units, require large total blade exhaust areas; this has led to the adoption of 1800 rpm as the design speed where generation is at 60 Hz, but for generation at 50 Hz both 1500 rpm and 3000 rpm turbines can be deployed over a wide range of outputs. The paper points out why half-speed units, universal for generation at 60 Hz, are often uneconomic for 50 Hz generation. Full-speed and half-speed machines are compared in size, weight, constructional features, reliability, and efficiency. Taking into account economic practice in selection of condenser pressures, the available cooling water temperatures, and also the current and foreseeable turbine blade annulus areas, combinations of outputs and cooling water temperatures where each type of turbine is likely to be economically preferable are identified. (author)
Reliability-Based Design of Wind Turbine Foundations – Computational Modelling
DEFF Research Database (Denmark)
Vahdatirad, Mohammad Javad
Among renewable green energy generators, wind turbines are the most technically and economically efficient. Therefore, wind power plants are experiencing a competitive increased trend in global growth. The gas and oil industry is shrouded by political conflict, not the least of which is burning...... of fossil fuels causing pollution, environmental degradation, and climate change, and finally mixed messages regarding declining domestic and foreign oil reserves. Therefore, the wind power industry is becoming a key player as the green energy producer in many developed countries. However, consumers demand...... increased cost-effectiveness in wind turbines, and an optimized design must be implemented on the expensive structural components. The traditional wind turbine foundation typically expends 25-30% of the total wind turbine budget; thus it is one of the most costly fabrication components. Therefore...
Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes
Boyle, Robert
2014-01-01
This project demonstrated that higher temperature capabilities of ceramic matrix composites (CMCs) can be used to reduce emissions and improve fuel consumption in gas turbine engines. The work involved closely coupling aerothermal and structural analyses for the first-stage vane of a high-pressure turbine (HPT). These vanes are actively cooled, typically using film cooling. Ceramic materials have structural and thermal properties different from conventional metals used for the first-stage HPT vane. This project identified vane configurations that satisfy CMC structural strength and life constraints while maintaining vane aerodynamic efficiency and reducing vane cooling to improve engine performance and reduce emissions. The project examined modifications to vane internal configurations to achieve the desired objectives. Thermal and pressure stresses are equally important, and both were analyzed using an ANSYS® structural analysis. Three-dimensional fluid and heat transfer analyses were used to determine vane aerodynamic performance and heat load distributions.
Wind turbine model and loop shaping controller design
Gilev, Bogdan
2017-12-01
A model of a wind turbine is evaluated, consisting of: wind speed model, mechanical and electrical model of generator and tower oscillation model. Model of the whole system is linearized around of a nominal point. By using the linear model with uncertainties is synthesized a uncertain model. By using the uncertain model is developed a H∞ controller, which provide mode of stabilizing the rotor frequency and damping the tower oscillations. Finally is simulated work of nonlinear system and H∞ controller.
Design of a fibrous composite preform for wind turbine rotor blades
DEFF Research Database (Denmark)
Hansen, Jens Zangenberg; Brøndsted, Povl; Kofoed, M.
2014-01-01
The present work addresses the different factors and challenges one must cope with in the design process of a composite preform used for the load-carrying main laminate of a wind turbine rotor blade. The design process is split up into different key elements, each of which are presented...... and discussed separately. The key elements are all interconnected, which complicate the design process and involves an iterative procedure. The aim is to provide an overview of the process that governs the design of composite preforms for wind turbine blades. The survey can be used as an information source...... on composite preform manufacturing. Basic knowledge on wind turbine blade technology and composites is assumed. © 2013 Elsevier Ltd. All rights reserved....
Mechanical design and testing of a hot-gas turbine on a test facility
International Nuclear Information System (INIS)
Staude, R.
1981-01-01
Advanced calculation methods and specific solutions for any particular problem are basic requirements for the mechanical design of hot-gas components for gas turbines. The mechanical design contributes a great deal to the smooth running and operational reliability and thus to the quality of the machine. By reference to an expander, the present paper discusses the strength of hot components, such as the casing and the rotor, for both stationary and transient temperature distribution. Mechanical testing under hot-gas conditions fully confirmed the reliability of the rating and design of the hot-gas turbines supplied by M:A.N.-GHH STERKRADE. (orig.) [de
Design of a new urban wind turbine airfoil using a pressure-load inverse method
Energy Technology Data Exchange (ETDEWEB)
Henriques, J.C.C.; Gato, L.M.C. [IDMEC, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Marques da Silva, F. [LNEC - Laboratorio Nacional de Engenharia Civil, Av. Brasil, 101, 1700-066 Lisboa (Portugal); Estanqueiro, A.I. [INETI - Instituto Nacional de Engenharia, Tecnologia e Inovacao Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal)
2009-12-15
This paper presents the design methodology of a new wind turbine airfoil that achieves high performance in urban environment by increasing the maximum lift. For this purpose, an inverse method was applied to obtain a new wind turbine blade section with constant pressure-load along the chord, at the design inlet angle. In comparison with conventional blade section designs, the new airfoil has increased maximum lift, reduced leading edge suction peak and controlled soft-stall behaviour, due to a reduction of the adverse pressure gradient on the suction side. Wind tunnel experimental results confirmed the computational results. (author)
Mod-5A Wind Turbine Generator Program Design Report. Volume 4: Drawings and Specifications, Book 1
1984-01-01
The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. Volume 4 contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. This is the first of five books of volume four. It contains structural design criteria, generator step-up transformer specs, specs for design, fabrication and testing of the system, specs for the ground control enclosure, systems specs, slip ring specs, and control system specs.
