WorldWideScience

Sample records for turbine systems preprint

  1. Preprint data base system at INS: INSPREP system

    International Nuclear Information System (INIS)

    Shinohara, M.; Ukai, K.; Fujiyoshi, N.

    1988-02-01

    The library at the INS (Institute for Nuclear Study) receives several tens of preprints a week from foreign and domestic laboratories and universities. These preprints are pigeonholed by making a catalog card index carried a title, authors, an accession number, classification of fields, etc. A newly arrived preprint lists is also served every week. The cataloging and weekly lists publishing works were handled with a typewriter. And then, it was very difficult and tedious to correct/check/file the index cards and to correct/check the weekly preprint lists. To make a preprint data efficiently by a computer and to refer this data base by on-line without using a index card, the INSPREP system is constructed. The INSPREP system consists of two parts. One is named a PREPINS, and is used to make a preprint data, builds a preprint data base, and publishes a weekly preprint lists. The other, called a PREP, performs an on-line retrieval for this data base. The preprint data base consists of following items such as an author, a title, an accession number, a report number, a classification field, etc. The PREPINS can be used by limited persons for security. User can search a preprint by inputting above mentioned items. The PREP adopts a menu method. Then, user can perform an on-line retrieval very easily. (author)

  2. Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

    2006-03-01

    This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of

  3. A Real-Time Systems Symposium Preprint.

    Science.gov (United States)

    1983-09-01

    Real - Time Systems Symposium Preprint Interim Tech...estimate of the occurence of the error. Unclassii ledSECUqITY CLASSIF’ICA T" NO MI*IA If’ inDI /’rrd erter for~~ble. ’Corrputnqg A REAL - TIME SYSTEMS SYMPOSIUM...ABSTRACT This technical report contains a preprint of a paper accepted for presentation at the REAL - TIME SYSTEMS SYMPOSIUM, Arlington,

  4. search.bioPreprint: a discovery tool for cutting edge, preprint biomedical research articles [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Carrie L. Iwema

    2016-07-01

    Full Text Available The time it takes for a completed manuscript to be published traditionally can be extremely lengthy. Article publication delay, which occurs in part due to constraints associated with peer review, can prevent the timely dissemination of critical and actionable data associated with new information on rare diseases or developing health concerns such as Zika virus. Preprint servers are open access online repositories housing preprint research articles that enable authors (1 to make their research immediately and freely available and (2 to receive commentary and peer review prior to journal submission. There is a growing movement of preprint advocates aiming to change the current journal publication and peer review system, proposing that preprints catalyze biomedical discovery, support career advancement, and improve scientific communication. While the number of articles submitted to and hosted by preprint servers are gradually increasing, there has been no simple way to identify biomedical research published in a preprint format, as they are not typically indexed and are only discoverable by directly searching the specific preprint server websites. To address this issue, we created a search engine that quickly compiles preprints from disparate host repositories and provides a one-stop search solution. Additionally, we developed a web application that bolsters the discovery of preprints by enabling each and every word or phrase appearing on any web site to be integrated with articles from preprint servers. This tool, search.bioPreprint, is publicly available at http://www.hsls.pitt.edu/resources/preprint.

  5. Preprinting Microbiology.

    Science.gov (United States)

    Schloss, Patrick D

    2017-05-23

    The field of microbiology has experienced significant growth due to transformative advances in technology and the influx of scientists driven by a curiosity to understand how microbes sustain myriad biochemical processes that maintain Earth. With this explosion in scientific output, a significant bottleneck has been the ability to rapidly disseminate new knowledge to peers and the public. Preprints have emerged as a tool that a growing number of microbiologists are using to overcome this bottleneck. Posting preprints can help to transparently recruit a more diverse pool of reviewers prior to submitting to a journal for formal peer review. Although the use of preprints is still limited in the biological sciences, early indications are that preprints are a robust tool that can complement and enhance peer-reviewed publications. As publishing moves to embrace advances in Internet technology, there are many opportunities for preprints and peer-reviewed journals to coexist in the same ecosystem. Copyright © 2017 Schloss.

  6. FAST Modularization Framework for Wind Turbine Simulation: Full-System Linearization: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, Jason; Jonkman, Bonnie

    2016-11-01

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well-established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  7. Comparison of Standard Wind Turbine Models with Vendor Models for Power System Stability Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Honrubia-Escribano, A.; Gomez Lazaro, E.; Jimenez-Buendia, F.; Muljadi, Eduard

    2016-11-01

    The International Electrotechnical Commission Standard 61400-27-1 was published in February 2015. This standard deals with the development of generic terms and parameters to specify the electrical characteristics of wind turbines. Generic models of very complex technological systems, such as wind turbines, are thus defined based on the four common configurations available in the market. Due to its recent publication, the comparison of the response of generic models with specific vendor models plays a key role in ensuring the widespread use of this standard. This paper compares the response of a specific Gamesa dynamic wind turbine model to the corresponding generic IEC Type III wind turbine model response when the wind turbine is subjected to a three-phase voltage dip. This Type III model represents the doubly-fed induction generator wind turbine, which is not only one of the most commonly sold and installed technologies in the current market but also a complex variable-speed operation implementation. In fact, active and reactive power transients are observed due to the voltage reduction. Special attention is given to the reactive power injection provided by the wind turbine models because it is a requirement of current grid codes. Further, the boundaries of the generic models associated with transient events that cannot be represented exactly are included in the paper.

  8. PC database for high energy preprint collections

    International Nuclear Information System (INIS)

    Haymaker, R.

    1985-06-01

    We describe a microcomputer database used by the high energy group to keep track of preprints in our collection. It is used as a supplement to the SLAC-SPIRES database to retrieve preprints on hand. This was designed as a low overhead system for a small group

  9. Strategies for Refining IEC 61400-2: Wind Turbine Generator Systems - Part 2: Safety of Small Wind Turbines: Preprint

    International Nuclear Information System (INIS)

    van Dam, J. J. D.; Forsyth, T. L.; Hansen, A. C.

    2001-01-01

    This paper provides a status of the changes currently being made by IEC Maintenance Team 02 (MT02) to the existing IEC 61400-2 ''Safety of small wind turbines.'' In relation to the work done by IEC MT02, work has been done by NREL and Windward Engineering under the DOE/NREL Small Wind Turbine (SWT) Project. Aeroelastic models were built and measurements taken on a Whisper H40 turbine and an AOC 15/50. Results from this study were used to verify the simple design equations. This verification will be used to evaluate how changes made in the design load estimation section of the standard work out for a broad range of turbine configurations. The work presented here builds on work performed by Van Hulle (1996)

  10. Preprint WebVRGIS Based Traffic Analysis and Visualization System

    OpenAIRE

    Li, Xiaoming; Lv, Zhihan; Wang, Weixi; Zhang, Baoyun; Hu, Jinxing; Yin, Ling; Feng, Shengzhong

    2015-01-01

    This is the preprint version of our paper on Advances in Engineering Software. With several characteristics, such as large scale, diverse predictability and timeliness, the city traffic data falls in the range of definition of Big Data. A Virtual Reality GIS based traffic analysis and visualization system is proposed as a promising and inspiring approach to manage and develop traffic big data. In addition to the basic GIS interaction functions, the proposed system also includes some intellige...

  11. Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering Approach; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Ning, A.; King, R.; Graf, P.; Scott, G.; Veers, P.

    2014-02-01

    This paper introduces the development of a new software framework for research, design, and development of wind energy systems which is meant to 1) represent a full wind plant including all physical and nonphysical assets and associated costs up to the point of grid interconnection, 2) allow use of interchangeable models of varying fidelity for different aspects of the system, and 3) support system level multidisciplinary analyses and optimizations. This paper describes the design of the overall software capability and applies it to a global sensitivity analysis of wind turbine and plant performance and cost. The analysis was performed using three different model configurations involving different levels of fidelity, which illustrate how increasing fidelity can preserve important system interactions that build up to overall system performance and cost. Analyses were performed for a reference wind plant based on the National Renewable Energy Laboratory's 5-MW reference turbine at a mid-Atlantic offshore location within the United States.

  12. Impacts of Providing Inertial Response on Dynamic Loads of Wind Turbine Drivetrains: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Girsang, I. P.; Dhupia, J.; Singh, M.; Gevorgian, V.; Muljadi, E.; Jonkman, J.

    2014-09-01

    There has been growing demand from the power industry for wind power plants to support power system operations. One such requirement is for wind turbines to provide ancillary services in the form of inertial response. When the grid frequency drops, it is essential for wind turbine generators (WTGs) to inject kinetic energy stored in their inertia into the grid to help arrest the frequency decline. However, the impacts of inertial response on the structural loads of the wind turbine have not been given much attention. To bridge this gap, this paper utilizes a holistic model for both fixed-speed and variable-speed WTGs by integrating the aeroelastic wind turbine model in FAST, developed by the National Renewable Energy Laboratory, with the electromechanical drivetrain model in SimDriveline and SimPowerSystems.

  13. Usage of Parameterized Fatigue Spectra and Physics-Based Systems Engineering Models for Wind Turbine Component Sizing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Taylor; Guo, Yi; Veers, Paul; Dykes, Katherine; Damiani, Rick

    2016-01-26

    Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrum is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.

  14. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Davoust, S.; Jehu, A.; Bouillet, M.; Bardon, M.; Vercherin, B.; Scholbrock, A.; Fleming, P.; Wright, A.

    2014-05-01

    Turbine-mounted lidars provide preview measurements of the incoming wind field. By reducing loads on critical components and increasing the potential power extracted from the wind, the performance of wind turbine controllers can be improved [2]. As a result, integrating a light detection and ranging (lidar) system has the potential to lower the cost of wind energy. This paper presents an evaluation of turbine-mounted lidar availability. Availability is a metric which measures the proportion of time the lidar is producing controller-usable data, and is essential when a wind turbine controller relies on a lidar. To accomplish this, researchers from Avent Lidar Technology and the National Renewable Energy Laboratory first assessed and modeled the effect of extreme atmospheric events. This shows how a multirange lidar delivers measurements for a wide variety of conditions. Second, by using a theoretical approach and conducting an analysis of field feedback, we investigated the effects of the lidar setup on the wind turbine. This helps determine the optimal lidar mounting position at the back of the nacelle, and establishes a relationship between availability, turbine rpm, and lidar sampling time. Lastly, we considered the role of the wind field reconstruction strategies and the turbine controller on the definition and performance of a lidar's measurement availability.

  15. The preprint debate: What are the issues?

    Science.gov (United States)

    da Silva, Jaime A Teixeira

    2018-04-01

    The debate surrounding preprints is increasing. Preprint proponents claim that preprints are a way to shore up trust in academic publishing, that they provide an additional 'quality' screen prior to traditional peer review, that they can assist with the replication crisis plaguing science in part by making negative or contradictory results public, and that they speed up the publishing process because fundamental results can be presented early, serving as timely reports for the purposes of tenure or grant funding. Preprint skeptics and critics claim that preprints may represent a risk and a danger to quality-based academic publishing because they are documents that have not been carefully and thoroughly vetted prior to their release into the public domain. Thus, academics who cite invalid, poorly vetted, or false facts could cause harm, not unlike the unscholarly 'predatory' open access movement. Feedback on work from lesser-known groups, or on less glamorous topics, may be null or worse than from traditional peer review, annulling an initial key objective of preprints. Although there is no widespread empirical evidence or data yet regarding some of these issues, academics should be aware of the ideological, financial, and political tug-of-war taking place before deciding if they wish to publish their important findings as a preprint prior or simultaneous to submitting to a regular journal for peer review.

  16. The prehistory of biology preprints: A forgotten experiment from the 1960s.

    Directory of Open Access Journals (Sweden)

    Matthew Cobb

    2017-11-01

    Full Text Available In 1961, the National Institutes of Health (NIH began to circulate biological preprints in a forgotten experiment called the Information Exchange Groups (IEGs. This system eventually attracted over 3,600 participants and saw the production of over 2,500 different documents, but by 1967, it was effectively shut down following the refusal of journals to accept articles that had been circulated as preprints. This article charts the rise and fall of the IEGs and explores the parallels with the 1990s and the biomedical preprint movement of today.

  17. The prehistory of biology preprints: A forgotten experiment from the 1960s.

    Science.gov (United States)

    Cobb, Matthew

    2017-11-01

    In 1961, the National Institutes of Health (NIH) began to circulate biological preprints in a forgotten experiment called the Information Exchange Groups (IEGs). This system eventually attracted over 3,600 participants and saw the production of over 2,500 different documents, but by 1967, it was effectively shut down following the refusal of journals to accept articles that had been circulated as preprints. This article charts the rise and fall of the IEGs and explores the parallels with the 1990s and the biomedical preprint movement of today.

  18. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  19. Analysis of Wind Turbine Simulation Models: Assessment of Simplified versus Complete Methodologies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Honrubia-Escribano, A.; Jimenez-Buendia, F.; Molina-Garcia, A.; Fuentes-Moreno, J. A.; Muljadi, Eduard; Gomez-Lazaro, E.

    2015-09-14

    This paper presents the current status of simplified wind turbine models used for power system stability analysis. This work is based on the ongoing work being developed in IEC 61400-27. This international standard, for which a technical committee was convened in October 2009, is focused on defining generic (also known as simplified) simulation models for both wind turbines and wind power plants. The results of the paper provide an improved understanding of the usability of generic models to conduct power system simulations.

  20. Citation Patterns to Traditional and Electronic Preprints in the Published Literature.

    Science.gov (United States)

    Youngen, Gregory K.

    1998-01-01

    Identifies the growing importance of electronic preprints in the published literature of physics and astronomy and address several areas of concern regarding the future role of electronic preprints in scientific communication. Topics include a history of preprints in astronomy and physics; inaccuracies in preprint citations; and archival issues.…

  1. Turbine system and adapter

    Science.gov (United States)

    Hogberg, Nicholas Alvin; Garcia-Crespo, Andres Jose

    2017-05-30

    A turbine system and adapter are disclosed. The adapter includes a turbine attachment portion having a first geometry arranged to receive a corresponding geometry of a wheelpost of a turbine rotor, and a bucket attachment portion having a second geometry arranged to receive a corresponding geometry of a root portion of a non-metallic turbine bucket. Another adapter includes a turbine attachment portion arranged to receive a plurality of wheelposts of a turbine rotor, and a bucket attachment portion arranged to receive a plurality of non-metallic turbine buckets having single dovetail configuration root portions. The turbine system includes a turbine rotor wheel configured to receive metal buckets, at least one adapter secured to at least one wheelpost on the turbine rotor wheel, and at least one non-metallic bucket secured to the at least one adapter.

  2. Optimization under Uncertainty of Site-Specific Turbine Configurations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Quick, Julian; Dykes, Katherine; Graf, Peter; Zahle, Frederik

    2016-11-01

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. If there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtained with increasing risk aversion on the part of the designer.

  3. Exploring Optimization Opportunities in Four-Point Suspension Wind Turbine Drivetrains Through Integrated Design Approaches: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-13

    Drivetrain design has significant influence on the costs of wind power generation. Current industry practices usually approach the drivetrain design with loads and system requirements defined by the turbine manufacturer. Several different manufacturers are contracted to supply individual components from the low-speed shaft to the generator - each receiving separate design specifications from the turbine manufacturer. Increasingly, more integrated approaches to turbine design have shown promise for blades and towers. Yet, integrated drivetrain design is a challenging task owing to the complex physical behavior of the important load-bearing components, namely the main bearings, gearbox, and the generator. In this paper we combine two of NREL's systems engineering design tools, DriveSE and GeneratorSE, to enable a comprehensive system-level drivetrain optimization for the IEAWind reference turbine for land-based applications. We compare a more traditional design with integrated approaches employing decoupled and coupled design optimization. It is demonstrated that both approaches have the potential to realize notable mass savings with opportunities to lower the costs of energy.

  4. Optimizing the design of preprinted orders for ambulatory chemotherapy: combining oncology, human factors, and graphic design.

    Science.gov (United States)

    Jeon, Jennifer; White, Rachel E; Hunt, Richard G; Cassano-Piché, Andrea L; Easty, Anthony C

    2012-03-01

    To establish a set of guidelines for developing ambulatory chemotherapy preprinted orders. Multiple methods were used to develop the preprinted order guidelines. These included (A) a comprehensive literature review and an environmental scan; (B) analyses of field study observations and incident reports; (C) critical review of evidence from the literature and the field study observation analyses; (D) review of the draft guidelines by a clinical advisory group; and (E) collaboration with graphic designers to develop sample preprinted orders, refine the design guidelines, and format the resulting content. The Guidelines for Developing Ambulatory Chemotherapy Preprinted Orders, which consist of guidance on the design process, content, and graphic design elements of ambulatory chemotherapy preprinted orders, have been established. Health care is a safety critical, dynamic, and complex sociotechnical system. Identifying safety risks in such a system and effectively addressing them often require the expertise of multiple disciplines. This study illustrates how human factors professionals, clinicians, and designers can leverage each other's expertise to uncover commonly overlooked patient safety hazards and to provide health care professionals with innovative, practical, and user-centered tools to minimize those hazards.

  5. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha; Maness, Michael; Dykes, Katherine

    2017-01-01

    Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation and maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of

  6. Manufacturing a 9-Meter Thermoplastic Composite Wind Turbine Blade: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Snowberg, David R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Derek S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beach, Ryan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rooney, Samantha A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Swan, Dana [Arkema Inc.

    2017-12-06

    Currently, wind turbine blades are manufactured from a combination of glass and/or carbon fiber composite materials with a thermoset resin such as epoxy, which requires energy-intensive and expensive heating processes to cure. Newly developed in-situ polymerizing thermoplastic resin systems for composite wind turbine blades polymerize at room temperature, eliminating the heating process and significantly reducing the blade manufacturing cycle time and embodied energy, which in turn reduces costs. Thermoplastic materials can also be thermally welded, eliminating the need for adhesive bonds between blade components and increasing the overall strength and reliability of the blades. As well, thermoplastic materials enable end-of-life blade recycling by reheating and decomposing the materials, which is a limitation of existing blade technology. This paper presents a manufacturing demonstration for a 9-m-long thermoplastic composite wind turbine blade. This blade was constructed in the Composites Manufacturing Education and Technology facility at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) using a vacuum-assisted resin transfer molding process. Johns Manville fiberglass and an Arkema thermoplastic resin called Elium were used. Additional materials included Armacell-recycled polyethylene terephthalate foam from Creative Foam and low-cost carbon- fiber pultruded spar caps (manufactured in collaboration with NREL, Oak Ridge National Laboratory, Huntsman, Strongwell, and Chomarat). This paper highlights the development of the thermoplastic resin formulations, including an additive designed to control the peak exothermic temperatures. Infusion and cure times of less than 3 hours are also demonstrated, highlighting the efficiency and energy savings associated with manufacturing thermoplastic composite blades.

  7. Gradient-Based Optimization of Wind Farms with Different Turbine Heights: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Andrew P. J.; Thomas, Jared; Ning, Andrew; Annoni, Jennifer; Dykes, Katherine; Fleming, Paul

    2017-05-08

    Turbine wakes reduce power production in a wind farm. Current wind farms are generally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine hub heights. Results indicate that when a farm is optimized for layout and height with two separate height groups, COE can be lowered by as much as 5%-9%, compared to a similar layout and height optimization where all the towers are the same. The COE has the best improvement in farms with high turbine density and a low wind shear exponent.

  8. Adaptive Data Processing Technique for Lidar-Assisted Control to Bridge the Gap between Lidar Systems and Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schlipf, David; Raach, Steffen; Haizmann, Florian; Cheng, Po Wen; Fleming, Paul; Scholbrock, Andrew, Krishnamurthy, Raghu; Boquet, Mathieu

    2015-12-14

    This paper presents first steps toward an adaptive lidar data processing technique crucial for lidar-assisted control in wind turbines. The prediction time and the quality of the wind preview from lidar measurements depend on several factors and are not constant. If the data processing is not continually adjusted, the benefit of lidar-assisted control cannot be fully exploited, or can even result in harmful control action. An online analysis of the lidar and turbine data are necessary to continually reassess the prediction time and lidar data quality. In this work, a structured process to develop an analysis tool for the prediction time and a new hardware setup for lidar-assisted control are presented. The tool consists of an online estimation of the rotor effective wind speed from lidar and turbine data and the implementation of an online cross correlation to determine the time shift between both signals. Further, initial results from an ongoing campaign in which this system was employed for providing lidar preview for feed-forward pitch control are presented.

  9. Mathematical Models of Gas Turbine Engines and Their Components (Les Modeles Mathematiques des Turbomoteurs et de leurs organes)

    Science.gov (United States)

    1994-12-01

    measurements of heat-transfer rate to a gas turbine rotor blade. J.Engng Power . V. 104. No.3. 1982. pp. 542-551. 19. Venediktov V.D., Granovsky A.V...Preprint CIAM, No 11, 1993 (in Russian). 28. Granovsky AV., Danilkin A.V., Rogkov S.G., Rudenko S.V. Numerical and experimental investigation of

  10. Development and Verification of a Fully Coupled Simulator for Offshore Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J. M.; Buhl, M. L. Jr.

    2007-01-01

    This report outlines the development of an analysis tool capable of analyzing a variety of wind turbine, support platform, and mooring system configurations.The simulation capability was tested by model-to-model comparisons to ensure its correctness.

  11. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  12. Electrohydraulic system to control NPP turbines

    International Nuclear Information System (INIS)

    Kosyak, Yu.F.; Virchenko, M.A.; Rozhanskij, V.E.; Rokhlenko, V.Yu.; Gapunin, A.Ya.; Zhornitskaya, T.Ya.; Rasskazov, I.Eh.; Butsenko, V.N.; Brajnin, L.S.; Makarenko, N.I.

    1985-01-01

    Operation regimes of electrohydraulic regulation system (EHRS) of NPP turbines, designed to control the turbine in start-up and working conditions, have been decribed. In start-up regimes EHRS ensures the testing of control valves of the turbine, the turn of the turbine from zero to the nominal rotation frequency (automatic, semiautomatic and manual regulation), turbine acceleration to test safety automatic systems, gradual change in rotation frequency during generator synchronization with circuit. Under working conditions EHRS ensures the maintenance of frequency, power and vapour pressure before the turbine. A block diagram of EHRS is presented. Sensors and electronic part of EHRS are supplied with triple reservation, which ensures a high relaibility of the system

  13. Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mann, Margaret K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-03

    The global geothermal electricity market has significantly grown over the last decade and is expected to reach a total installed capacity of 18.4 GWe in 2021 (GEA, 2016). Currently, geothermal project developers customize the size of the power plant to fit the resource being developed. In particular, the turbine is designed and sized to optimize efficiency and resource utilization for electricity production; most often, other power plant components are then chosen to complement the turbine design. These custom turbine designs demand one-off manufacturing processes, which result in higher manufacturing setup costs, longer lead-times, and higher capital costs overall in comparison to larger-volume line manufacturing processes. In contrast, turbines produced in standard increments, manufactured in larger volumes, could result in lower costs per turbine. This study focuses on analysis of the global supply chain and manufacturing costs for Organic Rankine Cycle (ORC) turboexpanders and steam turbines used in geothermal power plants. In this study, we developed a manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases 1) 1 MWe geothermal ORC turboexpander 2) 5 MWe ORC turboexpander and 3) 20 MWe geothermal steam turbine, and calculated the cost of manufacturing the major components, such as the impellers/blades, shaft/rotor, nozzles, inlet guide lanes, disks, and casings. Then we used discounted cash flow (DCF) analysis to calculate the minimum sustainable price (MSP). MSP is the minimum price that a company must sell its product for in order to pay back the capital and operating expenses during the plant lifetime (CEMAC, 2017). The results showed that MSP could highly vary between 893 dollar/kW and 30 dollar/kW based on turbine size, standardization and volume of manufacturing. The analysis also showed that the economy of scale applies both to the size of the turbine and the number

  14. Certification for Small Wind Turbine Installers: What's the Hang Up?; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Oteri, F.; Sinclair, K.

    2012-03-01

    Several programs have been implemented to support the advancement of a professional, mature small wind industry and to ensure that this industry moves forward in a sustainable direction. The development of a standard for small wind turbine systems and the creation of the Small Wind Certification Council support small wind technology that is reliable and safe. Consumers and incentive programs will ultimately rely on certification to differentiate among systems sold in the U.S. market. Certification of small wind installers is yet another component deemed necessary for this industry to expand. The National Renewable Energy Laboratory, under the guidance and funding support of the U.S. Department of Energy, supported the development of small wind system installer certification provided via the North American Board of Certified Energy Practitioners. However, the small wind community is not supportive of the installer certification. There are currently only nine certified installers in the U.S. pool. This paper provides an overview of the installer certification program and why more small wind turbine installers are not pursuing this certification.

  15. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  16. Gas fired advanced turbine system

    Science.gov (United States)

    Lecren, R. T.; White, D. J.

    The basic concept thus derived from the Ericsson cycle is an intercooled, recuperated, and reheated gas turbine. Theoretical performance analyses, however, showed that reheat at high turbine rotor inlet temperatures (TRIT) did not provide significant efficiency gains and that the 50 percent efficiency goal could be met without reheat. Based upon these findings, the engine concept adopted as a starting point for the gas-fired advanced turbine system is an intercooled, recuperated (ICR) gas turbine. It was found that, at inlet temperatures greater than 2450 F, the thermal efficiency could be maintained above 50%, provided that the turbine cooling flows could be reduced to 7% of the main air flow or lower. This dual and conflicting requirement of increased temperatures and reduced cooling will probably force the abandonment of traditional air cooled turbine parts. Thus, the use of either ceramic materials or non-air cooling fluids has to be considered for the turbine nozzle guide vanes and turbine blades. The use of ceramic components for the proposed engine system is generally preferred because of the potential growth to higher temperatures that is available with such materials.

  17. Wind turbine with lightning protection system

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a wind turbine comprising a lightning protection system comprising a waveguide interconnecting a communication device and a signal-carrying structure. In other aspects, the present invention relates to the use of a waveguide in a lightning protection system...... of a wind turbine, a power splitter and its use in a lightning protection system of a wind turbine....

  18. Turbine and its turbine control system of full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Zhang Dongwei; Zhu Jinping

    1996-01-01

    The simulation for Qinshan 300 MW Nuclear Power Unit turbine and turbine control system is briefly introduced. The simulation system includes lube oil system, jacking oil pump system, turning gear system, turbine supervisor system and turbine control system. It not only correctly simulates the process of turbine normal start up, operation, and shut down, but also the response of turbine under the malfunction conditions

  19. Validation of SWAY Wind Turbine Response in FAST, with a Focus on the Influence of Tower Wind Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Koh, J. H.; Robertson, A.; Jonkman, J.; Driscoll, R.; Yin Kwee Ng, E.

    2015-04-23

    Need to modify simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions. the SWAY system in both turbine operating and nonoperating conditions. Mixed results were observed when comparing the simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions. without the new tower-load capability to examine its influence on the response characteristics of the system. This is important in situations when the turbine is parked in survival conditions. The simulation results were then compared to measured data from the SWAY system in both turbine operating and nonoperating conditions. Mixed results were observed when comparing the simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions.

  20. Serially-Connected Compensator for Eliminating the Unbalanced Three-Phase Voltage Impact on Wind Turbine Generators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Hsu, P.; Muljadi, E.; Gao, W.

    2015-04-06

    Untransposed transmission lines, unbalanced tap changer operations, and unbalanced loading in weak distribution lines can cause unbalanced-voltage conditions. The resulting unbalanced voltage at the point of interconnection affects proper gird integration and reduces the lifetime of wind turbines due to power oscillations, torque pulsations, mechanical stresses, energy losses, and uneven and overheating of the generator stator winding. This work investigates the dynamic impact of unbalanced voltage on the mechanical and electrical components of integrated Fatigue, Aerodynamics, Structures, and Turbulence (FAST) wind turbine generation systems (WTGs) of Type 1 (squirrel-cage induction generator) and Type 3 (doubly-fed induction generator). To alleviate this impact, a serially-connected compensator for a three-phase power line is proposed to balance the wind turbine-side voltage. Dynamic simulation studies are conducted in MATLAB/Simulink to compare the responses of these two types of wind turbine models under normal and unbalanced-voltage operation conditions and demonstrate the effectiveness of the proposed compensator.

  1. Towing Tank and Flume Testing of Passively Adaptive Composite Tidal Turbine Blades: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ordonez-Sanchez, Stephanie [University of Strathclyde; Porter, Kate E. [University of Strathclyde; Johnstone, Cameron M. [University of Strathclyde; Doman, Darrel A. [Dalhousie University; Pegg, Michael J. [Dalhousie University

    2017-09-28

    Composite tidal turbine blades with bend-twist (BT) coupled layups allow the blade to self-adapt to local site conditions by passively twisting. Passive feathering has the potential to increase annual energy production and shed thrust loads and power under extreme tidal flows. Decreased hydrodynamic thrust and power during extreme conditions meann that the turbine support structure, generator, and other components can be sized more appropriately, resulting in a higher utilization factor and increased cost effectiveness. This paper presents new experimental data for a small-scale turbine with BT composite blades. The research team tested the turbine in the Kelvin Hydrodynamics Laboratory towing tank at the University of Strathclyde in Glasgow, United Kingdom, and in the recirculating current flume at the l Institut Francais de Recherche pour l Exploitation de la Mer Centre in Boulogne-sur-Mer, France. Tests were also performed on rigid aluminum blades with identical geometry, which yielded baseline test sets for comparison. The results from both facilities agreed closely, supporting the hypothesis that increased blade flexibility can induce load reductions. Under the most extreme conditions tested the turbine with BT blades had up to 11 percent lower peak thrust loads and a 15 percent reduction in peak power compared to the turbine with rigid blades. The load reductions varied as a function of turbine rotational velocity and ambient flow velocity.

  2. Lidar-Enhanced Wind Turbine Control: Past, Present, and Future: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, Andrew; Fleming, Paul; Wright, Alan; Wang, Na; Schlipf, David; Johnson, Kathryn

    2016-07-01

    This paper will look at the development of lidar-enhanced controls and how they have been used for turbine load reduction with pitch actuation, as well as increased energy production with improved yaw control. Ongoing work will also be discussed to show that combining pitch and torque control using feedforward nonlinear model predictive control can lead to both reduced loads and increased energy production. Future work is also proposed on extending individual wind turbine controls to the wind plant level and determining how lidars can be used for control methods to further lower the cost of wind energy by minimizing wake impacts in a wind farm.

  3. Water turbine system and method of operation

    Science.gov (United States)

    Costin, Daniel P.

    2010-06-15

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  4. Development of Low Price Turbine Control System

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, C.K.; Kim, J.A.; Jeong, W.J.; Choi, I.K.; Woo, J.H. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    This report is final research results of ''Development of Low Price Turbine Control System''. It describes test such as turbine startup, generator synchronization, rated load operation, simulation after manufacturing turbine control system. (author). 45 figs., 11 tabs.

  5. Overview of Advanced Turbine Systems Program

    Science.gov (United States)

    Webb, H. A.; Bajura, R. A.

    The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems (ATS) Program will lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: highly efficient (15 percent improvement over today's best systems); environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); and cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements. Innovative cycle development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High temperature development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic component development/demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal application studies will adapt technology developed in the ATS program to coal-fired systems being developed in other DOE programs.

  6. On the Effects of Wind Turbine Wake Skew Caused by Wind Veer: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, Matthew J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sirnivas, Senu [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-01

    Because of Coriolis forces caused by the Earth's rotation, the structure of the atmospheric boundary layer often contains wind-direction change with height, also known as wind-direction veer. Under low turbulence conditions, such as in stably stratified atmospheric conditions, this veer can be significant, even across the vertical extent of a wind turbine's rotor disk. The veer then causes the wind turbine wake to skew as it advects downstream. This wake skew has been observed both experimentally and numerically. In this work, we attempt to examine the wake skewing process in some detail, and quantify how differently a skewed wake versus a non skewed wake affects a downstream turbine. We do this by performing atmospheric large-eddy simulations to create turbulent inflow winds with and without veer. In the veer case, there is a roughly 8 degree wind direction change across the turbine rotor. We then perform subsequent large-eddy simulations using these inflow data with an actuator line rotor model to create wakes. The turbine modeled is a large, modern, offshore, multimegawatt turbine. We examine the unsteady wake data in detail and show that the skewed wake recovers faster than the non skewed wake. We also show that the wake deficit does not skew to the same degree that a passive tracer would if subject to veered inflow. Last, we use the wake data to place a hypothetical turbine 9 rotor diameters downstream by running aeroelastic simulations with the simulated wake data. We see differences in power and loads if this downstream turbine is subject to a skewed or non skewed wake. We feel that the differences observed between the skewed and nonskewed wake are important enough that the skewing effect should be included in engineering wake models.

  7. Wind Turbine Wake-Redirection Control at the Fishermen's Atlantic City Windfarm: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, M.; Fleming, P.; Bulder, B.; White, S.

    2015-05-06

    In this paper, we will present our work towards designing a control strategy to mitigate wind turbine wake effects by redirecting the wakes, specifically applied to the Fishermen’s Atlantic City Windfarm (FACW), proposed for deployment off the shore of Atlantic City, New Jersey. As wind turbines extract energy from the air, they create low-speed wakes that extend behind them. Full wake recovery Full wake recovery to the undisturbed wind speed takes a significant distance. In a wind energy plant the wakes of upstream turbines may travel downstream to the next row of turbines, effectively subjecting them to lower wind speeds, meaning these waked turbines will produce less power.

  8. Dynamic Model of Kaplan Turbine Regulating System Suitable for Power System Analysis

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2015-01-01

    Full Text Available Accurate modeling of Kaplan turbine regulating system is of great significance for grid security and stability analysis. In this paper, Kaplan turbine regulating system model is divided into the governor system model, the blade control system model, and the turbine and water diversion system model. The Kaplan turbine has its particularity, and the on-cam relationship between the wicket gate opening and the runner blade angle under a certain water head on the whole range was obtained by high-order curve fitting method. Progressively the linearized Kaplan turbine model, improved ideal Kaplan turbine model, and nonlinear Kaplan turbine model were developed. The nonlinear Kaplan turbine model considered the correction function of the blade angle on the turbine power, thereby improving the model simulation accuracy. The model parameters were calculated or obtained by the improved particle swarm optimization (IPSO algorithm. For the blade control system model, the default blade servomotor time constant given by value of one simplified the modeling and experimental work. Further studies combined with measured test data verified the established model accuracy and laid a foundation for further research into the influence of Kaplan turbine connecting to the grid.

  9. On System Identification of Wind Turbines

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Perisic, Nevena; Pedersen, B.J.

    Recently several methods have been proposed for the system identification of wind turbines which can be considered as a linear time-varying system due to the operating conditions. For the identification of linear wind turbine models, either black-box or grey-box identification can be used....... The operational model analysis (OMA) methodology can provide accurate estimates of the natural frequencies, damping ratios and mode shapes of the systems as long as the measurements have a low noise to signal ratio. However, in order to take information about the wind turbine into account a grey...

  10. The DOE Next-Generation Drivetrain for Wind Turbine Applications: Gearbox, Generator, and Advanced Si/SiC Hybrid Inverter System: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Erdman, William; Keller, Jonathan

    2016-08-01

    This paper reports on the design and testing results from the U.S. Department of Energy Next-Generation Wind Turbine Drivetrain Project. The drivetrain design reduces the cost of energy by increasing energy capture through drivetrain efficiency improvements; by reducing operation and maintenance costs through reducing gearbox failures; and by lowering capital costs through weight reduction and a series of mechanical and electronic innovations. The paper provides an overview of the drivetrain gearbox and generator and provides a deeper look into the power converter system. The power converter has a number of innovations including the use of hybrid silicon (Si)/silicon carbide (SiC) isolated baseplate switching modules. Switching energies are compared between SiC and Si PIN diodes. The efficiency improvement by use of the SiC diode in a three-level converter is also described. Finally, a brief discussion covering utility interconnect requirements for turbines is provided with a particular focus on utility events that lead to high transient torque loads on drivetrain mechanical elements.

  11. Integrated analysis of wind turbines - The impact of power systems on wind turbine design

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio

    Megawatt-size wind turbines nowadays operate in very complex environmental conditions, and increasingly demanding power system requirements. Pursuing a cost-effective and reliable wind turbine design is a multidisciplinary task. However nowadays, wind turbine design and research areas...... conditions that stem from disturbances in the power system. An integrated simulation environment, wind turbine models, and power system models are developed in order to take an integral perspective that considers the most important aeroelastic, structural, electrical, and control dynamics. Applications...... of the integrated simulation environment are presented. The analysis of an asynchronous machine, and numerical simulations of a fixedspeed wind turbine in the integrated simulation environment, demonstrate the effects on structural loads of including the generator rotor fluxes dynamics in aeroelastic studies. Power...

  12. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  13. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2013-04-01

    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  14. Preprint Traffic Management and Forecasting System Based on 3D GIS

    OpenAIRE

    Li, Xiaoming; Lv, Zhihan; Hu, Jinxing; Zhang, Baoyun; Yin, Ling; Zhong, Chen; Wang, Weixi; Feng, Shengzhong

    2015-01-01

    This is the preprint version of our paper on 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). This paper takes Shenzhen Futian comprehensive transportation junction as the case, and makes use of continuous multiple real-time dynamic traffic information to carry out monitoring and analysis on spatial and temporal distribution of passenger flow under different means of transportation and service capacity of junction from multi-dimensional space-time pers...

  15. Dynamic Model of Kaplan Turbine Regulating System Suitable for Power System Analysis

    OpenAIRE

    Zhao, Jie; Wang, Li; Liu, Dichen; Wang, Jun; Zhao, Yu; Liu, Tian; Wang, Haoyu

    2015-01-01

    Accurate modeling of Kaplan turbine regulating system is of great significance for grid security and stability analysis. In this paper, Kaplan turbine regulating system model is divided into the governor system model, the blade control system model, and the turbine and water diversion system model. The Kaplan turbine has its particularity, and the on-cam relationship between the wicket gate opening and the runner blade angle under a certain water head on the whole range was obtained by high-o...

  16. Combustion modeling in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H. [Brigham Young Univ., Provo, UT (United States)] [and others

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  17. Advanced hydropower turbine: AHTS-Advanced Hydropower Turbine System Program; Turbinas hidraulicas avancadas: Programa AHTS-Advanced Hydropower Turbine System

    Energy Technology Data Exchange (ETDEWEB)

    Macorin, Adriano De Figueiredo; Tomisawa, Alessandra Terumi; Van Deursen, Gustavo Jose Ferreira; Bermann, Celio [Universidade de Sao Paulo (USP), SP (Brazil)], email: brunosilva@usp.br

    2010-07-01

    Due to a privileged hydrography and energy policies that remounts to the beginning of the 20th century, Brazilian's electrical grid can be considered one of the cleanest in the world regarding the emission of atmospheric pollutants. Nevertheless, as in every human large enterprise, it is well known that hydroelectric power plants also lead to harmful environmental impacts. This article presents the AHTS Program (Advanced Hydropower Turbine System) started in 1994 in USA and developed to assess and conceive new hydro turbines to mitigate two of the main negative impacts of the installation and operation of this kind of power plant: (a) turbine-passed fish mortality and (b) the low dissolved oxygen - DO - levels downstream of the dams. The criteria used to concept the turbines are also justified in this article. As well as the modifications made in each case by the following companies: Alden Research Lab e o Northern Research and Engineering Corporation (ARL/NREC) and Voith Hydro (Voith). (author)

  18. Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Sprague, M. A.; Jonkman, J.; Johnson, N.

    2014-01-01

    This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context of LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.

  19. Evaluation of the Inertial Response of Variable-Speed Wind Turbines Using Advanced Simulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, Andrew K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Scholbrock, Andrew K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Xiao [Northeastern University; Gao, Wenzhong [University of Denver; Yan, Weihang [University of Denver; Wang, Jianhui [Northeastern University

    2017-08-09

    In this paper, we focus on the temporary frequency support effect provided by wind turbine generators (WTGs) through the inertial response. With the implemented inertial control methods, the WTG is capable of increasing its active power output by releasing parts of the stored kinetic energy when the frequency excursion occurs. The active power can be boosted temporarily above the maximum power points, but the rotor speed deceleration follows and an active power output deficiency occurs during the restoration of rotor kinetic energy. In this paper, we evaluate and compare the inertial response induced by two distinct inertial control methods using advanced simulation. In the first stage, the proposed inertial control methods are analyzed in offline simulation. Using an advanced wind turbine simulation program, FAST with TurbSim, the response of the researched wind turbine is comprehensively evaluated under turbulent wind conditions, and the impact on the turbine mechanical components are assessed. In the second stage, the inertial control is deployed on a real 600-kW wind turbine, the three-bladed Controls Advanced Research Turbine, which further verifies the inertial control through a hardware-in-the-loop simulation. Various inertial control methods can be effectively evaluated based on the proposed two-stage simulation platform, which combines the offline simulation and real-time hardware-in-the-loop simulation. The simulation results also provide insights in designing inertial control for WTGs.

  20. Control system for NPP powerfull turbines

    International Nuclear Information System (INIS)

    Osipenko, V.D.; Rozhanskij, V.E.; Rokhlenko, V.Yu.

    1985-01-01

    A control system for NPP 1000 MW turbines safety is described. The turbine safety system has a hydraulic drive to actuate in case of increasipg of rotational speed of a turbine rotor and an electrohydraulic drce to operate in case of pressure reduction in the lubrication system, axial displacement deviation, etc. The system is highly reliable due to application of a safety system without slide valves and long-term operation of hydraulic controls in guarding conditions; the system epsures multifunctional control with high accuracy and speed due to application of the intricate electronic part, high speed of response with a limited use of high pressure oil due to application of two-pressure pumps, pneumohydraulic accumulators and oil discharge valves. Steady-state serviceability of the system is maintained by devices for valve cooling dawn. A shockless change from electrohydraulic to hydraulic control channels is provided

  1. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  2. Backup Mechanical Brake System of the Wind Turbine

    Science.gov (United States)

    Sirotkin, E. A.; Solomin, E. V.; Gandzha, S. A.; Kirpichnikova, I. M.

    2018-01-01

    Paper clarifies the necessity of the emergency mechanical brake systems usage for wind turbines. We made a deep analysis of the wind turbine braking methods available on the market, identifying their strengths and weaknesses. The electromechanical braking appeared the most technically reasonable and economically attractive. We described the developed combined electromechanical brake system for vertical axis wind turbine driven from electric drive with variable torque enough to brake over the turbine even on the storm wind speed up to 45 m/s. The progress was made due to the development of specific kinematic brake system diagram and intelligent control system managed by special operation algorithm.

  3. AGT101 automotive gas turbine system development

    Science.gov (United States)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    The AGT101 automotive gas turbine system consisting of a 74.6 kw regenerated single-shaft gas turbine engine, is presented. The development and testing of the system is reviewed, and results for aerothermodynamic components indicate that compressor and turbine performance levels are within one percent of projected levels. Ceramic turbine rotor development is encouraging with successful cold spin testing of simulated rotors to speeds over 12,043 rad/sec. Spin test results demonstrate that ceramic materials having the required strength levels can be fabricated by net shape techniques to the thick hub cross section, which verifies the feasibility of the single-stage radial rotor in single-shaft engines.

  4. Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.; Jager, D.

    2010-02-01

    This report summarizes the results of a power performance test that NREL conducted on the ARE 442 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the ARE 442 is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  5. One-shot service searches: Preprint repositories at a mouseclick

    Energy Technology Data Exchange (ETDEWEB)

    Canessa, E [International Centre for Theoretical Physics, Trieste (Italy); Pastore, G [Trieste Univ., Trieste (Italy). Dipt. di Fisica

    1996-09-01

    In this article we introduce the ICTP-International Centre for Theoretical Physics`s prototype for a ``One-Shot World-Wide Preprints Search`` on the Web. This is a new centralized interface for a global search throughout the most popular scientific preprint repositories. Herein, we briefly discuss our experience with the implementation of this service and propose it as a possible alternative solution to the problem of getting access to the information without being either overloaded with lots of new documents or not being informed at all. (author). 13 refs, 3 figs.

  6. One-shot service searches: Preprint repositories at a mouseclick

    International Nuclear Information System (INIS)

    Canessa, E.; Pastore, G.

    1996-09-01

    In this article we introduce the ICTP-International Centre for Theoretical Physics's prototype for a ''One-Shot World-Wide Preprints Search'' on the Web. This is a new centralized interface for a global search throughout the most popular scientific preprint repositories. Herein, we briefly discuss our experience with the implementation of this service and propose it as a possible alternative solution to the problem of getting access to the information without being either overloaded with lots of new documents or not being informed at all. (author). 13 refs, 3 figs

  7. Diagnosis of wind turbine rotor system

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Mirzaei, Mahmood; Henriksen, Lars Christian

    2016-01-01

    is based on available standard sensors on wind turbines. The method can be used both on-line as well as off-line. Faults or changes in the rotor system will result in asymmetries, which can be monitored and diagnosed. This can be done by using the multi-blade coordinate transformation. Changes in the rotor......This paper describes a model free method for monitoring and fault diagnosis of the elements in a rotor system for a wind turbine. The diagnosis as well as the monitoring is done without using any model of the wind turbine and the applied controller or a description of the wind profile. The method...

  8. Contextual Compression of Large-Scale Wind Turbine Array Simulations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Potter, Kristin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clyne, John [National Center for Atmospheric Research

    2017-11-03

    Data sizes are becoming a critical issue particularly for HPC applications. We have developed a user-driven lossy wavelet-based storage model to facilitate the analysis and visualization of large-scale wind turbine array simulations. The model stores data as heterogeneous blocks of wavelet coefficients, providing high-fidelity access to user-defined data regions believed the most salient, while providing lower-fidelity access to less salient regions on a block-by-block basis. In practice, by retaining the wavelet coefficients as a function of feature saliency, we have seen data reductions in excess of 94 percent, while retaining lossless information in the turbine-wake regions most critical to analysis and providing enough (low-fidelity) contextual information in the upper atmosphere to track incoming coherent turbulent structures. Our contextual wavelet compression approach has allowed us to deliver interactive visual analysis while providing the user control over where data loss, and thus reduction in accuracy, in the analysis occurs. We argue this reduced but contexualized representation is a valid approach and encourages contextual data management.

  9. Computer-Aided System of Virtual Testing of Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Rybakov Viktor N.

    2016-01-01

    Full Text Available The article describes the concept of a virtual lab that includes subsystem of gas turbine engine simulation, subsystem of experiment planning, subsystem of measurement errors simulation, subsystem of simulator identification and others. The basis for virtual lab development is the computer-aided system of thermogasdynamic research and analysis “ASTRA”. The features of gas turbine engine transient modes simulator are described. The principal difference between the simulators of transient and stationary modes of gas turbine engines is that the energy balance of the compressor and turbine becomes not applicable. The computer-aided system of virtual gas turbine engine testing was created using the developed transient modes simulator. This system solves the tasks of operational (throttling, speed, climatic, altitude characteristics calculation, analysis of transient dynamics and selection of optimal control laws. Besides, the system of virtual gas turbine engine testing is a clear demonstration of gas turbine engine working process and the regularities of engine elements collaboration. The interface of the system of virtual gas turbine engine testing is described in the article and some screenshots of the interface elements are provided. The developed system of virtual gas turbine engine testing provides means for reducing the laboriousness of gas turbine engines testing. Besides, the implementation of this system in the learning process allows the diversification of lab works and therefore improve the quality of training.

  10. BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the FAST Modular Framework: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Sprague, M.; Jonkman, J.; Johnson, N.

    2015-01-01

    BeamDyn, a Legendre-spectral-finite-element implementation of geometrically exact beam theory (GEBT), was developed to meet the design challenges associated with highly flexible composite wind turbine blades. In this paper, the governing equations of GEBT are reformulated into a nonlinear state-space form to support its coupling within the modular framework of the FAST wind turbine computer-aided engineering (CAE) tool. Different time integration schemes (implicit and explicit) were implemented and examined for wind turbine analysis. Numerical examples are presented to demonstrate the capability of this new beam solver. An example analysis of a realistic wind turbine blade, the CX-100, is also presented as validation.