The importance of CFD methods to the design of huge scrubber systems
International Nuclear Information System (INIS)
Maier, H.
2005-01-01
Due to the influence of the multiphase flow on the scrubber removal performance Austrian Energy and Environment started research end development in co-operation with universities on the simulation of wet scrubber systems using CFD methods (Computational removal performance). In November 2001 the spray banks were reconstructed with a minimum of requirements according to the concept of AE and E. The first experiences in operation already showed a significant improvement. In July 2002 measurements of the SO 2 -profile confirmed the experiences of the client. The high SO 2 peaks nearly disappeared at the absorber wall. Furthermore the changes resulted in a more homogenous SO 2 distribution in the clean gas which was also found out by measurements in the outlet duct. According to the client the LG-ratio could be reduced. Nearly every load case can now be handled with one active spray bank less. With respect to energy consumption of the plant this means a remarkable reduction of operational costs. Compared to that the scrubbers of the FGD system in Neurath will have a flue gas capacity nearly twice much as that of the FGD plant in Heyden. The start up will take place in 2008
A Virtual Tool for Minimum Cost Design of a Wind Turbine Tower with Ring Stiffeners
Directory of Open Access Journals (Sweden)
Fatih Karpat
2013-07-01
Full Text Available Currently, renewable energy resources are becoming more important to reduce greenhouse gas emissions and increase energy efficiency. Researchers have focused on all components of wind turbines to increase reliability and minimize cost. In this paper, a procedure including a cost analysis method and a particle swarm optimization algorithm has been presented to efficiently design low cost steel wind turbine towers. A virtual tool is developed in MATLAB for the cost optimization of wind turbine steel towers with ring stiffeners using a particle swarm optimization algorithm. A wind turbine tower optimization problem in the literature is solved using the developed computer program. In the optimization procedure the optimization results match very well with the optimization results obtained previously. The wall thickness of the shell segments and the dimensions of the ring stiffeners are selected as the design variables, and the limits of the local buckling for the flat ring stiffeners, the local shell buckling limit, the panel ring buckling limit and the limitation of the frequency are considered the design constraints. Numerical examples are presented to understand the impacts of the design variables on the total cost of the wind turbine tower.
THE DESIGN OF A MODULAR WIND TURBINE MEANT FOR HOUSES AND OFFICE BUILDINGS
Directory of Open Access Journals (Sweden)
RĂDUICĂ Felix
2016-11-01
Full Text Available This paper describes a new wind turbine design which can be implemented for home, office and public buildings. Also, this article presents specific steps taken by the designer to develop the product. A honeycomb design has been implemented for modularity reasons. Certain measures have been taken to ensure the quality of the design including, but not limited to: an emphasis on design principles, product development and shapes described by and found in nature.
CFD simulations of the MEXICO rotor
DEFF Research Database (Denmark)
Bechmann, Andreas; Sørensen, Niels N.; Zahle, Frederik
2011-01-01
The wake behind a wind turbine model is investigated using Computational Fluid Dynamics (CFD), and results are compared with measurements. The turbine investigated is the three‐bladed test rotor (D = 4.5 m) used in the Model Experiments in Controlled Conditions (MEXICO) wind tunnel experiment....... During the MEXICO experiment, particle image velocimetry measurements of the induction upstream and downstream of the rotor were performed for different operating conditions, giving a unique dataset to verify theoretical models and CFD models. The present paper first describes the efforts in reproducing...
Design and CFD analysis of intake port and exhaust port for a 4 valve cylinder head engine
Latheesh, V. M.; Parthasarathy, P.; Baskaran, V.; Karthikeyan, S.
2018-02-01
In cylinder air motion in a compression ignition engine effects mixing of air-fuel, quality of combustion and emission produced. The primary objective is to design and analyze intake and the exhaust port for a four valve cylinder head to meet higher emission norms for a given diesel engine with two valves. In this work, an existing cylinder head designed for two valves was redesigned with 4 valves. The modern trend also confirms this approach. This is being followed in the design and development of new generation engines to meet the stringent environment norms, competition in market and demand for more fuel-efficient engines. The swirl ratio and flow coefficient were measured for different valve lifts using STAR CCM+. CFD results were validated with the two-valve cylinder experimental results. After validation, a comparison between two-valve and four-valve cylinder head was done. The conversion of two valve cylinder head to 4 valves may not support modern high swirl generating port layout and requires a trade-off between many design parameters.
Van der Male, P.
2013-01-01
Offshore wind turbines are highly exposed to timevarying loads. For support structures, estimation of the fatigue damage during the lifetime of the structure is an essential design aspect. This already applies for the preliminary design stage. In determining the dynamic amplification in the
Fatigue Reliability and Calibration of Fatigue Design Factors for Offshore Wind Turbines
DEFF Research Database (Denmark)
Dominguez, Sergio Marquez; Sørensen, John Dalsgaard
2012-01-01
Consequences of failure of offshore wind turbines (OWTs) are in general lower than consequences of failure of, e.g., oil & gas platforms. It is reasonable that lower fatigue design factors can be applied for fatigue design of OWTs when compared to other fixed offshore structures. Calibration...