  11. Dynamic Braking System of a Tidal Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Wright, Alan; Gevorgian, Vahan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-08-01

    Renewable energy generation has experienced significant cost reductions during the past decades, and it has become more accepted by the global population. In the beginning, wind generation dominated the development and deployment of renewable energy; however, during recent decades, photovoltaic (PV) generation has grown at a very significant pace due to the tremendous decrease in the cost of PV modules. The focus on renewable energy generation has now expanded to include new types with promising future applications, such as river and tidal generation. The input water flow to these types of resources is more predictable than wind or solar generation. The data used in this paper is representative of a typical river or tidal generator. The analysis is based on a generator with a power rating of 40 kW. The tidal generator under consideration is driven by two sets of helical turbines connected to each side of the generator located in between the turbines. The generator is operated in variable speed, and it is controlled to maximize the energy harvested as well as the operation of the turbine generator. The electrical system consists of a three-phase permanent magnet generator connected to a three-phase passive rectifier. The output of the rectifier is connected to a DC-DC converter to match the rectifier output to the DC bus voltage of the DC-AC inverter. The three-phase inverter is connected to the grid, and it is controlled to provide a good interface with the grid. One important aspect of river and tidal generation is the braking mechanism. In a tidal generator, the braking mechanism is important to avoid a runaway condition in case the connection to the grid is lost when there is a fault in the lines. A runaway condition may lead to an overspeed condition and cause extreme stresses on the turbine blade structure and eventual disintegration of the mechanical structure. In this paper, the concept of the dynamic braking system is developed and investigated for normal

  12. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  13. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every

  14. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, Anca D.; Iov, Florin; Sørensen, Poul

    , connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine concepts, their performance in normal or fault operation being assessed and discussed by means of simulations. The described control......This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built...

  15. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-13

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  16. Modeling of wind turbines for power system studies

    Energy Technology Data Exchange (ETDEWEB)

    Petru, T.

    2001-05-01

    When wind turbines are installed into the electric grid, the power quality is affected. Today, strict installation recommendations often prevail due to a lack of knowledge on this subject. Consequently, it is important to predict the impact of wind turbines on the electric grid before the turbines are installed. The thesis describes relevant power quality issues, discusses different configurations of wind turbines with respect to power quality and draw requirements regarding wind turbine modeling. A model of a stall-regulated, fixed-speed wind turbine system is introduced and its power quality impact on the electric grid is evaluated. The model is verified with field measurements.

  17. Steam Turbine Control Valve Stiction Effect on Power System Stability

    International Nuclear Information System (INIS)

    Halimi, B.

    2010-01-01

    One of the most important problems in power system dynamic stability is low frequency oscillations. This kind of oscillation has significant effects on the stability and security of the power system. In some previous papers, a fact was introduced that a steam pressure continuous fluctuation in turbine steam inlet pipeline may lead to a kind of low frequency oscillation of power systems. Generally, in a power generation plant, steam turbine system composes of some main components, i.e. a boiler or steam generator, stop valves, control valves and turbines that are connected by piping. In the conventional system, the turbine system is composed with a lot of stop and control valves. The steam is provided by a boiler or steam generator. In an abnormal case, the stop valve shuts of the steal flow to the turbine. The steam flow to the turbine is regulated by controlling the control valves. The control valves are provided to regulate the flow of steam to the turbine for starting, increasing or decreasing the power, and also maintaining speed control with the turbine governor system. Unfortunately, the control valve has inherent static friction (stiction) nonlinearity characteristics. Industrial surveys indicated that about 20-30% of all control loops oscillate due to valve problem caused by this nonlinear characteristic. In this paper, steam turbine control valve stiction effect on power system oscillation is presented. To analyze the stiction characteristic effect, firstly a model of control valve and its stiction characteristic are derived by using Newton's laws. A complete tandem steam prime mover, including a speed governing system, a four-stage steam turbine, and a shaft with up to for masses is adopted to analyze the performance of the steam turbine. The governor system consists of some important parts, i.e. a proportional controller, speed relay, control valve with its stiction characteristic, and stem lift position of control valve controller. The steam turbine has

  18. Lightning protection system for a wind turbine

    Science.gov (United States)

    Costin, Daniel P [Chelsea, VT; Petter, Jeffrey K [Williston, VT

    2008-05-27

    In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

  19. The condition monitoring system of turbine system components for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, Shigetoshi

    2013-01-01

    The thermal and nuclear power plants have been imposed a stable supply of electricity. To certainly achieve this, we built the plant condition monitoring system based on the heat and mass balance calculation. If there are some performance changes on the turbine system components of their power plants, the heat and mass balance of the turbine system will change. This system has ability to detect the abnormal signs of their components by finding the changes of the heat and mass balance. Moreover we note that this system is built for steam turbine cycle operating with saturated steam conditions. (author)

  20. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  1. Gas turbine control for islanding operation of distribution systems

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2009-01-01

    Danish distribution systems are characterized by a significant penetration of small gas turbine generators (GTGs) and fixed speed wind turbine generators (WTGs). Island operation of these distribution systems are becoming a viable option for economical and technical reasons. However, stabilizing...... frequency in an islanded system is one of the major challenges. This paper presents three different gas turbine governors for possible operation of distribution systems in an islanding mode. Simulation results are presented to show the performance of these governors in grid connected and islanding mode....

  2. Rule - based Fault Diagnosis Expert System for Wind Turbine

    Directory of Open Access Journals (Sweden)

    Deng Xiao-Wen

    2017-01-01

    Full Text Available Under the trend of increasing installed capacity of wind power, the intelligent fault diagnosis of wind turbine is of great significance to the safe and efficient operation of wind farms. Based on the knowledge of fault diagnosis of wind turbines, this paper builds expert system diagnostic knowledge base by using confidence production rules and expert system self-learning method. In Visual Studio 2013 platform, C # language is selected and ADO.NET technology is used to access the database. Development of Fault Diagnosis Expert System for Wind Turbine. The purpose of this paper is to realize on-line diagnosis of wind turbine fault through human-computer interaction, and to improve the diagnostic capability of the system through the continuous improvement of the knowledge base.

  3. Instrumentation and control of turbine, generator and associated systems

    International Nuclear Information System (INIS)

    Vogtland, U.

    1982-01-01

    The purpose of this presentation is to give some information on Instrumentation and Control (I and C) for turbine-generators, in this case for nuclear application. The I and C scope of supply for such a turbine-generator can be divided as follows: - Closed-loop controls - Turbine stress control systems - Supervisory instrumentation - Protection systems - Open-loop controls. The main systems used for nuclear application are presented by means of examples taken from these a.m. categories. (orig./RW)

  4. Genetic optimization of steam multi-turbines system

    International Nuclear Information System (INIS)

    Olszewski, Pawel

    2014-01-01

    Optimization analysis of partially loaded cogeneration, multiple-stages steam turbines system was numerically investigated by using own-developed code (C++). The system can be controlled by following variables: fresh steam temperature, pressure, and flow rates through all stages in steam turbines. Five various strategies, four thermodynamics and one economical, which quantify system operation, were defined and discussed as an optimization functions. Mathematical model of steam turbines calculates steam properties according to the formulation proposed by the International Association for the Properties of Water and Steam. Genetic algorithm GENOCOP was implemented as a solving engine for non–linear problem with handling constrains. Using formulated methodology, example solution for partially loaded system, composed of five steam turbines (30 input variables) with different characteristics, was obtained for five strategies. The genetic algorithm found multiple solutions (various input parameters sets) giving similar overall results. In real application it allows for appropriate scheduling of machine operation that would affect equable time load of every system compounds. Also based on these results three strategies where chosen as the most complex: the first thermodynamic law energy and exergy efficiency maximization and total equivalent energy minimization. These strategies can be successfully used in optimization of real cogeneration applications. - Highlights: • Genetic optimization model for a set of five various steam turbines was presented. • Four various thermodynamic optimization strategies were proposed and discussed. • Operational parameters (steam pressure, temperature, flow) influence was examined. • Genetic algorithm generated optimal solutions giving the best estimators values. • It has been found that similar energy effect can be obtained for various inputs

  5. Analysis of gas turbine systems for sustainable energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Anheden, Marie

    2000-02-01

    Increased energy demands and fear of global warming due to the emission of greenhouse gases call for development of new efficient power generation systems with low or no carbon dioxide (CO{sub 2}) emissions. In this thesis, two different gas turbine power generation systems, which are designed with these issues in mind, are theoretically investigated and analyzed. In the first gas turbine system, the fuel is combusted using a metal oxide as an oxidant instead of oxygen in the air. This process is known as Chemical Looping Combustion (CLC). CLC is claimed to decrease combustion exergy destruction and increase the power generation efficiency. Another advantage is the possibility to separate CO{sub 2} without a costly and energy demanding gas separation process. The system analysis presented includes computer-based simulations of CLC gas turbine systems with different metal oxides as oxygen carriers and different fuels. An exergy analysis comparing the exergy destruction of the gas turbine system with CLC and conventional combustion is also presented. The results show that it is theoretically possible to increase the power generation efficiency of a simple gas turbine system by introducing CLC. A combined gas/steam turbine cycle system with CLC is, however, estimated to reach a similar efficiency as the conventional combined cycle system. If the benefit of easy and energy-efficient CO{sub 2} separation is accounted for, a CLC combined cycle system has a potential to be favorable compared to a combined cycle system with CO{sub 2} separation. In the second investigation, a solid, CO{sub 2}-neutral biomass fuel is used in a small-scale externally fired gas turbine system for cogeneration of power and district heating. Both open and closed gas turbines with different working fluids are simulated and analyzed regarding thermodynamic performance, equipment size, and economics. The results show that it is possible to reach high power generation efficiency and total (power

  6. Study on Unified Chaotic System-Based Wind Turbine Blade Fault Diagnostic System

    Science.gov (United States)

    Kuo, Ying-Che; Hsieh, Chin-Tsung; Yau, Her-Terng; Li, Yu-Chung

    At present, vibration signals are processed and analyzed mostly in the frequency domain. The spectrum clearly shows the signal structure and the specific characteristic frequency band is analyzed, but the number of calculations required is huge, resulting in delays. Therefore, this study uses the characteristics of a nonlinear system to load the complete vibration signal to the unified chaotic system, applying the dynamic error to analyze the wind turbine vibration signal, and adopting extenics theory for artificial intelligent fault diagnosis of the analysis signal. Hence, a fault diagnostor has been developed for wind turbine rotating blades. This study simulates three wind turbine blade states, namely stress rupture, screw loosening and blade loss, and validates the methods. The experimental results prove that the unified chaotic system used in this paper has a significant effect on vibration signal analysis. Thus, the operating conditions of wind turbines can be quickly known from this fault diagnostic system, and the maintenance schedule can be arranged before the faults worsen, making the management and implementation of wind turbines smoother, so as to reduce many unnecessary costs.

  7. A system to control low pressure turbine temperatures

    International Nuclear Information System (INIS)

    1980-01-01

    An improved system to control low pressure turbine cycle steam and metal temperatures by governing the heat transfer operation in a moisture separator-reheater is described. The use of the present invention in a pressurized water reactor or a boiling water reactor steam turbine system is demonstrated. (UK)

  8. Advanced turbine systems study system scoping and feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    United Technologies Research Center, Pratt Whitney Commercial Engine Business, And Pratt Whitney Government Engine and Space Propulsion has performed a preliminary analysis of an Advanced Turbine System (ATS) under Contract DE-AC21-92MC29247 with the Morgantown Energy Technology Center. The natural gas-fired reference system identified by the UTC team is the Humid Air Turbine (HAT) Cycle in which the gas turbine exhaust heat and heat rejected from the intercooler is used in a saturator to humidify the high pressure compressor discharge air. This results in a significant increase in flow through the turbine at no increase in compressor power. Using technology based on the PW FT4000, the industrial engine derivative of the PW4000, currently under development by PW, the system would have an output of approximately 209 MW and an efficiency of 55.3%. Through use of advanced cooling and materials technologies similar to those currently in the newest generation military aircraft engines, a growth version of this engine could attain approximately 295 MW output at an efficiency of 61.5%. There is the potential for even higher performance in the future as technology from aerospace R D programs is adapted to aero-derivative industrial engines.

  9. Future on Power Electronics for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2013-01-01

    networks and more and more wind power stations, acting as power plants, are connected directly to the transmission networks. As the grid penetration and power level of the wind turbines increase steadily, the wind power starts to have significant impacts to the power grid system. Therefore, more advanced...... generators, power electronic systems, and control solutions have to be introduced to improve the characteristics of the wind power plant and make it more suitable to be integrated into the power grid. Meanwhile, there are also some emerging technology challenges, which need to be further clarified......Wind power is still the most promising renewable energy in the year of 2013. The wind turbine system (WTS) started with a few tens of kilowatt power in the 1980s. Now, multimegawatt wind turbines are widely installed even up to 6-8 MW. There is a widespread use of wind turbines in the distribution...

  10. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  11. Dynamic wind turbine models in power system simulation tool DIgSILENT

    DEFF Research Database (Denmark)

    Hansen, A.D.; Jauch, C.; Sørensen, Poul Ejnar

    2004-01-01

    . This model database should be able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The reportprovides a description of the wind turbines modelling, both at a component level and at a system level......-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). Theinitialisation issues on the wind turbine models into the power system simulation are also presented. However, the main attention in this report is drawn to the modelling at the system level of two wind turbine concepts: 1...... of the wind turbine at different types of grid and storage systems. For both these two concepts, control strategies are developed and implemented, their performance assessed and discussed by means of simulations....

  12. Development of biomass gasification systems for gas turbine power generation

    International Nuclear Information System (INIS)

    Larson, E.D.; Svenningsson, P.

    1991-01-01

    Gas turbines are of interest for biomass applications because, unlike steam turbines, they have relatively high efficiencies and low unit capital costs in the small sizes appropriate for biomass installations. Gasification is a simple and efficient way to make biomass usable in gas turbines. The authors evaluate here the technical requirements for gas turbine power generation with biomass gas and the status of pressurized biomass gasification and hot gas cleanup systems. They also discuss the economics of gasifier-gas turbine cycles and make some comparisons with competing technologies. Their analysis indicates that biomass gasifiers fueling advanced gas turbines are promising for cost-competitive cogeneration and central station power generation. Gasifier-gas turbine systems are not available commercially, but could probably be developed in 3 to 5 years. Extensive past work related to coal gasification and pressurized combustion of solid fuels for gas turbines would be relevant in this effort, as would work on pressurized biomass gasification for methanol synthesis

  13. A deflection monitoring system for a wind turbine blade

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  14. TurbinAID

    International Nuclear Information System (INIS)

    Moradian, M.A.; Chow, M.P.; Osborne, R.L.; Jenkins, M.A.

    1991-01-01

    The Westinghouse Turbine Artificial Intelligence Diagnostics system or TurbinAID, can diagnose both thermodynamic and mechanical component anomalies within the turbine, and around the turbine cycle. any monitoring system can detect that a variable is in an abnormal state, but TurbinAID can also indicate the cause, and provide recommended corrective action(s). The TurbinAID Expert Systems utilize multiple sensor and variable inputs, and their interdependencies in the generation of a diagnosis. The system performs sensor validation as part of the data acquisition scheme. The TurbinAID system has been in operation for several years. This paper describes the monitoring and diagnostic functions provided by TurbinAID, and how the utility industry both nuclear and fossil, can utilize the system to enhance unit operation

  15. Recommendations on Model Fidelity for Wind Turbine Gearbox Simulations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Keller, J.; La Cava, W.; Austin, J.; Nejad, A. R.; Halse, C.; Bastard, L.; Helsen, J.

    2015-01-01

    This work investigates the minimum level of fidelity required to accurately simulate wind turbine gearboxes using state-of-the-art design tools. Excessive model fidelity including drivetrain complexity, gearbox complexity, excitation sources, and imperfections, significantly increases computational time, but may not provide a commensurate increase in the value of the results. Essential design parameters are evaluated, including the planetary load-sharing factor, gear tooth load distribution, and sun orbit motion. Based on the sensitivity study results, recommendations for the minimum model fidelities are provided.

  16. Design of a wind turbine pitch angle controller for power system stabilisation

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Soerensen, Poul [Risoe National Laboratory, Wind Energy Department, P.O. Box 49, DK-4000 Roskilde (Denmark); Islam, Syed M. [Department of Electrical and Computer Engineering, Curtin University of Technology, GPO Box U1987, Perth, WA 6845 (Australia); Bak Jensen, Birgitte [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East (Denmark)

    2007-11-15

    The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design, the transfer function of the wind turbine is derived from the wind turbine's step response. The performance of this controller is tested by simulation, where the wind turbine model with its pitch angle controller is connected to a power system model. The power system model employed here is a realistic model of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller can effectively contribute to power system stabilisation. (author)

  17. Maintenance and adjustment of control systems of central heating turbines

    International Nuclear Information System (INIS)

    Karasyuk, V.A.; Balashov, A.M.

    1994-01-01

    Principles of operation and design of systems of automatic control of steam turbines with controlled heating stem extraction are described. Specific features of maintenance and adjustment of the most common domestic turbines are considered. Recommendations on testing state of turbine control systems and improving reliability of their operation are given. 22 refs., 51 refs

  18. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  19. Validation of Heat-Flux Predictions on the Outer Air Seal of a Transonic Turbine Blade (Preprint)

    National Research Council Canada - National Science Library

    Clark, John P; Polanka, Marc D; Meininger, Matthew; Praisner, Thomas J

    2006-01-01

    .... So, a set of predictions of the heat flux on the Blade Outer Air Seal (BOAS) of a transonic turbine is here validated with time-resolved measurements obtained in a single-stage high pressure turbine rig...

  20. Design of a wind turbine pitch angle controller for power system stabilisation

    DEFF Research Database (Denmark)

    Jauch, Clemens; Islam, S.M.; Sørensen, Poul Ejnar

    2007-01-01

    The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design......, the transfer function of the wind turbine is derived from the wind turbine's step response. The performance of this controller is tested by simulation, where the wind turbine model with its pitch angle controller is connected to a power system model. The power system model employed here is a realistic model...... of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller...

  1. Dynamic wind turbine models in power system simulation tool DIgSILENT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.C.; Jauch, C.; Soerensen, P.; Iov, F.; Blaabjerg, F.

    2003-12-01

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT (Version 12.0). The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. This model database should be able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built-in models for the electrical components of a grid connected wind turbine (e.g. induction generators, power converters, transformers) and the models developed by the user, in the dynamic simulation language DSL of DIgSILENT, for the non-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. However, the main attention in this report is drawn to the modelling at the system level of two wind turbine concepts: 1. Active stall wind turbine with induction generator 2. Variable speed, variable pitch wind turbine with doubly fed induction generator. These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies, connection of the wind turbine at different types of grid and storage systems. For both these two concepts, control strategies are developed and implemented, their performance assessed and discussed by means of simulations. (au)

  2. Comparison between externally fired gas turbine and gasifier-gas turbine system for the olive oil industry

    International Nuclear Information System (INIS)

    Vera, D.; Jurado, F.; Mena, B. de; Schories, G.

    2011-01-01

    The olive oil industry generates during the extraction process several solid wastes as olive tree leaves and prunings, exhausted pomace and olive pits. These renewable wastes could be used for power and heat applications. The aim of this paper is to compare the performance of two small-scale CHP systems: a gasification- gas turbine system and an EFGT (externally fired gas turbine system). For this reason, several parameters have been calculated: generated heat and power, electric and overall efficiencies, biomass consumption, exergy efficiency, optimum pressure ratio, etc. These systems provide 30 kW e and about 60kW th . Simulation results show that the electrical and overall efficiencies achieved in EFGT system (19.1% and 59.3%, respectively) are significantly higher than those obtained in the gasification plant (12.3% and 45.4%). The proposed CHP systems have been modeled using Cycle-Tempo ® software. -- Highlights: ► Comparison between externally fired gas turbine and gasifier-gas turbine system. ► Olive oil industry generates several solid wastes as olive tree leaves and prunings. ► Thermodynamic parameters have been calculated. ► Systems have been modeled using Cycle-Tempo ® software. ► Simulation results show electrical and overall efficiencies achieved in the systems.

  3. UNIVERSITY TURBINE SYSTEMS RESEARCH PROGRAM SUMMARY AND DIRECTORY

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence P. Golan; Richard A. Wenglarz

    2004-07-01

    The South Carolina Institute for Energy Studies (SCIES), administratively housed at Clemson University, has participated in the advancement of combustion turbine technology for over a decade. The University Turbine Systems Research Program, previously referred to as the Advanced Gas Turbine Systems Research (AGTSR) program, has been administered by SCIES for the U.S. DOE during the 1992-2003 timeframe. The structure of the program is based on a concept presented to the DOE by Clemson University. Under the supervision of the DOE National Energy Technology Laboratory (NETL), the UTSR consortium brings together the engineering departments at leading U.S. universities and U.S. combustion turbine developers to provide a solid base of knowledge for the future generations of land-based gas turbines. In the UTSR program, an Industrial Review Board (IRB) (Appendix C) of gas turbine companies and related organizations defines needed gas turbine research. SCIES prepares yearly requests for university proposals to address the research needs identified by the IRB organizations. IRB technical representatives evaluate the university proposals and review progress reports from the awarded university projects. To accelerate technology transfer technical workshops are held to provide opportunities for university, industry and government officials to share comments and improve quality and relevancy of the research. To provide educational growth at the Universities, in addition to sponsored research, the UTSR provides faculty and student fellowships. The basis for all activities--research, technology transfer, and education--is the DOE Turbine Program Plan and identification, through UTSR consortium group processes, technology needed to meet Program Goals that can be appropriately researched at Performing Member Universities.

  4. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corp.

    2017-08-25

    Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4 percent RMS error and resistance growth with 15 percent RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  5. MHD/gas turbine systems designed for low cooling water requirements

    International Nuclear Information System (INIS)

    Annen, K.D.; Eustis, R.H.

    1983-01-01

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consist of a coal-fired MHD plant with an air turbine bottoming plant and require no cooling water. In addition to the base case systems, systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems require a small amount of cooling water. The results show that the MHD/gas turbine systems have very good thermal and economic performances. The base case I MHD/gas turbine system (782 MW /SUB e/ ) requires no cooling water, has a heat rate which is 13% higher, and a cost of electricity which is only 7% higher than a comparable MHD/steam system (878 MW /SUB e/ ) having a cooling tower heat load of 720 MW. The case I vapor cycle bottomed systems have thermal and economic performances which approach and even exceed those of the MHD/steam system, while having substantially lower cooling water requirements. Performances of a second-generation MHD/gas turbine system and an oxygen-enriched, early commercial system are also evaluated. An analysis of nitric oxide emissions shows compliance with emission standards

  6. Problems of steam turbine diagnostics and the 'Simens' diagnosis system

    International Nuclear Information System (INIS)

    Tserner, V.; Andrea, K.

    1993-01-01

    Diagnostics system, allowing one to detect changes in the state on single turbine elements at an early stage is described. Besides this system allows one to utilize the turbine plant optimally and efficiency from the viewpoint of the equipment durability. Specially oriented monitoring of the turbine plant and equipment element state saves resources necessary to keep up the working order of the equipment

  7. System control model of a turbine for a BWR

    International Nuclear Information System (INIS)

    Vargas O, Y.; Amador G, R.; Ortiz V, J.; Castillo D, R.; Delfin L, A.

    2009-10-01

    In this work is presented a design of a control system of a turbine for a nuclear power plant with a BWR like energy source. The model seeks to implement later on at thermal hydraulics code of better estimate RELAP/SCDAPSIM. The model is developed for control and protection of turbine, and the consequent protection to the BWR, considering that the turbine control could be employed for one or several turbines in series. The quality of present designs of control pattern of turbine it is that it considers the parameters more important in the operation of a turbine besides that is has incorporated at control the secondary parameters that will be activated originally as true when the turbine model is substituted by a model more detailed. The development of control model of a turbine will be good in short and medium term to realize analysis about the operation of turbine with different operation conditions, of vapor extraction specific steps of turbine to feed other equipment s, besides analyzing the separate effect and integrated effect. (Author)

  8. Integrated Approach Using Condition Monitoring and Modeling to Investigate Wind Turbine Gearbox Design: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.; Guo, Y.

    2015-03-01

    Vibration-based condition monitoring (CM) of geared utility-scale turbine drivetrains has been used by the wind industry to help improve operation and maintenance (O&M) practices, increase turbine availability, and reduce O&M cost. This study is a new endeavor that integrates the vibration-based CM technique with wind turbine gearbox modeling to investigate various gearbox design options. A teamof researchers performed vibration-based CM measurements on a damaged wind turbine gearbox with a classic configuration, (i.e., one planetary stage and two parallel stages). We observed that the acceleration amplitudes around the first-order sidebands of the intermediate stage gear set meshing frequency were much lower than that measured at the high-speed gear set, and similar difference wasalso observed in a healthy gearbox. One factor for a reduction at the intermediate stage gear set is hypothesized to be the soft sun-spline configuration in the test gearbox. To evaluate this hypothesis, a multibody dynamic model of the healthy test gearbox was first developed and validated. Relative percent difference of the first-order sidebands--of the high-speed and intermediate stagegear-meshing frequencies--in the soft and the rigid sun spline configurations were compared. The results verified that the soft sun-spline configuration can reduce the sidebands of the intermediate stage gear set and also the locating bearing loads. The study demonstrates that combining vibration-based CM with appropriate modeling can provide insights for evaluating different wind turbinegearbox design options.

  9. Modelling and control of variable speed wind turbines for power system studies

    DEFF Research Database (Denmark)

    Michalke, Gabriele; Hansen, Anca Daniela

    2010-01-01

    and implemented in the power system simulation tool DIgSILENT. Important issues like the fault ride-through and grid support capabilities of these wind turbine concepts are addressed. The paper reveals that advanced control of variable speed wind turbines can improve power system stability. Finally......, it will be shown in the paper that wind parks consisting of variable speed wind turbines can help nearby connected fixed speed wind turbines to ride-through grid faults. Copyright © 2009 John Wiley & Sons, Ltd.......Modern wind turbines are predominantly variable speed wind turbines with power electronic interface. Emphasis in this paper is therefore on the modelling and control issues of these wind turbine concepts and especially on their impact on the power system. The models and control are developed...

  10. Digital electro-hydraulic control system for nuclear turbine

    International Nuclear Information System (INIS)

    Yokota, Yutaka; Tone, Youichi; Ozono, Jiro

    1985-01-01

    The unit capacity of steam turbines for nuclear power generation is very large, accordingly their unexpected stop disturbs power system, and the lowering of their capacity ratio exerts large influence on power generation cost. Therefore, very high reliability is required for turbine EHC controllers which directly control the turbines for nuclear power generation. In order to meet such requirement, Toshiba Corp. has developed high reliability type analog tripled turbine EHC controllers, and delivered them to No. 3 plant in the Fukushima No. 2 Nuclear Power Station and No. 1 plant in the Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. At present, the trial operation is under way. The development of digital EHC controllers was begun in 1976, and through the digital EHC for a test turbine and that for a small turbine, the digital EHC controllers for the turbines for nuclear power generation were developed. In this paper, the function, constitution, features and maintenance of the digital tripled EHC controllers for the turbines for nuclear power generation, the application of new technology to them, and the confirmation of the control function by simulation are reported. (Kako, I.)

  11. Wind Turbine Blade Design System - Aerodynamic and Structural Analysis

    Science.gov (United States)

    Dey, Soumitr

    2011-12-01

    The ever increasing need for energy and the depletion of non-renewable energy resources has led to more advancement in the "Green Energy" field, including wind energy. An improvement in performance of a Wind Turbine will enhance its economic viability, which can be achieved by better aerodynamic designs. In the present study, a design system that has been under development for gas turbine turbomachinery has been modified for designing wind turbine blades. This is a very different approach for wind turbine blade design, but will allow it to benefit from the features inherent in the geometry flexibility and broad design space of the presented system. It starts with key overall design parameters and a low-fidelity model that is used to create the initial geometry parameters. The low-fidelity system includes the axisymmetric solver with loss models, T-Axi (Turbomachinery-AXIsymmetric), MISES blade-to-blade solver and 2D wing analysis code XFLR5. The geometry parameters are used to define sections along the span of the blade and connected to the CAD model of the wind turbine blade through CAPRI (Computational Analysis PRogramming Interface), a CAD neutral API that facilitates the use of parametric geometry definition with CAD. Either the sections or the CAD geometry is then available for CFD and Finite Element Analysis. The GE 1.5sle MW wind turbine and NERL NASA Phase VI wind turbine have been used as test cases. Details of the design system application are described, and the resulting wind turbine geometry and conditions are compared to the published results of the GE and NREL wind turbines. A 2D wing analysis code XFLR5, is used for to compare results from 2D analysis to blade-to-blade analysis and the 3D CFD analysis. This kind of comparison concludes that, from hub to 25% of the span blade to blade effects or the cascade effect has to be considered, from 25% to 75%, the blade acts as a 2d wing and from 75% to the tip 3D and tip effects have to be taken into account

  12. Preliminary conceptual design of the secondary sodium circuit-eliminated JSFR (Japan Sodium Fast Reactor) adopting a supercritical CO2 turbine system (2). Turbine system and plant size

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Sakamoto, Yoshihiko; Kotake, Shoji

    2014-09-01

    Research and development of the supercritical CO 2 (S-CO 2 ) cycle turbine system is underway in various countries for further improvement of the safety and economy of sodium-cooled fast reactors. The Component Design and Balance-Of-Plant (CD and BOP) of the Generation IV International Nuclear Forum (Gen-IV) has addressed this study, and their analytical and experimental results have been discussed between the relevant countries. JAEA, who is a member of the CD and BOP, has performed a design study of an S-CO 2 gas turbine system applied to the Japan Sodium-cooled Fast Reactor (JSFR). In this study, the S-CO 2 cycle turbine system was directly connected to the primary sodium system of the JSFR to eliminate the secondary sodium circuit, aiming for further economical improvement. This is because there is no risk of sodium-water reaction in the S-CO 2 cycle turbine system of SFRs. This report describes the system configuration, heat/mass balance, and main components of the S-CO 2 turbine system, based on the JSFR specifications. The layout of components and piping in the reactor and turbine buildings were examined and the dimensions of the buildings were estimated. The study has revealed that the reactor and turbine buildings could be reduced by 7% and 40%, respectively, in comparison with those in the existing JSFR design with the secondary sodium circuit employing the steam turbine. The cycle thermal was also calculated as 41.9-42.3%, which is nearly the same as that of the JSFR with the water/steam system. (author)

  13. Study for Determining the Testing Condition of Compressor and Turbine System

    International Nuclear Information System (INIS)

    Sri Sudadiyo

    2009-01-01

    Study for Determining the Testing Condition of Compressor and Turbine System. From the viewpoint of energy system and environment, the concept for nuclear reactors of the generation IV have good potential for electricity and heat generation devices in producing hydrogen. These gas cooled nuclear reactors employ turbine cycle in transferring the heat. To analyses that coolant system, it is proposed a model of compressor and turbine system with power 3 kW. The used working fluid was hydrogen that be burnt with air within combustion chamber, then be expanded through a turbine for getting shaft work that will be used in driving compressor and generator. This study is aimed to determine the optimum testing conditions of gas turbine system. The used method is by applying the balance equations of energy, mass, and momentum. Gas turbine and compressor were placed at the single shaft, in which it was about 55 percent of power output for running the compressor. Under the testing condition for the speed of 20305 rpm, it was obtained thermal efficiency of the turbine cycle approximate 18 % (equal to the Carnot efficiency ratio 65 %), so that it is properly developed for the development of nuclear power installation in supporting the electricity energy demand and it will be very promising for the future facility. (author)

  14. Dynamic wind turbine models in power system simulation tool DIgSILENT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Iov, F.; Soerensen, Poul.; Cutululis, N.; Jauch, C.; Blaabjerg, F.

    2007-08-15

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risoe-R-1400(EN) and it gathers and describes a whole wind turbine model database built-op and developed during several national research projects, carried out at Risoe DTU National Laboratory for Sustainable Energy and Aalborg University, in the period 2001-2007. The overall objective of these projects was to create a wind turbine model database able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built-in models for the electrical components of a grid connected wind turbine (e.g. induction generators, power converters, transformers) and the models developed by the user, in the dynamic simulation language DSL of DIgSILENT, for the non-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. The main attention in the report is drawn to the modelling at the system level of the following wind turbine concepts: (1) Fixed speed active stall wind turbine concept (2) Variable speed doubly-fed induction generator wind turbine concept (3) Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies, connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine

  15. Reactor trip on turbine trip inhibit control system for nuclear power generating system

    International Nuclear Information System (INIS)

    Torres, J.M.; Musick, C.R.

    1976-01-01

    A reactor trip on turbine trip inhibit control system for a nuclear power generating system which utilizes steam bypass valves is described. The control system inhibits a normally automatic reactor trip on turbine trip when the bypass valves have the capability of bypassing enough steam to prevent reactor trip limits from being reached and/or to prevent opening of the secondary safety pressure valves. The control system generates a bypass valve capability signal which is continuously compared with the reactor power. If the capability is greater than the reactor power, then an inhibit signal is generated which prevents a turbine trip signal from tripping the nuclear reactor. 10 claims, 4 figures

  16. Calibrated Blade-Element/Momentum Theory Aerodynamic Model of the MARIN Stock Wind Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Goupee, A.; Kimball, R.; de Ridder, E. J.; Helder, J.; Robertson, A.; Jonkman, J.

    2015-04-02

    In this paper, a calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine is developed and documented. The model is created using open-source software and calibrated to closely emulate experimental data obtained by the DeepCwind Consortium using a genetic algorithm optimization routine. The provided model will be useful for those interested in validating interested in validating floating wind turbine numerical simulators that rely on experiments utilizing the MARIN stock wind turbine—for example, the International Energy Agency Wind Task 30’s Offshore Code Comparison Collaboration Continued, with Correlation project.

  17. Customizable pre-printed consent forms: a solution in light of the Montgomery ruling.

    Science.gov (United States)

    Owen, Deborah; Aresti, Nick; Mulligan, Alex; Kosuge, Dennis

    2018-02-02

    This article presents an audit cycle supported quality improvement project addressing best practice in the consent process for lower limb arthroplasty which takes into account the new standard in surgical consent and the importance of material risks. 50 consecutive total hip and total knee replacement consent forms over a 3-month period were reviewed for legibility and completeness. Following the introduction of a new, pre-printed but customizable consent form the review process was repeated. The introduction of a customizable, pre-printed consent form that can be adjusted to reflect the individualized material risks of each patient increased legibility, reduced inappropriate human error variation and abolished the use of abbreviations and medical jargon. When used as part of an extended consent process, the authors feel that the use of pre-printed but customizable consent forms improves legibility, completeness and consistency and also provides the ability to highlight those complications that are of particular importance for that patient to satisfy the new accepted standard in surgical consent.

  18. Dynamic wind turbine models in power system simulation tool DIgSILENT

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Iov, F.; Sørensen, Poul Ejnar

    , connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine concepts, their performance in normal or fault operation being assessed and discussed by means of simulations. The described control......This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built...

  19. Integrated turbine bypass system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.H.; Dickenson, R.J.; Parry, W.T.; Retzlaff, K.M.

    1982-07-01

    Turbine steam-flow bypasses have been used for years in various sizes and applications. Because of differing system requirements, their use has been more predominant in Europe than in the United States. Recently, some utilities and consulting engineers have been re-evaluating their need for various types of bypass operation in fossil-fuelled power plants.

  20. Advanced tools for modeling, design and optimization of wind turbine systems

    DEFF Research Database (Denmark)

    Iov, F.; Hansen, A.D.; Jauch, C.

    2005-01-01

    As wind turbine technology and control has advanced over the last decade, this has led to a high penetration of wind turbines into the power system. Whether it be for a large wind turbine or an offshore wind farm with hundreds of MW power capacity, the electrical system has become more and more i...

  1. Mobile measurement system for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kildemoes Moeller, T.

    1997-06-01

    The aim of this project `Udviklingsafproevning af smaa moellevinger` has been to develop a mobile measurement system for wind turbines. The following report describes the measurement system. The project has been financed by the Danish Ministry of Energy. (au)

  2. ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Frank Macri

    2003-10-01

    Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

  3. Airfoil seal system for gas turbine engine

    Science.gov (United States)

    None, None

    2013-06-25

    A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

  4. Wind or water turbine power augmentation using the system of guiding surfaces

    International Nuclear Information System (INIS)

    Bashurin, V P; Ktitorov, L V; Lazareva, A S; Pletenev, F A; Budnikov, I N; Hatunkin, V Yu; Klevtsov, V A; Meshkov, E E; Novikova, I A; Yanbaev, G M

    2016-01-01

    As fluid flows through a conventional wind or hydro turbine, it slows from losing energy to extraction from a turbine and spreads out to a wider area. This results in a loss of turbine efficiency. In order to exploit wind or water flow power more effectively, it was suggested to place the turbine inside a system of specially designed airfoils (‘a flow booster’). One part of the booster (‘a nozzle’) improves the turbine performance by speeding up the flow acting on the turbine blades. The other part of the accelerating system (‘a diffuser’) creates a field of low pressure behind the turbine which helps to draw more mass flow to the turbine and avoid the loss of efficiency due to flow deceleration. The flow booster accumulates the kinetic energy of the flow (e.g. river flow or wind) in a small volume where the smaller turbine can be installed. Another possible application of the booster could be the improvement of wind turbine efficiency during low wind period. The present paper also discusses the possibility of kinetic energy accumulation by the use of several accelerating systems of different sizes—the smaller one can be installed inside the bigger one. It helps to accumulate even more kinetic energy on the turbine blades. We call this method the kinetic energy cumulation. Lab and field experiments and CFD simulations of shrouded turbine demonstrate significant increase in velocity in comparison of those for conventional (bare) turbines. (paper)

  5. Maintenance management of gas turbine power plant systems ...

    African Journals Online (AJOL)

    Given the abundant availability of gas and the significant installed capacity of the electricity from Gas Turbine Power Systems; effective maintenance of Gas Turbine Power Plants in Nigeria could be the panacea for achieving regular power generation and supply. The study identified environmental impact on the machines, ...

  6. State of the art-hydraulic yaw systems for wind turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2011-01-01

    This paper addresses the yawing systems of Horizontal Axis Wind Turbines (HAWT’s). HAWT’s represents close to all of the commercial large wind turbines sold today and must be considered state-of-the art within wind turbine technology. Two choices exists when considering components for the active ...

  7. Advanced control of direct-driven PMSG generator in wind turbine system

    Directory of Open Access Journals (Sweden)

    Gajewski Piotr

    2016-12-01

    Full Text Available The paper presents the advanced control system of the wind energy conversion with a variable speed wind turbine. The considered system consists of a wind turbine with the permanent magnet synchronous generator (PMSG, machine side converter (MSC, grid side converter (GSC and control circuits. The mathematical models of a wind turbine system, the PMSG generator and converters have been described. The control algorithms of the converter systems based on the methods of vector control have been applied. In the advanced control system of the machine side converter the optimal MPPT control method has been used. Additionally the pitch control scheme is included in order to achieve the limitation of maximum power and to prevent mechanical damage of the wind turbine. In the control system of the grid side converter the control of active and reactive power has been applied with the application of Voltage Oriented Control (VOC. The performance of the considered wind energy system has been studied by digital simulation. The results of simulation studies confirmed the good effectiveness of the considered wind turbine system and very good performance of the proposed methods of vector control and control systems.

  8. Fixed-Time Stability of the Hydraulic Turbine Governing System

    Directory of Open Access Journals (Sweden)

    Caoyuan Ma

    2018-01-01

    Full Text Available This paper studies the problem of fixed-time stability of hydraulic turbine governing system with the elastic water hammer nonlinear model. To control and improve the quality of hydraulic turbine governing system, a new fixed-time control strategy is proposed, which can stabilize the water turbine governing system within a fixed time. Compared with the finite-time control strategy where the convergence rate depends on the initial state, the settling time of the fixed-time control scheme can be adjusted to the required value regardless of the initial conditions. Finally, we numerically show that the fixed-time control is more effective than and superior to the finite-time control.

  9. Active vibration-based structural health monitoring system for wind turbine blade: Demonstration on an operating Vestas V27 wind turbine

    DEFF Research Database (Denmark)

    Tcherniak, Dmitri; Mølgaard, Lasse Lohilahti

    2017-01-01

    enough to be able to propagate the entire blade length. This article demonstrates the system on a Vestas V27 wind turbine. One blade of the wind turbine was equipped with the system, and a 3.5-month monitoring campaign was conducted while the turbine was operating normally. During the campaign, a defect......—a trailing-edge opening—was artificially introduced into the blade and its size was gradually increased from the original 15 to 45 cm. Using a semi-supervised learning algorithm, the system was able to detect even the smallest amount of damage while the wind turbine was operating under different weather......This study presents a structural health monitoring system that is able to detect structural defects of wind turbine blade such as cracks, leading/trailing-edge opening, or delamination. It is shown that even small defects of at least 15 cm size can be detected remotely without stopping the wind...

  10. Flow Simulation of Modified Duct System Wind Turbines Installed on Vehicle

    Science.gov (United States)

    Rosly, N.; Mohd, S.; Zulkafli, M. F.; Ghafir, M. F. Abdul; Shamsudin, S. S.; Muhammad, W. N. A. Wan

    2017-10-01

    This study investigates the characteristics of airflow with a flow guide installed and output power generated by wind turbine system being installed on a pickup truck. The wind turbine models were modelled by using SolidWorks 2015 software. In order to investigate the characteristic of air flow inside the wind turbine system, a computer simulation (by using ANSYS Fluent software) is used. There were few models being designed and simulated, one without the rotor installed and another two with rotor installed in the wind turbine system. Three velocities being used for the simulation which are 16.7 m/s (60 km/h), 25 m/s (90 km/h) and 33.33 m/s (120 km/h). The study proved that the flow guide did give an impact to the output power produced by the wind turbine system. The predicted result from this study is the velocity of the air inside the ducting system of the present model is better that reference model. Besides, the flow guide implemented in the ducting system gives a big impact on the characteristics of the air flow.

  11. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  12. Performance estimation of Tesla turbine applied in small scale Organic Rankine Cycle (ORC) system

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei; Li, Xue-song

    2017-01-01

    Highlights: • One-dimensional model of the Tesla turbine is improved and applied in ORC system. • Working fluid properties and system operating conditions impact efficiency. • The influence of turbine efficiency on ORC system performance is evaluated. • Potential of using Tesla turbine in ORC systems is estimated. - Abstract: Organic Rankine Cycle (ORC) system has been proven to be an effective method for the low grade energy utilization. In small scale applications, the Tesla turbine offers an attractive option for the organic expander if an efficient design can be achieved. The Tesla turbine is simple in structure and is easy to be manufactured. This paper improves the one-dimensional model for the Tesla turbine, which adopts a non-dimensional formulation that identifies the dimensionless parameters that dictates the performance features of the turbine. The model is used to predict the efficiency of a Tesla turbine that is applied in a small scale ORC system. The influence of the working fluid properties and the operating conditions on the turbine performance is evaluated. Thermodynamic analysis of the ORC system with different organic working fluids and under various operating conditions is conducted. The simulation results reveal that the ORC system can generate a considerable net power output. Therefore, the Tesla turbine can be regarded as a potential choice to be applied in small scale ORC systems.

  13. Numerical analysis of flow interaction of turbine system in two-stage turbocharger of internal combustion engine

    Science.gov (United States)

    Liu, Y. B.; Zhuge, W. L.; Zhang, Y. J.; Zhang, S. Y.

    2016-05-01

    To reach the goal of energy conservation and emission reduction, high intake pressure is needed to meet the demand of high power density and high EGR rate for internal combustion engine. Present power density of diesel engine has reached 90KW/L and intake pressure ratio needed is over 5. Two-stage turbocharging system is an effective way to realize high compression ratio. Because turbocharging system compression work derives from exhaust gas energy. Efficiency of exhaust gas energy influenced by design and matching of turbine system is important to performance of high supercharging engine. Conventional turbine system is assembled by single-stage turbocharger turbines and turbine matching is based on turbine MAP measured on test rig. Flow between turbine system is assumed uniform and value of outlet physical quantities of turbine are regarded as the same as ambient value. However, there are three-dimension flow field distortion and outlet physical quantities value change which will influence performance of turbine system as were demonstrated by some studies. For engine equipped with two-stage turbocharging system, optimization of turbine system design will increase efficiency of exhaust gas energy and thereby increase engine power density. However flow interaction of turbine system will change flow in turbine and influence turbine performance. To recognize the interaction characteristics between high pressure turbine and low pressure turbine, flow in turbine system is modeled and simulated numerically. The calculation results suggested that static pressure field at inlet to low pressure turbine increases back pressure of high pressure turbine, however efficiency of high pressure turbine changes little; distorted velocity field at outlet to high pressure turbine results in swirl at inlet to low pressure turbine. Clockwise swirl results in large negative angle of attack at inlet to rotor which causes flow loss in turbine impeller passages and decreases turbine

  14. Wind Turbine Converter Control Interaction with Complex Wind Farm Systems

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2013-01-01

    . The same wind turbine converter control strategy is evaluated in two different wind farms. It is emphasised that the grid-side converter controller should be characterised by sufficient harmonic/noise rejection and adjusted depending on wind farms to which it is connected. Various stability indices......This study presents wind turbine converter stability analysis of wind farms in frequency domain. The interaction between the wind turbine control system and the wind farm structure in wind farms is deeply investigated. Two wind farms (i.e. Horns Rev II and Karnice) are taken into consideration...... in this study. It is shown that wind farm components, such as long high-voltage alternating current cables and park transformers, can introduce significant low-frequency series resonances seen from the wind turbine terminals that can affect wind turbine control system operation and overall wind farm stability...

  15. Slag processing system for direct coal-fired gas turbines

    Science.gov (United States)

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  16. Hydraulic Soft Yaw System for Multi MW Wind Turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren

    energy and an increase in the loading of the wind turbine structure and components. This dissertation examines the hypothesis that there are advantages of basing a yaw system on hydraulic components instead of normal electrical components. This is done through a state of the art analysis followed...... in the wind turbine yaw system along with minor reductions in the blades and main shaft. Optimization of the damping and stiffness of the hydraulic soft yaw system have been conducted and an optimum found for load reduction. Linear control algorithms for control of damping pressure peaks have been developed...... the full turbine code in FAST, and the mathematical model of the hydraulic yaw system in Matlab/Simulink and Amesim is developed in order to analyze a full scale model of the hydraulic yaw system in combination with the implemented friction model for the yaw system. These results are also promising...

  17. Adaptive Controller for Drive System PMSG in Wind Turbine

    Directory of Open Access Journals (Sweden)

    Gnanambal

    2014-07-01

    Full Text Available This paper proposes adaptive Maximum Power Point Tracking (MPPT controller for Permanent Magnet Synchronous Generator (PMSG wind turbine and direct power control for grid side inverter for transformer less integration of wind energy. PMSG wind turbine with two back to back voltage source converters are considered more efficient, used to make real and reactive power control. The optimal control strategy has introduced for integrated control of PMSG Maximum Power Extraction, DC link voltage control and grid voltage support controls. Simulation model using MATLAB Simulink has developed to investigate the performance of proposed control techniques for PMSG wind turbine steady and variable wind conditions. This paper shows that the direct driven grid connected PMSG system has excellent performances and confirms the feasibility of the proposed techniques. While the wind turbine market continues to be dominated by conventional gear-driven wind turbine systems, the direct drive is attracting attention. PM machines are more attractive and superior with higher efficiency and energy yield, higher reliability, and power-to-weight ratio compared with electricity-excited machines.

  18. System Identification of Wind Turbines for Structural Health Monitoring

    DEFF Research Database (Denmark)

    Perisic, Nevena

    Structural health monitoring is a multi-disciplinary engineering field that should allow the actual wind turbine maintenance programmes to evolve to the next level, hence increasing safety and reliability and decreasing turbines downtime. The main idea is to have a sensing system on the structure...... cases are considered, two practical problems from the wind industry are studied, i.e. monitoring of the gearbox shaft torque and the tower root bending moments. The second part of the thesis is focused on the influence of friction on the health of the wind turbine and on the nonlinear identification...... that monitors the system responses and notifies the operator when damages or degradations have been detected. However, some of the response signals that contain important information about the health of the wind turbine components cannot be directly measured, or measuring them is highly complex and costly...

  19. Research on simulation of supercritical steam turbine system in large thermal power station

    Science.gov (United States)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the stability and safety of supercritical steam turbine system operation in large thermal power station, the body of the steam turbine is modeled in this paper. And in accordance with the hierarchical modeling idea, the steam turbine body model, condensing system model, deaeration system model and regenerative system model are combined to build a simulation model of steam turbine system according to the connection relationship of each subsystem of steam turbine. Finally, the correctness of the model is verified by design and operation data of the 600MW supercritical unit. The results show that the maximum simulation error of the model is 2.15%, which meets the requirements of the engineering. This research provides a platform for the research on the variable operating conditions of the turbine system, and lays a foundation for the construction of the whole plant model of the thermal power plant.

  20. Matching of wind turbine type and system scale to wind conditions; Chiten no fukyo ni taisuru furyoku turbine no keitai to sytem taikaku no seigosei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, T. [Japan Society for the Promotion of Science, Tokyo (Japan); Tanzawa, Y. [Nippon Institute of Technology, Saitama (Japan); Ota, E. [Waseda University, Tokyo (Japan). School of Science and Engineering; Hashizume, T.

    2000-09-25

    The matching of the wind turbine type and system scale of the stand-alone wind turbine generator system to wind conditions is investigated using our dynamic simulation model. This paper examines three types of wind turbines: the Darrieus-Savonius hybrid wind turbine, the Darrieus turbine proper and the up-wind Propeller turbine. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient. As a computed result of the net extracting energy under fluctuations of wind speed and direction, the Darrieus turbine proper has little conformability to wind fluctuations because of its output characteristics. As for other wind turbines, large-scale systems do not always have advantages over small-scale systems as the effect of the dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine under wind direction fluctuations is much reduced when compared with that of the hybrid wind turbine. Thus, it is concluded that the appropriate wind turbine type and system scale exist for each wind condition. (author)

  1. Advanced turbine systems study system scoping and feasibility study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    United Technologies Research Center, Pratt & Whitney Commercial Engine Business, And Pratt & Whitney Government Engine and Space Propulsion has performed a preliminary analysis of an Advanced Turbine System (ATS) under Contract DE-AC21-92MC29247 with the Morgantown Energy Technology Center. The natural gas-fired reference system identified by the UTC team is the Humid Air Turbine (HAT) Cycle in which the gas turbine exhaust heat and heat rejected from the intercooler is used in a saturator to humidify the high pressure compressor discharge air. This results in a significant increase in flow through the turbine at no increase in compressor power. Using technology based on the PW FT4000, the industrial engine derivative of the PW4000, currently under development by PW, the system would have an output of approximately 209 MW and an efficiency of 55.3%. Through use of advanced cooling and materials technologies similar to those currently in the newest generation military aircraft engines, a growth version of this engine could attain approximately 295 MW output at an efficiency of 61.5%. There is the potential for even higher performance in the future as technology from aerospace R&D programs is adapted to aero-derivative industrial engines.

  2. Low pressure cooling seal system for a gas turbine engine

    Science.gov (United States)

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  3. Design and Experimental Validation of Hydraulic Yaw System for Multi MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    market. A hydraulic yaw system is such a new technology, and so a mathematical model of the full scale system and test rig system is derived and compared to measurements from the system. This is done in order to have a validated model, which wind turbine manufacturers may use for test in their simulation......To comply with the increasing demands for life time and reliability of wind turbines as these grow in size, new measures needs to be taken in the design of wind turbines and components hereof. One critical point is the initial testing of the components and systems before they are implemented...... in an actual turbine. Full scale hardware testing is both extremely expensive and time consuming, and so the wind turbine industry moves more towards simulations when testing. In order to meet these demands it is necessary with valid models of systems in order to introduce new technologies to the wind turbine...

  4. Verification of the New FAST v8 Capabilities for the Modeling of Fixed-Bottom Offshore Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Barahona, B.; Jonkman, J.; Damiani, R.; Robertson, A.; Hayman, G.

    2014-12-01

    Coupled dynamic analysis has an important role in the design of offshore wind turbines because the systems are subject to complex operating conditions from the combined action of waves and wind. The aero-hydro-servo-elastic tool FAST v8 is framed in a novel modularization scheme that facilitates such analysis. Here, we present the verification of new capabilities of FAST v8 to model fixed-bottom offshore wind turbines. We analyze a series of load cases with both wind and wave loads and compare the results against those from the previous international code comparison projects-the International Energy Agency (IEA) Wind Task 23 Subtask 2 Offshore Code Comparison Collaboration (OC3) and the IEA Wind Task 30 OC3 Continued (OC4) projects. The verification is performed using the NREL 5-MW reference turbine supported by monopile, tripod, and jacket substructures. The substructure structural-dynamics models are built within the new SubDyn module of FAST v8, which uses a linear finite-element beam model with Craig-Bampton dynamic system reduction. This allows the modal properties of the substructure to be synthesized and coupled to hydrodynamic loads and tower dynamics. The hydrodynamic loads are calculated using a new strip theory approach for multimember substructures in the updated HydroDyn module of FAST v8. These modules are linked to the rest of FAST through the new coupling scheme involving mapping between module-independent spatial discretizations and a numerically rigorous implicit solver. The results show that the new structural dynamics, hydrodynamics, and coupled solutions compare well to the results from the previous code comparison projects.

  5. Wind Turbine Generator System Safety and Function Test Report for the Southwest Windpower H40 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.; Link, H.; Meadors, M.; Bianchi, J.

    2002-06-01

    The objective of this test was to evaluate the safety and function characteristics of the Whisper H40 wind turbine. The general requirements of wind turbine safety and function tests are defined in the IEC standard WT01. The testing was conducted in accordance with the National Wind Technology Center (NWTC) Quality Assurance System, including the NWTC Certification Team Certification Quality Manual and the NWTC Certification Team General Quality Manual for the Testing of Wind Turbines, as well as subordinate documents. This safety and function test was performed as part of the U.S. Department of Energy's Field Verification Program for small wind turbines.

  6. Field Testing of LIDAR-Assisted Feedforward Control Algorithms for Improved Speed Control and Fatigue Load Reduction on a 600-kW Wind Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avishek A.; Bossanyi, Ervin A.; Scholbrock, Andrew K.; Fleming, Paul; Boquet, Mathieu; Krishnamurthy, Raghu

    2015-12-14

    A severe challenge in controlling wind turbines is ensuring controller performance in the presence of a stochastic and unknown wind field, relying on the response of the turbine to generate control actions. Recent technologies such as LIDAR, allow sensing of the wind field before it reaches the rotor. In this work a field-testing campaign to test LIDAR Assisted Control (LAC) has been undertaken on a 600-kW turbine using a fixed, five-beam LIDAR system. The campaign compared the performance of a baseline controller to four LACs with progressively lower levels of feedback using 35 hours of collected data.

  7. Proceedings: Small Wind Turbine Systems, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Small wind turbine technology is discussed. Systems development, test programs, utility interface issues, safety and reliability programs, applications, and marketing are discussed. For individual titles, see N83-23723 through N83-23741.

  8. Characterizing the Influence of Abstraction in Full-Scale Wind Turbine Nacelle Testing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schkoda, Ryan; Bibo, Amin; Guo, Yi; Lambert, Scott; Wallen, Robb

    2016-08-01

    In recent years, there has been a growing interest in full-scale wind turbine nacelle testing to complement individual component testing. As a result, several wind turbine nacelle test benches have been built to perform such testing with the intent of loading the integrated components as they are in the field. However, when mounted on a test bench the nacelle is not on the top of a tower and does not have blades attached to it--this is a form of abstraction. This paper aims to quantify the influence of such an abstraction on the dynamic response of the nacelle through a series of simulation case studies. The responses of several nacelle components are studied including the main bearing, main shaft, gearbox supports, generator, and yaw bearing interface. Results are presented to highlight the differences in the dynamic response of the nacelle caused by the abstraction. Additionally, the authors provide recommendations for mitigating the effects of the abstraction.

  9. Independent Blade Pitch Controller Design for a Three-Bladed Turbine Using Disturbance Accommodating Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Wright, Alan D.; Johnson, Kathryn E.

    2016-07-29

    Two independent pitch controllers (IPCs) based on the disturbance accommodating control (DAC) algorithm are designed for the three-bladed Controls Advanced Research Turbine to regulate rotor speed and to mitigate blade root flapwise bending loads in above-rated wind speed. One of the DAC-based IPCs is designed based on a transformed symmetrical-asymmetrical (TSA) turbine model, with wind disturbances being modeled as a collective horizontal component and an asymmetrical linear shear component. Another DAC-based IPC is designed based on a multiblade coordinate (MBC) transformed turbine model, with a horizontal component and a vertical shear component being modeled as step waveform disturbance. Both of the DAC-based IPCs are found via a regulation equation solved by Kronecker product. Actuator dynamics are considered in the design processes to compensate for actuator phase delay. The simulation study shows the effectiveness of the proposed DAC-based IPCs compared to a proportional-integral (PI) collective pitch controller (CPC). Improvement on rotor speed regulation and once-per-revolution and twice-per-revolution load reductions has been observed in the proposed IPC designs.

  10. Development turbine blade for ultramicro hydro power generation by 3D printer system

    Science.gov (United States)

    Kamimura, T.; Itoh, H.; Sugiura, K.

    2017-11-01

    We have developed micro generation system for effective use of unutilized energy and the spread of a self-controlled dispersion energy supply system. The turbine blade was designed for achieving high performance by special shape. The turbine type was called quasi-Peace turbine type. Turbine with a diameter of 30cm is made of metal, it was created by the 5-axis milling machine. The experimental apparatus was fabricated by the 3D printer. An experiment was carried out in the scale down model. The specific speed of this turbine was much lower than that of existing turbines.

  11. Evaluation of turbine systems for compressed air energy storage plants. Final report for FY 1976

    Energy Technology Data Exchange (ETDEWEB)

    Kartsounes, G.T.

    1976-10-01

    Compressed air energy storage plants for electric utility peak-shaving applications comprise four subsystems: a turbine system, compressor system, an underground air storage reservoir, and a motor/generator. Proposed plant designs use turbines that are derived from available gas and steam turbines with proven reliability. The study examines proposed turbine systems and presents an evaluation of possible systems that may reduce capital cost and/or improve performance. Six new turbine systems are identified for further economic evaluation.

  12. Gas turbine premixing systems

    Science.gov (United States)

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  13. Numerical Analysis of Impulse Turbine for Isolated Pilot OWC System

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2013-01-01

    Full Text Available Oscillating water column (OWC is the most widely used wave energy converting technology in the world. The impulse turbine is recently been employed as the radial turbine in OWC facilities to convert bidirectional mechanical air power into electricity power. 3D numerical model for the impulse turbine is established in this paper to investigate its operating performance of the designed impulse turbine for the pilot OWC system which is under the construction on Jeju Island, Republic of Korea. The proper mesh style, turbulence model, and numerical solutions are employed to study the velocity and air pressure distribution especially around the rotor blade. The operating coefficients obtained from the numerical simulation are compared with corresponding experimental data, which demonstrates that the 3D numerical model proposed here can be applied to the research of impulse turbines for OWC system. Effects of tip clearances on flow field distribution characteristics and operating performances are also studied.

  14. Hydraulic turbines

    International Nuclear Information System (INIS)

    Meluk O, G.

    1998-01-01

    The hydraulic turbines are defined according to the specific speed, in impulse turbines and in reaction turbines. Currently, the Pelton turbines (of impulse) and the Francis and Kaplan turbines (of reaction), they are the most important machines in the hydroelectric generation. The hydraulic turbines are capable of generating in short times, large powers, from its loads zero until the total load and reject the load instantly without producing damages in the operation. When the hydraulic resources are important, the hydraulic turbines are converted in the axle of the electric system. Its combination with thermoelectric generation systems, it allow the continuing supply of the variations in demand of energy system. The available hydraulic resource in Colombia is of 93085 MW, of which solely 9% is exploited, become 79% of all the electrical country generation, 21% remaining is provided by means of the thermoelectric generation

  15. Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J.; Larsen, T.; Hansen, A.; Nygaard, T.; Maus, K.; Karimirad, M.; Gao, Z.; Moan, T.; Fylling, I.

    2010-04-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Task 23. In the latest phase of the project, participants used an assortment of codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating spar buoy in 320 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.

  16. Building and Calibration of a FAST Model of the SWAY Prototype Floating Wind Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Koh, J. H.; Robertson, A.; Jonkman, J.; Driscoll, F.; Ng, E. Y. K.

    2013-09-01

    Present efforts to verify and validate aero-hydro-servo-elastic numerical simulation tools that predict the dynamic response of a floating offshore wind turbine are primarily limited to code-to-code comparisons or code-to-data comparisons using data from wind-wave basin tests. In partnership with SWAY AS, the National Renewable Energy Laboratory (NREL) installed scientific wind, wave, and motion measurement equipment on the 1/6.5th-scale prototype SWAY floating wind system to collect data to validate a FAST model of the SWAY design in an open-water condition. Nanyang Technological University (NTU), through a collaboration with NREL, assisted in this validation.

  17. Load-Direction-Derived Support Structures for Wind Turbines: A Lattice Tower Concept and Preparations for Future Certifications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Struve, Achim [University of Applied Sciences Flensburg; Faber, Torsten [University of Applied Sciences Flensburg; Ummenhofer, Thomas [Karlsruhe Institute of Technology

    2017-11-07

    The call for more cost-effective and environmentally friendly tower concepts is motivated by tower costs [1] and tower CO2-emission contributions [2], which are high relative to the whole wind turbine system. The proposed rotatable tower concept with yaw bearing at the bottom instead of the top of the tower will provide beneficial economic and environmental impacts to the turbine system. This wind alignment capability indicates a load-direction-derived tower design. By combining this approach with a lattice concept, large material and cost savings for the tower can be achieved. This paper presents a way to analyze and verify the proposed design through aero-servo-elastic simulations, which make future certifications of rotatable tower concepts viable. For this reason, the state-of-the-art, open-source lattice-tower finite-element-method (FEM) module SubDyn [10], developed by the National Renewable Energy Laboratory, has been modified to account for arbitrary member cross-sections. Required changes in the beam element stiffness and mass matrix formulation took place according to an energy method [13]. All validated adaptions will be usable within the aero-servo-elastic simulation framework FAST and are also beneficial for other nonrotatable lattice structures.

  18. Design of a wind turbine-generator system considering the conformability to wind velocity fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Tetsuya; Hashizume, Takumi; Outa, Eisuke

    1999-07-01

    The conformability of the rated power output of the wind turbine-generator system and of the wind turbine type to wind velocity fluctuations are investigated with a simulation model. The authors examine three types of wind turbines: the Darrieus-Savonius hybrid, the Darrieus proper and the Propeller. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient points. As a computed result of the net extracting power, the Darrieus turbine proper has little conformability to wind velocity fluctuations because of its output characteristics. As for the other turbines, large-scale systems do not always have an advantage over small-scale systems as the effect of its dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine, under wind direction fluctuation, is much reduced when compared with the hybrid wind turbine. Thus, the authors conclude that the appropriate rated power output of the system exists with relation to the wind turbine type for each wind condition.

  19. Robust H(infinity) tracking control of boiler-turbine systems.

    Science.gov (United States)

    Wu, J; Nguang, S K; Shen, J; Liu, G; Li, Y G

    2010-07-01

    In this paper, the problem of designing a fuzzy H(infinity) state feedback tracking control of a boiler-turbine is solved. First, the Takagi and Sugeno fuzzy model is used to model a boiler-turbine system. Next, based on the Takagi and Sugeno fuzzy model, sufficient conditions for the existence of a fuzzy H(infinity) nonlinear state feedback tracking control are derived in terms of linear matrix inequalities. The advantage of the proposed tracking control design is that it does not involve feedback linearization technique and complicated adaptive scheme. An industrial boiler-turbine system is used to illustrate the effectiveness of the proposed design as compared with a linearized approach. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Stability improvement of induction generator-based wind turbine systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Hu, Y.; Blaabjerg, Frede

    2007-01-01

    The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...... affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated...

  1. An expert system for diagnostics and estimation of steam turbine components condition

    Science.gov (United States)

    Murmansky, B. E.; Aronson, K. E.; Brodov, Yu. M.

    2017-11-01

    The report describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems components. The expert system is based on Bayes’ theorem and permits to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and of 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 evidence (indications); the procedures are also designated for 20 state parameters estimation. Similar knowledge base containing the diagnostic features and faults hypotheses are formulated for other technological subsystems of turbine unit. With the necessary initial information available a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path it is the correlation and regression analysis of multifactor relationship between the vibration parameters variations and the regime parameters; for system of thermal expansions it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement and so forth. With a lack of initial information the expert system enables to formulate a diagnosis

  2. Method and system to facilitate sealing in gas turbines

    Science.gov (United States)

    Morgan, Victor John; Foster, Gregory Thomas; Sarawate, Neelesh Nandkumar

    2017-09-12

    A method and system for sealing between components within a gas turbine is provided. A first recess defined in a first component receives a seal member. A second recess defined in a second component adjacent the first component also receives the seal member. The first and second recesses are located proximate a hot gas path defined through the gas turbine, and define circumferential paths about the turbine axis. The seal member includes a sealing face that extends in a direction substantially parallel to the turbine axis. The seal member also includes a plurality of seal layers, wherein at least one of the seal layers includes at least one stress relief region for facilitating flexing of the first seal member.

  3. Advanced Micro Turbine System (AMTS) -C200 Micro Turbine -Ultra-Low Emissions Micro Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Capstone Turbine Corporation

    2007-12-31

    In September 2000 Capstone Turbine Corporation commenced work on a US Department of Energy contract to develop and improve advanced microturbines for power generation with high electrical efficiency and reduced pollutants. The Advanced MicroTurbine System (AMTS) program focused on: (1) The development and implementation of technology for a 200 kWe scale high efficiency microturbine system (2) The development and implementation of a 65 kWe microturbine which meets California Air Resources Board (CARB) emissions standards effective in 2007. Both of these objectives were achieved in the course of the AMTS program. At its conclusion prototype C200 Microturbines had been designed, assembled and successfully completed field demonstration. C65 Microturbines operating on natural, digester and landfill gas were also developed and successfully tested to demonstrate compliance with CARB 2007 Fossil Fuel Emissions Standards for NOx, CO and VOC emissions. The C65 Microturbine subsequently received approval from CARB under Executive Order DG-018 and was approved for sale in California. The United Technologies Research Center worked in parallel to successfully execute a RD&D program to demonstrate the viability of a low emissions AMS which integrated a high-performing microturbine with Organic Rankine Cycle systems. These results are documented in AMS Final Report DOE/CH/11060-1 dated March 26, 2007.

  4. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  5. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  6. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  7. Preprint server seeks way to halt plagiarists

    CERN Multimedia

    Giles, J

    2003-01-01

    "An unusual case of plagiarism has struck ArXiv, the popular physics preprint server at Cornell University in Ithaca, New York, resulting in the withdrawal of 22 papers...The plagiarism case traces its origins to June 2002, when Yasushi Watanabe, a high-energy physicist at the Tokyo Insitute of Technology, was contacted by Ramy Noboulsi, who said he was a mathematical physicist" (1 page)

  8. Modernization of turbine control system and reactor control system in Almaraz 1 and 2

    International Nuclear Information System (INIS)

    Pulido, C.; Diez, J.; Carrasco, J. A.; Lopez, L.

    2005-01-01

    The replacement of the Turbine Control System and Reactor Control System are part of the Almaraz modernization program for the Instrumentation and Control. For these upgrades Almaraz has selected the Ovation Platform that provides open architecture and easy expansion to other systems, these platforms is highly used in many nuclear and thermal plants around the world. One of the main objective for this project were to minimize the impact on the installation and operation of the plant, for that reason the project is implemented in two phases, Turbine Control upgrade and Reactor Control upgrade. Another important objective was to increase the reliability of the control system making them fully fault tolerant to single failures. The turbine Control System has been installed in Units 1 and 2 while the Reactor Control System will be installed in 2006 and 2007 outages. (Author)

  9. Integration Research on Gas Turbine and Tunnel Kiln Combined System

    Science.gov (United States)

    Shi, Hefei; Ma, Liangdong; Liu, Mingsheng

    2018-04-01

    Through the integrated modeling of gas turbine and tunnel kiln combined system, a thermodynamic calculation method of combined system is put forward, and the combined system operation parameters are obtained. By this method, the optimization of the combined system is analyzed and the optimal configuration of the gas turbine is calculated. At the same time, the thermal efficiency of the combined system is analyzed, and the heat distribution and thermal efficiency of the system before and after the improvement are explained. Taking the 1500 kg/h ceramic production as an example, pointed out that if the tunnel kiln has a gas turbine with a power of 342 kw. The amount of electricity of the combined system that produced per unit volume of the fuel which consumes more than it used to will be 7.19 kwh, the system thermal efficiency will reach 57.49%, which higher than the individual gas turbine’s cycle thermal efficiency 20% at least.

  10. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    International Nuclear Information System (INIS)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y.

    2014-01-01

    Flow characteristic curves are plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate. The flow characteristic curves are utilized to accurately test the performance of the control valve of turbine system to ensure the highest controllability and reliability of the power conversion system of large and small power plants. Turbine converts the kinetic energy of steam to mechanical energy of rotor blades in power conversion system. The electrical energy output from the generator of which the rotor is coupled with that of the turbine depends on the rotation velocity of the turbine bucket. The rotation velocity is proportional to the mass flow rate (steam or gas) to the turbine through valves and nozzles. The turbine comprises fast acting governing control valves and stop valves acting against the seat in the flow passage in the closed position. The turbine control valve regulates the mass flow rate entering the first nozzle of a turbine. The main function of stop valve is to close the fluid inlet rapidly in response to a fast close signal to swiftly cut off the flow through the valve inlet. Both these valves contribute attractively to improvement of the power system transient stability as well. To improve the efficiency of power conversion system many investigation have been done by researcher by focusing on the cycle layout or working fluid or by improving the flow path of the working fluid. The main focus is to find out the best option for combined cycle power plant by analyzing four different cycle configuration. Next research phase focused on different way to enhance the cycle efficiency. As the electrical power output from the generator is proportional to the mass flow rate to the turbine through the valve, it should preferably operate linearly. In reality, however, the valve has the various flow characteristics pursuant to the stem lift. Thus, the flow characteristic and control performance are needed to be designed

  11. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    Flow characteristic curves are plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate. The flow characteristic curves are utilized to accurately test the performance of the control valve of turbine system to ensure the highest controllability and reliability of the power conversion system of large and small power plants. Turbine converts the kinetic energy of steam to mechanical energy of rotor blades in power conversion system. The electrical energy output from the generator of which the rotor is coupled with that of the turbine depends on the rotation velocity of the turbine bucket. The rotation velocity is proportional to the mass flow rate (steam or gas) to the turbine through valves and nozzles. The turbine comprises fast acting governing control valves and stop valves acting against the seat in the flow passage in the closed position. The turbine control valve regulates the mass flow rate entering the first nozzle of a turbine. The main function of stop valve is to close the fluid inlet rapidly in response to a fast close signal to swiftly cut off the flow through the valve inlet. Both these valves contribute attractively to improvement of the power system transient stability as well. To improve the efficiency of power conversion system many investigation have been done by researcher by focusing on the cycle layout or working fluid or by improving the flow path of the working fluid. The main focus is to find out the best option for combined cycle power plant by analyzing four different cycle configuration. Next research phase focused on different way to enhance the cycle efficiency. As the electrical power output from the generator is proportional to the mass flow rate to the turbine through the valve, it should preferably operate linearly. In reality, however, the valve has the various flow characteristics pursuant to the stem lift. Thus, the flow characteristic and control performance are needed to be designed

  12. A Weakest-Link Approach for Fatigue Limit of 30CrNiMo8 Steels (Preprint)

    Science.gov (United States)

    2011-03-01

    34Application of a Weakest-Link Concept to the Fatigue Limit of the Bearing Steel Sae 52100 in a Bainitic Condition," Fatigue and Fracture of...AFRL-RX-WP-TP-2011-4206 A WEAKEST-LINK APPROACH FOR FATIGUE LIMIT OF 30CrNiMo8 STEELS (PREPRINT) S. Ekwaro-Osire and H.V. Kulkarni Texas...2011 4. TITLE AND SUBTITLE A WEAKEST-LINK APPROACH FOR FATIGUE LIMIT OF 30CrNiMo8 STEELS (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT

  13. Development and industrial tests of the first LNG hydraulic turbine system in China

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2016-10-01

    Full Text Available The cryogenic hydraulic turbine can be used to replace the conventional J–T valve for LNG or mixed refrigerant throttling and depressurization in a natural gas liquefaction plant. This advanced technology is not only to enhance the efficiency of the liquefaction plant, but to usher a new trend in the development of global liquefaction technologies. China has over 136 liquefaction plants, but the cryogenic hydraulic turbines have not been deployed in industrial utilization. In addition, these turbines cannot be manufactured domestically. In this circumstance, through working on the key technologies for LNG hydraulic turbine process & control system development, hydraulic model optimization design, structure design and manufacturing, the first domestic cryogenic hydraulic turbine with a flow rate of 40 m3/h was developed to recover the pressure energy from the LNG of cold box. The turbine was installed in the CNOOC Zhuhai Natural Gas Liquefaction Plant for industrial tests under multiple working conditions, including start-stop, variable flow rates and variable rotation speeds. Test results show that the domestic LNG cryogenic hydraulic turbine has satisfactory mechanical and operational performances at low temperatures as specified in design. In addition, the process & control system and frequency-conversion power-generation system of the turbine system are designed properly to automatically and smoothly replace the existing LNG J–T valve. As a result, the domestic LNG cryogenic hydraulic turbine system can improve LNG production by an average of 2% and generate power of 8.3 kW.

  14. Shared technologies in the development of the Titan 250 gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Knodle, M.S.; Novaresi, M.A. [Solar Turbines Inc., San Diego, CA (United States). Titan Gas Turbine Systems Division

    2009-07-01

    Development of the Titan 250 industrial gas turbine system began in 2005 in response to demands from the petroleum industry and electricity producers for higher performance industrial gas turbine products in the 15-30 MW (25,000-45,000 hp) power range. The Titan 250 is Solar Turbine's most powerful package and its evolutionary hybrid-type design approach was based on shared aerodynamic, thermal, mechanical, and combustion technologies borrowed from the Taurus 65TM, Titan 130TM, and Mercury 50TM gas turbine systems. It produces 50 per cent more power than the Titan 130, while providing 40 per cent shaft efficiency with significantly fewer emissions. Thorough combustion system testing, use of proven materials, and hot section cooling provided a solid design basis. The engine is a two-shaft design that includes a 16-stage axial-flow compressor, a dry low emissions combustor for low NOx and CO output, a two-stage gas producer turbine operating at a turbine rotor inlet temperature of 1204 degrees C, and a three-stage, all-shrouded blade power turbine for maximum efficiency. The design also minimizes maintenance intervals to increase equipment availability. The gas turbine and gas compressor have been tested in component, subsystem, and full-scale development, and will be starting field operation in late 2009 to verify performance and mechanical integrity under all operating conditions. 3 refs., 1 tab., 26 figs.

  15. Motion Performance and Mooring System of a Floating Offshore Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    Jing Zhao; Liang Zhang; Haitao Wu

    2012-01-01

    The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures.However,countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas.The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform.This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system.The wind turbine was modeled as a wind block with a certain thrust coefficient,and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software.The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined.The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.

  16. Motion performance and mooring system of a floating offshore wind turbine

    Science.gov (United States)

    Zhao, Jing; Zhang, Liang; Wu, Haitao

    2012-09-01

    The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.

  17. The system design and performance test of hybrid vertical axis wind turbine

    Science.gov (United States)

    Dwiyantoro, Bambang Arip; Suphandani, Vivien

    2017-04-01

    Vertical axis wind turbine is a tool that is being developed to generate energy from wind. One cause is still little use of wind energy is the design of wind turbines that are less precise. Therefore in this study will be developed the system design of hybrid vertical axis wind turbine and tested performance with experimental methods. The design of hybrid turbine based on a straight bladed Darrieus turbine along with a double step Savonius turbine. The method used to design wind turbines is by studying literature, analyzing the critical parts of a wind turbine and the structure of the optimal design. Wind turbine prototype of the optimal design characteristic tests in the wind tunnel experimentally by varying the speed of the wind. From the experimental results show that the greater the wind speed, the greater the wind turbine rotation and torque is raised. The hybrid vertical axis wind turbine has much better self-starting and better conversion efficiency.

  18. The development of control systems for high power steam turbines

    International Nuclear Information System (INIS)

    Mathey, M.

    1983-01-01

    The functional and technological aspects of developments in the field of control systems for steam turbines over the last twenty years are analyzed. These developments have now culminated in very sophisticated systems which closely link electronics to high pressure hydraulic technology. A detailed description of these systeme high-lighting the high technical level of the control methods and the flexibility and reliability in service of turbines controlled in this way is given [fr

  19. A Semi-active Control System for Wind Turbines

    DEFF Research Database (Denmark)

    Caterino, N.; Georgakis, Christos T.; Trinchillo, F.

    2014-01-01

    A semi-active (SA) control system based on the use of smart magnetorheological (MR) dampers to control the structural response of a wind turbine is proposed herein. The innovative approach is based on the implementation and use of a variable-properties base restraint. This is able to modify in real......, and a control algorithm that instantaneously commands the latter during the motion, making them to modulate the reactive force as needed to achieve the performance goals. The design and operation of such a system are shown with reference to a case study consisting of an almost 100 m tall wind turbine, realized...

  20. Cooling system with compressor bleed and ambient air for gas turbine engine

    Science.gov (United States)

    Marsh, Jan H.; Marra, John J.

    2017-11-21

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed air through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.

  1. Overview of Modelling and Advanced Control Strategies for Wind Turbine Systems

    Directory of Open Access Journals (Sweden)

    Silvio Simani

    2015-11-01

    Full Text Available The motivation for this paper comes from a real need to have an overview of the challenges of modelling and control for very demanding systems, such as wind turbine systems, which require reliability, availability, maintainability, and safety over power conversion efficiency. These issues have begun to stimulate research and development in the wide control community particularly for these installations that need a high degree of “sustainability”. Note that this represents a key point for offshore wind turbines, since they are characterised by expensive and/or safety critical maintenance work. In this case, a clear conflict exists between ensuring a high degree of availability and reducing maintenance times, which affect the final energy cost. On the other hand, wind turbines have highly nonlinear dynamics, with a stochastic and uncontrollable driving force as input in the form of wind speed, thus representing an interesting challenge also from the modelling point of view. Suitable control methods can provide a sustainable optimisation of the energy conversion efficiency over wider than normally expected working conditions. Moreover, a proper mathematical description of the wind turbine system should be able to capture the complete behaviour of the process under monitoring, thus providing an important impact on the control design itself. In this way, the control scheme could guarantee prescribed performance, whilst also giving a degree of “tolerance” to possible deviation of characteristic properties or system parameters from standard conditions, if properly included in the wind turbine model itself. The most important developments in advanced controllers for wind turbines are also briefly referenced, and open problems in the areas of modelling of wind turbines are finally outlined.

  2. Integrating Systems Health Management with Adaptive Controls for a Utility-Scale Wind Turbine

    Science.gov (United States)

    Frost, Susan A.; Goebel, Kai; Trinh, Khanh V.; Balas, Mark J.; Frost, Alan M.

    2011-01-01

    Increasing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. Systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage. Advanced adaptive controls can provide the mechanism to enable optimized operations that also provide the enabling technology for Systems Health Management goals. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency management and adaptive controls. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  3. Understanding IEC standard wind turbine models using SimPowerSystems

    DEFF Research Database (Denmark)

    Das, Kaushik; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2016-01-01

    This article describes and exemplifies the IEC 61400-27 generic wind turbine models through an interactive multimedia learning environment - Matlab SimPowerSystems. The article aims help engineers with different backgrounds to get a better understanding of wind turbine dynamics and control...

  4. Comparison of Second-Order Loads on a Tension-Leg Platform for Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gueydon, S.; Wuillaume, P.; Jonkman, J.; Robertson, A.; Platt, A.

    2015-03-01

    The first objective of this work is to compare the two floating offshore wind turbine simulation packages {DIFFRAC+aNySIM} and {WAMIT+FAST}. The focus is on second-order wave loads, and so first- and second-order wave loads are applied to a structure sequentially for a detailed comparison and a more precise analysis of the effects of the second-order loads. aNySIM does not have the capability to model flexible bodies, and so the simulations performed in this tool are done assuming a rigid body. FAST also assumes that the platform is rigid, but can account for the flexibility of the tower. The second objective is to study the effects of the second-order loads on the response of a TLP floating wind turbine. The flexibility of the tower must be considered for this investigation, and therefore only FAST is used.

  5. Effects of turbine's selection on hydraulic transients in the long pressurized water conveyance system

    International Nuclear Information System (INIS)

    Zhou, J X; Hu, M; Cai, F L; Huang, X T

    2014-01-01

    For a hydropower station with longer water conveyance system, an optimum turbine's selection will be beneficial to its reliable and stable operation. Different optional turbines will result in possible differences of the hydraulic characteristics in the hydromechanical system, and have different effects on the hydraulic transients' analysis and control. Therefore, the premise for turbine's selection is to fully understand the properties of the optional turbines and their effects on the hydraulic transients. After a brief introduction of the simulation models for hydraulic transients' computation and stability analysis, the effects of hydraulic turbine's characteristics at different operating points on the hydro-mechanical system's free vibration analysis were theoretically investigated with the hydraulic impedance analysis of the hydraulic turbine. For a hydropower station with long water conveyance system, based on the detailed hydraulic transients' computation respectively for two different optional turbines, the effects of the turbine's selection on hydraulic transients were analyzed. Furthermore, considering different operating conditions for each turbine and the similar operating conditions for these two turbines, free vibration analysis was comprehensively carried out to reveal the effects of turbine's impedance on system's vibration characteristics. The results indicate that, respectively with two different turbines, most of the controlling parameters under the worst cases have marginal difference, and few shows obvious differences; the turbine's impedances under different operating conditions have less effect on the natural angular frequencies; different turbine's characteristics and different operating points have obvious effects on system's vibration stability; for the similar operating conditions of these two turbines, system's vibration characteristics are basically consistent with

  6. Stability improvement of wind turbine penetrated using power system stabilizer (PSS) on South Sulawesi transmission system

    Science.gov (United States)

    Siswanto, Agus; Gunadin, Indar Chaerah; Said, Sri Mawar; Suyuti, Ansar

    2018-03-01

    The purpose of this research is to improve the stability of interconnection of South Sulawesi system caused by penetration new wind turbine in Sidrap area on bus 2 and in Jeniponto area on bus 34. The method used in this research was via software Power System analysis Toolbox (PSAT) under MATLAB. In this research, there are two problems that are evaluated, the stability of the system before and after penetration wind turbine into the system South Sulawesi system. From the simulation result shows that penetration of wind turbine on bus 2 Sidrap, bus 37 Jeniponto give effect oscillation on the system. The oscillation was damped by installation of Power System Stabilizer (PSS) on bus 29 area Sungguminasa, that South Sulawesi system stable according to normal condition.

  7. Design and construction of a simple blade pitch measurement system for small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Whale, Jonathan [Research Institute of Sustainable Energy, Murdoch University, Perth, WA 6150 (Australia)

    2009-02-15

    For small wind turbines to be reliable they must have in place good mechanisms to protect themselves against very high winds or sudden removal of load. One common protection method in small wind turbines is that of blade feathering. It is important that the blade feathering mechanism of a small wind turbine is tested before the turbine is installed in the field. This paper presents a simple system for monitoring the blade feathering of a turbine with an overall component cost that small wind turbine manufacturers can afford. The Blade Pitch Measurement System (BPMS) has been designed and constructed by the Research Institute of Sustainable Energy (RISE) and aids small wind turbine manufacturers in testing and optimising the settings of the blade feathering mechanisms on their machines. The results show that the BPMS was successful in recording the behaviour of the blade feathering mechanism in field trials with a 20 kW and a 30 kW wind turbine. The BPMS displays significant potential as an effective, inexpensive system for small wind turbine manufacturers to ensure the reliability of their pitch regulating over-speed protection mechanisms. (author)

  8. Trends in Wind Turbine Generator Systems

    DEFF Research Database (Denmark)

    Polinder, Henk; Ferreira, Jan Abraham; Jensen, Bogi Bech

    2013-01-01

    This paper reviews the trends in wind turbine generator systems. After discussing some important requirements and basic relations, it describes the currently used systems: the constant speed system with squirrel-cage induction generator, and the three variable speed systems with doubly fed...... induction generator (DFIG), with gearbox and fully rated converter, and direct drive (DD). Then, possible future generator systems are reviewed. Hydraulic transmissions are significantly lighter than gearboxes and enable continuously variable transmission, but their efficiency is lower. A brushless DFIG...

  9. Internship on wind turbine control (basics) at industrial systems and control

    NARCIS (Netherlands)

    Laarhoven, van M.; Steinbuch, M.

    2012-01-01

    Where to begin when designing a wind turbine system? This question is answered in this report this report contains a brief description of how to model a wind turbine control system from the start. The model described here is based on a non-linear model from a paper. This report starts with some

  10. Rated power factor and excitation system of large turbine generator

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Watanabe, Takashi; Banjou, Minoru.

    1979-01-01

    As for the rated power factor of turbine generators for thermal power stations, 90% has been adopted since around 1960. On the other hand, power transmission system has entered 500 kV age, and 1,000 kV transmission is expected in the near future. As for the supply of reactive power from thermal and nuclear turbine generators, the necessity of supplying leading reactive power has rather increased. Now, the operating power factor of thermal and nuclear generators becomes 96 to 100% actually. As for the excess stability of turbine generators owing to the strengthening of transmission system and the adoption of super-high voltage, the demand of strict conditions can be dealt with by the adoption of super-fast response excitation system of thyristor shunt winding self exciting type. The adoption of the turbine generators with 90 to 95% power factor and the adoption of the thyristor shunt winding self exciting system were examined and evaluated. The rated power factor of generators, excitation system and economy of adopting these systems are explained. When the power factor of generators is increased from 0.9 to 0.95, about 6% of saving can be obtained in the installation cost. When the thyristor shunt winding self excitation is adopted, it is about 10% more economical than AC excitation. (Kako, I.)

  11. Investigation of the organic Rankine cycle (ORC) system and the radial-inflow turbine design

    International Nuclear Information System (INIS)

    Li, Yan; Ren, Xiao-dong

    2016-01-01

    Highlights: • The thermodynamic analysis of an ORC system is introduced. • A radial turbine design method has been proposed based on the real gas model. • A radial turbine with R123 is designed and numerically analyzed. - Abstract: Energy and environment issue set utilizing low-grade heat noticed. Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology to recover waste heat. As a critical component of ORC system, the turbine selection has an enormous influence on the system performance. This paper carries out a study on the thermodynamic analysis of ORC system and the aerodynamic design of an organic radial turbine. The system performance is evaluated with various working fluids. The aerodynamic design of the organic radial-inflow turbine is focused due to the high molecule weight and the low sound speed of the organic working fluid. An aerodynamic and profile design system is developed. A radial-inflow turbine with R123 as the working fluid is designed and the numerical analysis is conducted. The simulation results indicate that the shock wave caused by the high expansion ratio in the nozzle is well controlled. Compared with the one-dimensional design results, the performance of the radial-inflow turbine in this paper reaches the design requirements.

  12. Turbine airfoil with laterally extending snubber having internal cooling system

    Science.gov (United States)

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  13. Fault Detection and Isolation for Wind Turbine Electric Pitch System

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; Hajizadeh, Amin

    2017-01-01

    This paper presents a model-based fault detection and isolation scheme applied on electric pitch system of wind turbines. Pitch system is one of the most critical components due to its effect on the operational safety and the dynamics of wind turbines. Faults in this system should be precisely...... detected to prevent failures and decrease downtime. To detect faults of electric pitch actuators and sensors, an extended kalman filter (EKF) based multiple model adaptive estimation (MMAE) designed to estimate the states of the system. The proposed method is demonstrated in case studies. The simulation...

  14. Understanding Dynamic Model Validation of a Wind Turbine Generator and a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Zhang, Ying Chen; Gevorgian, Vahan; Kosterev, Dmitry

    2016-09-01

    Regional reliability organizations require power plants to validate the dynamic models that represent them to ensure that power systems studies are performed to the best representation of the components installed. In the process of validating a wind power plant (WPP), one must be cognizant of the parameter settings of the wind turbine generators (WTGs) and the operational settings of the WPP. Validating the dynamic model of a WPP is required to be performed periodically. This is because the control parameters of the WTGs and the other supporting components within a WPP may be modified to comply with new grid codes or upgrades to the WTG controller with new capabilities developed by the turbine manufacturers or requested by the plant owners or operators. The diversity within a WPP affects the way we represent it in a model. Diversity within a WPP may be found in the way the WTGs are controlled, the wind resource, the layout of the WPP (electrical diversity), and the type of WTGs used. Each group of WTGs constitutes a significant portion of the output power of the WPP, and their unique and salient behaviors should be represented individually. The objective of this paper is to illustrate the process of dynamic model validations of WTGs and WPPs, the available data recorded that must be screened before it is used for the dynamic validations, and the assumptions made in the dynamic models of the WTG and WPP that must be understood. Without understanding the correct process, the validations may lead to the wrong representations of the WTG and WPP modeled.

  15. Advanced turbine systems program. Final report, August 3, 1993--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Six tasks were approved under the Advanced Turbine Systems (ATS) extension program. The six tasks include the following: Task 5.0 -- Market Study. The objective of the market study task is to focus on distributed generation prospects for an industrial ATS, using the Allison ATS family as the primary gas turbine systems. Task 6.0 -- Gas Fired Advanced Turbine System (GFATS) Definition and Analysis. Task 8.01 -- Castcool{reg_sign} Blades Fabrication Process Development. Task 8.04 -- ATS Low Emission Combustion System. Task 8.07 -- Ceramic Vane Design and Evaluation. Task 9.0 -- Program Management. Each of these tasks is described, progress is discussed, and results are given.

  16. Hot spot detection system for vanes or blades of a combustion turbine

    Science.gov (United States)

    Twerdochlib, M.

    1999-02-02

    This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature. 5 figs.

  17. Fault Diagnosis System of Wind Turbine Generator Based on Petri Net

    Science.gov (United States)

    Zhang, Han

    Petri net is an important tool for discrete event dynamic systems modeling and analysis. And it has great ability to handle concurrent phenomena and non-deterministic phenomena. Currently Petri nets used in wind turbine fault diagnosis have not participated in the actual system. This article will combine the existing fuzzy Petri net algorithms; build wind turbine control system simulation based on Siemens S7-1200 PLC, while making matlab gui interface for migration of the system to different platforms.

  18. Wind Turbine Blade Nondestructive Testing with a Transportable Radiography System

    Directory of Open Access Journals (Sweden)

    J. G. Fantidis

    2011-01-01

    Full Text Available Wind turbines are becoming widely used as they are an environmentally friendly way for energy production without emissions; however, they are exposed to a corrosive environment. In addition, as wind turbines typically are the tallest structures in the surrounding area of a wind farm, it is expected that they will attract direct lightning strikes several times during their operating life. The purpose of this paper is to show that the radiography with a transportable unit is a solution to find defects in the wind turbine blade and reduce the cost of inspection. A transportable neutron radiography system, incorporating an Sb–Be source, has been simulated using the MCNPX code. The simulated system has a wide range of radiography parameters.

  19. Flow visualization system for wind turbines without blades applied to micro reactors

    International Nuclear Information System (INIS)

    Santos, G.S.B.; Guimarães, L.N.F.; Placco, G.M.

    2017-01-01

    Flow visualization systems is a tool used in science and industry for characterization of projects that operate with drainage. This work presents the design and construction of a flow visualization system for passive turbines used in advanced fast micro reactors. In the system were generated images where it is possible to see the supersonic and transonic flow through the turbine disks. A test bench was assembled to generate images of the interior of the turbine where the flow is supersonic, allowing the study of the behavior of the boundary layer between disks. It is necessary to characterize the boundary layer of this type of turbine because its operation occurs in the transfer of kinetic energy between the fluid and the disks. The images generated, as well as their analyzes are presented as a result of this work

  20. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First...... conversion is pushed to multi-MW level with high power density requirement. It has also been revealed that thermal stress in the power semiconductors is closely related to many determining factors in the wind power application like the reliability, cost, power density, etc. therefore it is an important......The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...

  1. A Survey of Control Issues in PMSG-Based Small Wind-Turbine Systems

    DEFF Research Database (Denmark)

    Orlando, Natalia Angela; Liserre, Marco; Mastromauro, Rosa Anna

    2013-01-01

    /position estimation, pitch control, braking chopper control, dc/dc converter control, and grid converter control. Specific issues for small wind-turbines arise in the wind energy extraction optimization and limitation and in the innovative concept of “universal” wind-turbine operation, that leads these system...... generators directly connected to the grid, while recently permanent magnet synchronous generators (PMSG) with power converter, either partially or fully controlled, became popular. This paper reviews the control issues related to these small wind-turbine systems: generator torque control, speed...

  2. Design Evaluation of Wind Turbine Spline Couplings Using an Analytical Model: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Keller, J.; Wallen, R.; Errichello, R.; Halse, C.; Lambert, S.

    2015-02-01

    Articulated splines are commonly used in the planetary stage of wind turbine gearboxes for transmitting the driving torque and improving load sharing. Direct measurement of spline loads and performance is extremely challenging because of limited accessibility. This paper presents an analytical model for the analysis of articulated spline coupling designs. For a given torque and shaft misalignment, this analytical model quickly yields insights into relationships between the spline design parameters and resulting loads; bending, contact, and shear stresses; and safety factors considering various heat treatment methods. Comparisons of this analytical model against previously published computational approaches are also presented.

  3. Turbine airfoil with an internal cooling system having vortex forming turbulators

    Science.gov (United States)

    Lee, Ching-Pang

    2014-12-30

    A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

  4. Risk-based and maintenance systems for steam turbines

    International Nuclear Information System (INIS)

    Fujiyama, K.; Nagai, S.; Akikuni, Y.; Fujiwara, T.; Furuya, K.; Matsumoto, S.; Takagi, K.; Kawabata, T.

    2003-01-01

    The risk-based maintenance (RBM) system has been developed for steam turbine plants coupled with the quick inspection systems. The RBM system utilizes the field failure and inspection database accumulated over 30 years. The failure modes are determined for each component of steam turbines and the failure scenarios are described as event trees. The probability of failure is expressed in the form of unreliability functions of operation hours or start-up cycles through the cumulative hazard function method. The posterior unreliability is derived from the field data analysis according to the inspection information. Quick inspection can be conducted using air-cooled borescope and heat resistant ultrasonic sensors even if the turbine is not cooled down sufficiently. Another inspection information comes from degradation and damage measurement. The probabilistic life assessment using structural analysis and statistical material properties, the latter is estimated from hardness measurement, replica observation and embrittlement measurement. The risk function is calculated as the sum product of unreliability functions and expected monetary loss as the consequence of failure along event trees. The optimum maintenance plan is determined among simulated scenarios described through component breakdown trees, life cycle event trees and risk functions. Those methods are effective for total condition assessment and economical maintenance for operating plants. (orig.)

  5. Advance monitoring of turbine generators and auxiliary systems

    International Nuclear Information System (INIS)

    Bloemers, D.

    2005-01-01

    The STUDIS turbine generator diagnosing system has been designed for diagnosing and early fault detection as a prerequisite for status-dependent preventive maintenance. Based on the data collected in the monitoring part, which are gathered continously, checked extensively and compressed any deviations from normal behavior as well as potential defects are detected and reported in an expert system. In addition, STUDIS can also be used as a mobile system for problem analysis. STUDIS is not meant to replace experts, but is able to relieve them of routine evaluations of defects whose causes and effects as well as symptoms are known, and to make their work more effective. The advanced operating architecture allows unkilled users to detect familiar faults and defects quickly and respond promptly. Experts will find an extensive toolbox above all for complex analyses of malfunctions. The point of departure for operating staff and experts alike is the so-called ''magic eye'', a highly condensed survey of relevant measurement and assessment parameters of the entire turbine generator relative to tolerance bands determined as a function of the operating point. The power of Studies in elucidating faults and defects is explained by a practical case of a blade defect in a gas turbine. (orig.)

  6. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2018-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  7. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2017-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  8. Water augmented indirectly-fired gas turbine systems and method

    Science.gov (United States)

    Bechtel, Thomas F.; Parsons, Jr., Edward J.

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  9. Application of a power recovery system to gas turbine exhaust gases

    International Nuclear Information System (INIS)

    Baudat, N.P.; James, O.R.

    1979-01-01

    This paper discusses the application of a power recovery system to recover waste heat from the exhaust gases of gas turbines and convert this energy into shaft horsepower. Also discussed are power cycles, selection of power fluid, equipment selection, and application of the power recovery system to various gas turbines. Several charts and tables are included: process flow diagram, cycle efficiencies, curve for estimating recoverable horsepower

  10. Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system

    Science.gov (United States)

    Nainiger, J. J.

    1978-01-01

    An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

  11. Modal analysis of a grid-connected direct-drive permanent magnet synchronous generator wind turbine system

    DEFF Research Database (Denmark)

    Tan, Jin; Wang, Xiao Ru; Chen, Zhe

    2013-01-01

    In order to study the stability of a grid-connected direct-drive permanent magnet synchronous generator (PMSG) wind turbine systems, this paper presents the modal analysis of a PMSG wind turbine system. A PMSG model suitable for small signal stability analysis is presented. The modal properties...... of a grid-connected PMSG wind turbine system are studied. Then the comprehensive impacts of the shaft model, shaft parameters, operation points and lengths of the transmission line on the modal characteristic of the system are investigated by the eigenvalue analysis method. Meanwhile, the corresponding...... analysis. It offers a better understanding about the essence of the stability of grid-connected PMSG wind turbine system....

  12. Design, Optimization and Analysis of Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2011-01-01

    As wind turbines increase in size and the demands for lifetime also increases, new methods of load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and hence dampen the loads to the system, which is the focus of the current paper. The paper first p...... on the extrapolated loads, show that it is possible to construct a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly....... presents work previous done on this subject with focus on hydraulic yaw systems. By utilizing the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized. Results show that a significant...... reduction in fatigue and extreme loads to the yaw system and rotor shaft are possible, when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. The duty cycles, based...

  13. Braking System for Wind Turbines

    Science.gov (United States)

    Krysiak, J. E.; Webb, F. E.

    1987-01-01

    Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

  14. Operating experience feedback report -- turbine-generator overspeed protection systems: Commercial power reactors. Volume 11

    International Nuclear Information System (INIS)

    Ornstein, H.L.

    1995-04-01

    This report presents the results of the US Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) review of operating experience of main turbine-generator overspeed and overspeed protection systems. It includes an indepth examination of the turbine overspeed event which occurred on November 9, 1991, at the Salem Unit 2 Nuclear Power Plant. It also provides information concerning actions taken by other utilities and the turbine manufacturers as a result of the Salem overspeed event. AEOD's study reviewed operating procedures and plant practices. It noted differences between turbine manufacturer designs and recommendations for operations, maintenance, and testing, and also identified significant variations in the manner that individual plants maintain and test their turbine overspeed protection systems. AEOD's study provides insight into the shortcomings in the design, operation, maintenance, testing, and human factors associated with turbine overspeed protection systems. Operating experience indicates that the frequency of turbine overspeed events is higher than previously thought and that the bases for demonstrating compliance with NRC's General Design Criterion (GDC) 4, Environmental and dynamic effects design bases, may be nonconservative with respect to the assumed frequency

  15. Semi-Immersive Virtual Turbine Engine Simulation System

    Science.gov (United States)

    Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea

    2018-05-01

    The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.

  16. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2013-02-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

  17. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2012-04-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

  18. Optical monitoring system for a turbine engine

    Science.gov (United States)

    Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay

    2013-05-14

    The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.

  19. Cycle analysis of MCFC/gas turbine system

    Directory of Open Access Journals (Sweden)

    Musa Abdullatif

    2017-01-01

    Full Text Available High temperature fuel cells such as the solid oxide fuel cell (SOFC and the molten carbonate fuel cell (MCFC are considered extremely suitable for electrical power plant application. The molten carbonate fuel cell (MCFC performances is evaluated using validated model for the internally reformed (IR fuel cell. This model is integrated in Aspen Plus™. Therefore, several MCFC/Gas Turbine systems are introduced and investigated. One of this a new cycle is called a heat recovery (HR cycle. In the HR cycle, a regenerator is used to preheat water by outlet air compressor. So the waste heat of the outlet air compressor and the exhaust gases of turbine are recovered and used to produce steam. This steam is injected in the gas turbine, resulting in a high specific power and a high thermal efficiency. The cycles are simulated in order to evaluate and compare their performances. Moreover, the effects of an important parameters such as the ambient air temperature on the cycle performance are evaluated. The simulation results show that the HR cycle has high efficiency.

  20. Cycle analysis of MCFC/gas turbine system

    Science.gov (United States)

    Musa, Abdullatif; Alaktiwi, Abdulsalam; Talbi, Mosbah

    2017-11-01

    High temperature fuel cells such as the solid oxide fuel cell (SOFC) and the molten carbonate fuel cell (MCFC) are considered extremely suitable for electrical power plant application. The molten carbonate fuel cell (MCFC) performances is evaluated using validated model for the internally reformed (IR) fuel cell. This model is integrated in Aspen Plus™. Therefore, several MCFC/Gas Turbine systems are introduced and investigated. One of this a new cycle is called a heat recovery (HR) cycle. In the HR cycle, a regenerator is used to preheat water by outlet air compressor. So the waste heat of the outlet air compressor and the exhaust gases of turbine are recovered and used to produce steam. This steam is injected in the gas turbine, resulting in a high specific power and a high thermal efficiency. The cycles are simulated in order to evaluate and compare their performances. Moreover, the effects of an important parameters such as the ambient air temperature on the cycle performance are evaluated. The simulation results show that the HR cycle has high efficiency.

  1. Optimal control for wind turbine system via state-space method

    Science.gov (United States)

    Shanoob, Mudhafar L.

    Renewable energy is becoming a fascinating research interest in future energy production because it is green and does not pollute nature. Wind energy is an excellent example of renewable resources that are evolving. Throughout the history of humanity, wind energy has been used. In ancient time, it was used to grind seeds, sailing etc. Nowadays, wind energy has been used to generate electrical power. Researchers have done a lot of research about using a wind source to generate electricity. As wind flow is not reliable, there is a challenge to get stable electricity out of this varying wind. This problem leads to the use of different control methods and the optimization of these methods to get a stable and reliable electrical energy. In this research, a wind turbine system is considered to study the transient and the steady-state stability; consisting of the aerodynamic system, drive train and generator. The Doubly Feed Induction Generator (DFIG) type generator is used in this thesis. The wind turbine system is connected to power system network. The grid is an infinite bus bar connected to a short transmission line and transformer. The generator is attached to the grid from the stator side. State-space method is used to model the wind turbine parts. The system is modeled and controlled using MATLAB/Simulation software. First, the current-mode control method (PVdq) with (PI) regulator is operated as a reference to find how the system reacts to an unexpected disturbance on the grid side or turbine side. The controller is operated with three scenarios of disruption: Disturbance-mechanical torque input, Step disturbance in the electrical torque reference and Fault Ride-through. In the simulation results, the time response and the transient stability of the system is a product of the disturbances that take a long time to settle. So, for this reason, Linear Quadratic Regulation (LQR) optimal control is utilized to solve this problem. The LQR method is designed based on

  2. Reliability Assessment and Energy Loss Evaluation for Modern Wind Turbine Systems

    DEFF Research Database (Denmark)

    Zhou, Dao

    . The cost of energy in wind turbine system is then addressed in Chapter 5, where different wind classes and operation modes of the reactive power injection are taken into account. Finally, the internal and external challenges for power converters in the DFIG systems to ride through balanced grid faults......With a steady increase of the wind power penetration, the demands to the wind power technology are becoming the same as those to the conventional energy sources. In order to fulfill the requirements, power electronics technology is the key for the modern wind turbine systems – both the Doubly...... to explore the reliability and cost of energy in the modern wind turbine systems. Moreover, advanced control strategies have been proposed and developed for an efficient and reliable operation during the normal condition as well as under grid faults. The documented thesis starts with the descriptions...

  3. Real-time monitoring, prognosis, and resilient control for wind turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiwei; Sheng, Shuangwen

    2018-02-01

    This special issue aims to provide a platform for academic and industrial communities to report recent results and emerging research in real-time monitoring, fault diagnosis, prognosis, and resilient control and design of wind turbine systems. After a strict peer-review process, 20 papers were selected, which represent the most recent progress of the real-time monitoring, diagnosis, prognosis, and resilient control methods/techniques in wind turbine systems.

  4. Turbine main engines

    CERN Document Server

    Main, John B; Herbert, C W; Bennett, A J S

    1965-01-01

    Turbine Main Engines deals with the principle of operation of turbine main engines. Topics covered include practical considerations that affect turbine design and efficiency; steam turbine rotors, blades, nozzles, and diaphragms; lubricating oil systems; and gas turbines for use with nuclear reactors. Gas turbines for naval boost propulsion, merchant ship propulsion, and naval main propulsion are also considered. This book is divided into three parts and begins with an overview of the basic mode of operation of the steam turbine engine and how it converts the pressure energy of the ingoing ste

  5. A Closed-Form Technique for the Reliability and Risk Assessment of Wind Turbine Systems

    Directory of Open Access Journals (Sweden)

    Leonardo Dueñas-Osorio

    2012-06-01

    Full Text Available This paper proposes a closed-form method to evaluate wind turbine system reliability and associated failure consequences. Monte Carlo simulation, a widely used approach for system reliability assessment, usually requires large numbers of computational experiments, while existing analytical methods are limited to simple system event configurations with a focus on average values of reliability metrics. By analyzing a wind turbine system and its components in a combinatorial yet computationally efficient form, the proposed approach provides an entire probability distribution of system failure that contains all possible configurations of component failure and survival events. The approach is also capable of handling unique component attributes such as downtime and repair cost needed for risk estimations, and enables sensitivity analysis for quantifying the criticality of individual components to wind turbine system reliability. Applications of the technique are illustrated by assessing the reliability of a 12-subassembly turbine system. In addition, component downtimes and repair costs of components are embedded in the formulation to compute expected annual wind turbine unavailability and repair cost probabilities, and component importance metrics useful for maintenance planning and research prioritization. Furthermore, this paper introduces a recursive solution to closed-form method and applies this to a 45-component turbine system. The proposed approach proves to be computationally efficient and yields vital reliability information that could be readily used by wind farm stakeholders for decision making and risk management.

  6. Update on the Comparison of Second-Order Loads on a Tension Leg Platform for Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gueydon, Sebastien; Jonkman, Jason

    2016-08-01

    In comparison to other kinds of floaters (like a spar or a semisubmersible), the tension leg platform has several notable advantages: its vertical motions are negligible, its weight is lighter, and its mooring system's footprint is smaller. Although a tension leg platform has a negligible response to first-order vertical wave loads, the second-order wave loads need to be addressed. This paper follows up on a verification study of second-order wave loads on a tension leg platform for wind turbines done by the Maritime Research Institute of The Netherlands and National Renewable Energy Laboratory and it brings some corrections to its conclusions.

  7. Chapter 10 - Control of Wind Turbine System

    DEFF Research Database (Denmark)

    Zhou, Dao; Song, Yipeng; Blaabjerg, Frede

    2018-01-01

    Wind power is a main pillar of renewable energy supply, as it generates clean and climate-friendly electricity. Among the mainstream wind turbine systems, the configurations of the doubly fed induction generator (DFIG) and the permanent-magnet synchronous generator (PMSG) are dominating and impor...

  8. Chapter 10: Control of Wind Turbine System

    DEFF Research Database (Denmark)

    Zhou, Dao; Song, Yipeng; Blaabjerg, Frede

    2018-01-01

    Wind power is a main pillar of renewable energy supply, as it generates clean and climate-friendly electricity. Among the mainstream wind turbine systems, the configurations of the doubly fed induction generator (DFIG) and the permanent-magnet synchronous generator (PMSG) are dominating and impor...

  9. Limerick BWR turbine control and protection system upgrade success

    International Nuclear Information System (INIS)

    Tang, C.K.; Pietryka, T.S.; Federico, P.A.; Williams, J.C.

    2015-01-01

    Westinghouse and Exelon have successfully implemented a digital electro-hydraulic control (DEHC) at Limerick BWR Unit 1 Station to perform the turbine control, protection and reactor pressure functions. The DEHC replaces analog controls and addressed system performance, obsolescence and reliability. This was a first-of-a-kind application for control and protection of the main turbine and BWR pressure control for the distributed control system utilized. The demolition of analog equipment, main control room and front standard modifications, and acceptance testing were completed on schedule during the normal 2014 outage. Key aspects of the project that facilitated this success will be discussed and presented. (author)

  10. Limerick BWR turbine control and protection system upgrade success

    Energy Technology Data Exchange (ETDEWEB)

    Tang, C.K.; Pietryka, T.S.; Federico, P.A., E-mail: tangck@westinghouse.com, E-mail: pietryt@westinghouse, E-mail: federipa@westinghouse.com [Westinghouse Electric Company, LLC, Cranberry Township, PA (United States); Williams, J.C., E-mail: Jonathan.Williams@exeloncorp.com [Exelon Nuclear, Warrenville, IL (United States)

    2015-07-01

    Westinghouse and Exelon have successfully implemented a digital electro-hydraulic control (DEHC) at Limerick BWR Unit 1 Station to perform the turbine control, protection and reactor pressure functions. The DEHC replaces analog controls and addressed system performance, obsolescence and reliability. This was a first-of-a-kind application for control and protection of the main turbine and BWR pressure control for the distributed control system utilized. The demolition of analog equipment, main control room and front standard modifications, and acceptance testing were completed on schedule during the normal 2014 outage. Key aspects of the project that facilitated this success will be discussed and presented. (author)

  11. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT; FINAL

    International Nuclear Information System (INIS)

    Albrecht H. Mayer

    2000-01-01

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions

  12. Experimental Investigation of A Twin Shaft Micro Gas-Turbine System

    International Nuclear Information System (INIS)

    Sadig, Hussain; Sulaiman, Shaharin Anwar; Ibrahim, Idris

    2013-01-01

    Due to the fast depletion of fossil fuels and its negative impact on the environment, more attention has been concentrated to find new resources, policies and technologies, which meet the global needs with regard to fuel sustainability and emissions. In this paper, as a step to study the effect of burning low calorific value fuels on gas-turbine performance; a 50 kW slightly pressurized non-premixed tubular combustor along with turbocharger based twin shaft micro gas-turbine was designed and fabricated. A series of tests were conducted to characterize the system using LPG fuel. The tests include the analysis of the temperature profile, pressure and combustor efficiency as well as air fuel ratio and speed of the second turbine. The tests showed a stable operation with acceptable efficiency, air fuel ratio, and temperature gradient for the single and twin shaft turbines.

  13. Fiber-Optic Defect and Damage Locator System for Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Vahid Sotoudeh; Dr. Richard J. Black; Dr. Behzad Moslehi; Mr. Aleks Plavsic

    2010-10-30

    IFOS in collaboration with Auburn University demonstrated the feasibility of a Fiber Bragg Grating (FBG) integrated sensor system capable of providing real time in-situ defect detection, localization and quantification of damage. In addition, the system is capable of validating wind turbine blade structural models, using recent advances in non-contact, non-destructive dynamic testing of composite structures. This new generation method makes it possible to analyze wind turbine blades not only non-destructively, but also without physically contacting or implanting intrusive electrical elements and transducers into the structure. Phase I successfully demonstrated the feasibility of the technology with the construction of a 1.5 kHz sensor interrogator and preliminary instrumentation and testing of both composite material coupons and a wind turbine blade.

  14. Pitchcontrol of wind turbines using model free adaptivecontrol based on wind turbine code

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Cheng, Ming

    2011-01-01

    value is only based on I/O data of the wind turbine is identified and then the wind turbine system is replaced by a dynamic linear time-varying model. In order to verify the correctness and robustness of the proposed model free adaptive pitch controller, the wind turbine code FAST which can predict......As the wind turbine is a nonlinear high-order system, to achieve good pitch control performance, model free adaptive control (MFAC) approach which doesn't need the mathematical model of the wind turbine is adopted in the pitch control system in this paper. A pseudo gradient vector whose estimation...... the wind turbine loads and response in high accuracy is used. The results show that the controller produces good dynamic performance, good robustness and adaptability....

  15. System of automated map design

    International Nuclear Information System (INIS)

    Ponomarjov, S.Yu.; Rybalko, S.I.; Proskura, N.I.

    1992-01-01

    Preprint 'System of automated map design' contains information about the program shell for construction of territory map, performing level line drawing of arbitrary two-dimension field (in particular, the radionuclide concentration field). The work schedule and data structures are supplied, as well as data on system performance. The preprint can become useful for experts in radioecology and for all persons involved in territory pollution mapping or multi-purpose geochemical mapping. (author)

  16. 77 FR 32497 - Grant of Authority for Subzone Status; Mitsubishi Power Systems Americas, Inc. (Wind Turbine...

    Science.gov (United States)

    2012-06-01

    ... Status; Mitsubishi Power Systems Americas, Inc. (Wind Turbine Nacelles and Generating Sets) Fort Smith... special-purpose subzone at the wind turbine nacelle and generating set manufacturing facility of... related to the manufacturing of wind turbine nacelles and generating sets at the Mitsubishi Power Systems...

  17. Advanced Combustion Systems for Next Generation Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  18. Power system integration and control of variable speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Eek, Jarle

    2009-12-15

    A wind power plant is a highly dynamic system that dependent on the type of technology requires a number of automatic control loops. This research deals with modelling, control and analysis related to power system integration of variable speed, pitch controlled wind turbines. All turbine components have been modelled and implemented in the power system simulation program SIMPOW, and a description of the modelling approach for each component is given. The level of model detail relates to the classical modelling of power system components for power system stability studies, where low frequency oscillations are of special importance. The wind turbine model includes a simplified representation of the developed rotor torque and the thrust force based on C{sub p-} and C{sub t} characteristic curves. The mechanical system model represents the fundamental torsional mode and the first mode of blades and tower movements. Two generator technologies have been investigated. The doubly fed induction generator (DFIG) and the stator converter interfaced permanent magnet synchronous generator (PMSG). A simplified model of a 2 level voltage source converter is used for both machine types. The generator converter controllers have been given special attention. All model components are linearized for the purpose of control system design and power system interaction related to small signal stability analysis. Different control strategies discussed in the literature have been investigated with regard to power system interaction aspects. All control parameters are identified using the internal model control approach. The analysis is focused on three main areas: 1. Identification of low damped oscillatory modes. This is carried out by the establishment and discussion of wind turbine modelling. 2. Interaction between control loops. A systematic approach is presented in order to analyse the influence of control loops used in variable speed wind turbines. 3.Impact on power system performance

  19. Dynamics analysis of the fast-slow hydro-turbine governing system with different time-scale coupling

    Science.gov (United States)

    Zhang, Hao; Chen, Diyi; Wu, Changzhi; Wang, Xiangyu

    2018-01-01

    Multi-time scales modeling of hydro-turbine governing system is crucial in precise modeling of hydropower plant and provides support for the stability analysis of the system. Considering the inertia and response time of the hydraulic servo system, the hydro-turbine governing system is transformed into the fast-slow hydro-turbine governing system. The effects of the time-scale on the dynamical behavior of the system are analyzed and the fast-slow dynamical behaviors of the system are investigated with different time-scale. Furthermore, the theoretical analysis of the stable regions is presented. The influences of the time-scale on the stable region are analyzed by simulation. The simulation results prove the correctness of the theoretical analysis. More importantly, the methods and results of this paper provide a perspective to multi-time scales modeling of hydro-turbine governing system and contribute to the optimization analysis and control of the system.

  20. Basic Principles for Elaboration of Technical Requirements to Control and Protective TRB Turbine Systems

    Directory of Open Access Journals (Sweden)

    N. V. Panteley

    2007-01-01

    Full Text Available The paper considers and provides methodology for calculation of maximum over speeding value of a turbine rotor in the case when we face the failure of all its protective systems. It is presented a derivation of main equations required for making the calculation and the paper also cites results of their practical application at an industrial TRB (Turbine of the Republic of Belarus turbine while constructing its protective control systems.

  1. Steam generators, turbines, and condensers. Volume six

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make?), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries)

  2. A Plan for Revolutionary Change in Gas Turbine Engine Control System Architecture

    Science.gov (United States)

    Culley, Dennis E.

    2011-01-01

    The implementation of Distributed Engine Control technology on the gas turbine engine has been a vexing challenge for the controls community. A successful implementation requires the resolution of multiple technical issues in areas such as network communications, power distribution, and system integration, but especially in the area of high temperature electronics. Impeding the achievement has been the lack of a clearly articulated message about the importance of the distributed control technology to future turbine engine system goals and objectives. To resolve these issues and bring the technology to fruition has, and will continue to require, a broad coalition of resources from government, industry, and academia. This presentation will describe the broad challenges facing the next generation of advanced control systems and the plan which is being put into action to successfully implement the technology on the next generation of gas turbine engine systems.

  3. Matlab/Simulink-based simulation for digital-control system of marine three-shaft gas-turbine

    International Nuclear Information System (INIS)

    Yu Youhong; Chen Lingen; Sun Fengrui; Wu Chih

    2005-01-01

    A gas-turbine plant model is required in order to design and develop its control system. In this paper, a simulation model of a marine three-shaft gas-turbine's digital-control system is presented. Acceleration processes are simulated via a Matlab/Simulink program. The effects of some of the main variables on the system's performance are analyzed and the optimum values of parameters obtained. A simulation experiment upon a real gas-turbine plant is performed using the digital-control model. The results show that the simulation model is reliable

  4. WT-BIRD. Bird collision monitoring system for multi-megawatt wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wiggelinkhuizen, E.J.; Rademakers, L.W.M.M.; Barhorst, S.A.M. [ECN Wind Energy, Petten (Netherlands); Den Boon, H.J. [E-Connection Project, Bunnik (Netherlands); Dirksen, S. [Bureau Waardenburg, Culemborg (Netherlands)

    2007-05-15

    A new method for detection and registration of bird collisions has been developed that is suitable for continuous remote operation in both onshore and offshore wind farms. The characteristic sound of a collision is detected by sensors in the blades, which triggers the storage of video registrations and sends an alert message to the operator. A prototype has been tested successfully on a Nordex N80/2.5MW turbine at ECN's Wind turbine Test park Wieringermeer. Compared to other methods employed so far this monitoring system will reduce the uncertainty in the number of birds killed by collisions with wind turbines. Further, the system enables the operator to identify species and to study the collision mechanisms. It has been found that this system can also be used for monitoring of other events in order to save costs for inspection and repair after incidents. For offshore wind farms, the WT-Bird system is currently the only alternative to count the number of bird collisions. Functional tests with tennis balls that were shot against rotating blades showed that the majority of the impacts were detected. The flight track of these dummies and the collision events were clearly visible on the video registrations. During the monitoring period of about one year two bird collisions were detected. The video recordings confirmed that a collision took place and showed that the location of both collisions was near the blade root, which resulted that in both cases the bird was not (immediately) killed. Therefore no corpses could be found beneath the turbine after these events. Also during the rest of the monitoring period no corpses were found beneath the turbine.

  5. Energy Storage Opportunities and Capabilities in a Type 3 Wind Turbine Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Hoke, Andy

    2016-09-01

    Wind power plants and other renewable power plants with power electronic interfaces are capable of delivering frequency response (both governor and/or inertial response) to the grid by a control action; thus, the reduction of available online inertia as conventional power plants are retired can be compensated by designing renewable power plant controls to include frequency response. The source of energy to be delivered as inertial response is determined by the type of generation and control strategy chosen. The cost of energy storage is expected to drop over time, and global research activities on energy storage are very active, funded both by the private industry and governments. Different industry sectors (e.g., transportation, energy) are the major drivers of the recent storage research and development. This work investigates the opportunities and capabilities of deploying energy storage in renewable power plants. In particular, we focus on wind power plants with doubly-fed induction generators, or Type 3 wind turbine generator (WTGs). We find that the total output power of a system with Type 3 WTGs with energy storage can deliver a power boost during inertial response that is up to 45% higher than one without energy storage without affecting the torque limit, thus enabling an effective delivery of ancillary services to the grid.

  6. Mechanical (turbines and auxiliary equipment)

    CERN Document Server

    Sherry, A; Cruddace, AE

    2013-01-01

    Modern Power Station Practice, Volume 3: Mechanical (Turbines and Auxiliary Equipment) focuses on the development of turbines and auxiliary equipment used in power stations in Great Britain. Topics covered include thermodynamics and steam turbine theory; turbine auxiliary systems such as lubrication systems, feed water heating systems, and the condenser and cooling water plants. Miscellaneous station services, and pipework in power plants are also described. This book is comprised of five chapters and begins with an overview of thermodynamics and steam turbine theory, paying particular attenti

  7. NEXT GENERATION TURBINE SYSTEM STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  8. FY 2000 report on the results of the leading R and D on MGC ultra high efficiency turbine system technology; 2000 nendo MGC chokokoritsu turbine system gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The R and D were conducted with the aim of using melt-growth composite materials (MGC) as structural members of the gas turbine system for power generation, etc., and the results of the FY 2000 results were summed up. As to the heightening of performance of MGC materials, improvement in high temperature strength, fracture toughness and thermal shock resistance was obtained by making the material structure minute by increasing the mold descending speed in ternary system MGC materials. Concerning the enlarging technology, trially manufactured were a large sample of 53mm diameter and a thin plate of 40mm width x 80mm height x 6mm thickness. In the study of evaluation of mechanical/physical characteristics of MGC materials, the following were indicated: AYZ ternary system MGC materials were twice higher in bending strength than Al{sub 2}O{sub 3}/YAG binary system, and were equal in creep characteristics at 1,700 degrees C to Al{sub 2}O{sub 3}/YAG. The applicability to turbine stationary blade was shown. In the system study, by applying MGC materials to gas turbine stationary blade, small- and medium-size gas turbine cycles were set up which have plant gross thermal efficiency of 38% at turbine inlet temperature of 1,700 degrees C. (NEDO)

  9. Risk-based inspection and maintenance systems for steam turbines

    International Nuclear Information System (INIS)

    Fujiyama, Kazunari; Nagai, Satoshi; Akikuni, Yasunari; Fujiwara, Toshihiro; Furuya, Kenichiro; Matsumoto, Shigeru; Takagi, Kentaro; Kawabata, Taro

    2004-01-01

    The risk-based maintenance (RBM) system has been developed for steam turbine plants coupled with the quick inspection systems. The RBM system utilizes the field failure and inspection database accumulated over 30 years. The failure modes are determined for each component of steam turbines and the failure scenarios are described as event trees. The probability of failure is expressed in the form of unreliability functions of operation hours or start-up cycles through the cumulative hazard function method. The posterior unreliability is derived from the field data analysis according to the inspection information. Quick inspection can be conducted using air-cooled borescope and heat resistant ultrasonic sensors even if the turbine is not cooled down sufficiently. Another inspection information comes from degradation and damage measurement. The probabilistic life assessment using structural analysis and statistical material properties, the latter is estimated from hardness measurement, replica observation and embrittlement measurement. The risk function is calculated as the sum product of unreliability functions and expected monetary loss as the consequence of failure along event trees. The optimum maintenance plan is determined among simulated scenarios described through component breakdown trees, life cycle event trees and risk functions. Those methods are effective for total condition assessment and economical maintenance for operating plants

  10. Device to lower NOx in a gas turbine engine combustion system

    Science.gov (United States)

    Laster, Walter R; Schilp, Reinhard; Wiebe, David J

    2015-02-24

    An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).

  11. Model-based adaptive sliding mode control of the subcritical boiler-turbine system with uncertainties.

    Science.gov (United States)

    Tian, Zhen; Yuan, Jingqi; Xu, Liang; Zhang, Xiang; Wang, Jingcheng

    2018-05-25

    As higher requirements are proposed for the load regulation and efficiency enhancement, the control performance of boiler-turbine systems has become much more important. In this paper, a novel robust control approach is proposed to improve the coordinated control performance for subcritical boiler-turbine units. To capture the key features of the boiler-turbine system, a nonlinear control-oriented model is established and validated with the history operation data of a 300 MW unit. To achieve system linearization and decoupling, an adaptive feedback linearization strategy is proposed, which could asymptotically eliminate the linearization error caused by the model uncertainties. Based on the linearized boiler-turbine system, a second-order sliding mode controller is designed with the super-twisting algorithm. Moreover, the closed-loop system is proved robustly stable with respect to uncertainties and disturbances. Simulation results are presented to illustrate the effectiveness of the proposed control scheme, which achieves excellent tracking performance, strong robustness and chattering reduction. Copyright © 2018. Published by Elsevier Ltd.

  12. The Optimal Operation Criteria for a Gas Turbine Cogeneration System

    Directory of Open Access Journals (Sweden)

    Atsushi Akisawa

    2009-04-01

    Full Text Available The study demonstrated the optimal operation criteria of a gas turbine cogeneration system based on the analytical solution of a linear programming model. The optimal operation criteria gave the combination of equipment to supply electricity and steam with the minimum energy cost using the energy prices and the performance of equipment. By the comparison with a detailed optimization result of an existing cogeneration plant, it was shown that the optimal operation criteria successfully provided a direction for the system operation under the condition where the electric power output of the gas turbine was less than the capacity

  13. Possibility of revitalization of control system of steam turbine 210 MW LMZ

    International Nuclear Information System (INIS)

    Racki, Branko

    2004-01-01

    It is a one-shaft, three casing condensing turbine, type K-210-130. A rigid coupling connects it directly to the electric energy generator. There is one intermediate superheat of steam and seven non regulated blending for regenerative condensate heating. A considerate number of such turbines have been used on the territory of the Eastern Europe. There are two blocks installed in TP Sisak, Croatia. There is a survey of the existing control system of turbine, power 210 MW. It points out and describes problems appearing during exploitation. Technical solutions according to complexity of realization have been described. It gives an overview of minimum range of modification with utilization of the existing oil system and maximum range by adding separate high pressure oil system with new solutions for performing segments. (Author)

  14. Influence of the radial-inflow turbine efficiency prediction on the design and analysis of the Organic Rankine Cycle (ORC) system

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei; Ren, Xiaodong

    2016-01-01

    Highlights: • The efficiency prediction is based on the velocity triangle and loss models. • The efficiency selection has a big influence on the working fluid selection. • The efficiency selection has a big influence on system parameter determination. - Abstract: The radial-inflow turbine is a common choice for the power output in the Organic Rankine Cycle (ORC) system. Its efficiency is related to the working fluid property and the system operating condition. Generally, the radial-inflow turbine efficiency is assumed to be a constant value in the conventional ORC system analysis. Few studies focus on the influence of the radial-inflow turbine efficiency selection on the system design and analysis. Actually, the ORC system design and the radial-inflow turbine design are coupled with each other. Different thermal parameters of the ORC system would lead to different radial-inflow turbine design and then different turbine efficiency, and vice versa. Therefore, considering the radial-inflow turbine efficiency prediction in the ORC system design can enhance its reliability and accuracy. In this paper, a one-dimensional analysis model for the radial-inflow turbine in the ORC system is presented. The radial-inflow turbine efficiency prediction in this model is based on the velocity triangle and loss models, rather than a constant efficiency assumption. The influence of the working fluid property and the system operating condition on the turbine performance is evaluated. The thermodynamic analysis of the ORC system with a model predicted turbine efficiency and a constant turbine efficiency is conducted and the results are compared with each other. It indicates that the turbine efficiency selection has a significant influence on the working fluid selection and the system parameter determination.

  15. Performance estimates for the Space Station power system Brayton Cycle compressor and turbine

    Science.gov (United States)

    Cummings, Robert L.

    1989-01-01

    The methods which have been used by the NASA Lewis Research Center for predicting Brayton Cycle compressor and turbine performance for different gases and flow rates are described. These methods were developed by NASA Lewis during the early days of Brayton cycle component development and they can now be applied to the task of predicting the performance of the Closed Brayton Cycle (CBC) Space Station Freedom power system. Computer programs are given for performing these calculations and data from previous NASA Lewis Brayton Compressor and Turbine tests is used to make accurate estimates of the compressor and turbine performance for the CBC power system. Results of these calculations are also given. In general, calculations confirm that the CBC Brayton Cycle contractor has made realistic compressor and turbine performance estimates.

  16. Design, analysis and control of hydraulic soft yaw system for 5MW wind turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2012-01-01

    by active control of a hydraulic yaw system. The control is based on a non-linear and linear model derived based on a concept yaw system for the NREL 5MW wind turbine. The control strategies show a reduction in pressure pulsations under load and it is concluded that the strategie including high......As wind turbines increase in size and the demands for lifetime also increases, new methods of load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and wereby dampen the loads to the system. This paper presents work done on dampening of these loads...

  17. Reliability Based Design of Fluid Power Pitch Systems for Wind Turbines

    DEFF Research Database (Denmark)

    Liniger, Jesper; N. Soltani, Mohsen; Pedersen, Henrik Clemmensen

    2017-01-01

    Priority Number. The Failure Mode and Effect Criticality Analysis is based on past research concerning failure analysis of wind turbine drive trains. Guidelines are given to select the severity, occurrence and detection score that make up the risk priority number. The usability of the method is shown...... in a case study of a fluid power pitch system applied to wind turbines. The results show a good agreement to recent field failure data for offshore turbines where the dominating failure modes are related to valves, accumulators and leakage. The results are further used for making design improvements...

  18. Study on the application of energy storage system in offshore wind turbine with hydraulic transmission

    International Nuclear Information System (INIS)

    Fan, Yajun; Mu, Anle; Ma, Tao

    2016-01-01

    Highlights: • Hydraulic offshore wind turbine is capable of outputting near constant power. • Open loop hydraulic transmission uses seawater as the working fluid. • Linear control strategy distributes total flow according to demand and supply. • Constant pressure hydraulic accumulator stores/releases the surplus energy. • Simulations show the dynamic performance of the hybrid system. - Abstract: A novel offshore wind turbine comprising fluid power transmission and energy storage system is proposed. In this wind turbine, the conventional mechanical transmission is replaced by an open-loop hydraulic system, in which seawater is sucked through a variable displacement pump in nacelle connected directly with the rotor and utilized to drive a Pelton turbine installed on the floating platform. Aiming to smooth and stabilize the output power, an energy storage system with the capability of flexible charging and discharging is applied. The related mathematical model is developed, which contains some sub-models that are categorized as the wind turbine rotor, hydraulic pump, transmission pipeline, proportional valve, accumulator and hydraulic turbine. A linear control strategy is adopted to distribute the flow out of the proportional valve through comparing the demand power with captured wind energy by hydraulic pump. Ultimately, two time domain simulations demonstrate the operation of the hybrid system when the hydraulic accumulator is utilized and show how this system can be used for load leveling and stabilizing the output power.

  19. Design of a compressed air energy storage system for hydrostatic wind turbines

    Directory of Open Access Journals (Sweden)

    Ammar E. Ali

    2018-03-01

    Full Text Available Integration of Compressed Air Energy Storage (CAES system with a wind turbine is critical in optimally harvesting wind energy given the fluctuating nature of power demands. Here we consider the design of a CAES for a wind turbine with hydrostatic powertrain. The design parameters of the CAES are determined based on simulation of the integrated system model for a combination of these parameter values, namely the compression ratios of the air compressors and the expanders and the air tank size. The results of the simulations were used to choose the best design parameters, which would produce the best stable performance through increased energy output of the integrated CAES and wind turbine based on the intermittent wind profile. Simulation results for a 600 kW rated power wind turbine with integrated CAES indicate that increasing the tank size and compression ratio will improve the overall power quality through increased energy output up to a limit beyond which the power quality exhibits only marginal improvement.

  20. Modeling and optimization of a utility system containing multiple extractions steam turbines

    International Nuclear Information System (INIS)

    Luo, Xianglong; Zhang, Bingjian; Chen, Ying; Mo, Songping

    2011-01-01

    Complex turbines with multiple controlled and/or uncontrolled extractions are popularly used in the processing industry and cogeneration plants to provide steam of different levels, electric power, and driving power. To characterize thermodynamic behavior under varying conditions, nonlinear mathematical models are developed based on energy balance, thermodynamic principles, and semi-empirical equations. First, the complex turbine is decomposed into several simple turbines from the controlled extraction stages and modeled in series. THM (The turbine hardware model) developing concept is applied to predict the isentropic efficiency of the decomposed simple turbines. Stodola's formulation is also used to simulate the uncontrolled extraction steam parameters. The thermodynamic properties of steam and water are regressed through linearization or piece-wise linearization. Second, comparison between the simulated results using the proposed model and the data in the working condition diagram provided by the manufacturer is conducted over a wide range of operations. The simulation results yield small deviation from the data in the working condition diagram where the maximum modeling error is 0.87% among the compared seven operation conditions. Last, the optimization model of a utility system containing multiple extraction turbines is established and a detailed case is analyzed. Compared with the conventional operation strategy, a maximum of 5.47% of the total operation cost is saved using the proposed optimization model. -- Highlights: → We develop a complete simulation model for steam turbine with multiple extractions. → We test the simulation model using the performance data of commercial turbines. → The simulation error of electric power generation is no more than 0.87%. → We establish a utility system operational optimization model. → The optimal industrial operation scheme featured with 5.47% of cost saving.

  1. Impact of the use of a hybrid turbine inlet air cooling system in arid climates

    International Nuclear Information System (INIS)

    Al-Ansary, Hany A.; Orfi, Jamel A.; Ali, Mohamed E.

    2013-01-01

    Graphical abstract: Cooling the air entering the compressor section of a gas turbine is a proven method of increasing turbine power output, especially during peak summer demand, and it is increasingly being used in powerplants worldwide. Two turbine inlet air cooling (TIAC) systems are widely used: evaporative cooling and mechanical chilling. In this work, the prospects of using a hybrid turbine inlet air cooling (TIAC) system are investigated. The hybrid system consists of mechanical chilling followed by evaporative cooling. Such a system is capable of achieving a significant reduction in inlet air temperature that satisfies desired power output levels, while consuming less power than conventional mechanical chilling and less water than conventional evaporative cooling, thus combining the benefits of both approaches. Two hybrid system configurations are studied. In the first configuration, the first stage of the system uses water-cooled chillers that are coupled with dry coolers such that the condenser cooling water remains in a closed loop. In the second configuration, the first stage of the system uses water-cooled chillers but with conventional cooling towers. An assessment of the performance and economics of those two configurations is made by comparing them to conventional mechanical chilling and using realistic data. It was found that the TIAC systems are capable of boosting the power output of the gas turbine by 10% or more (of the power output of the ISO conditions). The cost operation analysis shows clearly the hybrid TIAC method with wet cooling has the advantage over the other methods and It would be profitable to install it in the new gas turbine power plants. The figure below shows a comparison of the water consumption for the three different cases. - Highlights: • New hybrid system for the turbine inlet air cooling is studied. • Hybrid system of mechanical chilling followed by evaporative cooling is used. • Hybrid turbine inlet air cooling

  2. Proposed Wind Turbine Aeroelasticity Studies Using Helicopter Systems Analysis

    Science.gov (United States)

    Ladkany, Samaan G.

    1998-01-01

    Advanced systems for the analysis of rotary wing aeroelastic structures (helicopters) are being developed at NASA Ames by the Rotorcraft Aeromechanics Branch, ARA. The research has recently been extended to the study of wind turbines, used for electric power generation Wind turbines play an important role in Europe, Japan & many other countries because they are non polluting & use a renewable source of energy. European countries such as Holland, Norway & France have been the world leaders in the design & manufacture of wind turbines due to their historical experience of several centuries, in building complex wind mill structures, which were used in water pumping, grain grinding & for lumbering. Fossil fuel cost in Japan & in Europe is two to three times higher than in the USA due to very high import taxes. High fuel cost combined with substantial governmental subsidies, allow wind generated power to be competitive with the more traditional sources of power generation. In the USA, the use of wind energy has been limited mainly because power production from wind is twice as expensive as from other traditional sources. Studies conducted at the National Renewable Energy Laboratories (NREL) indicate that the main cost in the production of wind turbines is due to the materials & the labor intensive processes used in the construction of turbine structures. Thus, for the US to assume world leadership in wind power generation, new lightweight & consequently very flexible wind turbines, that could be economically mass produced, would have to be developed [4,5]. This effort, if successful, would result in great benefit to the US & the developing nations that suffer from overpopulation & a very high cost of energy.

  3. Engineering analysis of mass flow rate for turbine system control and design

    International Nuclear Information System (INIS)

    Yoo, Yong H.; Suh, Kune Y.

    2011-01-01

    Highlights: → A computer code is written to predict the steam mass flow rate through valves. → A test device is built to study the steam flow characteristics in the control valve. → Mass flow based methodology eases the programming and experimental procedures. → The methodology helps express the characteristics of each device of a turbine system. → The results can commercially be used for design and operation of the turbine system. - Abstract: The mass flow rate is determined in the steam turbine system by the area formed between the stem disk and the seat of the control valve. For precise control the steam mass flow rate should be known given the stem lift. However, since the thermal hydraulic characteristics of steam coming from the generator or boiler are changed going through each device, it is hard to accurately predict the steam mass flow rate. Thus, to precisely determine the steam mass flow rate, a methodology and theory are developed in designing the turbine system manufactured for the nuclear and fossil power plants. From the steam generator or boiler to the first bunch of turbine blades, the steam passes by a stop valve, a control valve and the first nozzle, each of which is connected with piping. The corresponding steam mass flow rate can ultimately be computed if the thermal and hydraulic conditions are defined at the stop valve, control valve and pipes. The steam properties at the inlet of each device are changed at its outlet due to geometry. The Compressed Adiabatic Massflow Analysis (CAMA) computer code is written to predict the steam mass flow rate through valves. The Valve Engineered Layout Operation (VELO) test device is built to experimentally study the flow characteristics of steam flowing inside the control valve with the CAMA input data. The Widows' Creek type control valve was selected as reference. CAMA is expected to be commercially utilized to accurately design and operate the turbine system for fossil as well as nuclear power

  4. Analysis of a gas turbine driven hybrid drive system for heavy vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Malmquist, Anders

    1999-07-01

    The goal of this thesis has been to analyze the performance and behavior of a gas turbine driven hybrid drive train. The thesis covers both computer simulations and experimental tests. In two case studies, a number of measurements have been made on gas turbine driven hybrid vehicles that are developed by Volvo and ABB. In the recent years, much effort is currently put into the design and analysis of hybrid drive trains. Many studies involve computer simulations, but they are often made on a general level. This thesis concentrate on gas turbine driven hybrids for heavy vehicles, a field that has previously not been covered to a large extent in academic studies. A major contribution to the field of hybrid drive train design is the development of detailed simulation models that have a close connection to hybrids that are actually built and tested. The access to detailed gas turbine data has further enhanced the possibility to design a dynamic model of the gas turbine driven and the electric circuits. The combination of simulations and extensive field experience gains new knowledge on the properties of gas turbines in hybrid drive trains. Two simulation models have been developed in Matlab and Simulink. One is a quasi-steady state model that can be used for drive cycle simulations, e.g. a complete bus line. The other is a transient model that combines the thermodynamic properties of the gas turbine, the mechanical properties of the combined turbine-generator shaft, the electric power circuit and the control system. The transient model has been used to simulate the power response during accelerations and retardation. An analysis of the internal energy flows and the system efficiency of a hybrid drive train contributes to the understanding of the properties of series hybrid drive trains. An important part of the topology is that the system is based on a DC/DC-converter that is connected between the battery and the DC-bus. It controls the DC-bus voltage and by this

  5. Active vibration-based SHM system: demonstration on an operating Vestas V27 wind turbine

    DEFF Research Database (Denmark)

    Tcherniak, Dmitri; Mølgaard, Lasse Lohilahti

    2016-01-01

    with the system and a 3.5 month monitoring campaign was conducted while the turbine was operating normally. During the campaign, a defect – a trailing edge opening – was artificially introduced into the blade and its size was gradually increased from the original 15 cm to 45 cm. Using an unsupervised learning......This study presents a system that is able to detect defects like cracks, leading/trailing edge opening or delamination of at least 15 cm size, remotely, without stopping the wind turbine. The system is vibration-based: mechanical energy is artificially introduced by means of an electromechanical......-to-noise ratio. At the same time, the corresponding wavelength is short enough to deliver required damage detection resolution and long enough to be able to propagate the entire blade length. The paper demonstrates the system on a 225 kW Vesta s V27 wind turbine. One blade of the wind turbine was equipped...

  6. Performance of a 3 kW wind turbine generator with variable pitch control system

    International Nuclear Information System (INIS)

    Nagai, Baku M.; Ameku, Kazumasa; Roy, Jitendro Nath

    2009-01-01

    A prototype 3 kW horizontal upwind type wind turbine generator of 4 m in diameter has been designed and examined under real wind conditions. The machine was designed based on the concept that even small wind turbines should have a variable pitch control system just as large wind turbines, especially in Japan where typhoons occur at least once a year. A characteristic of the machine is the use of a worm and gear system with a stepping motor installed in the center of the hub, and the rotational main shaft. The machine is constructed with no mechanical breaking system so as to avoid damage from strong winds. In a storm, the wind turbine is slowed down by adjusting the pitch angle and the maximum electrical load. Usually the machine is controlled at several stages depending on the rotational speed of the blades. Two control methods have been applied: the variable pitch angle, and regulation of the generator field current. The characteristics of the generator under each rotational speed and field current are first investigated in the laboratory. This paper describes the performances of the wind turbine in terms of the functions of wind turbine rotational speed, generated outputs, and its stability for wind speed changes. The expected performances of the machine have been confirmed under real wind conditions and compared with numerical simulation results. The wind turbine showed a power coefficient of 0.257 under the average wind speed of 7.3 m/s.

  7. FY 1998 result report on the leading R and D of MGC ultra-high efficiency turbine system technology; 1998 nendo MGC chokokoritsu turbine system gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    One of the main subjects for further conserving energy by enhancing efficiency of gas turbine system for power generation, etc. is the heightening of operation temperature. The development is urgently needed of heat-resistant ultra-high temperature members which make high-reliable operation under ultra-high temperature possible. Therefore, an introductory study was made aiming at using MGC materials which does not reduce strength even at high temperature and also has plastic deformability as large-size structure members of gas turbine system for power generation use. In FY 1998, the following were studied: (1) basic study to get material design guidelines for making efficiency of MGC materials higher; (2) construction of the basic data for elucidating the manifestation mechanism of high temperature characteristics of MGC materials; (3) setting of gas turbine specifications which are to be the basis of study work in and after FY 1999; (4) setting of parameters to be evaluated, evaluation criteria, etc., and definition of the evaluation criteria for possibility of establishing an MGC ultra-high efficiency gas turbine system. (NEDO)

  8. Investigation of the interactions between wind turbines and radio systems aimed at establishing co-siting guidelines. Phase 1: Introduction and modelling of wind turbine scatter, appendices E, F and G

    International Nuclear Information System (INIS)

    Dabis, H.S.; Chignell, R.J.

    1997-01-01

    The potential for wind turbines to interfere with radio systems can be a source of conflict between radio operators and the wind energy community. In this report, the problem of accurately predicting the effects of wind turbines on radio systems with the aim of establishing guidelines for their installation is investigated. Initially models for the scatter mechanisms that occur at the wind turbine are developed. These models predict the wind turbine radar cross section and the modulation effects due to the rotation of the blades. Initial validation of these models is established by comparing the predicted results with a set of measurements obtained from experiments performed on a 20:1 scale model wind turbine. It is shown that generally these results agree well. These results are then used in the guideline formulation to compute, for specific radio systems, regions where wind turbines cannot be installed. Examples using realistic parameters for various radio systems are presented. Further validation of the derived models is required. (author)

  9. Problems of bentonite rebonding of synthetic system sands in turbine mixers

    Directory of Open Access Journals (Sweden)

    A. Fedoryszyn

    2008-12-01

    Full Text Available Turbine (rotor mixers are widely used in foundries for bentonite rebonding of synthetic system sands. They form basic equipment in modern sand processing plants. Their major advantage is the short time of the rebond mixing cycle.Until now, no complete theoretical description of the process of mixing in turbine mixers has been offered. Neither does it seem reasonable to try to adapt the theoretical backgrounds of the mixing process carried out in mixers of other types, for example, rooler mixers [1], to the description of operation of the turbine mixers. Truly one can risk the statement that the individual fundamental operations of mixing in rooler mixers, like kneading, grinding, mixing and thinning, are also performed in turbine mixers. Yet, even if so, in turbine mixers these processes are proceeding at a rate and intensity different than in the roller mixers. The fact should also be recalled that the theoretical backgrounds usually relate to the preparation of sand mixtures from new components, and this considerably restricts the field of application of these descriptions when referred to rebond mixing of the system sand. The fundamentals of the process of the synthetic sand rebonding with bentonite require determination and description of operations, like disaggregation, even distribution of binder and water within the entire volume of the rebonded sand batch, sand grains coating, binder activation and aeration.This study presents the scope of research on the sand rebonding process carried out in turbine mixers. The aim has been to determine the range and specific values of the designing and operating parameters to get optimum properties of the rebonded sand as well as energy input in the process.

  10. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht H. Mayer

    2000-07-15

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

  11. On Small-Signal Stability of Wind Power System with Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Akhmatov, Vladislav; Nielsen, Jørgen Nygård

    2010-01-01

    the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine model with all grid relevant control functions is used in the study. Furthermore is the wind power plant......Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants. In this paper an analysis is presented which assess...... (WPP) equipped with a WPP voltage controller and comparisons are presented. The models of wind turbine and WPP voltage controller are kindly provided by Siemens Wind Power A/S for this work. The study is based on modal analysis which are complemented with simulations on the nonlinear system....

  12. The Energy Conversion Analysis of HTR Gas Turbine System

    International Nuclear Information System (INIS)

    Utaja

    2000-01-01

    The energy conversion analysis of HTR gas turbine system by hand calculation is tedious work and need much time. This difficulty comes from the repeated thermodynamic process calculation, both on compression or expansion of the cycle. To make the analysis faster and wider variable analyzed, HTR-1 programme is used. In this paper, the energy conversion analysis of HTR gas turbine system by HTR-1 will be described. The result is displayed as efficiency curve and block diagram with the input and output temperature of the component. This HTR-1 programme is developed by Basic language programming and be compiled by Visual Basic 5.0 . By this HTR-1 programme, the efficiency, specific power and effective compression of the amount of gas can be recognized fast. For example, for CO 2 gas between 40 o C and 700 o C, the compression on maximum efficiency is 4.6 and the energy specific is 18.9 kcal/kg, while the temperature changing on input and output of the component can be traced on monitor. This process take less than one second, while the manual calculation take more than one hour. It can be concluded, that the energy conversion analysis of the HTR gas turbine system by HTR-1 can be done faster and more variable analyzed. (author)

  13. IEA Wind Task 37: Systems Modeling Framework and Ontology for Wind Turbines and Plants

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zahle, Frederik [Technical University of Denmark; Merz, Karl [SINTEF Energy Research; McWilliam, Mike [Technical University of Denmark; Bortolotti, Pietro [Technical University Munich

    2017-08-14

    This presentation will provide an overview of progress to date in the development of a system modeling framework and ontology for wind turbines and plants as part of the larger IEA Wind Task 37 on wind energy systems engineering. The goals of the effort are to create a set of guidelines for a common conceptual architecture for wind turbines and plants so that practitioners can more easily share descriptions of wind turbines and plants across multiple parties and reduce the effort for translating descriptions between models; integrate different models together and collaborate on model development; and translate models among different levels of fidelity in the system.

  14. Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system

    International Nuclear Information System (INIS)

    Messadi, Manal; Mellit, Adel; Kemih, Karim; Ghanes, Malek

    2015-01-01

    This paper investigates how to address the chaos problem in a permanent magnet synchronous generator (PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable; the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation. Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method. (paper)

  15. Dynamic modeling of gas turbines in integrated gasification fuel cell systems

    Science.gov (United States)

    Maclay, James Davenport

    2009-12-01

    Solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems for use in integrated gasification fuel cell (IGFC) systems operating on coal will stretch existing fossil fuel reserves, generate power with less environmental impact, while having a cost of electricity advantage over most competing technologies. However, the dynamic performance of a SOFC-GT in IGFC applications has not been previously studied in detail. Of particular importance is how the turbo-machinery will be designed, controlled and operated in such applications; this is the focus of the current work. Perturbation and dynamic response analyses using numerical SimulinkRTM models indicate that compressor surge is the predominant concern for safe dynamic turbo-machinery operation while shaft over-speed and excessive turbine inlet temperatures are secondary concerns. Fuel cell temperature gradients and anode-cathode differential pressures were found to be the greatest concerns for safe dynamic fuel cell operation. Two control strategies were compared, that of constant gas turbine shaft speed and constant fuel cell temperature, utilizing a variable speed gas turbine. Neither control strategy could eliminate all vulnerabilities during dynamic operation. Constant fuel cell temperature control ensures safe fuel cell operation, while constant speed control does not. However, compressor surge is more likely with constant fuel cell temperature control than with constant speed control. Design strategies that provide greater surge margin while utilizing constant fuel cell temperature control include increasing turbine design mass flow and decreasing turbine design inlet pressure, increasing compressor design pressure ratio and decreasing compressor design mass flow, decreasing plenum volume, decreasing shaft moment of inertia, decreasing fuel cell pressure drop, maintaining constant compressor inlet air temperature. However, these strategies in some cases incur an efficiency penalty. A broad comparison of cycles

  16. Oscillatory Stability and Eigenvalue Sensitivity Analysis of A DFIG Wind Turbine System

    DEFF Research Database (Denmark)

    Yang, Lihui; Xu, Zhao; Østergaard, Jacob

    2011-01-01

    This paper focuses on modeling and oscillatory stability analysis of a wind turbine with doubly fed induction generator (DFIG). A detailed mathematical model of DFIG wind turbine with vector-control loops is developed, based on which the loci of the system Jacobian's eigenvalues have been analyzed......, showing that, without appropriate controller tuning a Hopf bifurcation can occur in such a system due to various factors, such as wind speed. Subsequently, eigenvalue sensitivity with respect to machine and control parameters is performed to assess their impacts on system stability. Moreover, the Hopf...

  17. A fiber-optic ice detection system for large-scale wind turbine blades

    Science.gov (United States)

    Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho

    2017-09-01

    Icing causes substantial problems in the integrity of large-scale wind turbines. In this work, a fiber-optic sensor system for detection of icing with an arrayed waveguide grating is presented. The sensor system detects Fresnel reflections from the ends of the fibers. The transition in Fresnel reflection due to icing gives peculiar intensity variations, which categorizes the ice, the water, and the air medium on the wind turbine blades. From the experimental results, with the proposed sensor system, the formation of icing conditions and thickness of ice were identified successfully in real time.

  18. Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly report, December 1, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus our close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA based in engineering and manufacturing and are marketed through the GE Industrial and Power Systems. Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emission. Improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal.

  19. Wireless Power Transfer System for Rotary Parts Telemetry of Gas Turbine Engine

    Directory of Open Access Journals (Sweden)

    Xiaoming He

    2018-04-01

    Full Text Available A novel wireless power transfer approach for the rotary parts telemetry of a gas turbine engine is proposed. The advantages of a wireless power transfer (WPT system in the power supply for the rotary parts telemetry of a gas turbine engine are introduced. By simplifying the circuit of the inductively-coupled WPT system and developing its equivalent circuit model, the mathematical expressions of transfer efficiency and transfer power of the system are derived. A mutual inductance model between receiving and transmitting coils of the WPT system is presented and studied. According to this model, the mutual inductance between the receiving and the transmitting coils can be calculated at different axial distances. Then, the transfer efficiency and transfer power can be calculated as well. Based on the test data, the relationship of the different distances between the two coils, the transfer efficiency, and transfer power is derived. The proper positions where the receiving and transmitting coils are installed in a gas turbine engine are determined under conditions of satisfying the transfer efficiency and transfer power that the telemetry system required.

  20. Control System on a Wind Turbine: Evaluation of Control Strategies for a Wind Turbine with Hydraulic Drive Train by Means of Aeroelastic Analysis

    OpenAIRE

    Frøyd, Lars

    2009-01-01

    The evolution of wind turbines are going towards floating offshore structures. To improve the stability of these turbines, the weight of the nacelle should be as low as possible. The company ChapDrive has developed a hydraulic drive train that gives the ability to move the generator to the base of the tower and to replace the traditional gearbox. To test the system, ChapDrive has constructed a prototype turbine which is located at Valsneset.This thesis describes the combined aero-elastic and...

  1. UNIVERSITY TURBINE SYSTEMS RESEARCH-HIGH EFFICIENCY ENGINES AND TURBINES (UTSR-HEET)

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence P. Golan; Richard A. Wenglarz; William H. Day

    2003-03-01

    In 2002, the U S Department of Energy established a cooperative agreement for a program now designated as the University Turbine Systems (UTSR) Program. As stated in the cooperative agreement, the objective of the program is to support and facilitate development of advanced energy systems incorporating turbines through a university research environment. This document is the first annual, technical progress report for the UTSR Program. The Executive Summary describes activities for the year of the South Carolina Institute for Energy Studies (SCIES), which administers the UTSR Program. Included are descriptions of: Outline of program administrative activities; Award of the first 10 university research projects resulting from a year 2001 RFP; Year 2002 solicitation and proposal selection for awards in 2003; Three UTSR Workshops in Combustion, Aero/Heat Transfer, and Materials; SCIES participation in workshops and meetings to provide input on technical direction for the DOE HEET Program; Eight Industrial Internships awarded to higher level university students; Increased membership of Performing Member Universities to 105 institutions in 40 states; Summary of outreach activities; and a Summary table describing the ten newly awarded UTSR research projects. Attachment A gives more detail on SCIES activities by providing the monthly exceptions reports sent to the DOE during the year. Attachment B provides additional information on outreach activities for 2002. The remainder of this report describes in detail the technical approach, results, and conclusions to date for the UTSR university projects.

  2. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  3. Advanced turbine systems program conceptual design and product development. Annual report, August 1993--July 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    This Yearly Technical Progress Report covers the period August 3, 1993 through July 31, 1994 for Phase 2 of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE Contract No. DE-AC421-93MC30246. As allowed by the Contract (Part 3, Section J, Attachment B) this report is also intended to fulfill the requirements for a fourth quarterly report. The objective of Phase 2 of the ATS Program is to provide the conceptual design and product development plan for an ultra-high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized in the year 2000. During the period covered by this report, Solar has completed three of eight program tasks and has submitted topical reports. These three tasks included a Project Plan submission of information required by NEPA, and the selection of a Gas-Fueled Advanced Turbine System (GFATS). In the latest of the three tasks, Solar`s Engineering team identified an intercooled and recuperated (ICR) gas turbine as the eventual outcome of DOE`s ATS program coupled with Solar`s internal New Product Introduction (NPI) program. This machine, designated ``ATS50`` will operate at a thermal efficiency (turbine shaft power/fuel LHV) of 50 percent, will emit less than 10 parts per million of NOx and will reduce the cost of electricity by 10 percent. It will also demonstrate levels of reliability, availability, maintainability, and durability (RAMD) equal to or better than those of today`s gas turbine systems. Current activity is concentrated in three of the remaining five tasks a Market Study, GFATS System Definition and Analysis, and the Design and Test of Critical Components.

  4. Proceedings of the Advanced Turbine Systems annual program review meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Goals of the 8-year program are to develop cleaner, more efficient, and less expensive gas turbine systems for utility and industrial electric power generation, cogeneration, and mechanical drive units. During this Nov. 9-11, 1994, meeting, presentations on energy policy issues were delivered by representatives of regulatory, industry, and research institutions; program overviews and technical reviews were given by contractors; and ongoing and proposed future projects sponsored by university and industry were presented and displayed at the poster session. Panel discussions on distributed power and Advanced Gas Systems Research education provided a forum for interactive dialog and exchange of ideas. Exhibitors included US DOE, Solar Turbines, Westinghouse, Allison Engine Co., and GE.

  5. Power turbine ventilation system

    Science.gov (United States)

    Wakeman, Thomas G. (Inventor); Brown, Richard W. (Inventor)

    1991-01-01

    Air control mechanism within a power turbine section of a gas turbine engine. The power turbine section includes a rotor and at least one variable pitch propulsor blade. The propulsor blade is coupled to and extends radially outwardly of the rotor. A first annular fairing is rotatable with the propulsor blade and interposed between the propulsor blade and the rotor. A second fairing is located longitudinally adjacent to the first fairing. The first fairing and the second fairing are differentially rotatable. The air control mechanism includes a platform fixedly coupled to a radially inner end of the propulsor blade. The platform is generally positioned in a first opening and a first fairing. The platform and the first fairing define an outer space. In a first position corresponding with a first propulsor blade pitch, the platform is substantially conformal with the first fairing. In a second position corresponding with the second propulsor blade pitch, an edge portion of the platform is displaced radially outwardly from the first fairing. When the blades are in the second position and rotating about the engine axis, the displacement of the edge portion with respect to the first fairing allows air to flow from the outer space to the annular cavity.

  6. System Reliability for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2013-01-01

    E). In consequence, a rational treatment of uncertainties is done in order to assess the reliability of critical details in OWTs. Limit state equations are formulated for fatigue critical details which are not influenced by wake effects generated in offshore wind farms. Furthermore, typical bi-linear S-N curves...... are considered for reliability verification according to international design standards of OWTs. System effects become important for each substructure with many potential fatigue hot spots. Therefore, in this paper a framework for system effects is presented. This information can be e.g. no detection of cracks...... in inspections or measurements from condition monitoring systems. Finally, an example is established to illustrate the practical application of this framework for jacket type wind turbine substructure considering system effects....

  7. Engineering design and exergy analyses for combustion gas turbine based power generation system

    International Nuclear Information System (INIS)

    Sue, D.-C.; Chuang, C.-C.

    2004-01-01

    This paper presents the engineering design and theoretical exergetic analyses of the plant for combustion gas turbine based power generation systems. Exergy analysis is performed based on the first and second laws of thermodynamics for power generation systems. The results show the exergy analyses for a steam cycle system predict the plant efficiency more precisely. The plant efficiency for partial load operation is lower than full load operation. Increasing the pinch points will decrease the combined cycle plant efficiency. The engineering design is based on inlet air-cooling and natural gas preheating for increasing the net power output and efficiency. To evaluate the energy utilization, one combined cycle unit and one cogeneration system, consisting of gas turbine generators, heat recovery steam generators, one steam turbine generator with steam extracted for process have been analyzed. The analytical results are used for engineering design and component selection

  8. Impact of Penetration Wind Turbines on Transient Stability in Sulbagsel Electrical Interconnection System

    Science.gov (United States)

    Nurtrimarini Karim, Andi; Mawar Said, Sri; Chaerah Gunadin, Indar; Darusman B, Mustadir

    2018-03-01

    This paper presents a rotor angle analysis when transient disturbance occurs when wind turbines enter the southern Sulawesi electrical interconnection system (Sulbagsel) both without and with the addition of a Power Stabilizer (PSS) control device. Time domain simulation (TDS) method is used to analyze the rotor angle deviation (δ) and rotor angle velocity (ω). A total of 44 buses, 47 lines, 6 transformers, 15 generators and 34 loads were modeled for analysis after the inclusion of large-scale wind turbines in the Sidrap and Jeneponto areas. The simulation and computation results show the addition of PSS devices to the system when transient disturbance occurs when the winds turbine entering the Sulbagsel electrical system is able to dampen and improve the rotor angle deviation (δ) and the rotor angle velocity (ω) towards better thus helping the system to continue operation at a new equilibrium point.

  9. Self Adaptive Air Turbine for Wave Energy Conversion Using Shutter Valve and OWC Heoght Control System

    Energy Technology Data Exchange (ETDEWEB)

    Di Bella, Francis A

    2014-09-29

    An oscillating water column (OWC) is one of the most technically viable options for converting wave energy into useful electric power. The OWC system uses the wave energy to “push or pull” air through a high-speed turbine, as illustrated in Figure 1. The turbine is typically a bi-directional turbine, such as a Wells turbine or an advanced Dennis-Auld turbine, as developed by Oceanlinx Ltd. (Oceanlinx), a major developer of OWC systems and a major collaborator with Concepts NREC (CN) in Phase II of this STTR effort. Prior to awarding the STTR to CN, work was underway by CN and Oceanlinx to produce a mechanical linkage mechanism that can be cost-effectively manufactured, and can articulate turbine blades to improve wave energy capture. The articulation is controlled by monitoring the chamber pressure. Funding has been made available from the U.S. Department of Energy (DOE) to CN (DOE DE-FG-08GO18171) to co-share the development of a blade articulation mechanism for the purpose of increasing energy recovery. However, articulating the blades is only one of the many effective design improvements that can be made to the composite subsystems that constitute the turbine generator system.

  10. Simulation and Parametric Analysis of a Hybrid SOFC-Gas Turbine Power Generation System

    International Nuclear Information System (INIS)

    Hassan, A.M.; Fahmy

    2004-01-01

    Combined SOFC-Gas Turbine Power Generation Systems are aimed to increase the power and efficiency obtained from the technology of using high temperature fuel cells by integrating them with gas turbines. Hybrid systems are considered in the last few years as one of the most promising technologies to obtain electric energy from the natural gas at very high efficiency with a serious potential for commercial use. The use of high temperature allows internal reforming for natural gas and thus disparity of fuel composition is allowed. Also air preheating is performed thanks to the high operating cell temperature as a task of energy integration. In this paper a modeling approach is presented for the fuel cell-gas turbine hybrid power generation systems, to obtain the sofc output voltage, power, and the overall hybrid system efficiency. The system has been simulated using HYSYS, the process simulation software to help improving the process understanding and provide a quick system solution. Parametric analysis is also presented in this paper to discuss the effect of some important SOFC operating parameters on the system performance and efficiency

  11. Performance and Feasibility Analysis of a Wind Turbine Power System for Use on Mars

    Science.gov (United States)

    Lichter, Matthew D.; Viterna, Larry

    1999-01-01

    A wind turbine power system for future missions to the Martian surface was studied for performance and feasibility. A C++ program was developed from existing FORTRAN code to analyze the power capabilities of wind turbines under different environments and design philosophies. Power output, efficiency, torque, thrust, and other performance criteria could be computed given design geometries, atmospheric conditions, and airfoil behavior. After reviewing performance of such a wind turbine, a conceptual system design was modeled to evaluate feasibility. More analysis code was developed to study and optimize the overall structural design. Findings of this preliminary study show that turbine power output on Mars could be as high as several hundred kilowatts. The optimized conceptual design examined here would have a power output of 104 kW, total mass of 1910 kg, and specific power of 54.6 W/kg.

  12. Optimised and balanced structural and system reliability of offshore wind turbines. An account

    Energy Technology Data Exchange (ETDEWEB)

    Tarp-Johansen, N.J.; Kozine, I. (Risoe National Lab., DTU, Roskilde, (DK)); Rademarkers, L. (Netherlands Energy Research Foundation (NL)); Dalsgaard Soerensen, J. (Aalborg Univ. (DK)) Ronold, K. (Det Norske Veritas (DK))

    2005-04-15

    This report gives the results of the research project 'Optimised and Uniform Safety and Reliability of Offshore Wind Turbines (an account)'. The main subject of the project has been the account of the state-of-the art of knowledge about, and/or attempts to, harmonisation of the structural reliability of wind turbines, on the one hand, and the reliability of the wind turbine's control/safety system, on the other hand. Within the project some research pointing ahead has also been conducted. (au)

  13. Aero-hydro-elastic simulation platform for wave energy systems and floating wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kallesoee, B.S.

    2011-01-15

    This report present results from the PSO project 2008-1-10092 entitled Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines that deals with measurements, modelling and simulations of the world's first combined wave and wind energy platform. The floating energy conversion platform, Poseidon, is owned and operated by Floating Power Plant A/S. The platform has been operating for two test periods; one period where it was operating as a wave energy conversion platform only and one period where the three turbines was mounted and the platform operated as a combined wind and wave energy platform. The PSO project has equipped the platform with comprehensive measurements equipment for measuring platform motion, wave and wind conditions and turbine loads. Data from the first test period has been used for determine if the turbine could be mounted on the platform. Preliminary analysis of data from the second test period indicates that the platform is suitable as wind turbine foundation and that the turbines reduce the platform motion. (Author)

  14. Utility Advanced Turbine Systems (ATS) technology readiness testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  15. Internal combustion engine system having a power turbine with a broad efficiency range

    Science.gov (United States)

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  16. Dynamic wind turbine models in power system simulation tool DIgSILENT

    OpenAIRE

    Hansen, A.D.; Jauch, C.; Sørensen, Poul Ejnar; Iov, F.; Blaabjerg, F.

    2004-01-01

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT (Version 12.0). The developed models are a part of the results of a national research project, whose overall objective is to create amodel database in different simulation tools. This model database should be able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The repo...

  17. Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system

    Science.gov (United States)

    Manal, Messadi; Adel, Mellit; Karim, Kemih; Malek, Ghanes

    2015-01-01

    This paper investigates how to address the chaos problem in a permanent magnet synchronous generator (PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable; the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation. Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method. Project supported by the CMEP-TASSILI Project (Grant No. 14MDU920).

  18. Design of LPV fault-tolerant controller for pitch system of wind turbine

    Science.gov (United States)

    Wu, Dinghui; Zhang, Xiaolin

    2017-07-01

    To address failures of wind turbine pitch-angle sensors, traditional wind turbine linear parameter varying (LPV) model is transformed into a double-layer convex polyhedron LPV model. On the basis of this model, when the plurality of the sensor undergoes failure and details of the failure are inconvenient to obtain, each sub-controller is designed using distributed thought and gain scheduling method. The final controller is obtained using all of the sub-controllers by a convex combination. The design method corrects the errors of the linear model, improves the linear degree of the system, and solves the problem of multiple pitch angle faults to ensure stable operation of the wind turbine.

  19. Heat shield manifold system for a midframe case of a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Clinton A.; Eng, Jesse; Schopf, Cheryl A.

    2017-07-25

    A heat shield manifold system for an inner casing between a compressor and turbine assembly is disclosed. The heat shield manifold system protects the outer case from high temperature compressor discharge air, thereby enabling the outer case extending between a compressor and a turbine assembly to be formed from less expensive materials than otherwise would be required. In addition, the heat shield manifold system may be configured such that compressor bleed air is passed from the compressor into the heat shield manifold system without passing through a conventional flange to flange joint that is susceptible to leakage.

  20. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  1. Implementation of a Wind Farm Turbine Control System with Short-Term Grid Faults Management

    DEFF Research Database (Denmark)

    Marra, Francesco; Rasmussen, Tonny Wederberg; Garcia-Valle, Rodrigo

    2010-01-01

    restrictions for the wind turbines behavior especially under grid faults. Wind turbines are requested to stay connected even during faults. These new requirements are challenging the control of the wind turbines and new control strategies are required to meet the target. This paper dealt...... with the implementation of a control strategy in order to stay connected under grid faults. The method aimed to ensure that a wind farm turbine remains connected and no electric power is delivered to the grid during the fault period. The overall system was modelled and simulated by using the software Matlab/Simulink.......The increased penetration of wind power in the grid has led to important technical barriers that limit the development, where the stability of the system plays a key issue. Grid operators in different countries are issuing new grid requirements, the so-called grid codes that impose more...

  2. Torsional analysis of 1 MW gearbox and shaft system in the Avedoere wind turbine

    International Nuclear Information System (INIS)

    Crone, A.

    1993-05-01

    In order to predict undesired high gear noise emission from the Avedoere wind turbine due to critical torsional resonances in the shaft system, the torsional natural frequencies and corresponding mode shapes have been calculated. The analysis has involved a comprehensive, detailed model of the gearbox shaft system. The natural frequencies and mode shapes have also been calculated for the test bed shaft system enabling a calibration of the calculations when comparing with measurements made on the test bed system. The natural torsional frequencies of the test bed shaft system and the wind turbine shaft system, both including the Flender, Peak 4375 gearbox, have been calculated together with the corresponding mode shapes. The sensitivity analysis showed that the natural frequencies of one of the torsional modes may be close to or coinciding with the toothmesh frequency of the output gear stage, in the wind turbine shaft system. The shape of this mode indicates however, that this mode is not very likely to be strongly excited by forces acting in the tooth contact at the mesh frequency. This conclusion also counts for a second mode which was calculated to have a natural frequency close to the toothmesh frequency of the output stage. The analysis also shows that the frequencies of the 1st, the 3rd and the 4th harmonics of the toothmesh frequency of the 2nd gear stage, deviate by less than 15% from several modes of the wind turbine shaft system, which seem likely to be excited by forces acting in the tooth contact of this stage. Amplification of the structure-borne noise from the gearbox at these frequencies may be expected. The amplification at these frequencies is not expected to have any critical influence on the tonal gear noise radiated from the wind turbine. (EG)

  3. Doubly Fed Induction Generator Wind Turbine Systems Subject to Recurring Symmetrical Grid Faults

    DEFF Research Database (Denmark)

    Chen, Wenjie; Blaabjerg, Frede; Zhu, Nan

    2016-01-01

    New grid codes demand the wind turbine systems to ride through recurring grid faults. In this paper, the performance of the doubly Ffed induction generator (DFIG) wind turbine system under recurring symmetrical grid faults is analyzed. The mathematical model of the DFIG under recurring symmetrical...... grid faults is established. The analysis is based on the DFIG wind turbine system with the typical low-voltage ride-through strategy-with rotor-side crowbar. The stator natural flux produced by the voltage recovery after the first grid fault may be superposed on the stator natural flux produced...... by the second grid fault, so that the transient rotor and stator current and torque fluctuations under the second grid fault may be influenced by the characteristic of the first grid fault, including the voltage dips level and the grid fault angle, as well as the duration between two faults. The mathematical...

  4. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    Science.gov (United States)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  5. Nonlinear modeling and dynamic analysis of hydro-turbine governing system in the process of load rejection transient

    International Nuclear Information System (INIS)

    Zhang, Hao; Chen, Diyi; Xu, Beibei; Wang, Feifei

    2015-01-01

    Graphical abstract: Nonlinear dynamic transfer coefficients are introduced to the hydro-turbine governing system. In the process of load reject ion transient, the nonlinear dynamical behaviors of the system are studied in detail. - Highlights: • A novel mathematical model of a hydro-turbine governing system is established. • The process of load rejection transient is considered. • Nonlinear dynamic transfer coefficients are introduced to the system. • The bifurcation diagram with the variable t has better engineering significance. • The nonlinear dynamical behaviors of the system are studied in detail. - Abstract: This article pays attention to the mathematical modeling of a hydro-turbine governing system in the process of load rejection transient. As a pioneer work, the nonlinear dynamic transfer coefficients are introduced in a penstock system. Considering a generator system, a turbine system and a governor system, we present a novel nonlinear dynamical model of a hydro-turbine governing system. Fortunately, for the unchanged of PID parameters, we acquire the stable regions of the governing system in the process of load rejection transient by numerical simulations. Moreover, the nonlinear dynamic behaviors of the governing system are illustrated by bifurcation diagrams, Poincare maps, time waveforms and phase orbits. More importantly, these methods and analytic results will present theoretical groundwork for allowing a hydropower station in the process of load rejection transient

  6. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard

    During the last decades, wind turbines have been continuously developed with the aim of maximizing the life cycle benefits (production of electricity) minus the costs of planning, materials, installation, operation & maintenance as well as possible failure. In order to continue this development...... turbines and the central topics considered are statistical load extrapolation of extreme loads during operation and reliability assessment of wind turbine blades. Wind turbines differ from most civil engineering structures by having a control system which highly influences the loading. In the literature......, methods for estimating the extreme load-effects on a wind turbine during operation, where the control system is active, have been proposed. But these methods and thereby the estimated loads are often subjected to a significant uncertainty which influences the reliability of the wind turbine...

  7. An integrated solar thermal power system using intercooled gas turbine and Kalina cycle

    International Nuclear Information System (INIS)

    Peng, Shuo; Hong, Hui; Jin, Hongguang; Wang, Zhifeng

    2012-01-01

    A new solar tower thermal power system integrating the intercooled gas turbine top cycle and the Kalina bottoming cycle is proposed in the present paper. The thermodynamic performance of the proposed system is investigated, and the irreversibility of energy conversion is disclosed using the energy–utilization diagram method. On the top cycle of the proposed system, the compressed air after being intercooled is heated at 1000 °C or higher at the solar tower receiver and is used to drive the gas turbine to generate power. The ammonia–water mixture as the working substance of the bottom cycle recovers the waste heat from the gas turbine to generate power. A concise analytical formula of solar-to-electric efficiency of the proposed system is developed. As a result, the peak solar-to-electric efficiency of the proposed system is 27.5% at a gas turbine inlet temperature of 1000 °C under the designed solar direct normal irradiance of 800 W/m 2 . Compared with a conventional solar power tower plant, the proposed integrated system conserves approximately 69% of consumed water. The results obtained in the current study provide an approach to improve solar-to-electric efficiency and offer a potential to conserve water for solar thermal power plants in arid area. -- Highlights: ► An Integrated Solar Thermal Power System is modeled. ► A formula forecasting the thermodynamic performance is proposed. ► The irreversibility of energy conversion is disclosed using an energy utilization method. ► The effect of key operational parameters on thermal performance is examined.

  8. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    This book presents recent studies on the power electronics used for the next generation wind turbine system. Some criteria and tools for evaluating and improving the critical performances of the wind power converters have been proposed and established. The book addresses some emerging problems...

  9. Wind Turbine Technologies

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela

    2017-01-01

    , and with or without gearboxes, using the latest in power electronics, aerodynamics, and mechanical drive train designs [4]. The main differences between all wind turbine concepts developed over the years, concern their electrical design and control. Today, the wind turbines on the market mix and match a variety......, the design of wind turbines has changed from being convention driven to being optimized driven within the operating regime and market environment. Wind turbine designs have progressed from fixed speed, passive controlled and with drive trains with gearboxes, to become variable speed, active controlled......,6] and to implement modern control system strategies....

  10. Transition in Gas Turbine Control System Architecture: Modular, Distributed, and Embedded

    Science.gov (United States)

    Culley, Dennis

    2010-01-01

    Controls systems are an increasingly important component of turbine-engine system technology. However, as engines become more capable, the control system itself becomes ever more constrained by the inherent environmental conditions of the engine; a relationship forced by the continued reliance on commercial electronics technology. A revolutionary change in the architecture of turbine-engine control systems will change this paradigm and result in fully distributed engine control systems. Initially, the revolution will begin with the physical decoupling of the control law processor from the hostile engine environment using a digital communications network and engine-mounted high temperature electronics requiring little or no thermal control. The vision for the evolution of distributed control capability from this initial implementation to fully distributed and embedded control is described in a roadmap and implementation plan. The development of this plan is the result of discussions with government and industry stakeholders

  11. Electromagnetic Calculation of Combined Earthing System with Ring Earth Electrode and Vertical Rods for Wind Turbine

    Science.gov (United States)

    Fujii, Toshiaki; Yasuda, Yoh; Ueda, Toshiaki

    With the worldwide spread of wind turbine installations, various problems such as landscape issues, bird strikes and grid connections have arisen. Protection of wind turbines from lightning is cited as one of the main problems. Wind turbines are often struck by lightning because of their open-air locations, such as in mountainous areas, and their special configuration and very-high construction. Especially, low-voltage and control circuits can fail or suffer burnout while blades can incur serious damage if struck by lightning. Wind turbine failures caused by lightning strikes account for approximately 25% of all failures. The problem is regarded as a global one that needs immediate resolution. It is important to understand the impedance characteristics of wind turbine earthing systems from the viewpoint of lightning protection. A report from IEC TR61400-24 recommends a “ring earth electrode”. This was originally defined in IEC 61024 (currently revised and re-numbered as IEC 62305), where such an electrode is recommended to reduce touch and step voltages in households and buildings. IEC TR61400-24 also recommended additional electrodes of vertical or horizontal rods. However, these concepts have not been fully discussed from the viewpoint of its application to wind turbines. To confirm the effect of a combination of a ring earth electrode and additional vertical rods for protection of a wind turbine, this report uses the Finite Difference Time Domain (FDTD) method to present an electromagnetic transient analysis on such a wind turbine earthing system. The results show that an optimal combination can be arranged from viewpoints of lightning protection and construction cost. Thus, this report discusses how to establish a quantitative design methodology of the wind turbine earthing system to provide effective lightning protection.

  12. Improving the efficiency of gas turbine systems with volumetric solar receivers

    International Nuclear Information System (INIS)

    Petrakopoulou, Fontina; Sánchez-Delgado, Sergio; Marugán-Cruz, Carolina; Santana, Domingo

    2017-01-01

    Highlights: • Study of small and large-scale solar-combined cycle plants with volumetric receivers. • Increase of inlet temperature of combustion air using solar energy. • The combustion exergy efficiency starts to decrease over a certain temperature. • Indications obtained from the energy and exergy analyses differ. - Abstract: The combustion process of gas turbine systems is typically associated with the highest thermodynamic inefficiencies among the system components. A method to increase the efficiency of a combustor and, consequently that of the gas turbine, is to increase the temperature of the entering combustion air. This measure reduces the consumption of fuel and improves the environmental performance of the turbine. This paper studies the incorporation of a volumetric solar receiver into existing gas turbines in order to increase the temperature of the inlet combustion air to 800 °C and 1000 °C. For the first time, detailed thermodynamic analyses involving both energy and exergy principles of both small-scale and large-scale hybrid (solar-combined cycle) power plants including volumetric receivers are realized. The plants are based on real gas turbine systems, the base operational characteristics of which are derived and reported in detail. It is found that the indications obtained from the energy and exergy analyses differ. The addition of the solar plant achieves an increase in the exergetic efficiency when the conversion of solar radiation into thermal energy (i.e., solar plant efficiency) is not accounted for in the definition of the overall plant efficiency. On the other hand, it is seen that it does not have a significant effect on the energy efficiency. Nevertheless, when the solar efficiency is included in the definition of the overall efficiency of the plants, the addition of the solar receiver always leads to an efficiency reduction. It is found that the exergy efficiency of the combustion chamber depends on the varying air

  13. Vortex system studies on small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Montgomerie, Bjoern; Dahlberg, Jan-Aake [Swedish Defence Research Agency, Stockholm (Sweden). Div. of Aeronautics, FFA

    2003-10-01

    The wind tunnel experiment reported included a small wind turbine setup and smoke to visualize the trailing tip vortices for different wind turbine configurations. Several combinations of tunnel wind speeds and tip speed ratios generated a database where the end result functions were radius and pitch, of the tip vortex spirals, versus the downstream coordinate. The Reynolds number in the experiment was very low compared to that of full size turbines. The results should therefore be seen as valid only for low Reynolds numbers. The models were 18 and 25 cm diameter turbines. This is thought to be complementary to the information obtained in similar wind tunnel investigations for much larger models. The database is meant to be a fundamental tool for the construction of practical aerodynamic induction methods. Such methods typically employ the Biot-Savart law has been shown to lead to a flow field, which deviates considerably from that of reality. E.g. concentration into tip vortices does not happen when the flow is simulated with Biot-Savart law only. Thus, a combination of the induction method and its modification, based on investigations such as the one reported, is foreseen to replace the widely used Blade Element Momentum method for wind turbine loads and performance prediction.

  14. IMIS: Integrated Marine Installation System for offshore turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The report describes a feasibility study on the Integrated Marine Installation System for offshore wind turbines. The aspects covered are (1) Background and why the study is required; (2) Aims and objectives of the project; (3) Summary of methods adopted; (4) Design criteria according to the area for deployment; (5) Conclusions and recommendations. The ultimate goal will be to install and secure the wind turbine in position using an integrated approach to avoid using lifting vessels. To date, an initial feasibility study has been carried out where four different concepts were considered. The next phase of the project will be to address a number of possible risks and constraints before the chosen concept can be demonstrated to be viable. The work is being carried out by Setech Ltd, Armstrong Technology Associates Ltd and Smith Rea Energy Ltd for the DTI.

  15. Small-Signal Stability of Wind Power System With Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygaard; Jensen, Kim Høj

    2012-01-01

    Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants (WPP). In this paper a comprehensive analysis...... is presented which assesses the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine (WT) model with all grid relevant control functions is used in the study....... The WT is, furthermore, equipped with a park level WPP voltage controller and comparisons are presented. The WT model for this work is a validated dynamic model of the 3.6 MW Siemens Wind Power WT. The study is based on modal analysis which is complemented with time domain simulations on the nonlinear...

  16. An FMEA-Based Risk Assessment Approach for Wind Turbine Systems: A Comparative Study of Onshore and Offshore

    Directory of Open Access Journals (Sweden)

    Mahmood Shafiee

    2014-02-01

    Full Text Available Failure mode and effects analysis (FMEA has been extensively used by wind turbine assembly manufacturers for analyzing, evaluating and prioritizing potential/known failure modes. However, several limitations are associated with its practical implementation in wind farms. First, the Risk-Priority-Number (RPN of a wind turbine system is not informative enough for wind farm managers from the perspective of criticality; second, there are variety of wind turbines with different structures and hence, it is not correct to compare the RPN values of different wind turbines with each other for prioritization purposes; and lastly, some important economical aspects such as power production losses, and the costs of logistics and transportation are not taken into account in the RPN value. In order to overcome these drawbacks, we develop a mathematical tool for risk and failure mode analysis of wind turbine systems (both onshore and offshore by integrating the aspects of traditional FMEA and some economic considerations. Then, a quantitative comparative study is carried out using the traditional and the proposed FMEA methodologies on two same type of onshore and offshore wind turbine systems. The results show that the both systems face many of the same risks, however there are some main differences worth considering.

  17. Unsteady, Cooled Turbine Simulation Using a PC-Linux Analysis System

    Science.gov (United States)

    List, Michael G.; Turner, Mark G.; Chen, Jen-Pimg; Remotigue, Michael G.; Veres, Joseph P.

    2004-01-01

    The fist stage of the high-pressure turbine (HPT) of the GE90 engine was simulated with a three-dimensional unsteady Navier-Sokes solver, MSU Turbo, which uses source terms to simulate the cooling flows. In addition to the solver, its pre-processor, GUMBO, and a post-processing and visualization tool, Turbomachinery Visual3 (TV3) were run in a Linux environment to carry out the simulation and analysis. The solver was run both with and without cooling. The introduction of cooling flow on the blade surfaces, case, and hub and its effects on both rotor-vane interaction as well the effects on the blades themselves were the principle motivations for this study. The studies of the cooling flow show the large amount of unsteadiness in the turbine and the corresponding hot streak migration phenomenon. This research on the GE90 turbomachinery has also led to a procedure for running unsteady, cooled turbine analysis on commodity PC's running the Linux operating system.

  18. Turbine Engine Clearance Control Systems: Current Practices and Future Directions

    Science.gov (United States)

    Lattime, Scott B.; Steinetz, Bruce M.

    2002-01-01

    Improved blade tip sealing in the high pressure compressor (HPC) and high pressure turbine (HPT) can provide dramatic reductions in specific fuel consumption (SFC), time-on-wing, compressor stall margin, and engine efficiency as well as increased payload and mission range capabilities. Maintenance costs to overhaul large commercial gas turbine engines can easily exceed $1M. Engine removal from service is primarily due to spent exhaust gas temperature (EGT) margin caused mainly by the deterioration of HPT components. Increased blade tip clearance is a major factor in hot section component degradation. As engine designs continue to push the performance envelope with fewer parts and the market drives manufacturers to increase service life, the need for advanced sealing continues to grow. A review of aero gas turbine engine HPT performance degradation and the mechanisms that promote these losses are discussed. Benefits to the HPT due to improved clearance management are identified. Past and present sealing technologies are presented along with specifications for next generation engine clearance control systems.

  19. Proceedings of the Advanced Turbine Systems Annual Program Review meeting. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Goal of the 8-year program is to develop cleaner, more efficient, and less expensive gas turbine systems for utility and industrial electric power generation, cogeneration, and mechanical drive units. The conference is held annually for energy executives, engineers, scientists, and other interested parties industry, academia, and Government. Advanced turbine systems topics discussed during five technical sessions included policy and strategic issues, program element overviews and technical reviews, related activities, university/industry consortium interactions, and supportive projects. Twenty-one papers presented during the technical sessions are contained in this volume; they are processed separately for the data base.

  20. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...

  1. Applying Systems Engineering to Improve the Main Gas Turbine Exhaust System Maintenance Strategy for the CG-47 Ticonderoga Class Cruiser

    Science.gov (United States)

    2015-09-01

    national security and prosperity (U.S. Navy 2014). In perspective, oceans are the lifeblood of the planet and its entire population . The National...maintenance strategy, reliability-centered maintenance, cost, schedule, performance, growth -work, new-work, optimal fleet response plan, time-directed...76 5. Main Gas Turbine Exhaust System Growth -Work ..................77 E. RECOMMENDATIONS TO IMPROVE THE MAIN GAS TURBINE EXHAUST SYSTEM

  2. Optimal controller design of a doubly fed induction generator wind turbine system for small signal stability enhancement

    DEFF Research Database (Denmark)

    Yang, Lihui; Yang, Guang-Ya; Xu, Zhao

    2010-01-01

    Multi-objective optimal controller design of a doubly-fed induction generator (DFIG) wind turbine system using differential evolution (DE) is presented. A detailed mathematical model of DFIG wind turbine with a closed-loop vector control system is developed. Based on this, objective functions...... and the constraint with DE, respectively. Eigenvalue analysis and time-domain simulations are performed on a single machine infinite bus system as well as a nine-bus multi-machine system with two DFIG wind turbines to illustrate the control performance of the DFIG wind turbine with the optimised controller...... addressing the steady-state stability and dynamic performance at different operating conditions are implemented to optimise the controller parameters of both the rotor and grid-side converters. A superior 1-constraint method and method of adaptive penalties are applied to handle the multi-objective problem...

  3. Assessment of off-design performance of a small-scale combined cooling and power system using an alternative operating strategy for gas turbine

    International Nuclear Information System (INIS)

    Han, Wei; Chen, Qiang; Lin, Ru-mou; Jin, Hong-guang

    2015-01-01

    Highlights: • We develop an off-design model for a CCP system driven by gas turbine. • An alternative operating strategy is proposed to improve the system performance. • Off-design performance of the combined cooling and power system (CCP) is enhanced. • Effects of both the different operating strategy are analyzed and compared. • Performance enhancement mechanism of the proposed operating strategy is presented. - Abstract: A small-scale combined cooling and power (CCP) system usually serves district air conditioning apart from power generation purposes. The typical system consists of a gas turbine and an exhaust gas-fired absorption refrigerator. The surplus heat of the gas turbine is recovered to generate cooling energy. In this way, the CCP system has a high overall efficiency at the design point. However, the CCP system usually runs under off-design conditions because the users’ demand varies frequently. The operating strategy of the gas turbine will affect the thermodynamic performance of itself and the entire CCP system. The operating strategies for gas turbines include the reducing turbine inlet temperature (TIT) and the compressor inlet air throttling (IAT). A CCP system, consisting of an OPRA gas turbine and a double effects absorption refrigerator, is investigated to identify the effects of different operating strategies. The CCP system is simulated based on the partial-load model of gas turbine and absorption refrigerator. The off-design performance of the CCP system is compared under different operating strategies. The results show that the IAT strategy is the better one. At 50% rated power output of the gas turbine, the IAT operating strategy can increase overall system efficiency by 10% compared with the TIT strategy. In general, the IAT operating strategy is suited for other gas turbines. However, the benefits of IAT should be investigated in the future, when different gas turbine is adopted. This study may provide a new operating

  4. Maximum Wind Power Tracking of Doubly Fed Wind Turbine System Based on Adaptive Gain Second-Order Sliding Mode

    Directory of Open Access Journals (Sweden)

    Hongchang Sun

    2018-01-01

    Full Text Available This paper proposes an adaptive gain second-order sliding mode control strategy to track optimal electromagnetic torque and regulate reactive power of doubly fed wind turbine system. Firstly, wind turbine aerodynamic characteristics and doubly fed induction generator (DFIG modeling are presented. Then, electromagnetic torque error and reactive power error are chosen as sliding variables, and fixed gain super-twisting sliding mode control scheme is designed. Considering that uncertainty upper bound is unknown and is hard to be estimated in actual doubly fed wind turbine system, a gain scheduled law is proposed to compel control parameters variation according to uncertainty upper bound real-time. Adaptive gain second-order sliding mode rotor voltage control method is constructed in detail and finite time stability of doubly fed wind turbine control system is strictly proved. The superiority and robustness of the proposed control scheme are finally evaluated on a 1.5 MW DFIG wind turbine system.

  5. STUDY ON DISCHARGE HEAT UTILIZATION OF 250 MWe PCMSR TURBINE SYSTEM FOR DESALINATION USING MODIFIED MED

    Directory of Open Access Journals (Sweden)

    Andang Widiharto

    2015-03-01

    Full Text Available PCMSR (Passive Compact Molten Salt Reactor is one type of Advanced Nuclear Reactors. The PCMSR has benefit charasteristics of very efficient fuel use, high safety charecteristic as well as high thermodinamics efficiency. This is due to its breeding capability, inherently safe characteristic and totally passive safety system. The PCMSR design consists of three module, i.e. reactor module, turbine module and fuel management module. Analysis in performed by parametric calculation of the turbine system to calculate the turbine system efficiency and the hat available for desalination. After that the mass and energi balance of desalination process are calculated to calculate the amount of distillate produced and the amount of feed sea water needed. The turbine module is designed to be operated at maximum temperature cycle of 1373 K (1200 0C and minimum temperature cycle of 333 K (60 0K. The parametric calculation shows that the optimum turbine pressure ratio is 4.3 that gives the conversion efficiency of 56 % for 4 stages turbine and 4 stages compressor and equiped with recuperator. In this optimum condition, the 250 MWe PCMSR turbine system produces 196 MWth of waste heat with the temperature of cooling fluid in the range from 327 K (54 0C to 368 K (92 0C. This waste heat can be utilized for desalination. By using MMED desalination system, this waste heat can be used to produce fresh water (distillate from sea water feed. The amount of the destillate produced is 48663 ton per day by using 15 distillation effects. The performance ratio value is 2.8727 kg/MJ by using 15 distillation effects. Keywords: PCMSR, discharged heat, MMED desalination   PCMSR (Passive Compact Molten Salt Reactor merupakan salah satu tipe dari Reaktor Nuklir Maju. PCMSR memiliki keuntungan berupa penggunaan bahan bakar yang sangat efisisien, sifat keselamatan tinggi dan sekaligus efisiensi termodinamika yang tinggi. Hal ini disebabkan oleh kemampuan pembiakan bahan bakar, sifat

  6. Modeling the effects of control systems of wind turbine fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K.G.; Laino, D.J. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-12-31

    In this study we look at the effect on fatigue life of two types of control systems. First, we investigate the Micon 65, an upwind, three bladed turbine with a simple yaw control system. Results indicate that increased fatigue damage to the blade root can be attributed to continuous operation at significant yaw error allowed by the control system. Next, we model a two-bladed teetered rotor turbine using three different control systems to adjust flap deflections. The first two limit peak power output, the third limits peak power and cyclic power output over the entire range of operation. Results for simulations conducted both with and without active control are compared to determine how active control affects fatigue life. Improvement in fatigue lifetimes were seen for all control schemes, with increasing fatigue lifetime corresponding to increased flap deflection activity. 13 refs., 6 figs., 2 tabs.

  7. 3D Blade Vibration Measurements on an 80 m Diameter Wind Turbine by Using Non-contact Remote Measurement Systems

    Science.gov (United States)

    Ozbek, Muammer; Rixen, Daniel J.

    Non-contact optical measurement systems photogrammetry and laser interferometry are introduced as cost efficient alternatives to the conventional wind turbine/farm monitoring systems that are currently in use. The proposed techniques are proven to provide an accurate measurement of the dynamic behavior of a 2.5 MW—80 m diameter—wind turbine. Several measurements are taken on the test turbine by using 4 CCD cameras and 1 laser vibrometer and the response of the turbine is monitored from a distance of 220 m. The results of the infield tests and the corresponding analyses show that photogrammetry (also can be called as videogrammetry or computer vision technique) enable the 3D deformations of the rotor to be measured at 33 different points simultaneously with an average accuracy of ±25 mm, while the turbine is rotating. Several important turbine modes can also be extracted from the recorded data. Similarly, laser interferometry (used for the parked turbine only) provides very valuable information on the dynamic properties of the turbine structure. Twelve different turbine modes can be identified from the obtained response data.

  8. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  9. LQR Feedback Control Development for Wind Turbines Featuring a Digital Fluid Power Transmission System

    DEFF Research Database (Denmark)

    Pedersen, Niels Henrik; Johansen, Per; Andersen, Torben O.

    2016-01-01

    with a DFP motor, which has been combined with the NREL 5-MW reference wind turbine model. A classical variable speed control strategy for wind speeds below rated is proposed for the turbine, where the pump displacement is fixed and the digital motor displacement is varied for pressure control. The digital...... for such digital systems are complicated by its non-smooth behavior. In this paper a control design approach for a digital displacement machine® is proposed and a performance analysis of a wind turbine using a DFP transmission is presented. The performance evaluation is based on a dynamic model of the transmission...... invariant model. Using full-field flow wind profiles as input, the design approach and control performance is verified by simulation in the dynamic model of the wind turbine featuring the DFP transmission. Additionally, the performance is compared to that of the conventional NREL reference turbine...

  10. Performance analysis of a small regenerative gas turbine system adopting steam injection and side-wall in finned tube evaporator

    International Nuclear Information System (INIS)

    Kang, Soo Young; Lee, Jong Jun; Kim, Tong Seop

    2009-01-01

    Small gas turbines in power range of several MWs are quite suitable for application in distributed generation as well as Community Energy Systems (CES). Humidification is an effective way to improve gas turbine performance, and steam injection is the most general and practically feasible method. This study intended to examine the effect of steam injection on the performance of several MW class gas turbines. A primary concern is given to the regenerative cycle gas turbine. The steam injection effect on the performance of a system without the regenerator (i.e. a simple cycle) is also examined. In addition, the influence of bypass of some of the exhaust gas on the performance of the gas turbine, especially the regenerative cycle gas turbine, is evaluated.

  11. Linear Modeling and Regulation Quality Analysis for Hydro-Turbine Governing System with an Open Tailrace Channel

    Directory of Open Access Journals (Sweden)

    Jiandong Yang

    2015-10-01

    Full Text Available On the basis of the state–space method (SSM, a novel linear mathematical model of the unsteady flow for the tailrace system with an open channel is proposed. This novel model is an elastic linearized model of water hammer. The validity of the model has been verified by several examples of numerical simulation, which are based on a finite difference technique. Then, the complete mathematical model for the hydro-turbine governing system of hydropower station with an open tailrace channel, which is used for simulating the transient process of the hydro-turbine governing system under load disturbance, is established by combining the models of hydro-turbine, generator, governor and open tailrace channel. Finally, according to the complete model, the regulation quality for hydro-turbine governing system with an open tailrace channel under load disturbance is studied, and the effects of open tailrace channel and tailrace surge tank on regulation quality are analyzed. The results indicate that: The open tailrace channel has a strong influence on the regulation quality by observing the water level fluctuations in tailrace surge tank. The surge shows a piecewise periodical change along with the variation in the length of an open channel. The open tailrace channel can be used to improve the regulation quality of hydro-turbine governing system.

  12. Probability and containment of turbine missiles

    International Nuclear Information System (INIS)

    Yeh, G.C.K.

    1976-01-01

    With the trend toward ever larger power generating plants with large high-speed turbines, an important plant design consideration is the potential for and consequences of mechanical failure of turbine rotors. Such rotor failure could result in high-velocity disc fragments (turbine missiles) perforating the turbine casing and jeopardizing vital plant systems. The designer must first estimate the probability of any turbine missile damaging any safety-related plant component for his turbine and his plant arrangement. If the probability is not low enough to be acceptable to the regulatory agency, he must design a shield to contain the postulated turbine missiles. Alternatively, the shield could be designed to retard (to reduce the velocity of) the missiles such that they would not damage any vital plant system. In this paper, some of the presently available references that can be used to evaluate the probability, containment and retardation of turbine missiles are reviewed; various alternative methods are compared; and subjects for future research are recommended. (Auth.)

  13. Grid support capabilities of wind turbines

    DEFF Research Database (Denmark)

    Michalke, Gabriele; Hansen, Anca Daniela

    2013-01-01

    Wind power has gained a significant penetration level in several power systems all over the world. Due to this reason modern wind turbines are requested to contribute to power system support. Power system operators have thus introduced grid codes, which specify a set of requirements for wind...... turbines, such as fault ride-through and reactive power supply during voltage sags. To date different wind turbine concepts exist on the market comprising different control features in order to provide ancillary services to the power system. In the first place the present chapter emphasizes the most...... important issues related to wind power grid integration. Then different wind turbine concepts are characterized and their grid support capabilities are analysed and compared. Simulation cases are presented in which the respective wind turbine concepts are subjected to a voltage dip specified in a grid code....

  14. Thermodynamic analysis of a combined gas turbine, ORC cycle and absorption refrigeration for a CCHP system

    International Nuclear Information System (INIS)

    Mohammadi, Amin; Kasaeian, Alibakhsh; Pourfayaz, Fathollah; Ahmadi, Mohammad Hossein

    2017-01-01

    Highlights: • Thermodynamic analysis of a hybrid CCHP system. • Sensitivity analysis is performed on the most important parameters of the system. • Pressure ratio and gas turbine inlet temperature are the most effective parameters. - Abstract: Hybrid power systems are gained more attention due to their better performance and higher efficiency. Widespread use of these systems improves environmental situation as they reduce the amount of fossil fuel consumption. In this paper a hybrid system composed of a gas turbine, an ORC cycle and an absorption refrigeration cycle is proposed as a combined cooling, heating and power system for residential usage. Thermodynamic analysis is applied on the system. Also a parametric analysis is carried out to investigate the effect of different parameters on the system performance and output cooling, heating and power. The results show that under design conditions, the proposed plant can produce 30 kW power, 8 kW cooling and almost 7.2 ton hot water with an efficiency of 67.6%. Moreover, parametric analysis shows that pressure ratio and gas turbine inlet temperature are the most important and influential parameters. After these two, ORC turbine inlet temperature is the most effective parameter as it can change both net output power and energy efficiency of the system.

  15. Decision support for the definition of wind turbine systems adequacy to site specificities and weak electrical networks

    International Nuclear Information System (INIS)

    Arbaoui, A.

    2006-10-01

    A decision support system for the definition of wind turbine systems is developed by taking into account the wind and site characteristics, the wind turbine components and the electrical network properties close to the site. The approach is based on functional analysis, on the investigation of the functional fluxes and on the definition of a model suitable for supporting decision at the preliminary stages of wind turbine design. The complete set of solutions derived from the model is determined using a Constraint Satisfaction Problem solver. The intrinsic capability of the model to support decision is derived from the investigation of the model parsimony, precision, exactness and specialization. The model takes into account performance criteria resulting from knowledge of manufacturers, distributors and investors. These criteria are used to discriminate design alternatives. Design alternatives correspond to choices of site (wind, electric network) and wind turbine architectures (related to 7 design variables). Performance criteria are the cost of electric kWh, the amount of energy being produced and the discounted total cost of the project. Electric network connection to wind turbines is taken into account through slow variations of the voltage and Flickers phenomenon. First, the maximal rate of penetration of the wind turbine energy production is determined. Next, two design alternatives have been investigated to improve wind turbine system integration in electric distribution networks. These alternatives are a reactive power control system and an inertial energy storage system. Inertial storage systems seem to be more expensive than reactive power control systems for this type of application. The influence of site specificities on decision making process has been established through three different sites (a Mediterranean site and two sites located in northern Europe). Profits relative to the cost of kWh appear to be high for Mediterranean sites. Most of the

  16. Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.; van Dam, J.

    2010-11-01

    This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

  17. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  18. Background and system description of the Mod 1 wind turbine generator

    Science.gov (United States)

    Ernst, E. H.

    1978-01-01

    The Mod-1 wind turbine considered is a large utility-class machine, operating in the high wind regime, which has the potential for generation of utility grade power at costs competitive with other alternative energy sources. A Mod-1 wind turbine generator (WTG) description is presented, taking into account the two variable-pitch steel blades of the rotor, the drive train, power generation/control, the Nacelle structure, and the yaw drive. The major surface elements of the WTG are the ground enclosure, the back-up battery system, the step-up transformer, elements of the data system, cabling, area lighting, and tower foundation. The final system weight (rotor, Nacelle, and tower) is expected to be about 650,000 pounds. The WTG will be capable of delivering 1800 kW to the utility grid in a wind-speed above 25 mph.

  19. Results from Investigations of Torsional Vibration in Turbine Set Shaft Systems

    Science.gov (United States)

    Taradai, D. V.; Deomidova, Yu. A.; Zile, A. Z.; Tomashevskii, S. B.

    2018-01-01

    The article generalizes the results obtained from investigations of torsional vibration in the shaft system of the T-175/210-12.8 turbine set installed at the Omsk CHPP-5 combined heat and power plant. Three different experimental methods were used to determine the lowest natural frequencies of torsional vibration excited in the shaft system when the barring gear is switched into operation, when the generator is synchronized with the grid, and in response to unsteady disturbances caused by the grid and by the turbine control and steam admission system. It is pointed out that the experimental values of the lowest natural frequencies (to the fourth one inclusively) determined using three different methods were found to be almost completely identical with one another, even though the shaft system was stopped in the experiments carried out according to one method and the shaft system rotated at the nominal speed in those carried out according to two other methods. The need to further develop the experimental methods for determining the highest natural frequencies is substantiated. The values of decrements for the first, third, and fourth natural torsional vibration modes are obtained. A conclusion is drawn from a comparison between the calculated and experimental data on the shaft system's static twisting about the need to improve the mathematical models for calculating torsional vibration. The measurement procedure is described, and the specific features pertinent to the way in which torsional vibration manifests itself as a function of time and turbine set operating mode under the conditions of its long-term operation are considered. The fundamental measurement errors are analyzed, and their influence on the validity of measured parameters is evaluated. With an insignificant level of free and forced torsional vibrations set up under the normal conditions of turbine set and grid operation, it becomes possible to exclude this phenomenon from the list of main factors

  20. Pelton turbines

    CERN Document Server

    Zhang, Zhengji

    2016-01-01

    This book concerns the theoretical foundations of hydromechanics of Pelton turbines from the engineering viewpoint. For reference purposes, all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations. It is thus suitable for the development and design engineers as well as those working in the field of turbo machinery. Many laws described in the book can also be directly used to simplify aspects of computational fluid dynamics (CFD) or to develop new computational methods. The well-executed examples help better understand the related flow mechanics.

  1. Improvement of automatic control systems of high-power turbines of PAO tubroatom for nuclear power plants

    Science.gov (United States)

    Shvetsov, V. L.; Babaev, I. N.

    2017-09-01

    The main technical solutions applied by PAO Turboatom used as the compensatory measures at the increase of the period of nonstop operation of nuclear power plants' (NPP) turbines with VVER-1000 type reactors up to 18 months are (1) replacing the standard hydraulic speed controller with an electronic one, (2) introduction of overclocking protection, (3) modernization of units of stop-control valves of high pressures, (4) installation of locking dampers on the receiver tubes of turbines of the first and second modification, and (5) improving the quality of repairs by reviewing the requirements for their implementation. The introduction of complex diagnostics of a control system on the basis of automatic treatment of results of registration of working parameters of the turbine is allocated as a separate prospective direction. Using an electronic controller of speed makes it possible to simplify the procedure of its inclusion in work at the failure of an electro-hydraulic system of control and vice versa. The regimes of maintaining the turbine rotor speed, steam pressure on the outlet of turbine, and the positions of main servomotors were introduced into the functions of the electronic controller. An electronic controller of speed includes its own electro-hydraulic transducer, turbine rotor speed sensor, and sensors of the position of main servomotors. Into the functions of electro- hydraulic control system and electronic speed controller, the function of overclocking protection, which determines the formation of commands for stopping the turbine at the exceeding of both the defined level of rotation speed and the defined combination of achieved rotation speed and angular acceleration of rotor, was introduced. To simplify the correction of forces acting on the control valve cups, the design of the cups was changed, and it has the profiled inserts. The solutions proposed were implemented on K-1100-60/1500-2M turbines of Rostov NPP. From the composition of control system

  2. Novel Modified Elman Neural Network Control for PMSG System Based on Wind Turbine Emulator

    OpenAIRE

    Lin, Chih-Hong

    2013-01-01

    The novel modified Elman neural network (NN) controlled permanent magnet synchronous generator (PMSG) system, which is directly driven by a permanent magnet synchronous motor (PMSM) based on wind turbine emulator, is proposed to control output of rectifier (AC/DC power converter) and inverter (DC/AC power converter) in this study. First, a closed loop PMSM drive control based on wind turbine emulator is designed to generate power for the PMSG system according to different wind speeds. Then, t...

  3. Simulation of Small Wind Turbine Generation System Using Ring Winding Slotless PMSG by FEM

    OpenAIRE

    徳永, 翔平; 袈裟丸, 勝己; Tokunaga, Shohei; Kesamaru, Katsumi

    2011-01-01

    This paper describes a novel small wind turbine generation system with ring winding slotless PMSG. To reduce cogging torque, ring winding PM generator is used for a wind turbine generator. Using finite element analysis, the characteristics of slotless PMSGs are elucidated and the dynamic performance of the proposed system with MPPT control is represented. In this paper, the constant wind test and the quasi-natural wind test are conducted. The results of these tests indicate the proposed syste...

  4. Hybrid high solar share gas turbine systems with innovative gas turbine cycles

    OpenAIRE

    Puppe, Michael; Giuliano, Stefano; Buck, Reiner; Krüger, Michael; Lammel, Oliver; Boje, Sven; Saidi, Karim; Gampe, Uwe; Felsmann, Christian; Freimark, Manfred; Langnickel, Ulrich

    2015-01-01

    In this paper results from an ongoing research project (HYGATE) are presented, which is performed to reduce the levelized cost of electricity (LCOE) and to increase the CO2 reduction potential of the solar-hybrid gas turbine plant concept (SHGT). Key improvements are the integration of thermal energy storage and the reduction of the operating temperature of the gas turbine to 950°C. As a result the solar receiver can provide the necessary temperature for solar-only operation of the plant at d...

  5. Kongiganak Wind Turbine Replacement and System Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Boonstra, Patrick [Intelligent Energy Systems, Anchorage, AK (United States)

    2016-12-13

    The Native Village of Kongiganak, Alaska was awarded a grant to upgrade the braking systems on five wind turbines and upgrade the monitoring and data collection unit to insure that enough energy is available to power the utility. The project manager for this award is Intelligent Energy Systems, LLC located in Anchorage, Alaska. In addition to accomplishing these upgrades, it was the intent for a local wind tech crew to be trained in Kongiganak so that routine maintenance and future repairs will be made by local workers.

  6. Design of a hybrid battery charger system fed by a wind-turbine and photovoltaic power generators.

    Science.gov (United States)

    Chang Chien, Jia-Ren; Tseng, Kuo-Ching; Yan, Bo-Yi

    2011-03-01

    This paper is aimed to develop a digital signal processor (DSP) for controlling a solar cell and wind-turbine hybrid charging system. The DSP consists of solar cells, a wind turbine, a lead acid battery, and a buck-boost converter. The solar cells and wind turbine serve as the system's main power sources and the battery as an energy storage element. The output powers of solar cells and wind turbine have large fluctuations with the weather and climate conditions. These unstable powers can be adjusted by a buck-boost converter and thus the most suitable output powers can be obtained. This study designs a booster by using a dsPIC30F4011 digital signal controller as a core processor. The DSP is controlled by the perturbation and observation methods to obtain an effective energy circuit with a full 100 W charging system. Also, this DSP can, day and night, be easily controlled and charged by a simple program, which can change the state of the system to reach a flexible application based on the reading weather conditions.

  7. Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant

    International Nuclear Information System (INIS)

    Chacartegui, R.; Jimenez-Espadafor, F.; Sanchez, D.; Sanchez, T.

    2008-01-01

    In this work, combustion turbine inlet air cooling (CTIAC) systems are analyzed from an economic outlook, their effects on the global performance parameters and the economic results of the power plant. The study has been carried out on a combined cogeneration system, composed of a General Electric PG 6541 gas turbine and a heat recovery steam generator. The work has been divided into three parts. First, a revision of the present CTIAC technologies is shown, their effects on power plant performance and evaluation of the associated investment and maintenance costs. In a second phase of the work, the cogeneration plant was modelled with the objective of evaluating the power increase and the effects on the generated steam and the thermal oil. The cogeneration power plant model was developed, departing from the recorded operational data of the plant in 2005 and the gas turbine model offered by General Electric, to take into consideration that, in 2000, the gas turbine had been remodelled and the original performance curves should be corrected. The final objective of this model was to express the power plant main variables as a function of the gas turbine intake temperature, pressure and relative humidity. Finally, this model was applied to analyze the economic interest of different intake cooling systems, in different operative ranges and with different cooling capacities

  8. Dynamic modeling and simulation of wind turbines

    International Nuclear Information System (INIS)

    Ghafari Seadat, M.H.; Kheradmand Keysami, M.; Lari, H.R.

    2002-01-01

    Using wind energy for generating electricity in wind turbines is a good way for using renewable energies. It can also help to protect the environment. The main objective of this paper is dynamic modeling by energy method and simulation of a wind turbine aided by computer. In this paper, the equations of motion are extracted for simulating the system of wind turbine and then the behavior of the system become obvious by solving the equations. The turbine is considered with three blade rotor in wind direction, induced generator that is connected to the network and constant revolution for simulation of wind turbine. Every part of the wind turbine should be simulated for simulation of wind turbine. The main parts are blades, gearbox, shafts and generator

  9. Ultrasonic inspection method and system for detection of steeple cracking in turbine disk rims

    International Nuclear Information System (INIS)

    Birring, A.S.; Lamping, G.A.; Van der Veer, W.R.; Hanley, J.J.

    1990-01-01

    Steam turbine disks which operate under high cyclic stress in a moist environment can develop cracks in the disk-rim steeples. Detection of these cracks using nondestructive testing methods is necessary to assure safe operation and avoid unnecessary disk replacement. Both magnetic particle (MT) and ultrasonic testing (UT) can be used to inspect the steeples; however, UT can be used without removing the blades. A system for inspecting bladed steeples has been developed that can be applied on a range of disks including those in Westinghouse, General Electric, and Allis Chalmers turbines. The system performs an inspection as the turbine is rotated at slow speeds over turning rolls. This procedure greatly reduces inspection time because the inspection can be done without deblading the disk or resetting the inspection equipment for different rim segments

  10. Steam turbine power plant having improved testing method and system for turbine inlet valves associated with downstream inlet valves preferably having feedforward position managed control

    International Nuclear Information System (INIS)

    Lardi, F.; Ronnen, U.G.

    1981-01-01

    A throttle valve test system for a large steam turbine functions in a turbine control system to provide throttle and governor valve test operations. The control system operates with a valve management capability to provide for pre-test governor valve mode transfer when desired, and it automatically generates feedforward valve position demand signals during and after valve tests to satisfy test and load control requirements and to provide smooth transition from valve test status to normal single or sequential governor valve operation. A digital computer is included in the control system to provide control and test functions in the generation of the valve position demand signals

  11. Utility advanced turbine systems (ATS) technology readiness testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-15

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  12. Wind turbine spoiler

    Science.gov (United States)

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  13. Gas turbines: gas cleaning requirements for biomass-fired systems

    Directory of Open Access Journals (Sweden)

    Oakey John

    2004-01-01

    Full Text Available Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenges facing these technologies if they are to be cost competitive while delivering the supposed environmental benefits. In particular, it focuses on the use of biomass in gasification-based systems using gas turbines to deliver increased efficiencies. Results from recent studies in a European programme are presented. For these technologies to be successful, an optimal balance has to be achieved between the high cost of cleaning fuel gases, the reliability of the gas turbine and the fuel flexibility of the overall system. Such optimisation is necessary on a case-by-case basis, as local considerations can play a significant part.

  14. Output-only modal analysis of linear time-periodic systems with application to wind turbine simulation data

    DEFF Research Database (Denmark)

    Allen, Matthew S.; Sracic, Michael W.; Chauhan, Shashank

    2011-01-01

    to interrogate simulated measurements from a rotating wind turbine. The measurements were simulated for a 5 MW turbine modeled in the HAWC2 simulation code, which includes both structural dynamic and aerodynamic effects. This simulated system identification provides insights into the test and measurement......Many important systems, such as wind turbines, helicopters and turbomachinery, must be modeled with linear time-periodic equations of motion to correctly predict resonance phenomena. Time periodic effects in wind turbines might arise due to blade-to-blade manufacturing variations, stratification...... in the velocity of the wind with height and changes in the aerodynamics of the blades as they pass the tower. These effects may cause parametric resonance or other unexpected phenomena, so it is important to properly characterize them so that these machines can be designed to achieve high reliability, safety...

  15. Lightning Attachment Estimation to Wind Turbines by Utilizing Lightning Location Systems

    DEFF Research Database (Denmark)

    Vogel, Stephan; Holbøll, Joachim; Lopez, Javier

    2016-01-01

    three different wind power plant locations are analyzed and the impact of varying data qualities is evaluated regarding the ability to detect upward lightning. This work provides a variety of background information which is relevant to the exposure assessment of wind turbine and includes practical......The goal of a lightning exposure assessment is to identify the number, type and characteristics of lightning discharges to a certain structure. There are various Lightning Location System (LLS) technologies available, each of them are characterized by individual performance characteristics....... In this work, these technologies are reviewed and evaluated in order to obtain an estimation of which technologies are eligible to perform a lightning assessment to wind turbines. The results indicate that ground-based mid-range low frequency (LF) LLS systems are most qualified since they combine a wide...

  16. Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Chunghun [Hanyang University; Chung, Chung Choo [Hanyang University

    2017-11-13

    This paper proposes a coordinated control of wind turbine and energy storage system (ESS). Because wind power (WP) is highly dependent on variable wind speed and could induce a severe stability problem to power system especially when the WP has high penetration level. To solve this problem, many power generation corporations or grid operators recently use the ESS. It has very quick response and good performance for reducing the impact of WP fluctuation but has high cost for its installation. Therefore, it is very important to design the control algorithm considering both ESS capacity and grid reliability. Thus, we propose the control algorithm to mitigate the WP fluctuation by using the coordinated control between wind turbine and ESS considering ESS state of charge (SoC) and the WP fluctuation. From deloaded control according to WP fluctuation and ESS SoC management, we can expect the ESS lifespan expansion and improved grid reliability. The effectiveness of the proposed method is validated in MATLAB/Simulink considering power system including both wind turbine generator and conventional generators which react to system frequency deviation.

  17. A Novel Degradation Identification Method for Wind Turbine Pitch System

    Science.gov (United States)

    Guo, Hui-Dong

    2018-04-01

    It’s difficult for traditional threshold value method to identify degradation of operating equipment accurately. An novel degradation evaluation method suitable for wind turbine condition maintenance strategy implementation was proposed in this paper. Based on the analysis of typical variable-speed pitch-to-feather control principle and monitoring parameters for pitch system, a multi input multi output (MIMO) regression model was applied to pitch system, where wind speed, power generation regarding as input parameters, wheel rotation speed, pitch angle and motor driving currency for three blades as output parameters. Then, the difference between the on-line measurement and the calculated value from the MIMO regression model applying least square support vector machines (LSSVM) method was defined as the Observed Vector of the system. The Gaussian mixture model (GMM) was applied to fitting the distribution of the multi dimension Observed Vectors. Applying the model established, the Degradation Index was calculated using the SCADA data of a wind turbine damaged its pitch bearing retainer and rolling body, which illustrated the feasibility of the provided method.

  18. Development of environmentally advanced hydropower turbine system design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  19. Development of environmentally advanced hydropower turbine system design concepts

    International Nuclear Information System (INIS)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr.

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower''s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable

  20. Lifting system and apparatus for constructing wind turbine towers

    Science.gov (United States)

    Livingston, Tracy; Schrader, Terry; Goldhardt, James; Lott, James

    2011-02-01

    The disclosed invention is utilized for mounting a wind turbine and blade assembly on the upper end of a wind turbine tower. The invention generally includes a frame or truss that is pivotally secured to the top bay assembly of the tower. A transverse beam is connected to the frame or truss and extends fore of the tower when the frame or truss is in a first position and generally above the tower when in a second position. When in the first position, a wind turbine or blade assembly can be hoisted to the top of the tower. The wind turbine or blade assembly is then moved into position for mounting to the tower as the frame or truss is pivoted to a second position. When the turbine and blade assembly are secured to the tower, the frame or truss is disconnected from the tower and lowered to the ground.

  1. Failure database and tools for wind turbine availability and reliability analyses. The application of reliability data for selected wind turbines

    DEFF Research Database (Denmark)

    Kozine, Igor; Christensen, P.; Winther-Jensen, M.

    2000-01-01

    The objective of this project was to develop and establish a database for collecting reliability and reliability-related data, for assessing the reliability of wind turbine components and subsystems and wind turbines as a whole, as well as for assessingwind turbine availability while ranking the ...... similar safety systems. The database was established with Microsoft Access DatabaseManagement System, the software for reliability and availability assessments was created with Visual Basic....... the contributions at both the component and system levels. The project resulted in a software package combining a failure database with programs for predicting WTB availability and the reliability of all thecomponents and systems, especially the safety system. The report consists of a description of the theoretical......The objective of this project was to develop and establish a database for collecting reliability and reliability-related data, for assessing the reliability of wind turbine components and subsystems and wind turbines as a whole, as well as for assessingwind turbine availability while ranking...

  2. Note on: Considering the Case for Biodiversity Cycles: Reexamining the Evidence for Periodicity in the Fossil Record, by Lieberman and Melott, arXiv preprint 0704.2896

    OpenAIRE

    Omerbashich, M.

    2007-01-01

    Lieberman and Melott built their recent arXiv preprint 0704.2896 on my published paper and (a preprint of) a subsequent comment by Liebermans associate Cornette. But had this group waited for the Cornette comment to actually appear in print together with the expected Reply, they would have learned that his comment exposes Cornettes confusion that likely was due to journal misprint of my figure. Thus 0704.2896 is baseless. Despite receiving the extended Reply with Errata, these authors still f...

  3. Lightning protection of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, T; Brask, M H [DEFU (Denmark); Jensen, F V; Raben, N [SEAS (Denmark); Saxov, J [Nordjyllandsvaerket (Denmark); Nielsen, L [Vestkraft (Denmark); Soerensen, P E [Risoe National Lab. (Denmark)

    1999-03-01

    Lightning damage to wind turbines is a serious problem for Danish power companies, who have experienced some cases with very costly lightning damage and a large number of cases with minor damage. The most costly cases include one catastrophic damage to an entire wind turbine, and several cases of destruction of blades, main bearings, generators and control systems. Over the years there have been several hundreds of cases with minor damage - typically damage and interruptions of the control and communication systems, or the power systems. The Danish power companies anticipate that the lightning threat will be even bigger for the large off-shore wind turbine installations that are currently being planned in Denmark. Furthermore, it is known from the off-shore wind turbines at Vindeby in Denmark that the costs of inspection and particularly repair work must be expected to be much higher off-shore as compared to wind turbines on land. These considerations was the background for a two year project concerned with investigation of lighting damages and with the formulation of a DEFU Recommendation for lightning protection of wind turbines, which was published in January 1999. The project was funded by the Danish power companies Elsam, Eltra, Elkraft and by DEFU. (au)

  4. Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly progress report, December 1, 1995--February 29, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This report describes the overall program status of the General Electric Advanced Gas Turbine Development program, and reports progress on three main task areas. The program is focused on two specific products: (1) a 70-MW class industrial gas turbine based on the GE90 core technology, utilizing a new air cooling methodology; and (2) a 200-MW class utility gas turbine based on an advanced GE heavy-duty machine, utilizing advanced cooling and enhancement in component efficiency. The emphasis for the industrial system is placed on cycle design and low emission combustion. For the utility system, the focus is on developing a technology base for advanced turbine cooling while achieving low emission combustion. The three tasks included in this progress report are on: conversion to a coal-fueled advanced turbine system, integrated program plan, and design and test of critical components. 13 figs., 1 tab.

  5. Analysis of load reduction possibilities using a hydraulic soft yaw system for a 5-MW turbine and its sensitivity to yaw-bearing friction

    DEFF Research Database (Denmark)

    Stubkier, S.; Pedersen, H. C.; Jonkman, J. M.

    2014-01-01

    With the increasing size of wind turbines and with increasing lifetime demands, new methods for load reduction in the turbines need to be examined. One method is to make the yaw system of the turbine flexible, thereby dampening the loads to the system. This paper presents a hydraulic soft yaw...... concept and investigates the effect this has on critical loads in the turbine. To analyze the system, a novel friction model is developed and implemented for the yaw system using the NREL 5-MW turbine in the aerodynamic code FAST. Based on this model, the influence of friction is investigated...

  6. Fuel Flexible Turbine System (FFTS) Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-12-31

    In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone's lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector

  7. Gas turbine exhaust system silencing design

    International Nuclear Information System (INIS)

    Ozgur, D.

    1991-01-01

    Gas turbines are the preferred prime mover in many applications because of their high efficiency, fuel flexibility, and low environmental impact. A typical mid-size machine might have a power rating of 80 MW, a flow of about 1000 kg/hr, and an exhaust temperature of over 500C. The most powerful single source of noise is generally the exhaust, which may generate over a kilowatt of acoustic energy. This paper reports that there are two important ways in which exhaust systems can radiate noise. The first is through the discharge of the exhaust duct, with the exhaust gas. Because of the large quantity of hot gas, the duct exit is always oriented vertically; it may be fairly high in the air in order to promote dispersion of the exhaust plume. This source is almost always attenuated by means of a silencer located somewhere in the ductwork. The second source of noise is often called breakout; it is the radiation of exhaust noise through the walls of the ducting. Breakout is most important for those sections of the exhaust duct which lie upstream of the silencer, where sound levels inside the ducting are highest. Both exhaust duct exit noise and breakout noise can be calculated from the sound power level of the gas turbine exhaust and the sound transmission loss (TL) of the silencer and ducting

  8. Fault ride-through capability of DFIG wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Anca D. [Risoe National Laboratory, Wind Energy Department, P.O. Box 49, DK-4000 Roskilde (Denmark); Michalke, Gabriele [Darmstadt University, Institute for Electrical Power Systems, Landgraf-Georg-Strasse 4, 64283 Darmstadt (Germany)

    2007-07-15

    This paper concentrates on the fault ride-through capability of doubly fed induction generator (DFIG) wind turbines. The main attention in the paper is, therefore, drawn to the control of the DFIG wind turbine and of its power converter and to the ability to protect itself without disconnection during grid faults. The paper provides also an overview on the interaction between variable-speed DFIG wind turbines and the power system subjected to disturbances, such as short circuit faults. The dynamic model of DFIG wind turbine includes models for both mechanical components as well as for all electrical components, controllers and for the protection device of DFIG necessary during grid faults. The viewpoint of the paper is to carry out different simulations to provide insight and understanding of the grid fault impact on both DFIG wind turbines and on the power system itself. The dynamic behaviour of DFIG wind turbines during grid faults is simulated and assessed by using a transmission power system generic model developed and delivered by the Danish Transmission System Operator Energinet.dk in the power system simulation toolbox PowerFactory DIgSILENT. The data for the wind turbines are not linked to a specific manufacturer, but are representative for the turbine and generator type used in variable-speed DFIG wind turbines with pitch control. (author)

  9. Evaluation of the DTBird video-system at the Smoela wind-power plant. Detection capabilities for capturing near-turbine avian behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Roel, May; Hamre, Oeyvind; Vang, Roald; Nygaard, Torgeir

    2012-07-01

    Collisions between birds and wind turbines can be a problem at wind-power plants both onshore and offshore, and the presence of endangered bird species or proximity to key functional bird areas can have major impact on the choice of site or location wind turbines. There is international consensus that one of the mail challenges in the development of measures to reduce bird collisions is the lack of good methods for assessment of the efficacy of inventions. In order to be better abe to assess the efficacy of mortality-reducing measures Statkraft wishes to find a system that can be operated under Norwegian conditions and that renders objective and quantitative information on collisions and near-flying birds. DTbird developed by Liquen Consultoria Ambiental S.L. is such a system, which is based on video-recording bird flights near turbines during the daylight period (light levels>200 lux). DTBird is a self-working system developed to detect flying birds and to take programmed actions (i.e. warming, dissuasion, collision registration, and turbine stop control) linked to real-time bird detection. This report evaluates how well the DTBird system is able to detect birds in the vicinity of a wind turbine, and assess to which extent it can be utilized to study near-turbine bird flight behaviour and possible deterrence. The evaluation was based on the video sequence recorded with the DTBird systems installed at turbine 21 and turbine 42 at the Smoela wind-power plant between March 2 2012 and September 30 2012, together with GPS telemetry data on white-tailed eagles and avian radar data. The average number of falsely triggered video sequences (false positive rate) was 1.2 per day, and during daytime the DTBird system recorded between 76% and 96% of all bird flights in the vicinity of the turbines. Visually estimated distances of recorded bird flights in the video sequences were in general assessed to be farther from the turbines com pared to the distance settings used within

  10. A Study of Stress Distribution in Layered and Gradient Tribological Coatings (Preprint)

    Science.gov (United States)

    2006-11-01

    FG) Ti/TiC coating design. On the top of the 440C stainless steel substrate, α-Ti is added as a bond layer with 50nm thickness to improve the... stainless steel substrate and the rigid spherical indenter was performed. Figure 5 (a) shows the normalized Hertzian point contact pressure distribution...AFRL-ML-WP-TP-2007-402 A STUDY OF STRESS DISTRIBUTION IN LAYERED AND GRADIENT TRIBOLOGICAL COATINGS (PREPRINT) Young Sup Kang, Shashi K

  11. Evaluating Tilt for Wind Farms: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Annoni, Jennifer; Scholbrock, Andrew; Churchfield, Matthew; Fleming, Paul

    2017-06-29

    The objective of this work is to demonstrate the feasibility of tilt in a wind plant. Tilt control, much like other wind plant control strategies, has the potential to improve the performance of a wind plant. Tilt control uses the tilt angle of the turbine to direct the wake above or below the downstream turbines. This paper presents a study of tilt in two- and threeturbine arrays. Specifically, the authors show that the power production of a two-turbine array can be increased by tilting turbines in a specific orientation. When adding more turbines, as is shown with the three-turbine array, the overall percentage of power gain increases. This outcome deviates from some of the results seen in typical wind plant control strategies. Finally, we discuss the impact this type of control strategy has on the aerodynamics in a wind plant. This analysis demonstrates that a good understanding of wake characteristics is necessary to improve the plant's performance. A tilt strategy such as the one presented in this paper may have implications for future control/optimization studies including optimization of hub heights in a wind plant and analysis of deep array effects.

  12. Wind turbine control and monitoring

    CERN Document Server

    Luo, Ningsu; Acho, Leonardo

    2014-01-01

    Maximizing reader insights into the latest technical developments and trends involving wind turbine control and monitoring, fault diagnosis, and wind power systems, 'Wind Turbine Control and Monitoring' presents an accessible and straightforward introduction to wind turbines, but also includes an in-depth analysis incorporating illustrations, tables and examples on how to use wind turbine modeling and simulation software.   Featuring analysis from leading experts and researchers in the field, the book provides new understanding, methodologies and algorithms of control and monitoring, comput

  13. Biomass combustion gas turbine CHP

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2002-07-01

    This report summarises the results of a project to develop a small scale biomass combustor generating system using a biomass combustor and a micro-gas turbine indirectly fired via a high temperature heat exchanger. Details are given of the specification of commercially available micro-turbines, the manufacture of a biomass converter, the development of a mathematical model to predict the compatibility of the combustor and the heat exchanger with various compressors and turbines, and the utilisation of waste heat for the turbine exhaust.

  14. Feasibility Study of a Simulation Driven Approach for Estimating Reliability of Wind Turbine Fluid Power Pitch Systems

    DEFF Research Database (Denmark)

    Liniger, Jesper; Pedersen, Henrik Clemmensen; N. Soltani, Mohsen

    2018-01-01

    Recent field data indicates that pitch systems account for a substantial part of a wind turbines down time. Reducing downtime means increasing the total amount of energy produced during its lifetime. Both electrical and fluid power pitch systems are employed with a roughly 50/50 distribution. Fluid...... power pitch systems generally show higher reliability and have been favored on larger offshore wind turbines. Still general issues such as leakage, contamination and electrical faults make current systems work sub-optimal. Current field data for wind turbines present overall pitch system reliability...... and the reliability of component groups (valves, accumulators, pumps etc.). However, the failure modes of the components and more importantly the root causes are not evident. The root causes and failure mode probabilities are central for changing current pitch system designs and operational concepts to increase...

  15. Modern technical diagnostic system for the main components of powerful turbine generator

    International Nuclear Information System (INIS)

    Ezovit, G.P.; Uglyarenko, V.P.; Burlaka, S.I.; Goroz, N.I.; Orinin, S.E.; Komaritsa, V.N.; Zav'yalov, D.N.; Mazurenko, O.A.

    2011-01-01

    The modern diagnostic system to monitor the technical state of a powerful turbine generator is considered. This system permits the detection of defects in its main components and cooling system at the early stage of their development, prevention of damage and, as a consequence, emergency shutdown of nuclear power units

  16. REGENERATIVE GAS TURBINES WITH DIVIDED EXPANSION

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Qvale, Einar Bjørn

    2004-01-01

    Recuperated gas turbines are currently drawing an increased attention due to the recent commercialization of micro gas turbines with recuperation. This system may reach a high efficiency even for the small units of less than 100 kW. In order to improve the economics of the plants, ways to improve...... their efficiency are always of interest. Recently, two independent studies have proposed recuperated gas turbines to be configured with the turbine expansion divided, in order to obtain higher efficiency. The idea is to operate the system with a gas generator and a power turbine, and use the gas from the gas...... divided expansion can be advantageous under certain circumstances. But, in order for todays micro gas turbines to be competitive, the thermodynamic efficiencies will have to be rather high. This requires that all component efficiencies including the recuperator effectiveness will have to be high...

  17. Power Electronics and Controls for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Chen, Zhe

    2010-01-01

    term) based energy sources to renewable energy sources. Another is to use power electronics to achieve high efficiency in power generation, transmission/distribution and utilization. This paper discuss trends of the most promising renewable energy sources, wind energy, which ,integrated with power...... electronics, is changing the future electrical infrastructure and also contributes steadily to non-carbon based electricity production. The paper’s focus is on the power electronics technologies used in wind turbine systems....

  18. A comparison of the heat and mechanical energy of a heat-pump wind turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Aybek, A.; Arslan, S.; Yildiz, E.; Atik, K. [University of Kahramanmaras (Turkey). Dept. of Agricultural Machinery

    2000-07-01

    While a variety of applications of wind energy have been studied in Turkey, no significant efforts have been made to utilize heat pumps for heat generation. The use of heat pumps in wind energy systems is worth considering because of the high efficiency of heat production. In this study, a directly coupled wind turbine-heat pump system was designed, constructed, and tested. Measurements determined the mechanical energy of the rotors of the wind turbine and the heat energy generated by the heat pump driven by the rotor shaft. Based on the comparisons between the power generated by the heat pump and the power of the Savonius rotors, it was found that the heat energy gained by the heat pump was four times greater than the mechanical energy obtained from the turbine. It was suggested that heat pumps could be efficiently used in wind energy systems. (Author)

  19. Wind Turbine and Wind Power Plant Modelling Aspects for Power System Stability Studies

    DEFF Research Database (Denmark)

    Altin, Müfit; Hansen, Anca Daniela; Göksu, Ömer

    2014-01-01

    Large amount of wind power installations introduce modeling challenges for power system operators at both the planning and operational stages of power systems. Depending on the scope of the study, the modeling details of the wind turbine or the wind power plant are required to be different. A wind...... turbine model which is developed for the short-term voltage stability studies can be inaccurate and sufficient for the frequency stability studies. Accordingly, a complete and detailed wind power plant model for every kind of study is not feasible in terms of the computational time and also...... and wind power plants are reviewed for power system stability studies. Important remarks of the models are presented by means of simulations to emphasize the impact of these modelling details on the power system....

  20. A progress report on DOE's advanced hydropower turbine systems program

    International Nuclear Information System (INIS)

    Sale, M.J.; Cada, G.F.; Rinehart, B.E.

    1997-01-01

    Recent hydropower research within the U.S. Department of Energy (DOE) has focused on the development of new turbine designs that can produce hydroelectricity without such adverse environmental affects as fish entrainment/impingement or degradation of water quality. In partnership with the hydropower industry, DOE's advanced turbine program issued a Request for Proposals for conceptual designs in October 1994. Two contracts were awarded for this initial program phase, work on which will be complete this year. A technical advisory committee with representatives from industry, regulatory agencies, and natural resource agencies was also formed to guide the DOE turbine research. The lack of quantitative biological performance criteria was identified by the committee as a critical knowledge gap. To fill this need, a new literature review was completed on the mechanisms of fish mortality during turbine passage (e.g., scrape/strike, shear, press change, etc.), ways that fish behavior affects their location and orientation in turbines, and how these turbine passage stresses can be measured. Thus year, new Laboratory tests will be conducted on fish response to shear, the least-well understood mechanism of stress. Additional testing of conceptual turbine designs depends on the level of federal funding for this program

  1. System for damping vibrations in a turbine

    Science.gov (United States)

    Roberts, III, Herbert Chidsey; Johnson, Curtis Alan; Taxacher, Glenn Curtis

    2015-11-24

    A system for damping vibrations in a turbine includes a first rotating blade having a first ceramic airfoil, a first ceramic platform connected to the first ceramic airfoil, and a first root connected to the first ceramic platform. A second rotating blade adjacent to the first rotating blade includes a second ceramic airfoil, a second ceramic platform connected to the second ceramic airfoil, and a second root connected to the second ceramic platform. A non-metallic platform damper has a first position in simultaneous contact with the first and second ceramic platforms.

  2. Modeling of a Cogeneration System with a Micro Gas Turbine Operating at Partial Load Conditions

    Directory of Open Access Journals (Sweden)

    José Carlos Dutra

    2017-06-01

    Full Text Available The integration of absorption chillers in micro-cogeneration systems based on micro-gas turbines can be useful as an appropriate strategy to increase the total system energy efficiency. Since it is an area intensive in technology, it is necessary to develop and use models of simulation, which can predict the behavior of the whole system and of each component individually, at different operating conditions. This work is part of a research project in high efficiency cogeneration systems, whose purpose at this stage is to model a micro-cogeneration system, which is composed of a micro gas turbine, Capstone C30, a compact cross flow finned tube heat exchanger and an absorption chiller. The entire model is composed of specifically interconnected models, developed and validated for each component. The simulation of the microturbine used a thermodynamic analytic model, which contains a procedure used to obtain the micro turbine characteristic performance curves, which is closed with the thermodynamic Brayton cycle model. In the cogeneration system discussed in this paper, the compact heat exchanger was used to heat thermal oil, which drives an absorption chiller. It was designed, characterized and installed in a cogeneration system installed at the Centre d'Innovació Tecnològica en Revalorització Energètica i Refrigeració, Universtat Rovira i Virgili. Its design led to the heat exchanger model, which was coupled with the micro turbine model. Presented in this work is a comparison between the data from the model and the experiments, demonstrating good agreement between both results.

  3. Pump as Turbine (PAT Design in Water Distribution Network by System Effectiveness

    Directory of Open Access Journals (Sweden)

    Oreste Fecarotta

    2013-08-01

    Full Text Available Water distribution networks face several problems related to leakages, where the pressure control strategy is a common practice for water loss management. Small-scale hydropower schemes, where pumps as turbines replace pressure reducing valves, can be considered an interesting technical solution, which ensures both economic convenience and system flexibility. Due to the water networks’ variable operating conditions, a new methodology to model the effectiveness of pumps as turbines was developed based on the efficiency and the mechanical reliability of the hydropower device and the flexibility of the plant. System effectiveness is proposed as the objective function in the optimization procedure and applied to a real system, enabling one to emphasize that the hydraulic regulation mode of the plant is better than the electric regulation mode for American Petroleum Industry (API manufacturing standards of pumps.

  4. A-10/TF34 Turbine Engine Monitoring System (TEMS)

    Science.gov (United States)

    Christopher, R. G.

    1981-01-01

    The hardware and software development of the A-10/TF34 turbine engine monitoring system (TEMS) is described. The operation and interfaces of the A-10/TF34 TEMS hardware are discussed with particular emphasis on function, capabilities, and limitations. The TEMS data types are defined and the various data acquisition modes are explained. Potential data products are also discussed.

  5. Accurate calibration of steam turbine speed control system and its influence on primary regulation at electric grid

    Energy Technology Data Exchange (ETDEWEB)

    Irrazabal Bohorquez, Washington Orlando; Barbosa, Joao Roberto [Technological Institute of Aeronautics (ITA/CTA), Sao Jose dos Campos, SP (Brazil). Center for Reference on Gas Turbine and Energy], E-mail: barbosa@ita.br

    2010-07-01

    In an interconnected electric system there are two very important parameters: the field voltage and the frequency system. The frequency system is very important for the primary regulation of the electric grid. Each turbomachine actuating as generator interconnected to the grid has an automatic speed regulator to keep the rotational speed and mechanical power of the prime machine operating at the set conditions and stable frequency. The electric grid is a dynamical system and in every moment the power units are exposed to several types of disturbances, which cause unbalance of the mechanical power developed by prime machine and the consumed electric power at the grid. The steam turbine speed control system controls the turbine speed to support the electric grid primary frequency at the same time it controls the frequency of the prime machine. Using a mathematical model for the speed control system, the transfer functions were calculated, as well as the proportionality constants of each element of the steam turbine automatic speed regulator. Among other parameters, the droop characteristic of steam turbine and the dynamic characteristics of the automatic speed regulator elements were calculated. Another important result was the determination of the behavior of the speed control when disturbances occur with the improvement of the calibration precision of the control system. (author)

  6. Preprints na comunicação científica da Física de Altas Energias: análise das submissões no repositório arXiv (2010-2015

    Directory of Open Access Journals (Sweden)

    Gonzalo Rubén Alvarez

    Full Text Available RESUMO A circulação de preprints na Física de Altas Energias (FAE remonta a mais de meio século, tendo como objetivos principais acelerar o processo de comunicação científica entre os pares e estimular o acesso livre à literatura especializada da área. O artigo analisa o conjunto de preprints submetidos às diferentes categorias FAE do repositório temático especializado arXiv no período 2010-2015 que foram posteriormente publicados em revistas peer review. Os indicadores bibliométricos demonstram a potencialidade dos preprints como canal precursor de difusão de resultados científicos visto que 70% das submissões foram em seguida absorvidas pelas principais revistas da FAE. Conclui que o êxito alcançado pelas iniciativas Open Access arXiv e INSPIRE-HEP favoreceu o intercâmbio de informações e conhecimentos entre os pesquisadores. O modelo proposto pela FAE pode incentivar cientistas de áreas com características similares a instalarem repositórios e bancos de dados de preprints para suas disciplinas com o intuito de fortalecer a comunicação das descobertas científicas.

  7. Thermodynamic analysis of solid oxide fuel cell gas turbine systems operating with various biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Patel, H.C.; Woudstra, T.; Aravind, P.V. [Process and Energy Laboratory, Delft University of Technology, Section Energy Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands)

    2012-12-15

    Solid oxide fuel cell-gas turbine (SOFC-GT) systems provide a thermodynamically high efficiency alternative for power generation from biofuels. In this study biofuels namely methane, ethanol, methanol, hydrogen, and ammonia are evaluated exergetically with respect to their performance at system level and in system components like heat exchangers, fuel cell, gas turbine, combustor, compressor, and the stack. Further, the fuel cell losses are investigated in detail with respect to their dependence on operating parameters such as fuel utilization, Nernst voltage, etc. as well as fuel specific parameters like heat effects. It is found that the heat effects play a major role in setting up the flows in the system and hence, power levels attained in individual components. The per pass fuel utilization dictates the efficiency of the fuel cell itself, but the system efficiency is not entirely dependent on fuel cell efficiency alone, but depends on the split between the fuel cell and gas turbine powers which in turn depends highly on the nature of the fuel and its chemistry. Counter intuitively it is found that with recycle, the fuel cell efficiency of methane is less than that of hydrogen but the system efficiency of methane is higher. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. International comparison of requirements for connection of wind turbines to power systems

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C. [Risoe National Lab., Roskilde (Denmark). Dept. of Wind Energy; Matevosyan, J.; Ackermann, T. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Electrical Engineering; Bolik, S. [Vestas Wind Systems A/S, Ringkoebing (Denmark)

    2005-07-01

    Power production from wind turbines has increased considerably during the last decade. Therefore today's wind turbines, which are typically set up in wind farms, have a significant influence on the operation of power systems. The efficient and secure operation of power systems is supported by grid codes, which are sets of requirements for all network users (suppliers, customers, etc.). In Europe, several transmission network operators have introduced special grid connection requirements for wind farms. These requirements are mainly based on existing grid codes, initially written for conventional power plants usually equipped with synchronous generators. This article presents a comparison of grid connection requirements for wind farms issued, or proposed as a draft, by transmission network operators in Denmark, Sweden, Germany, Scotland and Ireland. (author)

  9. System and method for online inspection of turbines using an optical tube with broadspectrum mirrors

    Science.gov (United States)

    Baleine, Erwan

    2015-12-22

    An optical inspection system for nondestructive internal visual inspection and non-contact infra-red (IR) temperature monitoring of an online, operating power generation turbine. The optical inspection system includes an optical tube having a viewing port, at least one reflective mirror or a mirror array having a reflectivity spectral range from 550 nm to 20 .mu.m, and capable of continuous operation at temperatures greater than 932 degrees Fahrenheit (500 degrees Celsius), and a transparent window with high transmission within the same spectral range mounted distal the viewing port. The same optical mirror array may be used to measure selectively surface temperature of metal turbine blades in the near IR range (approximately 1 .mu.m wavelength) and of thermal barrier coated turbine blades in the long IR range (approximately 10 .mu.m wavelength).

  10. Analysis of off-grid hybrid wind turbine/solar PV water pumping systems

    Science.gov (United States)

    While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic , wind-electric, diesel powered), very few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) a...

  11. System design and optimization study of axial flow turbine applied in ...

    Indian Academy of Sciences (India)

    between parameters of the turbine and flows, three different types of turbines with ... and the water are run through a multi-stage hydro-turbine for producing electricity. ... to optimize the runner blade shape of a tubular turbine. ..... Ranade V V, Perrard M, Le Sauze N, Xuereb C and Bertrand J 2001 Trailing vortices of Rushton ...

  12. Improved gravitational search algorithm for parameter identification of water turbine regulation system

    International Nuclear Information System (INIS)

    Chen, Zhihuan; Yuan, Xiaohui; Tian, Hao; Ji, Bin

    2014-01-01

    Highlights: • We propose an improved gravitational search algorithm (IGSA). • IGSA is applied to parameter identification of water turbine regulation system (WTRS). • WTRS is modeled by considering the impact of turbine speed on torque and water flow. • Weighted objective function strategy is applied to parameter identification of WTRS. - Abstract: Parameter identification of water turbine regulation system (WTRS) is crucial in precise modeling hydropower generating unit (HGU) and provides support for the adaptive control and stability analysis of power system. In this paper, an improved gravitational search algorithm (IGSA) is proposed and applied to solve the identification problem for WTRS system under load and no-load running conditions. This newly algorithm which is based on standard gravitational search algorithm (GSA) accelerates convergence speed with combination of the search strategy of particle swarm optimization and elastic-ball method. Chaotic mutation which is devised to stepping out the local optimal with a certain probability is also added into the algorithm to avoid premature. Furthermore, a new kind of model associated to the engineering practices is built and analyzed in the simulation tests. An illustrative example for parameter identification of WTRS is used to verify the feasibility and effectiveness of the proposed IGSA, as compared with standard GSA and particle swarm optimization in terms of parameter identification accuracy and convergence speed. The simulation results show that IGSA performs best for all identification indicators

  13. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A: Turbine Model

    Directory of Open Access Journals (Sweden)

    Andrea Meroni

    2016-04-01

    Full Text Available Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary turbine design model, the details of the validation and a sensitivity analysis on the main parameters, in order to minimize the number of decision variables in the subsequent turbine design optimization. Part B analyzes the application of the combined turbine and cycle designs on a selected case study, which was performed in order to show the advantages of the adopted methodology. Part A presents a one-dimensional turbine model and the results of the validation using two experimental test cases from literature. The first case is a subsonic turbine operated with air and investigated at the University of Hannover. The second case is a small, supersonic turbine operated with an organic fluid and investigated by Verneau. In the first case, the results of the turbine model are also compared to those obtained using computational fluid dynamics simulations. The results of the validation suggest that the model can predict values of efficiency within ± 1.3%-points, which is in agreement with the reliability of classic turbine loss models such as the Craig and Cox correlations used in the present study. Values similar to computational fluid dynamics simulations at the midspan were obtained in the first case of validation. Discrepancy below 12 % was obtained in the estimation of the flow velocities and turbine geometry. The values are considered to be within a

  14. Anomaly Detection in Gas Turbine Fuel Systems Using a Sequential Symbolic Method

    Directory of Open Access Journals (Sweden)

    Fei Li

    2017-05-01

    Full Text Available Anomaly detection plays a significant role in helping gas turbines run reliably and economically. Considering the collective anomalous data and both sensitivity and robustness of the anomaly detection model, a sequential symbolic anomaly detection method is proposed and applied to the gas turbine fuel system. A structural Finite State Machine is used to evaluate posterior probabilities of observing symbolic sequences and the most probable state sequences they may locate. Hence an estimation-based model and a decoding-based model are used to identify anomalies in two different ways. Experimental results indicate that both models have both ideal performance overall, but the estimation-based model has a strong robustness ability, whereas the decoding-based model has a strong accuracy ability, particularly in a certain range of sequence lengths. Therefore, the proposed method can facilitate well existing symbolic dynamic analysis- based anomaly detection methods, especially in the gas turbine domain.

  15. Modeling of Turbine Cycles Using a Neuro-Fuzzy Based Approach to Predict Turbine-Generator Output for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Yea-Kuang Chan

    2012-01-01

    Full Text Available Due to the very complex sets of component systems, interrelated thermodynamic processes and seasonal change in operating conditions, it is relatively difficult to find an accurate model for turbine cycle of nuclear power plants (NPPs. This paper deals with the modeling of turbine cycles to predict turbine-generator output using an adaptive neuro-fuzzy inference system (ANFIS for Unit 1 of the Kuosheng NPP in Taiwan. Plant operation data obtained from Kuosheng NPP between 2006 and 2011 were verified using a linear regression model with a 95% confidence interval. The key parameters of turbine cycle, including turbine throttle pressure, condenser backpressure, feedwater flow rate and final feedwater temperature are selected as inputs for the ANFIS based turbine cycle model. In addition, a thermodynamic turbine cycle model was developed using the commercial software PEPSE® to compare the performance of the ANFIS based turbine cycle model. The results show that the proposed ANFIS based turbine cycle model is capable of accurately estimating turbine-generator output and providing more reliable results than the PEPSE® based turbine cycle models. Moreover, test results show that the ANFIS performed better than the artificial neural network (ANN, which has also being tried to model the turbine cycle. The effectiveness of the proposed neuro-fuzzy based turbine cycle model was demonstrated using the actual operating data of Kuosheng NPP. Furthermore, the results also provide an alternative approach to evaluate the thermal performance of nuclear power plants.

  16. Dynamic Analysis of Wind Turbines Including Soil-Structure Interaction

    DEFF Research Database (Denmark)

    Harte, M.; Basu, B.; Nielsen, Søren R.K.

    2012-01-01

    This paper investigates the along-wind forced vibration response of an onshore wind turbine. The study includes the dynamic interaction effects between the foundation and the underlying soil, as softer soils can influence the dynamic response of wind turbines. A Multi-Degree-of-Freedom (MDOF......) horizontal axes onshore wind turbine model is developed for dynamic analysis using an Euler–Lagrangian approach. The model is comprised of a rotor blade system, a nacelle and a flexible tower connected to a foundation system using a substructuring approach. The rotor blade system consists of three rotating...... for displacement of the turbine system are obtained and the modal frequencies of the combined turbine-foundation system are estimated. Simulations are presented for the MDOF turbine structure subjected to wind loading for different soil stiffness conditions. Steady state and turbulent wind loading, developed using...

  17. Wind Turbine Contingency Control Through Generator De-Rating

    Science.gov (United States)

    Frost, Susan; Goebel, Kai; Balas, Mark

    2013-01-01

    Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  18. IEA Wind TCP Task 26: Impacts of Wind Turbine Technology on the System Value of Wind in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Riva, Alberto D [Ea Energy Analyses; Hethey, Janos [Ea Energy Analyses; Vitina, Aisma [Danish Energy Agency

    2018-05-01

    This report analyzes the impact of different land-based wind turbine designs on grid integration and related system value and cost. This topic has been studied in a number of previous publications, showing the potential benefits of wind turbine technologies that feature higher capacity factors. Building on the existing literature, this study aims to quantify the effects of different land-based wind turbine designs in the context of a projection of the European power system to 2030. This study contributes with insights on the quantitative effects in a likely European market setup, taking into account the effect of existing infrastructure on both existing conventional and renewable generation capacities. Furthermore, the market effects are put into perspective by comparing cost estimates for deploying different types of turbine design. Although the study focuses on Europe, similar considerations and results can be applied to other power systems with high wind penetration.

  19. Analysis of Turbine Load Rejection for APR1400 using SPACE

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Jin; Park, Chan Eok; Choi, Jong Ho; Lee, Gyu Cheon [KEPCO Engineering and Construction Co. Ltd., Deajeon (Korea, Republic of)

    2016-10-15

    Turbine Load Rejection event is one of the Performance Related Design Basis Event (PRDBE) that can be stabilized using plant control systems without any safety system actuation. The initiation of the event is turbine load rejection from 100% to 5% in 0.019 seconds. The NSSS control systems of APR1400 is composed of the Power Control System (PCS) and the Process-Component Control System (P-CCS). The PCS includes Reactor Regulating System (RRS), Reactor Power Cutback System (RPCS) and Digital Rod Control System (DRCS). The P-CCS includes the Pressurizer Pressure Control System (PPCS), the Pressurizer Level Control System (PLCS), the Feedwater Control System (FWCS) and the Steam Bypass Control System (SBCS). Turbine load rejection results in the increase of secondary pressure due to sudden blocking of steam flow to turbine. Then the Reactor Coolant System (RCS) cooling through steam generators is decreased rapidly and the RCS temperature will be increased. Turbine load rejection is a typical event to test NSSS control systems since it requires the automatic response of all major NSSS control systems. It is shown that the NSSS control systems of APR1400 have the capability to stabilize the plant without any safety system actuation for turbine load rejection event. This analysis results show that SPACE code has the capability to analyze the turbine load rejection event. However, further validation is necessary for other PRDBEs such as Two Main Feedwater Pumps Trip, Turbine Load Step Change and Turbine Load Ramp Down (5%/min) to verify the capability of SPACE for the full range of performance analyses.

  20. Analysis of Turbine Load Rejection for APR1400 using SPACE

    International Nuclear Information System (INIS)

    Kim, Sang Jin; Park, Chan Eok; Choi, Jong Ho; Lee, Gyu Cheon

    2016-01-01

    Turbine Load Rejection event is one of the Performance Related Design Basis Event (PRDBE) that can be stabilized using plant control systems without any safety system actuation. The initiation of the event is turbine load rejection from 100% to 5% in 0.019 seconds. The NSSS control systems of APR1400 is composed of the Power Control System (PCS) and the Process-Component Control System (P-CCS). The PCS includes Reactor Regulating System (RRS), Reactor Power Cutback System (RPCS) and Digital Rod Control System (DRCS). The P-CCS includes the Pressurizer Pressure Control System (PPCS), the Pressurizer Level Control System (PLCS), the Feedwater Control System (FWCS) and the Steam Bypass Control System (SBCS). Turbine load rejection results in the increase of secondary pressure due to sudden blocking of steam flow to turbine. Then the Reactor Coolant System (RCS) cooling through steam generators is decreased rapidly and the RCS temperature will be increased. Turbine load rejection is a typical event to test NSSS control systems since it requires the automatic response of all major NSSS control systems. It is shown that the NSSS control systems of APR1400 have the capability to stabilize the plant without any safety system actuation for turbine load rejection event. This analysis results show that SPACE code has the capability to analyze the turbine load rejection event. However, further validation is necessary for other PRDBEs such as Two Main Feedwater Pumps Trip, Turbine Load Step Change and Turbine Load Ramp Down (5%/min) to verify the capability of SPACE for the full range of performance analyses

  1. AFB/open cycle gas turbine conceptual design study

    Science.gov (United States)

    Dickinson, T. W.; Tashjian, R.

    1983-09-01

    Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.

  2. Microprocessor control of a wind turbine generator

    Science.gov (United States)

    Gnecco, A. J.; Whitehead, G. T.

    1978-01-01

    This paper describes a microprocessor based system used to control the unattended operation of a wind turbine generator. The turbine and its microcomputer system are fully described with special emphasis on the wide variety of tasks performed by the microprocessor for the safe and efficient operation of the turbine. The flexibility, cost and reliability of the microprocessor were major factors in its selection.

  3. Meritev izkoristka in nastavitev krmilnih parametrov kaplanove turbine z dolgim cevnim sistemom s primerjalno metodo: Measurement of relative turbine efficiency and adjustment of governing parameters on long penstock Kaplan turbine with comparative method:

    OpenAIRE

    Trebše, Andrej J.

    2004-01-01

    The paper deals with efficiency measurement of Kaplan turbine with relative method (index test) and adjustment of operating of runner and guide vane governing system. At certain longer penstocks the looses in conduit at turbineload operation change the net head. On basis of model test on Kaplan turbine and relative turbine efficiency measurement on prototype the turbine governing system was optimized in accordance with comparative method. Prispevek obravnava meritev izkoristka kaplanove tu...

  4. Report on the FY 1999 leading R and D of technology of the MGC (melt-growth composites) ultra-high efficiency turbine system; 1999 nendo MGC chokokoritsu turbine system gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of using MGC which maintain the strength even at high temperature and also have plastic deformability as power generation use gas turbine system structural member, a leading research is conducted from FY 1998 to FY 2000. Based on the results of the FY 1998 research, the following were conducted in FY 1999: study through the trial manufacturing test to obtain the material design guide related to the heightening of efficiency of MGC and improvement of production process technology of MGC; evaluation from various angles of the data needed to elucidate the mechanism to manifest high-temperature characteristics of MGC. Further, through the following, a draft was drawn up for the developmental plan on the MGC ultra-high efficiency turbine system technology: establishment of gas turbine cycle (secondary draft); definition of developmental targets in the full-scale R and D after the leading research; extraction of technical subjects and study of contents of the R and D. The 5-year R and D plan was able to be worked out by setting up an R and D target that the generating end efficiency is 38% at turbine inlet temperature of 1,700 degrees C. (NEDO)

  5. Effect of full converter wind turbines on inter-area oscillation of power systems

    DEFF Research Database (Denmark)

    Askari, Hanieh Hajizadeh; Hashemi Toghroljerdi, Seyedmostafa; Eriksson, Robert

    2015-01-01

    By increasing in the penetration level of wind turbines, the influence of these new added generation units on the power system oscillations specifically inter-area oscillations has to be thoroughly investigated. In this paper, the impact of increasing in the penetration of full rate converter wind...... turbines (FRC-WTs) on the inter-area oscillations of power system is examined. In order to have a comprehensive evaluation of the effects of FRC-WT on the inter-area oscillations, different scenarios associated with the wind power penetration levels, wind farm locations, strength of interconnection line......, and different operating conditions of synchronous generators are investigated. The synchronous generators, exciter systems and power system stabilizers (PSSs) as well as the FRC-WT grid-side converter and its related controllers are modelled in detail in Matlab in order to evaluate the effects of FRC...

  6. Neuron-Adaptive PID Based Speed Control of SCSG Wind Turbine System

    Directory of Open Access Journals (Sweden)

    Shan Zuo

    2014-01-01

    Full Text Available In searching for methods to increase the power capacity of wind power generation system, superconducting synchronous generator (SCSG has appeared to be an attractive candidate to develop large-scale wind turbine due to its high energy density and unprecedented advantages in weight and size. In this paper, a high-temperature superconducting technology based large-scale wind turbine is considered and its physical structure and characteristics are analyzed. A simple yet effective single neuron-adaptive PID control scheme with Delta learning mechanism is proposed for the speed control of SCSG based wind power system, in which the RBF neural network (NN is employed to estimate the uncertain but continuous functions. Compared with the conventional PID control method, the simulation results of the proposed approach show a better performance in tracking the wind speed and maintaining a stable tip-speed ratio, therefore, achieving the maximum wind energy utilization.

  7. Dynamic simulation for scram of high temperature gas-cooled reactor with indirect helium turbine cycle system

    International Nuclear Information System (INIS)

    Li Wenlong; Xie Heng

    2011-01-01

    A dynamic analysis code for this system was developed after the mathematical modeling and programming of important equipment of 10 MW High Temperature Gas Cooled Reactor Helium Turbine Power Generation (HTR-10GT), such as reactor core, heat exchanger and turbine-compressor system. A scram accident caused by a 0.1 $ reactivity injection at 5 second was simulated. The results show that the design emergency shutdown plan for this system is safe and reasonable and that the design of bypass valve has a large safety margin. (authors)

  8. Frequency Based Fault Detection in Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2014-01-01

    In order to obtain lower cost of energy for wind turbines fault detection and accommodation is important. Expensive condition monitoring systems are often used to monitor the condition of rotating and vibrating system parts. One example is the gearbox in a wind turbine. This system is operated...... in parallel to the control system, using different computers and additional often expensive sensors. In this paper a simple filter based algorithm is proposed to detect changes in a resonance frequency in a system, exemplified with faults resulting in changes in the resonance frequency in the wind turbine...... gearbox. Only the generator speed measurement which is available in even simple wind turbine control systems is used as input. Consequently this proposed scheme does not need additional sensors and computers for monitoring the condition of the wind gearbox. The scheme is evaluated on a wide-spread wind...

  9. Advanced IGCC/Hydrogen Gas Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    York, William [General Electric Company, Schenectady, NY (United States); Hughes, Michael [General Electric Company, Schenectady, NY (United States); Berry, Jonathan [General Electric Company, Schenectady, NY (United States); Russell, Tamara [General Electric Company, Schenectady, NY (United States); Lau, Y. C. [General Electric Company, Schenectady, NY (United States); Liu, Shan [General Electric Company, Schenectady, NY (United States); Arnett, Michael [General Electric Company, Schenectady, NY (United States); Peck, Arthur [General Electric Company, Schenectady, NY (United States); Tralshawala, Nilesh [General Electric Company, Schenectady, NY (United States); Weber, Joseph [General Electric Company, Schenectady, NY (United States); Benjamin, Marc [General Electric Company, Schenectady, NY (United States); Iduate, Michelle [General Electric Company, Schenectady, NY (United States); Kittleson, Jacob [General Electric Company, Schenectady, NY (United States); Garcia-Crespo, Andres [General Electric Company, Schenectady, NY (United States); Delvaux, John [General Electric Company, Schenectady, NY (United States); Casanova, Fernando [General Electric Company, Schenectady, NY (United States); Lacy, Ben [General Electric Company, Schenectady, NY (United States); Brzek, Brian [General Electric Company, Schenectady, NY (United States); Wolfe, Chris [General Electric Company, Schenectady, NY (United States); Palafox, Pepe [General Electric Company, Schenectady, NY (United States); Ding, Ben [General Electric Company, Schenectady, NY (United States); Badding, Bruce [General Electric Company, Schenectady, NY (United States); McDuffie, Dwayne [General Electric Company, Schenectady, NY (United States); Zemsky, Christine [General Electric Company, Schenectady, NY (United States)

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CC efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first

  10. Prototype bucket foundation for wind turbines

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    The first full scale prototype bucket foundation for wind turbines has been installed in October 2002 at Aalborg University offshore test facility in Frederikshavn, Denmark. The suction caisson and the wind turbine have been equipped with an online monitoring system, consisting of 15 accelerometers...... and a real-time data-acquisition system. The report concerns the in service performance of the wind turbine, with focus on estimation of the natural frequencies of the structure/foundation. The natural frequencies are initially estimated by means of experimental Output-only Modal analysis. The experimental...... estimates are then compared with numerical simulations of the suction caisson foundation and the wind turbine. The numerical model consists of a finite element section for the wind turbine tower and nacelle. The soil-structure interaction of the soil-foundation section is modelled by lumped-parameter models...

  11. Feasibility study of a hybrid wind turbine system – Integration with compressed air energy storage

    International Nuclear Information System (INIS)

    Sun, Hao; Luo, Xing; Wang, Jihong

    2015-01-01

    Highlights: • A new hybrid wind turbine system is proposed and feasibility study if conducted. • A complete mathematical model is developed and implemented in a software environment. • Multi-mode control strategy is investigated to ensure the system work smoothly and efficiently. • A prototype for implementing the proposed mechanism is built and tested as proof of the concept. • The proposed system is proved to be technically feasible with energy efficiency around 50%. - Abstract: Wind has been recognized as one of major realistic clean energy sources for power generation to meet the continuously increased energy demand and to achieve the carbon emission reduction targets. However, the utilisation of wind energy encounters an inevitable challenge resulting from the nature of wind intermittency. To address this, the paper presents the recent research work at Warwick on the feasibility study of a new hybrid system by integrating a wind turbine with compressed air energy storage. A mechanical transmission mechanism is designed and implemented for power integration within the hybrid system. A scroll expander is adopted to serve as an “air-machinery energy converter”, which can transmit additional driving power generalized from the stored compressed air to the turbine shaft for smoothing the wind power fluctuation. A mathematical model for the complete hybrid process is developed and the control strategy is investigated for corresponding cooperative operations. A prototype test rig for implementing the proposed mechanism is built for proof of the concept. From the simulated and experimental studies, the energy conversion efficiency analysis is conducted while the system experiences different operation conditions and modes. It is proved that the proposed hybrid wind turbine system is feasible technically

  12. Acceptance test guideline for steam turbine control systems. Anahmerichtlinie fuer Regel- und Steuereinrichtungen von Dampfturbinen

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The acceptances to be obtained during the first operational run, refer to measures proving the functional integrity of the turbine control system and assuring the compliance with the maximum allowable overspeed in case of lead changes or perturbations. The Guideline concerns essentially speed, power, and pressure controllers coupled to generators. It may be appropriately extended to steam turbines serving other purposes.

  13. Gas turbine

    International Nuclear Information System (INIS)

    Yang, Ok Ryong

    2004-01-01

    This book introduces gas turbine cycle explaining general thing of gas turbine, full gas turbine cycle, Ericson cycle and Brayton cycle, practical gas turbine cycle without pressure loss, multiaxial type gas turbine cycle and special gas turbine cycle, application of basic theory on a study on suction-cooling gas turbine cycle with turbo-refrigerating machine using the bleed air, and general performance characteristics of the suction-cooling gas turbine cycle combined with absorption-type refrigerating machine.

  14. Operation of a wind turbine-flywheel energy storage system under conditions of stochastic change of wind energy.

    Science.gov (United States)

    Tomczewski, Andrzej

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.

  15. The impact research of control modes in steam turbine control system (digital electric hydraulic to the low-frequency oscillation of grid

    Directory of Open Access Journals (Sweden)

    Yanghai Li

    2016-01-01

    Full Text Available Through the analysis of the control theory for steam turbine, the transfer function of the steam turbine control modes in the parallel operation was obtained. The frequency domain analysis indicated that different control modes of turbine control system have different influence on the damping characteristics of the power system. The comparative analysis shows the direction and the degree of the influence under the different oscillation frequency range. This can provide the theory for the suppression of the low-frequency oscillation from turbine side and has a guiding significance for the stability of power system. The results of simulation tests are consistent with the theoretic analysis.

  16. Doubly fed induction generator based wind turbine systems subject to recurring grid faults

    DEFF Research Database (Denmark)

    Chen, Wenjie; Blaabjerg, Frede; Zhu, Nan

    2014-01-01

    New grid codes demand the wind turbine systems to ride through recurring grid faults. In this paper, the performance of the Doubly Fed Induction Generator wind turbine system under recurring grid faults is analyzed. The stator natural flux produced by the voltage recovery after the first grid fault...... may be superposed on the stator natural flux produced by the second grid fault, and it may result in large current and voltage transient. The damping of the stator natural flux can be accelerated with a rotor natural current in its opposite direction after voltage recovery, but larger torque....... The performance of DFIG under recurring grid faults is verified by the simulation and experiments....

  17. Wind turbines and transmission systems for offshore wind projects in planning stage

    Energy Technology Data Exchange (ETDEWEB)

    Madariaga, Ander; Martin, Jose Luis; Martinez de Alegria, Inigo; Zamora, Inmaculada [University of the Basque Country (UPV/EHU), Bilbao (Spain). Engineering Faculty; Ceballos, Salvador [Parque Tecnologico de Bizkaia, Derio (Spain). Tecnalia Research and Innovation

    2012-07-01

    This paper reviews the current situation of the offshore wind turbines (OWTs) and the transmission systems (TSs) for offshore wind projects in the planning stage. Bearing in mind that offshore wind projects can last between seven and ten years from the first environmental studies to the commissioning, research engineers from companies and academia consider the solutions already available, but also to the new proposals expected to be ready in time for the project under consideration. Regarding the wind energy conversion systems (WECSs) installed in the OWTs, their main characteristics are reviewed considering turbines in the 4.1 to 10.0 MW range. Regarding the TSs, the current situation of point-to-point HVAC and HVDC links is presented, as well as some ideas related to future DC grids currently under study. (orig.)

  18. The virtual library in action: Collaborative international control of high-energy physics pre-print

    International Nuclear Information System (INIS)

    Kreitz, P.A.; Addis, L.; Galic, H.; Johnson, T.

    1996-02-01

    This paper will discuss how control of the grey literature in high-energy physics pre-prints developed through a collaborative effort of librarians and physicists. It will highlight the critical steps in the development process and describe one model of a rapidly evolving virtual library for high-energy physics information. In conclusion, this paper will extend this physics model to other areas of grey literature management

  19. Investigation of Self Yaw and its Potential using a Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2013-01-01

    The focus of the current paper is on a hydraulic soft yaw system, designed to reduce the loading of the turbine structure, by absorbing wind guest via the hydraulic system, but which also enables the system to be used as a self-aligning yaw system. The system is analyzed with basis in the NREL 5-MW...... turbine, modeled in FAST, in which a new robust method for implementing Coulomb friction is utilized. Based on this model and a model of the hydraulic system, the influence of friction and wind speed is investigated in relation to the possibility to use the system as a self-aligning yaw system. Similarly...... the behavior of the hydraulic system is analyzed and it is concluded that the hydraulic yaw system allows selfyaw under normal operating conditions for the turbine. Self-yaw control is possible in wind speeds above 12 m/s when yaw friction is kept below 1 MNm....

  20. Report on the achievements in fiscal 1998. Hydrogen utilizing international clean energy system technology (WE-NET). Subtask 8. Development of hydrogen combustion turbine (development of major components such as turbine blades and rotors); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 8. Suiso nensho turbine no kaihatsu (turbine yoku, rotor nado shuyo kosei kiki no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The present research and development is intended to establish the fundamental technologies required to develop a pilot plant, by investigating development of such major component devices as turbine blades and rotors in a hydrogen combustion turbine. In the turbine moving and stator blade cooling technology, it is intended to achieve the power plant efficiency of 60% (based on HHV) as established in the interim evaluation performed in fiscal 1996. Therefore, the necessary element tests, detailed blade design, and partial fabrication were moved forward on the three kinds of the selected blade cooling systems as the cooling systems that can deal with the steam temperature condition as high as 1,700 degrees C. Fiscal 1998 will execute the design and fabrication of test blades and testing devices for blade cooling evaluation tests to be performed at Tashiro Township in Akita Prefecture. At the same time, evaluation and selection will be made on the three kinds of the cooling blades. In the rotor cooling technology, for the purpose of analyzing the rolling-in phenomenon of steam in the main turbine flow, a method will be developed to analyze rotor disk cavity temperatures based on CFD, the basic sealing conditions based thereon will be discussed, and generalization will be made on the rotor cooling technology. (NEDO)

  1. Wind turbine technology principles and design

    CERN Document Server

    Adaramola, Muyiwa

    2014-01-01

    IntroductionPart I: AerodynamicsWind Turbine Blade Design; Peter J. Schubel and Richard J. CrossleyA Shrouded Wind Turbine Generating High Output Power with Wind-Lens Technology; Yuji Ohya and Takashi KarasudaniEcomoulding of Composite Wind Turbine Blades Using Green Manufacturing RTM Process; Brahim AttafAerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution; Travis J. Carrigan, Brian H. Dennis, Zhen X. Han, and Bo P. WangPart II: Generators and Gear Systems

  2. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  3. Dynamic Systems Analysis for Turbine Based Aero Propulsion Systems

    Science.gov (United States)

    Csank, Jeffrey T.

    2016-01-01

    The aircraft engine design process seeks to optimize the overall system-level performance, weight, and cost for a given concept. Steady-state simulations and data are used to identify trade-offs that should be balanced to optimize the system in a process known as systems analysis. These systems analysis simulations and data may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic systems analysis provides the capability for assessing the dynamic tradeoffs at an earlier stage of the engine design process. The dynamic systems analysis concept, developed tools, and potential benefit are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed to provide the user with an estimate of the closed-loop performance (response time) and operability (high pressure compressor surge margin) for a given engine design and set of control design requirements. TTECTrA along with engine deterioration information, can be used to develop a more generic relationship between performance and operability that can impact the engine design constraints and potentially lead to a more efficient engine.

  4. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

  5. Small Wind Turbine Technology Assessment

    International Nuclear Information System (INIS)

    Avia Aranda, F.; Cruz Cruz, I.

    1999-01-01

    The result of the study carried out under the scope of the ATYCA project Test Plant of Wind Systems for Isolated Applications, about the state of art of the small wind turbine technology (wind turbines with swept area smaller than 40 m 2 ) is presented. The study analyzes the collected information on 60 models of wind turbines from 23 manufacturers in the worldwide market. Data from Chinese manufacturers, that have a large participation in the total number of small wind turbines in operation, are not included, due to the unavailability of the technical information. (Author) 15 refs

  6. Nonlinear modeling and stability analysis of hydro-turbine governing system with sloping ceiling tailrace tunnel under load disturbance

    International Nuclear Information System (INIS)

    Guo, Wencheng; Yang, Jiandong; Wang, Mingjiang; Lai, Xu

    2015-01-01

    Highlights: • Novel nonlinear mathematical model of hydro-turbine governing system is proposed. • Hopf bifurcation analysis on the governing system is conducted. • Stability of the system under load disturbance is studied. • Influence of four factors on stability is analyzed. • Optimization methods of improving system stability are put forward. - Abstract: In order to overcome the problem of nonlinear dynamics of hydro-turbine governing system with sloping ceiling tailrace tunnel, which is caused by the interface movement of the free surface-pressurized flow in the tailrace tunnel, and the difficulty of analyzing the stability of system, this paper uses the Hopf bifurcation theory to study the stability of hydro-turbine governing system of hydropower station with sloping ceiling tailrace tunnel. Firstly, a novel and rational nonlinear mathematical model of the hydro-turbine governing system is proposed. This model contains the dynamic equation of pipeline system which can accurately describe the motion characteristics of the interface of free surface-pressurized flow in sloping ceiling tailrace tunnel. According to the nonlinear mathematical model, the existence and direction of Hopf bifurcation of the nonlinear dynamic system are analyzed. Furthermore, the algebraic criterion of the occurrence of Hopf bifurcation is derived. Then the stability domain and bifurcation diagram of hydro-turbine governing system are drawn by the algebraic criterion, and the characteristics of stability under different state parameters are investigated. Finally, the influence of step load value, ceiling slope angle and section form of tailrace tunnel and water depth at the interface in tailrace tunnel on stability are analyzed based on stable domain. The results indicate that: The Hopf bifurcation of hydro-turbine governing system with sloping ceiling tailrace tunnel is supercritical. The phase space trajectories of characteristic variables stabilize at the equilibrium points

  7. Design of water pumping system by wind turbine for using in coastal areas of Bangladesh

    Science.gov (United States)

    Alam, Muhammad Mahbubul; Tasnim, Tamanna; Doha, Umnia

    2017-06-01

    In this work, a theoretical analysis has been carried out to analyze the prospect of Wind Pumping System (WPS) for using in coastal areas of Bangladesh. Wind speed data of three coastal areas of Bangladesh-Kutubdia, Patenga and Sathkhira has been analyzed and an optimal wind turbine viable for this wind speed range has been designed using the simulation software Q-blade. The simulated turbine is then coupled with a rotodynamic pump. The output of the Wind Pumping System (WPS) for the three coastal areas has been studied.

  8. The Ontario hydro low pressure turbine disc inspection program automated ultrasonic inspection systems - an overview

    International Nuclear Information System (INIS)

    Huggins, J.W.; Chopcian, M.; Grabish, M.

    1990-01-01

    An overview of the Ontario Hydro Low Pressure Turbine Disc Inspection Program is presented. The ultrasonic inspection systems developed in-house to inspect low pressure turbine discs at Pickering and Bruce Nuclear Generating stations are described. Three aspects of the program are covered: PART I - Background to inspection program, disc cracking experience, and development of an in-house inspection capability: PART II - System development requirements; ultrasonic equipment, electromechanical subsystems and instrumentation console: PART III - Customized software for flaw detection, sizing, data acquisition/storage, advanced signal processing, reports, documentation and software based diagnostics

  9. Thermodynamic analysis of turbine blade cooling on the performance of gas turbine cycle

    International Nuclear Information System (INIS)

    Sarabchi, K.; Shokri, M.

    2002-01-01

    Turbine inlet temperature strongly affects gas turbine performance. Today blade cooling technologies facilitate the use of higher inlet temperatures. Of course blade cooling causes some thermodynamic penalties that destroys to some extent the positive effect of higher inlet temperatures. This research aims to model and evaluate the performance of gas turbine cycle with air cooled turbine. In this study internal and transpiration cooling methods has been investigated and the penalties as the result of gas flow friction, cooling air throttling, mixing of cooling air flow with hot gas flow, and irreversible heat transfer have been considered. In addition, it is attempted to consider any factor influencing actual conditions of system in the analysis. It is concluded that penalties due to blade cooling decrease as permissible temperature of the blade surface increases. Also it is observed that transpiration method leads to better performance of gas turbine comparing to internal cooling method

  10. C. F. Braun. Standard turbine island design, safety analysis report

    International Nuclear Information System (INIS)

    1974-01-01

    A standard turbine island used with a BWR is described. It consists of the turbine-generator; steam system; condensate storage, cleanup, and transfer systems; control and instrumentation; water treatment plant; make-up demineralizer; potable and waste water systems; and a compressed air system. The turbine-generator is a tandem-compound nuclear-type turbine with one double-flow high-pressure section and a six-flow low-pressure section in three double-flow low-pressure casings. The turbine is direct connected to an 1800 rpm synchronous a-c generator. A combined moisture separator and two-stage reheater is provided. The main steam system delivers the steam generated in a BWR to the main turbine stop valves. The condensate system maintains proper water inventory. Protective features prevent loss of the system due to electrical failure of a component and isolates faults to ensure continuity of a power supply from alternate sources. (U.S.)

  11. Planetary Load Sharing in Three-Point- Mounted Wind Turbine Gearboxes: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keller, Jonathan A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-15

    Wind turbine gearboxes do not achieve their expected design life. The cost of gearbox replacements and rebuilds and the downtime associated with these failures increase the cost of wind energy. In 2007, the U.S. Department of Energy established the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC). Its goals are to understand the root causes of premature gearbox failures and improve their reliability. To date, the GRC has focused on a 750-kW drivetrain with a three-stage, three-point-mounted gearbox. A nonproprietary version of the gearbox containing CRBs with C3 clearances in the planetary stage was customized. Two of these gearboxes, GB1 and GB2, were manufactured and then tested in the National Wind Technology Center's 2.5-MW dynamometer and in the field. Major GRC findings include the detrimental effect of rotor moments on planetary load sharing and predicted fatigue, and the risk of bearing sliding in low-torque conditions for three-point configuration drivetrains. Based on the knowledge gained from testing and analysis of the original design, the GRC gearbox was redesigned to improve its load-sharing characteristics and predicted fatigue. This new gearbox is named GB3. As shown in Figure 1, its key improvement is the incorporation of preloaded TRBs that support the planet carrier and planets. Roller loads can be optimized and bearing life maximized with a small preload [4]. These preloaded bearings, along with interference-fitted planet pins, improve alignments and load-sharing characteristics. A semi-integrated planet bearing design also increases capacity and eliminates outer race fretting. Romax Technology, with Powertrain Engineers and the Timken Company (Timken), completed the redesign. Timken manufactured and instrumented the planet gears and bearings. Brad Foote Gearing manufactured the other gearing and assembled the gearbox.

  12. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  13. The marriage of gas turbines and coal

    International Nuclear Information System (INIS)

    Bajura, R.A.; Webb, H.A.

    1991-01-01

    This paper reports on developing gas turbine systems that can use coal or a coal-based fuel ensures that the United States will have cost-effective environmentally sound options for supplying future power generation needs. Power generation systems that marry coal or a coal-based fuel to a gas turbine? Some matchmakers would consider this an unlikely marriage. Historically, most gas turbines have been operated only on premium fuels, primarily natural gas or distillate oil. The perceived problems from using coal or coal-based fuels in turbines are: Erosion and deposition: Coal ash particles in the hot combustion gases passing through the expander turbine could erode or deposit on the turbine blades. Corrosion: Coal combustion will release alkali compounds form the coal ash. Alkali in the hot gases passing through the expander turbine can cause corrosion of high-temperature metallic surfaces. Emissions: coal contains higher levels of ash, fuel-bound sulfur and nitrogen compounds, and trace contaminants than premium fuels. Meeting stringent environmental regulations for particulates, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and trace contaminants will be difficult. Economics: Coal-based systems are expensive to build. The difference in price between coal and premium fuels must be large enough to justify the higher capital cost

  14. Coordinated Frequency Control of Wind Turbines in Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Tarnowski, Germán Claudio

    The integration of large amounts of wind power in power systems presents huge challenges. In particular, with the increase of wind power generation, more regulation reserves would be necessary, the capability of the power system to offer conventional regulating power would be reduced...... particular views. These models were developed and verified during this work, basedaround a particular manufacturer’s wind turbine and on said isolated power system withwind power. The capability of variable speed wind turbines for providing Inertial Response is analysed. To perform this assessment, a control...... generation were studied considering a large share of wind power in the system. Results show the abilities of the architectures to manage the variability of the generated wind power, reducing the impact on the grid frequency and providing suitable frequency regulation service when required. The coordination...

  15. Testing Challenges of Maritime Safety and Security Systems-of-Systems

    NARCIS (Netherlands)

    Gonzalez, A.; Piel, E.; Gross, H.G.

    2008-01-01

    Preprint of paper published in: TAIC PART 2008: Testing: Academic & Industrial Conference, Practice and Research Techniques, 29-31 August 2008; doi:10.1109/TAIC-PART.2008.14 Maritime Safety and Security systems represent a novel kind of large-scale distributed component-based systems in which the

  16. Experimental study of air delivery into water-conveyance system of the radial-axial turbine

    Science.gov (United States)

    Maslennikova, Alexandra; Platonov, Dmitry; Minakov, Andrey; Dekterev, Dmitry

    2017-10-01

    The paper presents an experimental study of oscillatory response in the Francis turbine of hydraulic unit. The experiment was performed on large-scale hydrodynamic test-bench with impeller diameter of 0.3 m. The effect of air injection on the intensity of pressure pulsations was studied at the maximum pressure pulsations in the hydraulic unit. It was revealed that air delivery into the water-conveyance system of the turbine results in almost two-fold reduction of pressure pulsations.

  17. Some aspects on wind turbines monitoring. General considerations and loads on horizontal wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Cuerva, A.

    1996-12-01

    The concept Monitoring applied to the Wind Energy technology is similar to the definition used in other branches of Science or Engineering, this is knowing values of variables which have to do with a mechanic system, in our case a wind turbine. These mentioned parameters may have different relationships to our wind turbine; some of them come from the environment the machine is operating in, others, are a measure of how properly the machine is working, and finally, the rest are an assessment of the ``system`s health`` during its ``life``. In this chapter we will answer questions such as: What do we need to measure? Why is Monitoring mandatory (from the different points of view of people involved in this world)? How can we measure a wind turbine depending on our objectives (Technic, tools, guidance, recommendations, etc)? And finally What can we expect in the near future?. The author wants the reader to keep the idea in mind that Monitoring means the richest and most accurate knowledge on wind turbine`s operation (Its environment, performances of health). This is the first step that allows us to optimize the operation mode of the machine and improve it (design, manufacturing, even the used modeling tools). When there is so much money involved, this fact becomes a must. (Author)

  18. Effect of operating methods of wind turbine generator system on net power extraction under wind velocity fluctuations in fields

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Tetsuya; Yamaguchi, Kazuya; Hashizume, Takumi [Waseda Univ., Advanced Research Inst. for Science and Engineering, Tokyo (Japan); Outa, Eisuke [Waseda Univ., Mechanical Engineering Dept., Tokyo (Japan); Tanzawa, Yoshiaki [Nippon Inst. of Technology, Mechanical Engineering Dept., Saitama (Japan)

    1999-01-01

    The effect of how a wind turbine generator system is operated is discussed from the viewpoint of net power extraction with wind velocity fluctuation in relation to the scale and the dynamic behaviour of the system. On a wind turbine generator system consisting of a Darrieus-Savonius hybrid wind turbine, a load generator and a battery, we took up two operating methods: constant tip speed ratio operation for a stand-alone system (Scheme 1) and synchronous operation by connecting a grid (Scheme 2). With our simulation model, using the result of the net extracting power, we clarified that Scheme 1 is more effective than Scheme 2 for small-scale systems. Furthermore, in Scheme 1, the appropriate rated power output of the system under each wind condition can be confirmed. (Author)

  19. Evaluation of different turbine concepts for wind power

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Sandra; Bernhoff, Hans; Leijon, Mats [Swedish Centre for Renewable Electric Energy Conversion, Division for Electricity and Lightning Research, Box 534, 751 21 Uppsala (Sweden)

    2008-06-15

    Every year the number of installed wind power plants in the world increases. The horizontal axis wind turbine is the most common type of turbine but there exist other types. Here, three different wind turbines are considered; the horizontal axis wind turbine and two different concepts of vertical axis wind turbines; the Darrieus turbine and the H-rotor. This paper aims at making a comparative study of these three different wind turbines from the most important aspects including structural dynamics, control systems, maintenance, manufacturing and electrical equipment. A case study is presented where three different turbines are compared to each other. Furthermore, a study of blade areas for different turbines is presented. The vertical axis wind turbine appears to be advantageous to the horizontal axis wind turbine in several aspects. (author)

  20. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2017-01-01

    This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.

  1. Variable speed wind turbine generator system with current controlled voltage source inverter

    International Nuclear Information System (INIS)

    Muyeen, S.M.; Al-Durra, Ahmed; Tamura, J.

    2011-01-01

    highlights: → Current controlled voltage source inverter scheme for wind power application. → Low voltage ride through of wind farm. → Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  2. Variable speed wind turbine generator system with current controlled voltage source inverter

    Energy Technology Data Exchange (ETDEWEB)

    Muyeen, S.M., E-mail: muyeen0809@yahoo.co [Dept. of Electrical Engineering, Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Al-Durra, Ahmed [Dept. of Electrical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Tamura, J. [Dept. of EEE, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507 (Japan)

    2011-07-15

    highlights: {yields} Current controlled voltage source inverter scheme for wind power application. {yields} Low voltage ride through of wind farm. {yields} Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  3. Two stage turbine for rockets

    Science.gov (United States)

    Veres, Joseph P.

    1993-01-01

    The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The advanced turbine airfoils were designed and tested by Pratt & Whitney. The technology represented by this turbine is being developed for a turbopump to be used in an advanced upper stage rocket engine. The advanced engine will use a hydrogen expander cycle and achieve high performance through efficient combustion of hydrogen/oxygen propellants, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low mass flow rates and high operating pressures result in very small airfoil heights and diameters. The high efficiency and small size requirements present a challenging turbine design problem. The shrouded axial turbine blades are 50 percent reaction with a maximum thickness to chord ratio near 1. At 6 deg from the tangential direction, the nozzle and blade exit flow angles are well below the traditional design minimum limits. The blade turning angle of 160 deg also exceeds the maximum limits used in traditional turbine designs.

  4. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Larsen, P.

    1993-01-01

    Denmark has 3200 wind turbines with an installed maximum capacity of 418MW. The most important Danish research projects into wind turbine noise and the main results are listed. These date from 1983. Two comprehensive studies are currently in progress. The first is an analytical and empirical investigation of aerodynamic noise from wind turbine rotors and has so far dealt mainly with tip noise. The measurement method, using a hard board mounted microphone on the ground near the turbine, is described. Four different tip designs have been tested. Some examples of reference sound power level spectra for three of the designs are presented. During the past two years a computerbased data acquisition system has been used for real-time determination of sound power levels. The second study, which has just commenced, is on annoyance from wind turbine noise. It will include noise measurements, masking calculations and a social survey on the perceived nuisance. (UK)

  5. Deflector plants turbine aeration

    International Nuclear Information System (INIS)

    Miller, D.E.; Sheppard, A.R.; Widener, D.W.

    1991-01-01

    Water quality requirements have become a focal point in recent re-licensing of hydroelectric projects. The Federal Energy Regulatory Commission has significantly increased the relevance of license conditions to insure that turbine discharges meet state or other specific criteria for dissolved oxygen (D.O.). Due to naturally occurring depletion of D.O. at increased depths in large reservoirs, water withdrawn from this strata may result in unacceptably low levels of D.O. Different researchers have evaluated various methods of improving D.O. content in hydro turbine discharges, including; diffusers, weirs, oxygen injection, and variations of turbine venting. The authors describe an approach called deflector plate turbine aeration. This computer based, engineered approach allows systems to be evaluated, designed, and installed with predictable performance and costs. Many experts in this field now agree that, to the extent practical, turbine venting offers the most dependable, maintenance free, and cost effective solution to the low D.O. problem. The approach presented in this paper has resulted in proven results

  6. Comparative study of energy conversion system dedicated to a small wind turbine

    International Nuclear Information System (INIS)

    Mirecki, A.

    2005-01-01

    This study presents a comparison of architectures and strategies of energy management dedicated to VAWT turbines such as Savonius. A Maximum Power Point Tracking must be implemented in order to optimize the energetic behavior. A torque or a speed control, or an indirect control of the DC bus current is possible. In the fact that the wind turbine characteristic is unknown, an operational research based on fuzzy logic is proposed. Aiming to minimize the cost of the static conversion structure, simple structures (diode bridge inverter, associated with DC-DC chopper) are analyzed and compared with a system based on a PWM Voltage Source Inverter. A test bench has been realized in the meantime as a system simulation. Comparisons of the provided energy are made for different wind speeds allowing to evaluate the performance of each structure and of the control strategies. (author)

  7. Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.

    2007-01-01

    The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.

  8. Recent technology for nuclear steam turbine-generator units

    International Nuclear Information System (INIS)

    Moriya, Shin-ichi; Kuwashima, Hidesumi; Ueno, Takeshi; Ooi, Masao

    1988-01-01

    As the next nuclear power plants subsequent to the present 1,100 MWe plants, the technical development of ABWRs was completed, and the plan for constructing the actual plants is advanced. As for the steam turbine and generator facilities of 1,350 MWe output applied to these plants, the TC6F-52 type steam turbines using 52 in long blades, moisture separation heaters, butterfly type intermediate valves, feed heater drain pumping-up system and other new technologies for increasing the capacity and improving the thermal efficiency were adopted. In this paper, the outline of the main technologies of those and the state of examination when those are applied to the actual plants are described. As to the technical fields of the steam turbine system for ABWRs, the improvement of the total technologies of the plants was promoted, aiming at the good economical efficiency, reliability and thermal efficiency of the whole facilities, not only the main turbines. The basic specification of the steam turbine facilities for 50 Hz ABWR plants and the main new technologies applied to the turbines are shown. The development of 52 in long last stage blades, the development of the analysis program for the coupled vibration of the large rotor system, the development of moisture separation heaters, the turbine control system, condensate and feed water system, and the generators are described. (Kako, I.)

  9. Modeling of wind turbines with doubly fed generator system

    CERN Document Server

    Fortmann, Jens

    2014-01-01

    Jens Fortmann describes the deduction of models for the grid integration of variable speed wind turbines and the reactive power control design of wind plants. The modeling part is intended as background to understand the theory, capabilities and limitations of the generic doubly fed generator and full converter wind turbine models described in the IEC 61400-27-1 and as 2nd generation WECC models that are used as standard library models of wind turbines for grid simulation software. Focus of the reactive power control part is a deduction of the origin and theory behind the reactive current requ

  10. Development of New Micro Hydropower Turbine

    OpenAIRE

    Dousith, Phommachanh; Kurokawa, Junichi; Matsui, Jun; Choi, Young-Do

    2005-01-01

    There is a huge of available hydropower potential in the water supply system (WSS) that has been abandoned.Each time when we use a water faucet, the power of 10 to 80 watts is dissipated.In fact, this dissipated energy can be converted to useful energy by hydraulic turbine. Presently, there is not suitable turbine to use in WSS. Therefore, the new type turbine is needed to explore. In this study, Positive Displacement Turbine (PDT) is proposed. The main objective of this study is to develop n...

  11. System control model of a turbine for a BWR; Modelo del sistema de control de una turbina para un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vargas O, Y. [Universidad del Valle de Mexico, Campus Toluca, Av. Las Palmas No. 136, Col. San Jorge Pueblo Nuevo, 52140 Metepec, Estado de Mexico (Mexico); Amador G, R.; Ortiz V, J.; Castillo D, R.; Delfin L, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: rodolfo.amador@inin.gob.mx

    2009-10-15

    In this work is presented a design of a control system of a turbine for a nuclear power plant with a BWR like energy source. The model seeks to implement later on at thermal hydraulics code of better estimate RELAP/SCDAPSIM. The model is developed for control and protection of turbine, and the consequent protection to the BWR, considering that the turbine control could be employed for one or several turbines in series. The quality of present designs of control pattern of turbine it is that it considers the parameters more important in the operation of a turbine besides that is has incorporated at control the secondary parameters that will be activated originally as true when the turbine model is substituted by a model more detailed. The development of control model of a turbine will be good in short and medium term to realize analysis about the operation of turbine with different operation conditions, of vapor extraction specific steps of turbine to feed other equipment s, besides analyzing the separate effect and integrated effect. (Author)

  12. Detailed Transients Simulation of a Doubly Fed Induction Generator Wind Turbine System with the EMTP-Type OVNI Simulator

    OpenAIRE

    Lukić Armstrong, Mažana; R. Martí, José; Kundur, Prabha

    2017-01-01

    Doubly fed induction generator wind turbines are increasingly used in new wind turbine installations all over the world. Growing concerns about the impact of a large number of these generators on transient and voltage stability of power system networks has led engineers to revisit modelling and simulation practices used for system stability analyses. In this paper, the latest advancements in design of the general purpose power system simulator OVNI developed at the University o...

  13. Wind turbine remote control using Android devices

    Science.gov (United States)

    Rat, C. L.; Panoiu, M.

    2018-01-01

    This paper describes the remote control of a wind turbine system over the internet using an Android device, namely a tablet or a smartphone. The wind turbine workstation contains a LabVIEW program which monitors the entire wind turbine energy conversion system (WECS). The Android device connects to the LabVIEW application, working as a remote interface to the wind turbine. The communication between the devices needs to be secured because it takes place over the internet. Hence, the data are encrypted before being sent through the network. The scope was the design of remote control software capable of visualizing real-time wind turbine data through a secure connection. Since the WECS is fully automated and no full-time human operator exists, unattended access to the turbine workstation is needed. Therefore the device must not require any confirmation or permission from the computer operator in order to control it. Another condition is that Android application does not have any root requirements.

  14. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-04-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

  15. Monitoring fatigue loads on wind turbines using cycle counting data acquisition systems

    Energy Technology Data Exchange (ETDEWEB)

    Soeker, H; Seifert, H [Deutsches Windenergie-Institut (Germany); Fragoulis, A; Vionis, P; Foussekis, D [Center for Renewable Energy Sources (Greece); Dahlberg, J A; Poppen, M [The Aeronautical Research Institue of Sweden (Sweden)

    1996-09-01

    As in any industrial application, the duration of a wind turbine`s life is a key parameter for the evaluation of its economic potential. Assuming a service life of 20 years, components of the turbine have to withstand a number of load cycles of up to 10{sup 8}. Such numbers of load cycles impose high demands on the fatigue characteristics of both, the used materials and the design. Nevertheless, fatigue loading of wind turbine components still remains a parameter of high uncertainty in the design of wind turbines. The specific features of these fatigue loads can be expected to vary with the type of turbine and the site of operation. In order to ensure the reliability of the next generation of larger scale wind turbines improved load assumptions will be of vital importance. Within the scope of the presented research program DEWI, C.R.E.S. and FFA monitored fatigue loads of serial produced wind turbines by means of a monitoring method that uses on-line cycle counting techniques. The blade root bending moments of two pitch controlled, variable speed wind turbines operating in the Hamswehrum wind farm, and also that of a stall controlled, fixed speed wind turbine operating in CRES` complex terrain test site, were measured by DEWI and CRES. In parallel FFA used their database of time series measurements of blade root bending moments on a stall controlled, fixed speed turbine at Alsvik Windfarm in order to derive semi-empirical fatigue load data. The experience gained from application of the on-line measurement technique is discussed with respect to performance, data quality, reliability and cost effectiveness. Investigations on the effects of wind farm and complex terrain operation on the fatigue loads of wind turbine rotor blades are presented. (au)

  16. Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.

    Energy Technology Data Exchange (ETDEWEB)

    Walford, Christopher A. (Global Energy Concepts. Kirkland, WA)

    2006-03-01

    Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

  17. Modeling the Control Systems of Gas-Turbines to Ensure Their Reliable Parallel Operation in the UPS of Russia

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, A. Yu., E-mail: vinogradov-a@ntcees.ru; Gerasimov, A. S.; Kozlov, A. V.; Smirnov, A. N. [JSC “STC UPS” (Russian Federation)

    2016-05-15

    Consideration is given to different approaches to modeling the control systems of gas turbines as a component of CCPP and GTPP to ensure their reliable parallel operation in the UPS of Russia. The disadvantages of the approaches to the modeling of combined-cycle units in studying long-term electromechanical transients accompanied by power imbalance are pointed out. Examples are presented to support the use of more detailed models of gas turbines in electromechanical transient calculations. It is shown that the modern speed control systems of gas turbines in combination with relatively low equivalent inertia have a considerable effect on electromechanical transients, including those caused by disturbances not related to power imbalance.

  18. Economic analysis of condition monitoring systems for offshore wind turbine sub-systems

    DEFF Research Database (Denmark)

    May, Allan; MacMillan, David; Thöns, Sebastian

    2015-01-01

    The use of condition monitoring systems on offshore wind turbines has increased dramatically in recent times. However, their use is mostly restricted to vibration based monitoring systems for the gearbox, generator and drive train. A survey of commercially available condition monitoring systems...... year life cycle. The model uses Hidden Markov Models to represent both the actual system state and the observed condition monitoring state. The CM systems are modelled to include reduced failure types, false alarms, detection rates and 6 month failure warnings. The costs for system failures are derived...... and their associated costs has been completed for the blades, drive train, tower and foundation. This paper considers what value can be obtained from integrating these additional systems into the maintenance plan. This is achieved by running simulations on an operations and maintenance model for a wind farm over a 20...

  19. New guidelines for wind turbine gearboxes

    Energy Technology Data Exchange (ETDEWEB)

    McNiff, B. [McNiff Light Industry, Blue Hill, ME (United States); Errichello, R. [GEARTECH, Townsend, MT (United States)

    1997-12-31

    The American Gear Manufacturers Association in cooperation with the American Wind Energy Association will soon be publishing AGMA/AWEA 921-A97 {open_quotes}Recommended Practices for Design and Specification of Gearboxes for Wind Turbine Generator Systems.{close_quotes} Much has been learned about the unique operation and loading of gearboxes in wind turbine applications since the burgeoning of the modern wind turbine industry in the early 1980`s. AGMA/AWEA 921-A97 documents this experience in a manner that provides valuable information to assist gear manufacturers and wind turbine designers, operators, and manufacturers in developing reliable wind turbine gearboxes. The document provides information on procurement specification development, wind turbine architecture, environmental considerations, and gearbox load determination, as well as the design, manufacturing, quality assurance, lubrication, operation and maintenance of wind turbine gearboxes. This paper presents the salient parts of the practices recommended in AGMA/AWEA 921-A97.

  20. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    Science.gov (United States)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    The NASA-Lewis Research Center (LeRC) has conducted, and has sponsored with industry and universities, extensive research into many of the technology areas related to gas turbine propulsion systems. This aerospace-related technology has been developed at both the component and systems level, and may have significant potential for application to the automotive gas turbine engine. This paper summarizes this technology and lists the associated references. The technology areas are system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  1. Innovative multi rotor wind turbine designs

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)

    2012-07-01

    Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)

  2. WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor and Blade Logistics; TOPICAL

    International Nuclear Information System (INIS)

    Smith, K.

    2001-01-01

    Through the National Renewable Energy Laboratory (NREL), the United States Department of Energy (DOE) implemented the Wind Partnership for Advanced Component Technologies (WindPACT) program. This program will explore advanced technologies that may reduce the cost of energy (COE) from wind turbines. The initial step in the WindPACT program is a series of preliminary scaling studies intended to determine the optimum sizes for future turbines, help define sizing limits for certain critical technologies, and explore the potential for advanced technologies to contribute to reduced COE as turbine scales increase. This report documents the results of Technical Area 2-Turbine Rotor and Blade Logistics. For this report, we investigated the transportation, assembly, and crane logistics and costs associated with installation of a range of multi-megawatt-scale wind turbines. We focused on using currently available equipment, assembly techniques, and transportation system capabilities and limitations to hypothetically transport and install 50 wind turbines at a facility in south-central South Dakota

  3. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  4. SINGLE PHASE ANALYTICAL MODELS FOR TERRY TURBINE NOZZLE

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling; O' Brien, James

    2016-11-01

    All BWR RCIC (Reactor Core Isolation Cooling) systems and PWR AFW (Auxiliary Feed Water) systems use Terry turbine, which is composed of the wheel with turbine buckets and several groups of fixed nozzles and reversing chambers inside the turbine casing. The inlet steam is accelerated through the turbine nozzle and impacts on the wheel buckets, generating work to drive the RCIC pump. As part of the efforts to understand the unexpected “self-regulating” mode of the RCIC systems in Fukushima accidents and extend BWR RCIC and PWR AFW operational range and flexibility, mechanistic models for the Terry turbine, based on Sandia National Laboratories’ original work, has been developed and implemented in the RELAP-7 code to simulate the RCIC system. RELAP-7 is a new reactor system code currently under development with the funding support from U.S. Department of Energy. The RELAP-7 code is a fully implicit code and the preconditioned Jacobian-free Newton-Krylov (JFNK) method is used to solve the discretized nonlinear system. This paper presents a set of analytical models for simulating the flow through the Terry turbine nozzles when inlet fluid is pure steam. The implementation of the models into RELAP-7 will be briefly discussed. In the Sandia model, the turbine bucket inlet velocity is provided according to a reduced-order model, which was obtained from a large number of CFD simulations. In this work, we propose an alternative method, using an under-expanded jet model to obtain the velocity and thermodynamic conditions for the turbine bucket inlet. The models include both adiabatic expansion process inside the nozzle and free expansion process out of the nozzle to reach the ambient pressure. The combined models are able to predict the steam mass flow rate and supersonic velocity to the Terry turbine bucket entrance, which are the necessary input conditions for the Terry Turbine rotor model. The nozzle analytical models were validated with experimental data and

  5. System Reduction in Nonlinear Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.; Rubak, Rune

    2007-01-01

    In this paper the system reduction in nonlinear multibody dynamics of wind turbines is investigated for various updating schemes of the moving frame of reference. In one case, the moving frame of reference is updated to a stiff body, relative to which the elastic deformations are fixed at one end....... In the other case, the stiff body motion is defined as the chord line connecting the end points of the beam, and the elastic deformations are simply supported at the end points. The system reduction is performed by discretizing the spatial motion into a set of rigid body modes and linear elastic eigenmodes...

  6. Application of synthetic fire-resistant oils in oil systems of turbine equipment for NPPs

    Science.gov (United States)

    Galimova, L. A.

    2017-10-01

    Results of the investigation of the synthetic fire-resistant turbine oil Fyrquel-L state in oil systems of turbosets under their operation in the equipment and oil supply facilities of nuclear power plants (NPPs) are presented. On the basis of the analysis of the operating experience, it is established that, for reliable and safe operation of the turbine equipment, at which oil systems synthetic fire-resistant oils on the phosphoric acid esters basis are used, special attention should be paid to two main factors, namely, both the guarantee of the normalized oil water content under the operation and storage and temperature regime of the operation. Methods of the acid number maintenance and reduction are shown. Results of the analysis and investigation of influence of temperature and of the variation of the qualitative state of the synthetic fair-resistant oil on its water content are reported. It is shown that the fire-resistant turbine oils are characterized by high hydrophilicity, and, in distinction to the mineral turbine oils, are capable to contain a significant amount of dissolved water, which is not extracted under the use of separation technologies. It is shown that the more degradation products are contained in oil and higher acid number, the more amount of dissolved water it is capable to retain. It is demonstrated that the organization of chemical control of the total water content of fireresistant oils with the use of the coulometric method is an important element to support the reliable operation of oil systems. It is recommended to use automatic controls of water content for organization of daily monitoring of oil state in the oil system. Recommendations and measures for improvement of oil operation on the NPP, the water content control, the use of oil cleaning plants, and the oil transfer for storage during repair works are developed.

  7. Cogeneration steam turbines from Siemens: New solutions

    Science.gov (United States)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  8. Simulation model of nuclear power plant turbine

    International Nuclear Information System (INIS)

    Dutta, Anu; Thangamani, I.; Chakraborty, G.; Ghosh, A.K.

    2006-04-01

    A computer code TURDYN has been developed for prediction of HP and LP turbine torque under thermodynamic transient conditions. The model is based on the conservation laws of mass and energy. All the important components of turbine systems e.g. high pressure turbine, low pressure turbine, feed heaters, reheater, moisture separator have been considered. The details of the mathematical formulation of the model and open loop responses for specific disturbances are presented. (author)

  9. Frequency domain modeling and dynamic characteristics evaluation of existing wind turbine systems

    Science.gov (United States)

    Chiang, Chih-Hung; Yu, Chih-Peng

    2016-04-01

    It is quite well accepted that frequency domain procedures are suitable for the design and dynamic analysis of wind turbine structures, especially for floating offshore wind turbines, since random wind loads and wave induced motions are most likely simulated in the frequency domain. This paper presents specific applications of an effective frequency domain scheme to the linear analysis of wind turbine structures in which a 1-D spectral element was developed based on the axially-loaded member. The solution schemes are summarized for the spectral analyses of the tower, the blades, and the combined system with selected frequency-dependent coupling effect from foundation-structure interactions. Numerical examples demonstrate that the modal frequencies obtained using spectral-element models are in good agreement with those found in the literature. A 5-element mono-pile model results in less than 0.3% deviation from an existing 160-element model. It is preliminarily concluded that the proposed scheme is relatively efficient in performing quick verification for test data obtained from the on-site vibration measurement using the microwave interferometer.

  10. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  11. Experience in integration of on-line control systems for turbine plants at the Ignalina and Zaporozhe NPPs

    International Nuclear Information System (INIS)

    Gapunin, A.Ya.; Guchshin, V.I.; Kozlov, N.Yu.; Kravtsov, V.F.; Rasskazov, I.Eh.; Fridman, P.Yu.

    1989-01-01

    The main stages of designing and improvement of turbine on-line control systems (TOCS) are considered. TOCS is mainly designed for the optimization of NPP equipment operation modes taking into account power system requirements, as well as reactor and steam generator capabilities. TOCS of the Ignalina (K750-65/1300 turbine) and Zaporozhe (K1000-60/1500-2) NPPs are the systems of the third generation and are produced in the form of decentralized complex of software and hardware on the basis of the Ehlektronika S5-2200 computer. 3 refs.; 2 figs

  12. Counter-rotating type axial flow pump unit in turbine mode for micro grid system

    International Nuclear Information System (INIS)

    Kasahara, R; Takano, G; Komaki, K; Murakami, T; Kanemoto, T

    2012-01-01

    Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. This serial research proposes the hybrid power system combined the wind power unit with the pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In the pumping mode, the pump should operate unsteadily at not only the normal but also the partial discharge. The operation may be unstable in the rising portion of the head characteristics at the lower discharge, and/or bring the cavitation at the low suction head. To simultaneously overcome both weak points, the authors have proposed a superior pump unit that is composed of counter-rotating type impellers and a peculiar motor with double rotational armatures. This paper discusses the operation at the turbine mode of the above unit. It is concluded with the numerical simulations that this type unit can be also operated acceptably at the turbine mode, because the unit works so as to coincide the angular momentum change through the front runners/impellers with that thorough the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.

  13. An alternative approach to continuous compliance monitoring and turbine plant optimization using a PEMS (predictive emission monitoring system)

    International Nuclear Information System (INIS)

    Swanson, B.G.; Lawrence, P.

    2009-01-01

    This paper reviewed the use of a predictive emissions monitoring system (PEMS) at 3 different gas turbine facilities in the United States and highlighted the costs and benefits of using a PEMS for documenting emissions of priority pollutants and greenhouse gases (GHG). The PEMS interfaces directly to the turbine control system and represents a lower cost alternative to the traditional continuous emission monitoring system (CEMS). The PEMS can track combustion efficiency through modeling of the turbine's operation and emissions. Excess emissions can be tracked and the causes of pollution can be determined and mitigated. The PEMS installed at the 3 turbine plants must meet rigorous performance specification criteria and the sites perform ongoing quality assurance tasks such as periodic audits with portable analyzers. The PEMS is much less expensive to install, operate, and maintain compared to the standard CEMS gas analyzer. Empirical PEMS achieves very high accuracy levels and has demonstrated superior reliability over CEMS for various types of continuous process applications under existing air compliance regulations in the United States. Annual accuracy testing at the gas turbine sites have shown that the PEMS predictions are usually within 5 per cent of the reference method. PEMS can be certified as an alternative to gas analyzer based CEMS for nitrogen oxides and carbon dioxide compliance and for GHG trading purposes. 5 refs., 8 figs.

  14. Automatically Identifying and Predicting Unplanned Wind Turbine Stoppages Using SCADA and Alarms System Data: Case Study and Results

    Science.gov (United States)

    Leahy, Kevin; Gallagher, Colm; Bruton, Ken; O'Donovan, Peter; O'Sullivan, Dominic T. J.

    2017-11-01

    Using 10-minute wind turbine SCADA data for fault prediction offers an attractive way of gaining additional prognostic capabilities without needing to invest in extra hardware. To use these data-driven methods effectively, the historical SCADA data must be labelled with the periods when the turbine was in faulty operation as well the sub-system the fault was attributed to. Manually identifying faults using maintenance logs can be effective, but is also highly time consuming and tedious due to the disparate nature of these logs across manufacturers, operators and even individual maintenance events. Turbine alarm systems can help to identify these periods, but the sheer volume of alarms and false positives generated makes analysing them on an individual basis ineffective. In this work, we present a new method for automatically identifying historical stoppages on the turbine using SCADA and alarms data. Each stoppage is associated with either a fault in one of the turbine’s sub-systems, a routine maintenance activity, a grid-related event or a number of other categories. This is then checked against maintenance logs for accuracy and the labelled data fed into a classifier for predicting when these stoppages will occur. Results show that the automated labelling process correctly identifies each type of stoppage, and can be effectively used for SCADA-based prediction of turbine faults.

  15. Frequency Support of PMSG-WTG Based on Improved Inertial Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Wang, X.; Gao, W.; Kang, M.; Hwang, M.; Kang, Y.; Gevorgian, Vahan; Muljadi, Eduard

    2016-03-15

    With increasing integrations of large-scale systems based on permanent magnet synchronous generator wind turbine generators (PMSG-WTGs), the overall inertial response of a power system will tend to deteriorate as a result of the decoupling of rotor speed and grid frequency through the power converter as well as the scheduled retirement of conventional synchronous generators. Thus, PMSG-WTGs can provide value to an electric grid by contributing to the system's inertial response by utilizing the inherent kinetic energy stored in their rotating masses and fast power control. In this work, an improved inertial control method based on the maximum power point tracking operation curve is introduced to enhance the overall frequency support capability of PMSG-WTGs in the case of large supply-demand imbalances. Moreover, this method is implemented in the CART2-PMSG integrated model in MATLAB/Simulink to investigate its impact on the wind turbine's structural loads during the inertial response process. Simulation results indicate that the proposed method can effectively reduce the frequency nadir, arrest the rate of change of frequency, and mitigate the secondary frequency drop while imposing no negative impact on the major mechanical components of the wind turbine.

  16. Balancing Energy Processes in Turbine Engines

    Directory of Open Access Journals (Sweden)

    Balicki Włodzimierz

    2015-01-01

    Full Text Available The article discusses the issue of balancing energy processes in turbine engines in operation in aeronautic and marine propulsion systems with the aim to analyse and evaluate basic operating parameters. The first part presents the problem of enormous amounts of energy needed for driving fans and compressors of the largest contemporary turbofan engines commonly used in long-distance aviation. The amounts of the transmitted power and the effect of flow parameters and constructional properties of the engines on their performance and real efficiency are evaluated. The second part of the article, devoted to marine applications of turbine engines, presents the energy balance of the kinetic system of torque transmission from main engine turbines to screw propellers in the combined system of COGAG type. The physical model of energy conversion processes executed in this system is presented, along with the physical model of gasodynamic processes taking place in a separate driving turbine of a reversing engine. These models have made the basis for formulating balance equations, which then were used for analysing static and dynamic properties of the analysed type of propulsion, in particular in the aspect of mechanical loss evaluation in its kinematic system.

  17. Advanced technology for aero gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The Symposium is aimed at highlighting the development of advanced components for new aero gas turbine propulsion systems in order to provide engineers and scientists with a forum to discuss recent progress in these technologies and to identify requirements for future research. Axial flow compressors, the operation of gas turbine engines in dust laden atmospheres, turbine engine design, blade cooling, unsteady gas flow through the stator and rotor of a turbomachine, gear systems for advanced turboprops, transonic blade design and the development of a plenum chamber burner system for an advanced VTOL engine are among the topics discussed.

  18. FAST modularization framework for wind turbine simulation: full-system linearization

    Science.gov (United States)

    Jonkman, J. M.; Jonkman, B. J.

    2016-09-01

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well- established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  19. Estimating Health Condition of the Wind Turbine Drivetrain System

    Directory of Open Access Journals (Sweden)

    Peng Qian

    2017-10-01

    Full Text Available Condition Monitoring (CM has been considered as an effective method to enhance the reliability of wind turbines and implement cost-effective maintenance. Thus, adopting an efficient approach for condition monitoring of wind turbines is desirable. This paper presents a data-driven model-based CM approach for wind turbines based on the online sequential extreme learning machine (OS-ELM algorithm. A physical kinetic energy correction model is employed to normalize the temperature change to the value at the rated power output to eliminate the effect of variable speed operation of the turbines. The residual signal, obtained by comparing the predicted values and practical measurements, is processed by the physical correction model and then assessed with a Bonferroni interval method for fault diagnosis. Models have been validated using supervisory control and data acquisition (SCADA data acquired from an operational wind farm, which contains various types of temperature data of the gearbox. The results show that the proposed method can detect more efficiently both the long-term aging characteristics and the short-term faults of the gearbox.

  20. Flow interaction of diffuser augmented wind turbines

    Science.gov (United States)

    Göltenbott, U.; Ohya, Y.; Yoshida, S.; Jamieson, P.

    2016-09-01

    Up-scaling of wind turbines has been a major trend in order to reduce the cost of energy generation from the wind. Recent studies however show that for a given technology, the cost always rises with upscaling, notably due to the increased mass of the system. To reach capacities beyond 10 MW, multi-rotor systems (MRS) have promising advantages. On the other hand, diffuser augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Up to now, diffuser augmentation has only been applied to single small wind turbines. In the present research, DAWTs are used in a multi-rotor system. In wind tunnel experiments, the aerodynamics of two and three DAWTs, spaced in close vicinity in the same plane normal to a uniform flow, have been analysed. Power increases of up to 5% and 9% for the two and three rotor configurations are respectively achieved in comparison to a stand-alone turbine. The physical dynamics of the flows are analysed on the basis of the results obtained with a stand-alone turbine.

  1. Survey on the feasibility of high-efficiency gas turbine power generation system; Kokoritsu gas turbine hatsuden system ni kansuru jitsuyo kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For higher-efficiency power generation cycle plants with less restrained conditions for a location, the conceptual design of an inter-cooled regenerative two-fluid cycle plant (ISTIG) was attempted using a modified aircraft gas turbine. A high-performance turbo fan engine is used for middle-class power generation. The first stage combustion gas drives the first stage turbine, and its exhaust gas is used for the second stage combustion. Because of two-axial type of high and low pressure, improvement of thermal efficiency is expected by easy-to-install inter-cooler. ISTIG superior in operability is suitable for medium load or distributed power generation facilities, and aims at higher efficiency of a 60% level. ISTIG includes a large amount of water vapor in combustion air by adopting a diffusion type combustor eliminating back fire, and can reduce exergy loss by preheating fuel gas. Since load of the high-pressure turbine shifts toward low-pressure one by the inter-cooler, some considerations are necessary for low-pressure side cooling together with reheating cycle. Because of unnecessary steam turbine, the construction cost per kW can be reduced by 20%. 41 refs., 64 figs., 27 tabs.

  2. Air cooled turbine component having an internal filtration system

    Science.gov (United States)

    Beeck, Alexander R [Orlando, FL

    2012-05-15

    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  3. Co-generation on steam industrial systems with disks turbines; Co-geracao em sistemas industriais de vapor com turbinas de discos

    Energy Technology Data Exchange (ETDEWEB)

    Lezsovits, Ferenc [Universidad de Tecnologia y Economia de Budapest (Hungary)

    2010-03-15

    The disk turbine, also called Tesla turbine, being of simple construction and low cost, can be used as steam pressure reduction on industrial systems, generating simultaneously electric power, becoming the co-generation even at lower levels. Can be used for various operational parameters and mass flux ratios.This paper analyses the advantages and disadvantages of the turbines under various operation conditions.

  4. Architecture Support for Runtime Integration and Verification of Component-based Systems of Systems

    NARCIS (Netherlands)

    Gonzalez, A.; Piel, E.; Gross, H.G.

    2008-01-01

    Preprint of paper published in: ASE 2008 - 23rd IEEE/ACM International Conference on Automated Software Engineering, 15-19 September 2008; doi:10.1109/ASEW.2008.4686292 Systems-of-Systems (SoS) represent a novel kind of system, for which runtime evolution is a key requirement, as components join and

  5. Clean coal technologies for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.M. [GE Industrial & Power Systems, Schenectady, NY (United States)

    1994-12-31

    The oil- and gas-fired turbine combined-cycle penetration of industrial and utility applications has escalated rapidly due to the lower cost, higher efficiency and demonstrated reliability of gas turbine equipment in combination with fuel economics. Gas turbine technology growth has renewed the interest in the use of coal and other solid fuels in combined cycles for electrical and thermal energy production to provide environmentally acceptable plants without extra cost. Four different types of systems utilizing the gas turbine advantages with solid fuel have been studied: direct coal combustion, combustor processing, fuel processing and indirect cycles. One of these, fuel processing (exemplified by coal gasification), is emerging as the superior process for broad scale commercialization at this time. Advances in gas turbine design, proven in operation above 200 MW, are establishing new levels of combined-cycle net plant efficiencies up to 55% and providing the potential for a significant shift to gas turbine solid fuel power plant technology. These new efficiencies can mitigate the losses involved in gasifying coal and other solid fuels, and economically provide the superior environmental performance required today. Based on demonstration of high baseload reliability for large combined cycles (98%) and the success of several demonstrations of Integrated Gasification Combined Cycle (IGCC) plants in the utility size range, it is apparent that many commercial IGCC plants will be sites in the late 1990s. This paper discusses different gas turbine systems for solid fuels while profiling available IGCC systems. The paper traces the IGCC option as it moved from the demonstration phase to the commercial phase and should now with planned future improvements, penetrate the solid fuel power generation market at a rapid pace.

  6. Micro-turbines

    International Nuclear Information System (INIS)

    Tashevski, Done

    2003-01-01

    In this paper a principle of micro-turbines operation, type of micro-turbines and their characteristics is presented. It is shown their usage in cogeneration and three generation application with the characteristics, the influence of more factors on micro-turbines operation as well as the possibility for application in Macedonia. The paper is result of the author's participation in the training program 'Micro-turbine technology' in Florida, USA. The characteristics of different types micro-turbines by several world producers are shown, with accent on US micro-turbines producers (Capstone, Elliott). By using the gathered Author's knowledge, contacts and the previous knowledge, conclusions and recommendations for implementation of micro-turbines in Macedonia are given. (Author)

  7. Preliminary study of nuclear power cogeneration system using gas turbine process

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto; Ogawa, Masuro; Ogata, Kann; Yamada, Seiya.

    1995-12-01

    The Nuclear power generation plant (NPGP) releases smaller amount of carbon dioxide than the fossil power plant for the generation of the unit electrical power. Thus, the NPGP is expected to contribute resolving the ecological problems. It is important to investigate the nuclear power cogeneration system using gas turbine process from the view point that it is better to produce electricity in high thermal efficiency from the high temperature energy. We carried out, in the current preliminary study, the survey and selection of the candidate cycles, then conducted the evaluation of cycle efficiency, the selection of R and D items to be solved for the decision of the optimum cycle. Following this, we evaluated nuclear heat application for intermediate and low temperature level released from gas turbine process and overall efficiency of cogeneration system. As a result, it was clarified that overall efficiency of the direct regenerative cycle was the highest in low temperature region below 200degC, and that of the direct regenerative inter cooling cycle was the highest in middle and high temperature region. (author)

  8. Preliminary study of nuclear power cogeneration system using gas turbine process

    Energy Technology Data Exchange (ETDEWEB)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ogawa, Masuro; Ogata, Kann; Yamada, Seiya

    1995-12-01

    The Nuclear power generation plant (NPGP) releases smaller amount of carbon dioxide than the fossil power plant for the generation of the unit electrical power. Thus, the NPGP is expected to contribute resolving the ecological problems. It is important to investigate the nuclear power cogeneration system using gas turbine process from the view point that it is better to produce electricity in high thermal efficiency from the high temperature energy. We carried out, in the current preliminary study, the survey and selection of the candidate cycles, then conducted the evaluation of cycle efficiency, the selection of R and D items to be solved for the decision of the optimum cycle. Following this, we evaluated nuclear heat application for intermediate and low temperature level released from gas turbine process and overall efficiency of cogeneration system. As a result, it was clarified that overall efficiency of the direct regenerative cycle was the highest in low temperature region below 200degC, and that of the direct regenerative inter cooling cycle was the highest in middle and high temperature region. (author).

  9. Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival.

    Science.gov (United States)

    Li, Xinya; Deng, Zhiqun D; Brown, Richard S; Fu, Tao; Martinez, Jayson J; McMichael, Geoffrey A; Skalski, John R; Townsend, Richard L; Trumbo, Bradly A; Ahmann, Martin L; Renholds, Jon F

    2015-01-01

    Little is known about the three-dimensional depth distributions in rivers of individually marked fish that are in close proximity to hydropower facilities. Knowledge of the depth distributions of fish approaching dams can be used to understand how vulnerable fish are to injuries such as barotrauma as they pass through dams. To predict the possibility of barotrauma injury caused by pressure changes during turbine passage, it is necessary to understand fish behaviour relative to acclimation depth in dam forebays as they approach turbines. A guiding study was conducted using high-resolution three-dimensional tracking results of salmonids implanted with Juvenile Salmon Acoustic Telemetry System transmitters to investigate the depth distributions of subyearling and yearling Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) passing two dams on the Snake River in Washington State. Multiple approaches were evaluated to describe the depth at which fish were acclimated, and statistical analyses were performed on large data sets extracted from ∼28 000 individually tagged fish during 2012 and 2013. Our study identified patterns of depth distributions of juvenile salmonids in forebays prior to passage through turbines or juvenile bypass systems. This research indicates that the median depth at which juvenile salmonids approached turbines ranged from 2.8 to 12.2 m, with the depths varying by species/life history, year, location (which dam) and diel period (between day and night). One of the most enlightening findings was the difference in dam passage associated with the diel period. The amount of time that turbine-passed fish spent in the immediate forebay prior to entering the powerhouse was much lower during the night than during the day. This research will allow scientists to understand turbine-passage survival better and enable them to assess more accurately the effects of dam passage on juvenile salmon survival.

  10. Development of a towing tank PIV system and a wake survey of a marine current turbine under steady conditions

    Science.gov (United States)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2015-11-01

    A submersible particle image velocimetry (PIV) system was designed and built at the U.S. Naval Academy. The system was used to study the wake of a scale-independent horizontal axis marine current turbine. The turbine is a 1/25th scale model of the U.S. National Renewable Energy Laboratory's Reference Model 1 (RM1) tidal turbine. It is a two-bladed turbine measuring 0.8 m in diameter and featuring a NACA 63-618 airfoil cross-section. The wake survey was conducted over an area extending 0.25D forward of the turbine tip path to 2.0D aft to a depth of 1.0D beneath the turbine output shaft in the streamwise plane. Each field of view was approximately 30 cm by 30 cm, and each overlapped the adjacent fields of view by 5 cm. The entire flow field was then reconstructed by registering the resultant vector fields together into a single field of investigation. Results include the field of investigation from a representative case, for the mean velocity field averaged over approximately 1,000 realizations, and turbulent statistics including turbulence intensities, Reynolds shear stresses, and turbulent kinetic energy. This research was funded by the Office of Naval Research.

  11. Small power wind turbine (Type DARRIEUS

    Directory of Open Access Journals (Sweden)

    Marcel STERE

    2012-03-01

    Full Text Available This presentation focuses on the calculation for small vertical axis wind turbines (VAWT for an urban application. The fixed-pitch straight – bladed vertical axis wind turbine (SB-VAWT is one of the simplest types of wind turbine and accepts wind from any angle (no yaw system. This turbine is useful for moderate wind speeds (3 - 6 m/s. A case study is presented based upon the use of well documented symmetrical NACA 0012 turbine blade profile. We describe a solution for VAWT. To perform a linear static analysis in the structure, the commercial finite element analysis code ANSYS is used because of its flexibility for handling information in files written in a more or less free format.

  12. O?shore ?oating wind turbine and its dynamic problems?

    Institute of Scientific and Technical Information of China (English)

    Renchuan ZHU; Guoping MIAO; Ju FAN; Hua LIU

    2016-01-01

    Green energy sources and ocean wind power are plentiful in deep sea. More and more o?shore wind power plants are constructed in the deep water over hundred meters below the surface. While o?shore ?oating wind turbine system is working, wind turbine, ?oating foundation, and mooring system a?ect each other with wind, waves, and currents acting on them. Various o?shore ?oating wind turbine systems and the encoun-tered environmental loads are brie?y reviewed and discussed. It is di?cult and crucial to comprehensively analyze the aerodynamic-hydrodynamic-service system-structure un-der the coupling e?ect of o?shore ?oating wind turbine system. The environmental ?ow ?eld, structure scale, and rational applications of theories and approaches should be well considered in advance.

  13. Turbine Control System Replacement at NPP NEK; System Specifics, Project Experience and Lessons Learned

    International Nuclear Information System (INIS)

    Mandic, D.; Zilavy, M. J.

    2010-01-01

    The main intention of this paper is to present feedback from the implementation of the new Turbine Control System (TCS) replacement project at Nuclear Power Plant (NPP) NEK - Krsko. From the plant construction time and the first plant start-up in 1981, the NPP NEK TG (Turbine-Generator) set was controlled and monitored by DEH (Digital Electro Hydraulic) Mod II Control System designed in 70's based on P2500 CPU and number of I/O controllers and modules. The P2500 CPU and associated controllers were built with discrete TTL components (TTL logic chips) and the P2500 CPU had 64k of 16 bit words of ferrite core memory. For that time, DEH Mod II had sophisticated MCR (Main Control Room) HMI (Human Machine Interface) based on digital functional keyboards, one alphanumeric black and white CRT monitor and printer. After twenty eight years of operation and because of several other reasons that are explained in the paper, NEK decided to replace the old DEH Mod II Control system with the new Emerson Ovation based DCS (Distributed Control System) on redundant platform for the control and monitoring of secondary plant systems in the NPP Krsko (NEK), and the new system was named PDEH (Programmable Digital Electro Hydraulic) TCS. In May 2007, NEK signed the turn-key contract with Westinghouse Electric Company (WEC) for the project of replacement of the TCS, Turbine Emergency Trip System (ETS), Moisture Separator Reheater (MSR) control and some other control and monitoring functions. WEC subcontracted a number of other companies for equipment delivery, AE (Architect Engineering Design) activities, specific software development tasks (changes of KFSS - Krsko Full Scope Simulator and PIS - Process Information System interface) and field installation activities. The subject project enveloped implementation of PDEH system on three application platforms: BG KFSS (Background KFSS), FG KFSS (Foreground KFSS) and PDEH system installed in the plant. The HMI for the BG KFSS platform

  14. Integrating Structural Health Management with Contingency Control for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kai Goebel

    2013-01-01

    Full Text Available Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency control to balance the trade-offs between maintaining system health and energy capture. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  15. Model of the Correlation between Lidar Systems and Wind Turbines for Lidar-Assisted Control

    DEFF Research Database (Denmark)

    Schlipf, David; Cheng, Po Wen; Mann, Jakob

    2013-01-01

    - or spinner-based lidar system. If on the one hand, the assumed correlation is overestimated, then the uncorrelated frequencies of the preview will cause unnecessary control action, inducing undesired loads. On the other hand, the benefits of the lidar-assisted controller will not be fully exhausted......, if correlated frequencies are filtered out. To avoid these miscalculations, this work presents a method to model the correlation between lidar systems and wind turbines using Kaimal wind spectra. The derived model accounts for different measurement configurations and spatial averaging of the lidar system......Investigations of lidar-assisted control to optimize the energy yield and to reduce loads of wind turbines have increased significantly in recent years. For this kind of control, it is crucial to know the correlation between the rotor effective wind speed and the wind preview provided by a nacelle...

  16. Selection of an industrial natural-gas-fired advanced turbine system - Task 3A

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, G.M.

    1997-05-01

    TASK OBJECTIVES: Identify a gas-fueled turbine and steam system which will meet the program goals for efficiency - and emissions. TECHNICAL GOALS AND REQUIREMENTS: Goals for the Advanced Turbine System Program (ATS) where outlined in the statement of work for five basic categories: Cycle Efficiency - System heat rate to have a 15% improvement over 1991 vintage systems being offered to the market. Environmental No post-combustion devices while meeting the following parameter targets: (1) Nitrous Oxide (NO{sub x}) emissions to equal 8 parts per million dry (ppmd) with 15% oxygen. (2) Carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions to equal 20 parts per million(ppmd) each. Cost of electricity to be 10 percent less when compared to similar 1991 systems. Fuel Flexibility Have to ability to burn coal or coal derived fuels without extensive redesign. Reliability, Availability, Maintainability Reliability, availability and maintainability must be comparable to modern advanced power generation systems. For all cycle and system studies, analyses were done for the following engine system ambient conditions: Temperature - 59F; Altitude - Sea Level; Humidity - 60%. For the 1991 reference system, GE Aircraft Engines used its LM6OOO engine product offering for comparison of the Industrial System parameters developed under this program.

  17. Unstable behaviour of RPT when testing turbine characteristics in the laboratory

    Science.gov (United States)

    Nielsen, T. K.; Fjørtoft Svarstad, M.

    2014-03-01

    A reversible pump turbine is a machine that can operate in three modes of operation i.e. in pumping mode. in turbine mode and in phase compensating mode (idle speed). Reversible pump turbines have an increasing importance for regulation purposes for obtaining power balance in electric power systems. Especially in grids dominated by thermal energy. reversible pump turbines improve the overall power regulating ability. Increased use of renewables (wind-. wave- and tidal power plants) will utterly demand better regulation ability of the traditional water power systems. enhancing the use of reversible pump turbines. A reversible pump turbine is known for having incredible steep speed - flow characteristics. As the speed increases the flow decreases more than that of a Francis turbines with the same specific speed. The steep characteristics might cause severe stability problems in turbine mode of operation. Stability in idle speed is a necessity for phasing in the generator to the electric grid. In the design process of a power plant. system dynamic simulations must be performed in order to check the system stability. The turbine characteristics will have to be modelled with certain accuracy even before one knows the exact turbine design and have measured characteristics. A representation of the RPT characteristics for system dynamic simulation purposes is suggested and compared with measured characteristics. The model shows good agreement with RPT characteristics measured in The Waterpower Laboratory. Because of the S-shaped characteristics. there is a stability issue involved when measuring these characteristics. Without special measures. it is impossible to achieve stable conditions in certain operational points. The paper discusses the mechanism when using a throttle to achieve system stability. even if the turbine characteristics imply instability.

  18. Unstable behaviour of RPT when testing turbine characteristics in the laboratory

    International Nuclear Information System (INIS)

    Nielsen, T K; Svarstad, M Fjørtoft

    2014-01-01

    A reversible pump turbine is a machine that can operate in three modes of operation i.e. in pumping mode. in turbine mode and in phase compensating mode (idle speed). Reversible pump turbines have an increasing importance for regulation purposes for obtaining power balance in electric power systems. Especially in grids dominated by thermal energy. reversible pump turbines improve the overall power regulating ability. Increased use of renewables (wind-. wave- and tidal power plants) will utterly demand better regulation ability of the traditional water power systems. enhancing the use of reversible pump turbines. A reversible pump turbine is known for having incredible steep speed - flow characteristics. As the speed increases the flow decreases more than that of a Francis turbines with the same specific speed. The steep characteristics might cause severe stability problems in turbine mode of operation. Stability in idle speed is a necessity for phasing in the generator to the electric grid. In the design process of a power plant. system dynamic simulations must be performed in order to check the system stability. The turbine characteristics will have to be modelled with certain accuracy even before one knows the exact turbine design and have measured characteristics. A representation of the RPT characteristics for system dynamic simulation purposes is suggested and compared with measured characteristics. The model shows good agreement with RPT characteristics measured in The Waterpower Laboratory. Because of the S-shaped characteristics. there is a stability issue involved when measuring these characteristics. Without special measures. it is impossible to achieve stable conditions in certain operational points. The paper discusses the mechanism when using a throttle to achieve system stability. even if the turbine characteristics imply instability

  19. Gas--steam turbine combined cycle power plants

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1978-10-01

    The purpose of this technology evaluation is to provide performance and cost characteristics of the combined gas and steam turbine, cycle system applied to an Integrated Community Energy System (ICES). To date, most of the applications of combined cycles have been for electric power generation only. The basic gas--steam turbine combined cycle consists of: (1) a gas turbine-generator set, (2) a waste-heat recovery boiler in the gas turbine exhaust stream designed to produce steam, and (3) a steam turbine acting as a bottoming cycle. Because modification of the standard steam portion of the combined cycle would be necessary to recover waste heat at a useful temperature (> 212/sup 0/F), some sacrifice in the potential conversion efficiency is necessary at this temperature. The total energy efficiency ((electric power + recovered waste heat) divided by input fuel energy) varies from about 65 to 73% at full load to 34 to 49% at 20% rated electric power output. Two major factors that must be considered when installing a gas--steam turbine combines cycle are: the realiability of the gas turbine portion of the cycle, and the availability of liquid and gas fuels or the feasibility of hooking up with a coal gasification/liquefaction process.

  20. Generic dynamic wind turbine models for power system stability analysis: A comprehensive review

    DEFF Research Database (Denmark)

    Honrubia-Escribano, A.; Gómez-Lázaro, E.; Fortmann, J.

    2018-01-01

    In recent years, international working groups, mainly from the International Electrotechnical Commission (IEC) and the Western Electricity Coordinating Council (WECC), have made a major effort to develop generic —also known as simplified or standard— dynamic wind turbine models to be used for power...... system stability analysis. These models are required by power system operators to conduct the planning and operation activities of their networks since the use of detailed manufacturer models is not practical. This paper presents a comprehensive review of the work done in this field, based on the results...... obtained by IEC and WECC working groups in the course of their research, which have motivated the publication of the IEC 61400-27 in February 2015. The final published versions of the generic models developed according to the existing four wind turbine technology types are detailed, highlighting...